
Universitá degli studi di Ferrara

DOTTORATO DI RICERCA IN SCIENZE DELL’INGEGNERIA

Ciclo XXVIII

Coordinatore: Prof. Stefano Trillo
Settore Scientifico Disciplinare: ING-INF/01

Solid State Drives:

design challenges for optimum

performance-reliability trade-off

Relatore Dottorando

Prof. Olivo Piero Zuolo Lorenzo

Correlatore

Dott. Zambelli Cristian

Anni 2012/2015

Universitá degli studi di Ferrara

DOTTORATO DI RICERCA IN SCIENZE DELL’INGEGNERIA

Ciclo XXVIII

Coordinatore: Prof. Stefano Trillo
Settore Scientifico Disciplinare: ING-INF/01

Solid State Drives:

design challenges for optimum

performance-reliability trade-off

Relatore Dottorando

Prof. Olivo Piero Zuolo Lorenzo

Correlatore

Dott. Zambelli Cristian

Anni 2012/2015

Alla mia famiglia e in particolar modo a mio padre,
per aver creduto in me anche durante i momenti di dubbio e sconforto.

Al Prof. Piero Olivo e al Dott. Cristian Zambelli,
per avermi sempre sostenuto e aiutato durante il lavoro di ricerca.

All Ing. Rino Micheloni,
per avermi aiutato a contestualizzare questo lavoro nel panorama

industriale.

Al Prof. Davide Bertozzi,
per avermi insegnato a meravigliarmi e a stupirmi sempre.

Introduction

Solid State Drives (SSDs) are one of the electronic systems with the higher
development rate in the last decade: they are widely used in hyperscale
systems such as cloud computing and big data servers, where performance is
a constraint, as well as in consumer electronics by replacing traditional Hard
Disk Drives (HDD).

Figure 1: Ways of NAND flash memories disruption.

SSDs’ design, in the last 5 years, faced an extraordinary evolution caused
by the continuous development of NAND Flash memories representing their
storage medium. With this respect, as shown in Fig. 1, NAND flash memo-
ries have completely transformed the way information is processed and stored.
Starting as film and tape replacement for cameras and voice recorders, NAND
flash memories rapidly superseded traditional magnetic storage supports and
now they represent an obliged choice for high-performance storage solutions.
The availability of NAND flash-based SSDs materialized, in the last 5 years,

5

as an astonishing proliferation of global-scaled Corporations whose commer-
cial strength is tightly coupled to an innovative SSD design methodology
thought for big data centers and cloud computing.
The previous developing strategy of SSDs, in fact, was based on a full com-
patibility with HDD and therefore the SSD’s performance optimization was
focused on that of the Flash Translation Layer (FTL), the firmware managing
the basic memory operations. This approach was made possible by the use of
sufficiently reliable Single Levels Cells (SLC) NAND memories, storing a sin-
gle bit per cell in the traditional 0/1 digital paradigm, with a low read error
probability, thus requiring the design of simple engines for Error Correction
Codes (ECC). The SATA protocol interfacing the memory system and the
host was sufficient to guarantee the requested Quality of Service (QoS), that
is the ability of keeping a sustained performance over time within a defined
threshold.
As a whole, the SSD architecture optimization and the development of ded-
icated CAD tools for the SSD design space explorations were FTL-oriented,
in a Top-Down approach.

In the last few years, on the contrary, the need for SSDs with higher
and higher storage capacities and performance joined to the availability of
high density NAND Flash memories able to store 2 or even 3 bits in a single
cell, moved the design paradigm from a Top-Down to a Bottom-Up approach
where the performance and the reliability of the storage media dictate the
design constraints.
NAND Flash memories with scaled technologies, in fact, suffer from several
physical mechanisms able to impact on their reliability figures such as En-
durance, that is the minimum number of Program/Erase (P/E) cycles that
the memory can withstand before leading to a failure, Data Retention, de-
noting the ability of a memory to keep a stored information over time with
no biases applied, and the immunity from Read Disturbs, representing the
stress suffered by a cell when reading neighbor cells.

P/E operations in NAND flash cells rely on charge transport through thin
oxides via Fowler-Nordheim tunneling into/from a storage layer. Electron
tunneling is responsible for a slow, but continuous, oxide wear out causing
undesired charge flowing into/from the storage layer. As the number of P/E
cycles increases, these effects strongly impact on the writing operations. To
counter endurance effects, sophisticated (but slow and power hungry) algo-
rithms are adopted to tightly control the amount of charge transferred in-
to/from the storage layer. However, the relentless oxide degradation strongly
affects the ability of keeping unaltered the charge content into the storage
layers for extremely long times, a mandatory requirement to fulfill the non-
volatile paradigm.

6

These reliability issues become more and more significant in Multi-Level Cells
(MLC) and Triple-Level Cells (TLC) storing 2 and 3 bits per cell, respectively,
where the undesired transfer of a very small amount of charge into/from the
storage layer may alter significantly the memory information content.

The basic parameter characterizing the NAND Flash memory reliability
is the Raw Bit Error Rate (RBER), representing the percentage of erroneous
bits retrieved during a read operation. The knowledge of this parameter,
whose value increases with technology scaling, with the number of bits that
a cell can store, with the number of P/E cycles, with the time elapsed between
two successive read operations, with the number of repeated read operations
on the same memory location, is now the driver for architectural and software
design of present SSDs.

MLC and TLC NAND Flash memories require the availability of an ECC
scheme able to correct the relatively high number of errors detected when
reading the memory. The selection of the ECC code and the design of the
correction engine represent the key point for present SSDs’ design since they
must be carefully calibrated with respect to the figures of merit of the se-
lected non-volatile memories: a too simple ECC scheme may not be able
to guarantee a suitable reliability, whereas a too complex ECC scheme may
reduce severely the read bandwidth because of the time required for error
correction, with a consequent impact also on the system power consumption.
On the basis of the selected ECC code and of the designed ECC engine, the
optimal error reduction algorithms may be identified.

The joint selection of the appropriate NAND Flash memories and the
design of the adequate ECC scheme represent the key point to guarantee a
high QoS for the SSD to be designed.

Once the ECC scheme has been designed, the Bottom-Up design flow
rises to the memory controller, representing the interface towards the ECC
engine and the memory storage system. The read bandwidth provided by the
ECC block must be guaranteed by the controller, to avoid that the design
efforts devoted to optimize the ECC scheme vanish. With this respect, the
SSD controller must be designed in order to manage a sufficient amount of
commands to fully exploit the bandwidth of the underlying storage system.
Similarly, also the interface towards the host must be able to guarantee the
expected read bandwidth. For this reason, SATA protocol is no longer able
to deal with the performance made available the other blocks in the SSD
architecture (MLC NAND Flash memories, ECC engine and SSD controller).

On the basis of this Bottom-Up SSD’s design flow, from an accurate
knowledge of the performance and limits of the selected NAND memories to
the design of a suitable ECC engine and, successively to that of the controller
and of the host interface, also CAD tools for SSD design must follow this

7

Bottom-Up vision while relaxing the efforts previously devoted to the FTL
design.

In this thesis, thanks to a dedicated tool for SSDs design space exploration
which follows the previously mentioned Bottom-Up approach, several aspects
related to the design and the optimization of an SSD architecture will be
presented. With this respect, it will be shown how an SSD works, that is on
the basis of the present technical and economic revolution driven by cloud
storage and big data centers. Readers will get all the elements to understand:

• how to accurately simulate an SSD in terms of bandwidth and latency

• how to efficiently design a NAND flash-based SSD and why its perfor-
mance rapidly decrease with use and time

• why the SSD design has to be changed when emerging non-volatile
memories are considered as the storage medium

Finally, the thesis will speculate on future research opportunities made avail-
able by this work focusing on the simulation of the SSD power consumption
and on the study of flexible an high-performing storage architectures con-
structed from SSDs and Multi Purpose Processing Arrays (MPPA) systems.

8

Contents

1 SSDExplorer: a virtual platform for SSD simulation 11
1.1 Related Works . 13
1.2 SSDExplorer at a glance . 15

1.2.1 Modeling Strategy . 15
1.2.2 Models exploited in SSDExplorer 16

1.3 FTL simulation . 21
1.3.1 Realistic FTL . 21
1.3.2 WAF model . 23
1.3.3 WAF model VS realistic FTL 23

1.4 Performance comparison with real SSD platforms 27
1.4.1 Consumer Device . 27
1.4.2 Enterprise Device . 29

1.5 Simulation Speed . 30

2 Design trade-offs for NAND flash-based SSDs performance 33
2.1 Design for maximum performance 33
2.2 Design for minimum latency 36

2.2.1 The Head-of-Line (HoL) blocking effect 38
2.3 Performance/Reliability trade-off 41

2.3.1 The Read Retry: RR 42
2.3.2 LDPC Soft Decision: SD 52

3 Design trade-offs for RRAM-based SSDs performance 69
3.1 “All-RRAM” SSD configuration 70
3.2 Page size VS queue depth . 72
3.3 Optimum design point exploration of “All-RRAM” SSDs . . . 79

4 Next steps: power efficient SSD architectures and beyond 87
4.1 Assessing SSDs’ power consumption with SSDPower 88

4.1.1 SSDPower Rationale 89
4.1.2 SSD power consumption optimization 95

9

4.2 Accelerating data-intensive applications with MPPAs and SSDs 98
4.2.1 Simulation model . 101

10

Chapter 1

SSDExplorer: a virtual
platform for SSD simulation

Solid State Drives (SSDs) are becoming popular, driven by the restless growth
of high performance and cloud computing [1]. The development of a SSD
architecture implies the analysis of important trade-offs that, if properly
understood, may contribute to tighten the SSD design space, thus reducing
the prototyping effort. Although SSD hardware prototyping platforms may
capture realistic storage system behaviors, they suffer from an intrinsic lack
of flexibility with respect to the available SSD design choices [2].

To tackle this challenge and to identify optimal design points meeting
target performance goals under given cost constraints, the SSD research com-
munity increasingly relies on sophisticated software tools that enable model-
ing and simulation of SSD platforms. Among them, two categories of tools
have been proposed: disk emulation tools [3] in virtual environments [4],
and pure software simulation tools [5]. The former category uses functional
simulation to obtain fast performance evaluation of the SSD in a host en-
vironment. This comes at the cost of constrained design space exploration
capabilities due to the use of abstract simulation models. The latter cate-
gory exploits trace driven simulators obtaining a steady-state performance
analysis of the disk. However, these tools often overlook the macroscopic
performance/reliability implications of some key component parameters or
subtle microarchitecture-level effects. In fact, microarchitectural details are
typically abstracted, thus preventing the analysis of the SSD performance
with respect to its sub-components and their interaction efficiency.

In both categories of tools the common underlying assumption is that
the SSD microarchitectural details that determine the disk behavior have
been already defined. In these tools, the modeling framework pursues other
goals rather than a fine-grained design space exploration (FGDSE) of the

11

microarchitecture, namely performance quantification of a known architec-
ture, full system simulation, and flash translation layer (FTL) validation.
These approaches are in general unsuitable to meet the requirements of a
SSD designer, whose primary need is not the capability to perform func-
tional simulation, but rather to quantify the efficiency of microarchitectural
design choices to cope with long term concerns such as the disk reliability
and wearout-induced performance drop.

Currently there is a gap in the landscape of simulation frameworks for
SSD devices specifically targeting FGDSE. Bridging this gap is mandatory to
avoid the over-design of a SSD architecture when trying to meet a target I/O
performance requirement, to perform a pure reliability assessment or aiming
at a trade-off between the two.

To achieve this goal in this thesis it is proposed SSDExplorer, a software
framework, which complements modeling and simulation capabilities of state-
of-the-art tools targeting the following main innovations:

• Modeling of all components of the SSD architecture, thus broadening
and easing the design space exploration capabilities provided by com-
peting tools. Moreover, a careful choice of the most suitable modeling
abstraction for each SSD component is provided.

• Accounting for the performance implications of the FTL without re-
quiring its full implementation. This is achieved, for high-end SSD
controllers, by supporting the Write Amplification Factor (WAF) ab-
straction [6]. As a consequence, one of the goals of SSDExplorer is to
deliver a fast path for accurate I/O performance quantification.

• Delivering unprecedented insights into the performance equalization within
the SSD architecture. This includes accurate performance breakdowns
and identification of microarchitectural bottlenecks, or unexploited par-
allelisms. Analysis of the interaction efficiency among subcomponents
of a SSD is an essential requirement for microarchitecture design. SS-
DExplorer enables to search for resource-aware design points able to
meet target I/O performance requirements, hence reducing the risk of
costly overdesign.

• Accuracy of the simulated SSD architectures providing results validated
with a mature commercial platform (i.e., OCZ vertex 120GB [7]) and
a state-of-the-art enterprise platform [8].

These features enable a strategic analysis of the SSDs that will be demon-
strated in this paper. Different disk architectures can be compared among

12

each other in an attempt to identify the design point that minimizes resource
consumption while meeting target performance/reliability constraints.

1.1 Related Works

Understanding the behavior of SSDs to reproduce their functionality with
dedicated frameworks is a growing challenge in the research community. Cur-
rently, publications mainly focus on disk emulation [3] and disk trace-driven
simulation software [5, 9, 10, 11, 12, 13, 14].

Yoo et al. [3], propose a disk emulation strategy based on a reconfigurable
framework able to deal with a real SSD. One of the key contributions of this
work is the ability to track the real performance of a host system through a
dynamic manager built around a QEMU virtual platform [4]. However, to
achieve fast performance estimations, several components (i.e., the processor,
the NAND Flash arrays, etc.) are described at a high abstraction level.
Performance fluctuations experienced by these blocks are therefore lost, thus
strongly reducing the performance estimation accuracy.

Moving to SSD trace-driven simulation tools, the open-source frameworks
proposed in [5, 9] allow SSD performance and power consumption evaluation.
Attempts to improve them in order to achieve real performance matching
have also been proposed in [13, 14]. However, these tools are still highly
abstracted, thus providing an insufficient level of simulation accuracy and re-
alistic components description to perform real FGDSE. Moreover, since the
aforementioned classes of frameworks do not model all the internal blocks of
a SSD, they are able to accurately track the behavior of a disk only start-
ing from a set of predefined and statically assigned timings (i.e., the channel
switch delay, the I/O bus latencies, the command scheduler delay, etc.). An
additional attempt to modify one of those tools in order to incorporate de-
tailed NAND and ECC timings has been provided in [15]. Although the accu-
racy of the obtained results in that particular case study is high, those tools
still lack the possibility to evaluate micro-architectural effects on the SSD
performance like commands pipelining or suspension or uncommon queuing
mechanisms, which are visible only if a cycle-accuracy paradigm is pursued.

To overcome this weakness, several cycle-accurate SSD simulators have
been developed. Lee et al. [10] exploit a clock precision simulation for hard-
ware components description. However, it does not allow a full modeling
of all the components building a SSD, thus hiding some of the bottlenecks
affecting the architecture. Other methods for fast simulation have been pro-
posed in [11, 12], but they also suffer from accuracy loss due to the lack of a
complete architectural modeling.

13

Table 1.1: Comparison between SSDExplorer and other SSD characterization
approaches.

Reconfigurable SSDExplorer Emulation
Trace-
driven

Hardware

parameters Platform Platforms Platforms Platforms

Real FTL
√ √ √ √

WAF FTL
√

No No No

Host Interface
performance

√ √
No

√

Real workload
√ √

No
√

Different Host
Interfaces

√
No

√
No

Accurate
DDR timings

√
No No No

Multi DRAM
buffer

√
No No No

Configurable
Channel No

√ √ √
No

Configurable
Target No

√ √ √
No

NAND archi-
tecture

√ √ √
No

Accurate
NAND tim-
ings

√
No No

√

NAND Relia-
bility

√
No No

√

ECC Model
√

No No
√

Interconnect
model

√
No No

√

Core model
√

No No
√

Real firmware
execution

√
No No

√

Multi Core
√

No No No

Model refine-
ment

√
No No No

Simulation
Speed

Variable High High Fixed

14

Hardware platform prototypes have been proposed as well in [2] and [16].
They enable a precise SSD behavior investigation, although their fixed ar-
chitecture severely limits exploration of different design solutions. To this
extent, the sole internal firmware modification is allowed.

What is really missing in all previous works is a clear exploration of the
performance correlation between the host interface capabilities and the non-
volatile memory subsystem involving all intermediate architectural blocks.
Currently, the performance equalization of those chained components is over-
shadowed. Furthermore, since these modeling approaches are not oriented in
the direction of a reliability projection of different SSD architectures, their
usage is merely limited to a coarse functional simulation that may be strongly
unaligned with the industrial needs.

To summarize, Table. 1.1 shows the main characteristics of SSDExplorer
in the context of previous works in this field, by comparing relevant features
of the available simulation frameworks. As it can be seen, SSDExplorer
introduces detailed timings and behavioral models of the critical architectural
blocks (i.e., DRAMs, NAND Flash memories, ECC sub-system, etc.) that
are mandatory for an accurate performance/reliability evaluation. On the
contrary, available state-of-the-art emulation and trace-driven platforms do
not account for those models.

1.2 SSDExplorer at a glance

1.2.1 Modeling Strategy

One of the key concepts that drove the development of SSDExplorer has been
the possibility to experience a unified, reconfigurable and multi-abstraction
simulation environment. To achieve this goal, each block of SSDExplorer has
been written and integrated using the SystemC modeling and simulation en-
vironment [17]. SystemC allows designers to cover, using a single description
language, several model refinement layers ranging from the Timed Functional
level up to the Register Transfer Level (RTL). Thanks to this feature, if a
specific block must be thoroughly investigated, a more accurate model can
be easily developed and plugged into the simulation environment without
changing any other component. However, it is worth highlighting that, since
the simulation speed offered by the SystemC scales inversely to the descrip-
tion level, the abstraction of each model must be wisely selected depending
on the simulator goals in order to the maximize the simulation efficiency.
Although a similar strategy was successfully described for other applications
[18], this approach is devised for the first time in a FGDSE-dedicated SSD

15

simulation tool.
Therefore, SSDExplorer has been designed in order to: i) select the most

suitable modeling style for each SSD component to accurately quantify the
performance; ii) tolerate lack of precise implementations of specific HW/SW
components without affecting the overall accuracy by providing suitable mod-
eling abstractions. From this perspective, in fact, a detailed implementation
of all SSD components might not be available when its architecture design
space is explored. As a consequence of these considerations, it has been cho-
sen to model with a high accuracy all HW/SW components that logically
belong to the SSD control path (i.e., all the blocks involved in the command
manipulation process), whereas components belonging to the datapath (i.e.,
components exploited during the data transfer phase) have been modeled in
terms of the introduced processing/storage delays. This approach is success-
ful both in improving the simulation speed while still capturing subtle micro
architectural effects affecting SSD performance metrics, and in providing a
backbone for FTL functional simulation. Finally, communication among each
model domain is provided through tailored wrappers able to translate logical
signals to state variables without impacting on the simulation framework.

