
sensors

Article

The Advent of the Internet of Things in Airfield
Lightning Systems: Paving the Way from a Legacy
Environment to an Open World

Enrico Buzzoni 1, Fabio Forlani 2, Carlo Giannelli 2,* , Matteo Mazzotti 1, Stefano Parisotto 2,
Alessandro Pomponio 3 and Cesare Stefanelli 4

1 R&D Department, OCEM Airfield Technology, BO 40056 Crespellano, Italy; enrico.buzzoni@ocem.com (E.B.);
matteo.mazzotti@ocem.com (M.M.)

2 Department of Mathematics and Computer Science, University of Ferrara, FE 44124 Ferrara, Italy;
fabio01.forlani@student.unife.it (F.F.); stefan.parisotto@student.unife.it (S.P.)

3 Department of Computer Science and Engineering, University of Bologna, BO 40100 Bologna, Italy;
alessandro.pomponio2@studio.unibo.it

4 Department of Engineering, University of Ferrara, FE 44124 Ferrara, Italy; cesare.stefanelli@unife.it
* Correspondence: carlo.giannelli@unife.it; Tel.: +39-0532-974892

Received: 24 September 2019; Accepted: 29 October 2019; Published: 31 October 2019
����������
�������

Abstract: This paper discusses the design and prototype implementation of a software solution
facilitating the interaction of third-party developers with a legacy monitoring and control system
in the airfield environment. By following the Internet of Things (IoT) approach and adopting open
standards and paradigms such as REpresentational State Transfer (REST) and Advanced Message
Queuing Protocol (AMQP) for message dispatching, the work aims at paving the way towards a more
open world in the airfield industrial sector. The paper also presents performance results achieved by
extending legacy components to support IoT standards. Quantitative results not only demonstrate
the feasibility of the proposed solution, but also its suitability in terms of prompt message dispatching
and increased fault tolerance.

Keywords: Internet of Things; middleware; airfield lightning

1. Introduction

Traditional monitoring and control systems have been characterized by closed and proprietary
solutions designed and developed from scratch by enterprises. In fact, the lack of established and
widely recognized standards supporting the interaction with devices have led to a push for a plethora
of heterogeneous and highly tailored solutions addressing the issues of specific environments [1].

This approach has provided some notable advantages. Enterprises have full control of the
developed system and the adopted protocols, since they are based on code and specifications designed
and written with limited (or no) adoption of external software libraries and standards. In this manner,
there are no issues related to licenses or modification of third-party code. In addition, enterprises have
the perception that they have a more secure solution, since only internal developers know its source
code and potential attackers cannot exploit the known bugs of libraries and third-party services.

However, these closed and proprietary solutions have demonstrated that they cannot keep up with
technology evolution in terms of, e.g., software complexity and increased device heterogeneity, and
tend to present three notable shortcomings. First of all, the development of new systems and solutions
is highly complex, making it difficult to directly manage details ranging from the interaction with
devices to the formatting and transmission of data, its storing and presentation. Secondly, monitoring
and control solutions are usually part of wider solutions that also comprise other aspects of the whole

Sensors 2019, 19, 4724; doi:10.3390/s19214724 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-2394-1191
https://orcid.org/0000-0003-1655-7500
http://dx.doi.org/10.3390/s19214724
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/21/4724?type=check_update&version=2

Sensors 2019, 19, 4724 2 of 13

target environment. In such a case, the cost of integrating different proprietary solutions would be very
high. Finally, the integration with third-party systems has to also consider security concerns related
to the enforcing of authentication and authorization policies to ensure that only legitimate users and
code can access data and run, respectively. Developing security mechanisms from scratch can be a
very challenging task, eventually posing serious threatens in the case of bugs or misconfigurations (as
demonstrated by the Stuxnet industrial malware [2]).

The recent advances in the Information Technology (IT) field have provided novel development
opportunities based on de facto standards, which emerged thanks to their easy adoption in
heterogeneous environments. Enterprises are more and more commonly required to adopt such an
open approach to support easy integration of their solutions with third-party systems as well as to
develop new custom features in addition to already supported ones, all in a secure way. In particular,
the widespread adoption of the Internet of Things (IoT) paradigm demonstrates the feasibility of easily
integrating any physical or virtual component [3], allowing us to add new functionalities on-top-of
already developed ones. In addition, the adoption of well-known and widely used/tested software
libraries increases the level of trustiness of the whole system.

The design and development effort presented in the paper (a joint effort of OCEM Airfield
Technology and the University of Ferrara) represents a notable example of how it is possible to pave
the way from proprietary to open IoT-based solutions to monitor and control lights and power supplies
for civil and military airports. In other words, the paper shows how the adoption of IoT enabling
technologies can support data collection and increase interoperability of software components in a
mission-critical IoT application, also allowing for more easy interaction with sensors and actuators
deployed in the airfield. Traditionally, lighting monitoring systems in airfield environments are based
on reliable, high-quality Airport Ground Lighting (AGL) and Airport Lights Control and Monitoring
System (ALCMS) solutions. Eventually, additional software components allow third-party airport
software applications to interact with the airport lighting system, e.g., to gather airport weather data
and compute the Runway Visual Range (RVR) value (FAA explanation of RVR available at https://www.
faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/lsg/rvr/). Starting
from traditional AGL and ALCMS solutions based on proprietary protocols, the paper reports on
the work recently done to adopt the IoT paradigm and related standards, such as well-known
REpresentational State Transfer (REST) [4] and Advanced Message Queuing Protocol (AMQP) [5]
protocols. The proposed solution permits us to exploit the already developed and widely tested
airfield lightning system as is, thus avoiding the burden of modifying the legacy software itself, while
providing previous and novel features in a standard way. The IoT paradigm has greatly improved the
easy management of the solution from a code maintenance point of view, also allowing us to more
easily developing novel features, while the increased openness of the monitoring and control system
makes the integration with third-party systems easier.

2. Related Work

Years before the advent of IoT, the computer-based remote monitoring of airfield lightning systems
was already a well-known and widely adopted solution that was useful for improving airport efficiency
and safety [6,7]. For instance, reference [6] represents a seminal work proposing to adopt an integrated
communication network to monitor the airfield lightning system, stating that such a solution can
improve air control efficiency, aircraft safety, and efficiency of ground operations. However, traditionally
proposed solutions for airfield lighting management rely on proprietary software components directly
exploiting low-level communication features provided by operating systems, even in case of relatively
recent cases. For instance, reference [8] exploits client/server architecture dispatching data via TCP/IP
sockets, by adopting multithreading and timeout techniques to improve efficiency. Let us stress
that such a solution only focuses on reliability and responsiveness as objectives, while neglecting
issues related to easy maintenance, extendibility, and integrability. In reference [9] an innovative
solution based on wireless sensor networks (WSNs) was proposed to monitor airfield lightning systems,

https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/lsg/rvr/
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/lsg/rvr/

Sensors 2019, 19, 4724 3 of 13

by verifying its lifetime in relation to per-node energy consumption. However, the solution has only
been verified in a simulated environment. Other recent proposals in the airfield scenario focused on
upgrading the lighting system, e.g., from incandescent- to led-based lights to improve lifetime and
reduce energy consumption while ensuring a uniform light output [10].

