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Abstract: This paper proposes a three-layer model to find the optimal routing of an underground1

electrical distribution system, employing the PRIM algorithm as graph search heuristic. In the2

algorithm, the first layer handles transformer allocation and medium voltage network routing, the3

second layer deploys the low voltage network routing and transformer sizing, while the third presents4

a method to allocate distributed energy resources in an electric distribution system. The proposed5

algorithm routes an electrical distribution network in a georeferenced area, taking into account the6

characteristics of the terrain, such as streets or intersections, and scenarios without squared streets.7

Moreover, the algorithm copes with scalability characteristics, allowing the addition of loads in the8

time. The model analysis discoveries that the algorithm reaches a node connectivity of 100%, satisfies9

the planned distance constraints, and accomplishes the optimal solution of underground routing in a10

distribution electrical network applied in a georeferenced area. Simulating the electrical distribution11

network tests that the voltage drop is less than 2 % in the farthest node.12

Keywords: Electrical Distribution System; Graph Theory; Micro grids; Heuristic; Optimization;13

Planning14

1. Introduction15

The unpredictable increasing in electricity demand has made challenging the design and planning16

of any electrical system in transmission or distribution level. The population growth, migration and17

city planning had reduced the performance of the Electric Distribution Systems (EDS) in large cities,18

especially in third world countries. The main reason for that is the conventional deployed EDS was19

designed without formal considerations of planning or projected demand. Consequently, the regular20

EDS are mainly unplanned and the electricity service throughout the networks are unsatisfactory with21

problems in the entire system for instance reliability, and stability.22

Electricity transportation seriously concerns designers due to the large distance from generation to the23

final customer. Conversely, the generation in MG with DER is close to end-user or is in the same LV24

network, therefore avoiding the power transmission [1]. Biomass, solar or wind power, and small25

hydro generators are some examples of DERs. Through those alternatives are boosting the local26

generation, increasing the continuous electrical service, decreasing the fossil fuel dependency and can27

be achieved a clean ecosystem by reducing emissions [2–4].28

Nowadays, modern EDS must satisfy optimization, security, reliability, and energy efficiency29

requirements, which are considered as fundamental requirements in the design and implementation30

Submitted to Journal Not Specified, pages 1 – 20 www.mdpi.com/journal/notspecified



2 of 20

process. For instance, Micro Grid (MG) is the integration of optimal EDS with Distribute Energy31

Resources (DER). In order to implement a Smart Grid (SG), firstly the EDS should reach security32

and, reliability requirement via technical planning. Moreover, the EDS must be optimal and33

technically adequate because the end customer is close to that system, and due to its investment cost is34

considerable compared to the entire network [5–7].35

Furthermore, DERs are a promising solution for the implementation of Low Carbon (LC) Technologies36

in a conventional electrical system. Considering that the power generation industry is a considerable37

source of CO2, therefore a growing number of EDS has connected to DER in order to follow the38

LC policies [8]. The LC policies suggest countries adopt clear and measurable objectives to reduce39

emissions. There are some research, which proposes an acceptable level of reduction, it is the case of40

[9], which proposed a model to reduce 80% of CO2 emissions taking as based line 1990, and introduced41

the implementation of mitigation technologies, including DER in EDS.42

The Figure 1 shows the percentages contributions of each technology in the reduction of emissions.43

Special attention is focused on the electricity decarbonisation, smart growth and rooftop PV. The44

first technology is mainly the integration of renewable energy, which is composed of 90% CO2 free45

technologies. The second involves the optimal planning of EDS and the transportation systems. The46

third constitutes of rooftop PV implementation in residential and commercial buildings considering47

10% of electricity demand should be reduced by the implementation of rooftop PV [9] .48

49

Figure 1. Percentage of CO2 reduction contribution of DER implemented in a EDS [9].

