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Abstract. It is well-known that in some regression problems the effect
of an independent variables on the dependent one(s) may be delayed;
this phenomenon is known as lag. Lag regression is one of the standard
techniques for time series explanation and prediction. However, using
lagged variables to transform a multivariate time series so that a propo-
sitional algorithm such as a linear regression learner can be used requires
to decide, at preprocessing time, which independent variables must be
lagged and by how much. In this paper, we propose a novel optimization
schema to solve this problem. We test our solution, implemented with a
multi-objective evolutionary algorithm, on real data taken from a larger
project that aims to construct an explanation model for the study of
atmospheric pollution in the city of Wroctaw (Poland).

Keywords: Regression; Lag; Multi-objective evolutionary computation;
Time series explanation

1 Introduction

A time series is a series of data points labelled with a temporal stamp. If each
data point contains a single time-dependent value, then the time series is univari-
ate; otherwise, it is called multivariate. Time series arise in multiple contexts, for
example, medical patients, who can be considered as time series in which every
interesting medical value varies over time (e.g., fever, pain level, blood pressure),
or environmental monitoring stations, which can also be considered time series,
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in which atmospheric values change over time (e.g., pressure, concentration of
chemicals).

There are two main problems associated with single time series: time series
explanation and time series forecasting; explanation is a necessary step for fore-
casting, but the latter does not necessarily follow the former in every application
and context. Explaining a time series aims to construct a (possibly interpretable)
model that explains the present values; forecasting a time series implies testing
and using the model to predict future values. In the univariate case, a model of
a time series is based uniquely on the values of the series itself. For example,
a forecasting model for the stock price of a certain company would allow one
to predict the future price (e.g., in the next two days) based on the prices of
the same company (e.g., the price in each day of the past week). The simplest
univariate forecasting approach is commonly known as Simple Moving Average
(SMA) model: in essence, a simple moving average is calculated over the time
series by considering its last n values, used to perform a smoothing process of the
series, and then used to forecast for the next value. Although such an approach
has some clear limitations, it is still useful to establish a baseline, against which
to compare more complex solutions [3]. Based on the observation that the most
recent values may be more indicative of a future trend than older ones, Simple
Ezxponential Smoothing (SES) models consider a weighted average over the last
n observations, assigning exponentially decreasing weights as they get older [3].
Other than this first, simple type of smoothing, it is also worth mentioning Holt’s
Ezponential Smoothing (HES) models [9], which can consider an increasing or
decreasing trend in the time series, and Holt- Winters’ Ezponential Smoothing
(HWES) [14] models, that can take into account seasonality effects. Technically,
exponential smoothing belongs to the broader AutoRegressive Integrated Mov-
ing Average (ARIMA) family [11], which includes models that can be fitted to
time series data either to better understand the data itself or to predict future
points in the series, when it shows evidence of non-stationarity. Specifically, the
methods that are capable of dealing with periodical variations in the time series
fall under the umbrella of Seasonal ARIMA [3]. Relevant to this study is also
the algorithm presented in [1], in which a multi-objective evolutionary method is
employed for the optimization of the parameters of an ARIMA-like model. The
common aspect among all univariate models is that they make a prediction based
on a weighted linear sum of recent past observations; in the multivariate case, in-
stead, one identifies one dependent variable (time series), and aims to construct
a model to explain and/or predict its future values based on the past and present
values of other, independent variables (which themselves are time series): this is
usually done with lagged models. While ARIMA-type models emerge from com-
putational statistics, lagged models belong to the machine learning domain, and,
in general, they consist of creating lagged version of (a subset of) the indepen-
dent variable to construct a larger data set that is then used to create a model
of the dependent time series using classical, propositional algorithms (such as,
for example, linear regression). Among the available packages to this purpose
we mention WEKA’s timeseriesForecasting [7]. Other approaches to multivari-
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ate time series modelling include Recurrent Neural Networks (RNNs)[8], which
have been used for time series forecasting with promising results, but at the ex-
penses of the interpretability of the resulting model; in some recent works, neural
networks for time series forecasting have been trained and optimized with multi-
objective evolutionary algorithms. Autoregressive techniques can be combined
with lagged methodologies; in the simplest case, it is sufficient to create, in a
lagged extended data set, one or more lagged version(s) the dependent variable
as well, whose values are combined with those of the independent ones.

