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Chapter 1

Introduction

Aim of the present thesis is to furnish rigorous results and corresponding
qualitative analyses for a class of mathematical models of complex systems.

There is not an universally accepted definition of complexity or of what
has to be meant by a complex system1. However, the different approaches to
this question agree on the presence of a number of aspects that characterize
complexity.

1. A complex system is composed by a large number of individuals (agents)
that interact each other;

2. The interactions are not restricted to those of mechanical type, as the
agents exhibit a strategy, that is, they have an objective, possibly dif-
ferent for different groups of agents, and they interact in such a way to
reach it.

3. From a modeling point of view, the interactions are generally non-local
and depend nonlinearly on their arguments.

4. Every complex system exhibits, in particular conditions, collective be-
haviors that are not easily related to the interactions at microscopic
level.

The latter considerations need some explanation. It is indisputable that
the great majority of real systems is indeed made of highly interconnected
parts over many scales, whose interactions result in a complex behavior need-
ing separate interpretation for each level. This realization leads us to appre-
ciate that the new features emerge as one goes from one scale to another, so

1We refer here to real world complexity ; in other words, we do not touch the concepts
of computational or algorithmic complexity, whose study is much better set.
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2 CHAPTER 1. INTRODUCTION

it follows that the study of complexity includes revealing the principles that
govern the ways by which these new properties appear. In complex systems
we recognize that processes occurring simultaneously on different scales or
levels matter, and the intricate behavior of the whole system depends on
its units in a non-trivial way. The description of the behavior of the whole
systems requires a qualitatively new theory, because the laws describing its
behavior are qualitatively different from those describing its units.

The most typical examples of complex systems, in some sense their paradig-
matic representatives, are biological and social systems. When creating life,
nature acknowledged the existence of the previously mentioned levels by
spontaneously separating them as molecules, macromolecules, cells, organ-
isms, species and societies. Of course, the big question is whether there
is a unified theory for the ways elements of a system organize themselves
to produce a behavior typical for wide classes of systems. Principles have
been proposed, including self-organization, simultaneous existence of many
degrees of freedom, self-adaption, rugged energy landscape and scaling of
the parameters and the underlying network of connections. Presently, math-
ematicians and physicists are learning how to build relatively simple models
producing complicated behavior, while those scientists working on inherently
very complex systems (such as biologists and economists) are uncovering the
ways the subjects they work on can be interpreted in terms of interacting
units or subsystems.

The modeling of complex systems (biological, social) rests on the a priori
assumption of a given mathematical framework, that one believes is able to
capture the essence of the systems’ behavior and that is suitably specialized
to reproduce the specific features of the systems at study. There is a vast lit-
erature on mathematical and physical modeling of complex systems; we refer
to the bibliography for a limited sample of significant papers. As is typical
in the modeling, it does not exist a single framework capable to describe all
the aspects of the systems’ behavior which, on the other hand, exhibits a
multi-scale character. Different scales are better modeled in different frame-
works. Just as an example, if we focus on the evolution of gross quantities
(i.e., densities, flows, etc.), the continuum mechanics furnishes methods to
derive classes of equations which are in principle able to reproduce the be-
havior in space and time of macroscopic variables. On the other hand, if we
are mainly interested on equilibrium properties of largely populated systems
of interacting entities, the methods of statistical mechanics give a well-set
pathway to reproduce macroscopic observed features, including the possible
existence of phase transitions.

This dissertation is devoted to the mathematical study of a class of models
of social systems, that include vehicular traffic flow and pedestrian dynam-
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ics, based on the generalized kinetic theory. The framework of kinetic theory
is set up on the “mesoscopic” scale. Its fundamental quantity is a distri-
bution function over the microscopic state, whose evolution equation is a
partial differential equation that represents the balance between the spatial-
temporal transport of the distribution function and the interaction terms
among the individual entities (particles, agents). Introduced in the context
of diluted gases, the kinetic theory revealed soon its ability to describe the
non-equilibrium behavior not only of mechanical systems but also of more
general ones. In this direction, in the last decade different generalizations
of the theory have been proposed. In particular, the so-called kinetic theory
of active particles (KTAP) introduces into the microscopic state balance ad
additional variable, the activity, that models the ability of individuals, or
groups of individuals, to express a strategy, a characteristic feature of com-
plexity. The generalizations of kinetic theory, and in particular the KTAP,
have been largely used to build mathematical models in biology and social
sciences, often furnishing results in agreement with the modeling necessity.

In this thesis we focus on the mathematical properties of a class of mod-
els based on the discrete velocity kinetic theory. In this case, the velocity
variable can assume only a discrete set of values, in this way reducing the
computational complexity of the models. For some of the systems we treat,
this simplification meets peculiar aspects of the systems’ behavior, as in ve-
hicular traffic flow that experimentally exhibits a granular nature.

In detail this thesis, in addition to this introduction, is composed by other
seven chapters:

• Chapter 2 introduces the mathematical framework related to kinetic
description of complex systems, the general kinetic equations governing
them and the discretization of velocity variable, which permits to pass
from a single kinetic equation to a system of first order semilinear
hyperbolic equation.

• Chapter 3 deals with the study of the Cauchy problems related to dis-
crete velocity models, when there is a one dimensional spatial variable.
This framework is frequently used to describe traffic flow. First, we
study a spatially homogeneous case, which permits to pass to a system
of ordinary differential equations for which we analyze the long time be-
havior in a special case, useful to describe traffic flow. We then come to
the non spatially homogeneous case for which, under weak hypotheses,
we furnish a very general well-posedness result for the Cauchy problem,
that includes global-in-time existence of solutions.

• Chapter 4 contains the well-posedness of Cauchy problems of discrete
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velocity models with a two dimensional spatial variable, used to de-
scribe pedestrian dynamics. We analyze relevant properties of solutions
related to these problems, introducing a desired velocity in the set of
achievable velocities.

• Chapter 5 deals with other three generalizations related to the Cauchy
problems for discrete velocity models. We start studying initial-value
problems with periodic initial data, then we give additional results of
well-posedness under hypotheses weaker than the ones used in Chapters
3 and 4.

• Chapter 6 treats the initial-boundary value problems for discrete ve-
locity models, paying attention to two different types of boundary con-
ditions, one related to a complete absorption of mass, which models
an exit on the boundary, and the other to a complete reflection, which
describes the presence of a wall at the boundary.

• Chapter 7 contains a large study of systems with discretized spatial
variable. Here the spatial variables are represented by cells, which are
intervals in the one dimensional case or squares in two dimensional case.
In each cell the problem is supposed spatially homogeneous and once
we have fixed connections between neighbor cells we arrive to a system
of ordinary differential equations for the systems’ evolution. We then
study the global-in-time behavior of solutions in special cases, once we
have specialized the model.

• Chapter 8 summarizes the main results contained in the thesis and
contains critical discussions and comments.



