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Abstract

Practical laboratory classes teaching molecular pharmacology approaches employed in the

development of therapeutic strategies are of great interest for students of courses in Bio-

technology, Applied Biology, Pharmaceutic and Technology Chemistry, Translational

Oncology. Unfortunately, in most cases the technology to be transferred to learning students

is complex and requires multi-step approaches. In this respect, simple and straightforward

experimental protocols might be of great interest. This study was aimed at presenting a lab-

oratory exercise focusing (a) on a very challenging therapeutic strategy, i.e. microRNA ther-

apeutics, and (b) on the employment of biomolecules of great interest in applied biology and

pharmacology, i.e. peptide nucleic acids (PNAs). The aims of the practical laboratory were

to determine: (a) the possible PNA-mediated arrest in RT-qPCR, to be eventually used to

demonstrate PNA targeting of selected miRNAs; (b) the possible lack of activity on mutated

PNA sequences; (c) the effects (if any) on the amplification of other unrelated miRNA

sequences. The results which can be obtained support the following conclusions: PNA-

mediated arrest in RT-qPCR can be analyzed in a easy way; mutated PNA sequences are

completely inactive; the effects of the employed PNAs are specific and no inhibitory effect

occurs on other unrelated miRNA sequences. This activity is simple (cell culture, RNA

extraction, RT-qPCR are all well-established technologies), fast (starting from isolated and

characterized RNA, few hours are just necessary), highly reproducible (therefore easily

employed by even untrained students). On the other hand, these laboratory lessons require

some facilities, the most critical being the availability of instruments for PCR. While this

might be a problem in the case these instruments are not available, we would like to under-

line that determination of the presence or of a lack of amplified product can be also obtained

using standard analytical approaches based on agarose gel electrophoresis.
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Introduction

Large number of students engaged in scientific disciplines are expected to very interested in

authentic laboratories experiences in molecular biology classrooms [1,2]. Accordingly, practi-

cal laboratory classrooms based on teaching molecular pharmacology approaches employed in

the development of therapeutic strategies are of great interest for students of courses in Bio-

technology, Applied Biology, Pharmaceutic and Technology Chemistry, Translational Oncol-

ogy. Unfortunately, despite several experiences are important, they are challenging as, in most

of the cases, the technology to be transferred to learning students is complex and requires

multi-step approaches [3]. Furthermore, several technologies require complex instrumenta-

tion(s) and costly reagents and supplies [3]. Finally, several techniques are difficult to be fol-

lowed in in real lab (wet-lab) setting in the case of large class size resulting in student crowding

[4]. Based on these considerations virtual laboratories have been proposed, which facilitate

learning of technologies requiring complex instruments, costly reagents and materials, highly

trained personnel [2, 5–8].

However, we should underline that the student’s expectation might require also the organi-

zation of wet-labs for acquiring complex skills and the ability to discuss challenging biomedical

approaches [9,10]. In this respect, simple and straightforward experimental protocols might be

useful and of great interest, especially in the era of personalized medicine and molecular

targeting.

This study is aimed at presenting a laboratory exercise focusing (a) on a very challenging

therapeutic strategy, i.e. microRNA therapeutics [11–14], and (b) on the employment of bio-

molecules of great interest in applied biology and pharmacology, i.e. Peptide Nucleic Acids

(PNAs) [15–17].

MicroRNAs (miRNAs) are a family of evolutionary conserved small (19 to 25 nucleotides

in length) noncoding RNAs playing important roles in the post-transcriptional control of gene

expression, operated at the level of mRNA translation and based on the miRNA-dependent

recognition of 3’UTR, CDS and 5’UTR mRNA sequences [18–22]. Excellent reviews on

miRNA biology are available and might be considered in the teaching materials available to

the students [23,24]. A second point is that microRNAs are novel and very important targets

for therapeutic strategies [13,14, 25–28]; the anti-miRNA and miRNA replacement approaches

to modify miRNA-regulated gene expression are summarized in Figure A in S1 File). In this

study we focused on the teaching of methods for characterize the specificity of biomolecules to

be employed in anti-miRNA strategies [29–44].