The airport environment has fostered the adoption of more articulated and advanced networking
solutions, but mainly for non-mission-critical use cases. For instance, reference [11] and reference [12]
exploit RFID tags to track baggage within airports to improve both baggage management efficiency
and security. Other innovative services proposed for airport environments provided a solution to
predict queue time based on the IEEE 802.11 positioning system [13], the real-time monitoring of
indoor air quality [14], and a WSN-based safety monitoring system [15]. In contrast, outside the airport
environment, several lighting management systems have been proposed, but with little or no mission
critical requirements. For instance, reference [16] proposes an IoT lighting system that can be exploited
as a central part of connected buildings.

The IoT approach has also been recently proposed in other mission-critical environments, e.g.,
to support the real-time condition monitoring and the fast detection of faults in the water industry [17],
to adopt unmanned aerial vehicles to monitor concrete plants [18], and to maximize the quality of service
in operating rooms to deliver vital medical services in hospitals [19]. Considering the transportation
field, [20] presents an IoT-based smart maintenance solution for railway systems comprising device
platforms, gateways, and IoT servers. Reference [20] focuses on the performance and cost comparison
of different wireless technologies, justified by the fact that the geographical scope of a railway is really
wide and monitored railway devices are deployed in a sparse manner.

Overall, solutions aiming at remotely monitoring airfield lighting systems usually focus on fault
tolerance and responsiveness only, while neglecting extendibility and interoperability. More articulated
solutions in airport environments have been recently proposed, but only for non-mission-critical use
cases. Other innovative IoT solutions for lightning systems are available, but for smart buildings and
smart cities, which are characterized by more advanced technology environments and with limited
requirements in terms of fault tolerance and responsiveness compared with airfield environments.
Finally, other solutions propose novel IoT-based monitoring and control solutions in different
mission-critical environments, such as for hospitals and railway systems.

3. Materials and Methods

3.1. Technology for Airfield Monitoring and Control

OCEM follows and adopts airport international specifications such as the ALCMS Federal Aviation
Administration (FAA) L-890 [21]. The current ALCMS implementation is based on a multi-layer
network architecture exploiting different protocols to manage and supervise specific hardware units
(Figure 1).

At the bottom layer reside components directly supervising lights and other hardware devices
usually communicating with the LonWorks industrial protocol (standard ANSI/CEA 709.1 [22]):

• Constant current regulator (CCR) units, power suppliers of the lighting system serial circuits
devoted to, e.g., runways, PAPI (precise approach path indicators), and taxiways. Functional
redundancy is guaranteed by inter-leaving lights connected to electrical circuits energized by
independent regulators;

• sensor (SNS) nodes, supervising transit sensors of specific areas or taxiway junctions to detect the
passage of airplanes and to advice in case of unauthorized access to runway (incursion alarm);

• Stop bar (STB) nodes, coordinating CCR and SNS nodes to manage segments of the lighting
system with the role of semaphores, barriers, and path-to-runway lights;

• auxiliary (AUX) nodes, managing multipurpose contacts used to monitor and control in-field
specific functions adopting an on/off logic, e.g.,:

Sensors 2019, 19, 4724 4 of 13

monitoring of electric units and uninterruptible power supply (UPS) devices;
turning on/off devices, e.g., aerodrome beacons and wind cone lights;
monitoring general and customizable alarms gathered from specific hardware;

• flash (FLS) units, managing sets of periodically pulsing lights that indicate the runway
approach path.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 13

o turning on/off devices, e.g., aerodrome beacons and wind cone lights;
o monitoring general and customizable alarms gathered from specific hardware;

• flash (FLS) units, managing sets of periodically pulsing lights that indicate the runway approach
path.

Figure 1. An example of Airport Lights Control and Monitoring System (ALCMS) network
architecture.

At the middle layer reside LonWorks-IP routers and IP switches that are in charge of providing
IP access to the devices residing in the LonWorks network, thus connecting the ethernet backbone to
LonWorks field buses.

At the top layer reside workstations hosting ALCMS/AGL tower and maintenance applications,
which support human operators residing in the airport control tower and in the electric facilities
respectively. Primary software components are:

• AGLcons, providing the main graphical user interface (GUI) to monitor and control the lighting
system. It is worth noting that, to avoid potential command conflicts, a command mastership has
to be a handshake between tower and maintenance substations;

• logger, tracing any system event provided by AGLcons and usually available only on the
maintenance PC. Events may represent state information related to the bottom layer nodes and
operative commands.

The AGL/ALCMS applications have been originally designed and developed as a close and
proprietary solution accessible from human operators via the GUI. However, to allow the integration
of third-party systems, we previously developed the application field server (AFS) solution to receive
monitoring information and send actuation commands. AFS is based on a proprietary one-to-many
socket-based communication component acting as intermediary among AGLcons and external
clients. This component allows us to specify a set of clients and to serve multiple clients at the same
time, e.g., to notify the same event to multiple clients or to dispatch a command to several units. For
instance, the AFS interacts with the CCR unit to turn on/off light circuit power as well as to deliver
primary alarms such as “open circuit” and “overcurrent”.

AFS notifies any event related to field units to every registered client. It is worth noting that AFS
does not adopt any topic-based communication channel. In other words, CCR and AUX events are
sent to every registered client, without any capability of differentiating which information a client is
actually interested in, e.g., either CCR or AUX or a given category of CCR/AUX devices.

Figure 1. An example of Airport Lights Control and Monitoring System (ALCMS) network architecture.

At the middle layer reside LonWorks-IP routers and IP switches that are in charge of providing
IP access to the devices residing in the LonWorks network, thus connecting the ethernet backbone to
LonWorks field buses.

At the top layer reside workstations hosting ALCMS/AGL tower and maintenance applications,
which support human operators residing in the airport control tower and in the electric facilities
respectively. Primary software components are:

• AGLcons, providing the main graphical user interface (GUI) to monitor and control the lighting
system. It is worth noting that, to avoid potential command conflicts, a command mastership has
to be a handshake between tower and maintenance substations;

• logger, tracing any system event provided by AGLcons and usually available only on the
maintenance PC. Events may represent state information related to the bottom layer nodes and
operative commands.

The AGL/ALCMS applications have been originally designed and developed as a close and
proprietary solution accessible from human operators via the GUI. However, to allow the integration
of third-party systems, we previously developed the application field server (AFS) solution to receive
monitoring information and send actuation commands. AFS is based on a proprietary one-to-many
socket-based communication component acting as intermediary among AGLcons and external clients.
This component allows us to specify a set of clients and to serve multiple clients at the same time, e.g.,
to notify the same event to multiple clients or to dispatch a command to several units. For instance,
the AFS interacts with the CCR unit to turn on/off light circuit power as well as to deliver primary
alarms such as “open circuit” and “overcurrent”.

