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Predicting the Risk of Academic Dropout with
Temporal Multi-Objective Optimization

F. Jiménez, A. Paoletti, G. Sánchez, and G. Sciavicco

Abstract—In the European academic systems, the public found-
ing to single universities depends on many factors, which are
periodically evaluated. One of such factors is the rate of success,
that is, the rate of students that do complete their course of
study. At many levels, therefore, there is an increasing interest
in being able to predict the risk that a student will abandon
the studies, so that (specific, personal) corrective actions may
be designed. In this paper, we propose an innovative temporal
optimization model that is able to identify the earliest moment
in a student’s career in which a reliable prediction can be made
concerning his/her risk of dropping out from the course of studies.
Unlike most available models, our solution can be based on the
academic behaviour alone, and our evidence suggests that by
ignoring classically used attributes such as the gender or the
results of pre-academic studies one obtains more accurate, and
less biased, models. We tested our system on real data from the
three-years Degree in Computer Science offered by the University
of Ferrara (Italy).

Index Terms—Multi-objective optimization; Evolutionary com-
putation; Academic dropout risk prediction.

I. INTRODUCTION

Educational Data Mining refers to the set of techniques
specialized in analyzing and extracting useful knowledge from
students’ data. In recent years the importance of such a
discipline has clearly grown, witnessed, among others, by the
extensive literature. In many academic systems in Europe,
public founding is the single most important contribution
(source: European University Association - EUA, 2018) to
universities’ economical sustainability. In particular, in the
Italian academic system, the public founding schema has
changed rapidly in the past 20 years, and a very complex
mechanism, linked to several different parameters, is used for
modulating the amount of money that a particular institution
receives every year. One of such parameters is the rate of
success, that is, the ratio between the number of students that
decide to start a particular course of studies and the number
of students that actually complete it. Educational data mining
techniques can be used to predict such rate, provided that
one finds the correct model in terms of accuracy, easiness
of implementation, and availability of data. For the purposes
of this paper, we shall define academic dropout the event of
not finishing a course of studies, and officially abandoning
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it. A student may be automatically classified as a dropped
out if he/she has not paid the due fees for an entire year, or
more, or because he/she has communicated to the institution
the intention of abandoning that particular course of studies
and/or the institution per se.

Background. There are three prevailing strategies for aca-
demic prediction: predicting the chance of completing the
course of studies, analyzing the risk of dropout, and predict-
ing the final grade. Moreover, academic prediction can be
also orthogonally classified by the type of predictors, which
can be static students’ data (age, gender, school of origin,
and so on), phycological and attitudinal (usually from the
result of questionnaires’ administration), and dynamic (that
is, concerning the behaviour of the student in the first part of
his/her career). Clearly different types of data can be mixed in
some models, but they refer, nonetheless, to different aspects:
static data cannot be controlled at all, and a prediction model
based on static data alone is basically a descriptive statistical
model; attitudinal data require the design, administration, and
interpretation of specific tests, and the availability of such data
cannot be always guaranteed; instead, dynamic data are always
available, and by modelling the essential aspects of a student’s
career they allow a very reliable prediction. Examples of recent
work that use static data include, among many others, [1],
[2], [3], that use personal and social behaviour data (obtained
by questionnaires’ administration) to predict the performance
during the first semester, [4], in which personal information,
family information, and economical level information have
been used to predict the academic performance, [5], that
includes specific psychological factors (obtained, as before,
by questionnaires’ administration) to predict the academic
behaviour of students, and [6], which models the prediction
problem with a neural network. Examples of predictive models
based on attitudinal or psychological tests include [7], in which
a model combining standardized test scores and psychosocial
variables is proposed, and [8], in which the authors propose an
investigation of a visualization psychometric test to facilitate
the early diagnosis of the academic performances of technical
drawing students. Recent studies concerning the predictive ca-
pabilities of dynamic variables include [9], in which elements
such as attendance to classes, obtained results, preparatory
school information, among others, have been taken into ac-
count to predict the performance of a student, [10], in which
all static aspects have been ignored, and the performances of
specific indicators have been condensed and used to predict
the global performance during a semester, [11], in which the
authors considered data based on student activity provided
by private university, and searched for early predictors of
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students’ success and failure, in reference, in particular, to
the amount and the type of students’ use of the institution’s
online resources, and [12], in which indicators of the initial
performances are used to predict the behaviour of students.
Finally, recent work that use, to some extent, combinations of
static, attitudinal, and dynamic predictors include [13], focused
on e-learning students, and [14], which is an open source
initiative consisting of building a prediction model on data
taken from one institution and testing its performance on data
taken from other partner institutions, associating the model
to a concrete and effective intervention strategy. Predicting
the risk of dropout has been the focus of [15], in which
the authors, similarly to what we study in the present work,
approach the problem of an early prediction of dropout in
high school, which is an essential condition for a successful
intervention of problematic students; unlike [15], we focus our
attention on university students and define the problem as an
optimization model. Moreover, a dropout prediction model has
also been developed in [16], in which the authors develop a
(temporal) Cox model to study the nature of students’ retention
by focusing on dropout as predicted class, and by using sev-
eral static attributes plus five, cumulative, dynamic attributes;
unlike [16], our methodology focuses on obtaining an optimal
moment of prediction using mainly dynamic, cumulative and
non-cumulative attributes.

A temporal optimization model. Unlike most previous re-
searches on academic performance (and in particular, on aca-
demic dropout) prediction, we propose in this paper a multi-
objective optimization model; we focus on dynamic data,
although our model can be extended to include all classical
predictors, as discussed earlier. The ultimate purpose of the
proposed optimization model is to find the earliest moment, in
a student’s career, in which a reliable prediction is possible.
This allow us to build an ah-hoc prediction model for any
university course, without committing, for example, to perform
the prediction based on the results during the first semester
or the first year. We define the concept of horizon, which
can be seen, roughly, as the moment, in a student’s career,
in which the prediction is made, and we aim to optimize,
at the same time, the period of time that we have to wait
before the prediction (to be minimized) and the accuracy of
our prediction (to be maximized). In this way, we can perform
a dynamic preprocessing to a training set of student’s careers
(of which we know the outcome) to find the best horizon for
that course of studies, and, then, build a prediction model using
any learner. The resulting classifier can be then applied to a
new student of the same course (after he/she has passed the
horizon), to predict his/her outcome. We tested the potential
of our approach on real data taken from the University of
Ferrara (Italy), and, specifically, from the Bachelor Degree in
Computer Science. The objectives of this paper are:

• Proposing a temporal multi-objective optimization model
for dynamic preprocessing of student’s data, so that
the earliest horizon can be found at which a reliable
prediction on academic dropout can be made;

• Proposing an implementation of our model;
• Testing the potential of our model on real data.