1.2.2 Models exploited in SSDExplorer

Fig. 1.1 shows the SSD architecture template simulated by SSDExplorer.
Three domains can be identified based on the selected modeling abstraction:
Pin-Accurate Cycle-Accurate (PA-CA), Transaction-Level Cycle-Accurate (TL-
CA), and Parametric Time Delay (PTD) models. It has been followed the
terminology in [19] to specify abstraction layers.

Pin-Accurate Cycle-Accurate models

The key components that take part to the management of the data flow
are the CPU, the system interconnect, and the channel/target controller.
All these components are involved in the real execution of the SSD FTL
(if available) or of its abstracted behavior. To this extent, a cycle-accurate
design abstraction is used for modeling these components to accurately cap-
ture commands handled by the SSD and their timings. In such a way, the
firmware overhead in terms of overall performance drop can also be easily
and accurately evaluated.

Cycle-accurate models effectively capture the complete functionality, struc-
ture, communication, and timing of a micro-architectural block. The com-
munication between components is modeled in a PA-CA manner: the hard-
ware signals connecting a component to a bus are explicitly modeled, and

16

Figure 1.1: Default architecture template modeled by the simulator.

all the timing- and protocol-induced delays are captured accurately for the
bus architecture. The components are modeled in a cycle-accurate manner
as well: data processing inside a component is scheduled on a cycle by cycle
basis. Cycle-accurate models are close in structure to RTL models, but still
benefit from the simulation speed-up provided by a high-level modeling and
simulation language.

In SSD Explorer, the pin- and cycle-accuracy are enforced for modeling
the control path, since subtle effects in command handling and/or component
interactions may cause performance deviations that should be highlighted by
a FGDSE tool. Any end user may plug its SystemC models here, reflecting
in-house IP cores. In the early design phases, however, more relaxed bus func-
tional models can be used, limiting cycle accuracy to the bus interfaces and
to the bus architecture itself. This option reduces the simulator capability
in capturing FTL execution overhead, yet not limiting the disk performance
estimation using either coarse or abstracted FTL models.

1. CPU: SSDExplorer can implement any CPU, including both custom IP
cores and advanced multicore architectures given the availability of its PA-
CA model, its proper Instruction Set Simulator, or the actual processor
command back-trace. With this respect, in fact, thanks to the provided
CPU-wrapper users can first test and design with dedicated simulators
a proper CPU on which the FTL can be executed, and than replay on
SSDExplorer the corresponding set of operations. Thanks to this fea-
ture, the programming model offered by the tool is flexible supporting the
inter-operability with state-of-the-art processors simulators such as Gem5
[20] and Open Virtual Platforms [21] and enabling future modeling and

17

analysis activities on the processor role in the SSDs.

2. System Interconnect: SSDExplorer can include the most relevant commu-
nication interfaces used in SSD platforms such as: AMBA AHB, Multi-
Layer AMBA AHB, AMBA AXI (single address lane, multiple data lanes)
and OCP. Custom system interconnects can also be plugged into the sim-
ulator provided the availability of their PA-CA models.

3. Channel/Target Controller: to perform read/write operations on the NAND
Flash memory arrays, it is mandatory to introduce a controller deputed
to formatting commands issued by the CPU with a proper protocol. The
Open NAND Flash Interface (ONFI) [22] standard has been exploited for
the NAND memory arrays. From an architectural point of view, the chan-
nel/target controller is composed of five macro blocks: a slave program
port on the system interconnect, a Push-Pull DMA controller, a SRAM
cache buffer, an ONFI port and a command translator. The microarchi-
tecture described in [23] has been chosen to mimic realistic functionalities
of a channel/target controller in industry-relevant designs. SSDExplorer
can be configured with a flexible number of channels and targets.

Transaction-Level Cycle-Accurate models

The host interface, the DRAM buffers and the NAND Flash memory ar-
rays have been described by selectively abstracting the modeling style. The
main idea is to avoid modeling all pins of the communication interface be-
tween the data path components, as well as the signals that constitute the
bus and the external system interface. Communications instead go through
channels, on top of which read and write transactions are carried out. At
the same time, computation primitives are still scheduled at each clock cycle.
This is to allow both sudden command requests concurrently with the exe-
cution of another transaction (e.g. erase suspend in NAND Flash memories
during garbage collection) and to preserve timing accuracy in the wrappers
bridging these models with pin- and cycle-accurate ones. Nevertheless, the
burden to preserve this cycle accuracy is not heavy. In fact, there are memory
dominated-components on the data path, whose performance mainly depends
on properly capturing timing parameters of the memories rather than on the
modeling of complex computation tasks. Moreover, since NAND Flash mem-
ory components could be inactive for long times, (i.e., for random workloads
which do not spread among all the SSD channels), to increase the simula-
tion efficiency the processes used for memory simulation are spawned only

18

on demand. Basically, when the command scheduler detects that an oper-
ation must be issued to one or more NAND Flash targets belonging to a
single channel, it spawns the corresponding process responsible for the man-
agement of the targets of that channel. If the channel is idle, no process is
created. Upon process spawning, only the finite state machines of the ad-
dressed targets are updated, while the other ones remain idle. By combining
the dynamic process management with the selective process spawning, it is
possible mitigating the impact of the memory subsystem on the simulation
speed.

1. Host Interface:this component manages the communication protocol with
the host, providing commands and data to the SSD. Two types of in-
terfaces are implemented in SSDExplorer: Serial Advanced Technology
Attachment (SATA) and PCI Express (PCIE). Both interfaces include a
command/data trace player, which parses a file containing the operations
to be performed and triggers operations for the other SSD components
accordingly. The features of the available interfaces are:

• SATA: all SATA protocol layers [24] and operation timings have been
accurately modeled following the SATA protocol timing directives
provided in [25]. Native Command Queuing support has been imple-
mented featuring arbitrary queue length up to 32 commands.

• PCIE: this interface allows boosting sequential and random opera-
tions throughput, and it is currently exploited in enterprise SSDs [1].
Fast operations are achieved through the NVMe (Non Volatile Mem-
ory Express [26]) protocol that significantly reduces packetization
latencies with respect to standard SATA interfaces [27]. All PCIE
configurations (i.e., from generation 1 up to generation 3 with vari-
able lane numbers) can be modeled, thus ensuring accurate latency
matching.

To ease the interchange between different host interfaces, a common con-
trol architecture based on a fabric interconnect slave port and an external
DMA controller [28] able to transfer data from the host interface to the
data buffers and vice versa is available in SSDExplorer.

2. DRAM Buffer: this component is used either as a temporary storage
buffer for read/write data or as a buffer [29] for the address mapping
operations given a dedicated firmware that runs on SSDExplorer. A cy-
cle accurate DRAM model is required to capture realistic behaviors (i.e.,
column pre-charging, refresh operations, detailed command timings, etc.).
The data buffers of SSDExplorer are modeled with a SystemC customized

19

version of the simulator proposed in [30]. The number of available buffers
in a SSD architecture is upper bounded by the number of channels served
by the disk controller. In SSDExplorer the user can freely change this
number, as well as the bandwidth of the memory interface, the DRAM
functionality, etc., acting upon a simple text configuration file, which ab-
stracts internal modeling details. The DDR, DDR2 and DDR3 protocols
are supported as DRAM interface.

3. NAND flash memory array: the fundamental component of a SSD is the
non-volatile storage memory array. NAND Flash devices are hierarchically
organized in dies, planes, blocks, and pages. Program and read operations
work on a page basis, whereas the erase operation is performed blockwise,
thus inhibiting the in-place data update. Due to the internal architecture
of NAND Flash devices, large fluctuations in memory timings arise de-
pending on the chosen operation, thus introducing a significant amount of
performance variability. To accurately take into account all these effects,
a cycle accurate NAND Flash simulator has been exploited [31]. Further-
more, to take into account the realistic behavior of the memory, an error
injection engine (i.e., a BER simulator) has been included to reflect the
effects of different error patterns on the other components of the NAND
Flash/ECC subsystems. It is possible to embody different NAND Flash
technologies (i.e., single-, multi- and triple-level cell) in SSDExplorer.

Parametric Time Delay model

The microarchitectural blocks related to the Error Correction Codes (ECC)
have been modeled using a parametric time delay abstraction level. These
devices, on the one hand, strictly depend on the design choices of SSD ven-
dors, on the other hand, their behavior and impact on SSD I/O performance
can be easily abstracted by means of well-defined quality metrics. [32]. In
other words, the behavior inside PTD models does not need to be scheduled
at every cycle boundary (i.e., to be cycle accurate). Instead, computation
primitives inside a component can be grouped together and the schedule can
be relaxed so that time is incremented in chunks. As an example, the cor-
rection time of 5 errors in a NAND Flash page corresponds to an effective
wait time of 10 ns that cannot be interrupted by any other command. This
allows a reduction in the detail captured inside components, with benefits on
both modeling time and simulation speed. At the same time, communication
events can still be scheduled in a cycle accurate manner. However, even if
this choice enables accurate I/O performance characterization, it prevents

20

functional simulation when such components are instantiated. Neverthe-
less, at an early design stage, when the internal SSD architecture is defined,
functional simulation is actually not required, since priority is given to the
delivery of a target I/O performance with a matched and resource-aware ar-
chitecture configuration. At later design stages, PTD models can be replaced
by more refined models, even restoring the functional simulation capability
of SSDExplorer.

SSDExplorer embodies two configurable PTD ECCmodels: a Bose, Chaud-
huri, Hocquenghem (BCH) engine and a Low Density Parity Check (LDPC)
ECC. These blocks are composed by a fixed high-speed encoder and a multi-
machine decoder. The delays of both the encoder and the decoder stages
can be configured to mimic the behavior of a single- or a multi-threaded ver-
sion as shown in [32]. To explore different ECC architectures, the internal
parallelism of each machine can be configured by the user.

Finally, it is worth pointing out that in state-of-the-art SSD simulators
the presence of ECC is usually neglected. However, an accurate calculation
of the SSD performance must take into account the latency introduced by
the encoding and decoding phases of an ECC especially when performance-
reliability trade-offs related to NAND Flash memories must be analyzed [33].

1.3 FTL simulation

1.3.1 Realistic FTL

Realistic FTL development, testing and simulation are one of the main fea-
tures that users require during the early steps of the firmware developing
phase. These features, in fact, allow understanding how management algo-
rithms such as Garbage Collection (GC) and Wear Leveling (WL) have to
be designed to maximize both the performance and the reliability of NAND
flash memories. However, since many different implementations could be
available, it is mandatory to offer a flexible framework for both the processor
simulation/design and the FTL execution. In SSDExplorer these problems
have been addressed exploiting two well established open-source simulators:
Gem5 [20] and Open-Virtual-Platform (OVP)[21]. These tools allow users to
define a custom system on chip architecture which can embody simple single
core systems or more complex multi/many core platforms. Moreover, thanks
to the standard programming model provided by these simulators, specific
FTL implementations can be easily developed, tested, and simulated thus
capturing the actual behavior of the SSD’s firmwares on top of a specific
processor architecture.

21

Figure 1.2: “Online-Offline” simulation mode when a realistic FTL is consid-
ered.

All the aforementioned features, however, do not come for free. In fact,
concerning the simulation speed of Gem5 and OVP it is necessary to high-
light that simulating complex architecture such as nowadays SSD processors,
could take a lot of time. As a consequence, embodying these platforms inside
SSDExplorer does not represents the best solution when a fast performance
assessment is required. To overcome this problem, it has been developed a
specific wrapper (sketched in Fig. 1.2) inside the CPU model of SSDExplorer
which can be dynamically attached/detached to the processor’s simulator.
This approach is called “Online-Offline” simulation mode and relives SSD-
Explorer to embody complex processor models which could burden on its
actual simulation speed. Basically, the processor’s simulator produce sepa-
rately from the SSDExplorer framework a specific command trace during the
FTL execution (“Offline” simulation). This command trace is composed by
two parts: i) the list of read, write, and erase operations that have to be ex-
ecuted by NAND flash memories representing the actual FTL status; ii) the
processing time taken by the processor to produce each I/O. All the collected
data are then read and playback by the SSDExplorer CPU wrapper (“Online”
simulation) which introduces the right amount of delay and send the I/Os
to the I/O processor which is connected to the Channel/Target controller
and the underlying memory array. This approach allows simulating a infinite
number of possible FTL algorithms since, SSDExplorer behaves as a delay
generator which is completely agnostic with respect the actual FTL state
or configuration. Moreover, thanks the “Online-Offline” simulation paradigm

22

users can assess the performance of the SSD only when needed or when a
specific FTL state has to be studied.

1.3.2 WAF model

The FGDSE of a wide range of SSD architectures has the drawback of requir-
ing a custom FTL tailored for each configuration (some examples of custom
FTLs are provided in [34, 35, 36, 37, 38]). Moreover, during the early steps
of the SSD design, a complete FTL implementation could not be available
since many architectural details such as the processor’s architecture could
not be provided. This calls for an estimation of the impact of software man-
agement algorithms usually exploited by a SSD (e.g., GC, WL, etc.) without
requiring their actual implementation. This problem has been tackled in [6]
by introducing a lightweight algorithm able to evaluate the blocking time of
the GC impact in terms of WAF, under the assumption that others FTL
functionalities are handled by the CPU without imposing a significant per-
formance drop. A standard WAF model [6] is able to calculate the number
of additional writes produced by the GC operation with respect to the actual
number of writes issued by a host system starting from a pool of few param-
eters such as: the total number of blocks in the disk, the over-provisioning
factor and the GC activation threshold. In this way, it is possible to quickly
explore the SSD FTL behavior and to assess its efficiency through the com-
puted WAF value. In fact, as WAF increases, the computed blocking time
of the modeled GC management procedures increases as well, thus heavily
affecting the overall disk performance. In SSDExplorer, thanks to the CPU
wrapper and the “Online-Offline” simulation mode described in Section 1.3.1,
it is possible to inject inside the simulator also a command trace produced by
a WAF model. Clearly, as it can be seen in Fig. 1.3, since this algorithm is
not intended to be also a processor simulator, the processor’s command trace
will include only read, write and erase operations for NAND flash memories,
whereas the actual processing time of each command will be neglected.

1.3.3 WAF model VS realistic FTL

The effectiveness of the WAF model must be compared with a real page-level
FTL to locate the operative range in which it can be reliably adopted. To
this purpose the template architecture of Fig. 1.4 has been used, configured
with the values reported in Table. 1.2.

The two main actors are the SSD controller (hereafter intended to consider
the host interface, the CPU, the interconnect system and the channel/tar-
get controller) whose key parameter is the CPU frequency, and the NAND

23

Figure 1.3: “Online-Offline” simulation mode when a WAF model is consid-
ered.

Figure 1.4: A SSD template architecture used for FTL and WAF algorithms
evaluations

memory subsystem. Since each die and plane of a NAND Flash memory is
composed of a repetitive cluster of pages and blocks, it is possible to shrink

24

Table 1.2: SSDExplorer configuration for WAF accuracy assessment.

Parameter Architecture

Host Interface SATA II
DRAM-Buffer 1

Mock-up DRAM-size 64 kBytes
Channels 4
Targets 2

NAND Flash Dies 4
NAND Flash Planes 2
NAND Flash Blocks 16
NAND Flash Pages 4

NAND Flash Page Size 4096 Bytes
Caching No

FTL-LOG2PHY mapping page-associative
FTL-GC algorithm Greedy
FTL-GC threshold 30%

FTL-GC reserved blocks 1
FTL-WL policy opportunistic

Over-provisioning 20%

the actual memory size by reducing the effective cluster capacity. In such a
way longer processes like a full disk fill can be easily simulated without im-
pacting the framework accuracy. The only constraint related to this mocking
up approach is to maintain the memory architecture in terms of dies and
planes because these parameters heavily modify the memory performance.

Both the FTL and its WAF model have been tested among different SSD
controller frequencies dealing with different workloads. Fig. 1.5 shows the
performance achieved with a read workload: since read transactions do not
require software manipulations, the FTL execution time becomes marginal,
therefore not affecting the overall bandwidth. When a write workload is con-
sidered, Fig. 1.6 shows a discrepancy between the WAF and the real FTL
implementation which vanishes as the SSD controller frequency increases.
The discrepancy at low frequency is mainly caused by two factors: the first
is the difference in the WAF values computed by the model and by the FTL,
which are 1.20 and 1.16, respectively; the second is strictly related to a non-
negligible additional execution time spent to execute the GC victim-blocks
identification process of the firmware. By increasing the SSD controller speed,
the FTL components contribution not related to the GC on the SSD perfor-

25

Figure 1.5: Sequential read bandwidth achieved by SSDExplorer using the
WAF abstraction model and a real FTL.

Figure 1.6: Sequential write bandwidth achieved by SSDExplorer using the
WAF abstraction model and a real FTL.

26

Figure 1.7: Performance comparison between OCZ Vertex 120GB, SSDEx-
plorer (both mock-up and full disk simulation), and a S.O.A emulator tool
[3] in terms of throughput for Sequential Write (SW), Sequential Read (SR),
Random Write (RW) and Random Read (RR).

mance become marginal for the overall bandwidth estimation process because
the maximum achievable performance is mainly dominated by NAND Flash
memories timings (i.e., the CPU is able to dispatch all the FTL functionalities
without a blocking time).

Starting from the above results, the WAF model can be exploited with
a marginal performance misalignment given the constraint of a relatively
high SSD controller frequency. However, since state-of-the-art SSD controller
frequencies are in the 300 - 600 MHz range [39], a WAF abstraction of the
FTL represents a good simulation speed/accuracy trade-off.

1.4 Performance comparison with real SSD

platforms

1.4.1 Consumer Device

In order to assess the accuracy achieved by SSDExplorer, a direct comparison
between the proposed framework and an OCZ Vertex 120GB [7], a widely

27

adopted device, has been carried out. This device has been chosen to speed
up the validation phase, since it is based on a well-known and documented
controller [40], running at 166 MHz, that can be easily simulated. The vali-
dation methodology followed in this section makes use of standard synthetic
benchmarks to quantify the I/O performance of SSD devices [41]: a sequen-
tial and a random 100% write and 100% read workloads with a block size
of 4kB are injected inside the simulated disk. The choice of using synthetic
benchmarks rather than realistic ones [42] is justified by the fact that the
latter approach would introduce a complication in the validation process of
the results since the implications behind their use would require a tailored
FTL matched with the architecture that the simulator is able to character-
ize. Moreover, a realistic benchmark could hinder the behavior of a SSD since
the chosen workload may put it in a favorable working point, thus neglecting
worst case conditions. In all the following analysis, it has been used the WAF
abstraction model both simulating a mock-up version of the disk (i.e., a 16
MB SSD) and a full disk with addressable space equal to those of the OCZ
device (i.e., 120 GB SSD).