Chapter 2

Mathematical framework

In this chapter we present the mathematical framework of generalized kinetic
theory on which this dissertation is based. The evolution equations that
describe the collective behavior induced by interactions between agents will
be introduced. In the following chapters these latter will be cars, in case of
traffic flow, or people, in case of crowds dynamics. The present framework,
in its version of kinetic theory of active particles, has also shown its ability
to model various aspects of biological systems, like the competition among
diseases and immune system. All the above mentioned systems share some
of the issues characterizing the so-called complexity. In particular, their
evolution is not based only on the mechanics of microscopic interactions,
as social and biological systems have the ability to express strategies and to
take decisions.

2.1 Preliminary definitions

Every system that will be considered in this thesis is composed by a popula-
tion of agents, each agent having a typical way to interact with the others.
The variable describing the state of an agent, the so called microscopic state,
has in general the aspect:

w = (x,v,u) ∈ Ωw = Ωx × Ωv × Ωu,

where x represents the microscopic geometrical state (the position), v the
kinematic microscopic state (the velocity) and u is a variable, called activity,
that represents the social or biological microscopic state. Again, Ωw is the
domain where microscopic state takes value. Once we defined a microscopic
state, we have to introduce a distribution function over this state.

5
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The microscopic state of the system is described by a generalized distribution
function:

f : f(t,w) ∈ [0, T ]× Ωw → R,

which is called generalized distribution function. In this scheme f(t,w)d w
denotes the number of agents having a microscopic state in the interval
[w,w + dw], while f(t,x,v,u)dx, f(t,x,v,u)dv and f(t,x,v,u)du denote
the number of agents having position in [x,x + dx], velocity in [v,v + dv]
and activity in [u,u+ du], respectively. If f is known and it has suitable in-
tegrability properties, we can find macroscopic variables by integration over
the microscopic state variables. For example

ρ(t,x) :=

∫

Ωv×Ωu

f(t,x,v,u)dvdu,

is the macroscopic agents density, while

N(t) :=

∫

Ωx

ρ(t, x)dx =

∫

Ωw

f(t,w)dw,

is the number of agents as function of time. In the same way, by requiring
additional integrability properties, the moments of the distribution function
provide macroscopic variables like the flux

q(t,x) :=

∫

Ωv×Ωu

vf(t,x,v,u)dvdu,

and the local mean velocity

ξ(t,x) :=
q(t,x)

ρ(t,x)
.

Related to second order moments we can define the energy

E(t,x) :=

∫

Ωv×Ωu

|v|2f(t,x,v,u)dvdu,

and the internal energy and speed variances

e(t,x) :=

∫

Ωv×Ωu

|v − ξ(t, x)|2f(t,x,v,u)dvdu, σ(t,x) :=
e(t,x)

ρ(t,x)
.

Functions defined previously are strictly related to the mechanical properties
of system. On the other hand, we can define in the same way macroscopic
variables related to activity u, like activation

a(t,x) :=

∫

Ωv×Ωu

uf(t,x,v,u)dvdu;
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activation density and total activity which are respectively

ad(t,x) :=
a(t,x)

ρ(t,x)
, A(t) :=

∫

Ωx

a(t,x)dx.

2.2 Interactions among agents

In this section we introduce a suitable framework in order to describe a large
number of complex systems. We classify interactions between agents in the
following ways.

• Local interactions: actions between a test (or candidate) and a field
agent, happening when candidate and field agents are in the same spa-
tial state.

• Non-local interactions: action over a test agent applied by all field
agents which are into an interaction domain depending on the position
of the test agent.

An example of local interaction is the one described by the interaction ker-
nel of the Boltzmann equation. On the other hand we will not treat deeply
systems with local interactions because they are pretty unrealistic. For ex-
ample, the interaction between two pedestrians is not local but it is related
to an interaction domain and to the orientation of their velocities. However
we observe that it is more difficult to work with local interactions from a
mathematical view-point, as will be clear in the sequel. Non-local interac-
tions take place into an interaction domain Dw that can have different shape,
related to the specific interaction

Dw = Dx ×Dv ×Du ⊆ Ωx × Ωv × Ωu.

The interactions are also characterized in the following way.

• Conservative interactions: interactions that do not change the number
of agents but only their state.

• Non-conservative interactions: interactions that lead to proliferative o
destructive phenomena and hence to a variation of agents’ number.

In this dissertation we shall work only with conservative interactions. We will
not treat the non-conservative case, that is on the other hand of fundamental
relevance in the modeling of biological systems like tumor growth or immune
competition between diseases and immune system. We now introduce the
fundamental ingredients to describe interactions.
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• Interaction rate, that could depend on the states interacting agents,
which measures the frequency at which two agents may interact to-
gether.

• Transition probability density, which describes the probability that an
agent, having a given state, suffers a transition to another state class
due to an interaction with an agent located into the interaction domain.

Another element related to non-locality of interactions is the so called in-
teraction weight, which gives more importance to closer interactions, since
it is reasonable to suppose that a agents close to a candidate one are more
influential then the distant ones.

2.3 Evolution equation

In this section we introduce the general kinetic equations describing the evo-
lution of the distribution function. It is obtained by balancing variation of
f = f(t,w) in the elementary volume of the state space, with inlet and out-
let fluxes due to microscopic interactions. The resulting balance equation, in
absence of destructive and proliferative phenomena, is the following:

∂f

∂t
+ v · ∇xf = J(f) = Γ(f)− Λ(f), (2.1)

where J is the interaction kernel that describes the interactions among agents,
Γ is the gain term that describes the inlet flow while Λ is the loss term
representing the outlet flow. In detail, the interaction kernel reads

J(f) =

∫

Dx

∫

Ω2
z

B(z, z∗, z∗)η(z
∗, z∗)f(t,x, z

∗)f(t,y, z∗)w(x,y)dz
∗dz∗dy

− f(t,x, z)

∫

Dx

∫

Ωz

η(z, z∗)f(t,y, z∗)w(x,y)dz∗dy,

(2.2)
where,

z := (v,u), Ωz := Ωv × Ωu.

Here we recognize the characters introduced in the previous section.

• The encounter rate η, that describes the frequency of interactions be-
tween a candidate agent with state z∗ and a field agent with state z∗.

• Transition probability density B gives us the probability that a candi-
date agent with state z∗ changes his state to z after an interaction with
a field agent having state z∗.
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• The interaction domain Dx, the piece of spatial domain where inter-
actions take place, plays the role of a visibility zone, as field agents
outside from Dx don’t interact with candidate agents.

• The function w(x,y), that weights the interactions between a candidate
agent located in x and a field agent in y.