Structure of the paper. This paper is structured as follows.
First, in Section II, we describe the underlying idea and
define a multi-objective optimization model. In Section III
we describe our solution to the optimization problem, and
all its components. Then, we describe our data set, and
our experiment, in Section IV, along with the results and
their validation. We conclude the paper in Section V by
explaining how our system can be seamlessly implemented
in an academic context and which corrective actions can be
initiated for students that are predicted to drop out.

II. A MULTI-OBJECTIVE TEMPORAL OPTIMIZATION
MODEL FOR PREDICTION OF ACADEMIC DROPOUT

The problem. Most European academic systems have a fixed
structure. Consider the case, for example, of the Italian system.
Once a student is enrolled at a specific year in an under-
graduate course, such as the Bachelor Degree in Computer
Science, which is the object of experimental part of this
paper, automatically gains the right of being examined for
all subjects of that year, and he/she retains such right for
as long as he/she is enrolled. So, for example, given that
Introduction to Programming is a subject of the first semester,
an enrolled student has the right of being examined at every
official call for as long as his/her enrolling continues; he/she
may be examined for that subject, during, say, an official call
of the fourth semester, provided that he/she has paid all due
fees for the second year of course. Moreover, a given degree
has a fixed duration (typically, a bachelor degree course is
three academic years), but a student that has not fulfilled all
required subjects may continue to enroll for a fourth, fifth,
and, in general, n-th academic year (such a student will be
called out-of-course). Finally, especially for bachelor degrees,
universities tend to impose a policy of a fixed number of
exam calls per academic year, which is, in average, six. So,
continuing with our example, Introduction to Programming,
taught during the first semester, allows for two attempts to
pass the relative exam right at the end of the semester, two at
the end of the second semester (in which it is not taught), and
two right before the next academic year begins. A realistic
model of this system, however, should take into account
only the exam period, instead of the number of calls; in the
Italian system, therefore, we consider that there are three exam
periods (February-March, June-July, and September). Given
this relatively fixed structure, and given that we may easily
identify a subset of subjects in a specific degree that are
well-known to be determinative (i.e., mandatory, on-topic, and
known to be relatively difficult), in this paper we propose a
model that is able to mix both static and dynamic parameters,
the latter focusing on which determining subjects have been
already passed, the passing grade, and how many attempts
were necessary to learn a predictive model. In our approach,
therefore, a student can be described by a set of classical
attributes (such as gender, or type of high school diploma),
and a set of attributes that depend on the performances up
until the observation moment; as we shall see, our purpose
is to determine the optimal observation moment to perform a
reliable prediction. The predicted class is binary: dropout/no
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dropout. For the purposes of this paper, we say that a student
has dropped out from the course of studies if one of two
conditions arises: either he/she has not paid any fee for at
least one academic year (one should take into account that any
delay in paying any due fee prevents the student to register any
exam until the debt is cancelled), or the student has official
communicated to the University that he/she wants to change
the course of studies or simply leave it. In both cases, the class
is determined by the system automatically.

We designed the learning process as a multi-objective op-
timization model with two objectives: the accuracy of clas-
sification (to be maximized) and the weight of the horizon.
An horizon can be seen as a curve that represents, for each
determining subject, for how many attempts one should wait
before deciding that not having passed that subject has a
relevant role in predicting whether the student will drop out,
and of course, its weight, which represents how long should
we be waiting before predicting, is to be minimized. To better
understand this concept, consider two limit examples. In the
first situation, we build a model with complete horizon: in
this model we have waited until the end of the third academic
year before deciding if a particular student will drop out; this
is of course extremely precise, as well as useless (because we
cannot help that student any more). In the second example,
we build a model with almost zero horizon: in this model,
we decide whether or not a particular student is a risk of
dropping out based almost solely on static information; this
would be desirable, but unavoidably imprecise (because there
is not enough information to decide, yet). Thus, accuracy and
weight of the horizon must be optimized together, forming a
typical Pareto problem which makes sense, mutatis mutandis,
in other academic systems with a fixed or quasi-fixed structure.
To solve this optimization problem we use an evolutionary
algorithm to build a wrapper in which individuals, that is,
horizons, are generated and evaluated. We call this approach
dynamic preprocessing, as it consists of generating, dynami-
cally, a version of the data set that it is then used to learn a
classification model.

Multi-objective optimization. Optimization problems [17],
[18] are naturally classified into problems of continuous or
problems of discrete variables, the latter often referred to as
combinatorial problems. In combinatorial problems, we are
looking for objects from a finite, or possible countably infinite,
set X - typically integers, sets, permutations, or graphs, and,
in multi-objective problems [19], we aim to solve a system of
the type:

min/max f1 (x)
min/max f2 (x)
. . .
min/max fk (x) ,

(1)

where each fl (x) is an arbitrary linear or non-linear function,
x = (x1, x2, . . . , xm) ∈ Xm represents the set of decision
variables. Solving a multi-objective optimization problem nat-
urally leads to a Pareto set of solutions (also called individuals
or particles). A solution set x ∈ Xm is Pareto (or non-
dominated) if and only if there is not other solution x′ ∈ Xm

Fig. 1. An example of Pareto front.

that dominates x. Solution x′ dominates x if and only if:
(i) there exists 1 ≤ l ≤ k such that fl (x′) improves fl (x),
and (ii) for every 1 ≤ l ≤ k, fl (x) does not improve
fl (x′). In other words, x′ dominates x if and only if x′ is
better than x in at least one objective, and not worse than x
in any objective. So, solving an multi-objective optimization
problem generates a set of solutions instead of a single
solution; each individual solution of the front is optimal in
its way, because it is not dominated by any other possible
solution (see Fig. II). When necessary, we choose a single
solution out of the optimal front by means of a a posteriori
decision making process. When each function fl is linear, (1)
is a linear programming problem [20], for which extremely
efficient algorithms exist (e.g., the simplex method - see [21],
and derived methods). When any of the functions fi is non-
linear, then we have a non-linear programming problem [22].
A non-linear programming problem in which the objectives
are arbitrary functions is, in general, intractable. In principle,
any search algorithm can be used to solve combinatorial
optimization problems; however, generic search algorithms
are not guaranteed to find an optimal solution. Methods
such as branch and bound [23], and meta-heuristics, such as
evolutionary algorithms [24] or particle swarm optimization
[25], are typically used to find approximate solutions for many
complicated optimization problems, including multi-objective
combinatorial optimization problems.