The main limitation of multivariate lagged models is precisely the choice of
lag variables and lag amounts. In some cases, it is difficult to foresee the neces-
sary lag amount. Moreover, uncontrolled lag variable creation may lead to very
large data bases which, when treated with propositional algorithms, may lead to
poorer results, as unnecessary lag variables become noise. Finally, even if lagged
variables increase the quality of the result, the obtained function may not be
easy to interpret. In this work we present a very simple optimization schema
that avoids the above problems for time series explanation using regression.
The distinctive characteristics of our method are: (i) it is a wrapper algorithm
based on well-known and easy-to-implement components, (i) it may use any
black box regression algorithm, and (%) it includes an intrinsic feature selection
mechanism. Our algorithm is an instantiation of the more general dynamic pre-
processing mechanism, which generalizes the concept of wrapper by allowing the
(possibly simultaneous) optimization of several aspects of data.

We test our model on a real data set taken from a larger project that aims
to construct an explanation and prediction model for the study of atmospheric
pollution in the city of Wroctaw (Poland).

2 Lag Regression

2.1 Mathematical Formulation

Regression is a common statistical data analysis technique, used to determine
the extent to which there is a mathematical relationship between a dependent
variable and one or more independent variables, and its applications range from
biology, to agriculture, to food and water resources optimization (see, e.g. [2, 12,
13]. Regression can be univariate, when there is only one independent variable,
or multivariate, otherwise. Moreover, regression is usually linear, that is, it is
usually the case that we search for a linear relationship; it becomes non-linear,
when we search for any function (whose form is unknown) that links the inde-
pendent variable(s) and the dependent one. Linear regression is not only the
most common type, but it is also the one that presents the clearest mathemat-
ical formalization. In the following, and in our experiments as well, we assume
that the relations that we search for are, in fact, linear; the entire optimization
model, however, works for any type of regression.
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Given a data set A with n independent variables A1, ..., A, and one observed
variable B, solving a linear regression problem consists of finding a vector ¢ =
(cos¢1y---,¢n) of n+ 1 parameters (or coefficients) so that the equation:

B:c0+Zci~Ai+e, (1)

i=1

where € is a random value, is satisfied. Starting from a data set of observations:

a1 a2 ... AQin b1
21 A9 ... G, b

A= 21 22 2n U2 (2)
Am1 Am2 - - Cmp b

the regression problem is usually solved by suitably estimating ¢ so that, for each
I<j<m:

n
bj"&iCo-‘rZCi-CLij—f—E. (3)
i=1
The performance of such an estimation can be measured in several (standard)
ways, such as correlation, covariance, mean squared error, among others. When
A is a multivariate time series, composed by n independent and one dependent
time series, then data are temporally ordered and associated to a timestamp:

t1 a1 a2 ... a by
to asy G99 ... as, b

A= 2 21 22 2n U2 (4)
tm Am1 AGm2 - - - Amn bm

Using linear regression to explain B, then, entails that, instead of (1), we are
finding optimal coefficients for:

B(t) :Co-i-ici'Ai(t)—Fe, (5)

because we aim to explain B at a certain point in time ¢ using the values
A1(t), ..., An().

