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Abstract. Extracting rules from temporal series is a well-established
temporal data mining technique. The current literature contains a num-
ber of different algorithms and experiments that allow one to abstract
temporal series and, later, extract meaningful rules from them. In this
paper, we approach this problem in a rather general way, without resort-
ing, as many other methods, to expert knowledge and ad-hoc solutions.
Our very simple temporal abstraction method allows us to transform
time series into timelines, which can be then used for logical temporal
rule extraction using an already existing temporal adaptation of the al-
gorithm APRIORI. We have tested this approach on real data, obtaining
promising results.
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1 Introduction

Rule-based methods are a popular class of techniques in machine learning and
data mining [8]. They share the goal of finding regularities in data that can
be expressed in the form of if-then rules. Depending on the type of rules, we
can discriminate between descriptive rules discovery, which aims at describing
significant patterns in the given data set in terms of rules, and predictive rules
discovery, which is focused on learning a collection of the rules that collectively
cover the instance space and can make a prediction for every possible instance.
In this paper, we are interested in descriptive (or association) rules, for which
there are three popular approaches: inductive logic programming, which uses logic
programming as a uniform representation for examples, background knowledge
and hypotheses, and aims at deriving a hypothesised logic program (that is, a
set of rules) which entails all the positive and none of the negative examples
(see, e.g., [18, 19]); rule induction via metaheuristics, typically driven by evolu-
tionary algorithms; and APRIORI [1] and its subsequent developments. These
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approaches have been extensively compared in the literature (see, e.g., [9] and
references therein); apparently, although APRIORI is probably the first technol-
ogy for rule extraction that gained some acknowledgment in the community, its
main ideas are still widely used, since no negative examples are needed (in con-
trast to inductive logic programming), and since it is considered reliable and fast
(in contrast to metaheuristic approaches, which are computationally expensive).

Time series are largely used to describe a wide range of data. Their use
is ubiquitous; among others, they are commonly used in environmental sci-
ences [22], where data describing the quality of air, water, soil, food most often
include multi-variate time series, in industry [21], where time series are used to
describe the working parameters of machines, in medical sciences [14], where
complex medical exams are normally described by multi-variate series, and in
smart homes [13], where sensors that help the intelligent systems in taking de-
cisions usually generate data in form of series. As a consequence, extracting
rules from time series can be very important, and the literature on this topic
is relatively large, ranging from primitive approaches [6, 7], to generalizations
of APRIORI to take into account the temporal component [2], to more general
and modern methodologies [20]. A survey on temporal abstraction methods is
given by Höppner in [12]. There exist several abstraction methods, which can
be roughly separated into adimensional, that is, methods that do not consider
the temporal dimension, and dimensional, which do consider the temporal di-
mension. Examples of the first category include: (i) Equal Width Discretization
(EWD), (ii) Equal Frequency Discretization (EFD), and (iii) k-means clustering.
Examples of dimensional methods, include: (iv) Symbolic Aggregate approXima-
tion (SAX) [15], which does not explicitly consider the temporal order of the
values and (v) Persist [16], which maximizes the duration of the resulting time
intervals and which explicitly considers the temporal order. Moreover, in [17], a
classification-driven discretization method, namely Temporal Discretization for
Classification (TD4C), is presented. A comparative study on various pattern
languages (i.e. approaches to represent the temporal interval patterns) is pre-
sented in [11], where the authors point out the strengths and weaknesses for
each of them, based on four well-known problems in the literature: preservation
of qualitative relationship, preservation of quantitative durations, concurrency
and robustness; many of such languages are Allen-based, but none of them have
a logical approach.

