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Abstract: This work presents a new isotropic model to describe the cyclic hardening/softening
plasticity behavior of metals. The model requires three parameters to be evaluated experimentally.
The physical behavior of each parameter is explained by sensitivity analysis. Compared to the Voce
model, the proposed isotropic model has one more parameter, which may provide a better fit to the
experimental data. For the new model, the incremental plasticity equation is also derived; this allows
the model to be implemented in finite element codes, and in combination with kinematic models
(Armstrong and Frederick, Chaboche), if the material cyclic hardening/softening evolution needs to
be described numerically. As an example, the proposed model is applied to the case of a cyclically
loaded copper alloy. An error analysis confirms a significant improvement with respect to the usual
Voce formulation. Finally, a numerical algorithm is developed to implement the proposed isotropic
model, currently not available in finite element codes, and to make a comparison with other cyclic
plasticity models in the case of uniaxial stress and strain-controlled loading.

Keywords: cyclic plasticity; kinematic model; isotropic model; hardening/softening

1. Introduction

Thanks to their favorable combination of mechanical and thermal properties, metals are widely
employed in industrial applications in which components are subjected to high thermo-mechanical
loadings. During the component’s service life, high temperatures combined with high mechanical
stresses may induce in the component a plastic deformation, even only locally. If thermo-mechanical
loadings also vary cyclically, the resulting cyclic elasto-plastic response may lead to some kind of
fatigue damage. To perform a durability assessment, it is often advantageous to use a numerical
approach based on the finite element (FE) method. The accuracy of results depends significantly on
the capability of the material model, in the numerical code, to describe the cyclic plasticity behavior of
the material, as it is observed experimentally.

A noteworthy example—considered in this work—is the case of copper alloys used in components
of steel making plants (e.g., mold for continuous steel casting, anode for electric arc furnace, etc.) [1,2].
The material model in FE model needs to be calibrated on experimental cyclic plasticity data, which for
copper alloys are rarely available in the literature. In [3], parameters for nonlinear kinematic and
isotropic plasticity models were obtained for pure copper and CuCrZr alloys at a temperature range
of between 20 ◦C and 550 ◦C. Cyclic hardening behavior of pure copper was studied in [4] but only
limited to low-cycle fatigue curves. In a recent experimental study on CuAg0.1 [5], the identification
of material parameters was performed with specific attention to nonlinear kinematic and isotropic
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models (Armstrong and Frederick, Chaboche and Voce), as generally they are already available in most
common commercial finite element codes. While the kinematic model provided a quite precise fitting,
the isotropic model (Voce) seemed less capable of following the softening trend of the CuAg0.1 alloy [5].
In fact, as it will be shown, the “S-shaped” curves characterizing the exponential law governing the
Voce model hardly fitted the trend of experimental data, making the determination of the speed of
stabilization fairly inaccurate. This aspect was already observed by [6,7] in the case of different types
of steels. Neither the method—proposed in [8]—for changing the hardening modulus in the kinematic
part, nor that proposed in [9] where the hardening model is obtained by superimposing several parts of
kinematic and isotropic hardening, seem to solve the matter, as both appear only suitable for materials
(like stainless steel) for which the hardening evolution depends on strain range. A possible way to
capture more precisely a cyclic hardening/softening trend is that of superimposing two or more Voce
models, as proposed in [10].

As the ability of plasticity models to accurately represent the material behavior plays an important
role in numerical simulations and could have a direct influence on the accuracy of results, the aim of
this work is to develop a new isotropic model that is able to replicate better the softening evolution of
the copper alloy here investigated.

2. Materials and Methods

2.1. Experimental Testing

The experimental results of low-cycle fatigue (LCF) tests described in [5] are considered in this
work. To characterize the cyclic stress-strain behavior and the fatigue strength of CuAg0.1 alloy
(classified in ASTM B 124 standard [11]) at room and high temperature, strain-controlled tests with
fully reversed (Rε = −1) triangular waveform at a strain rate of 0.01 s−1 were performed at three
temperature levels (20 ◦C, 250 ◦C, 300 ◦C). However, only data at room temperature will be considered
from now on.