As shown in Fig. 1.7, for a sequential workload, SSDExplorer matches
the OCZ device performance with an error margin of about 8% in the write
operation and 0.1% for the read operation. When a random workload is
used, the performance deviation from the OCZ disk amounts to 6% and 2%
for writes and reads, respectively. These deviations are due to the lack of any
information about the write caching algorithm in the WAF model [6]. By
looking at the OCZ Vertex reference manual [7] it can be found that caching
is massively adopted to reduce the amount of write operations redirected
to the non-volatile memory subsystem and hence simulated write operations
(both sequential and random) show offsets higher than read operations. In
light of this consideration, the results reported in Fig. 1.7 confirm the accu-
racy provided by SSDExplorer. This is even more relevant if it is considered
that these low error margins can be achieved avoiding the real FTL imple-
mentation.

To ultimately prove the accuracy of the proposed framework it has been
performed the same comparison also with a state of the art emulation tool
(S.O.A emulator) [3]. Since this tool embodies a fully reconfigurable FTL,
to achieve a fair comparison its parameters have been configured to provide
the same WAF value used in SSDExplorer. As it can be seen in Fig. 1.7, the
performance mismatch between the OCZ Vertex and the S.O.A emulator is
30% and 70% for sequential write and sequential read, respectively, whereas
for random workloads the S.O.A. emulator results are completely out of scale.
The roots of these discrepancies reside in the inability of the S.O.A emulator
to accurately model the host interface command queuing, the multi-channel

28

Figure 1.8: Performance comparison between a 512GB NVRAM card and
SSDExplorer (full disk simulation), in terms of throughput for Sequential
Write (SW), Sequential Read (SR), and Random Read (RR).

interleaving, and the ECC behavior. Therefore, S.O.A. emulators cannot
be used for FGDSE, whose paradigm is aimed at accurately describing all
the components belonging to a SSD in order to get accurate performance
breakdown curves. It is interesting to point out that the mock-up SSD simu-
lation results equals the results of a full disk simulation, thus validating the
approach proposed in Section 1.3.2.

1.4.2 Enterprise Device

In this paragraph SSDExplorer has been configured to track the behavior of
a 512 GB NVRAM card currently exploited in cloud applications [8]. For
this comparison it has been took as reference a disk architecture featuring
a 8 channels/4 targets controller, a single 2GB DDR3 (1333MT/s) DRAM
buffer and a PCIE Gen 2 x8 lanes host interface. Simulated NAND Flash
memories have been configured as 2X enterprise-MLC devices with a page
program time t PROG = 1.8 ms, a page read time t READ = 115 µs and
a block erase time t BERS = 6 ms. The main aim of this comparison is to
demonstrate the flexibility and the accuracy of the proposed framework in

29

simulating the interaction between the memory subsystem (NAND Flash and
DRAM buffer) and the host interface even when complex architectures are ex-
plored. Finally, all tests have been pursued with sequential write, sequential
read, and random read workloads. The specifications for performing the ran-
dom write test were not available by the manufacturer. As shown in Fig.1.8
the SSDExplorer capabilities in simulating large state-of-the-art SSDs are
demonstrated by the obtained extremely low performance mismatch: about
0.01% for both read and write operations.

1.5 Simulation Speed

SSDExplorer is totally written in SystemC, then its capability to be accu-
rate is traded with simulation time. Since SSDExplorer includes PA-CA and
TL-CA models, the number of kilo-Cycles per Second (kCPS) represents the
only metric to be adopted to evaluate speed features, whereas the perfor-
mance of emulation/simulation tools, mainly based on behavioral models,
are measured in elapsed CPU time, thus making impossible any direct com-
parison. Fig. 1.9 shows the kCPS achieved by SSDExplorer for 9 different
SSD architectures (see Table. 1.3 for details) on an Intel Xeon CPU E5520
clocked at 2.27GHz with 12GB of RAM, which runs a Redhat x86-64 Linux
operating system. The considered workload is a sequential 4kB write that
distributes among all the simulated NAND Flash targets, and the FTL ab-
straction through the WAF model is exploited.

Table 1.3: SSD configurations exploited to evaluate the simulation speed.

Configuration SSD architecture

C1 1-CHN;1-TARGET
C2 2-CHN;1-TARGET
C3 4-CHN;1-TARGET
C4 8-CHN;1-TARGET
C5 16-CHN;1-TARGET
C6 32-CHN;1-TARGET
C7 1-CHN;2-TARGET
C8 1-CHN;4-TARGET
C9 1-CHN;8-TARGET

In Fig. 1.9, the first set of results (configuration C1 - C6) shows the simu-
lation speed dependency on the number of instantiated channels, whereas the

30

Figure 1.9: SSDExplorer simulation speed with different SSD configurations
using the WAF abstraction model.

second set of results (C1, C7 - C9) shows the dependency on the number of
NAND Flash targets. If the simulations are performed with the same config-
urations, but using a real FTL instead of its abstraction, the SSDExplorer’s
simulation speed drops averagely by a factor three.

It is worth to point out that, even for resource-hungry configurations, the
simulation speed is in the order of 100 kCPS which is an optimal reference
value for PC-CA EDA tools [43].

31

32

Chapter 2

Design trade-offs for NAND
flash-based SSDs performance

During the design phase of an SSD, it is mandatory to keep in mind which
is the target application on which disk will be used. In fact, depending on
which feature has to be guaranteed such as, performance, latency or reliabil-
ity, several aspects related to the SSD’s architecture must be wisely tuned.
As a consequence, since optimizing one or all of these metrics could heavily
modify the final architecture and cost of the disk, it is mandatory to perform
a design space exploration locating possible bottleneck or resource misallo-
cation before the final tapeout. In this chapter it is shown which are the
main actors of the disk’s architecture able to modify its behavior in terms of
bandwidth and latency. Moreover, it is demonstrated that exploring these
features only at the beginning of life of the SSD is not sufficient to give a
clear insight on how the disk will behave under different working conditions
or ware-out states.

2.1 Design for maximum performance

In this Section it is shown an example of how SSDExplorer can be used to find
the optimal SSD design point for a given target performance. The goal is to
achieve the minimum resources allocation, given the host interface bandwidth
constraint. Table 2.1 shows a set of representative design points used to this
purpose. All simulations are performed using a synthetic workload composed
of a sequential write trace whose payload is fixed to 4kB. Moreover, all data
have been collected using two different DRAM buffer management policies
typically exploited in consumer and enterprise environments [44]: write back
and write through caching and no caching [29]. For the former, the SSD

33

Table 2.1: SSD configurations for optimal design point exploration.

Configuration SSD architecture

C1 4-DDR-buf;4-CHN;4-TARGET;2-DIE
C2 8-DDR-buf;8-CHN;4-TARGET;2-DIE
C3 8-DDR-buf;8-CHN;8-TARGET;2-DIE
C4 8-DDR-buf;8-CHN;8-TARGET;4-DIE
C5 8-DDR-buf;8-CHN;8-TARGET;8-DIE
C6 16-DDR-buf;16-CHN;8-TARGET;4-DIE
C7 16-DDR-buf;16-CHN;4-TARGET;2-DIE
C8 32-DDR-buf;32-CHN;4-TARGET;2-DIE
C9 32-DDR-buf;32-CHN;1-TARGET;1-DIE
C10 32-DDR-buf;32-CHN;8-TARGET;4-DIE

controller notifies the end of each transaction to the host system when data
have been moved from the host interface to the DRAM buffers. For the latter
policy, the notification is triggered only when all data have been actually
written to the NAND flash memory. All experimental results consider a
4X Multi-Level Cell NAND flash technology whose main characteristics are
t PROG which ranges from 900 µs to 3 ms, t READ = 60 µs and t BERS

which ranges form 1 ms to 10 ms [45].

Fig. 2.1 shows how different architectures exploit the performance of
a SATA II host interface. The SATA ideal curve refers to the theoretical
throughput achievable only by the host interface. Instead, the SATA+DDR
curve shows a more realistic metric for the host interface performance since
it incorporates the time spent by its internal DMA engines to transfer data
from the host system to the DRAM buffers (i.e., the time to process the
transactions from the host). Starting from this consideration, the best de-
sign point is the one that tries to achieve the SATA+DDR bandwidth by
maximizing the bandwidth of the DDR+FLASH curve (i.e., the time spent
by the flash memory to flush the DRAM buffer and write the data). The
SSD cache/ SSD no cache curves represent the bandwidth of the entire disk
that considers the bandwidth of the DDR+FLASH contribution and the po-
tential saturation effect of the host interface indicated by SATA ideal (i.e.,
considering the overall disk performance dependently on the adopted caching
strategy).

When caching is used, the SSD cache bars in Fig. 2.1, indicates C6,
C8 and C10 as the best candidates since they reach the target performance
and saturate the host interface bandwidth. However, when the resource cost

34

Figure 2.1: Sequential Write: SATA II host interface. Comparison of the
configurations proposed in Table. 2.1 for the optimal design point explo-
ration.

constraints are taken into account, it is clear that C6 represents the right
choice since it is the configuration able to reach the host interface limit with
the lowest resources consumption. On the contrary, when no caching is used,
the overall disk performance (the SSD no cache contribution) is strongly
limited. In this scenario there is no configuration able to reach the target
performance and so, the search for the optimal design point falls on C1.

The reason behind the performance flattening with no caching lies on the
SATA interface and, in particular, into its limited command queue depth. In
fact, the SATA protocol is able to manage only a maximum of 32 commands
at once, thus in a SSD exploiting a no caching policy, the host interface can-
not acquire new commands until the current ones have been executed by the
NAND flash memories. This implies that, the internal parallelism provided
by the device cannot be exploited, which becomes clear when checking the
SSD performance indicated in the DDR+FLASH results.

To overcome this limitation and unveil the performance provided by
highly parallel SSD configurations, Fig. 2.2 shows the results achieved when
a PCIE-Gen2 featuring 8 lanes and the NVMe protocol is exploited. Due
to the high PCIE speed, the host interface will no longer represent a SSD
performance bottleneck. In fact, even the most parallel configuration (i.e.,

35

Figure 2.2: Sequential Write: PCIE host interface. Comparison of the con-
figurations proposed in Table.2.1 for the optimal design point exploration.

C10) is not able to saturate the interface bandwidth. However, the major
result shown in Fig. 2.2 can be evidenced by looking at the SSD no caching
contributions. In this case, since the NVMe protocol can handle up to 64k-
commands, the SSD internal parallelism can be reached and fully exploited.
However, a performance gap between these configurations still exists. Indeed,
the time spent to flush the incoming data to the NAND flash memories for
SSD cached architectures is hidden. It is worth to point out that, when a
NVMe protocol with a PCIE interface is exploited, since there are no intrin-
sic architectural limitations, the search for the most efficient design point is
driven by the hardware costs. If maximum performance is the main driver
during the design phase of the SSD, C10 is the best solution. On the other
hand, if the performance-cost trade-off is leveraged, solutions ranging from
C3 to C8 are eligible.

2.2 Design for minimum latency

As presented in Section 2.1, the main parameters able to increase the SSD
bandwidth are the internal controller parallelism (i.e., the number of memory
channels and NAND flash targets), and the host interface Queue Depth (QD).

36

Figure 2.3: SSD bandwidth and QoS as a function of the host queue depth
(QD). The target performance and QoS are marked for all the tested cases.

This latter, however, even if it allows exploiting all the architectural resources
made available by the disk, severely impact an important figure of merit of
an SSD: the Quality of Service (Qos) [46]. In an SSD, the QoS is calculated
as the 99.99 percentile of the SSD’s latency distribution and it is used to
qualify how the SSD behaves in the worst-case corner conditions. Thanks
to this metric it is possible to understand if the target disk architecture is
suitable for a specific use case such as real time systems or safety-critical
environments. Fig. 2.3 shows how the disk bandwidth and the QoS scale
when the host QD is varied from one to 256 commands. In this case it
has been considered an SSD composed by 8 channels with 8 mid-1X TLC
NAND flash targets, with an average read time of 86 µs, each. The used
workload is a 100% 4 kB random read traffic. As it can be seen, it is possible
locating a performance/latency trade-off by which the higher is the host
interface queue depth the higher is the SSD QoS. This behavior, however, is
in contrast with the requirements of high performing SSDs by whom it would
be appropriate to achieve the target bandwidth with the lowest QoS. In fact,
as aforementioned, nowadays user applications such as financial transactions
or e-commerce platforms [47], are designed to work with storage devices which
have to serve an I/O operation within a specific time-frame which is usually
upper-bounded by the QoS requirement.

In order to deal with this performance/latecy trade-off it is usual to design
the whole SSD architecture for the target performance and QoS, forcing the
host interface to work only with a specific QD. In such a way the design

37

space of the SSD controller is reduced and it is possible to tune its internal
parameters to achieve the application requirements. As a matter of example,
if a 300 kIOPS bandwidth and a 2 ms QoS are required (solid lines in Fig.
2.3), the configurations shown in Fig. 2.3 indicate that a QD of 64 commands
has to be used by the host system. All other configurations are not suitable
for the target requirements since they are able to meet either the bandwidth
or the QoS.

2.2.1 The Head-of-Line (HoL) blocking effect

One of the main limitations of the design methodology presented in the pre-
vious Section, is the lack in the intrinsic flexibility of the QD usually required
by the host system. In fact, during the design phase of an SSD, it is usual
to define only the target performance requirements because it is not know a
priori on which application the disk will be used. As a matter of example,
SSDs used in flexible I/O environments where users can instantiate complete
virtual platforms in a “plug-and-play” fashion [48], have to guarantee the tar-
get performance and QoS for a general purpose traffic. As a consequence,
since in these systems the actual host QD is strictly dependent upon the
number of parallel threads on which the target application is running, the
number of commands that will be issued by the user and the corresponding
QD, cannot be forecasted. Therefore, it is clear that to meet the general
purpose workload specifications of these environment, the SSD has to be de-
signed to provide the target performance and QoS independently from the
host QD.

Figure 2.4: Queueing hierarchy implemented inside the SSD controller

38

To deal with this requirement it is possible to exploit a phenomenon
called Head-of-Line (HoL) blocking whose effect is to limit the number of
outstanding commands inside the SSD. To clarify this point it is useful to
study how host commands are manged and queued by the SSD controller.

Fig. 2.4 shows the queueing hierarchy usually implemented in traditional
SSD controllers. As it can be seen, beside the external host QD, it is usual
to embed on the SSD channel a small command queue for each NAND flash
memory die: the Target Command Queue (TCQ). Basically, the TCQ allows
the host to continue to issue commands to NAND flash targets even when it
tries to read or program a chip which is already busy on another operation.
In fact, when this condition is verified, the operation is simply enqueued
on the specific TCQ and the SSD controller can continue to fetch and send
other commands from the host QD to the target NAND flash memory. This
approach, on the first hand allows maximizing the bandwidth of the SSD since
TCQs are able to keep busy all the NAND flash memories at any time, on
the other hand, however, it increases the number of outstanding commands
inside the SSD since several operations have to wait inside the TCQs before
being served. At this point it is clear that, when a lot of commands are issued
inside the disk (i.e., when a big host QD is used), the SSD controller and all
the related TCQs fall in a deep saturation state which leads to an increased
QoS.

When the HoL blocking is used, the aforementioned latency problem can
be partially solved. In fact, in this case when the number of commands
enqueued in single a TCQ exceeds a predefined threshold, it is possible to
trigger a blocking state inside the SSD controller which stall’s the submission
of a new command inside the host QD. In such a way, depending on the HoL
threshold value, it is possible to avoid long command queues inside the TCQs,
and hence, the disk’s QoS can be kept within a specific window.

Fig. 2.5 shows the effectiveness of the HoL blocking effect in reducing the
QoS of the target SSD architecture when different host QD are considered.
The same SSD configuration and workload used in the previous Section have
been exploited. As it can be seen, unlike in the case presented in Fig. 2.3, as
soon as the target performance of 300 kIOPS is reached (QD64 configuration),
the HoL blocking effect starts to keep the QoS below the target requirements
even when high QDs, such as QD128 and QD256, are considered.

The fine-grained QoS calibration made available by the HoL blocking
effect, however, does not come for free. In fact, as it can be seen in Fig. 2.6,
if besides the bandwidth and the disk’s QoS also the average SSD latency is
considered, it is clear that the HoL Blocking effect has to be wisely used. As
a matter of fact, it is shown that when the HoL blocking system starts to
work, it trades the QoS reduction with an increase of SSD’s average latency.

39

Figure 2.5: SSD bandwidth and QoS as a function of the host queue depth
(QD) when the HoL blocking effect is used. The target performance and QoS
are marked for all the tested cases.

Figure 2.6: Average SSD latency evaluated with and without the HoL block-
ing effect.

40

Moreover, this behavior becomes more pronounced when high QD are used
(QD64, QD128, and QD256) that is when a higher QoS reduction is required.

2.3 Performance/Reliability trade-off

Achieving high performance (i.e., high bandwidth and low latency) with the
lowest resource allocation is one of the main goal of nowadays SSD architec-
tures. However, even if high read/write bandwidth can be easily achieved by
such storage devices, one main SSDs problems which limits their widespread
adoption is their reliability, which is dependent upon the non-volatile NAND
flash memories used as the storage medium. These components are subject
to a progressive wear-out whose physical roots reside in the tunnel oxide
degradation related to the Fowler-Nordheim tunneling exploited for their
program/erase. Such mechanism leads to a variation of the Floating Gate
charge which translates to a threshold voltage shift [1]. A direct indication
of this phenomenon is an increase in the Raw Bit Error Rate (RBER) in a
NAND flash memory. The RBER is the percentage of bits in error after a
single read operation [49]. Such an increase translates into the inability to
correct data after a number of Program/Erase operations (i.e., P/E cycles)
or after long retention times.

Error Correction Codes (ECC) such as Bose, Chaudhuri, and Hocquenghem
(BCH) ECC or even Low Density Parity Check (LDPC), are required to im-
prove the reliability of saved data, while sophisticated write algorithms were
designed for an optimal control of the threshold voltage distributions within
the NAND flash [50, 51]. However, the relentless demand for storage ca-
pacity also impact non-volatile memories whose have quickly evolved from
Single-Level Cells (SLC) to more complex Multi-Level Cells (MLC) memories
in which more than one bit is stored in a single cell. This aggressive tech-
nology evolution, while broadening SSD exploitation also for big-data cloud
servers, also results in an exponential RBER increase [52]. To deal with in-
creasing RBERs, NAND and SSD controller vendors have introduced new
read techniques such as the Read Retry (RR) and the LDPC Soft Decoding
(SD), bridging the gap between the internal memory algorithms and ECC
[53]. Basically, these approaches, leverage on a iterative read process of the
page in error with the aim of either to reduce the RBER of the memory or
to improve the error correction capabilities of the ECC (ECCth) [54].