Lag (linear) regression consists of solving a more general equation, whose
formulation is:

n  Pi
B(t)=co+ Y > cin-Ai(t—k)+e (6)
i=1 k=0
In other words, we use the value of each independent variable A; not only at time
t, but also at time t — 1,¢ — 2,...,t — p;, to explain B at time t; each A;(t — k)
is associated to a coeflicient ¢; ;, which must be estimated, along with each m;.
We work under the additional assumption that, for each i, there is precisely one



Multi-Objective Evolutionary Optimization for Lag Regression 5

lag k, denoted k;, such that A;(t —k;) influences the output more than any other
lag. Our purpose is to devise an optimization schema that allows one to estimate
both the value k; and the coefficient ¢; that corresponds to it, to obtain the best
solution to the following, simpler, equation:

2.2 Applications Scenarios

Multivariate time series emerge in many real contexts. Consider, for example, the
medical context. Each patient can be described, during the observation period,
by collecting all relevant numerical values of his/her indicators: blood pressure,
temperature, body weight, amount of all drugs that are administered to him/her,
and so on. In this way, a patient becomes a multivariate time series. Now, if
we identify one particular variable of interest (e.g., the temperature), we can
approach the problem of explaining its behaviour using the values of the other
variables, as in (5). Intuitively, however, changes in values (such as the amount
of a certain drug that it is administered) may have a delayed effect on the
temperature; thus, it is possible that the behaviour of the temperature is, in
actuality, better explained by an instance of (6).

As a different example, consider an environmental study scenario. In it, we
have a number of observation points, let us say underground water wells, from
which, at given times, water samples are extracted. Each sample is analyzed
from the chemical-physical point of view, and the amount of interesting elements
is registered. Since each observation point is sampled many times during the
observation period, it may be seen as a multivariate time series. As before,
one particular characteristics of the samples may be of interest, for example
the amount of some pollutant, and we may want to search, if it exists, for the
mathematical relationship that links the amount of pollutant to the amount of
the other values of each sample, possibly towards a geological explanation of its
presence. In some cases, the presence of chemical elements in the water has a
delayed effect on the concentration of pollutant(s), so that such a mathematical
relation may be modelled by an instance of (7).

3 An Optimization Model for Lag Regression

A multi-objective optimization problem (see, e.g. [4]) can be formally defined as
the optimization problem of simultaneously minimizing (or maximizing) a set of
k arbitrary functions:

min / max f1(Z)
min / max f(Z)

.rrlli.n/max fe(@),
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where Z is a vector of decision variables. A multi-objective optimization problem
can be continuous or discrete (combinatorial). In combinatorial problems, we look
for objects from a countably (in)finite set, typically integers, permutations, or
graphs. Maximization and minimization problems can be reduced to each other,
so that it is sufficient to consider one type only. A set F of solutions is non
dominated (or Pareto optimal) if and only if for each Z € F, there exists no
g € F such that (i) there exists i (1 < ¢ < n) that f; (§) improves f; (), and
(i) for every j, (1 < j < n, j #1), f; (Z) does not improve f; (). In other words,
a solution T dominates a solution g if and only if Z is better than g in at least
one objective, and it is not worse than ¢ in the remaining objectives. We say
that T is non-dominated if and only if there is not other solution that dominates
it. The set of non dominated solutions from F is called Pareto front.

Consider, as before, a multi-variate time series A;(t),..., A, (t), B(t) with m
distinct observations, and a vector £ = (x1,...,x,) of decision variables with
domain [0,...,m]. Let M be the maximum of Z (called mazimum lag of Z). The
vector T entails a lag transformation of (4) into a new data set with m — M
observations, in which the feature (time series) A; is lagged (i.e., delayed) of the
amount x;:

M O(M—z1)1 A(M-z5)2 -+ OM-z)n  bOM
A7) = M4l A(M41)—21)1 O(MA1)—a1)2 -+ G(M+1)—a)n OM+1 )

bn—M Q((m—M)—z1)1 G((m—M)—21)2 - - - A(m—M)—z1)n Om—M

The resulting data set can be used to train a classical linear regression algorithm,
with the effect of learning a model as in (6). This model can be used to explain
the time series B(t); a more complex mechanism would be required to optimize
the coefficients in order to perform forecasting, also. Let f1(Z) in (8) be any per-
formance measure of the learned model after the transformation Z; depending
on the particular application, we can instantiate fs, f3,... as necessary, in order
to optimize not only the performance of the model but also any other character-
istics. For example, we can slightly improve our original formulation by allowing
each z; to take values in [—1,0,...,m], and interpret x; = —1 as discarding
completely the i-th column (so to embed a feature selection mechanism). In this
case we can instantiate fo() as:

