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via Machiavelli 30

44121 Ferrara, Italy

Diego Pallara

Dip. di Matematica e Fisica “Ennio De Giorgi”, Università del Salento
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Abstract. We define and study the fractional Laplacian and the fractional

perimeter of a set in Carnot groups and we compare the perimeter with the

asymptotic behaviour of the fractional heat semigroup.

1. Introduction. The aim of this paper is to define the fractional perimeter of a
set in Carnot groups and to investigate some relations between fractional perimeter
and the asymptotic behaviour of the fractional heat semigroup (i.e., the semigroup
generated by the fractional Laplacian in L2) as t→ 0. Our results generalise those
in [21, 2, 7, 1], where semigroups generated by local elliptic operators are considered.
We discuss in an informal way the case of Rn in this introduction. The proofs are
given in the more general case of Carnot groups.
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2 FRACTIONAL PERIMETER AND HEAT SEMI-GROUP

In the whole paper α is a parameter in (0, 1). We start by defining the Gagliardo
seminorm of f : Rn → R

[f ]pWα,p =

∫
Rn×Rn

|f(x)− f(y)|p

|x− y|n+pα
dxdy, 1 ≤ p <∞, (1)

the fractional perimeter of a Borel set E ⊂ Rn is

Pα(E) =
1

2
[χE ]2Wα/2,2 =

∫
E×Ec

1

|x− y|n+α
dxdy, (2)

where χE is the characteristic function of E and Ec = Rn \ E, and the fractional
Laplacian is

(−∆)α =
1

Γ(−α)

∫ ∞
0

(
et∆ − Id

) dt

t1+α
, Γ(−α) = −Γ(1− α)

α
, (3)

where et∆ is the classical heat semigroup generated by ∆. As usual in functional
calculus (see [29]), definition (3) is motivated by the elementary equality

λα =
1

Γ(−α)

∫ ∞
0

(
e−λt − 1

) dt

t1+α
, λ > 0.

Another way of defining the fractional Laplacian is via the Fourier transform,
̂(−∆)αf = |ξ|2αf̂ , but the inversion formula (up to a constant depending on n

and α) leads formally to a convolution against the singular kernel |x|−(n+2α), the
inverse Fourier transform of the symbol |ξ|2α. Nevertheless, it is possible to put the
fractional Laplacian into a classical PDE framework. Indeed, according to [9, 29],
the nonlocal operator (−∆)α can be recovered from a boundary value problem con-
cerning a (degenerate) local operator as follows. Let f ∈ dom((−∆)α). Consider
the extension problem{

div(y1−2α∇u) = 0 in Rn × (0,+∞)
u(x, 0) = f in Rn, (4)

which is the Euler equation of the functional

J(u) =

∫
Rn×R+

(
|Du|2 + |∂yu|2

)
y1−2α dxdy, (5)

u in the space W 1,2(Rn × R+, dx⊗ y1−2αdy) defined by

W 1,2(Rn×R+, dx⊗y1−2αdy) =
{
u ∈W 1,2

loc (Rn×R+) :

∫
Rn×R+

(
|u|2 + |Du|2 + |∂yu|2

)
y1−2α dxdy <∞

}
,

under the constraint u(·, 0) = f(·). A solution of (4) is given by the Poisson type
formula

u(x, y) =
y2α

4αΓ(α)

∫ ∞
0

et∆f(x)e−y
2/4t dt

t1+α
(6)

and the following limit relation

lim
y→0+

y1−2α∂yu(x, y) = −2αΓ(−α)

4αΓ(α)
(−∆)αf(x) (7)

holds in L2(Rn). From (6), computing the derivative in (7) gives

(−∆)αf(x) = C(n, α) P.V.

∫
Rn

f(x)− f(y)

|x− y|n+2α
dy, (8)
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where the integral has to be understood in the usual principal value sense, i.e.,

P.V.

∫
Rn

f(x)− f(y)

|x− y|n+2α
dy = lim

ε→0

∫
(B(x,ε))c

f(x)− f(y)

|x− y|n+2α
dy

and the constant C(n, α) is

C(n, α) =
4αΓ(n/2 + α)

πn/2Γ(−α)
.

Integrating (8) the following equalities easily follow

‖(−∆)α/2f‖2L2(Rn) =

∫
Rn
f(−∆)αf dx = C(n, α)

∫
Rn
f(x)

∫
Rn

f(x)− f(y)

|x− y|n+2α
dydx

(9)

=
C(n, α)

2

∫
Rn

∫
Rn

|f(x)− f(y)|2

|x− y|n+2α
dydx =

C(n, α)

2
[f ]2Wα,2 .