This procedure, however, inevitably exposes an overall performance degra-
dation since a single page is available only after several read operations [55].
Moreover, although these algorithms are able to enhance the reliability of
NAND flash memories, the memory controller has to be modified to carefully

41

handle these procedures. At this point it becomes straightforward that the
performance/reliability trade-off introduced by emerging reliability enhanc-
ing algorithms for flash memories must be projected to the performance/re-
liability trade-off of the entire SSD.

In the next Sections a thorough evaluation of the performance/reliability
trade-off in SSDs will be performed showing that:

• RR and SD algorithms have been devised to significantly improve the
SSD reliability, without considering how they will be managed by the
system and, therefore, how they impact on the performances of the
disk;

• RR and SD introduce a read bandwidth degradation which is essential
to determine whether it can be masked. In fact, while several disk oper-
ations such as wear leveling, garbage collection and bad block manage-
ment can be masked at the firmware level (for instance by background
execution) [50, 51], both the SD the RR algorithm, that is a fundamen-
tal part of the read operation, cannot be masked at the firmware level
since they act directly on the storage medium. Therefore, only a direct
action at the architectural level, especially in the host system interface
and the ECC architecture, appears to be able to mask the performance
drop.

2.3.1 The Read Retry: RR

RR are specific algorithms embedded in NAND flash chips which are able to
heavily reduce the RBER of the memory either during endurance (the number
of program/erase cycles) or retention time. These approaches leverage on a
fine-grained tuning of the internal NAND flash read parameters (such as the
read threshold voltage references) which are moved back and forth depending
on the actual were-out state of the device [56, 57]. Thanks to this read voltage
threshold shift it is possible to limit the number of read errors, and hence, to
reduce the ECC correction efforts in terms of power consumption and time.

Figs. 2.7 and 2.8 show the RBER for a MLC NAND flash memory manu-
factured in the 2X node as a function of the P/E cycles and of retention time
for a given P/E cycle, respectively. Data have been collected up to twice
the rated endurance of the memory. The figures show the different average
values for the upper and lower pages and that of the entire memory.

Increasing RBERs, result in a higher probability of erroneously decoding
the bits read in a page. As a consequence, when the number of erroneous
bits in a page exceeds ECCth, the page content is no longer reliable. Figs.

42

Figure 2.7: Example of RBERs in a commercial 2X node MLC NAND flash
as a function of program/erase (P/E) cycles. The average values for the
upper and lower pages and that of the entire memory are shown.

Figure 2.8: Example of RBERs in a commercial 2X node MLC NAND flash
as a function of retention time after a specific P/E cycle. The average values
for the upper and lower pages and that of the entire memory are shown.

43

2.9 and 2.10 show the percentage of read failures for the endurance and re-
tention cases, respectively, when no RBER reduction techniques are applied.
In this case the ECC is able to correct up to 100 bits in error in a 4320
Bytes codeword (ECCth). The different behaviors exhibited by endurance
and retention characterizations are due to the different drifts of the thresh-
old voltage distributions: in particular, in the endurance case, only lower
pages may produce uncorrectable read operations. In any case, however, the
number of uncorrectable pages increases with the number of P/E cycles and
retention time at a given P/E cycle.

Figs. 2.11 and 2.12 show the effectiveness of RR in reducing the RBER.
As it can be seen, both endurance and retention are positively impacted by
this algorithm, moreover, when it is applied no uncorrectable page events are
detected by the ECC up to twice the rated endurance. However, even if the
RR algorithm is able to reduce the RBER of a NAND flash memory, when
it is used inside an SSD it has to be wisely exploited. In fact, whenever the
ECC detects that a page cannot be correctly decoded, it can request for a
RR intervention. In this case, in order to reduce the RBER, the page is read
again from the memory with a set of modified voltage reference parameters
and a fine-grained read voltage sensing process which prolong the memory
read time. This process can be repeated several time until ECC is able to
correct the target page. As a consequence, it becomes clear that since the
occurrence of an uncorrectable page event (that is the reading of a page that
results as uncorrectable if the RR technique is not applied) cannot be pre-
dicted and therefore the RR intervention cannot be forecasted, the increase in
read latency may reduce the SSD bandwidth below acceptable values unless
designed at the architecture level.

Table 2.2: SSD architectures considered to evaluate the RR algorithm

Parameter Architecture

Host Interface SATA III
DDR-Buffer 1

ECC 1 x Channel
Disk capacity 1 TB

Configurations C1 C2 C3 C4
Channels 1 2 4 8

NAND flash Targets
per Channel 16 8 4 2

To test how the RR technique impacts the SSD’s performance it has

44

Figure 2.9: Percentage of uncorrectable pages (thus requiring the activation
of the RR techniques) as a function of program/erase (P/E) cycles. The
average value for the lower pages is shown. No uncorrectable upper pages
have been detected.

Figure 2.10: Percentage of uncorrectable pages (thus requiring the activation
of the RR techniques) as a function of retention time after a specific P/E
cycle. The average values for the upper and lower pages and that of the
entire memory are shown.

45

Figure 2.11: RBER after RR intervention as a function of program/erase
(P/E) cycles. The average values for the upper and lower pages and that of
the entire memory are shown.

Figure 2.12: ERBER after RR intervention as a function of retention time
after a specific P/E cycle. The average values for the upper and lower pages
and that of the entire memory are shown.

46

been decided to simulate 4 different disk architectures summarized in Table.
2.2. It is worth pointing out that even if the SSD architecture is changed for
different simulations, it has been decided to keep constant the disk capacity to
avoid any possible problems in the data interpretation. As stated in Section
2.3.1, the two main components that contribute to the RR-induced drawbacks
for the SSD performance are the NAND flash memories and the ECC. To
this extent, in order to accurately reproduce their behavior, the ECC engine
has been modeled choosing a BCH code able to correct up to 100 errors
in a 4320 bytes codeword. For the latency modeling of the BCH decoder,
which is the ECC block active during a read operation, the internal syndrome
and Berlekamp-Massey modules follow the state of the art implementation
provided in [32], whereas the Chien search machine is modeled as follows:

• a faster high parallel machine to serve a relative small number of errors;

• a slower yet ultimate accurate machine to guarantee the maximum
correction capability.

Processor

SSD Interconnect

DDR

Buffer
Channel
Controller

Memory Interconnect

T
R

#
2

T
R

#
3

T
R

#
4

T
R

#
5

T
R

#
6

T
R

#
7

T
R

#
8

T
R

#
9

T
R

#
1
0

T
R

#
1
1

T
R

#
1
2

T
R

#
1
3

T
R

#
1
4

T
R

#
1
5

T
R

#
0

T
R

#
1

ECC

Figure 2.13: Baseline architecture considered in this Section

Concerning the NAND flash it has been modeled a 2X MLC technology
with a page size of 16 kbytes plus Spare and a block size of 8Mbytes. From a
previous characterization of the memory, the RBER values, the read latencies

47

of the memory, and the uncorrectable page event statistics have been calcu-
lated and back annotated into SSDExplorer. Starting from a RBER value
exhibited by the NAND flash, the corresponding number of errors is extracted
from a probability density function [58] and then fed into the modeled ECC
engine in order to extract the exact delay incurred by the decoder.

2.3.1 A) Retry impact on SSD performance: fig. 2.13 shows the
baseline architecture simulated which encompassed a single ECC BCH engine
connected to a single channel serving 16 memory targets each composed by
two dies.

For sake of clarity and to avoid any artifact in the performance analysis
due to the inclusion of a host interface model (e.g. SATAIII [24] or PCI-E
NVMe [27, 59]), it has been decided to neglect the aforementioned compo-
nent. This approach allows evidencing the actual bandwidth related to the
memory and ECC subsystems only.

The main result concerns the SSD read bandwidth as a function of the
RBER which tracks the memory wear-out (see Fig. 2.14.) Since the real SSD
behavior depends on a combination of P/E cycles and retention times, the
use of RBER as a reference metric allows to ignore the actual degradation
mechanism while generalizing the performance evaluations. Two points are
highlighted in the figure, representing a 2% drop (point A) and a 10% drop
(point B) with respect to the SSD read bandwidth at Beginning of Life (BoL),
respectively. The former point will be used to show in details the behaviors
of the ECC engine and of the NAND memories in a normal read condition
whereas the latter point, representing the maximum acceptable degradation
level, will be used to illustrate architectural limitations when the number of
uncorrectable pages become significant.

Fig. 2.15 shows, for point A, the distribution of the correction times spent
by the ECC engine which depend on the number of errors to be corrected,
whereas Fig. 2.16 shows the read latency distribution in a NAND flash. This
latter figure evidences the following main contributions: the read times for
the upper and lower pages and those ascribed to internal read scheduling
mechanisms. As it can be observed, the ECC correction times are one order
of magnitude lower than the memory read latencies and, therefore, it has a
marginal impact on the disk performance.

Figs. 2.17 and 2.18 show the same distributions for point B. In particular,
a broadening in the ECC correction time distribution can be observed. The
maximum correction time, evidenced in Fig. 2.17, is related to the case of
an uncorrectable page. Fig. 2.18, on the other hand, shows that when a
significant number of uncorrectable pages is detected with the consequent

48

10
−4

10
−3

100

150

200

250

300

350

400

450

RBER

R
e
a
d

 B
a
n

d
w

id
th

 [
M

B
/s

]
•

•

A

B

Figure 2.14: SSD read bandwidth vs. RBER for the baseline architecture.
Point A and B mark a 2% and a 10% performance degradation compared to
the BoL, respectively.

RR activation, two other contributions to the NAND flash read latency are
introduced: the former related to the commands activating RR, the latter
associated to the actual execution time of the RR algorithm.

Finally, it must be stressed that the percent of uncorrectable page read-
ings producing a 10% drop in the SSD read bandwidth is in the order of 0.6%
to 0.8%.

2.3.1 B) Retry impact on the SSD architecture: as shown in Section
2.3.1 A), the performance degradation caused by uncorrectable pages requir-
ing the RR activation is related to the sum of the memory latency and of
the ECC correction time, this latter resulting as negligible in normal reading
conditions. This implies that the ECC engine is the module to address to
try reducing the read bandwidth degradation. To this purpose it has been
repeated the analysis by modifying the number of channels and, therefore,
the number of ECC engines. Fig. 2.19 shows the read bandwidth behavior
as a function of RBER, up to the point corresponding to a 10% degradation
with respect to BoL, for the four channels/NAND flash targets configurations
analyzed (see Table 2.2).

As expected, by increasing the number of channels (in particular archi-
tectures C3 and C4) it is possible to achieve higher bandwidths. The RBER

49

0 50 100 150
10

−6

10
−4

10
−2

10
0

10
2

Delay (µs)

O
c

c
u

rr
e

n
c

e
s

 [
%

]

0 2 4 6 8 10
10

−2

10
−1

10
0

Delay (µs)

O
c

c
u

rr
e

n
c

e
s

 [
%

]

Figure 2.15: Distribution of the ECC correction times at point A of Fig.
2.14.

0 100 200 300 400 500
10

−1

10
0

10
1

10
2

O
c
c
u

rr
e
n

c
e
s
 [

%
]

Delay (µs)

Lower Page

Upper Page

Scheduler Effects

Figure 2.16: Distribution of the NAND memory latencies at point A Fig.
2.14.

50

0 50 100 150
10

−6

10
−4

10
−2

10
0

10
2

Delay (µs)

O
c
c
u

rr
e
n

c
e
s
 [

%
] Uncorrectable Page Events

Figure 2.17: Distribution of the ECC correction times at point B of Fig.
2.14.

0 100 200 300 400 500
10

−1

10
0

10
1

10
2

O
c
c
u

rr
e
n

c
e
s
 [

%
]

Delay (µs)

RR Command

RR Algorithm

Figure 2.18: Distribution of the NAND memory latencies at point B of Fig.
2.14.

51

corresponding to a 10% degradation, however, is in the same order of mag-
nitude for the four cases. So merely increasing the architectural resources,
without considering the interaction of the host interface requirements, does
not seem to solve the problem of the RR impact on the SSD performance.

When considering the SSD system as a whole, it is clear that the over-
all performance is driven by the slower between the ECC/memory system
and the host interface. Therefore, if the host interface bandwidth is over
designed with respect to that of the ECC/memory system, the performance
drop caused by memory wear-out and RR techniques is noticeable by the
user. If, on the contrary, the host interface bandwidth represents the system
bottleneck, the ECC/memory system must be designed so that, without any
useless silicon waste measured as channel number and flash target increase,
the performance drop caused by memory wear-out and by RR techniques
does not bring the ECC/memory bandwidth below that of the host inter-
face. As an example, considering a SATA III host interface, in Fig. 2.20 it is
shown that the configuration C3 barely mask the RR-induced performance
drop, whereas SSD configuration C4 allows sustaining a higher wear-out level
for the NAND flash targets before exposing to the SSD user an effective read
bandwidth drop.

2.3.2 LDPC Soft Decision: SD

As discussed in Section 2.3, one main SSDs’ limitation is their reliability,
which is dependent on the non-volatile NAND flash memories used as storage
medium. The RBER of these devices is steadily growing because of the
aggressive technology scaling needed to increase the memory capacity. Such
an increase translates into the inability to read correct data after a number of
P/E operations or after long retention times. Fig. 2.21 shows the measured
average RBER as a function of endurance for three MLC and one TLC NAND
flash memories manufactured in 2X, 1X, and mid-1X technology nodes as
described in Table. 2.3. As it can be seen, as the number of P/E cycles
increases, the error rate quickly grows up. In addition, either by scaling from
a 2X to a mid-1X node or switching from a MLC to a TLC storage paradigm,
the RBER increases significantly.

To broaden NAND Flash reliability figures and, consequently, data trust-
worthiness over the whole SSDs’ lifetime, the sole use of RR algorithms with
BCH decoders is no longer sufficient (see Table 2.4). In fact, as it can be seen
in Fig. 2.22, using this approach on these memories does not give the ex-
pected results since, after their intervention, the percentage of uncorrectable
pages still remains high. Therefore, it is clear that to guarantee the data
reliability over the whole memory endurance, it is necessary to exploit so-

52

10
−4

10
−3

300

350

400

450

500

550

600

650

700

RBER

R
e
a
d

 B
a
n

d
w

id
th

 [
M

B
/s

]

C1

C2

C3

C4

Figure 2.19: SSD read bandwidth vs. RBER for the four architectures de-
scribed in Table 2.2. Curves are shown up to a 10% performance degradation
with respect to BoL.

10
−4

10
−3

300

350

400

450

500

550

600

650

700

RBER

R
e
a
d

 B
a
n

d
w

id
th

 [
M

B
/s

]

C3

C4

SATA III

Figure 2.20: SSD read bandwidth vs. RBER for the C3 and C4 architectures
compared with the SATAIII theoretical bandwidth. Configuration C4 allows
sustaining a larger wear-out prior exposing the performance degradation in-
duced by RR to the user.

53

Figure 2.21: Measured average RBER up to twice the rated endurance in
2X, 1X and mid-1X technology node MLC and TLC NAND flash memories
as a function of P/E cycles.

Table 2.3: Main characteristics of tested NAND flash memories.

Sample
Memory Rated

Measured
avg.

Measured
avg.

Technology

type endurance read time
program
time

node

A-MLC Consumer 9 k P/E 68µs 1400 µs 2X

B-MLC Enterprise 12 k P/E 40µs 2000 µs 1X

C-MLC Enterprise* 4 k P/E 70µs 2500 µs Mid-1X

D-TLC Enterprise* 0.9 k P/E 86µs 2300µs Mid-1X

*Early samples

54

phisticated ECC such as the LDPC.

Table 2.4: Measured endurance sustained with a BCH ECC engine and the
RR algorithm.

Sample Measured endurance

A-MLC 6 kP/E
B-MLC 19 kP/E
C-MLC 5 kP/E
D-TLC 1 kP/E

Figure 2.22: Measured percentage of uncorrectable pages up to twice the
rated endurance as a function of P/E cycles. A BCH with a capability to
correct up to 100 bits in error in a 4320 Bytes codeword and the RR algorithm
are used.

Due to their superior error correction capabilities, Low Density Parity
Check (LDPC) codes now represent a forced choice for SSDs [60, 61]. Con-
ventional LDPC decoders, if properly designed, can sustain a NAND Flash
RBER up to 10-2 [61, 62, 63, 15]. The LDPC correction engine usually
leverages on two sequential correction approaches: i) the hard decision (HD)
which corrects errors by means of a single read operation of the selected
memory page; ii) a sequence of soft-level decisions (SD) which perform, with
considerably higher latency, a fine-grained multiple-read sensing operation
exploiting the RR command made available by NAND flash memories.

As summarized in Fig. 2.23, each soft-level requires two page read oper-
ations with two different read references and two data transfers to the ECC

55

HARD INFO #N

LDPC DECODER NAND FLASH MEMORY

PAGE #N

PAGE #NSOFT INFO #N

SOFT INFO #N PAGE #N

PAGE #N

PAGE #N

SOFT INFO #N

SOFT INFO #N

Figure 2.23: Standard LDPC decoding (HD + two-level-SD). Each soft-level
requires two extra read operations and two data transfer operations.

HARD INFO #N

LDPC DECODER NAND FLASH MEMORY

SOFT INFO #N

SOFT INFO #N

PAGE #N

PAGE #N

PAGE #N

PAGE #N

PAGE #N

Figure 2.24: LDPC decoding (HD + two-level-NASD). Each soft-level re-
quires two extra read operations and only one data transfer since read data
are conventionally combined before data transfer.

56

engine. The algorithm continues this process until the page is correctly read
or the maximum number n of soft-levels is reached and the page is marked as
uncorrectable. The overall n-level SD algorithm requires 2n page reads and
2n data transfers operations. This serial approach is used mainly because
high code-rates [64] are adopted to exploit the full SSD capacity and hence
HD has the same limitations of BCH codes in terms of RBER [15]. Therefore
as soon as this strategy fails to correct data, it is requested the intervention
of the SD, with a higher correction range. However, in [15] it has been shown
that, as soon as the HD approach starts to fail, there is an overhead both
in terms of increased SSD power consumption and overall SSD latency since
additional read operations all requiring the RR algorithm are requested with
respect to the HD approach.

An alternative LDPC correction approach that limits the drawbacks of
the SD has been presented in [65]. The assumption of this methodology,
named NAND-Assisted Soft Decision (NASD), is that data for ECC engine
are produced by the NAND flash memory itself, which internally reads the
target page twice for each soft-level. Then, read data are combined and only
one transfer to the ECC is performed for each soft-level, as shown in Fig.
2.24.