The encounter rate and the transition probability density could depend not
only on different state u∗ and u∗ but also on distribution function f or
its moments, while the weight function w is intuitively related to distance
between x and y ∈ Dx. We point out that the shape of Dx is strictly
related to interaction described by system and it can possibly depend on
additional variables like activity o velocity as well. An easy example is the
interaction domain of a pedestrian, which is a half-cone oriented with velocity,
as we’ll see in the sequel. The transition probability density is also known
in literature as the table of games, because it is related to a game played by
two interacting agents. Moreover, when describing conservative interactions
we bear in mind that a candidate agent with state z∗, after an interaction
with field agent having state z∗, certainly achieves a state z ∈ Ωz and this
fact is summarized in the condition:

∫

Dz

B(z, z∗, z∗)dz = 1, ∀z∗, z∗ ∈ Ωz, (2.3)

We remark that interactions among agents produce only a change of velocity
and activity of candidate agents, while it does not result in any variation of
spatial variable x where candidate agents are placed.

Remark 2.3.1. The interaction kernel defined in (2.2) is purely binary and
this is reflected in the gain and loss terms. Both of them are quadratic with
respect to the distribution function f . We don’t study multiple interactions,
that greatly increase the mathematical complexity, even if they play a role
in living systems (see, e.g., [10] where triple interactions are treated in the
kinetic framework).

There is a ample literature concerning systems in which activity is more
important then spatial variables. For these kind of systems the kinetic evo-
lution equation is:

∂f

∂t
(t,u) = J(f(u,u)) = Γ(f(t,u))− Λ(f(t,u))

=

∫

Ω2
u

η(u∗,u∗)B(u,u∗,u∗)f(t,u
∗)f(t,u∗)du

∗du∗

− f(t,u)

∫

Ωu

η(u,u∗)f(t,u∗)du∗.

(2.4)
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The velocity does not have a strong physical meaning in system described by
equation like (2.4). In [15] and [5] we find a more deep description of these
models and also additional bibliography.

On the other hand, complex systems like vehicular traffic and pedestrian
crowds are characterized by dominant mechanical interactions and conse-
quently the most important role is played by purely mechanical variables x
and v. If we forget by the moment the activity u, the equations (2.1) and
(2.2) are written as:

∂f

∂t
(t, ,x,v) + v · f(t, ,x,v) = J(f(u,x,v)) = Γ(f(t,x,v))− Λ(f(t,x,v))

=

∫

Dx

∫

Ω2
v

B(v,v∗,v∗)η(v
∗,v∗)f(t,x,v

∗)f(t,y,v∗)w(x,y)dv
∗dv∗dy

− f(t,x,v)

∫

Dx

∫

Ωv

η(v,v∗)f(t,y,v∗)w(x,y)dv∗dy.

(2.5)

2.4 Discretization of velocity

Classical models of the kinetic theory of gases come from the assumption
that particles can achieve all values of velocity; in general, if spatial variable
x ∈ R

n then also velocity v takes value in the whole R
n. A possible way to

reduce the mathematical complexity of the model is to discretize the velocity
variable. In [20] and [41] there is an introduction to discrete Boltzmann
equation and a vast bibliography related to it. The fundamental idea is to
assume that particles are allowed to move with a finite number of velocities
Ωv = {v1, . . . ,vn}. In this scheme the distribution function becomes a vector
function depending on time and space.

Some living systems can effectively assume only a finite number of veloci-
ties (or a finite number of values for the activity). Reminding that discretiza-
tion of velocity leads also to a noteworthy simplification, many authors make
use of this approach to describe complex systems, see [5] and [15].

Forgetting for a moment the activity variable and pointing out only me-
chanical variables, in the continuous case we have an equation like (2.5). As
we have previously said talking about the discrete Boltzmann equation, we
suppose that there is only a finite set of velocities:

v ∈ {v1, . . . ,vn}.

achievable by agents. The distribution function f then becomes a vector
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f = (f1, . . . , fn), where
fi : [0, T ]×Dx → R.

Each fi is the distribution function for agents traveling with the i-th velocity,
fi(t,x)dx denotes the amount of agents in the infinitesimal volume [x,x+dx]
with velocity vi. Once we have discretized the number of velocities we have
to replace integral of Dv with a sum, and thus the local density and the
linear momentum become:

ρ(t,x) =
n
∑

h=1

fh(t,x), q(t,x) =
n
∑

h=1

vfh(t,x).

From a single kinetic evolution equation like (2.5), governing the behavior of
complex systems, we arrive to a system of n equations:

∂tfi(t,x) + vi · fi(t,x) = Ji(f(t,x)), for all i = 1, . . . , n, (2.6)

where each equation describes the evolution of the i-th agents’ class having
velocity vi. The interaction kernel becomes a vector of Rn,

Ji(f(t,x)) = Γi(f(t,x))− Λi(f(t,x)),

where Γi is the gain term, describing inlet flow of agents that change their
velocity in vi and Λi is the loss term, that describes outlet flow from i-th
class, amount of agents with velocity vi that change their velocity after an
interaction. We write extensively the interaction kernel:

Ji(f(t,x)) =
n
∑

h,k=1

∫

Dx

ηhk(f(t,y))B
i
hk(f(t,y))fh(t,x)fk(t,y)w(x,y)dy

− fi(t,x)
n
∑

h=1

∫

Dx

ηhk(f(t,y))fh(t,y)w(x,y)dy.

(2.7)
Once again we recognize the models’ ingredients as in the continuous case:

• the transition probability density Bi
hk, that gives us the probability that

a candidate agent, with velocity vh, changes his velocity in vi after an
interaction with an agent with velocity vk;

• the interaction rate ηhk, that gives the frequency of interactions between
agents with velocity vh and vk, respectively;

• the interaction weight w, depending on the distance from the position
x of the candidate agents to that y of the field agent.
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We have here stressed the dependence of ηhk and Bi
hk on distribution f .

Finally, starting from an equation like (2.5), we arrive to a system of
semilinear first order hyperbolic equations, whose solution is connected to
the properties of the different functions present in the r.h.s. of (2.6).



Chapter 3

One dimensional Cauchy

problem

In this chapter we prove global existence and uniqueness for the Cauchy
problem related to systems describing traffic flow. There is a large literature
concerning kinetic description of traffic flow that make use of discrete velocity
models introduced in the previous chapter, [6], [7], [8], [14], [18], [22] and
[26]. From the modeling point of view it is of crucial relevance the suitable
choice of the functions that enter in the interaction rate, mainly the rate
of interactions and the table of games, as they structure depicts the way
in which the mathematical model reproduce the experimental observations.
On the other hand, whatsoever form the interaction kernel may take, it is
clear that in order the model to make sense we must give a positive answer
to basic questions concerning the existence of solutions, to their uniqueness
and to their continuous dependence on the initial data. In the first part of
the present chapter we treat this problem from a general viewpoint, without
fixing any particular form of the functions in the interaction kernel but only
requiring this latter to verify suitable hypotheses. We give an existence and
uniqueness theorem that generalizes previous results which were obtained
under more restrictive conditions.