Multiplying the differential equation in (4) by its solution u and integrating by parts
leads to

[f ]2Wα,2 = 2C(n, α)−1

∫
Rn
f(−∆)αf dx (10)

=
Γ(α)πn/2

αΓ(n/2 + α)
inf
{
J(u), u ∈W 1,2(Rn × R+, dx⊗ y1−2αdy), u(·, 0) = f(·)

}
,

so that the Gagliardo seminorm of f comes from a minimum problem. We refer to
[18] for much more on the subject. Now, it is time for the fractional heat semigroup
to come into play. Let hα(t, z) be the fundamental solution of the fractional heat
equation in R+ × Rn

ut + (−∆)αu = 0. (11)

Setting h̃α(z) = hα(1, z), hα is known to satisfy∫
Rn
hα(t, z) dz = 1 ∀ t > 0, hα(t, z) =

1

tn/2α
h̃α(t−1/2αz) (12)

and

lim
t→0

hα(t, x)

t
=

Cn,α
|x|n+2α

, (13)

see [3, Theorem 2.1], where the exact value of the constant is given. The fractional
heat semigroup that gives the solution of (11) with initial datum f is given by

e−t(−∆)αf(x) =

∫
Rn
hα(t, y)f(x− y) dy, f ∈ L1(Rn),

and, since the kernel hα has integral one, we have

e−t(−∆)αf(x)− f(x) =

∫
Rn
hα(t, y)

(
f(x− y)− f(x)

)
dy.

Recalling (9), we may consider the following quantity

Qαt (f) =

∫
Rn×Rn

hα(t, y)
(
f(x− y)− f(x)

)2

dx dy.

Using the previous asymptotics on the fractional heat kernel allows us to get

lim
t→0

Qαt (f)

t
= Cn,α[f ]2Wα,2(Rn).
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Hence we have that f ∈Wα,2(Rn) if and only if

lim
t→0

Qαt (f)

t
<∞.

Let us mention that similar results have been obtained in a stochastic analysis
framework in [12].

The starting point of our investigation is the remark that all the previous relations
between the fractional seminorms and perimeters on one hand and the fractional
heat semigroups on the other rely on the asymptotic behaviour of the fundamental
solution hα given in (13) and on the asymptotic behaviour of the kernel |z|−(n+2α)

, which appears in (1) and elsewhere, as z → 0. Therefore, we were wondering
whether similar computations can be done when suitable kernels exhibiting the
same asymptotic behaviour are available. This is possible in Carnot groups, even
though a limit relation as (13) seems not to be available and it has to be replaced
by a two-sides estimate, see Section 3.

Notation. Henceforth, we denote by c all the constants that depend only on α and
the dimension of the space. The value of c can vary from line to line.

2. Preliminary results. A connected and simply connected stratified nilpotent
Lie group (G, ·) is said to be a Carnot group of step k if its Lie algebra g admits a
step k stratification, i.e., there exist linear subspaces V1, ..., Vk such that

g = V1 ⊕ ...⊕ Vk, [V1, Vi] = Vi+1, Vk 6= {0}, Vi = {0} if i > k, (2.1)

where [V1, Vi] is the subspace of g generated by the commutators [X,Y ] with X ∈ V1

and Y ∈ Vi.
In the last few years, Carnot groups have been largely studied in several respects,

such as differential geometry [10], subelliptic differential equations [4, 17, 16, 27],
complex variables [28].

For a general introduction to Carnot groups from the point of view of the present
paper and for further examples, we refer, e.g., to [4, 17, 28].

Set mi = dim(Vi), for i = 1, . . . , k and hi = m1 + · · ·+mi, so that hk = n. For
sake of simplicity, we write also h0 = 0, m := m1. We denote by Q the homogeneous
dimension of G, i.e., we set

Q :=

k∑
i=1

idim(Vi).

We choose now a basis e1, . . . , en of Rn adapted to the stratification of g, i.e.,
such that ehj−1+1, . . . , ehj is a basis of Vj for each j = 1, . . . , k. Moreover, let
X = {X1, . . . , Xn} be the family of left invariant vector fields such that Xi(0) = ei,
i = 1, . . . , n.

The sub-bundle of the tangent bundle TG that is spanned by the vector fields
X1, . . . , Xm plays a particularly important role in the theory, it is called the hori-
zontal bundle HG; the fibers of HG are

HxG = span{X1(x), . . . , Xm(x)}, x ∈ G.