The mathematical model proposes in this paper achieve the entire connectivity, in order to cope50

with this objective the minimum expansion tree algorithm was applied, and the radial topology of a51

georeferenced EDS was obtained. By this methodology, the power balance in the network is achieved52

automatically and guaranteed, as well as, the scalability, including the case whether further residential53

or industrial loads would be connected to the system. The model performance test was developed in a54

Geographic Information System (GIS), where all the elements of the network are represented as nodes.55

Aside from the map information like streets, roads, and natural features, this representation includes56

homes, LV transformers and substations of the selected region.57

Several researchers have developed models to find the best topology for an optimal EDS planning. For58

instance, [10] is one of the first to have presented a detailed overview of expansion planning models,59

compared the different mathematical techniques describing the objective functions, constraints, the60

programming technique, and the pros and cons associated with the model. On the other hand, the61



3 of 20

approach is commonly used in wireless communication, Inga et al. [6,7,11,12] proposed a hybrid62

wireless mesh network infrastructure considering a multi-hop system which is planned for electric63

consumption metering in a metropolitan area network, thereby performing an advanced metering64

infrastructure for use in MG.65

Lavorato et al. [13] proposed a critical analysis to integrate the radially as a constraint in an66

optimization model of an EDS, and [14] proposed a mathematical procedure for modelling the radial67

networks. Both studies recognize that the radially constraint is a heavy burden to implement in68

any model. Other researches have proposed that the problem can be solved using a combination69

of algorithms, including heuristics to find a good initial solution and then apply the result to a70

deterministic mathematical optimization, [14]. In [15–18] proposed implementation of Minimal71

Spanning Tree (MST) to minimize the energy supplied by Medium voltage (MV) in an EDS. In [15]72

algorithm allowed graphing compression, leading to savings in computing time. [19] also tackled the73

active power loss minimizing problem using MST.74

The optimization algorithm for determining the route for MV feeders was developed using simulated75

annealing algorithm in [20], who proposed a three stages methodology. Additionally, researchers76

in [21] describe a heuristic with the objective of minimizing the loss of power applying EDS77

reconfiguration. [22] used the complex network analysis and graph theory to explain the properties78

and exposed the mathematical representation of the electrical topology that are implemented in the79

real EDSs. In [23] describes the network design problem using the cooperative Tabu research that is80

the first level of the capacitated multicommodity. [24] proposed a model, using the adapted genetic81

algorithm, to minimize the voltage drop in distribution transformers, considering size, quantity, and82

siting.83

There are several heuristics methods that can be used to solve an optimisation problem, in the84

paper [25] a scheme is explained the pros and cons of the "best solvers", based on the analysis of a85

considerable amount of articles. The efficiency and closeness to the global optimum solution of some86

heuristic solvers are tested in [26], where implemented a Home Energy Management solved through87

five heuristic algorithms.88

The heuristics methods applied GIS are investigated in several technological areas, for instance,89

the introduction of more flexible technologies in urban areas [27]. Whilst, [28] and [29] study the90

DER penetration in an implemented photo-voltaic systems. The problem in [30] is solved through a91

modified Particle Swarm Optimization (PSO), which included a new mutation method to improve92

the global searching thereby avoiding the local optimum. In [31] applied the local search heuristics93

representing the EDS as a spanning forest problem. The proposed algorithms are based on the research94

of the shortest spanning sub tree and connection network, originally proposed by [32,33].95

Based on the extensive bibliographic research, a model of DER planning with MG integration deployed96

in a GIS is hardly resolved by linear programming, because it implies a large computational time due97

to the complexity and the massive amount of involved variables. The proposed problem represents98

a combinatorial problem, which includes the routing cost minimization as objective function and99

constraints of connectivity, radial, distance and voltage profiles. In conclusion, the problem is100

NP-Complete and as a result, lacks a globally optimal solution [30].101

For the reasons exposed above, the raised problem is not trivial and it must be solved applying102

heuristic models. The solution of the mathematical model of the EDS planning is proposed as a routing103

problem which is approached through a complex network analysis and graph theory [34]. Hence, it is104

necessary to perform a heuristic model that can reach a near optimal solution or sub-optimal solution.105

The present paper presents a mathematical model that applied graph theory as multi-layer algorithm;106

one of them addresses the problem of routing of Medium Voltage (MV), the second the Low Voltage107

(LV) network, and the third allocate the DER in the EDS.108

The remainder of this article is organised as follow, in the 2 the problem formulation is presented, the109

simulation results are presented in section 3. Finally, in section 4 the conclusions, recommendations110
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and future works.111