3.1 Statement of the problem

The Cauchy problem related to equations like (2.6), when space variable is
a scalar x ∈ R, is written as follows

{

∂tfi(t, x) + vi∂xfi(t, x) = Ji(f)(t, x),

fi(0, x) = f i(x),
i = 1, . . . , n. (3.1)

13
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In this chapter we forget by the moment the interaction weight w, that will
be added in the sequel, and thus the gain and loss terms of interaction kernel
are written as:

Γi(f)(t, x) :=
n
∑

h,k=1

∫

Dx

η(ρ(t, y))Bi
hk(ρ(t, y))fh(t, x)fk(t, y)dy, (3.2)

Λi(f)(t, x) := fi(t, x)
n
∑

h=1

∫

Dx

η(ρ(t, y))fh(t, y)dy. (3.3)

Here f = (fi) is a vector such that fi(t, x)dx represents the number of agents
traveling with velocity vi. It is then clear that fi has to attain only positive
values:

fi = fi(t, x) : [0, T ]× R → R+, i = 1 . . . , n.

The velocity can assume only a finite set Ωv = {v1, . . . , vn} of values, with
vi < vi+1 for i = 1, . . . , n − 1, while f i(x) are the values of the distribution
function components at t = 0. From the definition of Bi

hk itself, the following
properties:

Bi
hk(f) ≥ 0,

n
∑

i=1

Bi
hk(f) = 1, ∀ρ ∈ R

n
+, ∀h, k = 1, . . . , n. (3.4)

hold true. Thanks to (3.4) we have that:

n
∑

i=1

Ji(f) = 0. (3.5)

This relation reflects the absence in the system of proliferative and destructive
effects, and will lead to the conservation of the total number of vehicles, as
we shall see later on. Now we state the basic assumptions we need in order
to get local and global existence of solutions for (3.1).

• The encounter rate η is Lipschitz continuous and bounded, i.e., there
exist Lη > 0 and Cη > 0 such that:

|η(f1)− η(f2)| ≤ Lη|f1 − f2|, ∀f1, f2 ∈ R
n,

|η(f)| ≤ Cη, ∀f ∈ R
n.

(3.6)

• Transition probability density Bi
hk is locally Lipschitz for all h, k, i =

1, . . . , n, i.e, for all r > 0 there exists a CBi
hk

,r > 0 such that:

|Bi
hk(ρ1)−Bi

hk(ρ2)| ≤ CBi
hk

,r|ρ1−ρ2|, ∀ρ1, ρ2 ∈ R with |ρ1| < r, |ρ2| < r,
(3.7)

and verifies (3.4).
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• Interaction domain is an interval written as follows

Dx = [x−∆−, x+∆+], with ∆± ≥ 0 (∆−,∆∗) 6= (0, 0). (3.8)

These hypotheses are crucial in order to have global solutions to system (3.1)
in a suitable space.

3.2 Spatially homogeneous problem

In this section we treat spatially homogeneous problem, when the distribution
function does not depend on the spatial variable, that is, f = f(t). In this
case (3.1) reduces to a system of ordinary differential equations:







dfi
dt

= Ji(f)

fi(0) = f i.
(3.9)

In this spatially homogeneous case conservative interactions among agents
bring to the conservation of density:

dρ

dt
=

n
∑

i=1

Ji(f) = 0,

and thus ρ(t) = ρ(0). We prove existence of solution f ∈ C([0,+∞),Rn) for
(3.9).

Theorem 3.2.1. Let η and Bi
hk be functions satisfying (3.4), (3.6) and (3.7).

Then, given a vector f ∈ R
n such that f i ≥ 0, there exists a unique f ∈

C([0,+∞),Rn) solution of (3.9). Moreover:

fi(t) ≥ 0, i = 1, . . . , n, t ≥ 0,

ρ(t) =
n
∑

i=1

fi(t) = ρ(0) := ρ0.

It is easy to prove existence and uniqueness of solution locally in time,
while prolongability comes from the density conservation. If we suppose that
the interaction rate is the same for all pairs of velocity distributions, and
that it depends on the distribution f only through the density ρ:

ηhk(f) = η

(

n
∑

h=1

fh

)

, h, k = 1, . . . , n, (3.10)
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we can easily write the kernel J as:

Ji(f) = K

(

n
∑

h,k=1

Bi
hk(ρ0)fhfk − fiρ0

)

,

where K = (∆+ +∆−)η(ρ0). We fix also transition probability density. As-
suming that the table of games depends on f through density ρ, we introduce
a function p = p(ρ) called probability of passing that describes the probability
to increase velocity. If we work with normalized data, we assume following
hypotheses

ρ1 < ρ2 =⇒ p(ρ1) > p(ρ2)
ρ(0) = 1, p(1) = 0.

(3.11)

We now fix table of games similarly to [30], where p(ρ) = 1 − ρ. There are
three main types of interactions:

• a candidate agents, traveling with velocity vh, interacts with a faster
agent, i.e. vh ≤ vk; in this case we assume

Bi
hk(ρ) =







p(ρ) if i = h+ 1
1− p(ρ) if i = h
0 otherwise,

(3.12)

that is, the candidate agent has the tendency to follow field agents, but
this tendency decreases when density increases.

• Interaction with a slower agent, when candidate agent is faster then
the field one, vh > vk

Bi
hk(ρ) =







p(ρ) if i = h
1− p(ρ) if i = k
0 otherwise.

(3.13)

In this case we are basically saying that if density is large then the
candidate agent is induced to stop and to follow slower agents.

• Interaction of a candidate with agents traveling with same velocity, and
thus vh = vk. In this case we assume that the transition probability is
equal to the one written in the case vh = vk (3.12) and we have only
to fix the case of agents traveling with the larger velocity h = n, when
we suppose that the candidate agent maintains his velocity,

Bi
nn(ρ) =

{

1 if i = n
0 otherwise.

(3.14)
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Once we have focused transition probability density we are able to give some
qualitative results, like existence of stable solutions. Equilibria are solutions
of system J(f) = 0, and thus

n
∑

h,k=1

Bi
hk(ρ)fhfk − ρfi = 0, i = 1, . . . , n.

Following idea of [30] we find recursively equilibria f̂ . If ρ = 0 then there
exists only unique solution f(t) = 0, while if ρ > 0 Starting from i = 1 and
reminding that

∑n

h=2 f̂h = ρ− f̃1 we find that f̂1 is a solution of

f̂1

[

ρ(1− 2p(ρ))− (1− p(ρ))f̂1

]

= 0,

and thus we find

f̂1 = 0, f̂1 = ρ
1− 2p(ρ)

1− p(ρ)
.

Fixed an initial density we find two stationary solutions related to first equa-
tion of system (3.9) and only one of them could be stable. In this special
case it is easy to prove that the stable solution is the larger one; if we write
the first equation of (3.9), which gives the evolution of f1, we find that the
time derivative of f1 is equal to a polynomial with a negative coefficient of
second degree term, this ensures that the larger solution is the stable one,
and its value depends on density as follows

f̂1 =

{

0 if p(ρ) ≥ 1/2,

ρ1−2p(ρ)
1−p(ρ)

if p(ρ) < 1/2.