= [0ifa# -1
CARD(z) = Z { 1 otherwise (10)

i=1

In this case (8) becomes:

min / max f;(Z
{ min /CARD(ag)) (11)

It is worth observing that (11) could be improved by letting Z spanning over
B as well (in that case, the value —1 would be forbidden in B, obviously). Solving
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the problem in this version, would entail searching for a linear equation similar
to (6), but with the addition of terms of the type B(t — k) (k > 1), in the spirit
of auto regressive models. The main drawback of such a choice is the reduced
interpretability of the resulting explanation model, which would include past
values of the independent variable as part of the explanation of the current one.
For this reason, in this first proposal we did not include this feature.

4 Implementation and Test

4.1 Evolutionary Algorithms

Multi-objective evolutionary algorithms are known to be particularly suitable
to perform multi-objective optimization, as they search for multiple optimal
solutions in parallel. In this experiment, in order to solve (11) we have chosen the
well-known NSGA-IT (Non-dominated Sorted Genetic Algorithm) [5] algorithm,
which is available as open-source from the suite jMetal [6]. NGSA-II is an elitist
Pareto-based multi-objective evolutionary algorithm that employs a strategy
with a binary tournament selection and a rank-crowding better function, where
the rank of an individual in a population is the non-domination level of the
individual in the whole population. As black box linear regression algorithm, we
used the class linearRegression from the open-source learning suite Weka [15],
run in 5-fold cross-validation mode, with standard parameters and no embedded
feature selection. We have represented each individual solution Z as an array:

L1, L2y--,Tn

with values in [—1,...,m], where m is the number of observations of the data
set. As performance measure for the underlying linear regression algorithm we
used:

f1(@) =1—|CORR(z,7,Z2)]

where CORR measures the correlation between the stochastic variable obtained
by the observations and the linear variable obtained by linearRegression on the
data set after the transformation indicated by Z, as explained in the previous
section. The correlation varies between —1 (perfect negative correlation) to 1
(perfect positive correlation), being 0 the value that represents no correlation
at all. Thus, we have designed the evolutionary computation to optimize the
correlation only. We have used the standard mutation and crossover operations
(suitably adapted to correctly deal with our solution representation), with prob-
abilities (tuned with an initial experiment) of 0.3 and 0.7, respectively. Our
population is composed by 100 individuals; we have set the algorithm for a total
of 1000 evaluations in a single execution, and launched 5 independent executions.
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Table 1. Features in the original data set.

feature description
air_temp hourly recording of the air temperature
solar_rad hourly amount of solar irradiation

wind_speed |hourly recording of the wind speed

rel_humidity |lhourly recording of the relative air humidity

air_pressure |hourly recording of the air pressure

traffic hourly sum of vehicle numbers at the considered intersection
NO2_conc |hourly recording of the NO2 concentration level

NOX_conc |hourly recording of the NOx concentration level
PM25_conc |hourly recording of the PM> 5 concentration level

Table 2. Results of the experiment.

correlation coefficient lags
original (c.v.)|lagged (c.v)|optim. (c.v)|optim. (test) N
0.6250 0.7749 0.7180 0.7378 14,7,2,10,0,0
0.6251 0.7752 0.7184 0.7382 14,0,2,8,10,0
0.6250 0.7752 0.7187 0.7297 21,5,2,9,23,0
0.6251 0.7748 0.7208 0.7363 20,0,2,7,19,0
0.6252 0.7750 0.7039 0.7243 21,0,3,8,7,0