The considered biomolecule are based on Peptide Nucleic Acids, DNA analogues described

for the first time by Nielsen et al. [45], in which the sugar-phosphate backbone has been

replaced by N-(2-aminoethyl)glycine units [15–17,46] as depicted in Figure B in S1 File. PNAs

have been demonstrated to be very efficient tools for pharmacologically-mediated alteration of

gene expression, both in vitro and in vivo [47–49], in consideration of the possibility to be used

as antisense molecules targeting mRNAs, triple-helix forming molecules targeting eukaryotic

gene promoters, artificial promoters, decoy molecules targeting transcription factors [15–

17,46–49]. Relevant in the context of the proposed practical laboratory exercise, PNAs have

been demonstrated to be able of altering miRNA functions, both in vitro and in vivo [50–58].

This has been recently reviewed by Manicardi et al. [57] and more information is depicted in

the Figure C in S1 File.

The protocol here presented considers two PNAs, a PNA targeting miR-221-3p (R8-PNA-

a221) and causing activation of apoptosis of treated cancer cells through inhibition of miR-

221-3p functions, and a PNA targeting miR-145-5p (R8-PNA-a145), able to induce in increase

of the expression of CFTR through inhibition of the CFTR regulator: miR-145-5p.
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We have recently found that a PNA targeting miR-221-3p (R8-PNA-a221) [53], bearing an

oligoarginine peptide (R8) enabling efficient uptake by glioma cells [52,55,59], was able to

strongly inhibit miR-221-3p in U251, U373 and T98G glioma cells. This inhibition of miR-

221-3p activity was associated with increased expression of the miR-221 target p27Kip1, ana-

lyzed by RT-qPCR and by Western blotting [52,60] (see Figure D in S1 File). As far as targeting

miR-145-5p, we have described a PNA against miR-145-5p which inhibits the activity of the

target miRNA and enhances the expression of the miR-145-5p regulated Cystic Fibrosis Trans-

membrane Conductance Regulator (CFTR) in Calu-3 Cells [61,62] (see Figure E in S1 File).

Materials and methods

Materials

Peptide nucleic acids (PNAs). PNAs can be purchased from several companies, including

Panagene Inc. (www.panagene.com; Yuseong-gu, Daejeon, South Korea). Alternatively, PNAs

against miRNAs can be synthesized following the procedures described in Manicardi et al.

[57] and Fabbri et al. [61]. The data here presented are based on PNAs described in the paper

by Brognara et al. [52]. The sequences of PNA-a221 and PNA-a145 are reported in Table 1;

PNAs with a mutated sequence were used as negative controls.

Cell lines. 1. U251 human glioma cell line (Sigma-Aldrich, St.Louis, Missouri, USA;

cat.09063001)

2. Calu-3 human airway epithelial Calu-3 cell line (American Type Culture Collection:

ATCC HTB-55)

Cell culture. 1. RPMI-1640 medium (Sigma-Aldrich, St.Louis, Missouri, USA)

2. D-MEM medium (Gibco, Thermo Fisher Scientific, Walthman, Massachusetts, USA)

3. 100 U/mL penicillin and 100 μg/mL streptomycin (Sigma-Aldrich, St.Louis, Missouri,

USA)

4. Fetal bovine serum (FBS, Biowest, Nauillè, France)

5. Non-Essential Amino Acids Solution 100X (NEAA, Gibco, Thermo Fisher Scientific,

Walthman, Massachusetts, USA)

6. To determine cell growth a Z2 Coulter Counter (Coulter Electronics, Hialeah, Florida,

USA)

RNA extraction. 1. Trypsin-EDTA (Sigma-Aldrich, St.Loius Missouri, USA)

2. FBS (FBS, Biowest, Nauillè, France)

3. DPBS (Gibco, Thermo Fisher Scientific, Walthman, Massachusetts, USA)

4. Tri-Reagent (Sigma-Aldrich, St.Loius Missouri, USA) was employed for cell lysis

5. Extracted RNA was quantified using SmartSpec Plus Spectrophotometer (Bio-Rad, Her-

cules, CA, USA)

6. The quality of the RNA was determined by spectrophotometric analysis and by agarose

gel electrophoresis

MicroRNA reverse transcription reaction. 1. Specific stem loop primers for miRNA

Reverse Transcription (RT) have been purchased from Applied Biosystems (Thermo Fisher

Table 1. Sequences of PNAs. Mutated bases are underlined.