AFS notifies any event related to field units to every registered client. It is worth noting that AFS
does not adopt any topic-based communication channel. In other words, CCR and AUX events are

Sensors 2019, 19, 4724 5 of 13

sent to every registered client, without any capability of differentiating which information a client is
actually interested in, e.g., either CCR or AUX or a given category of CCR/AUX devices.

3.2. The Need for Open Airfield Solutions

Proprietary ALCMS-like architectures often presented the typical limits of solutions designed
and developed when system integration was seen with skepticism, while the closedness of enterprise
information systems was considered to be a standard approach. For instance, the AFS, introduced
to permit third-party integration, was designed to operate only in closed networks, with the main
objective being data raw dispatching, i.e., providing ALCMS packets as is with limited support to other
non-functional features such as load balancing and fault tolerance. From a software engineering point
of view, the ALCMS software components were developed from scratch, in part due to the limited
performance capabilities of embedded systems, in part because suitable libraries were not available
at all.

Changing customers’ requests and the evolution of software technologies pushed AGL
manufacturers to revise their ALCMS solutions, moving towards open systems to ease the integration
with third-party customer information systems and provide new functional (and non-functional)
features, while improving the process of software production and maintenance. There is in fact an
ever-increasing interest in developing custom features required by premium customers. To achieve this
purpose, the exploitation of open and standard protocols lowers the effort required from third-party
developers to integrate the proposed solution, thus making it more attractive from a market point
of view.

Based on these considerations, we have identified as a primary requirement that already
available features should be made accessible through models and protocols widely adopted and
accepted by software developers. In this manner, the proposed solution keeps exploiting the already
developed and widely tested legacy integration system while exceeding its limits and lowering its
integration complexity.

In particular, ALCMS information should be accessible in both request/response and publish/

subscribe interaction models. The former is in charge of supporting clients of querying AFS when
retrieving current and historical information. To this purpose, (part of) the information provided by
AFS should be persisted in order to access them later both selectively and aggregately. For instance,
persisted information could be retrieved by analytical tools to recognize recurring patterns of failures
or misbehaviors, thus providing useful hints to identify faulty devices as well as further improve the
whole monitoring and control system. For this purpose, the request/response interaction model should
help well-documented application programming interfaces (APIs) to retrieve data segmented along
several directions, e.g., by device, node type, airport area, and time period.

The latter is in charge of providing clients with up-to-date information as soon as they become
available, dispatching important data in an event-driven fashion. In this manner, clients would be
able to promptly react to state changes of the lighting system, e.g., rising an alarm in case an airplane
enters a runway without authorization. Moreover, the publish/subscribe interaction model should be
enhanced by allowing us to distribute information via topics, e.g., segmenting packets based on scope
and interest. A client could be interested in information related to only runways while neglecting other
areas of the airport lighting system. For instance, to compute the RVR value, only “runway center line”
and “runway edge” CCRs are of interest.

Finally, it is worth noting that while opening the AFS solution to third-party developers increases
its attractiveness, it also poses new challenges and issues that have to be thoroughly addressed in terms
of availability, scalability, and security. To this purpose, first of all AFS should be accessible via replicated
software architecture, thereby providing request/response and publish/subscribe access via independent
and equipollent entry-points (thus achieving both load-balancing and fault tolerance). Secondly,
to ensure graceful scalability of the whole architecture, it should be possible to flexibly introduce new
communication components at service provisioning time, e.g., by allowing the deployment of new

Sensors 2019, 19, 4724 6 of 13

publish/subscribe broker replicas. Finally, security should be managed not only in terms of privacy
(by adopting TLS encrypted communication whenever suitable) and authentication (by verifying
the identity of each connecting client), but also enforcing authorization procedures (ensuring that
authenticated clients can access only the part of data they are allowed to) and assessing the security of
third-party software libraries.

3.3. Web Technologies towards an Open World

When scouting for the software technologies best suited to our needs, we had the possibility to
leverage on the huge work done in the IoT scenario and its related Web technologies, in particular
REST and AMQP, two of the most interesting protocols for request/response and publish/subscribe
interaction paradigms, respectively. Let us stress that the adoption IoT technologies, such as REST and
AMQP protocols as well as OData Web API and JSON formatting standards (see Section 3.4), makes
the proposed solution attractive for third-party developers, already accustomed to their use, while the
availability of widely maintained libraries makes their adoption even easier. Moreover, IoT technologies
allow us to easily integrate additional and heterogeneous devices, even after system deployment.

The REST paradigm allows us to interact with remote systems using any network environment
that allows Web traffic, by mapping GET/POST/PUT/DELETE HTTP actions to stateless read/create/

modify/delete operations. AMQP is an open Internet publish/subscribe messaging protocol that is
recognized as an international standard [5] and supports both topics and queues, allowing us to
dispatch the same packet to multiple subscribers simultaneously as well to only one of the available
subscribers, respectively. Readers interested in additional information on REST, AMQP, and other
IoT-related protocols are encouraged to read [23].

To increase availability, REST access should be provided by replicated Web servers while AMQP
access via clustered brokers. In the former case, the request/response and stateless nature of the REST
protocol allows the management of each Web server replica in a completely independent manner.
In the latter case, AMQP broker replicas must be clustered to ensure that an event published by AFS
via a broker is correctly delivered to any interested subscriber, despite the subscriber being connected
to the same broker replica or another one. For this purpose, we adopted the ActiveMQ open source
solution [24], a full-fledged multiprotocol broker that also supports several features for clustering
and security.

Finally, let us note that while developing a complex monitoring and control system from scratch
can be very challenging and prone to errors (thus threatening the security of the whole system),
adopting open source libraries and solutions can also represent a security issue. In fact, even if
developed and verified by several contributors, open source projects cannot be granted as bug-free.
To this purpose, in addition to usual security best practices (e.g., nodes must run only strictly required
services and with minimum required privileges on hardware and software resources), there is the need
of periodically checking the availability of new versions of adopted libraries and software, with the
primary goal of updating them whenever security bug fixes are provided. To this purpose, the adoption
of the OWASP Dependency Check project [25] can be very beneficial, allowing the verification of the
security of software (and, most relevant, also its dependencies) in relation to known vulnerabilities.

3.4. The OCEM Open System Solution

Based on the guideline and requirements presented above, we have designed a new and open
ALCMS solution, whose core is a working prototype providing access to AFS features in an open
manner based on REST and AMQP protocols.

Figure 2 presents the overall architecture of the proposed solution, based on two main components:
the AFS-AMQP Gateway and the Web Logger. The AFS-AMQP Gateway represents the core component,
in charge of dispatching messages between the legacy AFS application and ActiveMQ acting as the
AMQP publish/subscribe broker. In particular, the AFS-AMQP Gateway acts as application double
gateway, hiding the legacy AFS solution and providing previously available and new features in a

Sensors 2019, 19, 4724 7 of 13

transparent manner. On the one hand, it supports monitoring features by receiving from AFS any
ALCMS event and then publishing it to ActiveMQ in AMQP format. On the other hand, it supports
actuation by subscribing to ActiveMQ to receive commands sent by third-party clients and then
sending them to AFS.