2.2. Kinematic and Isotropic Plasticity Models: Theoretical Background

Plasticity is characterized by the irreversible straining that occurs once a certain level of stress
is reached. If plastic strains are assumed to develop independently of time, several theories are
available to characterize the response of materials. Plasticity theory distinguishes three main aspects:
yield criterion, flow rule and material (hardening) models [12–17].

The yield criterion determines the stress level at which yielding occurs. In this work, the von Mises
yield criterion is considered and the following expression of the plastic potential f is introduced [12–14]:

f =

√
3
2
(σ′ −X′) : (σ′ −X′) −R− σ0 = 0 (1)

where σ′ is the deviatoric stress tensor, X′ is the deviatoric part of the back stress, R is the drag stress
and σ0 is the initial yield stress (bold symbols indicate tensors).

Once yielding occurs, a flow rule is needed to relate stresses and plastic strains. In the literature,
several flow rules are available, nevertheless in the following the associated flow is adopted, in which
the plastic flow is connected or associated with the yield criterion [12–17]:

dεpl = dλ
∂ f
∂σ

(2)

The direction of the plastic strain increment dεpl depends on both the plastic multiplier dλ
(non-negative scalar) and the plastic potential, which determine the amount and the direction of plastic
straining, respectively.

Finally, hardening models (kinematic and isotropic) describe the change of yield surface as a
function of plastic strain.
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2.2.1. Kinematic Material Model

It is experimentally observed in metals under cyclic loading that the center of the yield surface
moves in the direction of the plastic flow (the Bauschinger effect) [17]. A kinematic model captures the
aforementioned effect, since it assumes that under a progressive yielding, the yield surface translates
in the stress space, maintaining a constant size [12,15–17]. The translation of the yield surface center is
described by the back stress X.

Different kinematic models have been developed to relate the increment of the back stress dX with
the plastic strain εpl and usually also with the accumulated plastic strain dεpl,acc = (2/3dεpl:dεpl)1/2.
For uniaxial loading dεpl,acc = dεpl [15].

The Prager model assumes that X is proportional to the plastic strain increment [12–17]:

dX =
2
3

Cdεpl (3)

where C is the hardening modulus. Armstrong and Frederick’s (AF) nonlinear model adds a recall
term to Equation (3):

dX =
2
3

Cdεpl − γXdεpl,acc (4)

where γ is the non-linear recovery parameter that defines the rate at which the hardening modulus starts
to decrease as the plastic strain develops. Finally, the Chaboche model is obtained by superimposing
several AF models [8]:

X =
3∑

i=1

XidXi =
2
3

Cidεpl − γiXidεpl,acc (5)

2.2.2. Isotropic Material Model

The isotropic model assumes that, at any stage of loading, the center of the yield surface remains
at the origin and the surface expands homotetically in size as plastic strain develops. Very often,
a nonlinear isotropic model (known also as the Voce model [18]) is adopted. Expansion of the yield
surface is described with the change of drag stress R [12–15]:

R = R∞
[
1− exp

(
−bεpl,acc

)]
(6)

where b is the speed of stabilization and R∞ is the stabilized stress. Parameter R∞ can be positive
or negative representing either cyclic hardening (R∞ > 0) or softening (R∞ < 0), respectively.
Differentiation of Equation (6) gives [3–15]:

dR = b(R∞ −R)dεpl,acc (7)

Furthermore, the evolution of R can also be interpreted as the relative change of the maximum
stress σmax,i in the Nth cycle with respect to the maximum stress in the first (σmax,1) and in the stabilized
(σmax,s) cycle [12–14]:

σmax,i − σmax,1

σmax,s − σmax,1
≈

R
R∞

= 1− exp
(
−bεpl,acc

)
(8)

In case of strain-controlled loading, the plastic strain range per cycle ∆εpl is approximately
constant and the plastic strain accumulated after N cycles becomes [12,14]:

εpl,acc ≈ 2∆εplN (9)

Figure 1 plots Equation (8) for different values of b and versus the accumulated plastic strain on a
log scale. As can be noticed, by increasing the speed of stabilization the curve shifts to the left, while its
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“S-shape” remains essentially unaffected. In other words, a material with a higher value of b reaches its
stabilized condition at a lower value of εpl,acc (i.e., in a smaller number of cycles).Metals 2019, 9 FOR PEER REVIEW  4 
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Figure 1. Plot of Equation (8) for different values of b parameter.