PNA name Sequence

R8-PNA-a221 H-RRRRRRRR-AAACCCAGCAGACAATGT-Gly-NH2
R8-PNA-a221-MUT H-RRRRRRRR-AATCCCACCAGAGAAAGT-Gly-NH2
R8-PNA-a145 H-RRRRRRRR-AGGGATTCCTGGGAAAAC-Gly-NH2
R8-PNA-a145-MUT H-RRRRRRRR-AGAGATGCCTTGGAGAAC-Gly-NH2

https://doi.org/10.1371/journal.pone.0221923.t001
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Scientific, Walthman, Massachusetts, USA). The ID of employed assays (including primers

and probes for RT-qPCR and RT-ddPCR reaction) have been reported in Table 2.

2. Reverse transcriptase (RT) reactions were performed using the TaqMan MicroRNA

Reverse Transcription Kit (Thermo Fisher Scientific, Walthman, Massachusetts, USA).

3. MicroRNA reverse transcription reaction was performed using GeneAmp PCR System

9700 (Thermo Fisher Scientific, Walthman, Massachusetts, USA)

Real-time quantitative PCR of microRNA. 1. Primers and probes for miRNA amplifica-

tion have been obtained from Applied Biosystems (Thermo Fisher Scientific, Walthman, Mas-

sachusetts, USA). The ID of employed assays has been reported in Table 2.

2. All RT-qPCR reactions were conducted using TaqMan Universal PCR Master Mix, no

AmpErase UNG (Thermo Fisher Scientific, Walthman, Massachusetts, USA)

3. Real-time PCR was performed using the CFX96 Touch Real-time PCR Detection System

(Bio-Rad, Hercules, CA, USA) and data collection and analysis was performed using CFX

Manager Software version 3.1 (Bio-Rad, Hercules, CA, USA).

Droplet Digital PCR (ddPCR) analysis of microRNA. 1. Primers and probes for miRNA

amplification have been obtained from Applied Biosystems (Thermo Fisher Scientific, Walth-

man, Massachusetts, USA). The ID of employed assays has been reported in Table 2.

2. DNA polymerase and the necessary reagents for miRNA amplification are contained in

ddPCR Supermix for Probes (No dUTP) (Bio-Rad, Hercules, CA, USA)

3. Water in oil emulsion was automated created using Automated Droplet Generator

(AutoDG, Bio-Rad, Hercules, CA, USA), DG32 Automated Droplet Generator Cartridges

(Bio-Rad, Hercules, CA, USA) and Automated Droplet Generation Oil for Probes (Bio

Rad, Hercules, CA, USA)

4. MicroRNA amplification was performed using GeneAmp PCR System 9700 (Thermo

Fisher Scientific, Walthman, Massachusetts, USA)

5. Generated droplets were analyzed using QX200 Droplet Reader (Bio-Rad, Hercules, CA,

USA) and data analysis was performed using QuantaSoft version 1.7.4 (Bio-Rad, Hercules,

CA, USA)

Methods

Human cell lines and culture conditions. U251 and Calu-3 cells were cultured in humid-

ified atmosphere of 5% CO2/air. U251 glioma cell line were maintained in culture medium

composed by RPMI-1640 (Sigma-Aldrich) and 10% FBS (Biowest) supplemented with 100

units/mL penicillin and 100 g/mL streptomycin, while Calu-3 were cultured in D-MEM

medium (Gibco) supplemented with 10% fetal bovine serum, 100 units/mL penicillin and 100

g/mL streptomycin and 1% NEAA (100x) (Non-Essential Amino Acids Solution; Gibco).