We can endow each fiber of HG with an inner product 〈·, ·〉 and with a norm | · | that
make the basis X1(x), . . . , Xm(x) an orthonormal basis. The sections of HG are
called horizontal sections and a vector of HxG a horizontal vector. Each horizontal
section is identified by its canonical coordinates with respect to this moving frame
X1(x), . . . , Xm(x). This way, a horizontal section φ is identified with a function
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φ = (φ1, . . . , φm) : Rn → Rm. For any x ∈ G, the (left) translation τx : G → G is
defined as

τxz = x · z.
For any λ > 0, the dilation δλ : G→ G, is defined as

δλ(x1, ..., xn) = (λξ1, . . . , λ
kξk), (2.2)

where x = (ξ1, . . . , ξk) ∈ Rm1 × . . .× Rmk ≡ G.
The Haar measure of G = (Rn, ·) is the Lebesgue measure in Rn. If A ⊂ G is

Lebesgue measurable, we write |A| to denote its Lebesgue measure.
Once an orthonormal basis X1, . . . , Xm of the horizontal layer is fixed, we define,

for any function f : G→ R for which the partial derivativesXjf exist, the horizontal
gradient of f , denoted by ∇Gf , as the horizontal section

∇Gf :=

m∑
i=1

(Xif)Xi,

whose coordinates are (X1f, ...,Xmf).Given X1, . . . , Xm, we denote by L the asso-
ciated positive sub-Laplacian, namely

L := −
m∑
j=1

X2
j .

Let ‖ · ‖ : G → [0,∞) denote a symmetric homogeneous norm on G [4]. Since any
two continuous homogeneous norm are equivalent [4], from now on we denote by
‖ ·‖ any one of them; all the estimates that we give are then the same up to changes
in the constants. We denote by

B(x, r) = {y ∈ G : ‖y−1 · x‖ < r}

the ball centred at x ∈ G with radius r > 0 and by B(r) = B(0, r).

2.1. Heat kernels and norms. Consider Ĝ := R × G as a Carnot group, where
the group operation in the first coordinate is the usual addition, the dilations are

δ̂λ(t, x) = (λ2t, δλ(x)), and its Lie algebra ĝ admits the stratification

ĝ = V̂1 ⊕ V2 ⊕ · · · ⊕ Vk, (2.3)

where V̂1 = span {T̂ , V1} and T̂ = ∂t. Since the basis {X1, . . . , Xm} of V1 has been

already fixed once and for all, the associated basis for V̂1 is {T̂ ,X1, . . . , Xm}. The

heat operator in Ĝ:

H := ∂t + L
is translation invariant, homogeneous of degree 2, i.e., H(u ◦ δ̂λ) = λ2Hu, and
hypoelliptic. It is well known (see [17]) that H admits a fundamental solution h,
usually called the heat kernel in G. In the following theorem we collect the main
properties of h, the proofs can be found in [17, 4].

Theorem 2.1. There exists a function h defined in Ĝ such that:

(i) h ∈ C∞(Ĝ \ {(0, 0)});
(ii) h(λ2t, δλ(x)) = λ−Qh(t, x) for every t > 0, x ∈ G and λ > 0;
(iii) h(t, x) = 0 for every t < 0 and

∫
G h(t, x)dx = 1 for every t > 0;

(iv) h(t, x) = h(t, x−1) for every t > 0 and x ∈ G;
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(v) there exists c > 0 such that for every x ∈ G and t > 0

c−1t−Q/2exp
(
− ‖x‖

2)

c−1t

)
≤ h(x, t) ≤ ct−Q/2exp

(
− ‖x‖

2

ct

)
. (2.4)

As in the Euclidean case, we can introduce the heat semigroup by

e−tLf(x) :=

∫
G
h(t, y−1 · x)f(y)dy, f ∈ L1(G). (2.5)

Then for every f ∈ L1(G) and t > 0, we have e−tLf ∈ C∞(G), the function
v(t, x) := e−tLf(x) solves Hv = 0 in (0,∞) × G, v(t, x) → f(x) strongly in L1(G)
as t→ 0 and −L is the infinitesimal generator of e−tL. As proved in [5, Proposition
3.2.1], the heat semigroup preserves one-sided bounds, namely

f ≤ C a.e. in G =⇒ e−tLf ≤ C a.e. in G, ∀t ≥ 0. (2.6)

As in [15], for every α > 0 we define

R̃α(x) := − α

2Γ(−α/2)

∫ ∞
0

t−
α
2−1h(t, x)dt, Rα(x) =

1

Γ(α/2)

∫ ∞
0

t
α
2−1h(t, x)dt.