As with the kinematic model, also two or more Voce models can be superimposed, as proposed
in [10]. Such a procedure requires a higher number of parameters to be estimated (minimum
four: two parameters, b1 and b2, controlling the speed of stabilization and two others, R∞,1 and R∞,2,
defining the stress saturation). While the sum R∞ = R∞,1 + R∞,2 clearly identifies the total saturated stress,
the two components R∞,1 and R∞,2, taken individually, seem not to have a so evident physical meaning.
The same observation holds true for parameter b in the original Voce model. If the model is described
by more than one b, its physical meaning (i.e., speed of stabilization) seems to be lost, especially when
one parameter is much bigger than the other (i.e., b1 >> b2). This observation is even more evident once
the accelerated technique is adopted [19], in which the speed of stabilization is fictitiously increased.
Generally, this approach is particularly suitable when dealing with computationally demanding
simulations, i.e., in circumstances when small plastic strains occur during loading and a material
model needs a huge number of cycles to reach a complete stabilization.

Finally, kinematic and isotropic models need to be jointly used if both the Bauschinger effect and
the cyclic hardening/softening are to be simulated numerically.

2.2.3. Material Model Calibration

After having determined the static parameters (Young’s modulus and yield stress) as suggested
in [12], kinematic variables were evaluated on experimental stabilized cycles at various strain
amplitudes. This approach ensures that the estimated variables are suitable for being used over a wide
range of strain amplitudes. Details on the estimation procedure (Young’s modulus, yield stress and
kinematic variables) is given in [5,20,21].

Figure 2 compares the simulated cycles (only kinematic model) with the first and stabilized
experimental cycles, for εa = 0.5%. For the considered material, the Armstrong and Frederick kinematic
model (parameters C, γ) is selected, as it yields a better agreement with experiments, than does the
Chaboche model (see [5]). For the first simulated cycle, the initial values of Young’s modulus and the
yield stress are assumed. As can be noticed, the model stabilizes in the first two cycles and agrees
fairly well with the experimental cycle. In addition, Figure 2 also depicts the stabilized stress-strain
cycle (black solid line) obtained with the stabilized parameters (Es, σ0*). The change from the first cycle
to the stabilized one confirms a softening behavior for the material.
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Figure 2. Comparison between simulated and experimental (first and stabilized) cycle.

Nonlinear isotropic parameters were then estimated according to Voce model. The maximum
stress σmax was measured for each stress-strain cycle. As the CuAg0.1 alloy never saturates completely,
the stabilized stress σmax,s does not approach any asymptote and its value was then established by a
conventional criterion, which considered the maximum stress at half the number of cycles to failure.
The procedure was repeated for each strain amplitude. According to Equation (8), the saturation stress
R∞ was determined as:

R∞ = σmax, s − σmax,1 (10)

In this case, R∞ < 0, i.e., material exhibits softening (see also Figure 2). The speed of stabilization b
was identified by fitting Equation (8) to experiments. Figure 3 compares the isotropic model curve
and experiments for εa = 0.5%. A satisfactory correlation is obtained, particularly at the smallest and
the largest values of accumulated plastic strain (i.e., at the first and saturated cycle, respectively).
Other than that, the model follows a trend that deviates significantly from that followed by experimental
data. A similar inconsistency was also observed for other strain amplitudes. The aim to improve the
fitting accuracy then motivates the attempt to modify the evolution rule of R in a new isotropic model,
described in the next paragraph.
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Figure 3. Experimental data for εa = 0.5% (markers) fitted by the isotropic model.