It is worth noting that when receiving events from AFS, it publishes them via different topics.
The current version of the AFS-AMQP Gateway exploits MNT.CCR/MNT.STB unit-related topics
to dispatch monitored events related to constant current regulator and stop bar nodes, respectively
(additional node-specific topics can be easily added whenever required). In addition, the same message
is published to another topic related to the area of the airport the monitored device is related to, e.g.,
MNT.RWY for runways and MNT.TWY for taxiways, while commands are provided via the CMD topic.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 13

other hand, it supports actuation by subscribing to ActiveMQ to receive commands sent by third-
party clients and then sending them to AFS.

It is worth noting that when receiving events from AFS, it publishes them via different topics.
The current version of the AFS-AMQP Gateway exploits MNT.CCR/MNT.STB unit-related topics to
dispatch monitored events related to constant current regulator and stop bar nodes, respectively
(additional node-specific topics can be easily added whenever required). In addition, the same
message is published to another topic related to the area of the airport the monitored device is related
to, e.g., MNT.RWY for runways and MNT.TWY for taxiways, while commands are provided via the
CMD topic.

Figure 2. Overall architecture of the proposed solution.

The Web logger is in charge of gathering, persisting, and providing a request/response to any
monitored event. To achieve this purpose, it subscribes to the ActiveMQ broker on the MNT.# topic
to receive any event generated by AFS and published by the AMQP GW Publisher. For each event it
receives, it interacts with a Web server to create a new entry in a SQL database (we currently exploit
MariaDB, but it can be easily replaced with any SQL database). The Web server provides persisted
information to any client requiring it. In particular, the Web server supports both REST-based Web
API and an HTML-based GUI. In the former case, the process requiring the information is a REST
client and the response is provided in JSON format by following the OData Standard for Open Data
Exchange [26]. In the latter case, the process requiring the information is any standard Web browser
and the response is provided in HTML format, thus allowing us to graphically display events in a
human readable manner.

Furthermore, the Web browser can directly connect to the ActiveMQ broker to subscribe to
topics (as well as to publish messages) by exploiting the Simple Text Oriented Messaging Protocol
(STOMP) protocol [27]. In this manner, it is possible to promptly push important messages, e.g.,
alarms, to Web app users. Otherwise, the Web client should periodically interact with the Web server
to pull (eventually new) alarms, imposing network overhead as well as increased delay.

However, network administration policies could allow only HTTP traffic and prevent Web
browsers from the possibility of creating connections to arbitrary TCP ports, such as the 61,613 default
STOMP one. To overcome this issue, we also provided an alternative solution. In particular, the Web
server supports the capability of upgrading HTTP connections to WebSockets, usually allowed by
network security policies, to push important information to Web browsers in an event-driven
manner. In this case, the Web Logger acts as a protocol gateway by translating AMQP messages in
WebSocket ones.

Figure 2. Overall architecture of the proposed solution.

The Web logger is in charge of gathering, persisting, and providing a request/response to any
monitored event. To achieve this purpose, it subscribes to the ActiveMQ broker on the MNT.# topic to
receive any event generated by AFS and published by the AMQP GW Publisher. For each event it
receives, it interacts with a Web server to create a new entry in a SQL database (we currently exploit
MariaDB, but it can be easily replaced with any SQL database). The Web server provides persisted
information to any client requiring it. In particular, the Web server supports both REST-based Web
API and an HTML-based GUI. In the former case, the process requiring the information is a REST
client and the response is provided in JSON format by following the OData Standard for Open Data
Exchange [26]. In the latter case, the process requiring the information is any standard Web browser
and the response is provided in HTML format, thus allowing us to graphically display events in a
human readable manner.

Furthermore, the Web browser can directly connect to the ActiveMQ broker to subscribe to
topics (as well as to publish messages) by exploiting the Simple Text Oriented Messaging Protocol
(STOMP) protocol [27]. In this manner, it is possible to promptly push important messages, e.g., alarms,
to Web app users. Otherwise, the Web client should periodically interact with the Web server to pull
(eventually new) alarms, imposing network overhead as well as increased delay.

However, network administration policies could allow only HTTP traffic and prevent Web
browsers from the possibility of creating connections to arbitrary TCP ports, such as the 61,613
default STOMP one. To overcome this issue, we also provided an alternative solution. In particular,
the Web server supports the capability of upgrading HTTP connections to WebSockets, usually allowed
by network security policies, to push important information to Web browsers in an event-driven
manner. In this case, the Web Logger acts as a protocol gateway by translating AMQP messages in
WebSocket ones.

Sensors 2019, 19, 4724 8 of 13

4. Results and Discussion

We have developed and tested a working prototype of the proposed architecture with two
objectives. On the one hand, our aim was to demonstrate the possibility of extending the legacy
solution by exposing its features with standard IoT protocols. On the other hand, our aim was also to
assess the soundness of adopted IoT technologies in terms of responsiveness, reliability, and scalability.

First of all, we have upgraded the legacy Insulation Resistance Monitoring System (IRMS) in
charge of identifying any light fault in the airfield by comparing input and output tensions within a
closed circuit (see Figure 3). The field bus is still based on the LonWorks protocol to dispatch events
from CCR units to in-field monitors (Figure 3, down). On the contrary, the ethernet part pushing
information to the AGL for both the tower control and the maintenance stations (Figure 3, up) is
now based on AMQP instead of the traditional socket-based proprietary protocol. Also note that we
have been able to integrate the new messaging system (and thus dismiss the previous socket-based
communication protocol) while not modifying the rest of the application. In particular, we did not
need to modify the previous GUI, thus providing in-field monitor and AGL users with a consistent
user experience. In addition, we adopted the Web Logger to present IRMS monitored information to
users via a novel HTML-based Web GUI (Figure 4a) and to dispatch information as JSON documents
based on the OData standard (Figure 4b).

Sensors 2019, 19, x FOR PEER REVIEW 8 of 13

4. Results and Discussion

We have developed and tested a working prototype of the proposed architecture with two
objectives. On the one hand, our aim was to demonstrate the possibility of extending the legacy
solution by exposing its features with standard IoT protocols. On the other hand, our aim was also to
assess the soundness of adopted IoT technologies in terms of responsiveness, reliability, and
scalability.

First of all, we have upgraded the legacy Insulation Resistance Monitoring System (IRMS) in
charge of identifying any light fault in the airfield by comparing input and output tensions within a
closed circuit (see Figure 3). The field bus is still based on the LonWorks protocol to dispatch events
from CCR units to in-field monitors (Figure 3, down). On the contrary, the ethernet part pushing
information to the AGL for both the tower control and the maintenance stations (Figure 3, up) is now
based on AMQP instead of the traditional socket-based proprietary protocol. Also note that we have
been able to integrate the new messaging system (and thus dismiss the previous socket-based
communication protocol) while not modifying the rest of the application. In particular, we did not
need to modify the previous GUI, thus providing in-field monitor and AGL users with a consistent
user experience. In addition, we adopted the Web Logger to present IRMS monitored information to
users via a novel HTML-based Web GUI (Figure 4a) and to dispatch information as JSON documents
based on the OData standard (Figure 4b).