Upon examining the current literature on temporal series extraction, one can
see that most of the proposed solutions share common characteristics: (i) tem-
poral abstraction, that is, the segmentation and (possibly) aggregation of time
series into symbolic time intervals is often based on external knowledge and/or
specific to the rule extraction algorithm; (ii) rule extraction algorithm are mostly
ad-hoc, and (iii) the extracted rules are usually existential, often limited to being
binary rules, in which the temporal (Allen’s) relations between intervals are used
in a very limited way. In this paper, we present a general technique, structured
into the two, classical steps of temporal abstraction and rule extraction, that
addresses the above issues. Our temporal abstraction step is completely general
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Fig. 1. Allen’s interval relations and HS modalities.

and domain-independent, and separated from the rule extraction phase, which,
in turn, is based on a general tool known as Temporal APRIORI [3]. The main
characteristics of our approach are: (i) rules are written in a well-known logical
language, that is, Halpern and Shoham’s interval-based temporal logic HS [10],
(ii) every Allen’s relation may have a role in the extracted rules, and the (sub)set
of relations that are actually used is completely customizable, and (iii) rules are
logic formulas, that is, they generalize classical, static, APRIORI rules. Tempo-
ral APRIORI is a rule extraction algorithm to extract interval temporal logic
rules from timelines; the cornerstone of this method is, therefore, consistently
transforming multi-variate time series into timelines.

2 Temporal APRIORI

Temporal APRIORI is a rule extraction algorithm that generalizes APRIORI
to cope with instances with a temporal component, and it has been presented
in [3]. The starting point of Temporal APRIORI is the observation that non-
temporal rules can be thought as implications written in propositional logic, even
though they are not interpreted as implications in strict logical terms. On the one
hand, rules represent positive information only: instances where the implication
is trivially satisfied by the absence of the antecedent are not relevant in this
setting. On the other hand, rules express a likelihood information, such as if
these items are present, it is very likely that this other item will be present, too,
rather than a deterministic Boolean value. Classical static rules (such as rules
extracted from frequent item sets, to use APRIORI terminology) have the form
of propositional Horn logic rules:

ρ : p1 ∧ p2 ∧ . . . ∧ pk ⇒ p (1)

where p1, . . . , pk, p are propositional letters associated to the items of the in-
stances in the data set (literals). Since in many application domains temporal
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information is stored in form of intervals, extracting interval-based temporal
rules is the natural generalization of the above idea. The most representative
(and general) interval temporal language is Halpern and Shoham’s Modal Logic
of Time Intervals [10], often referred to as HS, and it is a modal propositional
language that features precisely one existential modal operator and one universal
modal operator for each basic relation between two intervals. Its sub-Boolean
(Horn-like) fragment, originally studied in [5] naturally generalizes the classi-
cal propositional Horn logic, and, at the same time, it has some decidable and
tractable sub-fragments [4]. The Horn fragment of HS has a simple grammar.
First, we define temporal literals:

λ ::= > | ⊥ | p | 〈X〉λ | [X]λ | 〈X〉λ | [X]λ,

where 〈X〉 (resp., 〈X〉) is a modal operator that existentially ranges over the
Allen’s relation RX , that is, X ∈ {A,B,E,D,O,L} (resp., the inverse of Allen’s
relation RX), [X] (resp., [X]) is its universal version, and p is a propositional
letter, and then, we define rules:

ϕ ::= λ | [G](λ1 ∧ . . . ∧ λk → λ) | ϕ1 ∧ ϕ2.

The semantics of Horn HS formulas is given in terms of interval models (or
timelines) of the type T = 〈D,V 〉, where (D,≤) is a linearly ordered set and
V : AP → 2I(D) is a valuation function which assigns to each atomic proposition
p ∈ AP the set of intervals V (p) on which p holds, being I(D) the set of all
intervals (that is, pairs of the type [x, y], where x < y) that can be formed on
D. The truth of a formula ϕ on a given interval [x, y] in a timeline T is defined
by structural induction on formulas as follows:

– T, [x, y]  > and T, [x, y] 6 ⊥ for every [x, y] ∈ I(D);
– T, [x, y]  p if [x, y] ∈ V (p);
– T, [x, y]  〈X〉ψ if there is a [w, z] such that [x, y]RX [w, z] and T, [w, z]  ψ;
– T, [x, y]  [X]ψ if, for all [w, z] such that [x, y]RX [w, z], T, [w, z]  ψ;
– T, [x, y]  [G](λ1 ∧ . . . ∧ λk → λ) if, for all [w, z] such that T, [w, z] 
λ1 ∧ · · · ∧ λk, T, [w, z]  λ;

– T, [x, y]  ψ1 ∧ ψ2 if T, [x, y]  ψ1 and T, [x, y]  ψ2.