3. Proposed Isotropic Model

As previously observed, experimental results obtained for CuAg0.1 alloy do not fit perfectly well
with the “S-shape” curve of the exponential law proposed by Voce. With the aim to get an improved
fitting with experiments, a new model described by the following equation is thus proposed:

R = R∞
εs

pl,acc

a + εs
pl,acc

(11)
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in which a, s are material parameters that control the rate of cyclic hardening or softening. The proposed
expression has a physical basis being it able to capture the two limiting cases: R = 0 for εpl,acc→0 and R
= R∞ for εpl,acc→∞. Differentiation of Equation (11) gives the incremental relationship:

dR =

[
s

R
εpl,acc

(
1−

R
R∞

)]
dεpl,acc (12)

Similarly, to the Voce model, the evolution of R can be described by the relative change of
maximum stress in each cycle:

σmax,i − σmax,1

σmax,s − σmax,1
≈

R
R∞

=
εs

pl,acc

a + εs
pl,acc

(13)

Fitting of Equation (13) to experimental data yields the values of a and s parameters. The estimation
procedure to evaluate the saturation stress R∞ remains unchanged.

Figure 4 displays a sensitivity analysis of Equation (13), which is helpful to clarify the physical
meaning of parameters a and s. At increasing values of a (keeping s constant), the speed of stabilization
diminishes and the curve shifts to the right. In other words, a bigger amount of accumulated plastic
strain is needed to reach the stabilized condition, see Figure 4a. By contrast, the exponent s (keeping
a constant) controls the “slope” of the increasing portion of the curve (i.e., higher values of s give a
steeper average slope), see Figure 4b.
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Figure 4. The sensitivity of the proposed Equation (10) to parameters (a) a and (b) s.

Please note that limiting values exist for both parameters. For example, no cyclic
hardening/softening would actually occur if a becomes either infinite (for which R = 0 for any
s) or zero (for which R = R∞ from the first cycle). A similar behavior also occurs when s = 0, for which
R = R∞/(a + 1) (in the example of Figure 4, R � 0.667R∞). When s increases to infinite, R = 0 for
εpl,acc < 1, R = R∞ for εpl,acc > 1 and R = R∞/(a + 1) for εpl,acc = 1.

4. Results and Discussion

The nonlinear kinematic model is able to capture quite accurately the first and the stabilized
cycle, if the initial and stabilized static parameters are adopted, respectively, see Figure 2. However,
the combined (kinematic and isotropic) model is needed, if the cyclic softening evolution of CuAg0.1
alloy has to be considered. It is then of interest to discuss in more detail on the results obtained with
both the Voce and the new isotropic model proposed in this work.

4.1. Stress-Strain Behavior: Isotropic Model (Voce)

The solid lines in Figure 5 show how Equation (8) fits the cyclic data for εa = 0.3%, 0.5% and 0.7%.
The corresponding three estimated values of b are reported in Table 1 (along with the values estimated
for other strain amplitudes). As it can be noticed, in all three cases examined the fitting curve does not
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match experimental data perfectly. In fact, experiments follow a quite smoother trend with respect to
the “S-shaped” curve given by the exponential expression in Equation (8). On the other hand, it was
already observed and shown in Figure 1 that the speed of stabilization b only makes the S-curve shift
horizontally, without changing its shape.
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Table 1. Isotropic parameters identified from experimental data for the Voce and proposed models.
Goodness-of-fit examined in terms of sum of squares of residuals (SSE) for each model and
strain amplitude.

Strain Amplitude Material Parameters Error Index (SSE)

εa R∞ (MPa)
Voce Proposed

Voce Proposed
b a s

0.15% −56 1.307 0.514 0.923 1.914 1.601
0.175% −71 1.197 0.491 0.978 0.654 0.455

0.2% −80 3.145 0.316 0.778 0.464 0.063
0.3% −84 3.620 0.223 0.802 0.338 0.022
0.4% −83 4.488 0.179 0.855 0.292 0.016
0.5% −52 2.871 0.234 0.893 0.269 0.014
0.6% −52 2.581 0.290 0.853 0.298 0.019
0.7% −69 4.208 0.101 1.203 0.069 0.017