Figure 3. The IRMS system.

(a) (b)

Figure 4. Examples of Web Logger GUI (a) and JSON response (b) for the Insulation Resistance
Monitoring System (IRMS).

Figure 3. The IRMS system.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 13

4. Results and Discussion

We have developed and tested a working prototype of the proposed architecture with two
objectives. On the one hand, our aim was to demonstrate the possibility of extending the legacy
solution by exposing its features with standard IoT protocols. On the other hand, our aim was also to
assess the soundness of adopted IoT technologies in terms of responsiveness, reliability, and
scalability.

First of all, we have upgraded the legacy Insulation Resistance Monitoring System (IRMS) in
charge of identifying any light fault in the airfield by comparing input and output tensions within a
closed circuit (see Figure 3). The field bus is still based on the LonWorks protocol to dispatch events
from CCR units to in-field monitors (Figure 3, down). On the contrary, the ethernet part pushing
information to the AGL for both the tower control and the maintenance stations (Figure 3, up) is now
based on AMQP instead of the traditional socket-based proprietary protocol. Also note that we have
been able to integrate the new messaging system (and thus dismiss the previous socket-based
communication protocol) while not modifying the rest of the application. In particular, we did not
need to modify the previous GUI, thus providing in-field monitor and AGL users with a consistent
user experience. In addition, we adopted the Web Logger to present IRMS monitored information to
users via a novel HTML-based Web GUI (Figure 4a) and to dispatch information as JSON documents
based on the OData standard (Figure 4b).

Figure 3. The IRMS system.

(a) (b)

Figure 4. Examples of Web Logger GUI (a) and JSON response (b) for the Insulation Resistance
Monitoring System (IRMS).

Figure 4. Examples of Web Logger GUI (a) and JSON response (b) for the Insulation Resistance
Monitoring System (IRMS).

To verify responsiveness, reliability, and scalability, we have considered the challenging scenario
of stop bars. In this scenario, the reliable and prompt delivery of commands (e.g., to turn on/off stop
bars) as well as sensed data (e.g., to rise an alarm in case an airplane does not stop at an active stop
bar) is mission critical. Current international regulations enforce the dispatching of failure events in,

Sensors 2019, 19, 4724 9 of 13

at most, 2 s. However, 1.5 s are typically required for the in-field part, thus the actual dispatching of
states and commands based on IoT standards from in-field monitors to the AGL can last 0.5 s at most.

We have tested the responsiveness of our prototype while dispatching an increasing amount of
messages per second by measuring the end-to-end delay from alarm dispatching by in-field monitors
to its visualization on a Web browser. To stress its scalability, tests were performed increasing the
number of messages from 1 to 1000 per second, with a message payload of 1 KB, and limiting the
available bandwidth to 10 Mbit/s. Each test lasted 5 min, while nodes were equipped with a 2.6 GHz
quad-core, 8 GB RAM, Linux Ubuntu 18.04 or Windows 10 operating system.

Figure 5 shows results comparing three different solutions: (i) the traditional socket-based solution,
(ii) the ActiveMQ-only one (broker version 5.15.x, client library based on ActiveMQ NMS 1.7.2 version)
exploiting the StompIt JavaScript Node.js library (0.26.0 version) within the Web browser to receive
STOMP messages, and (iii) the solution also considering the Web server (based on NET Core 2.1
SDK and NET Framework 4.6 SDK) in charge of receiving AMQP messages and sending them via
WebSocket. As Figure 5 shows, the socket-based solution presents the best end-to-end delay, with
just 8 ms in the case of 1000 messages per second. The ActiveMQ-only solution provides slightly
worse end-to-end delay, with a maximum of about 15 ms in case of 1000 messages per second. Finally,
the solution comprising both ActiveMQ and the Web server further increased the end-to-end delay by
up to 43 ms (with higher standard deviation) in the case of 1000 messages per second.

Let us note that notwithstanding the observed increasing trend, achieved delay is limited in
every tested case, thus demonstrating the suitability of the proposed solution in relation to temporal
constraints of airfield environments. In other words, the adoption of standard and ease of adopting
communication protocols allowed us to greatly increase extendibility and flexibility (as described
in previous sections), while imposing a limited overhead that was well below imposed constraints.
In addition, note that achieved delays represented an upper bound, since the expected bandwidth is
greater than 10 Mbit/s and in the target environment the expected message frequency is usually much
lower, varying in relation to system complexity but in the order of at most few hundred messages
per second.

Sensors 2019, 19, x FOR PEER REVIEW 9 of 13

To verify responsiveness, reliability, and scalability, we have considered the challenging
scenario of stop bars. In this scenario, the reliable and prompt delivery of commands (e.g., to turn
on/off stop bars) as well as sensed data (e.g., to rise an alarm in case an airplane does not stop at an
active stop bar) is mission critical. Current international regulations enforce the dispatching of failure
events in, at most, 2 s. However, 1.5 s are typically required for the in-field part, thus the actual
dispatching of states and commands based on IoT standards from in-field monitors to the AGL can
last 0.5 s at most.

We have tested the responsiveness of our prototype while dispatching an increasing amount of
messages per second by measuring the end-to-end delay from alarm dispatching by in-field monitors
to its visualization on a Web browser. To stress its scalability, tests were performed increasing the
number of messages from 1 to 1000 per second, with a message payload of 1 KB, and limiting the
available bandwidth to 10 Mbit/s. Each test lasted 5 min, while nodes were equipped with a 2.6 GHz
quad-core, 8 GB RAM, Linux Ubuntu 18.04 or Windows 10 operating system.

Figure 5 shows results comparing three different solutions: (i) the traditional socket-based
solution, (ii) the ActiveMQ-only one (broker version 5.15.x, client library based on ActiveMQ NMS
1.7.2 version) exploiting the StompIt JavaScript Node.js library (0.26.0 version) within the Web
browser to receive STOMP messages, and (iii) the solution also considering the Web server (based on
NET Core 2.1 SDK and NET Framework 4.6 SDK) in charge of receiving AMQP messages and
sending them via WebSocket. As Figure 5 shows, the socket-based solution presents the best end-to-
end delay, with just 8 ms in the case of 1000 messages per second. The ActiveMQ-only solution
provides slightly worse end-to-end delay, with a maximum of about 15 ms in case of 1000 messages
per second. Finally, the solution comprising both ActiveMQ and the Web server further increased
the end-to-end delay by up to 43 ms (with higher standard deviation) in the case of 1000 messages
per second.

Let us note that notwithstanding the observed increasing trend, achieved delay is limited in
every tested case, thus demonstrating the suitability of the proposed solution in relation to temporal
constraints of airfield environments. In other words, the adoption of standard and ease of adopting
communication protocols allowed us to greatly increase extendibility and flexibility (as described in
previous sections), while imposing a limited overhead that was well below imposed constraints. In
addition, note that achieved delays represented an upper bound, since the expected bandwidth is
greater than 10 Mbit/s and in the target environment the expected message frequency is usually much
lower, varying in relation to system complexity but in the order of at most few hundred messages
per second.