Total RNA extraction. Cells were trypsinized and collected by centrifugation at 1500

RPM for 10 min at 4˚C, washed with DPBS and lysed with Tri-Reagent (Sigma-Aldrich),

Table 2. Assays employed for miRNA quantification by RT-qPCR and RT-ddPCR.

miRNA Assay number MicroRNA sequence

hsa-miR-221-3p 000524 5’-AGCUACAUUGUCUGCUGGGUUUC-3’

hsa-miR-222-3p 002276 5’-AGCUACAUCUGGCUACUGGGU-3’

hsa-miR-210-3p 000512 5’-CUGUGCGUGUGACAGCGGCUGA-3’

hsa-miR-145-5p 002278 5’-GUCCAGUUUUCCCAGGAAUCCCU-3’

hsa-miR-155-5p 002623 5’-UUAAUGCUAAUCGUGAUAGGGGUU-3’

hsa-let-7c-5p 000379 5’-UGAGGUAGUAGGUUGUAUGGUU-3’

https://doi.org/10.1371/journal.pone.0221923.t002
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according to manufacturer’s instructions. The isolated RNA was washed once, with cold 75%

ethanol, dried and dissolved in nuclease free water (Sigma-Aldrich) before use. The obtained

RNA was stored at -80˚C until the use. The quality of the RNA was determined by spectropho-

tometric analysis and by agarose gel electrophoresis. The ratio 260/280 nm was used for deter-

mining the overall quality. The electrophoresis on 0,8% agarose in TAE (Tris-acetate-EDTA)

buffer was employed for quality checking.

MicroRNA reverse transcription. Obtained total RNA was quantified using SmartSpec

Plus Spectrophotometer (Bio-Rad) and 300 ng of total RNA were reverse transcribed using

TaqMan MicroRNA Reverse Transcription Kit (Thermo Fisher Scientific) and specific stem

loop primers (Thermo Fisher Scientific) following manufacturer instructions. Obtained

miRNA-specific cDNA was stored at -80˚C until PCR analysis.

Real-time quantitative PCR of microRNA. Three μL of obtained cDNA were amplified

in 25 μL (final volume) of RT-qPCR reaction mix, containing 2X TaqMan Universal PCR Mas-

ter Mix, no AmpErase UNG (Thermo Fisher Scientific) and 20X TaqMan MicroRNA Assay

(Thermo Fisher Scientific) indicated in Table 2. Incremental concentrations (from 25 nM to

200 nM) of anti-miR PNAs were added to the RT-qPCR reaction mix of PNA treated mix,

while no PNA was added to the control samples. Sequences of the employed PNAs are

reported in Table 1. All RT-qPCR reactions, including no-template controls (NTC) and RT-

minus controls, were run in duplicate, using the CFX96 Touch Real Time PCR Detection Sys-

tem (Bio-rad). Data analysis and graphic elaborations were performed using CFX Manager

Software version 3.1 (Bio-Rad).

Droplet Digital PCR analysis of microRNA. The ability of PNA to arrest miRNA ampli-

fication reaction was also tested using ddPCR; at this purpose 1 μL of 1:50 diluted cDNA

obtained from U251 cell line was added to ddPCR reaction mix containing 2X ddPCR Super-

mix for Probes (no dUTP) (Bio-Rad) and 20X TaqMan MicroRNA Assay (Thermo Fisher Sci-

entific). In this case three different concentration anti-miR PNAs were employed: 25, 50 and

100 nM, while no PNA was added to control samples. 20 μL of ddPCR reaction mix were

mixed with Automated Droplet Generation Oil for Probes (Bio-Rad) and 40 μL of droplets

emulsion was automatically generated using Automated Droplet Generator (AutoDG) (Bio-

Rad). The emulsion was amplified using GeneAmp PCR System 9700 (Thermo Fisher Scien-

tific) using the following thermal cycler condition 95˚C for 10 min, 40 cycles of 95˚C for 15 s

and 60˚C for 1 min and a final step of 98˚C for 10 min. Genereted droplets were read using the

QX200 Droplet Reader, and data analysis was performed with QuantaSoft version 1.7.4 (Bio-

Rad).

Statistics. Results are expressed as mean ± standard error of the mean (SEM). Compari-

sons between groups were made by using paired Student’s t test and a one-way analysis of vari-

ance (ANOVA). Statistical significance was defined with p<0.01.