Single values R∞,ave
1 ball

1 aall
1 sall

1
3.401 1.766

−68 2.352 0.199 0.965
1 parameters ball, aall and sall are estimated from all experimental data merged together (whereas R∞,ave is the
average over all strain values).Metals 2019, 9 FOR PEER REVIEW  8 
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Figure 6. Isotropic model for different strain amplitudes ((a) εa = 0.3%, (b) εa = 0.5% and (c) εa = 0.7%)
calculated with ball, aall and sall parameters; Voce model (red solid line) and proposed model (blue
dashed line). Residual ∆e is also reported.
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Different values of b and R∞ characterize cycles with different strain amplitude values, see Table 1.
This may represent a drawback, if commercial finite element codes have to be used, as they generally
permit only one single value of the isotropic parameters to be input. On the other hand, a component
may be subjected to a certain loading condition, for which the resulting plastic strain spans over a
relatively wide range. A possible compromise for solving this issue could be to take an average value
R∞,ave and to identify a single value ball by fitting Equation (8) to all the experimental data gathered
together (see the last row in Table 1), as it was done in Figure 11 in [5]. A comparison between the
fitted curve calculated with ball and the experimental data is presented in Figure 6. As expected,
this “averaging” procedure makes the fitting even worse with respect to the previous case.

4.2. Stress-Strain Behavior: Proposed Isotropic Model

Figure 5 also compares the proposed model (blue dashed line) with the same experimental data
(εa = 0.3%, 0.5% and 0.7%) considered previously for the Voce model. It is apparent how Equation (13)
yields a more precise fitting with experiments.

Also for this model, a range of values for a (0.101÷0.514) and s (0.802÷1.203) characterize cycles
with different strain amplitudes, see Table 1. Therefore, similarly to the case of Voce model, single values
of aall, sall were estimated by fitting Equation (13) to all the experimental data gathered together. Table 1
then lists the values of a, s for each strain amplitude, as well as the “averages” aall, sall (see the last row).
A comparison is presented in Figure 6. Even now, as it was for the previous comparison, for all three
amplitudes examined the new isotropic model is far closer to experiments than Voce model is.

For the proposed model is not yet possible to prescribe a range of a and s values of general validity,
as it would be desirable to have additional data from other materials.

4.3. Error Analysis

The previous comparison—clearly more qualitative—can be made more quantitative by the use
of suitable error metrics through which the deviation of each model from experimental data can be
quantified and compared.

Residual (∆e) and sum of squares of residuals (SSE) are used to measure the deviation between
model and experiments. The residual provides a “local” measure of fitting at each point, whereas the
SSE index gives a “global” measure of fitting. The residual measures the difference for each experimental
point used in model calibration and it is defined as [22]:

∆e = yexp, i − yVoce, i and ∆e = yexp, i − yprop, i for i = 1, 2 . . . n (14)

where:

yexp, i =
σmax, i − σmax,1

σmax, s − σmax,1
; yVoce, i = 1− exp

(
−bεpl,acc, i

)
; yprop, i =

εs
pl,acc, i

a + εs
pl,acc, i

(15)

Symbol n denotes the number of experimental points used in calibration.
The bottom graph in Figures 5 and 6 show the values of residuals for both isotropic models,

at three different strain amplitudes (εa = 0.3%, 0.5%, 0.7%). Figure 5 refers to specific values (b, a, s) for
the three amplitudes; Figure 6 refers to the “average” parameters (ball, aall, sall), calculated as explained
before. The residuals ∆e are plotted on the vertical axis while the accumulated plastic strain, which is
an independent variable, is plotted on the horizontal axis. In all considered cases, residual ∆e obtained
with the proposed model is significantly smaller with respect to Voce model. The maximum percentage
residual for the considered strain amplitudes varies over a range of 44–51% and 5–18%, respectively,
for the Voce and the proposed models.
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To provide a single index value that quantifies the model accuracy for each strain amplitude,
the sum of squares of residuals is also calculated [22]:

SSE =
n∑

i=1

(
yexp, i − yVoce, i

)2
; SSE =

n∑
i=1

(
yexp, i − yprop, i

)2
(16)

Values of SSE, calculated for each strain amplitude, are listed in Table 1. Both models give the
biggest SSE for εa = 0.15% and εa = 0.175%. These large values can be explained by considering that at
those small strain amplitudes, the CuAg0.1 alloy showed a slight hardening in the first 5–10 cycles,
after which softening occurred, as observed in [5]. Such a small hardening at the beginning of loading
gives an increment of the maximum stress σmax,i with respect to the initial value σmax,1. A positive
difference σmax,i–σmax,1 results and thus a negative ratio in the left-hand side of Equations(8) and (13)
appears. As Equations (8) and (13) are always positive and bounded by two horizontal asymptotes
at both tails, such an initial hardening cannot be captured correctly and inevitably a small error is
introduced in the fitting. At other strain amplitudes (0.2–07%), the proposed model gives from 75% up
to 94% lower values of SSE with respect to the Voce model, see Table 1.