Temporal optimization of the horizon. Consider, now, a
generic data set S (students) whose instances are tuples as:

s = (S1, . . . , Sn, D1, . . . , Dm, C).

In the most general case, we describe a student with n static
attributes S1, . . . , Sn, m dynamic attributes D1, . . . , Dm, and
a class C. Static attributes include typical information such as
gender, age, or previous academic results. Dynamic attributes,
on the other hand, describe the behaviour of s in m chosen
subjects. Each Dj may be thought as a pair (aj , gj), where
aj represents the number of attempts that were necessary
to pass subject j (and it is 0 when subject j has not been
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year sex S1 S2 S3 S4 S5 S6 Class
Student 1 2004 M 5,2 4,3 7,1 3,2 6,4 7,3 1
Student 2 2007 F 5,2 8,3 2,2 9,2 0,0 0,0 0
Student 1 2004 M 2 3 0 2 0 0 1
Student 2 2007 F 2 0 2 0 0 0 0

TABLE I
INSTANCES CORRESPONDING TO TWO EXAMPLE STUDENTS (TOP SIDE), AND THE SAME INSTANCES UNDER THE HORIZON (5, 5, 5, 5, 5, 5) (BOTTOM

SIDE). IN THIS EXAMPLE, r = 0, THAT IS, THERE ARE NO CUMULATIVE INDICATORS.

passed yet), while gj is any categorization of the grade that
s obtained for subject j (that include a special value, for the
case in which aj = 0). Learning a classifier over S as we
have just described it corresponds to learning a classifier with
complete knowledge. Indeed, to construct S we may consider a
statistically relevant number of students enrolled into a specific
degree and who have had enough time (at least as long as
the programmed duration) to complete their studies. Having
chosen a set of m relevant subjects that are taught, say, in the
first two years of a three-years degree, a classifier trained over
such data will be extremely precise but it will present two
drawbacks: it will suffer of a high level of over-fitting, and it
will be inapplicable in real cases, because we would know that
some student is at high risk of dropping out when it is already
too late to do anything about it. To solve this problem, we
designed a transformation H that works as follows. Given an
element x = (x1, . . . , xm) ∈ Nm (an horizon), and a student
s described as above:

s = (S1, . . . , Sn, D1, . . . , Dm, C),

we say that:

H(s, x) = (S1, . . . , Sn, T1, . . . , Tr, D
′
1, . . . , D

′
m, C),

where, for each j, we have:

D′j =

{
gj if aj < xj
0 otherwise (2)

So, xj represents the number of attempts that we are prepared
to wait for the subject j, before predicting the outcome
for a given student. The new attributes T1, . . . , Tk represent
cumulative indicators, such as number of off-course academic
years in which he/she has been enrolled, or number of exams
passed with honours. These, if available, must be added during
this transformation, and taken from some other source (paired
with S), because their value is dynamic and depends on the
particular horizon. Indeed, the horizon gives us, implicitly,
an observation time for the student (say, for example, after
the third available exam period after his/her enrollment), and,
at that time, it makes sense to highlight his/her cumulative
indicators. This transformation can be applied to the entire
data set; by overloading the symbol H, we denote by:

H(S, x) = {H(s, x) | s ∈ S},

the transformation applied to the entire data set S. Then, we
can define the weight of an horizon x:

W (x) =

m∑
j=1

xj . (3)

The smaller is the weight of x, the less information is carried
by H(S, x), and the less precise will be a classifier learned
on it; but, at the same time, the less time we have to
wait before being able to predict the outcome for a student.
Let MAX be maximum number of exam periods that any
student has needed to pass an exam as recorded in S: a
classifier learned on the data set H(S, (0, . . . , 0)) will be
called zero-knowledge classifier (and it corresponds to learning
a classifier with static data only), while a classifier learned
on H(S, (MAX, . . . ,MAX)) will be called full-knowledge
classifier. To better understand this concept, consider the case
of the Italian university system, which has a somehow fixed
structure, and consider two example students Student 1 and
Student 2 that present the situation reported in Table I (top
side). In this example, n = 2, m = 6, and grades are
categorized into 0, . . . , 4, with 0 corresponding to no grade
at all, 1 to the best possible grade, and 4 to the worse possible
grade. Student 1 is a male, first enrolled in 2004 who, as of
today, has passed precisely all chosen subjects (and his/her
class is 1); in particular, we know that it took him 5 exam
sessions to pass subject 1. Under the horizon (5, 5, 5, 5, 5, 5),
we have the situation described in Table I (bottom side): we
decided to wait at most 5 attempts per subject, and the table
shows us a partial information regarding Student 1. A full
knowledge classifier learned on the original data set would
have complete knowledge of how a student behaved regarding
the most important and characterizing subjects; such model
would be useless because it would require to wait ’unlimited’
time to decide the predicted outcome, and when it came out
negative (even if that prediction would be extremely reliable) it
would be too late to anything about it. Optimizing the horizon
solves this problem.

Thus, we aim to solve the following multi-objective com-
binatorial optimization problem:

max ACC(x)
min W (x),

(4)

which is an instance of (1) with l = 2. With ACC we denote
the accuracy of a classifier learned over the data set H(S, x).
Since H(S, x) is a data set of students whose information
is restricted to the temporal horizon x, we say that (4) is a
temporal multi-objective combinatorial optimization problem.
It may be argued that using the accuracy of a classifier is
reductive, as the performances of classifiers can be measured
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in many different ways. But previous experiments of feature
selection based on similar mechanisms to the one presented
here (although with very different purposes) seem to indicate
that optimizing the accuracy of a classifier is not essentially
different from optimizing other measures (see, e.g., [26]).