Once we have found f̂1, we can find f̂2 as function of f̂1, hence recursively for
1 < i < n for all once we have found f̂1, . . . , f̂i−1 we can find f̂i, in particular
we can write equation Ji(f) = 0 as follows,

(p(ρ)− 1) f̂ 2
i + [bi−1 (3p(ρ)− 2) + ρ (1− 2p(ρ))] f̂i + p(ρ) (ρ− bi−2) f̂i−1 = 0

where

bi =
i
∑

h=1

f̂h,

and thus we find a polynomial of second degree. Reminding that density is
normalized and ρ ≤ 1 then discriminant of equation is positive, and there
are two real roots, moreover second degree polynomial has a negative leading
coefficient and positive free term, and thus the first root is negative and the
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second one is positive, the only one admissible is the positive one, moreover is
also stable. We have recursive formula to calculate stable equilibrium point,





































0 if p(ρ) ≥ 1/2,

ρ
1− 2p(ρ)

1− p(ρ)
if p(ρ) < 1/2.

if i = 1,

bi−1 (2− 3p(ρ)) + ρ (2p(ρ)− 1)−√
∆i

2(p(ρ)− 1)
if 1 < i < n,

ρ− bn−1 if i = n,

(3.15)

with ∆i is the disciminant of i-th equation,

∆i := [bi−1 (3p(ρ)− 2) + ρ (1− 2p(ρ))]2 + 4p(ρ) (ρ− bi−2) (1− p(ρ))f̂i−1.

We resume what we have found with the following theorem.
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Figure 3.1: In the first line the flux of steady solutions, each steady state is dependent
from f only through density, in each three cases p(rho) = 1− ρ; only number of velocities
changes in examples, in the first n = 2, the second n = 4 and the third n = 6; in the
second line mean velocity related u(ρ) = q(ρ)/ρ to upper fluxes.

Theorem 3.2.2. Let Bi
hk be a transition probability density like (3.12),

(3.13) and (3.14), and let p be a function like (3.11), then for all ρ ∈ [0, 1]
there exists a unique stable attractive point f̂ , whose components verify (3.15)
and

n
∑

h=1

f̂h = ρ.
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Previous Theorem encloses result of [30] choosing p(ρ) = 1− ρ. We note
that if p(ρ) ≥ 1/2, or rather ρ ≤ p−1(1/2), we have

f̂ =

{

0 if i < n,
ρ if i = n,

and f̂ is attractive, in other words when density is lower than a critical
density, all agents achieve faster velocity. Critical density is given by equality
p(ρ) = 1/2.

3.3 Global existence and uniqueness of solu-

tions

Here we study the non-homogeneous problem, pointing out that (3.1) is a
system of n semilinear first-order hyperbolic equations, whose characteristic
curves in t-x plane are solution of ordinary differential equations,

dx

dt
= vi, i = 1, . . . , n,

and thus if we fix the point (τ, ξ) in the t − x plane the i-th characteristic
passing through (τ, ξ) is:

x = γi(t) = ξ + vi(t− τ).

Along the characteristics we can rewrite the problem (3.1) in the following
way:







dfi
dt

(t, γi(t, τ, ξ)) = Ji(f(t, γi(t, τ, ξ))),

fi(0) = f i(γi(0, τ, ξ)),
i = 1, . . . , n. (3.16)

For the semilinear problem the value of the solution at any point (τ, ξ) can be
determined by solving the Cauchy problem (3.16). Under suitable regularity
conditions, once fixed (τ, ξ) we can integrate (3.16) from 0 to τ obtaining:

fi(τ, ξ) = f i(γi(0, τ, ξ)) +

∫ τ

0

Ji(f(t, γi(t, τ, ξ)))dt. (3.17)

Definition 3.3.1. Let T > 0 be a positive real number, then a mild solution
of (3.1) is a function f : [0, T ]× R → R verifying (3.17), that is:

fi(t, x) = f i(γi(0, t, x)) +

∫ t

0

Ji(f(τ, γi(τ, t, x)))dτ,

for all (t, x) ∈ [0, T ]× R
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It will be useful to write the solution as a function of the time only
f : [0, T ] → X, where X is a suitable functional space. We introduce

X := (L1(R) ∩ L∞(R))n,

and define:

‖u‖X := ‖u‖1 + ‖u‖∞, u ∈ X,

where:

‖u‖∞ := max
i

‖ui‖L∞ , and ‖u‖1 :=
n
∑

i=1

‖ui‖L1 .

It is easy to verify that (X, ‖ · ‖X) is a Banach space. With the norm defined
previously we are able to control the number of agents ‖ · ‖1 and the local
density with ‖ · ‖∞. We give some properties related to interaction kernel J
if we take X as domain.

Lemma 3.3.2. Let η and Bi
hk be functions verifying (3.4), (3.6) and (3.7),

and let Dx be an interval as in (3.8); then the function J = (Ji) maps X
into itself.

Proof. We have to prove that if f ∈ X then:

‖J(f)‖X = ‖J(f)‖1 + ‖J(f)‖∞ < +∞.

We start analyzing the L1 norm ‖ · ‖1. We have:

∫

R

|Ji(f(x))|dx ≤
∫

R

|Γi(f(x))|dx+
∫

R

|Λi(f(x))|dx.

Evaluating the gain term we find:

∫

R

|Γi(f(x))|dx ≤
n
∑

h,k=1

∫

R

|fh(x)|
(∫

Dx

|η(f(y))Bi
hk(f(y))fk(y)|dy

)

dx

≤
n
∑

h,k=1

‖fh‖L1

∫

R

|η(f(y))Bi
hk(f(y))fk(y)|dy,

and using the boundedness of η and Bi
hk we get:

∫

R

|Γi(f(x))|dx ≤
n
∑

h,k=1

Cη‖fh‖L1

∫

R

|fk(y)|dy =
n
∑

h,k=1

Cη‖fh‖L1‖fk‖L1 < +∞.
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Similarly, we have:

∫

R

|Λi(f(x))|dx ≤ ‖fi‖L1

n
∑

h=1

∫

R

|η(f(y))fh(y)|dy

≤ Cη‖fi‖L1

n
∑

h=1

∫

R

|fh(y)|dy ≤ Cη‖fi‖L1

n
∑

h=1

‖fh‖L1 < +∞.

Coming to analyze the L∞ part, we find:

|Γi(f(x))| ≤
n
∑

h,k=1

‖fh‖L∞

∫

Dx

|η(f(y))Bi
hk(f(y))fk(y)|dy

≤ Cη

n
∑

h,k=1

‖fh‖L∞‖fk‖L1 < +∞,

which gives the boundedness of ‖Γi(f)‖L∞ . Furthermore:

|Λi(f(x))| ≤ Cη‖fi‖L∞

n
∑

h,k=1

‖fh‖L1 < +∞,

which ends the proof.