Soft Decision VS NAND-Assisted Soft Decision

a) b) c)

Figure 2.25: Two levels LDPC sensing scheme. A memory page is read by
setting the read voltage at HD0 and determining, for each bit, whether VT

< HD0 or VT > HD0 (a). If the ECC engine is not able to correct possible
read errors, the soft decision algorithm starts and the page is read twice by
moving the read references around HD0, at SD10 and SD11 (b). If the page is
still marked as uncorrectable, the page is read again with the SD20 and SD21

references (c).

Flash memories are read page-wise by using a defined read reference, here-
after denoted as HD0. Cells are read as 1 or 0 depending on their threshold
voltage VT with respect to HD0 (see Fig. 2.25a). If during the ECC decoding
phase the page is evaluated as uncorrectable, the LDPC decoding algorithm

57

can be retried with the SD. To accomplish this second step, more information
about the actual position of the NAND flash threshold voltage distributions
must be collected. Basically, the algorithm moves sequentially the internal
read references to SD10 and SD11 (Fig. 2.25b) thus reading the page twice
and storing the two data content in two page registers inside a page buffer.
Data from the page buffer are transferred byte-wise from the flash memory
to the LDPC decoder to be analyzed with those previously read with HD0. If
the decoding process still fails, a second iteration is performed by moving the
read references to SD20 and SD21 as shown in Fig. 2.25c. The algorithm con-
tinues this process until the page is correctly read or the maximum number
of soft-levels is reached and the page is marked as uncorrectable.

Other R/W

commands

Other data

bus allocation

5)

4)1)

4)1)

a)
Command

execution

Bus

allocation

HD0

ECC

activity

Other encoding/decoding opserations

Time

2) 3)

5)

6)

b)Command

execution

Bus

allocation

ECC

activity

Time

2) 3)

HD0 SD10-11

HD0

Other

encoding/decoding ops.
SD10-11

SD10 SD11

Other data

bus allocation
HD0

Other R/W

commands

Other R/W

commands
HD0 SD10-11

Other data

bus allocation
SD10-11HD0

SD10
SD11

Figure 2.26: Time sketch, for a cluster of NAND flash dies sharing the same
data bus, of the command queue, of the data bus allocation, and of the ECC
engine activity. Numbers enlighten the events sequence during a single soft-
level decision operation. Case a) and b) refer to the SD and NASD approach,
respectively.

Table. 2.5 summarizes the number of operations performed by both al-
gorithms. As it can be seen, NASD is able to halve the number of page
transferred from the NAND flash memory to the ECC. As a consequence,
the overall soft decision process is shortened and hence, the SSD perfor-
mance are improved. To understand the effective NASD efficiency, it must
be taken into account that read operations are temporally separated from
the successive data transfer operations. Fig. 2.26 sketches the commands
queue for NAND flash dies sharing the same I/O bus, the corresponding
data bus allocation, and the ECC engine activity. After a HD0 read, the

58

SSD controller can send other read or write commands to the same NAND
flash die or to other dies. When the ECC engine communicates the read
failure to the controller, additional SD10 and SD11 reads are scheduled. In
the SD approach the two read data are transferred separately when the I/O
bus is available, with the risk that between the SD10 and SD11 transfer the
bus is contended by other data transfers to/from other NAND flash dies (see
Fig. 2.26a). In the NASD approach, on the contrary, since SD10 and SD11

read data are combined in a single data transfer, the consequent soft decision
operation can start in advance with respect to the SD case (see Fig. 2.26b).
The advantages, that become more pronounced when additional soft-levels
are considered. Moreover, since the number of data transfers between the
memory and the ECC are reduced, NAND flash memory I/O buses access
are reduced as well and hence a considerable power reduction is provided.

Table 2.5: Read and data transfer operations in SD and NASD approaches.

LDPC One soft-level Two Soft-levels #n soft-levels

SD
2 page read 4 page read #2n page read

2 data transfer 4 data transfer #2n page transfer

NASD
2 page read 4 page read #2n page read

1 data transfer 2 data transfer #n page transfer

Figure 2.27: NASD combinational circuitry. Just 8 logic XOR gates (or
XNOR) have to be added before the 8-bit I/O interface.

The main component exploited by NASD is the NAND flash page buffer

59

which is used to store data for each soft-level operation. In present NAND
flash chips, this buffer is composed by two registers used especially for read
cache and read retry operations [66, 67, 68, 69]. At this point it becomes
clear that the NASD implementation does not require any other register
inside the memory and it can be performed by a simple combinational logic
placed between the internal NAND flash page buffer and the I/O interface.
In fact, the two read operations performed by NASD can be easily stored
into the existing registers of the page buffer and a simple block composed
by 8 XORs (or 8 XNORs) acting as a combinational circuitry is sufficient.
Since the I/O interface limits the parallelism to 8-bits, the logic combination
between the pages stored inside the two registers can be performed on-the-
fly in a byte-wise fashion during the data transfer phase (see Fig. 2.27).
Regardless of the internal NAND architecture, just a single combinational
logic can be integrated in a single NAND chip. As a consequence, the NASD
implementation inside a NAND flash memory becomes a easy task which
does not impact neither chip area nor power consumption.

Figure 2.28: Simulated SSD architecture.

In order to test the effectiveness of NASD with respect to the starndard
SD, a 512GB SSD composed by 8 channels with 8 NAND flash dies per chan-
nel has been simulated. The simulations have been performed considering the
4 different memories presented in Table 2.3 as SSD’s storage medium. Fig.
2.28 shows the main building blocks of the SSD. Besides the standard I/O
Processor exploited for the host-interface address fetch phase and the many-
core Processor on which the Flash Translation Layer is executed, there is
also an I/O Sequencer acting as a read/write dies scheduler. In order to fully

60

exploit the internal parallelism offered by the SSD, host random addresses
which could cause die collisions (i.e., requests for a die already scheduled)
are parsed and sequentially issued to NAND flash chips. In such a way,
even if random commands are sent by the host, only sequential patterns are
processed by NAND flash memories hence maximizing the throughput.

Table 2.6: Tested Host system configurations

Consumer Enterprise [70]

Host Processor Intel-Core i5-4570 Intel-Xeon e5-2630
Processor clock 3.2 GHz 2.3 GHz

#N Cores 4 24
DRAM size 12 GByte 16 GByte

Workload generator [71] fio 2.1.10 fio 2.1.10
Avg. I/O submission time 3.5 µs 0.5 µs

Host queue depth [27] 64 256
Host kIOPS (requested) ≈ 200 ≈ 600
SSD kIOPS (sustained) ≈ 450 ≈ 450

All data have been collected simulating two different host platforms (Ta-
ble. 2.6). The first one is a consumer system which does not exploit the
full SSD architecture (able to sustain 450 kIOPS) since I/O requests settle
around 200 kIOPS. As a consequence, all internal error recovery techniques
which exploit additional read operations produced by the ECC for the soft
decoding step are partially hidden by the SSD’s architecture which masks
all non-user reads. The second one is an enterprise workstation designed to
serve hundreds of parallel processes which requests up to 600 kIOPS. In this
case the disk performance cannot match this specification so that any fur-
ther read produced by any error recovery technique will burden on the final
SSD’s performance. Thanks to these two different test-cases it has been pos-
sible to test the NASD effectiveness over standard SD when disk resources
such as NAND-flash I/O buses are partially or completely allocated for user
operations.

Results presented in Section 2.3.2 A) refer to an enterprise host and a
100% 4 kB random read workload which represents the most challenging
situation for the SSD performance characterization. In fact, when mixed
read/write workloads are considered, since the DRAM chip in the SSD caches
all the write operations, the measured average latency and bandwidth figures
of the disk do not reflect the actual SSD behavior. Section 2.3.2 B) will extend
the discussion to realistic workloads for both hosts.

61

Figure 2.29: SSD read bandwidth gain achieved by NASD with respect to SD
as a function of the memory endurance for the 4 considered memory types
and the Enterprise host.

Figure 2.30: SSD average read latency gain achieved by NASD with respect
to SD as a function of the memory endurance for the 4 considered memory
types and the Enterprise host.

62

2.3.2 A) 100% random read workload - Enterprise host: fig. 2.29
shows the SSD’s read bandwidth gains achieved by the NASD approach with
respect to the SD, as a function of the memory endurance. Bandwidth (IOPS)
has been calculated as the average number of read commands completed in
a second. As it can be seen, for all the considered memories the NASD tech-
nique provides a significant gain. NASD advantages are more pronounced
when large number of uncorrectable pages, triggering a massive ECC inter-
vention, are detected.

Fig. 2.30 shows the average read latency gains achieved by NASD with
respect to SD as a function of memory endurance. Latency has been calcu-
lated as the average time elapsed between a read command submission and
its completion. All results concerning average latency reflect those obtained
for bandwidth (Fig. 2.29).

Fig. 2.31 shows the SSD’s cumulative latency distributions calculated at
twice the rated endurance for the D-TLC sample and both SD and NASD
approaches. From these data it is possible to extract the SSD’s QoS defined
as the 99.99 percentile of the cumulative latency distribution [46]. QoS rep-
resents the predictability of low latency and consistency of high bandwidth
while servicing a defined workload and it can be considered as the key metric
to assess the SSD’s performance in a worst-case scenario. Fig. 2.32 shows the
calculated QoS at twice the rated endurance for all the considered memories
and for both the SD and NASD approaches.

2.3.2 B) Realistic workloads - Enterprise and Consumer hosts Since
the NASD advantages are tightly coupled to the command pattern, besides
the 100% random read workload considered so far, simulations have been
also performed considering three realistic workloads [72], as detailed in Table
2.7 where write ratio represents the percentage of write commands in the
command sequence, whereas write amplification factor denotes the number
of additional writes produced by the SSD firmware for each single host write
[6].

Table 2.7: Workloads characteristics

Workload Write ratio [%] Write amplification factor

MSN 96 1
Financial 81 1.32
Exchange 46 1.94

63

Figure 2.31: Cumulative percentage on a normal probability paper of the SSD
latency calculated at twice the rated endurance when a D-TLC sample is used
and both SD and NASD are considered. The QoS threshold is calculated as
the 99.99 percentile of the cumulative distribution [46].

Figure 2.32: Calculated QoS at twice the rated endurance for the 4 considered
memory types and the Enterprise host.

64

Table 2.8: Bandwidth (in kIOPS for SD and in % of gain for NASD vs SD) @ twice the rated endurance for both
the consumer and the enterprise host

Workload
Consumer Host Enterprise Host

A-MLC B-MLC C-MLC D-TLC A-MLC B-MLC C-MLC D-TLC
SD NASD SD NASD SD NASD SD NASD SD NASD SD NASD SD NASD SD NASD

MSN 143 4.78 147 4.17 142 5.26 141 5.23 142 4.14 148 4.79 142 5.94 142 5.72

Financial 135 1.45 142 0.54 101 3.68 104 4.36 143 1.88 148 0.45 119 3.67 118 4.19

Exchange 143 2.25 151 0.60 94 4.95 97 5.40 171 2.47 187 0.44 126 5.28 127 6.0

100% read 204 0.03 204 0.03 140 24.41 127 24.85 299 18.24 402 6.24 152 42.77 156 36.80

Table 2.9: Average latency (in µs for SD and in % of gain for NASD vs SD) @ twice the rated endurance for both
the consumer and the enterprise host

Workload
Consumer Host Enterprise Host

A-MLC B-MLC C-MLC D-TLC A-MLC B-MLC C-MLC D-TLC
SD NASD SD NASD SD NASD SD NASD SD NASD SD NASD SD NASD SD NASD

MSN 373 2.24 343 0.11 393 5.46 396 3.57 1485 0.57 1468 0.16 1553 1.78 1554 1.92

Financial 467 1.50 442 0.53 624 3.60 610 4.29 1724 1.61 1651 0.19 2088 3.99 2093 4.41

Exchange 442 2.21 417 0.60 673 4.84 646 5.21 1465 2.28 1343 0.47 1979 5.28 1973 5.89

100% read 312 0.01 311 0.01 454 19.71 502 19.90 834 15.6 623 5.58 1654 30.14 1620 27.15

65

Table 2.10: Quality of Service (in ms for SD and in % of gain for NASD vs SD) @ twice the rated endurance for
both the consumer and the enterprise host

Workload
Consumer Host Enterprise Host

A-MLC B-MLC C-MLC D-TLC A-MLC B-MLC C-MLC D-TLC
SD NASD SD NASD SD NASD SD NASD SD NASD SD NASD SD NASD SD NASD

MSN 47.07 33.95 32.06 36.32 25.17 22.24 34.58 20.46 53.88 28.32 35.48 34.11 31.62 22.73 45.24 22.34

Financial 14.26 17.85 11.43 22.56 12.36 14.59 13.59 13.00 92.60 37.58 80.65 32.61 71.83 5.25 80.75 26.16

Exchange 7.50 21.35 5.93 14.04 9.37 15.11 8.76 14.00 44.20 22.45 37.83 29.53 39.89 16.46 44.21 23.69

100% read 1.50 23.08 0.77 20.85 2.67 21.47 1.59 29.42 16.20 38.10 15.34 50.80 20.08 43.56 14.40 40.84

66

Tables 2.8 ÷ 2.10 show the bandwidth, the average latency, and the QoS
at twice the rated endurance for the 4 tested NAND Flash memories and for
the two host architectures. Simulation results show that NASD outperforms
SD when between the two data transfers required by the SD technique other
commands are scheduled, thus temporally separating the data transfer oper-
ations and introducing a performance degradation. When realistic workloads
are considered, NASD advantages are clearly evident for the MSN workload,
which is characterized by a high number of program operations whose du-
ration is significantly higher than read operations. NASD advantages are
highlighted when QoS is concerned since it takes into account the worst-case
latency conditions rather than an average behavior such as bandwidth and
average latency. As it can be observed, the QoS improvements for the MSN
workload are in a 20% ÷ 40% range.

67

68

Chapter 3

Design trade-offs for
RRAM-based SSDs
performance

As presented in the previous chapters, when high performing storage devices
are needed, SSDs are the most effective solution for both consumer applica-
tions and large enterprise environments [1]. However, the increased volume of
produced and processed data, especially in the latter case, calls for a higher
storage density of the SSDs which depends on the capacity features of the
exploited storage medium: the NAND Flash memories. However, as already
shown in Chapter 2, such a density increase sacrifices the memory perfor-
mance and inherent reliability, leading to an unacceptable degradation of the
main figures of merit for a SSD: latency and bandwidth [33].

In the last years, a growing interest on possible candidates for NAND
Flash replacement in SSDs is represented by the Resistive RAM (RRAM)
technology [73]. These memories offer the non-volatility feature of NAND
flash devices with a lower read/write latency, higher scalability, lower power
consumption and higher long-term reliability. However, up today, the reduced
storage capacity of RRAM memories [74] has limited their usage to specific
purposes such as boosting the SSD’s performance or saving critical data
during power fault events like in the hybrid system described in [75]. In
this case, RRAM are used as a Storage Class Memory, which, coupled with
NAND flash memories, are able to minimize the latency and improve the
overall system bandwidth-reliability figures of the disk.

The advent of high density 1T-nR RRAM crosspoint arrays fully com-
patible with the state-of-the-art NAND Flash interface [76, 77] is paving the
way to innovative “All-RRAM”SSD’s architecture. In these systems, NAND
flash memories are completely replaced by RRAM devices which offer a highly

69

reliable and extremely faster storage medium.

In this section a thorough design space exploration of a 1T-nR 512 GBytes
“All-RRAM” SSD architecture is performed locating possible architectural
bottlenecks and inefficiencies. Without any lack of generality, it has been
decided to devise the compatibility of RRAM chips with the standard NAND
flash interfaces [22], and hence a traditional SSD controller is embodied in the
simulation environment without any dedicated RRAM algorithms. Collected
results show that“All-RRAM”SSDs fit the need of extremely low latency only
when a proper management of the operations and their queuing mechanism
is provided.

3.1 “All-RRAM” SSD configuration

The RRAM chip considered in the proposed “All-RRAM” SSD architecture
is a configurable 16 planes 32 Gbits memory module with a 8 bits ONFI
2.0/Toggle Mode compliant capable of 200 MT/s [22] (see Fig. 3.1). Each
plane is composed by a 2 Gbits crosspoint RRAM array with a page size
of 256 Bytes [76]. The RRAM chip features an internal memory controller
that can work either with a native addressing mode (i.e., each addressed
page is 256 Bytes-wide) or in a multi-plane emulated addressing mode which
allows accessing from 512 Bytes up to 4 kBytes within a single operation.
A read operation takes 1µs per page. The main array characteristics of this
technology are summarized in Table 3.1.

The simulated SSD configuration (depicted in Fig. 3.2) is a 512 GBytes
disk composed by 16 populated channels with 8 RRAM targets each. The
SSD controller configuration, the additional Error Correction Code modules
and dedicated DRAM buffers are included to keep the compatibility with
state-of-the-art NAND-Flash based SSDs [78]. The exploited disk interface
is a Gen2 PCI-Express port with 8 lanes on top of which the NVMExpress
protocol is used [27]. Finally, different 100% random read workloads have
been used to fully exploit the native and the emulated addressing mode of the
considered RRAM chips by aligning the logical block address of the disk with
the effective RRAM page size. Write workloads are not considered in this
chapter since the targeted disk architecture includes DRAM buffers where
write operations are cached on top of it, thus not representing a significant
burden for the latency and bandwidth figures.

70

Table 3.1: Main characteristics of the simulated RRAM devices

Chip parameter Configuration

IO-Bus interface ONFI 2.0-Toggle Mode
IO-Bus speed 200MT/s

Native Page Size 256 Bytes
Emulated Page Size 512-1024-4096 Bytes
TREAD per Page 1 µs

Figure 3.1: 32 Gbits RRAM memory module architecture.

Figure 3.2: Block diagram of the simulated “All-RRAM” 512 GBytes SSD
architecture.

71

3.2 Page size VS queue depth

A thorough statistical assessment of the “All-RRAM” SSD read latency and
bandwidth figures is provided by simulating 500k random read operations
with different page sizes used in the RRAM devices and a variety of command
queue depths submitted to the SSD. As shown in Figs.3.3 and 3.4, by setting
a fixed queue depth of 16 read commands it is demonstrated that the read
bandwidth of the SSD proportionally increases with the memory page size,
while the latency remains almost constant. A different behavior is observed
when the RRAM page size is fixed and the read commands queue depth is
varied from 1 to 32. The bandwidth increases proportionally with the queue
depth until a saturation trend, dependent on the RRAM page size, is reached
(see Fig.3.5). Concerning the latency, it is possible to observe a similar trend
except that the saturation trend is observed at lower queue depth values (see
Fig.3.6).