III. AN EVOLUTIONARY ALGORITHM SOLUTION

Genetic algorithms are search heuristics inspired by natural
evolution. They reflect the process of natural selection, where
the fittest individuals are selected for reproduction in order to
produce offspring of the next generation. The process starts
with the selection of fittest individuals from a population.
They produce offspring which inherit the characteristics of the
parents and will be added to the next generation. If parents
have better fitness, their offspring will be better than parents
and have a better chance at surviving. This process keeps on
iterating and at the end, a generation with the fittest individuals
will be found. All genetic algorithms share this methodology,
but they differ in the way the initial populations are generated,
the best individuals are selected, and the new individuals
are generated. In the recent literature, genetic algorithms
have been successfully used to solve a wide range of search
and optimization problems, and, in particular, intractable data
analysis and data mining problems, such as, for example,
feature selection [27], [28], [29] for classification and for
clustering. The algorithm NSGA-II (Non-dominated Sorting
Genetic Algorithm II), introduced in [30], is a well-known
elitist Pareto-based genetic algorithm which can be used to
solve problems as (1). The population is sorted using a domi-
nation rank function, where each individual is assigned a rank
representing the front to which it belongs. Individuals with
same rank are sorted with the crowding distance, calculated as
the perimeter of the hypercube formed by taking the nearest
individuals to it as the hypercube’s vertices. NSGA-II uses
a (µ+ λ) strategy with µ = λ, where µ corresponds to
the population size and λ refers to the number of children,
with binary tournament selection. For us, an individual is
an horizon, and at each generation we evaluate the current
population with two objective functions as described in (4).
NSGA-II is a well-established algorithms whose performances
have been tested in many occasions and in very different
applicative domains. There are more recent genetic algorithms
in the literature, such as, for example, ENORA [31], [32], [33],
among many others; nonetheless, our purpose in this paper is
describing and testing a new methodology based on a multi-
objective optimization problem, rather than finding how it can
be best implemented.

Individual representation is simple: each individual I is
a tuple in [0, . . . ,MAX]m. The initial population is ran-
domly generated with a uniform distribution, as shown in
Algorithm 1. Each individual I is evaluated with two fitness
functions, W and ACC, corresponding to the two objectives
of the multi-objective combinatorial optimization model (3).
The function W (weight of the horizon) is calculated as in
(2). Algorithm 2 shows the steps required to calculate the
value of the function ACC. As much as variation operators
are concerned, we use self-adaptive [34] uniform crossover,

Algorithm 1 Initial population
Require: popsize {Population size}
Require: m {Number of subjects}

1: for i = 1 to popsize do
2: let I be a new individual;
3: for j = 1 to m do
4: I[j]← rand({1, . . . ,MAX});
5: end for
6: POP [i]← I;
7: end for
8: return POP

Algorithm 2 ACC function
Require: I {Individual to evaluate}
Require: S {Data Set}
Require: Γ {Classifier}

1: Compute S ′ from H(S, I);
2: Build a classifier Γ trained with S ′;
3: Evaluate Γ in full training mode;
4: return Accuracy(Γ)

arithmetical crossover, and uniform mutation [35], described
in Algorithm 3, 4, and 5, respectively. These have been
suitably adapted to integer representation for the purposes of
this work.

As classifier learning algorithms, we propose two solutions,
the first one using random forest [36], and the second one
using logistic regression [37]. The former is a well-known
tree-based learning algorithm known for its low tendency to
over-training and its high accuracy. It is an ensemble learning
method which constructs a forest of random decision trees,
for classification or regression purposes. A typical problem of
decision trees is their propensity to over-fit, if not properly
pruned: in the literature, they are regarded as models having
low bias, but high variance. In random forest each tree is built
from a separate part of the same training set, reducing the
variance, thus contrasting the tendency of a large, single tree
to over-fit. Given a new instance to classify, the final output
is obtained by combining the results given by the different
trained models. Logistic regression, on the contrary, is a
function-based learner, and it is named after the function used
at the core of the method, the logit function. Such function,
also called sigmoid, was developed to describe properties of
population growth in ecology, rising quickly and maxing out
at the carrying capacity of the environment. It’s an S-shaped
curve that can take any real-valued number and map it into a
value between 0 and 1, but never exactly at those limits, and
it is particularly fit for binary classification problems.

Finally, we propose two alternative decision making strate-
gies. Once a final Pareto front P = {x1, . . . , xp} has been
identified, a solution may be selected according to Algo-
rithm 6. This simple methodology has the advantage of allow-
ing an automatic, independent choice that takes into account
both objectives. Consider, for example, two horizons x1 and
x2, the former with weight 15 and accuracy 0.951, and the
latter with weight 16 and accuracy 0.955: the former, with a
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Algorithm 3 Uniform crossover
Require: I, J {Parents}

1: for j = 1 to m do
2: r ← rand({0, 1});
3: if r = 0 then
4: I ′[j] = J [j];
5: J ′[j] = I[j];
6: else
7: I ′[j] = I[j];
8: J ′[j] = J [j];
9: end if

10: end for
11: return I ′, J ′ {Children}

Algorithm 4 Arithmetical crossover
Require: I, J {Parents}

1: α← real rand([0, 1]);
2: for j = 1 to m do
3: I ′[j] = round(α · I[j] + (1− α) · J [j]);
4: J ′[j] = round(α · J [j] + (1− α) · I[i]);
5: end for
6: return I ′, J ′ {Children}

ratio accuracy/weight of 0.06, must be preferred over the latter,
with a ratio 0.05, regardless the (small) gaining in accuracy of
the latter over the former, and assuming that its accuracy is at
least better than the average of the front. Since the search space
may be not extremely wide, final Pareto fronts with just a few
distinct non-dominated solutions may appear; in the particular
case of a front with just two solutions, the one with the best
ratio may be simply chosen. In some cases, however, other
strategies can be used if special conditions apply. Indeed, each
individual can be associated to a temporal indicator; this can
be thought of as a quantitative description of how long we
should wait before that particular individual (that corresponds
to an horizon) can be applied to a student, and it can be
measured, for example, in number of months or number of
available exam sessions. Then, if the resulting Pareto front is
composed by a sufficiently small number of individuals, and
if a minimum accepted accuracy and a maximum accepted
temporal indicator of the model can be identified, we can
also use Algorithm 7. In this case, we: (i) associate to each
individual of the front to its temporal indicator; (ii) for each
different temporal indicator, consider the individual with the
highest accuracy (if there is more than one), and (iii) choose
the individual with highest accuracy among the remaining
ones that pass the minimum accuracy and maximum temporal
indicator thresholds.