(2.7)

As pointed out in [15], R̃α and Rα are smooth functions in G \ {0} and LR2−α =

R̃−α. In addition, R̃α is positive and homogeneous of degree −α − Q. Moreover,
using (iv) and (v) in Theorem 2.1 we get

R̃α(x) = R̃α(x−1), (2.8)

and

c−1‖x‖−α−Q ≤ R̃α(x) ≤ c‖x‖−α−Q ∀x ∈ G. (2.9)

We define

‖x‖α :=
(
R̃α(x)

)− 1
α+Q

, (2.10)

which turns out to be a homogeneous symmetric norm, smooth out of the origin.
Using (2.9), we find a constant c > 0 depending only on α such that for every x ∈ G

c−1‖x‖ ≤ ‖x‖α ≤ c‖x‖.

Remark 1. If (G, ·) = (Rn,+) then for every α > 0

R̃α(x) = − α

2Γ(−α/2)

1

(4π)
n
2

∫ ∞
0

t−α/2−n/2−1e−
|x|2
4t dt.

Changing variables we obtain:

R̃α(x) = − α

2Γ(−α/2)

4
α
2 +n

2

(4π)
n
2
|x|−α−n

∫ ∞
0

y
1+α
2 e−ydy = − α

2Γ(−α/2)

4
α
2 +n

2

(4π)
n
2

Γ
(α+ n

2

)
|x|−α−n.

Setting c := − α
2Γ(−α/2)

4
α
2

π
n
2

Γ
(
α+n

2

)
, we get

R̃α(x) = c
1

|x|n+α
and ‖x‖α = c−

1
n+α |x|.
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2.2. Fractional Sobolev Spaces. The theory of fractional Besov and Sobolev
spaces in Carnot groups is well developed and is presented in [16], [26]. Let α ∈ (0, 1)
and p ≥ 1. In analogy with the Euclidean case, we consider the fractional Gagliardo
seminorm in G defined by

[f ]pα,p;G :=

∫
G×G

|f(x)− f(y)|p

‖y−1 · x‖Q+αp
α

dxdy

and the corresponding norm defined by

‖f‖α,p;G :=
(
‖f‖pLp(G) + [f ]pα,p;G

)1/p
.

Let Wα,p(G) be the space of measurable functions f : G→ R such that ‖f‖α,p;G <
∞. Following [17] and [26] it is readily seen that (Wα,p(G), ‖ · ‖α,p;G) is a Banach
space and the Schwartz space S(G) is a subspace of Wα,p(G).

We can also define, for α ∈ (0, 1) and p ≥ 1 the space

Hα,p(G) := S(G)
‖·‖α,p;G

.

By the preceding discussion, Hα,p(G) is a Banach space. For G = Rn this space is
consistent with the usual fractional space Wα,p(Rn), see [8]. As in the Euclidean
case, we have the equality Wα,p(G) = Hα,p(G), see [16, Theorem (4.5)].

2.3. Fractional Laplacian. From now on, we deal only with the case p = 2, where
the theory of fractional perimeters is settled.

As L is a self-adjoint operator on L2(G), we can define the operator Lα :
W 2α,2(G) = D(Lα) ⊂ L2(G)→ L2(G) by functional calculus (see e.g. [30, §IX.11]
and [16, §3] for the present case) as in (3)

Lα =
1

Γ(−α)

∫ ∞
0

(
e−tL − Id

) dt

t1+α
. (2.11)

Notice that the operator Lα can be equivalently defined via the spectral resolution
{E(λ)} of L in L2(G),

Lα = c(α)

∫ ∞
0

λα dE(λ) (2.12)

for a suitable constant c(α).
Let us recall that on smooth functions Lα has a pointwise representation. In

view of (2.12), the proof of the following result is contained in [15, Theorem 3.11],
where the kernel is written with a different notation.

Proposition 1. For every u ∈ S(G) and α ∈ (0, 1) it holds

Lαu(x) = P.V.

∫
G

u(x)− u(y)

‖y−1 · x‖Q+2α
α

dy.

Since Lα is self-adjoint and Lα ◦ Lβ = Lα+β we immediately have

‖Lα2 f‖2L2(G) =

∫
G
f(x)Lαf(x)dx, ∀f ∈ S(G).