Figure 5. End-to-end delay average and standard deviation with socket, ActiveMQ-only, and
ActiveMQ and Web server.

Focusing on reliability and fault-tolerance, we tested an ActiveMQ broker cluster [28] with 2
replicas. For this purpose, publishers and subscribers connect to replicas in a round-robin fashion by
exploiting the failover mechanism with randomize = false option, i.e., IP addresses of replicas are
statically provided to nodes and they always connect to the first replica of the list, to other replicas
only in case the first one fails. Note that in these tests we aimed at verifying the behavior of proposed
failover mechanisms in a testing environment similar to the deployment one rather than its

0
10
20
30
40
50
60
70

1 5 10 50 100 500 1000

En
d-

to
-e

nd
 d

el
ay

 (m
s)

messages/s

Socket
ActiveMQ-only
ActiveMQ and Web server

Figure 5. End-to-end delay average and standard deviation with socket, ActiveMQ-only, and ActiveMQ
and Web server.

Focusing on reliability and fault-tolerance, we tested an ActiveMQ broker cluster [28] with 2
replicas. For this purpose, publishers and subscribers connect to replicas in a round-robin fashion by
exploiting the failover mechanism with randomize = false option, i.e., IP addresses of replicas are
statically provided to nodes and they always connect to the first replica of the list, to other replicas
only in case the first one fails. Note that in these tests we aimed at verifying the behavior of proposed
failover mechanisms in a testing environment similar to the deployment one rather than its scalability.
For this reason, we adopted a smaller payload (only few bytes rather than 1 KB) and no bandwidth
limitation (rather than a 10 Mbit/s limit), thus achieving smaller end-to-end delays.

We tested two different cluster architectures, one in case both the publisher and the subscriber are
connected to the same broker replica (Figure 6a) and the other in case the publisher and the subscriber
are connected to different broker replicas (Figure 6b). In addition, we have tested with and without the

Sensors 2019, 19, 4724 10 of 13

ActiveMQ durable subscription feature [29]: if activated, the broker persists in sending messages for a
while, to deliver them to subscribers in case they connect after a message has been dispatched.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 13

scalability. For this reason, we adopted a smaller payload (only few bytes rather than 1 KB) and no
bandwidth limitation (rather than a 10 Mbit/s limit), thus achieving smaller end-to-end delays.

We tested two different cluster architectures, one in case both the publisher and the subscriber
are connected to the same broker replica (Figure 6a) and the other in case the publisher and the
subscriber are connected to different broker replicas (Figure 6b). In addition, we have tested with and
without the ActiveMQ durable subscription feature [29]: if activated, the broker persists in sending
messages for a while, to deliver them to subscribers in case they connect after a message has been
dispatched.

a b

Figure 6. Tested cluster architectures.

Table 1 shows the number of lost messages when abruptly stopping the broker replica the
subscriber is connected to while sending an increasing amount of messages per second. It is worth
noting that without durable subscriptions and with only with 100 messages per second, there are few
lost messages, while higher message frequencies increase the number of lost messages.

In case clients are connected to the same fault replica, both the subscriber and the publisher
switch to the other replica and the latter stops sending messages while switching. However, some
messages are lost, since the subscriber does not receive messages the publisher has recently delivered
to the broker. Also note that in case of the publisher and the subscriber being connected to different
broker replicas, the outcome is slightly worse. In this case the publisher does not perceive the replica
failure and keeps sending messages (not delivered to the subscriber) while the subscriber is also
reconnecting to the other broker replica. Let us stress that achieved results do not depend on the
amount of adopted replicas, since replicas communicate one each other via multicast and thus
additional replicas do not increase the generated traffic. Instead, as noted above, performance results
vary if the publisher and the subscriber are connected either to the same or different replicas. Finally,
it is possible to avoid any message loss (even at very high message frequencies) by adopting durable
subscriptions, at the cost of slightly increasing the end-to-end delay (about 1 ms in our tests).

Table 1. Lost packets at broker failure.

Durable Connected
Replica

Messages Per Second
1 10 20 100 250 500 750

no
the same 0 0 0 1 8 15 30
different 0 0 0 1 8 23 70

yes
the same 0 0 0 0 0 0 0
different 0 0 0 0 0 0 0

To better understand the behavior of our solution at replica failure, Figure 7 presents the end-
to-end delay of packets during two different experiments. Both experiments lasted 120 s and in both
cases a replica failed after 60 s and then a new replica started after 10 s. Replicas were configured
with durable subscriptions, with the publisher and subscriber connected to the same replica. In the
first experiment (Figure 7a) message creation frequency was set to 1 message per second, in the
second experiment (Figure 7b) message creation frequency was set to 750 messages per second.

It is worth noting that at very low message frequency (1 message per second, Figure 7b) when a
replica fails (at about 60 s) the end-to-end delay lowers, since the overhead due to message
dispatching towards different replicas is temporarily removed. Then, the previous end-to-end delay

Figure 6. Tested cluster architectures: clients connected to the same (a) and different (b) replicas.

Table 1 shows the number of lost messages when abruptly stopping the broker replica the
subscriber is connected to while sending an increasing amount of messages per second. It is worth
noting that without durable subscriptions and with only with 100 messages per second, there are few
lost messages, while higher message frequencies increase the number of lost messages.

In case clients are connected to the same fault replica, both the subscriber and the publisher switch
to the other replica and the latter stops sending messages while switching. However, some messages
are lost, since the subscriber does not receive messages the publisher has recently delivered to the
broker. Also note that in case of the publisher and the subscriber being connected to different broker
replicas, the outcome is slightly worse. In this case the publisher does not perceive the replica failure
and keeps sending messages (not delivered to the subscriber) while the subscriber is also reconnecting
to the other broker replica. Let us stress that achieved results do not depend on the amount of adopted
replicas, since replicas communicate one each other via multicast and thus additional replicas do not
increase the generated traffic. Instead, as noted above, performance results vary if the publisher and
the subscriber are connected either to the same or different replicas. Finally, it is possible to avoid any
message loss (even at very high message frequencies) by adopting durable subscriptions, at the cost of
slightly increasing the end-to-end delay (about 1 ms in our tests).

Table 1. Lost packets at broker failure.

Durable Connected Replica Messages Per Second

1 10 20 100 250 500 750

no the same 0 0 0 1 8 15 30
different 0 0 0 1 8 23 70

yes the same 0 0 0 0 0 0 0
different 0 0 0 0 0 0 0

To better understand the behavior of our solution at replica failure, Figure 7 presents the end-to-end
delay of packets during two different experiments. Both experiments lasted 120 s and in both cases a
replica failed after 60 s and then a new replica started after 10 s. Replicas were configured with durable
subscriptions, with the publisher and subscriber connected to the same replica. In the first experiment
(Figure 7a) message creation frequency was set to 1 message per second, in the second experiment
(Figure 7b) message creation frequency was set to 750 messages per second.