IV. EXPERIMENT

In this section, we test the potential of our proposal with
real data.

Data description and preparation. The data warehouse of
the University of Ferrara contains the entire history of each
student ever enrolled. We considered the bachelor degree in
Computer Science, which has a programmed duration of three

Algorithm 5 Uniform mutation
Require: I {Parent}

1: for j = 1 to m do
2: r ← rand({0, 1});
3: if r = 0 then
4: I ′[j]← rand({1, . . . ,MAX});
5: else
6: I ′[j] = I[j];
7: end if
8: end for
9: return I ′ {Child}

Algorithm 6 Decision making (solution 1)
Require: P = {x1, . . . , xp} {Pareto front}

1: avg ← 0;
2: for all xi ∈ P do
3: avg ← avg +ACC(xi);
4: end for
5: avg ← avg

p ;
6: Best← 0;
7: for all xi ∈ P do
8: if ACC(xi)

W (xi)
> Best and ACC(xi) ≥ avg then

9: x← xi;
10: Best← ACC(xi)

W (xi)
;

11: end if
12: end for
13: return x

academic years, and which has been opened in 2001. Since
then, some changes occurred in the denomination of subjects,
the material that is presented, and, of course, the teachers that
are responsible for each subject. Nevertheless, the essential
structure of the course has been preserved. For each student,
several static data are available. In particular, we know, for
each student, the type of high school diploma, the gender, and
the province of residence. Other attributes may be available
for a single student; for example, we may have included the
student’s year of first enrollment, or the GPA from hir/her
preparatory school, among others. Unfortunately, as it often
happens, some features must be simply be excluded from
classifier learning (such as the year of first enrollment: a model
that uses such an information is unable to predict the outcome
for students that will enroll in future years) or may not be
available/standardized for all students (as it is the case of
GPAs: they may be not comparable among different schools,
or unavailable for certain students). Static data are shown in
Tab. II. The cumulative data that we have considered for each
student are those listed in Table III. The attribute #out of
course takes into account the number of times that he/she
enrolled besides the programmed duration of the course. These
include the number of times that he/she has enrolled after the
programmed duration of course, plus the number of times that
he/she has not been able to pass the predetermined minimum
limit of credits for the current year of enrollment (in this case,
he/she has to enroll in a out of course academic year even
before the programmed duration has not been reached yet).
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Algorithm 7 Decision making (solution 2)
Require: P = {x1, . . . , xp} {Pareto front}
Require: T = {t1, . . . , tp}{Temporal indicators}
Require: l {Minimal accepted accuracy}
Require: t {Maximal accepted temporal indicator}

1: D ← P;
2: for all xi ∈ P do
3: for all xj ∈ P do
4: if (ti = tj and ACC(xi) < ACC(xj)) then
5: D ← D − {xi};
6: end if
7: end for
8: end for
9: F ← D;

10: for all xi ∈ D do
11: if (ACC(xi) < l or ti > t) then
12: F ← F − {xi};
13: end if
14: end for
15: Best← 0;
16: for all xi ∈ F do
17: if ACC(xi) > Best then
18: x← xi;
19: Best← ACC(xi);
20: end if
21: end for
22: return x

attribute explanation
gender male or female student
residence whether lives in Ferrara or not
prep school type of preparatory school

TABLE II
STATIC DATA

For example, a student s enrolls in the first year, does not
pass enough credits during the academic year, and enrolls,
again, in the first year (out of course); then, he/she fulfills all
requirements, and may enroll in the second year. In such a
situation, the attribute #out of course is set to 1. Furthermore,
in the Italian systems, the fees due for an academic year
are usually split into several tranches, each with a specific
deadline; each time that a student s fails to fulfill a deadline,
a tax flag is raised and accounted for in the attribute #tax
flags. Finally, there are several possible financial benefits that
may be granted to a student, depending on his/her academic
performance, his/her economical status, among others; an
economical benefit may have the form of a fee reduction or
exemption, or a scholarship, and the number of times that
any such benefit is ever granted to a student is registered in
the attribute #benefits. Therefore, for us, r = 3. Dynamic
data take into account the entire academic performance of
a student with respect to a specific, predefined, subset of
subjects, as we have explained in the previous section. We
have chosen m = 11 core subjects that are being taught at
the Computer Science bachelor degree following very intuitive
guidelines; for a subject to be chosen, we imposed that: (i) it

attribute explanation
#out of course number of out of course enrollments
#tax flags number of times that fees were overdue
#benefits number of times that some economical benefit was granted

TABLE III
CUMULATIVE DATA

code subject
S1 Algorithms and Data Structures
S2 Computer Architecture
S3 Introduction to Databases Systems
S4 Probability and Statistics
S5 Numerical Analysis
S6 Introduction to Calculus
S7 Introduction to Physics
S8 Programming Languages and Paradigms
S9 Algebra and Discrete Mathematics
S10 Introduction to Programming
S11 Operative Systems

TABLE IV
CHOSEN SUBJECTS, IN NO PARTICULAR ORDER

is a mandatory subject, and it has always been so; (ii) it is a
characterizing subject, and (iii) the content of the subject has
not changed (besides the necessary updating), and its declared
weight (in terms of European credits) has not changed more
than ±3. The 11 chosen subjects are listed in Table IV. In
the Italian academic system, grades for each passed subject
are expressed in thirtieths, whereas the minimum grade to
pass is 18. Nevertheless, given that most exams are oral or
include an oral part, distinguishing between similar grades
(eg., 19/30 or 20/30) is meaningless on a statistical basis.
Thus, for j = 1, . . . ,m, we categorized the possible grades
as follows:

gj =


4 if grade(j) ≥ 27/30
3 if 24/30 ≤ grade(j) < 27/30
2 if 21/30 ≤ grade(j) < 24/30
1 if 18/30 ≤ grade(j) < 21/30
0 if exam j has not been passed

If gj is different from 0 for a given j, then, as we have
explained, its corresponding aj is different from 0 as well:

aj =

{
q if q attempts were necessary to pass j
0 if exam j has not been passed

The class C ∈ {0, 1} that we want to predict is: has the
student finished his/her studies, or dropped out?