112

2. Problem Formulation113

The Optimal Routing of Electrical Distribution Networks is defined as a NP-complete problem, to114

deal with it is used a heuristic model. The model is divided into three algorithms, the algorithm 1115

solves the problem in MV network, while the algorithm 2 works with the resolution in LV network,116

and the algorithm 3 determines the allocation of the rooftop PV in the scenario. In the Table 1 are117

presented the variables used in the model.118

119

Table 1. Parameters and variables

Nomenclature Description

X Latitude element coordinate point or points
Y Longitude element coordinate point or points
ij Point to point search variables

Xs,Ys Residential customer location
Xnp,Ynp Street nearest point to any customer
Xse,Yse Substation location
Xbe,Ybe Streets intersection or candidate sites location
Xtr,Ytr MV to LV transformer final location

XLst,YLst Member Points of L street
SH End user location
Ind Optimal transformer index
N Number of residential customers
M Number of LV transformers
S Number of substations
P Total Number of subscribers N+M+S

demNN Individual customer demand
demMM Individual LV transformer demand

G PxP connectivity matrix
dist PxP distance matrix

distN Distance from N customer to corresponding transformer
Cap Number capacity constraint for all LV transformer
R Distance constraint (m) for all LV connections

Path Network connectivity route
Pred Association end-user transformer
PVs PV amount in the network
PVC PV rooftop location
PVP PV power assignation

C Total customer connectivity in percentage
CostMV Total distance (m) cost of designed LV network
CostLVM Distance (m) cost of M tranformer
CostLV Total distance (m) cost of desgined low voltage network
CompE Computational cost (seg) for each experiment

i,j,k Counter variables for control loops
flag,used,z Temporal variables
Loc1, Loc2 Temporal variables

The mathematical model accomplishes in the algorithm are represented by the next equation120

exposed below. The objective function 1 finds the minimum length of path feeder, where C is the cost121

of distances and X represents the activation or deactivation in each node connections. The equations 2122

and 3 represent the radial nature for the network where the numbers of connections must be n-1, n is123

the number of nodes. Finally, the equation 4 demonstrates that the connections have two states, like 0124
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or 1, whether there is disconnections or connection, respectively.125

126

Minimize ∑
ij∈E

CijXij (1)

Subject to ∑
ij∈E

Xij = n− 1 (2)

∑
ij∈E:i∈S,j∈S

Xij ≤ |S| − 1 ∀S ⊆ V (3)

Xij ∈ {0, 1} ∀ij ∈ E (4)

The algorithm 1 has five steps. The first declares the variables, distance R and the capacity127

number Cap restriction, to zero or receives the georeference information from map, including the128

latitude and longitude of end-user, candidate sites and substation location. The information was taken129

from an OpenStreetMap (OSM) file, including the georeferenced information about the houses’ shape,130

main routes, streets, public spaces, and more. The step 2 determines the optimal transformer selection131

using prim algorithm, which returns the number and transformer index of optimal configuration.132

The step 3 is responsible to find the nearest street point to customer, it is done tough the distance133

calculation of each end-user to the each constituted point street, and determining the closest point134

to each home, this solution has the same number as end existing users. The fourth step searches135

the optimal routing of MV grid, which used the haversine distance calculation to determine the136

distance between all elements in the network, after that, the connectivity matrix is calculated with the137

model restrictions, next the prim minimal spanning tree is applied to find the minimum rout. the138

fifth step determine the cost, that correspondent to the total distance of the elements of theMV network.139

140
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Algorithm 1 Optimal location and routing a MV grid network

1: procedure

2: Step: 1 Variables
3: P, distN, X,Y,Cap, R
4: Step: 2 Optimal transformer selection
5: used ← prim(X,Y);
6: Ind ← f ind(sum(used) == 1);
7: Xtr ← Xbe(Ind);
8: Ytr ← Ybe(Ind);
9: Step: 3 Find nearest street point to customer