Remark 2. As for the Euclidean case (4), the equation Lαu(x) = f(x) in G is
related to the following elliptic degenerate problem divĜ(yβ∇Ĝv) = 0 in G× (0,+∞)

v(x, 0) = f in G× {0},
(2.13)

β = 1− 2α. Precisely, the following result has bee proved in [15].
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Theorem 2.2. Let u ∈ W 2α,2(G) be given, u ≥ 0 and Lαu = 0 in an open set
Ω ⊆ G. Let us define

v(·, y) := u ∗ PG(·, y) (2.14)

where PG(·, y) is as in [15, Theorem 4.4]. We denote by v̂ the function on Ĝ obtained
continuing v by parity across {y = 0}. Then,

(i) v̂ ≥ 0;

(ii) v̂ ∈W 1,2
G,loc(Ω̂, y

1−2αdx⊗ dy) where Ω̂ = Ω× (−1, 1);

(iii) v̂ is a weak solution of divĜ(y1−2α∇Ĝv) = 0 in Ω̂.

In the following proposition we show another expression of the fractional Lapla-
cian.

Proposition 2. If u ∈ S(G) then

Lαu(x) = −1

2

∫
G

u(x · y) + u(x · y−1)− 2u(x)

‖y‖Q+2α
α

dy, (2.15)

.

Proof. We proceed as in [14]. By definition,

Lαu(x) = −P.V.

∫
G

u(y)− u(x)

‖y−1 · x‖Q+2α
α

dy,

by choosing z := y−1x we get

Lαu(x) = −P.V.

∫
G

u(x · z−1)− u(x)

‖z‖Q+2α
α

dz. (2.16)

Moreover, by substituting w = z−1 and using (iv) in Theorem 2.1, we have

P.V.

∫
G

u(x · z−1)− u(x)

‖z‖Q+2α
α

dz = P.V.

∫
G

u(x · w)− u(x)

‖w−1‖Q+2α
α

dw

= P.V.

∫
G

u(x · w)− u(x)

‖w‖Q+2α
α

dw. (2.17)

Relabeling w = z and adding (2.16) and (2.17) we have

2Lαu(x) = −P.V.

∫
G

u(x · z−1) + u(x · z)− 2u(x)

‖z‖Q+2α
α

dz.

To conclude it suffices to prove that for every x ∈ G the map G : G→ R defined by

G(z) =
u(x · z−1) + u(x · z)− 2u(x)

‖z‖Q+2α
α

belongs to L1(G). In [15, Theorem 3.1] it is proved that for every x ∈ G the maps

G1 : G→ R

z 7→ u(x · z)− u(x)− ω(z) 〈∇Gu(x), πx(z)〉
‖z‖Q+2α

α

and

G2 : G→ R

z 7→
u(x · z−1)− u(x)− ω(z−1)

〈
∇Gu(x), πx(z−1)

〉
‖z‖Q+2α

α

,
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where πx denotes the orthogonal projection on HxG, belong to L1(G), where ω(x)
denotes the characteristic function of the ball {y ∈ G | ‖y−1 · x‖α ≤ 1}. By using
(iv) in Theorem 2.1 and the fact that ‖ · ‖α is a homogeneous norm we get

ω(z−1)
〈
∇Gu(x), πx(z−1

〉
‖z−1‖Q+2α

α

= −ω(z) 〈∇Gu(x), πx(z)〉
‖z‖Q+2α

α

therefore G = G1 +G2 ∈ L1(G).

Proposition 3. For any u ∈ S(G) the following statement holds:

lim
α→1−

(1− α)Lαu(x) = Lu(x), ∀x ∈ G.

Proof. Using the change of variables ξ = t1−α in (2.11) we get

(1− α)Lαu(x) =
1

Γ(−α)

∫ ∞
0

(e−ξ
1

1−α Lu(x)− u(x))ξ−
1

1−α dξ. (2.18)

Clearly, if 0 ≤ ξ < 1 then limα→1− ξ
1

1−α = 0. Since u ∈ S(G) then by [16, (ii) in
Theorem 3.1] (notice that D(G) is L∞-dense in S(G)) we have∥∥∥∥e−hLu− uh

+ Lu
∥∥∥∥
L∞(G)

→ 0 as h→ 0. (2.19)

Set c = 1/Γ(−α) = −α/Γ(1− α). We claim that for every x ∈ G

lim
α→1−

c

∫ 1

0

(e−ξ
1

1−α Lu(x)− u(x))ξ−
1

1−α dξ = Lu(x). (2.20)