Results

Cell culture and RNA extraction

The objective of these procedures is to obtain the RNA samples to be employed by the students

during the practical laboratory. Depending on the time and the program, it can be also

included as a part of the lesson(s). U251 human glioma [63,64] and Calu-3 human airway epi-

thelial [65,66] cell lines can be cultured in humidified atmosphere of 5% CO2/air in D-MEM

medium (Gibco) supplemented with 10% fetal bovine serum (Biowest), 100 units/mL penicil-

lin and 100 μg/mL streptomycin and 1% NEAA (100X) (Non-Essential Amino Acids Solution,

Gibco). For RNA extraction cultured cells are trypsinized and collected by centrifugation at

1500 rpm for 10 minutes at 4˚C, washed with cold DPBS (Gibco), lysed with Tri-Reagent
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(Sigma-Aldrich), according to manufacturer’s instructions. The isolated RNA is washed once

with cold 75% ethanol, dried and dissolved in nuclease-free water (Sigma-Aldrich). The quality

of the RNA was determined by spectrophotometric analysis and by agarose gel electrophoresis.

The ratio 260/280 nm was used for determining the overall quality (representative examples

are shown in Figure F in S1 File). Agarose gel electrophoresis was employed for quality check-

ing (representative examples are shown in Figure F in S1 File).

Functions of miR-221-3p and miR-145-5p in U251 and Calu-3 cells

The reason for selecting miR-221-3p and miR-145-5p as miRNA PNA targets is related to pre-

viously published studies demonstrating that PNA-mediated inhibition of the activity of these

two miRNAs is associated with clinically relevant effects. Brognara et al. [53] reported that a

PNA against miR-221-3p is able to induce apoptosis of the treated glioma cell line. More

recently Brognara et al. [54] demonstrated that two PNAs, one against miR-221, the other

against miR-222-3p were able to induced higher levels of apoptosis when administered to the

glioma cells in combination. These results are relevant in the development of PNA-based

miRNA targeting in experimental oncology. The key experiments of these studies can be pre-

sented as a background to the class using the Figure D in S1 File. As far as miR-145-5p, Fabbri

et al. [61] proposed the use of an anti-miR PNA for targeting miR-145-5p, a microRNA

reported to suppress the expression of the Cystic Fibrosis Transmembrane conductance Regu-

lator (CFTR) gene. Sequence dependent targeting of miR-145-5p was demonstrated in Calu-3

cells, allowing to enhance expression of the miR-145-5p regulated CFTR gene, analyzed at

mRNA (RT-qPCR) and protein (western blotting) level. These results are relevant in the devel-

opment of PNA-based miRNA targeting for cystic fibrosis [62,67,68]. The key experiments of

these studies can be presented as a background to the class using the Figure E in S1 File.

Outline of the practical laboratory program

The outline of the main practical laboratory, starting from the isolated RNA described in sec-

tion 3.1, will answer to the following questions:

• Are PNAs (PNA-a221 and PNA-a145) able to arrest RT-qPCR designed for the amplification

of the PNA-target miRNA sequences (miR-221-3p for PNA-a221 and miR-145-5p for PNA-

a145)?

• Are mutated PNAs (PNA-a221-MUT and PNA-a145-MUT) active?

• Are unrelated miRNA sequences amplified in the presence of PNA-a221 and PNA-a145,

supporting selectivity of PNA-mediated effects?

Effects of PNA-a221 on RT-qPCR amplification of miR-221-3p sequences

Fig 1 shows the outline of the experiments based on the use of PNA-a221. In Fig 1A the biolog-

ical effects of the R8-PNA-a221 on glioma cell lines are summarized (see also Figure D in S1

File). Fig 1B shows the timing of the proposed practical laboratory activity. The key activity is

shown as the segment (c) of Fig 1B and starts from the RNA preparation, is based on the per-

forming of the PCR following RT in the absence or in the presence of PNA-a221 (as further

depicted in Fig 1C). Alternatively, U251 cell culture and RNA extraction/characterization—

segment (a) of Fig 1B—or only RNA extraction—segment (b) of Fig 1B—might be considered

for inclusion in the practical teaching protocol, depending on the available time.