10: Loc1← [XsYs];
11: Loc2← [XLstYLst];
12: for i → 1 : N do

13: for j → 1 : length(XLst) do

14: disti,j ← haversine(Loc1, Loc2);
15: z ← f ind(disti,j == min(min(disti,j)));
16: EndFor
17: EndFor
18: Xnp ← Loc2(z, 1);
19: Ynp ← Loc2(z, 2);
20: Step: 4 Optimal Routing MV grid
21: X ← [XnpXtrXse];
22: Y ← [YnpYtrYse];
23: disti,j = haversine(X,Y);
24: G(disti,j <= R)← 1;
25: path ← primmst(sparse(G));
26: Step: 5 Determine the final cost of MV
27: for i → 1 : length(X) do

28: for j → 1 : length(X) do

29: costMV ← costMV + disti,j(path);
30: EndFor
31: EndFor
32: End procedure

The algorithm 2 determines the optimal routing of the LV grid network, which approaches the141

problem dividing the network in pieces of the transformer that serves to the end user customer. The142

solution is proposes in 5 steps as follow. Step 1 is similar as the algorithm 1 and aim the initialization or143

complete the needed information. The step 2 determines the distance between each end user with all144

solution transformer of algorithm 1. After that, the connectivity matrix is calculated, which considers145

the connectivity between the transformer and the substation is already done, and the connection from146

the substation to end-user is non available. Step 3 implement the dijkstra algorithm calculation, which147

find the optimal LV connections. Step 4 calculates the optimal rout of the corresponded elements to148

the transformer, the step individually considers the LV connections. Finally, the step 5 calculates the149

final cost that correspond with the final distance of conductor in LV network.150

151
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Algorithm 2 Optimal routing a LV grid network

1: procedure

2: Step: 1 Variables
3: P, distN, X,Y,Cap, R
4: Step: 2 Determine the distance end user, transformer
5: disti,j = haversine(X,Y);
6: G(disti,j <= R)← 1;
7: G(1 : N, N + M + 1 : N + M + S)← in f ;
8: G(N + M + 1 : N + M + S, 1 : N)← in f ;
9: G(N + 1 : N + M + S, N + 1 : N + M + S)← in f ;

10: Step: 3 Applying Dijkstra
11: Pred ← dijkstra(G, P);
12: Step: 4 Optimal Routing LV grid
13: for Trans → 1 : N do

14: X ← [Xnp(Pred)XTrans];
15: Y ← [Ynp(Pred)YTrans];
16: disti,j = haversine(X,Y);
17: G(disti,j <= R)← 1;
18: path ← primmst(sparse(G));
19: EndFor
20: Step: 5 Determine the final cost of LV
21: for i → 1 : length(X) do

22: for j → 1 : length(X) do

23: costLV ← costLV + disti,j(path);
24: EndFor
25: EndFor
26: End procedure

Finally, the algorithm 3 allows to determine allocation of the rooftop photo-voltaic panels in the152

houses, the houses percentage chosen is 10 %, based in the contribution of PV in MG. The algorithm153

gather, in the step 1, the end user coordinates in one array, after the PV amount is determining with154

the researched criteria and is stored in PVs, in the step 2. In the step 3 the center of mass is calculated155

though kmedoids algorithm, the scenario is divided into PVs variable clusters. In the step 4, the156

electrical power is assigned for each end user, the power for each rooftop is 10KV, the same for all the157

scenario.158

Algorithm 3 Allocation of DER PV generator

1: procedure

2: Step: 1 Inizialization
3: X ← [Xs];
4: Y ← [Ys];
5: SH ← [XY];
6: Step: 2 Determining PV amount
7: PVs ← f loor(length(SH) ∗ 0.1);
8: Step: 3 Determining the center of mass
9: PVC ← kmedoids(SH, PVs);

10: Step: 4 Power assignation
11: PVP ← 10KV;
12: End procedure



8 of 20

Start

Input Georeferenced 
Scenario

Algorithm 1

Has converge?

Algorithm 2

Has converge?