Lemma 3.3.3. Let η and Bi
hk be functions verifying (3.4), (3.6) and (3.7),

then the function J is locally Lipschitz on X.

Proof. Let r > 0 and f ,g ∈ X such that ‖f‖X , ‖g‖X < r. Then:

|Ji(f(x))− Ji(g(x))| ≤ |Γi(f(x))− Γi(g(x))|+ |Λi(f(x))− Λi(g(x))|.

Now:

|Γi(f(x))− Γi(g(x))| ≤
n
∑

h,k=1

∣

∣

∣

∣

fh(x)

∫

Dx

η(f(y))Bi
hk(f(y))fk(y)dy

− gh(x)

∫

Dx

η(g(y))Bi
hk(g(y))gk(y)dy

∣

∣

∣

∣

≤
n
∑

h,k=1

|fh(x)− gh(x)|
∫

R

|η(f(y))Bi
hk(f(y))fk(y)|dy

+
n
∑

h,k=1

|gh(x)|
∫

R

|η(f(y))Bi
hk(f(y))fk(y)− η(g(y))Bi

hk(g(y))gk(y)|dy
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= I1(x) + I2(x).

Reminding that, by hypothesis 3.7, the quantities Bi
hk are also locally Lips-

chitz for all i, h, k with Lipschitz constants CBi
hk

r we find the following esti-
mates:

I1(x) ≤ Cη|fh(x)− fk(x)|
∫

R

fk(y)dy

≤ Cη

n
∑

h,k=1

‖fk‖L1 |fh(x)− gh(x)| ≤ Cηnr

n
∑

h=1

|fh(x)− gh(x)|,

from which we have:

‖I1‖L1 ≤ Cηnr‖f − g‖1, (3.18)

‖I1‖L∞ ≤ Cηn
2r‖f − g‖∞. (3.19)

Concerning I2, thanks to the Lipschitzianity of η and Bi
hk we have:

I2(x) ≤
n
∑

h,k=1

|gh(x)|
(∫

R

∣

∣η(f(y))Bi
hk(f(y))− η(g(y))Bi

hk(g(y))
∣

∣ |fk(y)|dy

+

∫

R

|Bi
hk(g(y))η(g(y))(fk(y)− gk(y))|dy

)

≤
n
∑

h,k=1

|gh(x)|
(

‖fk‖L∞

∫

R

(

Lη + LBi
hk
Cη

)

|f(y)− g(y)| dy

+Cη

∫

R

|fk(y)− gk(y)|dy
)

≤ rn (Lη + (1 + Lβr)Cη) ‖f − g‖1
n
∑

h=1

|gh(x)|,

with Cβr = maxi,h,k CBi
hk

r, from which the estimates:

‖I2‖L1 ≤ r2n (Lη + (1 + Lβr)Cη) ‖f − g‖1, (3.20)

‖I2‖L∞ ≤ r2n2 (Lη + (1 + Lβr)Cη) ‖f − g‖1. (3.21)

follow. In a similar way we have:

|Λi(f)(x)− Λi(g)(x)| ≤
n
∑

h=1

|fi(x)− gi(x)|
∫

R

|η(f(y))fh(y)|dy

+
n
∑

h=1

|gi(x)|
∫

R

|η(f(y))fh(y)− η(g(y))gh(y)|dy,
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which leads to the estimates:

‖Λi(f)− Λi(g)‖L∞ ≤ Cηr‖f − g‖∞ +
(

Cηr + Lηr
2
)

‖f − g‖1, (3.22)

and:
‖Λi(f)− giΛi(g)‖L1 ≤

(

2Cηr + Lηr
2
)

‖f − g‖1. (3.23)

Combining the previous inequalities we conclude the proof.

The previous lemma is crucial in order to use a fixed point argument in the
following theorem.

Theorem 3.3.4. Let η and Bi
hk be functions verifying (3.4), (3.6), (3.7) and

let f ∈ X. Then, there exists T > 0 and an unique f ∈ C([0, T ], X) mild
solution of (3.1).

Proof. Let δ > 0 such that ‖f‖X ≤ δ. We take r := 1 + δ and 0 < a ≤ 1 and
define:

Dr(a) :=

{

u ∈ C([0, a], X)

∣

∣

∣

∣

∣

‖u‖∗ := sup
t∈[0,a]

‖u(t)‖X ≤ r

}

.

Let u ∈ C([0, a], X), We introduce the map:

Φ(u)i(t, x) := f i(γi(0, t, x)) +

∫ t

0

Ji(u(τ, γi(τ, t, x)))(τ, γi(τ, t, x))dτ. (3.24)

Clearly Φ(u) ∈ C([0, a], X). If we take u,v ∈ C([0, a], X) we easily find the
following estimate:

‖Φ(u)(t)‖X ≤ δ +

∫ t

0

(‖J(u(τ))− J(0)‖X + ‖J(0)‖X)ds,

and thus, reminding that J(0) = 0,

‖Φ(u)(t)‖X ≤ δ + aLr,

with Lr > 0 the Lipschitz constant of J. Moreover:

‖Φ(u)(t)− Φ(v)(t)‖X ≤
∫ t

0

‖J(u(τ))− J(v(τ))‖Xdτ ≤ aLr‖u− v‖∗,

and thus:
‖Φ(u)− Φ(v)‖∗ ≤ aLr‖u− v‖∗. (3.25)

Then, for every a ∈ (0, Lr/2], we have that Φ(u) ∈ Dr(a) and that Φ is
Lipschitz in Dr(a) with Lipschitz constant less then or equal to 1/2. Since
Dr(a) is a complete metric space with respect to the metric induced by ‖·‖L∞ ,
we have the existence and uniqueness of a fixed point f = Φ(f) ∈ Dr(a),
which is also solution of (3.1).
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Theorem 3.3.4 states that if the initial datum f belongs to X, then there
is a mild solution of (3.1), overlooking that we are interested to positive
initial data. Now, let us suppose that the initial datum f ∈ X is positive,
i.e. f i(x) ≥ 0 for all x ∈ R and for i = 1, . . . , n. Reminding that the total
number of agents at time t is:

N(t) :=

∫

R

ρ(t, x)dx =

∫

R

(

n
∑

i=1

fi(t, x)

)

dx, (3.26)

integrating on x the n equations of (3.1), summing over i and taking account
of (3.5), we have:

n
∑

i=1

∫

R

(∂tfi(t, x) + vi∂xfi(t, x))dx = 0, (3.27)

from which:

n
∑

i=1

(∫

R

∂tfi(t, x)dx+ vi[fi(t, x))]
+∞
−∞

)

=
n
∑

i=1

∫

R

∂tfi(t, x)dx = 0, (3.28)

and finally:
dN

dt
(t) = 0, (3.29)

that is, the total vehicles’ number is conserved and is equal to its initial value
N0.
The following proposition shows that if the system has non-negative initial
data then the solution remains non-negative.