The first set of key results that can be obtained during this practical exercise are shown in

Fig 2, panel A and B. As clearly evident, increasing concentrations of the R8-PNA-a221 have
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dramatic inhibitory effects on the RT-qPCR amplification of miR-221-3p sequences. It can be

easily concluded that 25 nM PNA is sufficient to cause a 75% inhibition of PCR amplification

(Fig 2A). On the contrary, the mutated R8-PNA-a221 (for the sequence of the R8-PNA-a221

and R8-PNA-a221-MUT see Table 1) is completely inactive, even when added at 200 nM (Fig

2A). This first set of results was obtained with high levels of reproducibility, obtaining highly

significant values when the data concerning treatments with R8-PNA-a221 and R8-PNA-

a221-MUT are compared (p<0.0000123 in five independent determinations. The second part

of this laboratory exercise is considered in Fig 2, panels C-E. The results obtained demonstrate

that the treatment with the R8-PNA-a221 has no effects of the RT-qPCR amplification of miR-

Fig 1. Biological effects of a PNA targeting miR-221-3p and outline of the practical laboratory program. A. Scheme of the background available in the literature on

the biological effects of the R8-PNA-a221 on human glioma cell lines (Fabbri et al, 2017). More detailed information is shown in Figure A in S1 File. B. Timing of the

laboratory practice, depending on the starting activity (identified by the blue arrows). The key activity is shown as the segment (c). Alternatively, U251 cell culture and

RNA extraction/characterization (a) or only RNA extraction (b) might be considered. C. Scheme of the laboratory practice finalized to verify the specificity of the

biological activity of the PNA-a221. The extracted U251 RNA is used for RT-qPCR in the presence of the PNA-a221 and the PNA-a221-MUT. The amplified miRNAs

are indicated. Expected results (blue: inhibition; green: no inhibition) when PNA-a221 and PNA-a221-MUT are employed and miR-221, miR-222, miR-210 and let-7

sequences amplified by RT-qPCR. Specificity can be demonstrated if inhibition of the RT-qPCR product is obtained amplifying miR-221-3p in the presence of PNA-

a221.

https://doi.org/10.1371/journal.pone.0221923.g001
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222-3p, miR-210-3p and miR let-7c-5p sequences. Altogether, these data are consistent with

the hypothesis that the effects of R8-PNA-a221 are highly specific. Of particular interest are

the data demonstrating that the R8-PNA-a221 has no effect on the RT-qPCR amplification of

miR-222-3p, which shares with miR-221-3p extensive sequence homologies and similar

Fig 2. Effects of the PNA-a221 on the RT-PCR amplification of miRNA sequences. A,B. Effects of increasing amounts of PNA-a221 (A) and mutated PNA-

a221-MUT (B) on the amplification of miR-221-3p sequences. C-E. Effects of increasing amounts of PNA-a221 on the amplification of miR-222-3p (C), miR-210-3p (D)

and let-7c-5p (E) sequences. F. Summary of the effects of 25 nM PNA-a221 on amplification of the indicated miRNA sequences. The comparison of the effects of 50, 100

and 200 nM PNA-a221 are presented in Figure E in S1 File.

https://doi.org/10.1371/journal.pone.0221923.g002
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biological effects. The summary of the effects of 25 nM R8-PNA-a221 is shown in Fig 2F, all

the quantitative data in Figure G in S1 File.

Fig 3. Biological effects of a PNA targeting miR-145-5p and outline of the practical laboratory program. A. Scheme of the

background available in the literature on the biological effects of the R8-PNA-a145 on the Calu-3 cell line (Fabbri et al., 2017).

More detailed information is shown in Figure D in S1 File. B. Scheme of the laboratory practice finalized to verify the

specificity of the biological activity of the PNA-a145. The extracted Calu-3 RNA is used for RT-qPCR in the presence of the

PNA-a145 and the PNA-a145-MUT (green: no inhibition; blue: inhibition). The amplified miRNAs (miR-145-5p, let-7c-5p

and miR-155-5p) are indicated. Specificity can be demonstrated if inhibition of the RT-qPCR product is obtained amplifying

miR-145-5p in the presence of PNA-a145.

https://doi.org/10.1371/journal.pone.0221923.g003
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Effects of PNA-a145 on RT-qPCR amplification of miR-145-5p sequences

Fig 3 shows the outline of the experiments based on the use of PNA-a145. In Fig 3A the biolog-

ical effects of the R8-PNA-a145 on Calu-3 cells (see also Figure E in S1 File) are summarized.