It is worth noting that at very low message frequency (1 message per second, Figure 7b) when a
replica fails (at about 60 s) the end-to-end delay lowers, since the overhead due to message dispatching
towards different replicas is temporarily removed. Then, the previous end-to-end delay is achieved
when a new replica joins the cluster (at about 70 s). With much higher message frequency (750 messages
per second, Figure 7b) the time delay variability increases, i.e., message delay more relevantly varies
from message to message. In addition, delays are higher for a while right after the subscriber has
switched to the active replica, since at 750 messages per second there are many messages saved in the

Sensors 2019, 19, 4724 11 of 13

still active broker replica (thanks to the durable subscription feature) and waiting to be dispatched
to the subscriber. Then, once saved messages are delivered, the average delay stabilizes at lower
values, since both the publisher and the subscriber are now connected to the same broker replica, thus
avoiding inter-replica delays.

In conclusion, presented performance results demonstrate the proposed solution not only greatly
increases the interoperability of the legacy lighting system by adopting IoT standards, but it also
provides fault tolerance without relevantly reducing the performance of end-to-end delay dispatching,
even in the case of exploitation of both ActiveMQ and Web server. It is also worth noting that the
adoption of IoT related technologies allows us to more easily add new replicas, e.g., by running a new
ActiveMQ broker instance and adding it to the cluster even during service provisioning. In addition,
it allows us to more easily adopt secure connections, e.g., enabling TLS/SSL on brokers and Web servers.
However, technicians should careful to identify the best tradeoff among replication degree, security,
and required performance, by considering that higher levels of replication/security may negatively
impact on end-to-end latency.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 13

is achieved when a new replica joins the cluster (at about 70 s). With much higher message frequency
(750 messages per second, Figure 7b) the time delay variability increases, i.e., message delay more
relevantly varies from message to message. In addition, delays are higher for a while right after the
subscriber has switched to the active replica, since at 750 messages per second there are many
messages saved in the still active broker replica (thanks to the durable subscription feature) and
waiting to be dispatched to the subscriber. Then, once saved messages are delivered, the average
delay stabilizes at lower values, since both the publisher and the subscriber are now connected to the
same broker replica, thus avoiding inter-replica delays.

In conclusion, presented performance results demonstrate the proposed solution not only
greatly increases the interoperability of the legacy lighting system by adopting IoT standards, but it
also provides fault tolerance without relevantly reducing the performance of end-to-end delay
dispatching, even in the case of exploitation of both ActiveMQ and Web server. It is also worth noting
that the adoption of IoT related technologies allows us to more easily add new replicas, e.g., by
running a new ActiveMQ broker instance and adding it to the cluster even during service
provisioning. In addition, it allows us to more easily adopt secure connections, e.g., enabling TLS/SSL
on brokers and Web servers. However, technicians should careful to identify the best tradeoff among
replication degree, security, and required performance, by considering that higher levels of
replication/security may negatively impact on end-to-end latency.

a b

Figure 7. End-to-end message delivery delay of two 120 s long experiments with message creation
frequency set at 1 (a) and 750 (b) messages per second: broker cluster configuration with two replicas,
a replica fails at 60 s and another starts at 70 s.

5. Conclusions

The ever-increasing demand for easier integration with third-party software solutions has
imposed a new approach for developing airport ALCMS solutions. This paper demonstrates how the
adoption of an open and IoT approach based on well-known standards can pave the way for more
open monitoring and control solutions that support not only easy integration but also non-functional
requirements such as availability, scalability, and security. The developed technical solution allows
the integration of third-party software and hardware components by developing AMQP
publishers/subscribers, interacting via STOMP, or invoking REST-based OData API. Moreover,
performance results demonstrate that a two-replica message broker cluster with durable
subscriptions allows the guarantee of no messages being lost even while publishers and subscribers
switch to another broker replica, while limiting the end-to-end delay.

The encouraging results already achieved, based on a working solution, are stimulating our
ongoing research work. We are mainly working on the development of security features to enforce
fine-grained authentication and authorization access to topics and information, also to guarantee
accountability of issued commands. We are also developing an Android application to provide up-
to-date monitoring information to technicians in a ubiquitous manner.

0
1
2
3
4
5
6
7
8
9

10

0 20 40 60 80 100 120

En
d-

to
-e

nd
 d

el
ay

 (m
s)

Message creation (s)

Figure 7. End-to-end message delivery delay of two 120 s long experiments with message creation
frequency set at 1 (a) and 750 (b) messages per second: broker cluster configuration with two replicas,
a replica fails at 60 s and another starts at 70 s.

5. Conclusions

The ever-increasing demand for easier integration with third-party software solutions has
imposed a new approach for developing airport ALCMS solutions. This paper demonstrates how
the adoption of an open and IoT approach based on well-known standards can pave the way
for more open monitoring and control solutions that support not only easy integration but also
non-functional requirements such as availability, scalability, and security. The developed technical
solution allows the integration of third-party software and hardware components by developing
AMQP publishers/subscribers, interacting via STOMP, or invoking REST-based OData API. Moreover,
performance results demonstrate that a two-replica message broker cluster with durable subscriptions
allows the guarantee of no messages being lost even while publishers and subscribers switch to another
broker replica, while limiting the end-to-end delay.

The encouraging results already achieved, based on a working solution, are stimulating our
ongoing research work. We are mainly working on the development of security features to enforce
fine-grained authentication and authorization access to topics and information, also to guarantee
accountability of issued commands. We are also developing an Android application to provide
up-to-date monitoring information to technicians in a ubiquitous manner.

Author Contributions: Conceptualization, C.G. and M.M.; software and validation, E.B., F.F., S.P. and A.P.; data
curation, C.G. and E.B.; writing—original draft preparation, C.G.; writing—review and editing, M.M. and C.S.;
supervision, C.S.

Funding: This research received no external funding.

Sensors 2019, 19, 4724 12 of 13

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet of Things
REST REpresentational State Transfer
AMQP Advanced Message Queuing Protocol
IT Information Technology
AGL Airport Ground Lighting
ALCMS Airport Lights Control and Monitoring System
RVR Runway Visual Range
FAA Federal Aviation Administration
CCR Constant Current Regulator
PAPI Precise Approach Path Indicators
SNS Sensor
STB Stop Bar
AUX Auxiliary
UPS Uninterruptible Power Supply
FLS Flash
GUI Graphical User Interface
AFS Application Field Server
API Application Programming Interfaces
IRMS Insulation Resistance Monitoring System

References

1. Georgakopoulos, D.; Jayaraman, P.P.; Fazia, M.; Villari, M.; Ranjan, R. Internet of Things and Edge Cloud
Computing Roadmap for Manufacturing. IEEE Cloud Comput. 2016, 3, 66–73. [CrossRef]

2. Chen, T.M.; Abu-Nimeh, S. Lessons from Stuxnet. Computer 2011, 44, 91–93. [CrossRef]
3. Corradi, A.; Foschini, L.; Giannelli, C.; Lazzarini, R.; Stefanelli, C.; Tortonesi, M.; Virgilli, G. Smart Appliances

and RAMI 4.0: Management and Servitization of Ice Cream Machines. IEEE Trans. Ind. Inform. 2019, 15,
1007–1016. [CrossRef]

4. Fielding, R.T. Architectural Styles and the Design of Network-based Software Architectures; University of California:
Irvine, CA, USA, 2000.