Lemma 3.3.5. Let vf ∈ C([0, T ], X) be a mild solution to problem (3.1)
corresponding to non-negative initial data. Then, f remains non-negative for
all 0 ≤ t ≤ T .

Proof. If f is a non-negative initial datum, then f(x) ≥ 0 for all x ∈ R. Given
a x ∈ R such that f i(x) > 0 for all indexes then the solution components
along the characteristics remain positive for a certain time interval. If, on
the contrary, f i(x) = 0 for i ∈ L ⊆ {1, . . . , n}, then, for these indexes,

Ji(f(x)) = Γi(f(x)) ≥ 0,

and thus along characteristics they are increasing functions, while the re-
maining components remains positive for a certain time interval, always along
characteristics.



3.3. GLOBAL EXISTENCE AND UNIQUENESS OF SOLUTIONS 25

The previous proposition, together with the conservation of the total number
of vehicles, ensures that:

‖f(t)‖1 =
n
∑

i=1

∫

R

|fi(t, x)|dx =
n
∑

i=1

∫

R

fi(t, x)dx = N0. (3.30)

By Theorem 3.3.4 we established existence and uniqueness of local in-time
solutions to (3.1). Putting:

T
f
:= sup {T > 0 |∃u ∈ C([0, T ], X) solution of (3.1)} ,

then, stitching together the solutions, we obtain the existence of a unique
maximal mild solution u ∈ C([0, T

f
), X). Our next goal is to prove that for

system (3.1) with positive initial data we actually have T
f
= +∞.

Next proposition is easily derived from well known results of semigroups
theory.

Lemma 3.3.6. Let f ∈ C([0, T
f
), X) the unique mild solution of (3.1). If

T
f
< +∞ then:

lim
t→T

f

‖f(t)‖X = +∞

Proof. First of all we observe that the length T of the existence time interval
[0, T ] given by Theorem 3.3.4 is only related to the norm δ of initial data.
Let T

f
< ∞ and {tn} a sequence of instants such that tn < T

f
and tn → T

f
.

Assume that C := supn ‖u(tn)‖X < ∞. Then, from Theorem 3.3.4 there
exists a TC > 0 such that we have a unique solution f ∈ C([0, TC ], X) to
(3.1) for all initial data with ‖f‖ ≤ C. Now we fix an index n ∈ N such that
tn+TC > T

f
and consider the solution f ∈ C([0, tn], X) to (3.1) as well as the

solution fn ∈ C([0, TC ], X) corresponding to the initial value f(tn). Pasting
together these latter we obtain a solution defined in [0, tn+TC ], contradicting
the property of T

f
. Then we necessarily have that ‖f(t)‖X → ∞ when

t→ T
f
.

Thanks to the previous Lemma we have only to verify that:

lim
t→T

f

‖u(t)‖X < +∞.

Moreover, since (3.30) says us that norm ‖ ·‖1 is constant in time, we restrict
our considerations to find a bound for the norm ‖ · ‖∞, reminding that η and
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Bi
hk are both bounded functions. We have:

|fi(t, x)| = fi(t, x) = f i(γi(0, t, x)) +

∫ t

0

Ji(f(τ, γi(τ, t, x)))dτ

≤ f i(γi(0, t, x)) +

∫ t

0

Γi(f(τ, γi(τ, t, x)))dτ

≤ ‖f i‖L∞ +
n
∑

h,k=1

Cη

∫ t

0

fh(τ, γi(τ, t, x))

∫

Dγi(τ,t,x)

fk(τ, y)dydτ

≤ ‖f i‖L∞ +
n
∑

h=1

Cη

∫ t

0

fh(τ, γi(τ, t, x))

∫

R

n
∑

k=1

fk(τ, y)dydτ

≤ ‖f‖∞ + Cη

∫ t

0

N(τ)
n
∑

h=1

fh(τ, γi(τ, t, x))dτ

≤ ‖f‖∞ + CηN0

∫ t

0

n
∑

h=1

‖fh(τ)‖L∞dτ

≤ ‖f‖∞ + nCηN0

∫ t

0

‖f(τ)‖∞dτ,

and thus:

‖f(t)‖∞ ≤ ‖f‖∞ + nCηN0

∫ t

0

‖f(τ)‖∞dτ.

Using the Gronwall’s lemma we find:

‖f(t)‖∞ ≤ ‖f‖∞ exp (nCηN0t) ,

which gives us the bound for ‖f‖∞. This ends the proof of following theorem.

Theorem 3.3.7. Let η and Bi
hk be functions verifying (3.4), (3.6), (3.7),

Dx a subset of R verifying (3.8) and let f ∈ X a positive initial data. Then,
there exists a unique mild solution f ∈ C([0,+∞), X) to (3.1).

It is worth to remark that while in literature it is mainly assumed that
the interaction rate and the transition probability density depend only on the
density ρ, the previous result encompasses models in which they can depend
on f in a more general way, for example through the flux q.

3.4 Remarks on the critical density

In this section we discuss a property strictly related to vehicular traffic flow.
It is experimentally reported (se, e.g., [34]) the presence of a phase transition
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between free and congested traffic flow, with the vehicular density playing
the role of an order parameter. It is also well reported in [26, 30] and in
section 3.2 that this phase transition is observed in spatially homogeneous
systems like (3.1) as well.
Amazing thing seen in section 3.2 is that in spatially homogeneous case we
find critical density ρc visible also in experimental data [34], if density is lower
than critical one we have free flow and all agents achieve larger velocity, if
density is larger than critical one flow is congested, and number of agents
traveling with larger velocity decrease. When problem is not spatially homo-
geneous, this critical density is not evident, some authors impose existence of
a critical density. In [14] authors impose a change in table of games, while in
[6], authors study the initial value problem (3.1) where the interaction term
J differs from that defined in (3.2), (3.3) for the presence of the function χ,
defined as:

χ(ρ ≤ ρc) =

{

1 if ρ ≤ ρc,

0 if ρ > ρc,
(3.31)

where ρc is the critical density. Authors of [6] justify the introduction of
the cut-off function (3.31) observing that the vehicles are obliged to stop
when the traffic density reaches a critical value, due to overcrowding, as is
largely shown in the experimental fundamental diagrams speed-density. On
the other hand, it is apparent that when ρ > ρc, if we have an interaction
kernel like the one used in [6], all the vehicles in each velocity class continue
to move at their own speed, i.e., each component fi(t, x) of the distribution
function is transported along the corresponding characteristic, leading to the
unrealistic situation in which at high density the vehicles are transparent
each other.