Experimental setup. We have chosen 498 students first
enrolled in the bachelor degree in Computer Science at the
University of Ferrara (Italy) in a year between 2001 and 2014;
of these, 74% completed their studies, and the remaining ones
are classified as dropout. As explained in the previous section,
for us n = 3, r = 3, and m = 11. In order to remedy the
class imbalance, we randomly extracted a training set, with
precisely 200 students, with 50% positive and 50% negative
w.r.t. to the class; the remaining students were inserted into a
test set. From the former, we have further selected a training
subset by setting n = 0. In this way, in parallel to testing our
proposal, we prove that static data are actually unnecessary
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learner best average worst
logistic 0.0353 0.0353 0.0354
random forest 0.0560 0.0561 0.0562

TABLE V
BEST, AVERAGE, AND WORST HYPERVOLUME OF THE LAST POPULATION

AMONG 10 EXECUTIONS FOR EACH LEARNER

for dropout prediction, and eliminate typical biases from the
learning process (such as gender in certain scientific courses,
or school or provenance). We have executed our model, with
no static data, 10 times with random forest and 10 times
with logistic regression. For each execution, the number of
evaluation has been set to 10000 (100 generations, for a
population of 100 individuals). The probabilities of crossover
and mutation are self-adaptive, as in [38]. No pre-processing,
in the classical sense, is necessary, considering that the system
itself performs a (dynamic) pre-processing at each generation,
as we have explained, and taking into account that there are
no null values, that every column presents non-zero variance,
and that columns are independent from each other. In terms
of computational complexity, observe that NSGA-II uses the
so-called fast non-dominated sorting algorithm [30], which
compares each solution with the rest of the solutions and
stores the results so as to avoid duplicate comparisons between
every pair of solutions; this means that for a problem with
k objectives (k = 2, for us) and a population with N
solutions (N = 100, for us), this method needs to conduct
k ·N · (N −1) objective comparisons, which means that it has
time complexity O(k ·N2) [39].

Results and validation. The classical measure to compare
different executions of the same evolutionary model is the
hypervolume of the last population, which can be defined as a
measure of the space under the solutions’ front. The smaller
the hypervolume, the better is the set of solutions in terms of
objectives. The hypervolume statistics for learner are shown
in Table V; as we can see, there are only minimal differences.
Among the 10 execution for each learner, we selected the one
whose last population has best hypervolume.

Thanks to the fixed structure of the Italian academic system,
we can now associate each individual of both fronts with its
corresponding temporal indicator, as explained in the previous
section. The exam sessions are denoted with February, July,
and September, and each one of them is referred to a particular
year. So, for example, an individual may be associated with
‘September 1’, meaning that, in order to apply the correspond-
ing horizon to a particular student, we need to wait until the
third exam session of the first year of enrollment. In this
respect, though, one has to pay attention to the fact that,
we have recalled, the structure of the course of studies may
change along the years. We have already taken into account,
in this experiment, these changes: as a matter of fact, we have
linked every student to the specific structure of the course
that corresponds to his/her academic year of first enrollment.
Nevertheless, the temporal indicator must be uniform, and the
natural choice is to use the current structure to compute it.
Applying Algorithm 7 with minimum accepted accuracy 0.7
and maximum temporal indicator ‘July 2’ (that is, assuming

that it is reasonable to wait until the second exam session
of the second year before judging the academic performance
of a student, and accepting a model that misjudges 3 out
10 students) gives us the highlighted results in Table VI
and Table VII, in which we show every individual of the
last front of the chosen execution, along with the following
indicators: accuracy in training phase, accuracy in test phase,
Choen’s Kappa (which is a measure of the reliability of a
classification), mean absolute error, and root mean absolute
error. Consider, first, the chosen individual from the logistic
model. The corresponding horizon requires to wait one exam
session for Computer Architecture and one exam session for
Probability and Statistics, which, in turn, requires to wait (in
the current structure of studies) until the summer session of
the first year of enrollment. The model that has been learned
on the training data projected on this horizon (as explained in
Section II) shows 0.732 of accuracy in training and 0.746 of
accuracy in test, and this particular horizon will be referred
to as horizon 1. Similarly, the chosen individual for the
random forest model requires waiting two exam sessions for
Computer Architecture and one exam session for Programming
Languages and Paradigms, which, in turn, requires (in the
current structure) to wait until the summer session of the
second year of enrollment; the training accuracy is 0.743 and
the test accuracy is 0.836, and this model will be referred
to as horizon 2. Recall that our models were not designed
to be interpretable. Unlike most solutions in the literature,
by means of learning a prediction model we do not aim to
explain why a certain student drops out from the studies;
instead, we only aim to be able to predict his/her intention to
drop out, therefore allowing for corrective actions. Therefore,
an horizon, such the one chosen among those produced by
the logistic regression schema, should not be misinterpreted
by deducing, for example, that a student that has not passed
Computer Architecture and Probability and Statistics in their
respective first available sessions is classified as being at risk
of dropping out. Instead, the correct interpretation is: a student
can be classified as being at risk of dropping out (or not) by ob-
serving his/her academic results concerning, in particular, the
results on the subjects Computer Architecture and Probability
and Statistics after the respective first available exam session.
Interestingly enough, the accuracy in training and in test show
the following behaviour: for very short horizons, the training
accuracy and the test accuracy are not extraordinarily high,
but the models are very resilient to over-fitting, witnessed by
the fact that training and test accuracy are very similar (and
test accuracy is even higher than training accuracy in some
cases); as the horizons become longer, the accuracies tend to
grow (as expected) but the resulting models are less reliable
on new data. By means of our decision making algorithm, we
are able to identify a good equilibrium between the training
accuracy, the over-fitting degree, and the applicability of the
horizon (recall that long horizons are not really useful, as we
have explained in Section II). The case of the horizon chosen
among the random forest models is illuminating, in this sense,
considering that the accuracy increases by almost 0.1 points.
Moreover, this particular model shows a Cohen’s Kappa of
0.363, which can be considered relatively high, indicating
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training test
weight horizon accuracy indicator kappa stat. mean abs. err. root mean sq. err. accuracy static data acc.