In SSD architectures, especially those foreseen in enterprise environments,
it is important to evaluate possible losses of the Quality of Service (QoS),
that are perceived as long response times of the disk when read operations are
submitted by a host [46]. By evaluating in depth the cumulative distribution
function (CDF) and the probability density function (PDF) of the latency
figures for the “All-RRAM” SSD it is shown that when user transactions
matches the RRAM chip page size (i.e., 256 Bytes) and only one operation is
served at a time it is achieved an extremely low latency, measured in terms
of tens of microseconds as shown in Fig. 3.7. The highest read response time
(i.e., 99.99 percentile of the CDF) is around 16 µs, that is well below the
few hundreds of microseconds offered by NAND Flash-based SSDs. However
such a queue depth and RRAM page size do not reflect the workload con-
ditions of nowadays host platforms and file-systems which are designed to
issue multiple-outstanding read operations with a fixed payload of 4 kBytes.
With this respect, as shown in Fig. 3.8, when the host interface queue depth
is fixed to 32 commands and the user operations match the native 256 Bytes
RRAM addressing mode, the median latency rapidly increases up to 66 µs.
Eventually the read response times of the “All-RRAM” SSD match those of
a simulated 1X-MLC NAND Flash-based SSD when a 4 kBytes RRAM page
size is devised. Indeed, as it can be seen in Fig. 3.9, as soon as the the “All-
RRAM” SSD is stimulated to operate in state-of-the-art working conditions,
its read responsiveness becomes comparable to that of a NAND Flash-based
SSD and hence the RRAM advantages are vanished.

To clarify the roots of the former results it has been decided to asses the
actual SSD resources exploitation in terms of the percentage of RRAM I/O
bus interface use and the percentage of active RRAM dies both calculated

72

Figure 3.3: Simulated SSD average read bandwidth as a function of the
RRAM page size when a queue depth of 16 commands is fixed.

Figure 3.4: Simulated SSD average read latency as a function of the RRAM
page size when a queue depth of 16 commands is fixed.

73

Figure 3.5: Simulated SSD average read bandwidth as a function of the host
interface queue depth. Native 256 Bytes and 4 kBytes multi-plane RRAM
addressing modes are considered.

Figure 3.6: Simulated SSD average read latency as a function of the host
interface queue depth. Native 256 Bytes and 4 kBytes multi-plane RRAM
addressing modes are considered.

74

(a) (b)

Figure 3.7: Cumulative distribution function (a) and probability density
function (b) of the simulated SSD read latency when a queue depth of one
command is used with the native 256 Bytes RRAM page size.

(a) (b)

Figure 3.8: Cumulative distribution function (a) and probability density
function (b) of the simulated SSD read latency when a queue depth of 32
commands is used with the native 256 Bytes RRAM page size.

75

(a) (b)

Figure 3.9: Cumulative distribution function (a) and probability density
function (b) of the simulated SSD read latency when a queue depth of 32
commands is used with the emulated 4 kBytes RRAM page size. A compar-
ison with a state-of-the-art NAND Flash SSD is provided.

Figure 3.10: Average RRAM I/O bus interface use as a function of the host
interface queue depth. Native 256 Bytes and 4 kBytes multi-plane RRAM
addressing modes are considered.

76

Figure 3.11: Average RRAM I/O bus interface use as a function of the
envisioned RRAM page size when a queue depth of 16 commands is fixed.

Figure 3.12: Percentage of active RRAM dies as a function of the host in-
terface queue depth. Native 256 Bytes and 4 kBytes multi-plane RRAM
addressing modes are considered.

77

Figure 3.13: Percentage of active RRAM dies as a function of the envisioned
RRAM page size when a queue depth of 16 commands is fixed.

as a function of the envisioned RRAM page size and disk commands queue
depth. As the read transactions payload increases and the queue depth is
large enough to serve multiple commands more data have to be transferred
from the memories to the SSD controller. This yields to a massive overhead in
terms of data transfers impacting the percentage of the I/O memory bus use,
which rapidly grows up reaching 48% when 4 kBytes transactions are served
with a queue depth equal to 16, as it can be seen in Figs. 3.10 and 3.11. As a
consequence the overall SSD latency is impacted and hence the performance
advantages introduced by RRAMmemories become less perceivable. Another
important consideration can be drawn by observing the average percentage
of active RRAM dies in the SSD considering a 100% random read workload.
As it can be seen in Figs. 3.12 and 3.13, even when 4 kBytes transactions are
envisioned by the host, its value remains far below 10%. These results clearly
denote a high underuse of the SSD resources. In fact, as previously described
in Section 3.1, the proposed“All-RRAM”SSD exploits a traditional controller
designed for NAND flash memories and leverages only on the compatibility of
RRAM memories with the NAND flash bus interface. This approach, on the
first hand allows reducing “All-RRAM” SSDs costs since standard ip-cores
can be reused, however, on the other hand does not permit to properly use
the underlying storage system which is completely different from NAND flash
memories.

78

3.3 Optimum design point exploration of“All-

RRAM” SSDs

One of the main problems highlighted in the previous Section which heavily
impact the actual “All-RRAM” SSD performance, is the memory I/O bus
inefficiency. In fact, as shown in Figs. 3.14 and 3.15, when it is performed
a latency breakdown of the storage layer considering a 200 MT/s I/O bus
frequency, it is clear that, compared to NAND flash memories, when RRAMs
are used the I/O bus transfer time is the dominant contributor.

Figure 3.14: Storage latency breakdown when a RRAM and a 200 MT/s I/O
bus are used.

Figure 3.15: Storage latency breakdown when a 1X-MLC NAND flash mem-
ory and a 200 MT/s I/O bus are used.

The use of a 200 MT/s I/O bus rate, however, represents a forced choice in
nowadays SSD architecture because it is able to guarantee an excellent signal

79

integrity over relatively long distances. In fact, due to placement constraints
of SSD boards, the SSD controller and NAND flash packages are usually
physically separated. Therefore, in order to avoid any additional noise on
top of the NAND flash channel it is mandatory to exploit reduced I/O bus
transfer rates.

Thanks to the advent of extremely fast storage media such as RRAMs,
memory vendors are now investing a great effort to push the I/O interfaces to
operate at extremely high frequencies. 800 MT/s I/O bus transfer rates have
been successfully achieved with new ONFI protocols [79] which, however, to
be exploited require a massive redesign of the analog circuitry of the SSD
controller. To this extent, these protocols still not represent a standard for
NAND flash based SSD, however, in the next future they will provide a path
for a full exploitation of fast non-volatile storage media.

In order to understand how these new SSD controller generations could
positively impact the performance of an “All-RRAM” SSD, a complete de-
sign space exploration has been performed considering a 800 MT/s I/O bus
transfer rate and 5 different RRAM page sizes: 256 B, 512 B, 1 kB, 2 kB, and
4 kB. The bandwidth of the disk, the average latency and the Quality of Ser-
vice (QoS) [46] have been retrieved for all the page size configurations. The
bandwidth is the average number of read commands completed in a second;
the average latency is the average time elapsed between a read command
submission and its completion; the QoS has been calculated as the 99.99 per-
centile of the SSD’s latency distribution. To provide a complete performance
exploration of the SSD’s architecture, data have been collected for different
host queue depths (QD) ranging from 1 up to 32 commands [27].

NAND-like mode: 4 kB RRAM page size

This case study represents the mere replacement of a NAND Flash memory
with a RRAM chip in a user-transparent mode and will be the baseline for
the following results. Therefore, as already presented in Section 3.2, in order
to provide a full compatibility with NAND Flash dies, the RRAM dies must
operate in a 16-planes mode.

As it can be seen in Figs. 3.16 and 3.17 (dashed lines), the average
latency, the QoS, and the bandwidth increase with QD. In particular, the
bandwidth of the SSD reaches a saturation trend when a QD equal to 8
commands is used, denoting that the SSD controller has reached its maximum
performance.

As demonstrated in Fig. 3.14, the average read latency of the storage
layer of an SSD, depends on two contributors: the memory TREAD and the
byte-wise I/O transfer time taken to move the read data from the memory to

80

Figure 3.16: Average latency and QoS of the simulated “All-RRAM” SSD
when a page size of 4 kB and 256 B is used, respectively.

Figure 3.17: Average latency and QoS of the simulated “All-RRAM” SSD
when a page size of 4 kB and 256 B is used, respectively.

81

the SSD controller. As shown in Fig. 3.16, by considering QD = 1 (i.e., one
command issued at a time), it is possible to observe an average SSD latency
of 9.4 µs which is almost 4 times smaller than the one observed in Fig. 3.6.
This improvement is mainly due to the lower I/O bus transfer time taken by
the 800 MT/s memory interface. In fact, in this case the transfer of a 4 kB
page takes only 6 µs instead of the 21 µs taken by the traditional 200 MT/s
interface. However, it must be highlighted that compared to the memory
TREAD time, the I/O bus transfer contributor still dominates the overall SSD
latency.

Although the obtained latency is far below the typical values of NAND-
based SSDs [76], RRAMs can be extensively optimized to reach even higher
performance. In particular, the optimization must concern the partitioning of
the 4 kB transactions imposed by the host interface into smaller chunks. The
aim of this methodology is to reduce the data transfer time individuating the
number of parallel multi-planes to be simultaneously accessed (i.e., optimal
memory page size) and the number of internal read commands to be handled
by the SSD firmware.

Single-plane 256 B RRAM page size

Figure 3.18: Translation algorithm performed by the SSD. Each 4 kB host
transaction is split across the SSD’s channels.

The minimum read granularity allowed by RRAMs is a single plane 256
B page read operation which, if used, should reduce the transfer time and
hence also the SSD latency. However, as shown in Fig. 3.18, since the host
works with 4 kB transactions, it is necessary to split the host operations in
16 chunks of 256 B each. This operation is performed by the SSD’s firmware,
which, by using the 16 channels architecture and the DRAM buffer, reads

82

each 256 B chunk in parallel and rebuild the 4 kB transaction before sending
the data back to the host.

Figs. 3.16 and 3.17 (solid lines) show the bandwidth, the average latency
and the QoS achieved by the aforementioned approach. By considering the
simulations performed with QD = 1 the straightforward conclusion could be
that the 256 B page size will reduce SSD latency, increase the bandwidth,
and improve the QoS.

However, for QD > 1 these considerations will not hold true since the
number of operations internally handled by the SSD controller increases by a
factor 16, leading to a saturation of its processing capabilities. This turns into
a dramatic performance loss aggravated by the fact that all data chunks must
be temporarily stored inside the DRAM buffer, whose access is contended by
all the SSD channels causing resources starvation.

Multi-planes 512-1024-2048 B RRAM page sizes

Figure 3.19: Cumulative percentage on a normal probability paper of the
latency of the “All-RRAM” SSD when a QD = 1 and a page size of 256 B,
512 B, 1 kB, 2 kB, and 4 kB is considered. The QoS threshold is marked for
all the tested cases.

To reduce both the amount of commands processed by the SSD controller
and the number of accesses to the internal DRAM memory, different RRAM
page sizes have been considered: 512 B, 1 kB, and 2 kB. To exploit these
configurations and keep unaltered the 4 kB host transactions payload, both
the SSD’s firmware and the RRAM memories have been co-designed to work
in multi-plane mode. With this respect, when a n*256 B RRAM page size

83

is used, being n = [2, 4, 8], the SSD’s firmware is configured to read 16/n
chunks of n*256 B each from 16/n parallel channels.

Fig. 3.19 shows the cumulative latency distributions and the QoS of the
simulated“All-RRAM”SSD as a function of the page size, when a host QD =
1 is selected. As it can be seen, the optimum disk latency is achieved neither
with the standard 256 B page size nor with the 4 kB NAND-like mode,
but rather with a 1 kB multi-plane page configuration. This phenomenon is
manifested also at different host QD as shown in Figs. 3.20 a-d, where the
disk latencies evidence two page size optima: for QD < 8 the value is 1 kB,
whereas it becomes 2 kB for QD > 8.

Fig. 3.21 shows the bandwidth achieved by the considered “All-RRAM”
SSD as a function of both the RRAM page size and the host QD. As it can be
seen, when QD = 1, the maximum bandwidth is achieved when a page size
of 1 kB is used, whereas for QD > 16 the maximum bandwidth is achieved
for 4 kB. However, if it is considered that the optimization of the SSD must
simultaneously concern all the figures of merit, it appears that a good trade-
off between bandwidth, latency, and QoS still exists for 1 kB and 2 kB page
sizes.

84

(a) (b)

(c) (d)

Figure 3.20: SSD average latency and QoS when all the different RRAM page
sizes are used and a host QD = 1 (a), 8 (b), 16 (c), and 32 (d) is considered.

Figure 3.21: SSD bandwidth as a function of the RRAM page size and the
host QD.

85

86

Chapter 4

Next steps: power efficient SSD
architectures and beyond

The increasing use of SSDs in hyperscale environments such as cloud comput-
ing and big-data servers is now pushing the storage revolution made available
by solid-state non-volatile memories to a new edge. With this respect, the
new constraint that now drives the design phase of an SSDs is the power con-
sumption, which limits the actual storage capacity of these devices. Achiev-
ing an ExaBytes-dense (1018 Bytes) disk completely constructed from NAND
flash memories, is the aim of “All-Flash” arrays which are now of great inter-
est both in the industry and in the academia [80, 81, 82, 83, 84, 85]. Basically,
they aim to completely replace traditional HDDs in order to enable a fast
path also for rarely used data called “cold-storage”. However, to pursue this
goal, beside the traditional power optimization performed inside SSD con-
troller it is mandatory to start to consider the storage infrastructure, namely,
the system composed by the user’s application and the actual storage device,
as a whole. In fact, putting all the effort to achieve a high dense and power
efficient SSD able to work for general purpose workloads, is now becoming an
extremely complex task because first and foremost the NAND flash memories
cannot be used in this way. As a matter of example, as shown in Section
2.3.2, even if TLC NAND flash memories are able to provide a big storage
capacity, they cannot be used for write intensive workloads because of the re-
duced endurance rate and the high power consumption. To clarify this latter
consideration it is sufficient to consider that TLC memories show a higher
program time compared to MLC an SLC storage paradigm, and hence they
will introduce a higher power consumption. As a consequence it is clear that
user’s applications have to be carefully co-designed with the underlying stor-
age system considering not only either the target performance or the power
consumption, but rather the combination of both. This approach is leading

87

to a new design methodology of SSD architectures called “software-defined
SSDs”. This methodology tries to connect the application development step
with the SSD design phase, and to build a custom power-efficient and high-
performing storage environment thought for a specific workload.

Along with the emerging power-efficient SSD design methodologies made
available by the “software-defined” approach, it is now becoming of great in-
terest a lightweight storage architecture on which the FTL and the all the
routines responsible for the NAND flash memories management are moved
from the SSD controller to a high-performing host processor such as a Multi-
Purpose Processing Arrays (MPPA). The motivation for moving certain re-
sponsibilities from the SSD controller to a more powerful host processor
[86] is to make I/O data commands predictable from the host-side. In this
way, the device enables the host to adapt the FTL algorithms and opti-
mizations to match the appropriate user workloads that it executes. This
approach, called “Open-Channel SSDs” [87], enhance the previously men-
tioned “software-defined” paradigm introducing a dynamic evolution or mod-
ification of the SSD’s characteristics and enabling the design of extremely
power-efficient and high-performing SSD architectures.

In this chapter are presented two simulation methodologies that can be
used to:

• assess the power consumption of a specific SSD architecture;

• efficiently co-design the resources of a “Open-Channel” storage archi-
tecture;

The following discussions have to be intended as a possible extension of
the results presented in this thesis. With this respect, the main goal of this
chapter is to show in how many parts the SSD design space can be divided,
and to highlight the increasing necessity to contextualize the design phase of
an SSD inside the application scenario where it will be used.

4.1 Assessing SSDs’ power consumption with

SSDPower

As presented in Chapter 2, NAND-Flash based SSDs feature an embedded
controller and a parallel array of NAND Flash chips, which, if properly de-
signed allows achieving high throughput, low read/write latency and high
reliability. However, to deal with the increasing performance requirements
of hyperscale systems such as cloud computing and big data servers, SSD
designers started to leverage on memory I/O parallelism embodying on the

88

same system hundreds of parallel NAND flash dies. This approach, as shown
in Section 2.1, leads to extremely fast yet complex solutions, which on the first
hand allow achieving the target performance/capacity of the disk, but on the
other hand heavily impact the overall SSD power consumption. This latter
point is of a particular concern in cloud environments due to restricted power
budget and the severe green policies [88]. To overcome the SSD’s power con-
sumption issue and to better understand which are the main actors responsi-
ble for power consumption, several approaches have been proposed. Among
them two techniques arise: the first one is a top-down approach which lever-
ages on a real hardware setup able to measure the SSD’s power consumption
during its functional behavior [89, 90]; the second one is a simulation-driven
bottom-up approach which assesses the disk power consumption from that
of NAND flash memories [91]. However, a closer look to these methodologies
reveals that both have several drawbacks. From the SSD’s designer perspec-
tive, measuring the disk power when its design is already completed does not
provide any useful information. In the same way, simulating the NAND flash
power figures turns out to be inaccurate when internal program and read
algorithms are not disclosed and hence, any power estimation could heavily
differs from that measured on real silicon implementations. At this point, it is
clear that assessing the disk power consumption during its design phase would
be a desirable feature which could help designers to efficiently define the disk
architecture thus avoiding any resource misallocation. In this Section, it is
proposed SSDPower a co-simulation framework for SSD power consumption
estimation. The tool exploits a mixed-bottom up approach that provides
SSD’s power consumption figures starting from measured NAND flash cur-
rent traces. SSDPower allows broadening the design space exploration of an
SSD relating the disk architecture and the host workload with the NAND
flash current profiles, thus helping the estimation and the optimization of the
whole NAND flash sub-system power consumption.

4.1.1 SSDPower Rationale

The proposed SSDPower framework bases on the measurements of the NAND
flash chips power consumption through the analysis of their current drawn
during read and write operations, and the SSDExplorer simulator. The main
idea is to exploit the Kirchhoff’s current law to assess the power consumption
of the NAND flash sub-system of a SSD. With this respect, since NAND flash
chips are connected to the same power supply, the total current drawn by
the system will be the sum of each NAND flash chip contribution. Fig. 4.1
shows a measurement taken with an oscilloscope proving this assumption
on a real SSD product. In this case, the SSD controller issued two read

89

Figure 4.1: Superposition principle measured during standard NAND flash
read operations. C1 and C2 are the current measured on single chips while
C3 is the current measured on the main power supply.

commands with a 20 µs skew on two different NAND flash chips connected
to the same power supply; C1 and C2 are the currents measured on the two
chips while C3 is the current measured on the main power supply. As it can
be seen, C3 is the exact sum of the currents C1 and C2, and this proves
definitively the possibility to exploit the superposition effect also for NAND
flash power consumption estimations. At this point, in order to estimate
the power consumption of the whole NAND flash sub-system of an SSD it is
sufficient to:

• measure the current drawn by a single chip during standard read and
program operations;

• monitor the memories’ ready/busy switching activity;

• superimpose the current waveforms of the memories to their switching
activity and sum all the contributions.