Timelines generalize static instances. Consider, for example, the medical his-
tory of a patient. While during a interesting period of observation, we may
statically describe the set of its symptoms, the (suitably discretized) values of
his/her tests, and the therapies to which he/she has undergone, and extract
static rules in the form of (1), if we take into account the temporal component,
we may, instead, describe the same medical histories by associating every inter-
esting information to the temporal interval in which it holds. The rules that may
be extracted take, therefore, the form:

ρ : λ1 ∧ λ2 ∧ . . . ∧ λk ⇒ λ, (2)

where λ1, . . . , λk, λ are temporal literal. As we have already recalled, rules are
not implications in the strict logical sense. As much as static rules are concerned,
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the validity of a rule such as (1) in a static data set depends on two parameters,
known as support and confidence: the support of a rule is the minimum fraction
of instances of the data set in which every one satisfies both the antecedent
(p1 ∧ p2 ∧ . . . ∧ pk) and the consequent (p) should hold, and the confidence is
the minimum fraction of the support of the antecedent only in which both the
antecedent and the consequent should hold in order to consider a rule such as
(1) as true on a data set. So, for example, we say that p1 ∧ p2 ⇒ p holds on a
data set with support 0.75 and confidence 0.95 if at least three quarters of the
instances satisfy p1, p2 and p and, of those instances which satisfy p1 and p2,
ninety-five percent satisfy also p. Temporal rules require a similar treatment,
with the additional problem that instances are not static, and thus evaluating a
rule on single instance is not immediate. The concepts of support and confidence
naturally generalize along two directions. First, we use the temporal support and
temporal confidence to evaluate a single temporal literal λ on a single timeline T :
the former establishes which is the minimal fraction of all intervals of T that must
be captured by the relation RX over the interval [x, y] in order to the temporal
literal λ to make sense on it, and the latter establishes the minimal fraction of
those that must satisfy the argument of λ in order for λ to be considered true.
In this, way, for example, we do not evaluate [D]p on a too short interval, or
[A]p on an interval too close to the rightmost point of a timeline, and we do
evaluate as true [L]p on an interval [x, y] when the number of intervals of the
type [z, t] (z > y) with ¬p are less than a certain fraction. Observe that temporal
support and confidence may depend on the specific relation RX and on the fact
that λ is existential or universal. Second, we use the global support and global
confidence to set, respectively, the minimum fractions of intervals of T in which
both the antecedent and the consequent of a rule such as (2) should hold and
the minimum fraction of the support of the antecedent only in which also the
consequent should hold in order to evaluate as true the entire rule. Finally, to
evaluate a rule on a temporal data set, one applies a generalized version of the
the standard support, defined as the minimum fraction of timelines in which at
least one intervals satisfies both the antecedent and the consequent of the body
of the rule (so that the rule is significant in the temporal data set).

A prototypal implementation of Temporal APRIORI is described in [3] that
implements most of the above concepts, and has been used to run the experi-
ments described in this paper.

3 Temporal Abstraction of Time Series

As we have already recalled, temporal abstraction has been widely studied in
the recent literature. Our proposal is driven by two objectives: first, generaliz-
ing and systematizing the other approaches with a simple, domain-independent
algorithm, and, second, transforming time series into timelines from which rules
such as those described in the previous section can be extracted.

Let F̄ (t) = (f1(t), . . . , fm(t)) be a multi-variate time series. Each fj(t) is
referred to as variable (or attribute, to use the standard terminology for static
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data). A data set of multi-variate time series has the form F̄1(t), F̄2(t), . . . , F̄n(t).
Although time series that describe real-life data may have any codomain (typ-
ically, the reals), since a data set is always finite and extensively described we
can always assume that each fj(t) is a function of the type:

fj : D → N,

where D is a finite temporal domain. As for example, in a medical domain
temporal data set, each instance F̄ (t) = (f1(t), f2(t)) may be the description of
the medical history of a patient that includes his/her fever (f1(t)) and his/her
level of blood pressure (f2(t)). Our purpose is to convert F̄ (t) into a timeline
T in which every interval is suitably labelled to carry the same information (in
abstract form). Time series are often abstracted in different ways with different
aims; in some cases, an interval is labelled with the state of some variable fj(t),
that is, with the average value of fj(t) in that intervals; in some other cases, a
label represents the trend of some variable. In order to generalize and systematize
such a labelling process, we introduce the concept of z-th degree of timeline, in
analogy with the z-th degree of discrete derivative. As a matter of fact, states
are simply averages of the values of some fj(t), while trends are averages of the
values of f1

j (t). In general, therefore, one may be interested to abstract a time
series at any degree of derivative, to obtain a timeline from which rules can be
extracted. In the following, we use the symbol F̄ z(t) for (fz1 (t), fz2 (t), . . . , fzm(t)).