4.2 Data Origin and Preparation

The first environmental study that relates air pollution and meteorological vari-
ables and traffic conditions in Wroclaw (Poland) is presented in [10]. The overall
goal of the study was determining how the levels of specific pollutants, namely,
NOsy, NOx, and PMs, 5, are related to the values of other attributes, such as
weather conditions and traffic intensity, with the purpose of building an expla-
nation model. In it, the value of a pollutant at a certain time instant is linked
to the value of the predictor attributes from the same time instant. In [10], a
non-linear, non-interpretable, atemporal model has been used; the fitting ability
of a non-interpretable model compensates, partially, for not using the historical
values of the predictor, giving rise to a relatively good explanation model. The
considered data set spans over the years 2015-2017, and it records information at
one-hour granularity. The structure of reduced data set, obtained from the orig-
inal one after eliminating the explicit temporal attributes (by interpreting data
as a time series, the notion of time becomes implicit), and the categorical ones,
can be seen in Tab. 1. The attribute traffic refers to the number of vehicle cross-
ings recorded at a large intersection equipped with a traffic flow measurement
system. The air quality information has been recorded by a nearby measurement
station.

In this experiment we considered only one pollutant, namely NOs, and we
interpreted the data as a multivariate time series. For efficiency reasons, we
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Table 3. Coeflicients of the linear functions (best individuals).

air_temp|solar_rad|wind_speed|rel_humidity |air_pressure|traffic
-0.4037 [12.6468 |-4.5834 -0.3840 -0.0844 0.0083
-0.2362  |-6.3024  |-4.5848 -0.4956 0.0615 0.0089
-0.3769  |9.9758 -4.5378 -0.4206 0.067 0.0085
-0.1853  |-6.3731 -4.6274 -0.4733 0.1049 0.0087
-0.2011  |-7.0963  |-4.2235 -0.5036 0.0502 0.0093

considered only the 10% of the entire data set, and we have split it into a training
and test set, operating the optimization on the former one only. We have used the
training set in all 5 executions of the optimization model (11), and selected the
best (in terms of correlation) element from each final population. Our maximum
lag allowed in the optimization model is 24 hours.

4.3 Results

The first reference result is the correlation that can be obtained by training a
linearRegression model on the training data with standard parameters and no
embedded feature selection, and executing on the test data: 0.6652. Also, we
consider the correlation coefficients on the training data only, in 5 experiments,
varying the seed (1 to 5), in 5-folds cross validation, again in the original con-
figuration, as shown in Tab. 2, leftmost column. Even if our data are temporal,
learning (as base reference) an atemporal model (such as (5)) makes sense in
some problems. Indeed it may be the case that the delayed effect of the inde-
pendent variables on the dependent one falls below the temporal granularity of
the data (for us, one hour), and that, at the same time, the dependent variable
presents a quasi-constant behaviour in such a small interval. Should that be the
case, a model such as (5) would have a relatively high performance (that is, it
would be an acceptable approximation of the physical reality); in our case this
is not true, which justifies the resort to temporal lag regression.

The second reference results emerges from creating a lagged version of the
data set in the standard way, using WEKA’s TSLagMaker. Because of the di-
mensions of the problem, we created a lagged version of each variable (excluding
the class) up to 12 hours only, for a total of 79 attributes. The correlation coeffi-
cient that resulted from training a linearRegression model on the lagged version
of the training set, and executing it on the lagged version of the test set is
0.8066, which is quite high. Unfortunately, observing the resulting model, the
interpretation limits of this technique emerge clearly. For example, the resulting
function shows a positive factor for the temperature at the same time, 4,5,6,7,8,
and 10 hours before the observation, but negative for the temperature 1,2,3,9,11,
and 12 hours before the observation. A similar behaviour is shown in almost all
other variables. This makes it very hard to identify, if it exists, a cause-effect
phenomenon, on top of the fact that the expert should be able to interpret a
79-variables linear function to extract a meaningful environmental model. An
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intermediate step of feature selection does not solve the interpretation problem;
as a matter of fact, the effect of feature selection is that of selecting the best
features (with an absolute measure, in the case of filters, and relatively to a
learning task, in the case of wrappers), and, again, selecting, for example, the
temperature at 4, 6, and 10 hours before the observation would make it very
hard to construct a concrete explanation model. The results in cross-validation
of the training data only, in the same conditions as before, are shown in Tab. 2,
second column.