2 0 1 0 0 0 0 0 1 0 0 0 0.732 July 2 0.247 0.345 0.422 0.733 0.726
2 0 1 0 1 0 0 0 0 0 0 0 0.732 July 1 0.263 0.349 0.415 0.746 0.740
3 0 1 0 0 0 0 0 2 0 0 0 0.747 September 2 0.263 0.329 0.417 0.746 0.723
4 0 0 0 0 0 0 4 0 0 0 0 0.777 July 3 0.206 0.325 0.448 0.603 0.606
5 0 0 0 0 0 0 5 0 0 0 0 0.797 September 3 0.249 0.293 0.429 0.656 0.656
6 0 0 0 0 0 0 6 0 0 0 0 0.823 February 4 0.332 0.247 0.397 0.736 0.733
7 0 0 0 0 0 0 7 0 0 0 0 0.848 July 4 0.418 0.208 0.367 0.800 0.790
8 0 0 0 0 0 0 8 0 0 0 0 0.873 September 4 0.494 0.173 0.335 0.843 0.830
9 0 0 0 0 0 0 9 0 0 0 0 0.883 February 5 0.520 0.163 0.324 0.856 0.846

10 0 0 0 0 0 0 10 0 0 0 0 0.919 July 5 0.580 0.140 0.309 0.886 0.873
11 0 0 0 0 0 0 11 0 0 0 0 0.929 September 5 0.642 0.120 0.283 0.910 0.893
19 0 0 0 6 0 0 0 12 0 1 0 0.939 February 6 0.725 0.075 0.221 0.936 0.916
21 0 0 0 0 0 0 0 21 0 0 0 0.944 February 9 0.806 0.062 0.162 0.960 0.936
23 0 0 0 0 0 0 0 22 0 1 0 0.959 July 9 0.848 0.060 0.159 0.970 0.956

TABLE VI
DECISION MAKING (LOGISTIC REGRESSION)

individual training test
weight horizon accuracy indicator kappa stat. mean abs. err. root mean sq. err. accuracy static data acc.

1 0 1 0 0 0 0 0 0 0 0 0 0.717 July 1 0.217 0.367 0.429 0.726 0.683
3 0 2 0 0 0 0 0 1 0 0 0 0.742 July 2 0.363 0.331 0.407 0.836 0.743
4 0 0 0 0 0 0 0 4 0 0 0 0.782 July 3 0.206 0.330 0.457 0.603 0.620
5 0 0 0 0 0 0 0 5 0 0 0 0.797 September 3 0.249 0.299 0.436 0.656 0.620
6 0 0 0 0 0 0 0 6 0 0 0 0.823 February 4 0.340 0.239 0.400 0.743 0.743
7 0 0 0 0 0 0 0 7 0 0 0 0.848 July 4 0.429 0.193 0.363 0.806 0.813
8 0 0 0 0 0 0 0 8 0 0 0 0.873 September 4 0.507 0.158 0.328 0.850 0.856
9 0 0 0 0 0 0 0 9 0 0 0 0.888 February 5 0.507 0.144 0.312 0.850 0.893
10 0 0 0 0 0 0 0 10 0 0 0 0.919 July 5 0.614 0.116 0.286 0.900 0.896
11 0 0 0 0 0 0 0 11 0 0 0 0.929 September 5 0.681 0.097 0.262 0.923 0.920
16 0 0 0 4 0 0 0 12 0 0 0 0.944 February 6 0.702 0.082 0.224 0.930 0.940
20 0 1 0 1 0 0 0 18 0 0 0 0.949 February 8 0.834 0.075 0.169 0.966 0.963
22 0 1 0 1 0 0 0 20 0 0 0 0.959 September 8 0.911 0.058 0.128 0.983 0.983
39 0 0 0 0 0 17 0 22 0 0 0 0.984 July 9 0.895 0.045 0.138 0.980 0.983

TABLE VII
DECISION MAKING (RANDOM FOREST)

that this model behaves in a reliable way. Recall that, in
our experiment, n = 0. The reason underlying this choice is
avoiding learning a biased classifier, and building a model that
consider students only by their performances; when training
data are unbalanced with respect to some category (such
as male students, for example), they generate less accurate
models with respect to new data corresponding to female
students, and, more in general, every static attribute that is
known to show, statistically, high information gain, works
against the overall reliability of a model as we have designed
it, and this is why we decided to exclude them completely. For
further confirmation of this effect, observe the last column of
Table VI and Table VII, in which we have computed the test
accuracy of the same horizons enriched with the three available
static attributes: gender, province of residence, and type of
school (that takes into account the type of preparatory school
attended before first enrolling at the University of Ferrara).
Focus, in particular, on the logistic models: adding the static
data causes the accuracy to worsen in 12 cases out of 14; as we
have already observed, this phenomenon is probably due to the
fact that university students do not distribute uniformly among
genders and other static characteristics, especially in specific
courses such as Computer Science. Random forest models are
less prone to this effect; nevertheless, the accuracy decreases
in 6 out of 14 cases, and it remains unchanged in other 2
cases. Moreover, the cases in which the accuracy improves

when static data are added are cases in which the horizon is
extremely long, therefore, as we have noted, they are cases
in which the model is at very high risk of over-fitting and is
useless from a practical point of view.

To conclude this section, we show the results of testing the
chosen horizons (horizon 1 and horizon 2 - in both cases,
we have also tested their respective version with static data)
with other classifiers. To widen the range of classifier types,
we have used logistic regression, random forest, and decision
trees, in particular the C4.5 implementation known as J48,
with standard parameters (covering, in this way, functions and
trees, but also interpretable and non-interpretable models). As
it can be see from Tab. VIII, the chosen horizons allow to
learn relatively accurate classifiers, even if a model different
from the one used for training is used. From this experiment,
it seems the best performing model is the one trained with
random forest, learned with a decision tree, and without static
data.