Since at each degree of derivative the finite domain of the resulting function
contains one less point, we denote by Dz the domains obtained from D at the
z-th degree of derivative. Fixed a degree z, the abstraction process consists of
producing a timeline TF̄ z(t) from F̄ z(t):

TF̄ z(t) = 〈Dz, V 〉,

and we have to specify the valuation function V . To this end, we first consider
the mean (denoted by µj) and the standard deviation (denoted by σj) of the
j-th component entire series (at the z-th derivative), and, for a specific interval
[x, y] ∈ I(D), we define:

µxy
j =

Σx≤t≤yf
z
j (t)

y − x
,

that is, the mean of the values of fzj (t) between x and y, and we use them to
build a set of propositional letters to define the valuation function V . In classical
solutions for temporal abstraction labels are often domain-dependent. In order
to avoid the use of domain-related knowledge, we introduce two parameters,
that is, l > 1, l ∈ N (number of labels, assumed to be odd) and k ∈ [0, 1] ⊂ R
(displacement), and define the set of propositional letters:

{Lj
p | 1 ≤ p ≤ l, 1 ≤ j ≤ m},

and, finally, define:



Towards a General Method for Logical Rule Extraction from Time Series 7

proc Abstract (F, z, l, k)
T = ∅
for (i = 1 to n){
Ti = Abs(F̄i(t), z, l, k)
T = T ∪ {Ti}

return T

Fig. 2. A general, domain-independent, temporal abstraction algorithm.

[x, y] ∈ V (Lj
p) iff


µxy
j < µj − b l2ckσj if p = 1

µj − (d l2e − p+ 1)kσj ≤ µxy
j < (d l2e − p)kσj if 1 < p < d l2e

µj − kσj ≤ µxy
j ≤ µj + kσj if p = d l2e

µj − (p− d l2e)kσj < µxy
j ≤ (p− d l2e+ 1)kσj if d l2e < p < l

µxy
j > µj + b l2ckσj if p = l

So, for example, if z = 0, l = 3 and k = 0.5, then L1 (resp., L2, L3) can be
read as low (resp., average, high), and an interval [x, y] is labelled with low if its
mean value is less than the mean value of the entire series (on the same compo-
nent) minus half of its standard deviation. As another example, if z = 1, l = 3,
and k = 0.25, then an interval [x, y] is labelled with increasing (corresponding to
L3 on the first derivative, that is, the series of the trends) if the mean value of
the differences in [x, y] exceeds the mean value of all differences plus one fourth
of the standard deviations of all differences. In this way, we can temporally ab-
stract any multi-variate time series at any level of derivative, so that rules can
be discovered that link the states, or the trends, or the accelerations, and so on,
in a consistent, simple, and general way.

Given a time series F̄ (t), we say that the abstracted z-th degree timeline
TF̄ z(t), with l labels and displacement k is:

TF̄ z(t) = Abs(F̄ (t), z, l, k),

where Abs is a procedure that applies the above labelling strategy. Given a set
of n time series F = (F̄1(t), F̄2(t), . . . , F̄n(t)), we convert it into a temporal data
set (a set of n timelines) T = (T1, T2, . . . , Tn) by simply applying the procedure
Abstract in Fig. 2.

4 Application Example

In this example we use a set of time series that emerges from collecting physical-
chemical data from underground water of a very specific area in the North-
East of Italy. Such samples were collected as a part of a ongoing investigation
commissioned by the local Regional Agency for Environment and Prevention to
the University of Ferrara, with the purpose of exploring the causes of a sudden,
unexpected spike of certain polluting agents in the underground water. Such
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〈A〉 C.E. is average ⇒ 〈L〉 Na is high
〈A〉 Cl is average ⇒ 〈L〉 Na is high
〈A〉 Na is low ⇒ 〈L〉 C.E. is average
〈L〉 C.E. is high ⇒ 〈L〉 Na is high
C.E. is average ∧HCO3 is average ⇒ 〈L〉Na is high

Table 1. Examples of rules extracted from the temporal data set at the 0-th degree
of derivative.