Fig. 4.2 shows the baseline setup exploited for the NAND Flash cur-
rent characterization step. As it can be seen, a V/I converter [92] has been
connected in parallel to a 300 mω resistor (RSENSE) sensing the voltage
drop between its terminals produced by the current ILOAD. The resistor
is connected in series to the VCC power supply of a standard SO-DIMM
test board where four different NAND flash chips are mounted (see Fig.

90

Table 4.1: Main characteristics of the measured NAND flash memories.

VCC 3.3 V
Technology node Mid-1X
Storage paradigm TLC-128Gb
Interface BUS Toggle
BUS speed 400 MT/s

Average TPROG (lower page) 800 µs

Average TPROG (middle page) 1900 µs

Average TPROG (upper page) 4300 µs

Average TREAD (lower page) 80 µs

Average TREAD (middle page) 100 µs

Average TREAD (upper page) 80 µs

Figure 4.2: Schematic of the measurement setup used to characterize NAND
Flash power consumption.

Figure 4.3: TLC NAND Flash SO-DIMM test board.

91

Figure 4.4: ATE used for NAND flash memories characterization.

4.3). Both the sense resistor value and the current-sense amplifier gain have
been wisely selected to produce enough response bandwidth to capture all
the current fluctuations of NAND Flash memories’ operations. Finally, the
output current of the V/I converter has been measured by an oscilloscope.
Table. 4.1 summarizes the characteristics of the tested memories. The test
board communicates through the interfacing socket with a dedicated Auto-
mated Test Equipment (ATE) shown in Fig. 4.4. The ATE is composed
by a programmable FPGA, a DRAM-buffer for data manipulation, two SO-
DIMM card sockets and two SAS ports for PC connection. The FPGA is
programmed to behave as a simple NAND flash controller that takes user
commands as inputs and issues standard NAND flash read and program op-
erations to all the chips. Figs. 4.5 show the result of the NAND flash current
characterization. As it can be seen, thanks to the exploited setup it has been
possible monitoring the actual latency and all the current peaks introduced
by read and program operations. Especially for this latter, the oscilloscope
measurement allowed capturing the current drawn during the Incremental
Step Pulse Program algorithm, which represent an extremely useful informa-
tion when SSD power optimization algorithms have to be studied.

The NAND flash power measurement setup has been designed only for
memories characterization and power consumption assessment. With this
respect, in fact, the test equipment can only send raw IO/s to memories
under test and it is neither capable to execute a complete SSD firmware
nor to handle the host interface protocol. Moreover, since it does not have

92

(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Current measured during program and read operations in a single
NAND flash chip. a) lower page program; b) lower page read; c) middle page
program; d) middle page read; e) upper page program; f) upper page read.

93

any notion about the SSD architecture, it lacks of an intrinsic flexibility and
hence, it is not possible to explore any specific configuration without a new
hardware implementation. In this Section, this problem has been addressed
exploiting a SSDExplorer. The tool, in fact, is also able to monitor all the
operations sent by the controller to the NAND flash memory array and to
dynamically compute its ready/busy switching activity depending on the
selected architecture and workload. This latter feature makes the tool the
suitable solution for the final SSDPower implementation.

Figure 4.6: SSDPower test flow.

Fig. 4.6 summarizes the main steps performed by SSDPower. Basically,
the power traces gathered by the measurement setup are stored in a nu-
meric format and directly sent to the power calculator engine. Along with
the current profiles of NAND flash operations, the SSD simulator injects the
memories’ ready/busy switching activity calculated for a given disk archi-
tecture and a host workload. These contributions are then combined by the
power calculator engine which computes the final power profile exploiting
the superimposition phenomenon. Thank to these features, SSDPower al-
lows connecting in a single automated test flow the design-space-exploration
of latency and performance of a target SSD architecture along with the power
consumption of the whole NAND flash memory subsystem. With this respect
it must highlighted that the proposed approach is here applied to calculate
the power consumption of the NAND flash subsystem, however, it can be ap-
plied to all the blocks of the SSD (Error Correction Code, processor, DRAM,
etc.) given the corresponding power traces.

One of the main features of SSDPower is that it can be used in a feed-
back loop with the SSD simulator assessing the power consumption of a tar-

94

get architecture and dynamically modifying the internal command sequence
processed by the SSD. This iterative process can be used in an attempt to
optimize the SSD power profile. With this respect, uncontrolled multiple
program operations issued on parallel chips may introduce an out-of-spec
current consumption representing one of the main problems that limits the
internal parallelism, and therefore the performance of an SSD architecture
[93].

Table 4.2: Test performed on the tested SSD architecture.

Workload Test Power optimization
25% Program 75% Read T1 -

512 Mbytes T2 Single program suspend
4 kBytes 100% random T3 Double program suspend

Figure 4.7: Total NAND flash subsystem power profile in the T1 case (base-
line).

4.1.2 SSD power consumption optimization

In order to prove the capabilities of SSDPower, it has been simulated the
power consumption of an SSD configured with 16 populated channels with 8
NAND flash targets each [8] in the test configurations shown in Table. 4.2.
Fig. 4.7 shows the power consumed by the NAND flash subsystem when

95

the test T1 is considered. In this case, the average and the peak power con-
sumption are 1.87 W and 3.52 W, respectively, whereas the time required to
process the workload is 660 ms. As it can be seen, even if random operations
are issued by the host system, the power profile is composed by a repetitive
sequence of power fluctuations. This is an expected behavior because ran-
dom program operations are serialized by the SSD controller to deal with
the standard in-order programming sequence of NAND flash memories. Af-
ter this test, which represents the baseline configuration considered in this
work, the tool has been used to study a dedicated peak power management
algorithm able to optimize the power profile of multiple program operations
issued on parallel chips. The power consumption problem has been addressed
exploiting a power throttling algorithm based on program suspend operations
[94]. Basically, depending on the power profile drawn by the disk, the sim-
ulated SSD controller can introduce a variable amount of suspend windows
inside any program operations so that to disoverlap current peaks on parallel
chips. Moreover, in order to reduce also the average power consumption of
the disk, during program suspensions no other operations have been issued
to idle chips. Finally, considering that the program of an upper page is the
most power hungry operation (according to Fig. 4.5e), the peak power man-
agement algorithm has been applied only to upper page programming. In the
test T2 a single suspend window of 200 µs has been issued by the ATE setup
during upper page programming; then the suspend window has been shifted
on all possible suspension points made available by the internal NAND flash
logic circuitry.

(a) (b)

Figure 4.8: Current measured during single program suspend operations with
optimized suspend window for average a) and peak b) power reduction.

The current profiles optimizing either the average or the peak power con-
sumption of the NAND flash subsystem are shown in Fig. 4.8a)-b), respec-

96

(a) (b)

Figure 4.9: Total NAND flash subsystem power profile in the T2 case when
average power a) or peak power b) are optimized.

(a) (b)

Figure 4.10: Current measured during double program suspend operations
with optimized suspend windows for average a) and peak b) power reduction.

(a) (b)

Figure 4.11: Total NAND flash subsystem power profile in the T3 case when
average power a) or peak power b) are optimized.

97

tively. Fig. 4.9 shows the total power consumed when either the average a)
or the peak power b) are optimized. With respect to the baseline Test T1,
the average and the peak power of the NAND flash subsystem are reduced
of about 3.5% and 11.5%, respectively. As expected, however, the proposed
approach negatively impacted the total processing time of the disk which
increases of about 5%. This phenomenon is a direct consequence of the sus-
pension window applied on upper pages, which increased their latency of
about 16%. In the test T3 two suspend windows of 200 µs have been issued
by the ATE setup during upper page programming and shifted on all pos-
sible suspension points. The current profiles optimizing either the average
or the peak power consumption of the NAND flash subsystem are shown in
Fig. 4.10a)-b), respectively. Fig. 4.11 shows the total power consumed when
either the average a) or the peak power b) are optimized. With respect to the
baseline Test T1, the average and the peak power of the NAND flash subsys-
tem are reduced of about 5% and 13%, respectively. As expected, however,
the proposed approach negatively impacted the total processing time of the
disk which increases of about 10%. This phenomenon is a direct consequence
of the suspension windows applied on upper pages, which increased their la-
tency of about 27%. The comparison between tests T1, T2 and T3 evidenced
that the peak power management algorithm trades a reduction of either the
average or the peak power of the NAND flash memory subsystem, with the
total SSD command processing time.

4.2 Accelerating data-intensive applications

with MPPAs and SSDs

To completely understand how an SSD behaves in a complete host system,
it is mandatory to consider that applications running on top of it have not
been developed to work with NAND flash memories. The development of
filesystems or data intensive applications, in fact, was driven for many years
by HDDs characteristics which are completely different from a NAND flash
based SSD. As a consequence, in order to make HDD-like applications com-
patible with SSDs, it is mandatory to leverage on algorithms (the FTL) whose
responsibility is the management and the translation of the host commands
into NAND flash-compatible sequences. However, even if FTLs have been
extensively studied and optimized to be as efficient as possible, their execu-
tion is still performed on top of the SSD controller which has to reserve a
considerable amount of computational resources, and hence power, to execute
it.

98

As presented in Section 4.1, the NAND flash memory subsystem adopted
in high-performing SSDs leverages on a massive parallelization of the memory
dies, and hence, it is one of the most power-hungry parts of the disk. As a
consequence, only a relatively small amount of power (in the order of tens
of Watts) can be used for the SSD controller implementation [88]. At this
point it becomes clear that designing a low-power processor able to execute
extremely complex algorithms is becoming more and more challenging, and,
in future SSDs architecture where thousands of NAND flash chips will be
used, there will be less room for complex processing units inside the disk.

The“Open-Channel”initiative [87] aims to solve the aforementioned prob-
lems introducing a lightweight system where both user’s applications and the
storage layer are NAND-flash aware [95]. Basically, in this new storage ar-
chitecture both the FTL routines and the ECC algorithms are moved from
the SSD controller to a more powerful processor located outside the SSD
card. This processing unit can be either the host processor or a dedicated
accelerator in the form of a Multi-Purpose Processing Array (MPPA).

Figure 4.12: Baseline architecture modeled by the “Open-Channel” storage
layer.

Fig. 4.12 shows a hypothetical architecture that can be modeled by the
“Open-Channel” storage system. Basically, thanks to the PCI-Express in-
terconnection and the NVM-Express protocol [26], a bunch of NAND flash
cards and an MPPA can establish a pear-to-pear communication without
requesting any specific management from the host processor [96]. In this
architecture, however, the used NAND flash cards have not to be intend as

99

Figure 4.13: NAND flash card used in the “Open-Channel” storage system.

traditional SSD because, beside a simple I/O processor and a channel con-
troller deputed for NAND flash addressing, they do not embody any complex
processor, DRAM, FTL or even ECC (see Fig. 4.13). As a consequence, data
read/written from/to these cards have to be considered as the raw output/in-
put of the NAND flash memories without any further manipulation.

One of the main advantages made available by this new storage system,
is that the host processor can view the MPPA either as a block device or
as a programmable accelerator. In fact, using the I/O-pmem library [97]
through the NVM-Express protocol, it is possible to address the the DRAM
modules hosted on top of the accelerator like a standard I/O block device.
The MPPA, on the other hand, can manipulate and process the incoming
host’s data exploiting specific applications hosted on top of its processors.
With this respect, in fact, the accelerator can execute these programs by
means of a custom Real Time Operating System (RT-OS) designed to manage
I/O operations in a more efficient way than the host OS. Moreover, along
with the custom RT-OS, different FTLs managing the NAND flash cards or
even ECC algorithm can be executed on top of the MPPA relieving the non-
volatile storage layer to execute complex and power-hungry algorithms. This
solution leads to a flexible and power-efficient framework for data intensive
applications where the data manipulation is performed directly on top of the
storage backbone and the host system is free to execute other critical task
operations.

100

4.2.1 Simulation model

A possible way to simulate the proposed version of the “Open-Channel” ar-
chitecture is to use a programmable virtual manager able to virtualize all the
peripherals needed by the host system. With this respect, Qemu represents
the preferable choice since it is open-source and it is ready to emulate com-
plete OS with several virtualized peripherals such as the DRAM controller,
the Advanced Host Controller Interface (AHCI), the Network Interface con-
troller (NIC), the PCI-Expresse controller, etc. [4].

Figure 4.14: Template architecture modeled by Qemu. A custom wrapper for
the SSDExplorer and the MPPA simulators are attached to the PCI-Express
bus like traditional block devices.

As it can be seen in Fig. 4.14, the Qemu platform allows developing vir-
tual devices which can be attached to the simulator’s drivers and recognized
as standard block devices. In this case, two wrappers have been attached to
the NVM-Express driver:

• the SSDExplorer wrapper: which acts as an I/O trace collector for the
“Online-Offline” simulation mode of the tool presented in Section 1.3.1;

101

• the MPPA wrapper: which is a programmable-transactional-based func-
tional simulator of the routines executed by the accelerator. Basically,
this tool introduces the proper delay for all the operations performed
by the user and the FTLs producing the corresponding I/O trace for
the SSDExplorer wrapper;

Thanks to this approach it will be possible assessing in a single integrated
framework how the new storage layer proposed by the “Open-Channel” ar-
chitecture will impact the host system in terms of performance and latency.
Moreover it will be possible to relate the user applications to the actual
power consumption of the NAND flash cards, allowing to optimize not only
the performance of the system by also its power efficiency.

102

Conclusions

In this thesis it has been presented a thorough design space exploration of
present and future Solid State Drive architectures. This work has been made
possible thanks to the development of SSDExplorer, a dedicated CAD tool
able to accurately simulate the SSD’s behavior performing a fast yet fine-
grained design space exploration of the disk’s architecture. Thanks to this
tool, it has been possible relating the design phase of an SSD with the fea-
tures of the used memories, highlighting how the reliability, the architecture,
and the power consumption of these devices are able to impact the final
disk’s performance. Whit this respect, it must be highlighted that in previ-
ous research works the SSD’s performance were coupled only with the FTL
efficiency because neither an accurate hardware modeling nor the memories’
characteristics were taken into account.
In this work it has been demonstrated that:

• when NAND flash memories are used as the main storage medium it is
mandatory to design the SSD architecture considering also the reliably
figures of these devices. In fact, to deal with the increasing RBERs of
NAND flash memories, and hence to guarantee the data trustworthiness
over time, sophisticated error correction algorithms such as the Read
Retry or the LDPC Soft-Decision have to be embedded inside the SSD
controller. However, collected results show that these approaches trade
a data reliability improvement with a deterioration of the latency and
the bandwidth figures of the disk, and hence, a performance/reliability
trade-off is manifested. This phenomenon, heavily modifies the design
phase of an SSD since, it is mandatory to carefully study the disk’s
architecture in order to maintain the target performance, latency, and
QoS requirements during the whole SSD lifetime;

• to efficiently design a high-preforming SSDs constructed from RRAMs
(“All-RRAM”SSDs), it is mandatory to consider the architecture of the
underlying storage medium avoiding to use these emerging memories as
traditional NAND flash chips. With this respect, in fact, achieved re-

103

sults show that even if RRAMs are provided with the standard NAND
flash interface (ONFI) which enables the use of these devices with nowa-
days SSD controllers, to fully exploit these memories it is necessary to
implement a custom disk architecture with a specific data management
algorithm. If this optimization is not performed, “All-RRAM” SSDs
are not able to keep the promise of a low latency and high perform-
ing storage system and, in worst-case conditions, they show the same
performance of a traditional NAND flash-based SSD;

• the power consumption of the underlying storage system is one of the
main parameters influencing the architecture of an SSDs. With this
respect, the growing necessity of high performance and high storage
capacity of SSD architectures is pushing designers to embed hundreds
or even thousands of memory dies on the same SSD card. This ap-
proach leads to extremely complex management routines that cannot
be executed on top of a traditional SSD controller which, moreover,
has to be designed to be as low power as possible. As a consequence,
“software-defined” and “Open-Channel” approaches are now becoming
more appealing since they propose to optimize the power consumption
of an SSD either customizing the use of the disk limiting its applica-
tion scenario, or moving the processing effort outside the disk controller
exploiting advanced processing systems such as MPPAs;

Overall, what ultimately stands out from the above considerations is that
in any case the performance, the reliability, the architecture, and the power
consumption characteristics of the exploited storage medium represent the
main drivers of the design phase of an SSD. Collected results clearly proved
that the “memory-centric” bottom-up design flow devised in this work allows
optimizing each single hardware/software resource of the disk connecting
the physical characteristics of the exploited memories with the final user
application.

104

Bibliography

[1] R. Micheloni, A. Marelli, and K. Eshghi. Inside Solid State Drives
(SSDs). Springer London, 2012.

[2] The OpenSSD Project. http://www.openssd-project.org/wiki/

The_OpenSSD_Project.

[3] Jinsoo Yoo, Youjip Won, Joongwoo Hwang, Sooyong Kang, Jongmoo
Choi, Sungroh Yoon, and Jaehyuk Cha. Vssim: Virtual machine based
ssd simulator. In IEEE Symposium on Mass Storage Systems and Tech-
nologies (MSST), pages 1–14, 2013.

[4] QEMU: open source processor emulator. http://wiki.qemu.org/

Main_Page.

[5] The DiskSim simulation environment version 4.0, 2008. http://www.

pdl.cmu.edu/PDL-FTP/DriveChar/CMU-PDL-08-101.pdf.

[6] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Ro-
man Pletka. Write amplification analysis in flash-based solid state drives.
In Proceedings of SYSTOR, pages 10:1–10:9, 2009.

[7] Ocz vertex series 120GB SSD. http://ocz.com/consumer.

[8] FLASHTEC NVRAM Drives. http://pmcs.com/products/storage/

flashtec_nvram_drives/.

[9] Youngjae Kim, B. Tauras, A. Gupta, and B. Urgaonkar. Flashsim:
A simulator for nand flash-based solid-state drives. In International
Conference on Advances in System Simulation (SIMUL), pages 125–131,
2009.

[10] Jongmin Lee, Eujoon Byun, Hanmook Park, Jongmoo Choi, Donghee
Lee, and Sam H. Noh. Cps-sim: configurable and accurate clock preci-
sion solid state drive simulator. In Proceedings of the ACM symposium
on Applied Computing, pages 318–325, 2009.

105

[11] Hoeseung Jung, Sanghyuk Jung, and Yong Ho Song. Architecture explo-
ration of flash memory storage controller through a cycle accurate pro-
filing. IEEE Transactions on Consumer Electronics, 57(4):1756–1764,
2011.