As expected, see Table 2, the fitting curves obtained by the parameters (ball, aall, sall) are slightly
less accurate than those obtained by the parameters (b, a, s) in Table 1 that were specifically calibrated
for each strain amplitude. Nevertheless, it can be noticed that the proposed model always provides
considerably better results in terms of SSE with respect to Voce model.

Table 2. Evaluation of fitted curves obtained with both models and calculated with ball, aall and sall.

Strain Amplitude Error Index (SSE)

εa Voce Proposed

0.3% 0.493 0.080
0.5% 0.289 0.021
0.7% 0.340 0.094

4.4. Combined Armstrong-Frederick with Proposed Isotropic Model: Stress-Strain Evolution

A numerical algorithm is developed, see Appendix A, to implement the combined kinematic and
proposed isotropic plasticity model, in the case of uniaxial stress and strain-controlled loading.

Figure 7 displays the stress-strain evolution at the 100th cycle for strain amplitude εa = 0.5%.
Although the difference between the three curves is relatively small, the proposed model fits more
precisely the experimental stress-strain curve.

Metals 2019, 9 FOR PEER REVIEW  10 

 

introduced in the fitting. At other strain amplitudes (0.2%–07%), the proposed model gives from 75% 
up to 94% lower values of SSE with respect to the Voce model, see Table 1.  

As expected, see Table 2, the fitting curves obtained by the parameters (ball, aall, sall) are slightly 
less accurate than those obtained by the parameters (b, a, s) in Table 1 that were specifically calibrated 
for each strain amplitude. Nevertheless, it can be noticed that the proposed model always provides 
considerably better results in terms of SSE with respect to Voce model. 

Table 2. Evaluation of fitted curves obtained with both models and calculated with ball, aall and sall. 

Strain Amplitude Error Index (SSE) 
εa Voce  Proposed  

0.3% 0.493 0.080 
0.5% 0.289 0.021 
0.7% 0.340 0.094 

4.4. Combined Armstrong-Frederick with Proposed Isotropic Model: Stress-Strain Evolution 

A numerical algorithm is developed, see Appendix A, to implement the combined kinematic 
and proposed isotropic plasticity model, in the case of uniaxial stress and strain-controlled loading. 

Figure 7 displays the stress-strain evolution at the 100th cycle for strain amplitude εa = 0.5%. 
Although the difference between the three curves is relatively small, the proposed model fits more 
precisely the experimental stress-strain curve.  

 

Figure 7. Stress-strain evolution of 100th cycle for strain amplitude εa = 0.5%, comparison between 
experiments, combined model with Voce and with proposed isotropic models. 

As a final remark, the cyclic hardening/softening evolution described with Equations (6) and 
(11) only depends on the accumulated plastic strain, but not on the plastic strain amplitude. This 
implies that all experimental data should collapse into one single curve independently on the 
imposed strain amplitude. On the other hand, the literature reports examples of materials—e.g., 316 
stainless steel [12–14], nickel base superalloy [23] and 42CrMo4 steel [7]—for which the isotropic 
behavior depends on the strain amplitude. For the CuAg0.1 alloy considered in this work, such a 
dependence is not so evident, but cannot be excluded at all. Therefore, a further analysis in that sense 
would be desirable.  