Algorithm 3

Show the results of 
optimization

End of Process

YES

YES

NO

NO

Figure 2. The flowchart of the ordinal interaction of the three algorithms proposed for the authors

3. Analysis of Results159

The case study is part of the EDS of the area of Tytherington in the north of Macclesfield in160

Cheshire, England. The limits in longitude in the present study are -2.1360 to -2.1270, meanwhile, the161

latitude starts from 53.2730 to 53.2810, the total area is 1.15 Km2. In the scenario, there are 813 loads162

with a total power of 5.4 MW. The presented model deploys the EDS, including the network planning163

expansion. Therefore, the model designs an efficient and reliable EDS, with the lowest investment cost.164

The network planning expansion allows to use the initial configuration and expanding the EDS with a165

short and medium time period. The model was developed with the algorithms one and two presented166

below, which was implemented in Matlab.167

In the Table 2 are presented the simulation parameters used in the implementation. The selected area168

has a density of 700 end users per kilometer square, which is considered lower in comparison with the169

average density in the cities in Europe. The deployment requires a maximum distance of 100 meters170

from an end user to transformer, with a coverage of 100 % in the entire network. The installation type171

in both networks is under grounded and the configuration is radial in order to accomplish with the172

EDS requirements. The number of main feeders from the substation is one. Whilst, the voltage in the173

MV installation, between the substation and the transformers, is 11 KV, and the LV network voltage is174

400V. Finally, the concentrated load is balanced in all the experimental procedure.175

The studied georeferenced scenario is shown in figure 2. First, in order to analyze the designed176

network performance, the scenario was divided into six different clusters, the homes in the same177

cluster were outlining with the same colors. The division by clusters was made with the K-medoids178

algorithm, but any clustering algorithm could be used. The clusters are numbered from 1 to 6 in179
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Table 2. Parameter of Model Simulation Model

Item Parameter Value

Density 700 per square kilometer
End user information Amount in study 813 in all study

Location Georeference
Deployment Max transformer distance 100 meters

MV Network transformer coverage 100 %
LV Network end users coverage 100 %

Installation type Undergrounded
Network configuration Radial

MV network parameters Number of primary feeders number 1
Voltage level 11 KV

Total power demand 5.4 MVA
Installation type Undergrounded

LV network parameters Network configuration Radial
Voltage level 400 V

Concentrated load balanced

clockwise, starting with the left upper with the number 1 and the located in the middle left is the 6.180

The power consumption of each home depends on the cluster membership, in the cluster 1 the average181

consumption is 300 KVA, whilst the average power in the cluster 2 is 400 KVA and the houses of182

cluster 6 the consumption is 800 KVA, correspondingly. The power assignment is random normally183

distributed, depending on the cluster membership.184

The substation location is aleatory, where must exist enough space for the implementation of this185

building. It can be changed, and the optimum substation allocation is proposed for future work.186

The transformer candidate sites are shown in the graph as well. These sites are called manhole or187

checkup points. To find these points are considered all the corners or bifurcation points in any street,188

in total there are 314 checkup points. These points are the input of the prim algorithm with the desired189

maximum distance, therefore the prim algorithm output is the final transformer allocation.190

A constraint in the model is the maximum distance between the end user and their corresponding LV191

transformer. The distance restriction is an input parameter in the prim algorithm, that decided the192

final transformer allocation. Thus, based on this distance parameter two scenarios are proposed, the193

first scene takes the restriction of 80 meters and the second 100 meters, and are called A and B scenario,194

correspondingly.195

196
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Figure 3. Studied scenario with the transformer candidate cites and substation localization. The end
user power consumption is represent with different colors depending on the cluster.

The optimization applying graph theory is based on the connectivity matrix. The connectivity197

matrix of the presented A scenario is shown in figure 3, where is seen a symmetrical square matrix of198

N+M+S elements. Where N is the number of end users, M is the number of activated transformers and199

S is the substations number. In order to find the connectivity matrix, the distance matrix is calculated,200

which shows in the graph represents the distance between homes to homes, homes to transformers,201

homes to the substation and finally transformers to the substation. The color in the matrix represents202

the distance, for instance, a dark color means a closer distance compared with a light color. Moreover,203

the white dots illustrates the possible connections between nodes, the white dots are located whether204

the restriction distance is accomplished. The number nz in the bottom of the figure is 8426, that205

represents the number of total connections in the studied scenario. There are two extreme fringes in206

the figure, the right and the bottom one, those fringes represent the connection between transformers207

and end users, notice that the form of the fringes changed respect from rest of the figure, mainly there208

are more white dots that means the higher connection possibility between transformers and end users,209

it is due the optimal transformer allocation. Besides, the principal diagonal consideration must be210

considered, because it represents the distance between the same node, and it must be changed for a211

greater distance in order to do not obtain erroneous model results.212

213
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Figure 4. Distance and connectivity matrix of A scenario.