Indeed, denoting by fα,x(ξ) := (e−ξ
1

1−α Lu(x)−u(x))ξ−
1

1−α and using (2.19) we get

fα,x(ξ)→ −Lu(x) ∀x ∈ G. (2.21)

Moreover,

|fα,x(ξ)| =
∣∣∣(e−ξ 1

1−α Lu(x)− u(x))ξ−
1

1−α

∣∣∣ =
∣∣∣ 1

ξ
1

1−α

∫ ξ
1

1−α

0

d

dτ
e−τLu(x)dτ

∣∣∣ (2.22)

=
∣∣∣ 1

ξ
1

1−α

∫ ξ
1

1−α

0

e−τLLu(x)dτ
∣∣∣ ≤ ‖Lu‖L∞(G),

where in the last inequality we used u ∈ S(G) and (2.6). Thus, (2.20) follows using
the definition of c, (2.21) and (2.22). Furthermore, using (2.6), we obtain

c

∫ ∞
1

|(e−ξ
1

1−α Lu(x)−u(x))|ξ−
1

1−α dξ ≤ 2c‖u‖L∞(G)

∫ ∞
1

ξ−
1

1−α dξ = − (1− α)

Γ(1− α)
‖u‖L∞(G)

and the thesis follows letting α→ 1−.

3. Fractional heat semigroup and perimeter. This section is devoted to the
presentation of our main results. After describing the relevant properties of the
fractional heat semigroup in G and of the related kernel, we define the fractional
perimeter and show their connections, as sketched in the Introduction.

We start by recalling a few properties of the semigroups generated by fractional
powers of generators of strongly continuous semigroup and refer to [30, §IX.11] for
more information and the missing proofs. To this aim, let {etA; t ≥ 0} be an
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equicontinuous semigroup of class C0 in a Banach space X, whose generator is the
operator A : D(A) ⊂ X → X. For σ > 0, t > 0, α ∈ (0, 1) we define the function

ft,α(λ) =


1

2πi

∫ σ+i∞

σ−i∞
ezλ−tz

α

dz, if λ > 0

0 if λ < 0.

We define {etAα ; t ≥ 0}, a new equicontinuous semigroup of class C0, as follows

etAαu =

∫ ∞
0

ft,α(s)esAu ds, u ∈ X. (3.1)

The infinitesimal generator Aα of etAα is the corresponding fractional power of the
generator of etA, i.e., Aα = −(−A)α, where (−A)α is defined as in (2.11). Moreover,
etAα is a holomorphic semigroup and a change of variable in the integral shows that

etAαu =

∫ ∞
0

f1,α(τ)eτt
1/αAu dτ. (3.2)

Let us come to the heat semigroup. In this case, Lα is defined in (2.11), its domain
is W 2α,2(G) and we may write

etL
α

u(x) =

∫ ∞
0

ft,α(s)

(∫
G
h(s, y−1 · x)u(y)dy

)
ds, u ∈ L2(G),

so that using (3.2) we have

etL
α

u(x) =

∫ ∞
0

eτt
1/αLu(x)f1,α(τ)dτ =

∫ ∞
0

(∫
G
h(τt1/α, y−1 · x)u(y)dy

)
f1,α(τ)dτ

=

∫
G

(∫ ∞
0

h(τt1/α, y−1 · x)f1,α(τ)dτ

)
u(y)dy.

Thus, the function

hα(t, y) =

∫ ∞
0

h(τt
1
α , y)f1,α(τ)dτ (3.3)

is the integral kernel of the semigroup etL
α

, i.e.,

etL
α

u(x) =

∫
G
hα(t, y−1x)u(y) dy, u ∈ L2(G). (3.4)

Remark 3. If h is the classical heat kernel in Rn, i.e.,

h(t, y) =
1

(2πt)n/2
e−|y|

2/4t =
1

(2πt)n/2
h̃(|y|/

√
t), (3.5)

where h̃(r) = e−
r2

4 , we get

hα(t, y) =

∫ ∞
0

h(τt1/α, y)f1,α(τ)dτ =

∫ ∞
0

1

(2πτt1/α)n/2
e−|y|

2/(4τt1/α)f1,α(τ)dτ =
1

tn/2α
h̃α(t−1/2αy),

where, according to (12),

h̃α(z) =

∫ ∞
0

1

(2πτ)n/2
e−|z|

2/(4τ)f1,α(τ)dτ.