In Tab. 2, third column we can see the correlation coefficient of the best
individual for each of the five execution, in cross-validation mode (that is, on
training data only). Compared with those in the first column, it is possible
to appreciate an improvement of about 8 points, in average. When each best
individual is executed on the test set, we obtain the results shown in the fourth
column, which again, compared with the original training-test experiment, show
an average improvement of about 7 points. The loss in correlation coefficient of
these individuals with respect to the extended (lagged) version of the data set
is compensated by the intrinsic greater interpretability of the former over the
latter.

4.4 Discussion

Observe, first, the coefficients of the linear functions that correspond to each
individual (Tab. 3): as for five variables out of six, the coefficients present the
same sign and a very similar module across the individuals (this is an indication
that our proposed models are stable), and when both positive and negative
coefficient appear (that is, in the variable that measures the solar radiation),
the change coincides with a change in the amount of lag, maybe indicating two
different physical processes.

Let us focus now on the chosen lags in each individual. Observe, to start with,
that the variable that measures the hourly traffic has always lag zero: in other
words, all models coincide that the amount of NOs is influenced by the amount
of (car) traffic with no delay. This could be explained by the small distance
between the point of pollution concentration measurement and the intersection
where the main emission source (the cars) is located. Similarly, four out of five
models agree that the speed of the wind influences the amount of pollutant with
two hours of delay. This may be due to the distance between the meteorological
station and the intersection. In Wroctaw, North-West winds prevails; therefore,
the wind generally blows from the meteorological station towards the intersec-
tion. The distance, in a straight line, is about 10km and the average wind speed
is 3m/s. Taking into account the porosity of the city development area and the
time needed to evacuate pollution from the built-up area around the intersec-
tion, a delay of about 2 hours in the reaction of pollution concentration to the
measured wind speed is reasonable. Moreover, observe that in three out of five
models the lag for the solar radiation is zero, with negative coefficient in the cor-
responding equation, while the remaining two is between 5 and 7, with positive



Multi-Objective Evolutionary Optimization for Lag Regression 11

coefficient. This opens the possibility of two different explanation models: for
negative correlation (increasing solar radiation corresponding to a decrease in
NOy with no delay), the physical process may be related to an intensification of
photochemical reactions, while positive correlations take place with 5 to 7 hours
of delay, and may indicate the reverse process.

In conclusion, our learning model produces individuals that are easier to
interpret, because they identify the most relevant delays for the explanation
task, so that devising a meaningful environmental model becomes possible.

5 Conclusions

In this paper we have proposed, and tested, a novel optimization model for
temporal lag regression. Lag variables can be very important for the task of
single multivariate time series explanation and prediction, as they allow a model
to take into account possible delays in the effect of an independent variable
on the dependent one. The standard approach for lag variable using consists
of creating predetermined lagged artificial variables, and then using standard
learning techniques on the obtained, extended data set; in a sense, this can
be seen as a brute force approach. We proposed in this work an optimization
model in which the amount of lag for each variable is decided dynamically, and
we implemented it with a multi-objective evolutionary algorithm. Our learning
model, that implicitly includes a feature selection mechanism, chooses the best
lag for each variable, effectively providing a more interpretable, yet accurate
enough, explanation model for a multivariate time series. Our schema, with
minimal adaptations, can be used for multivariate time series forecasting as
well. We tested our model on real data taken from a larger project that aims
to construct an explanation model for the study of atmospheric pollution in the
city of Wroctaw (Poland).

Our model can be improved in several ways. In certain applications, for ex-
ample, the same independent variable can influence the dependent one with a
prolonged delay that spans more than one observation. A possible generaliza-
tion, therefore, would aim to optimize the number of consecutive observations
to take into account, and their algebraic combinations.
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