The timing of the proposed practical laboratory activity is similar to that reported in Fig 1B for

the R8-PNA-a221. The key activity is shown in Fig 3B.

The first key results that can be obtained during this practical exercise are shown in Fig 4,

panel A and B. As clearly evident, the R8-PNA-a145 has dramatic inhibitory effects on the RT-

qPCR amplification of miR-145-5p sequences. It can be easily concluded that 25 nM PNA is

sufficient to cause a 90% inhibition of PCR amplification (Fig 4A). On the contrary, the

mutated R8-PNA-a145 (for the sequence of the R8-PNA-a145 and R8-PNA-a145-MUT see

Table 1) is completely inactive (Fig 4B). The second part of this laboratory exercise is consid-

ered in Fig 4, panels C and D. The results obtained demonstrate that the treatment with the

R8-PNA-a145 has no effects of the RT-qPCR amplification of miR-155-5p and let-7c-5p

sequences. Altogether, these data are consistent with the hypothesis that the effects of

R8-PNA-a145 are highly specific. The summary of the effects of different concentrations of

R8-PNA-a145 is shown in Figure H in S1 File).

Employment of other RT-PCR systems: Droplet digital PCR

Some of the experiments reported in Fig 2 were repeated using droplet digital PCR (ddPCR),

another RT-PCR system routinely used for miRNA quantification [69]. Thanks to sample par-

tition ddPCR allows the absolute miRNA sequences quantification with more precision

Fig 4. Effects of the PNA-a145 on the RT-PCR amplification of miRNA sequences. A,B. Effects of 25 nM PNA-a145 (A) and mutated PNA-a145-MUT (B) on the

amplification of miR-145-5p sequences. C,D. Effects of 25 nM PNA-a145 on the amplification of miR-155-5p (C) and let-7c-5p (D) sequences. A summary of increasing

concentrations of PNA-a145 are presented in Figure F in S1 File.

https://doi.org/10.1371/journal.pone.0221923.g004
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compare to traditional RT-qPCR methods. Considering the dramatic reduction of miR-221-

3p amplification detected by RT-qPCR when 200 nM of R8-PNA-a221 are employed, only

three PNA concentrations were considered: 25, 50 and 100 nM. Obtained key results are simi-

lar to those obtained by RT-qPCR, with minor differences easily explained by the differences

within miRNA quantification methods. In fact, while in RT-qPCR 25 nM of R8-PNA-a221 is

sufficient to inhibit of 75% the miR-221-3p sequence amplification, when the same PNA con-

centration is employed in RT-ddPCR very limited effects (reduction of 17%) were detected,

while more significative effects were recorded with 50 nM of PNA (35%) and 100 nM (100%)

(Fig 5). Obtained data are quite expected considering sample and PNA partitioning in thou-

sands of droplets. According to those obtained by RT-qPCR no effects of R8-PNA-a221 were

detected on others miRNA sequences (i.e miR-222-3p) and no activity was founded when

R8-PNA-a221-MUT was employed, even at highest concentration (100 nM) (Fig 6).

Discussion

Simple experiments answering to key issues in applied pharmacology could be of great interest

in the teaching, with particular focus to the possibility to set-up practical exercises in labora-

tory practice delivered to student in the field of biotechnology, pharmaceutics, applied biology.