The obtained result with the algorithm 1 is the sub optimal MV network routing of A scenario is214

shown in figure 4, which was generated with a distance constraint of 80 meters and a connectivity of215

100%. In this scenario, there are 76 transformers located in the candidate sites using the prim algorithm.216

Therefore, the distance and connectivity constraints are accomplished through the transformers217

location. Moreover, initially, the MV network route origins in the substation and by means of one218

feeder deliveries power to all the MV transformers. The planned routing is radial, following the routes219

of the streets, consequently, the MV network can be implemented as an underground network. The220

MV network length is 14.05 kilometers, connected by one conductor all the transformers through MST.221

The planned routing is an alternative method for resilience network in order to the designer can be222

planned optional routes in case of adverse operating conditions, this topic is proposed as future work.223

The scenario B is shown in figure 5, which was generated with a distance and connectivity constraints224

of 100 meters and 100%, correspondingly. In the present scenario, there are 55 transformers located225

in the candidate sites, accomplishing the desired constraints. As well as the previous scenario, the226

planned routing is radial, following the routes of the streets, consequently, the MV network can be227

implemented as an underground network. The MV network length is 12.15 kilometers, connected228

by one conductor all the transformers through MST. In B scenario, there are 21 transformers and229

2 kilometers of conductor less than the last analyzed scenario. However, those savings affects the230

LV distribution network design because the reduction in the transformers amount represents the231

overloading of them. Moreover, the transformers power capacity must be raised by reason of the232

corresponding demand will the higher. Under those circumstances, the scenario A henceforth will be233

called as the suboptimal solution of the presented model. The presented results in Table 3 compared234

the data obtained from those A and B scenario.235

236
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Figure 5. Sub optimal Routing of MV Network. Scenario A.
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Figure 6. Sub optimal Routing of MV Network. Scenario B.

The LV network was designed through algorithm 2, optimal routing an LV grid network,237

explained in the sections below. The obtained result is presented in figure 6, there is shown the238

georeferenced scenario with LV network implementation and irregular polygons sketched in the graph,239

delimiting the transformers area of service. The end users with 100 % connectivity are connected to240

the LV network through the operator service cable. Those cables connect the home nearest point to241

the corresponding nearest street point, this calculation is included in the model. The distance in the242

LV network included the length from house to the street and from that point down the street to the243

transformer. The model for the LV network design is subject to the application of distance restriction.244

The connection representation between the transformer with their end users are shown in the figure245

through the irregular polygons, those indicate the service area of each activated transformer. The246

mentioned polygons gather the elements belonging of the individual LV EDS, the transformer247

normally is inside the polygon, but can be in the edge, the polygon join all the connection house points248

including the transformer. Whether the transformer does not belong to any polygon, it means that it249

just delivery power to one end user, normally the closest one. There are some houses in the study that250

are not considered as nodes of the network, especially they are located within the map end limits. The251

end users connect to the corresponding transformer via under grounded electrical installation.252

253
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Figure 7. Suboptimal LV Network Routing. Transformer correspondence with end users.

The result implementation of algorithm 3 is shown in the figure 7, the allocation of rooftop PV254

is . All the PV panels have a power of 10 KVA. The percentage of houses with PV panels are the 10255

% of all the scenario, in total are 79 houses, with a total power of 790 KV. As a result, the rooftop PV256

panels contribute to the 14.5% to the total power deman. Notice, that the distribution of the rooftop257

PV are in all the maps, showing the practical allocation of the PV panels. The PV will reduce the258

power consumption of the power delivered from the substation in approximately the 10 %. The MV259

transformer should be bidirectional for the implementation. And the design should planned the260

protection and control of the network.261
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Figure 8. PV rooftop on Distributed generation, considering the 10% of end users.