〈A〉 Cl decreaes ⇒ 〈A〉 C.E. is stable
〈A〉 Cl decreaes ⇒ 〈A〉 I is stable
〈D〉 C.E. is stable ∧ 〈A〉 I is stable ⇒ [O] Cl does not increase
〈D〉 C.E. is stable ∧ [A] I is not stable ⇒ [O] Cl does not decrease

Table 2. Examples of rules extracted from the temporal data set at the 1-th degree
of derivative.

data are being used to perform several physical-chemical researches; since they
have the form of multi-variate time series, we can also use them to test our rule
extraction method.

In the relevant area, 92 sampling points (underground water wells) were
chosen for this analysis. Samples have been collected from 2012 to 2018, in a
periodic way, on most of such points. Each sample has been analyzed from the
physical-chemical point of view, and several indicators have been registered: Br
(Bromine), Ca (Calcium), Cl (Chlorine), Fe (Iron), HCO3 (Bicarbonate), I
(Iodine), K (Potassium), Mg (Magnesium), NH4 (Ammonium cation), NO3
(Nitrate), Na (Sodium), SO4 (Sulfate), Hg (Mercury), T (Temperature), Eh
(Reduction potential), DO (Chemical oxygen demand), and C.E. (Electric con-
ductivity). After re-normalization, such data have been temporally ordered, ob-
taining 92 17-variate time series. These have been abstracted using the algorithm
explained in the previous section, at the 0-th, and the 1-st degree, with 3 labels
(per variable), and k = 0.5, to obtain two temporal data sets. Of the 92 series,
only 43 meaningful timelines could be extracted: the remaining ones where too
short (they have less than 3 observations). Moreover, for this particular exercise,
the function Abs has been implemented in such a way that intervals that contain
too long gaps (more than 150 consecutive days without observations) have not
been labelled. The following parameters have been set for both experiments: min-
imum support 0.8, minimum confidence 0.85, minimum global confidence 0.85.
For a better understanding of the underlying problem, the three labels have been
paired with the labels corresponding to their negation, during the abstraction
process. So, for example, for the 1-st degree of derivative and the value of Mag-
nesium, we have used the letters decreasing, stable, increasing (corresponding to
the three possible values of the derivative) and not decreasing, not stable, not
increasing.
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As it happens with classical, static APRIORI, a rule extraction generally
produces many results. We have limited ourselves to analyze rules with unary
or binary antecedent, and modal depth 1. Also, in this particular context, at the
0-th derivative degree rules that relate in time average situations with average
situation are probably meaningless, as well as, at the 1-th degree, are rules that
relate stable situations with stable situations. Examples of extracted rules are in
Tab. 1 and Tab. 2. The first two rules predict a future period of high Sodium in
the sample, provided that the observation is made immediately before a period
in which conductivity or Chlorine is stable. By means of the the fourth rule we
are able to foresee that a future period of high conductivity will be associated
with a future period of high Sodium. The last two rules of the second group,
corresponding to the 1-st degree of derivative, are particularly interesting. The
first one allows us to say that if we are in a period in which, at some point, the
conductivity is stable, and right before a period in which the Iodine level is also
stable, then, the level of Chlorine will be stable or it will decrease for a while.
But the second one says that if we are in a period in which, at some point, the
conductivity is stable (as before), and never in future the Iodine level will be
stable, then, the level of Chlorine will be stable or it will increase for a while.

5 Conclusions

It is well-recognized that extracting rules from time series is an important task.
In this paper we approached the problem in a general way, and with a novel
technique. We made use of a temporal logic language with a very high expres-
sive power (at least at the qualitative level), and we have designed a temporal
abstraction algorithm that transforms time series into timelines, so that tempo-
ral rules can be extracted with an already existing temporal generalization of
APRIORI.

Acknowledgements. G. Sciavicco acknowledges the partial support by the
Italian INDAM GNCS project Formal methods for techniques for combined ver-
ification.
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