[12] E.-Y. Chung. A Solid-State Disk Simulator for Quantitative Perfor-
mance Analysis and Optimization. In NVRAMOS, 2009.

[13] Cagdas Dirik and Bruce Jacob. The performance of pc solid-state disks
(ssds) as a function of bandwidth, concurrency, device architecture, and
system organization. In International Symposium on Computer Archi-
tecture (ISCA), pages 279–289, 2009.

[14] S. Zertal and W. Dron. Quantitative study of solid state disks for mass
storage. In International Symposium on Performance Evaluation of
Computer and Telecommunication Systems (SPECTS), pages 149–155,
2010.

[15] Kai Zhao, Wenzhe Zhao, Hongbin Sun, Xiaodong Zhang, Nanning
Zheng, and Tong Zhang. Ldpc-in-ssd: Making advanced error correction
codes work effectively in solid state drives. In Presented as part of the
11th USENIX Conference on File and Storage Technologies (FAST 13),
pages 243–256, 2013.

[16] Sungjin Lee, Kermin Fleming, Jihoon Park, Keonsoo Ha, Adrian M.
Caulfield, Steven Swanson, Arvind, and Jihong Kim. Bluessd: An open
platform for cross-layer experiments for nand flash-based ssds. In The
5th Workshop on Architectural Research Prototyping, 2010.

[17] Systemc 2.0.1 language reference manual, 2002. http://www.systemc.
org.

[18] Sungpack Hong, Sungjoo Yoo, Sheayun Lee, Sangwoo Lee, Hye Jeong
Nam, Bum-Seok Yoo, Jaehyung Hwang, Donghyun Song, Janghwan
Kim, Jeongeun Kim, HoonSang Jin, Kyu-Myung Choi, Jeong-Taek
Kong, and SooKwan Eo. Creation and utilization of a virtual platform
for embedded software optimization:: an industrial case study. In Pro-
ceedings of the International Conference Hardware/Software Codesign
and System Synthesis (CODES+ISSS), pages 235–240, Oct 2006.

[19] S. Pasrich and N. Dutt. On-Chip Communication Architectures: System
on Chip Interconnect. Morgan Kaufmann, 2008.

106

[20] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5
simulator. SIGARCH Comput. Archit. News, 39(2):1–7, 2011.

[21] Open Virtual Platforms - the source of Fast Processor Models and Plat-
formsOpen Virtual Platforms. http://www.ovpworld.org.

[22] Open Nand Flash Interface (ONFI). http://www.onfi.org.

[23] Evatronix NAND Flash controller ip-core. http://www.evatronix-ip.
com/ip-cores/memory-controllers/nand-flash.html.

[24] Serial ATA International Organization. SATA revision 3.0 specifications.
www.sata-io.org.

[25] SATA-IP host reference design on SP605 manual, Apr 2013. Accessed.

[26] NVM Express, 2013. http://www.nvmexpress.org/.

[27] Nvm express 1.1 specification, 2013. http://nvmexpress.org/

wp-content/uploads/2013/05/NVM_Express_1_1.pdf.

[28] Open-Silicon. SATA device controller - product brief, 2013.
http://www.open-silicon.com/ip-technology/open-silicon-ip/

io-controllers/sata-device-controller/.

[29] Intel X18-M X25-M SATA Solid State Drive. Enterprise Server/Stor-
age Applications. http://cache-www.intel.com/cd/00/00/42/52/

425265_425265.pdf.

[30] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A cycle ac-
curate memory system simulator. IEEE Computer Architecture Letters,
10(1):16–19, 2011.

[31] Myoungsoo Jung, E.H. Wilson, D. Donofrio, J. Shalf, and M.T. Kan-
demir. Nandflashsim: Intrinsic latency variation aware nand flash mem-
ory system modeling and simulation at microarchitecture level. In IEEE
28th Symposium on Mass Storage Systems and Technologies (MSST),
pages 1–12, 2012.

[32] Youngjoo Lee, Hoyoung Yoo, Injae Yoo, and In-Cheol Park. 6.4gb/s
multi-threaded bch encoder and decoder for multi-channel ssd con-
trollers. In IEEE International Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), pages 426–428, Feb 2012.

107

[33] L. Zuolo, C. Zambelli, R. Micheloni, D. Bertozzi, and P. Olivo. Anal-
ysis of reliability/performance trade-off in solid state drives. In IEEE
International Reliability Physics Symposium, pages 4B.3.1–4B.3.5, June
2014.

[34] Duo Liu, Yi Wang, Zhiwei Qin, Zili Shao, and Yong Guan. A space reuse
strategy for flash translation layers in slc nand flash memory storage sys-
tems. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 20(6):1094–1107, June 2012.

[35] Tianzheng Wang, Duo Liu, Yi Wang, and Zili Shao. Ftl2: A hybrid
flash translation layer with logging for write reduction in flash memory.
SIGPLAN Not., 48(5):91–100, June 2013.

[36] Duo Liu, Yi Wang, Zhiwei Qin, Zili Shao, and Yong Guan. A space reuse
strategy for flash translation layers in slc nand flash memory storage sys-
tems. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 20(6):1094–1107, June 2012.

[37] Yuan-Hao Chang, Po-Chun Huang, Pei-Han Hsu, L.-J. Lee, Tei-Wei
Kuo, and D.H.-C. Du. Reliability enhancement of flash-memory storage
systems: An efficient version-based design. Computers, IEEE Transac-
tions on, 62(12):2503–2515, Dec 2013.

[38] Tianzheng Wang, Duo Liu, Yi Wang, and Zili Shao. Ftl2: A hybrid
flash translation layer with logging for write reduction in flash memory.
SIGPLAN Not., 48(5):91–100, June 2013.

[39] Intel Shows PAX Attendees SSD Over-
clocking. http://www.legitreviews.com/

intel-shows-pax-attendees-ssd-overclocking_122557.

[40] Indilix barefoot controller. http://www.indilinx.com/solutions/

barefoot.html.

[41] IOzone Filesystem Benchmark. http://www.iozone.org/.

[42] UMassTraceRepository. http://traces.cs.umass.edu/index.php/

Storage/Storage.

[43] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M.Olivieri.
Mparm: Exploring the multi-processor soc design space with systemc.
Journal of VLSI SIgnal Processing, 41:169–182, 2005.

108

[44] An Overview of SSD Write Caching. http://community.spiceworks.
com/attachments/post/0013/5918/ssd_write_caching_tech_

brief_lo.pdf.

[45] Samsung NAND Flash memory K9XXG08UXM series. http://www.

arm9board.net/download/fl6410/datasheet/k9g8g08.pdf.

[46] Intel solid-state drive dc s3700 series – quality of service., 2013.
http://www.intel.com/content/www/us/en/solid-state-drives/

ssd-dc-s3700-quality-service-tech-brief.html.

[47] The cost of latency, 2015. http://www.telx.com/blog/

the-cost-of-latency/.

[48] Platform as a service (paas), 2015. http://searchcloudcomputing.

techtarget.com/definition/Platform-as-a-Service-PaaS.

[49] N. Mielke, T. Marquart, Ning Wu, J. Kessenich, H. Belgal, Eric Schares,
F. Trivedi, E. Goodness, and L.R. Nevill. Bit error rate in NAND
Flash memories. In IEEE International Reliability Physics Symposium
(IRPS), pages 9–19, 2008.

[50] Sungjin Lee, Taejin Kim, Kyungho Kim, and Jihong Kim. Life-
time Management of Flash-based SSDs Using Recovery-aware Dynamic
Throttling. In USENIX Conference on File and Storage Technologies,
(FAST’12), 2012.

[51] Ren-Shuo Liu, Chia-Lin Yang, and Wei Wu. Optimizing NAND Flash-
Based SSDs via Retention Relaxation. In USENIX Conference on File
and Storage Technologies, (FAST’12), 2012.

[52] Laura M. Grupp, John D. Davis, and Steven Swanson. The Bleak Future
of NAND Flash Memory. In USENIX Conference on File and Storage
Technologies, (FAST’12), 2012.

[53] Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai. Threshold volt-
age distribution in MLC NAND flash memory: Characterization, anal-
ysis, and modeling. In Design, Automation Test in Europe Conference
(DATE), 2013, pages 1285–1290.

[54] Xueqiang Wang, Guiqiang Dong, Liyang Pan, and Runde Zhou. Error
Correction Codes and Signal Processing in Flash Memory, Flash Mem-
ories. Igor Stievano (Ed.), 2011.

109

[55] Intel-Corporation Robert Frickey. Data Integrity on 20nm SSDs. In
Flash Memory Summit, 2012.

[56] A.G. COMETTI, L.B. Huang, and A. Melik-Martirosian. Apparatus
and method for determining a read level of a flash memory after an
inactive period of time, February 4 2014. US Patent 8,644,099.

[57] Silicon Motion Jeff Yang. High-Efficiency SSD for Reliable Data Storage
Systems. In Flash Memory Summit, 2012.

[58] Intel-Corporation Ravi Motwani. Exploitation of RBER Diversity across
Dies to Improve ECC Performance in NAND Flash Drive. In Flash
Memory Summit, 2012.

[59] Pci express base 3.0 specification, 2013. http://www.pcisig.com/

specifications/pciexpress/base3/.

[60] E. Yeo. An LDPC-enabled flash controller in 40nm CMOS. In Proc. of
Flash Memory Summit, Aug. 2012.

[61] X. Hu. LDPC codes for flash channel. In Proc. of Flash Memory Summit,
Aug. 2012.

[62] Erich F. Haratsch. LDPC Code Concepts and Performance on High-
Density Flash Memory. In Proc. of Flash Memory Summit, Aug. 2014.

[63] Tong Zhang. Using LDPC Codes in SSD — Challenges and Solutions.
In Proc. of Flash Memory Summit, Aug. 2012.

[64] R. Micheloni, A. Marelli and R. Ravasio. Basic coding theory. In
R. Micheloni, A. Marelli, and R. Ravasio, editor, Error Correction Codes
for Non-Volatile Memories, pages 1–33. Springer-Verlag, 2008.

[65] L. Zuolo, C. Zambelli, P. Olivo, R. Micheloni, and A. Marelli. LDPC
Soft Decoding with Reduced Power and Latency in 1X-2X NAND Flash-
Based Solid State Drives. In IEEE International Memory Workshop
(IMW), pages 1–4, May 2015.

[66] D.H. Nguyen and F.F. Roohparvar. Increased nand flash memory read
throughput, March 8 2011. US Patent 7,903,463.

[67] S.H. Lee, S. Bae, J.N. Baek, H.S. Kim, and S.B. Kim. Method of reading
data from a non-volatile memory and devices and systems to implement
same, March 28 2013. US Patent App. 13/429,326.

110

[68] N. Shibata, K. Kanda, T. Hisada, K. Isobe, M. Sato, Y. Shimizu,
T. Shimizu, T. Sugimoto, T. Kobayashi, K. Inuzuka, N. Kanagawa,
Y. Kajitani, T. Ogawa, J. Nakai, K. Iwasa, M. Kojima, T. Suzuki,
Y. Suzuki, S. Sakai, T. Fujimura, Y. Utsunomiya, T. Hashimoto, M. Mi-
akashi, N. Kobayashi, M. Inagaki, Y. Matsumoto, S. Inoue, Y. Suzuki,
D. He, Y. Honda, J. Musha, M. Nakagawa, M. Honma, N. Abiko,
M. Koyanagi, M. Yoshihara, K. Ino, M. Noguchi, T. Kamei, Y. Kato,
S. Zaitsu, H. Nasu, T. Ariki, H. Chibvongodze, M. Watanabe, H. Ding,
N. Ookuma, R. Yamashita, G. Liang, G. Hemink, F. Moogat, C. Trinh,
M. Higashitani, T. Pham, and K. Kanazawa. A 19nm 112.8mm2 64Gb
multi-level flash memory with 400Mb/s/pin 1.8V Toggle Mode interface.
In IEEE International Solid-State Circuits Conference (ISSCC), pages
422–424, Feb. 2012.

[69] Daeyeal Lee, Ik Joon Chang, Sang-Yong Yoon, Joonsuc Jang, Dong-Su
Jang, Wook-Ghee Hahn, Jong-Yeol Park, Doo-Gon Kim, Chiweon Yoon,
Bong-Soon Lim, Byung-Jun Min, Sung-Won Yun, Ji-Sang Lee, Il-Han
Park, Kyung-Ryun Kim, Jeong-Yun Yun, Youse Kim, Yong-Sung Cho,
Kyung-Min Kang, Sang-Hyun Joo, Jin-Young Chun, Jung-No Im, Se-
unghyuk Kwon, Seokjun Ham, Ansoo Park, Jae-Duk Yu, Nam-Hee Lee,
Tae-Sung Lee, Moosung Kim, Hoosung Kim, Ki-Whan Song, Byung-Gil
Jeon, Kihwan Choi, Jin-Man Han, Kye Hyun Kyung, Young-Ho Lim,
and Young-Hyun Jun. A 64Gb 533Mb/s DDR interface MLC NAND
Flash in sub-20nm technology. In IEEE International Solid-State Cir-
cuits Conference (ISSCC), pages 430–432, Feb. 2012.

[70] Hp z640 workstation, 2015. http://www8.hp.com/h20195/v2/

GetDocument.aspx?docname=c04434085.

[71] Flexible I/O tester, 2015. http://freecode.com/projects/fio.

[72] J. Kim, E. Lee, J. Choi, D. Lee, and S. Noh. Chip-level raid with
flexible stripe size and parity placementfor enhanced ssd reliability. IEEE
Transactions on Computers, 2014. to appear on.

[73] E.I. Vatajelu, H. Aziza, and C. Zambelli. Nonvolatile memories: Present
and future challenges. In International Design Test Symposium (IDT),
pages 61–66, Dec. 2014.

[74] C. Zambelli, A. Grossi, D. Walczyk, T. Bertaud, B. Tillack,
T. Schroeder, V. Stikanov, P. Olivo, and C. Walczyk. Statistical analy-
sis of resistive switching characteristics in ReRAM test arrays. In IEEE

111

Int. Conf. on Microelectronics Test Structures (ICMTS), pages 27–31,
Mar. 2014.

[75] K. Takeuchi. Hybrid solid-state storage system with storage class mem-
ory and nand flash memory for big-data application. In IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), pages 1046–1049,
Jun. 2014.

[76] S. Dubois. Crossbar Resistive RAM (RRAM): The Future Technology
for Data Storage. In SNIA Data Storage Innovation Conference, Apr.
2014.

[77] S Bates, M Asnaashari, and L. Zuolo. Modelling a High-Performance
NVMe SSD constructed from ReRAM. In Proc. of Flash Memory Sum-
mit, Aug. 2015.

[78] Lorenzo Zuolo, Cristian Zambelli, Rino Micheloni, Salvatore Galfano,
Marco Indaco, Stefano Di Carlo, Paolo Prinetto, Piero Olivo, and Davide
Bertozzi. SSDExplorer: a Virtual Platform for Fine-Grained Design
Space Exploration of Solid State Drives. In Design, Automation Test in
Europe (DATE), 2014, pages 1–6.

[79] Open Nand Flash Interface (ONFI) revision 4.0. www.onfi.org/~/

media/onfi/specs/onfi_4_0-gold.pdf?la=en.

[80] Sean Barry. All Flash Array Data Protection Schemes. In Proc. of Flash
Memory Summit, Aug. 2015.

[81] Doug Rollins. Simplification: Get All Flash Performance Easily, Grad-
ually, As Your Needs Grow. In Proc. of Flash Memory Summit, Aug.
2015.

[82] Erik Ottem. All Flash Arrays in Healthcare. In Proc. of Flash Memory
Summit, Aug. 2015.

[83] Walter Amsler. All Flash Array Customer Case Study. In Proc. of Flash
Memory Summit, Aug. 2015.

[84] Avraham Meir. File on Flash: Delivering on the Promise of Webscale,
All Flash, Distributed File Systems. In Proc. of Flash Memory Summit,
Aug. 2015.

[85] Somnath Roy. Ceph Optimization on All Flash Storage. In Proc. of
Flash Memory Summit, Aug. 2015.

112

[86] The kalray multi-purpose-processing-array (mppa), 2016. http://www.
kalrayinc.com.

[87] Open-channel solid state drives, 2016. http://openchannelssd.

readthedocs.org/en/latest/.

[88] U.s. epa. report to congress on server and data energy efficiency. tech.
rep., u.s. environmental protection agency, 2007.

[89] Matias Bjørling, Philippe Bonnet, Luc Bouganim, and Bjorn Jonsson.
uflip: Understanding the energy consumption of flash devices. IEEE
Data(base) Engineering Bulletin, 33(4), 2010.

[90] Balgeun Yoo, Youjip Won, Jongmoo Choi, Sungroh Yoon, Seokhei Cho,
and Sooyong Kang. Ssd characterization: From energy consumption’s
perspective. In Proceedings of the 3rd USENIX Conference on Hot Top-
ics in Storage and File Systems, pages 3–3, 2011.

[91] V. Mohan, T. Bunker, L. Grupp, S. Gurumurthi, M. R. Stan, and
S. Swanson. Modeling power consumption of nand flash memories using
flashpower. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 32(7):1031–1044, July 2013.

[92] Maxim max 9938, 2011. http://www.maximintegrated.com/en/

products/analog/amplifiers/MAX9938.html.

[93] M. Sako, Y. Watanabe, T. Nakajima, J. Sato, K. Muraoka, M. Fujiu,
F. Kouno, M. Nakagawa, M. Masuda, K. Kato, Y. Terada, Y. Shimizu,
M. Honma, A. Imamoto, T. Araya, H. Konno, T. Okanaga, T. Fu-
jimura, X. Wang, M. Muramoto, M. Kamoshida, M. Kohno, Y. Suzuki,
T. Hashiguchi, T. Kobayashi, M. Yamaoka, and R. Yamashita. 7.1 a
low-power 64gb mlc nand-flash memory in 15nm cmos technology. In
IEEE International Solid-State Circuits Conference - (ISSCC), pages
1–3, Feb 2015.

[94] Jie Zhang, Mustafa Shihab, and Myoungsoo Jung. Power, energy and
thermal considerations in ssd-based i/o acceleration. In Proceedings of
the 6th USENIX Conference on Hot Topics in Storage and File Systems,
HotStorage’14, pages 15–15, 2014.

[95] Javier González, Matias Bjørling, Seongno Lee, Charlie Dong, and
Yiren Ronnie Huang. Application-driven flash translation layers on
open-channel ssds. In Proceedings of the 7th Non Volatile Memory Work-
shop (NVMW), pages 1–2, 2016.

113

[96] S Bates. Accelerating Data Centers Using NVMe and CUDA. In Proc.
of Flash Memory Summit, Aug. 2014.

[97] Persistent memory programming, 2016. http://pmem.io.

114