The results of the three algorithms together are shown in the figure 8, where is displayed two262

bar graphs. The first shows the power in [KVA] compared with the corresponding transformer. The263

lower bar is the transformer power consumption, the red one is the power contribution of the installed264

rooftop PV and the upper bar indicates the assigned MV transformer, having an integer power value265

for sizing the transformer to be installed. The average power consumption of the 76 transformers266

are 71.6 [KVA], the maximum value is 280 [KVA] The second, while the lower assigned transformer267

is 10 [KVA]. The second graph considers the number of end users connected to each transformer,268

where the maximum number is 32 end users, and the minimum is 1 end users, the average is 11269

connected end users to each transformer. It is demonstrated that exists a direct relationship between270

the number of transformers and the end user, however, this is not totally linear. As a result, the271

proposed model allows to planning an MV and LV network in a georeferenced area, maintaining272

under defined constraints or technical specifications with the minimal cost. The figure 9 represents the273

transformers assignation according to the closest integer transformer power, there are 9 transformers274

of 10 [KVA], 4 of 20 [KVA]. The higher number of transformers is 10 transformers with a power of 80275

[KVA]. While the transformers of 120 [KVA] and 170 [KVA] are the less with 1 transformer per each276

one. There are two transformers of high power assigned with 280 [KVA], this demonstrate that there277

are sites in the scenario with high density, this characteristic is specific of the transformers 30 and 39.278

The achieved model results were tested in an electrical simulation software the implementation279

is presented in the figure 10, while the model results are summarized in Table 3. Comparing the280

scenario A and B the maximum distance constraint specification between whichever end user to the281

corresponding transformer is 80 and 100, to the scenario A and B. The coverage is 100% and the % of282

drop voltage is less than 2% for both scenarios. The number of activated transformers for the scenario283

a is 76 with an MV grid length of 14.05 [Km], thus the average transformer distance to the user is 33284

[m]. Compared with the scenario B, which has 55 transformers with a MV grid length of 12.15%, but285
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Table 3. Implemented Results

Specification Scenario A Scenario B

Max distance model constraint [m] 80 100
MV and LV Coverage [%] 100 100

Distribution transformers [number] 76 55
MV grid length [Km] 14.05 12.15
Voltage drop in [%] Max. 2% Max. 2%

LV Transformer to end user average distance [m] 33m 40m

the distance of the transformer to the end user is 40 [m], higher than the case A. Finally, for this reasons286

the scenario A was selected for the sub-optimum scenario and the selected design to be implemented.287

The implementation in an electrical is presented in the 11, the 76 transformers are in the resulting288

location that the algorithm has calculated. The simulation was development taking on account the real289

distance of the feeders. As result, the electrical analysis is close to the real implementation. Moreover,290

in the 12 is shown the the End user voltage compared in terms of distance from the sources, where it291

can see that the farthest have the higher drop voltage, but they are less than the 2% compared with the292

source.293
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Figure 9. Obtained model results, power consumption and end users for each MV transformer. Cite:
Author
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Figure 11. The implemented MV network applied in electrical simulation software.
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Figure 12. End user Voltage [V] compared in terms of Distance from the source [m]

4. Conclusions and Future Works294

This paper proposed a heuristic algorithm based model to solve the routing underground295

electrical networks problem in a georeferenced area. The model proposed of a three layered algorithm;296

the first handles transformer allocation and routing of MV network, the second algorithm works297

out the LV network and transformer sizing and the third presents a method to allocate DER in an298

EDS. In this research, an array of rooftop photovoltaic panels with a specific criteria was allocated.299

The modelled networks were implemented in an electrical simulation software to demonstrate the300

feasibility of the proposed topology.301

The proposed algorithm is capable of routing a network in a georeferenced area, taking into account302

the characteristics of the terrain, such as streets or intersections, including scenarios without squared303

streets. The modelled network achieves distance, and end user number constraints.304

The suboptimal routing underground electrical networks were obtained, minimizing the305

implementation cost and maximizing the quality of electrical services and the reliability in306

the network, with a farthest node voltage drop of maximum 2 %. The MV grid length of 14.05 [Km],307

with 76 activated transformers as a total number, an average of 71.6 [KVA] and 11 connected end users.308

While the allocated rooftop PV panels contribute of 14.5% of the total demand of the network.309

The optimum substation allocation and an alternative method for resilience network design in order310

to accommodate optional routes in case of adverse operating conditions, the application of control311

techniques and electrical protection in the EDS and the integration of the demand curve in the312

implementation of PV generation are proposed as future work.313

314
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