Fig 5. Effects of R8-PNA-a221 on miR-221-3p sequence detection by RT-ddPCR. A. 1D RT-ddPCR plot obtained after the addition of incremental concentration of

R8-PNA-a221 or R8-PNA-a221-MUT to the reaction mix. B. miR-221-3p content in 1:50 diluted cDNA obtained from U251 cells: 2D plots. C. miR-221-3p content

detected after the addition of incremental R8-PNA-a221concentrations. D. miR-221-3p content detected after the addition of incremental R8-PNA-a221-MUT

concentrations.

https://doi.org/10.1371/journal.pone.0221923.g005
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One of the emerging pharmaceutical approaches is the so called miRNA therapy, based on

antimiRNA strategy or on miRNA replacement, depending on the role covered by the target

miRNA [11–14]. Alteration of microRNA expression has been demonstrated to be associated

with different human pathologies [69–75], as well as guided alterations of specific miRNAs

have been suggested as novel approaches to develop innovative therapeutic protocols [39,41,

42,76–78]. Several reports conclusively demonstrated that microRNA are deeply involved in

tumor onset and progression, behaving as tumor promoting miRNAs (oncomiRNA and

metastamiRNAs) as well as tumor suppressor miRNAs [79–83]. In general, a miRNA able to

promote cancer targets mRNA coding for tumor-suppression proteins, while microRNAs

exhibiting tumor-suppression properties usually target mRNAs coding oncoproteins

[14,84,85].

As far as the antimiRNA therapy, among the most interesting biomolecules to be analyzed

are peptide-nucleic acids (PNAs). These are in fact reagents of great impact in antisense ther-

apy, and have been proposed in a large spectrum of applications.

For instance, PNAs have been recently proposed as antisense molecules targeting mRNAs,

as molecules able to target gene promoters through the formation of triple-helix structures,

artificial promoters, or decoy molecules able to target transcription factors [17,47,85–89].

In this manuscript we present simple experiments that can be the basis for laboratory prac-

tical teaching with the aim of determining: (a) the possible PNA-mediated arrest in RT-qPCR,

to be eventually used to demonstrate PNA targeting of selected miRNAs; (b) the possible lack

of activity on mutated PNA sequences; (c) the effects (if any) on the amplification of other

unrelated miRNA sequences.

The results which can be obtained during this laboratory teaching activity support the fol-

lowing conclusions: PNA-mediated arrest in RT-qPCR can be analyzed in a easy way; mutated

PNA sequences are completely inactive; the effects of the employed PNAs are specific and no

inhibitory effect occurs on other unrelated miRNA sequences.

Fig 6. Effects of R8-PNA-a221 on miR-222-3p sequence detection by RT-ddPCR. A. 1D RT-ddPCR plot obtained after the addition of incremental concentration of

R8-PNA-a221, miR-222-3p is amplified. B. miR-222-3p content in 1:50 diluted cDNA obtained from U251 cells: 2D plots. C. miR-222-3p content detected after the

addition of incremental R8-PNA-a221concentrations.

https://doi.org/10.1371/journal.pone.0221923.g006
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This activity is simple (cell culture, RNA extraction, RT-qPCR are all well-established tech-

nologies), fast (starting from isolated and characterized RNA, few hours are just necessary),

highly reproducible (therefore easily employed by even untrained students).

On the other hand, these laboratory lessons require some facilities, the most critical being

the availability of instruments for PCR. While, this might be a problem in the case these instru-

ments are not available, we would like to underline that determination of the presence or of a

lack of amplified product can be also obtained using standard analytical approaches based on

agarose gel electrophoresis.

Supporting information

S1 File. These Supplementary materials include some Figures that can be used for explaining

the impact of PNAs in experimental therapeutic protocols (Figures A-C), the effects of PNAs

against microRNAs miR-221-3p (Figure D) and miR-145-5p (Figure E). In addition, in the

Supplementary Figure F the analysis of integrity of the RNA preparation is shown (see the pro-

tocols for the laboratory practice depicted in Figs 1 and 3 of the main text). Finally, Figures G

and H report the inhibitory effects of the PNAs against miR-221-3p (PNA-a221 and PNA-

a221-MUT, Figure G) and of the PNAs against miR-145-5p (PNA-a221 and PNA-a221-MUT,

Figure H) on RT-qPCR amplification of the target miR-221-3p and miR-145-5p, and of the

control miRNA sequences (miR-222-3p, let-7c-5p and miR-210-3p for PNA-a221; let-7c-5p

and miR-155-5p for PNA-a145).
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