5. ISO/IEC 19464:2014–Information Technology—Advanced Message Queuing Protocol (AMQP) v1.0
Specification. Available online: https://www.iso.org/standard/64955.html (accessed on 24 October 2019).

6. Lee, K. Integration of aviation lighting system and computer controlled monitoring system. In Proceedings
of the 1996 IEEE International Conference on Systems, Man and Cybernetics, Information Intelligence and
Systems, Beijing, China, 14–17 October 1996; Volume 1, pp. 1132–1137.

7. Zhang, J.; Ren, G.; Sun, P. A monitoring and control system based on local network for airfield lighting.
In Proceedings of the 2001 International Conferences on Info-Tech and Info-Net, Beijing, China, 29 October–1
November 2001; Volume 4, pp. 192–195.

8. Wang, B.; Gao, M.; Wang, L. Remote automatic monitor system for airfield lighting. In Proceedings of the
2010 International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan,
China, 22–24 October 2010; Volume 8, pp. 542–545.

9. Wang, B.-Y.; Zhang, X.-Q.; Tian, K.; Gao, M. An Efficient WSN Routing Protocol on Airfield Lighting
Monitoring System. In Proceedings of the 2015 Fifth International Conference on Instrumentation and
Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, China, 18–20 September
2015; pp. 1701–1705.

10. Donnelly, T.J.; Pekarek, S.D. Modeling and control of an LED-based airfield lighting system. In Proceedings
of the 2018 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 22–23 February 2018;
pp. 1–5.

http://dx.doi.org/10.1109/MCC.2016.91
http://dx.doi.org/10.1109/MC.2011.115
http://dx.doi.org/10.1109/TII.2018.2867643
https://www.iso.org/standard/64955.html

Sensors 2019, 19, 4724 13 of 13

11. Singh, A.; Meshram, S.; Gujar, T.; Wankhede, P.R. Baggage tracing and handling system using RFID and IoT
for airports. In Proceedings of the 2016 International Conference on Computing, Analytics and Security
Trends (CAST), Pune, India, 19–21 December 2016; pp. 466–470.

12. Shehieb, W.; Al Sayed, H.; Akil, M.M.; Turkman, M.; Sarraj, M.A.; Mir, M. A smart system to minimize
mishandled luggage at airports. In Proceedings of the 2016 International Conference on Progress in
Informatics and Computing (PIC), Shanghai, China, 23–25 December 2016; pp. 154–158.

13. Shu, H.; Song, C.; Pei, T.; Xu, L.; Ou, Y.; Zhang, L.; Li, T. Queuing Time Prediction Using WiFi Positioning
Data in an Indoor Scenario. Sensors 2016, 16, 1958. [CrossRef] [PubMed]

14. Zanni, S.; Lalli, F.; Foschi, E.; Bonoli, A.; Mantecchini, L. Indoor Air Quality Real-Time Monitoring in Airport
Terminal Areas: An Opportunity for Sustainable Management of Micro-Climatic Parameters. Sensors 2018,
18, 3798. [CrossRef] [PubMed]

15. Fu, X.; Yan, Y. Design and Implementation for Early Warning System of Airfield Security Defense.
In Proceedings of the 2015 8th International Conference on Intelligent Computation Technology and
Automation (ICICTA), Nanchang, China, 14–15 June 2015; pp. 364–366.

16. Pandharipande, A.; Zhao, M.; Frimout, E.; Thijssen, P. IoT lighting: Towards a connected building eco-system.
In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February
2018; pp. 664–669.

17. Short, M.; Twiddle, J. An Industrial Digitalization Platform for Condition Monitoring and Predictive
Maintenance of Pumping Equipment. Sensors 2019, 19, 3781. [CrossRef] [PubMed]

18. Salhaoui, M.; Guerrero-González, A.; Arioua, M.; Ortiz, F.J.; El Oualkadi, A.; Torregrosa, C.L. Smart Industrial
IoT Monitoring and Control System Based on UAV and Cloud Computing Applied to a Concrete Plant.
Sensors 2019, 19, 3316. [CrossRef] [PubMed]

19. Facco Rodrigues, V.; da Rosa Righi, R.; André da Costa, C.; Eskofier, B.; Maier, A. On Providing Multi-Level
Quality of Service for Operating Rooms of the Future. Sensors 2019, 19, 2303. [CrossRef] [PubMed]

20. Jo, O.; Kim, Y.K.; Kim, J. Internet of Things for Smart Railway: Feasibility and Applications. IEEE Internet
Things J. 2018, 5, 482–490. [CrossRef]

21. FAA. Specification for L-890 Airport Lighting Control and Monitoring System (ALCMS). Available
online: https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/

documentID/1019549 (accessed on 24 October 2019).
22. LonWorks Control-Networking Technology—ANSI/CEA 709.1. Available online: http://www.lonmark.org/

technical_resources/standards (accessed on 24 October 2019).
23. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey

on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376.
[CrossRef]

24. ActiveMQ Message Broker. Available online: http://activemq.apache.org/ (accessed on 24 October 2019).
25. OAWSP Dependency-Check. Available online: https://www.owasp.org/index.php/OWASP_Dependency_

Check (accessed on 24 October 2019).
26. OData: Open Data Protocol. Available online: https://www.odata.org/ (accessed on 24 October 2019).
27. Simple Text Oriented Messaging Protocol (STOMP) Messaging Protocol. Available online: https://stomp.

github.io/ (accessed on 24 October 2019).
28. ActiveMQ Clustering. Available online: http://activemq.apache.org/clustering.html (accessed on 24 October

2019).
29. ActiveMQ Durable Topics. Available online: http://activemq.apache.org/how-do-durable-queues-and-

topics-work.html (accessed on 24 October 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s16111958
http://www.ncbi.nlm.nih.gov/pubmed/27879663
http://dx.doi.org/10.3390/s18113798
http://www.ncbi.nlm.nih.gov/pubmed/30404225
http://dx.doi.org/10.3390/s19173781
http://www.ncbi.nlm.nih.gov/pubmed/31480438
http://dx.doi.org/10.3390/s19153316
http://www.ncbi.nlm.nih.gov/pubmed/31357720
http://dx.doi.org/10.3390/s19102303
http://www.ncbi.nlm.nih.gov/pubmed/31109073
http://dx.doi.org/10.1109/JIOT.2017.2749401
https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/1019549
https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/1019549
http://www.lonmark.org/technical_resources/standards
http://www.lonmark.org/technical_resources/standards
http://dx.doi.org/10.1109/COMST.2015.2444095
http://activemq.apache.org/
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.odata.org/
https://stomp.github.io/
https://stomp.github.io/
http://activemq.apache.org/clustering.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Materials and Methods
	Technology for Airfield Monitoring and Control
	The Need for Open Airfield Solutions
	Web Technologies towards an Open World
	The OCEM Open System Solution

	Results and Discussion
	Conclusions
	References