5. Conclusions 

In this work, a new isotropic model is proposed for describing the cyclic hardening/softening 
behavior of metals. The model is an attempt to overcome the poor fitting observed in Voce isotropic 
model, when calibrated on experimental cyclic data of a CuAg0.1 alloy. Strain-controlled cyclic test 
data at different strain amplitudes, carried out in a recent study published by the authors, are used 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-200

-150

-100

-50

0

50

100

150

200

ε (%)

σ 
(M

Pa
)

 

 

Experimental 100th cycle (εa=0.5%)
Voce model - 100th cycle
Proposed model - 100th cycle

Figure 7. Stress-strain evolution of 100th cycle for strain amplitude εa = 0.5%, comparison between
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As a final remark, the cyclic hardening/softening evolution described with Equations (6) and (11)
only depends on the accumulated plastic strain, but not on the plastic strain amplitude. This implies
that all experimental data should collapse into one single curve independently on the imposed
strain amplitude. On the other hand, the literature reports examples of materials—e.g., 316 stainless
steel [12–14], nickel base superalloy [23] and 42CrMo4 steel [7]—for which the isotropic behavior
depends on the strain amplitude. For the CuAg0.1 alloy considered in this work, such a dependence
is not so evident, but cannot be excluded at all. Therefore, a further analysis in that sense would
be desirable.

5. Conclusions

In this work, a new isotropic model is proposed for describing the cyclic hardening/softening
behavior of metals. The model is an attempt to overcome the poor fitting observed in Voce isotropic
model, when calibrated on experimental cyclic data of a CuAg0.1 alloy. Strain-controlled cyclic test
data at different strain amplitudes, carried out in a recent study published by the authors, are used
as a benchmark. Experimental data were used for identifying parameters of non-linear kinematic
(Armstrong and Frederick, Chaboche) and isotropic (Voce) models. The calibration identified the
one-pair kinematic model as the closest to experiments. By contrast, a poor agreement was observed
when fitting the isotropic Voce model. The discrepancy is attributed to the fact that experiments follow
a smoother trend with respect to the “S-shaped” curve defined by the exponential expression of Voce
model equation. In fact, the Voce model is described by two parameters, i.e., the stabilized stress R∞
and the speed of stabilization b, the latter only shifting the curve horizontally, while keeping the curve
shape unaffected.

An improved isotropic model, aimed at providing a better fit with experimental data, is then
proposed and calibrated to the same experimental data. In addition to the stabilized stress R∞ also
present in Voce model, the proposed model is governed by two parameters a, s, which both control the
speed of stabilization and the shape of the hardening/softening evolution curve. An error analysis on
calibration results confirms that the proposed model is much closer to experiments than Voce model in
all cases examined.

The proposed isotropic model, when combined with the kinematic one, seems to better fit the
experimental stress-strain curves than the Voce model combined with the same kinematic part. This
permits the cyclic hardening/softening evolution of the material to be described quite accurately.

Finally, a numerical algorithm is developed to implement the combined kinematic and proposed
isotropic plasticity model, in the case of uniaxial stress and strain-controlled loading. The framework
of the presented algorithm permits convergence to be always achieved with low computational cost.
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Appendix A

A numerical algorithm is developed to implement the proposed model, currently not available in
numerical codes. The algorithm applies to the case of uniaxial stress and strain-controlled loading
(constant strain range) and it permits a comparison between the combined models (kinematic-Voce
and kinematic-proposed model) and experimental data.

Figure A1 sketches the block diagram of the numerical algorithm. The calculation starts by
defining the strain range ∆ε = 2εa, the strain increment dε and the number of cycles Nf to be simulated.
The number of iterations nε is obtained dividing 2∆εNf by dε.
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The stress increment is computed based on the strain increment assuming that the stress-strain
relation is completely elastic. The elastic stress predictor σel is then evaluated simply adding to σi
the stress increment dσ. In the same iteration, the actual yield stress σ∗0 remains unchanged and the
plastic strain is set to be zero. If the elastic stress predictor indicates that yield stress has been exceeded
(von Mises yield criterion is adopted), the increment becomes elasto-plastic. Consequently, the plastic
strain increment dεpl has to be calculated by adopting a flow rule. For von Mises criterion, the plastic
multiplier dλ corresponds to the increment of plastic strain; for uniaxial loading the accumulated
plastic strain increment dεpl,acc is equal to dεpl [15] and therefore the accumulated plastic strain can be
evaluated accordingly. Finally, the (i + 1)th value of stress is determined by taking into account the
contribution of the back stress X and of the drag stress R (kinematic and isotropic) with Equations (4)
and (11), respectively.Metals 2019, 9 FOR PEER REVIEW  12 
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