Some more estimates are available, and we are going to exploit some of them.
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Remark 4. Recalling (2.4) we can give Gaussian type estimate of hα. Indeed, let
us argue on the upper estimates; we get:

hα(t, y) =

∫ ∞
0

h(τt1/α, y)f1,α(τ)dτ

≤ c
∫ ∞

0

τ−
Q
2 t−

Q
2α exp

(
−‖y‖

2

cτt
1
α

)
f1,α(τ)dτ

= ct−
Q
2α

∫ ∞
0

τ−
Q
2 exp

(
−‖y‖

2

cτt
1
α

)
f1,α(τ)dτ

where the integral above converges thanks to [30, Proposition IX.11.3]. Arguing in
the same way for the lower estimates, we eventually get

c−1t−
Q
2α

∫ ∞
0

τ−
Q
2 exp

(
−‖y‖

2

cτt
1
α

)
f1,α(τ)dτ ≤ hα(t, y) ≤ ct−

Q
2α

∫ ∞
0

τ−
Q
2 exp

(
−‖y‖

2

cτt
1
α

)
f1,α(τ)dτ.

(3.6)
Beside the above Gaussian estimates, we recall that the following also hold, (see
[11]):

c−1
(
t−Q/2α ∧ t

‖z‖Q+2α

)
≤ hα(t, z) ≤ c

(
t−Q/2α ∧ t

‖z‖Q+2α

)
. (3.7)

Let us now introduce a notion of α-horizontal perimeter.

Definition 3.1. For a Borel set E ⊂ G and α ∈ (0, 1) the fractional α−horizontal
perimeter of E is

Perα,G(E) :=

∫
E

∫
Ec

1

‖y−1 · x‖Q+α
α

dxdy.

We say that E ⊂ G has finite fractional α−horizontal perimeter if Perα,G(E) <∞.

In the following Proposition we collect some elementary properties of the frac-
tional α−horizontal perimeter.

Lemma 3.2. Let α ∈ (0, 1).

(i) (Subadditivity) Let E,F ⊂ G be Borel sets, then

Perα,G(E ∪ F ) ≤ Perα,G(E) + Perα,G(F ).

(ii) (Translation invariance) Let E ⊂ G be a Borel set; for any z ∈ G we have

Perα,G(τz(E)) = Perα,G(E).

(iii) (Scaling) Let E ⊂ G be a Borel set; for any λ > 0 we have

Perα,G(δλ(E)) = λQ−αPerα,G(E).

(iv) (Equivalence with the fractional norm) Let E ⊂ G be a Borel set and p ≥ 1;
if Perα,G(E) <∞ then

Perα,G(E) =
1

2
[χE ]pα

p ,p;G
.
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Proof. (i). If E and F are Borel sets, then

Perα,G(E ∪ F ) =

∫
(E∪F )

∫
(E∪F )c

1

‖y−1 · x‖Q+α
α

dxdy

≤
∫
E

∫
(E∪F )c

1

‖y−1 · x‖Q+α
α

dxdy +

∫
F

∫
(E∪F )c

1

‖y−1 · x‖Q+α
α

dxdy

≤
∫
E

∫
Ec

1

‖y−1 · x‖Q+α
α

dxdy +

∫
F

∫
F c

1

‖y−1 · x‖Q+α
α

dxdy

= Perα,G(E) + Perα,G(F ).

(ii) and (iii) follow from a change of variables, noticing that for every λ > 0 and
z ∈ G, δλ(Ec) = (δλ(E))c and τz(E

c) = (τz(E))c.
(iv). By definition

[χE ]pα
p ,p;G

=

∫
G

∫
G

|χE(x)− χE(y)|p

‖y−1 · x‖Q+α
α

dxdy

=

∫
E

∫
G

|χE(x)− 1|p

‖y−1 · x‖Q+α
α

dxdy +

∫
Ec

∫
G

|χE(x)|p

‖y−1 · x‖Q+α
α

dxdy

= 2

∫
E

∫
Ec

1

‖y−1 · x‖Q+α
α

dxdy = 2Perα,G(E).

The function

Qαt (χE) =

∫
G×G

hα(t, y)|χE(y−1 · x)− χE(x)|dxdy

allows us to present a relationship between the fractional heat semigroup and the
fractional perimeter.

The following Lemma is equivalent to saying that the embedding of Besov spaces
Bα2,2(G) ⊂ Bα2,∞(G) is continuous, see [26, Th. 9 and 14]. We use it in the proof of
Theorem 3.4 below.

Lemma 3.3. Let u ∈ Wα/2,2(G); then there exists cα > 0 such that for all z ∈ G,
denoting by τzu(x) := u(z−1x), there holds

‖τzu− u‖2L2(G) ≤ cα‖z‖
α

∫
G×G

|u(x)− u(w−1 · x)|2

‖w‖Q+α
dxdw.