Statistical tests. In the current literature, when random pro-
cesses are involved, statistical tests are often performed to
establish whether the results are (statistically) reliable. In our
case, it so happens that the 10 executions for each learning
algorithm produced Pareto fronts very similar to each other;
they are, in actuality, identical to each other up to horizons
before the start of the fourth year (that is, the first out-of-
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logistic regression
without static data with static data

accuracy kappa stat. root mean sq. err. area under curve accuracy kappa stat. root mean sq. err. area under curve
horizon 1 0.74 0.25 0.41 0.81 0.74 0.25 0.42 0.77
horizon 2 0.78 0.30 0.41 0.83 0.69 0.23 0.42 0.81

random forest
horizon 1 0.74 0.24 0.42 0.78 0.68 0.20 0.44 0.78
horizon 2 0.83 0.35 0.41 0.80 0.74 0.26 0.43 0.80

decision tree
horizon 1 0.77 0.25 0.41 0.71 0.66 0.21 0.43 0.76
horizon 2 0.82 0.32 0.41 0.73 0.82 0.32 0.41 0.73

TABLE VIII
TEST RESULTS WITH DIFFERENT CLASSIFIERS

course year). This is a clear indication that our process has
found, in general, solutions that are very close to the global
optimums of the problems, and that comparing solutions
from different executions does not make sense. However, in
order to prove that our solution is statistically reliable, we
have performed the following experiment. We have considered
the two chosen horizons (which entail two dynamically pre-
processed training data sets of 200 instances each), and tested
their ability to predict the class using six standard learning
algorithms, in 10-fold cross-validation mode, against 6 other
data sets each: 5 of these correspond to randomly-generated
horizons (all generated under the condition of entailing a
temporal indicators before ’September 2’), and the last one is
the training data set with static data only. The purpose of this
test is twofold: first, we prove that the horizons that have been
found behave, indeed, much better than randomly generated
ones (which, paired with the fact that all executions produced
similar fronts, is consistent with the fact that our process
found very good solutions of the problem), and, second,
we justify the increased computational time of finding the
horizons instead of using simple, plain, static data. The chosen
classifiers are: decision tree, random forest, logistic regression,
support vector machine, multi-layer perceptron (with one
hidden layer), and a deep learning architecture; in the latter
case, the chosen configuration is: one internal dense layer of
100 units with activation function ActivationRELU, and output
layer of 2 units with activation function ActivationSoftmax
and loss function LossMCXENT. Observe that an horizon
that has been randomly generated under the constraint of
corresponding to a not-too-far temporal indicator does entail a
data set for which the classification problem makes perfect
sense, and it is perfectly consistent with the fact that the
resulting accuracies are still acceptable.

As Tab. IX and Tab. X show, both horizons chosen after the
execution of the implemented evolutionary algorithm behave
much better than other possible horizons, and better than the
data set obtained by static data only.

V. CONCLUSIONS

Being able to consistently predict the intention of a student
to abandon the course of studies in which he or she has
enrolled is very important for educators. In some European
university systems, it has also some economical value, as
public founding depends, among many other parameters, on
the rate of success of students that decide to enroll. In the

recent literature many different models have been proposed.
Some of them are based on classical static descriptors, such
as the gender or the age of a student, and try to identify the
reasons behind the success or the failure of students; some
other proposed solutions include psychological and attitude
tests to be administered to the students at some stage. We
have proposed an optimization model that allows us to identify
the earliest possible moment in which a reliable prediction
is possible, and showed that a prediction model can be built
that is not gender-, or age-biased, but it is based solely on
the performances of the student. We tested our methodology
with real data from the Degree in Computer Science of the
University of Ferrara (Italy). In particular, we have been able
to build two prediction models. In the first one, the career of
a student is analyzed after two semesters, and the accuracy in
predicting his/her intention of dropping out ranges from 74%
to 77%. In the second one, the career is analyzed after four
semesters, and the accuracy of the prediction ranges between
78% and 83%. Therefore, we have proved that our system
allows one to build a prediction model with a sufficiently
high accuracy, but, at the same time, is able to predict the
intention of dropping out early enough in the academic career
so that some kind of corrective action can be attempted.
In our knowledge, this is the first proposal of a temporal
optimization model for academic success prediction. As it has
been designed, our system can be seamlessly implemented in a
university data warehouse. After an initial phase in which the
model is optimized and a specific horizon is chosen for every
specific degree of studies, the classifier can be transformed in
an algorithm that simply checks, periodically, every student
at the horizon time. Since we have decided that the outcome
prediction is reliable enough at that moment, we can program
the system to alert the university’s administration if a student
is classified as being at risk of dropping out. Simple corrective
actions can be started at that point, that range from offering
counseling to the student to proposing personalized tutoring.

There are two outstanding tasks at this point. First, we
would like to test our systems for other courses of studies
and other university systems, in order to verify that the model
is adaptable. Second, we would like to build a prototype that
verifies the realizability of a early alert system as the one
described above. Both research directions are currently being
explored.
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horizon 1 random 1 random 2 random 3 random 4 random 5 static data
decision tree 0.68 0.68 0.68 0.62 0.69 0.67 0.53
random forest 0.69 0.68 0.67 0.62 0.68 0.67 0.48
logistic regr. 0.72 0.68 0.67 0.65 0.63 0.63 0.51
support vect. m. 0.72 0.68 0.68 0.65 0.69 0.67 0.52
multi-layer perc. 0.71 0.68 0.67 0.64 0.69 0.69 0.49
deep learning 0.72 0.68 0.66 0.63 0.63 0.63 0.51

TABLE IX
TWO-TAILED, PAIRED T-TEST CORRECTED, WITH CONFIDENCE 0.05, FOR horizon 1, MEASURING THE ACCURACY.

horizon 2 random 6 random 7 random 8 random 9 random 10 static data
decision tree 0.74 0.61 0.66 0.63 0.67 0.57 0.53
random forest 0.73 0.61 0.66 0.65 0.67 0.57 0.48
logistic regr. 0.73 0.61 0.66 0.66 0.67 0.58 0.51
support vect. m. 0.72 0.61 0.66 0.66 0.67 0.58 0.52
multi-layer perc. 0.72 0.61 0.66 0.66 0.67 0.59 0.49
deep learning 0.73 0.61 0.66 0.66 0.67 0.59 0.51

TABLE X
TWO-TAILED, PAIRED T-TEST CORRECTED, WITH CONFIDENCE 0.05, FOR horizon 2, MEASURING THE ACCURACY.

University of Ferrara project FIR 2017: Academic Success
and Abandoning Rate Prediction in the Degree in Computer
Science of the University of Ferrara (Italy).
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[24] F. Jiménez and J. Verdegay, Evolutionary Computation and Mathemat-

ical Programming. Springer, 2001, pp. 167–182.
[25] A. Olsson, Particle Swarm Optimization: Theory, Techniques and Ap-

plications. Nova Science Publishers, 2011.
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