The following results relates the fractional perimeter with the short-time be-
haviour of the fractional heat semigroup, as sketched in the Introduction.

Theorem 3.4. There are constants c1(α), c2(α) > 0 such that for every Borel set
E there holds

c1(α)Perα,G(E) ≤ lim inf
t→0

Q
α/2
t (χE)

t
≤ lim sup

t→0

Q
α/2
t (χE)

t
≤ c2(α)Perα,G(E). (3.8)
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Proof. Let us start from the upper estimate. By (3.7) and Lemma 3.3 we immedi-
ately get

Q
α/2
t (χE) =

∫
G×G

hα/2(t, z)|χE(z−1 · x)− χE(x)|dxdz

=

∫
B(t1/α)

hα/2(t, z)‖τzχE − χE‖2L2(G)dz +

∫
Bc(t1/α)

hα/2(t, z)‖τzχE − χE‖2L2(G)dz

≤c2t−Q/α
∫
B(t1/α)

‖z‖α[χE ]2Wα/2,2dz + c2t

∫
Bc(t1/α)×G

|χE(z−1 · x)− χE(x)|
‖z‖Q+α

dxdz

≤2tc2|B(1)|Perα,G(E) + c2t

∫
Bc(t1/α)×G

|χE(z−1 · x)− χE(x)|
‖z‖Q+α

dxdz

≤c2(α)tPerα,G(E).

Let us come to the lower bound. By (3.7), since on the complement of the ball
B(t1/α), we have the estimate

hα/2(t, y) ≥ c1
t

‖y‖Q+α
,

we deduce that

Q
α/2
t (χE) =

∫
G×G

hα/2(t, y)|χE(y−1 · x)− χE(x)|dxdy

≥
∫
G\B(t1/α)

hα(t, y)

∫
G
|χE(y−1 · x)− χE(x)|dxdy

≥ct
∫
G\B(t1/α)

∫
G

|χ(y−1 · x)− χE(x)|
‖y‖Q+α

dxdy

≥c1(α)t

∫
G\B(t1/α)

∫
G

|χ(y−1 · x)− χE(x)|
‖y‖Q+α

α

dxdy.

It follows

c1(α)

∫
G×G

|χ(y−1 · x)− χE(x)|
‖y‖Q+α

α

= lim
t→0

c1

∫
G\B(t1/α)

∫
G

|χ(y−1 · x)− χE(x)|
‖y‖Q+α

α

≤ lim inf
t→0

Q
α/2
t (χE)

t

and the proof is complete.

The same kind of result can be extended for functions in Wα,2(G) considering
the quantity

Qαt (u) =

∫
G×G

hα(t, y)|u(y−1 · x)− u(x)|2dxdy.

Notice that since χE(y−1 · x) − χE(x) ∈ {−1, 0, 1}, then |χE(y−1 · x) − χE(x)| =
|χE(y−1 · x)− χE(x)|2 and then Qαt (u) coincides with Qαt (χE)

Theorem 3.5. There are constants c1(α) and c2(α) such that for any u ∈ L2(G)

c1(α)[u]2α,2;G ≤ lim inf
t→0

Qαt (u)

t
≤ lim sup

t→0

Qαt (u)

t
≤ c2(α)[u]2α,2;G;

then u ∈Wα,2(G) if and only if

lim sup
t→0

Qαt (u)

t
< +∞.

Proof. The proof is exacly the same as in the proof of Theorem 3.4 by using esti-
mates (3.7).
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4. Open Problems. As mentioned in the Introduction one of the main motivation
of the present paper was to study the asymptotic behaviour of the heat semigroup
in a non-Euclidean context. By using similar techniques, one could probably intro-
duce and study the fractional perimeter on Riemannian manifolds. Another line of
research are asympotics. Indeed, it is well known (see [6, 13, 25]) that for every
bounded Borel set E ⊂ Rn of finite perimeter it holds:

lim
α→1−

(1− α)Pα(E) = CnP (E) (4.1)

where P (E) is the perimeter of E and Cn is a positive constant depending only on n.
Similar results have been proved also for different notions of fractional perimeters,
see [22, 23, 24, 19, 20]. We conjecture that a similar property is satisfied also by
Perα,G(·). A similar limit when α→ 0+ could be investigated. Another interesting
question is to understand whether or not in a general Carnot group the function
hα satisfies a relation similar to (13). We plan to investigate this question in the
Heisenberg group.
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