Aim of this final part is to show, by a numerical example, that situations
can occur in which the assumption that the interactions freeze at high density
seems to be restrictive and that there isn’t any threshold or critical density.
In the sequel we furnish a toy model in which, given an arbitrary ρc > 0, we
are able to find Bi

hk and η, an interaction interval Dx = [x, x+∆] and initial
data f , with:

‖f‖∞ ≤ ρc, ρ(x) =
n
∑

i=1

f i(x) ≤ ρc, ∀x ∈ R,

for which there exist t∗ > 0 and x∗ ∈ R such that ρ(t∗, x∗) > ρc. We consider
a two velocities system, that is, we assume that every vehicle belongs to
one of the two possible velocity classes f1, corresponding to v1 = 0, and f2
that corresponds to v2 = 1. The transition probability densities for this case
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model are assumed to be:

B1
hk =

(

1 1
1 0

)

, B2
hk =

(

0 0
0 1

)

, h, k = 1, 2.

and η(ρ) = 1. Hence the first line of (3.1) specializes in:















∂tf1(t, x) = f2(t, x)

∫

Dx

f1(t, y)dy,

∂tf2(t, x) + ∂xf2(t, x) = −f2(t, x)
∫

Dx

f1(t, y)dy.

(3.32)

We solve numerically the Cauchy problem for (3.32) relative to initial data
f 1(x), f 2(x) having compact support and such that for any y ∈ supp(f 1)
and x ∈ supp(f 2) then x ≤ y. Specifically, we choose initial data as in
Figure 3.2. A group of vehicles, corresponding to the component f 1(x) of
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Figure 3.2: Initial data corresponding to ρc = 5. The class f
1
of velocity v1 = 0 is

on the right in red color, the class f
2
of velocity v2 = 1 is represented by the bimodal

distribution on the left in blue color.

the initial distribution function f is at rest ahead of a group f 2(x) of vehicles
that is moving with velocity v = 1. The prescribed value of the “critical”
density ρc is 5. In Table 1 we analyze the role of the size ∆ of the interaction
domain Dx. The maximum ρt∗ of the equilibrium density increases as ∆
decreases, and is reached in a time t∗ that increases with increasing ∆.
In 3.3 final configurations for different values of ∆ are plotted for the same
initial data of Figure 3.2. Again, we stress that, if we take ∆ small eough,
the critical density is passed.
In summary, the well-posedness result furnishes global existence and unique-
ness of solutions to (3.1) in its general form, in any traffic condition, existence
of a critical density is clear where we have a spatially homogeneous case while
in general case it is not so clear existence of critical density.
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∆ t∗ ρt∗

1.05 4.5425 5.1890
1.00 4.5885 5.2214
0.95 4.6365 5.2660
0.90 4.6855 5.3269
0.85 4.7365 5.4092
0.80 4.7925 5.5192
0.75 4.8555 5.6652
0.70 4.9255 5.8575
0.65 5.0025 6.1090
0.60 5.4595 6.4658

∆ t∗ ρt∗

0.55 5.4985 6.9726
0.50 5.5406 7.5731
0.45 5.5786 8.3056
0.40 5.6106 9.2196
0.35 5.6346 10.3606
0.30 5.6536 11.7122
0.25 5.6706 13.0508
0.20 5.6846 13.7962
0.15 5.6926 13.3582

Table 3.1: Maximum ρt∗ of the density reached at time t∗ as function of the size ∆ of
the interaction domain Dx. Observe that in any case ρt∗ is greater that ρc.
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Figure 3.3: Final distribution functions corresponding to ∆ = 0.5, 0.4, 0.35, 0.25, and
initial data as in Figure 3.2.
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Chapter 4

Two dimensional problems

In this chapter we specialize system (2.6) to a two dimensional domain [9].
We introduce a discrete activity variable uα ∈ {u1, . . . , um} ⊂ R and observe
that in general the interaction domain is related not only to space variable x
but also to the direction of velocity vi. In the present case the distribution
function has the form:

f = (fiα(t,x)) : [0, T ]× R
2 → R

nm,

where i ∈ {1, . . . , n} is an index describing the velocity class, while the Greek
index stays for the activity α ∈ {1, . . . ,m}. Hence, fiα(t, x)dx represents the
number of agents traveling at velocity vi with activity uα in the infinitesimal
volume [x,x+ dx]. The evolution equation (2.6) is written as:

∂tfiα(t,x) + vi · ∇xfiα(t,x) = Jiα(f(t,x))

= Γiα(f(t,x))− Λiα(f(t,x))

=
n
∑

h,k=1

m
∑

α,β=1

∫

Di
x

η(f(t,y))Biα
hβ,kγ(f(t,y))fhβ(t,x)fkγ(t,y)w(x,y)dy

− fiα(t,x)
n
∑

h=1

m
∑

α=1

∫

Di
x

η(f(t,y))fhβ(t,y)w(x,y)dy,

(4.1)

with obvious differences with respect to the previous chapter. Here:

• Biγ
hα,kβ is the probability density that an agents with velocity vh and

activity uβ falls into a new state (vi, uα) after an interaction with an
agents that has velocity vk and activity uγ. We suppose that Biγ

hα,kβ

is locally Lipschitz for all h, k, i = 1, . . . , n and α, β, γ = 1, . . . ,m, i.e,
that for all r > 0 there exists a C

B
iγ
hα,kβ

r
> 0 such that:

|Biγ
hα,kβ(f1)− Biγ

hα,kβ(f2)| ≤ C
B

iγ
hα,kβ

r
|f1 − f2|,

∀f1, f2 ∈ R
nm with |ρ1 − ρ2| < r,

(4.2)

31
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and it verifies

Biγ
hα,kβ(ρ) ≥ 0,

n
∑

i=1

m
∑

α=1

Biγ
hα,kβ(ρ) = 1, ∀f ∈ R

nm, (4.3)

which ensures the conservation of mass. As it will be useful in the
sequel, we put

CBr = sup
i,h,k,α,β,γ

C
B

iγ
hα,kβ

r
.

• The interaction rate η is Lipschitz continuous and bounded, i.e., there
exist Lη > 0 and Cη > 0 such that:

|η(f1)− η(f2)| ≤ Lη|f1 − f2|, ∀f1, f2 ∈ R
n,

|η(f)| ≤ Cη, ∀f ∈ R
n.

(4.4)

• Di
x
represents the spatial domain of interaction of an agents in x ∈

Di
x
traveling with velocity vi. Such a domain is not restricted to be

bounded.

• The weight function w has the following properties

0 ≤ w(x,y) ≤ Cw,
w(x,y) = w(y,x),

∀x,y ∈ R
2.

(4.5)

We start to study the existence of a local mild solution of following Cauchy
problem:

{

∂tfiα(t,x) + vi · ∂xfiα(t,x) = Jiα(f(t,x))

fiα(0,x) = f iα(x),

i = 1, . . . , n,
α = 1, . . . ,m.

(4.6)

4.1 Existence and uniqueness of solution

Characteristic curves satisfy the following equations

dx

dt
= vi, i = 1, . . . , n,

and thus the i-th characteristic passing though (τ,y) is

x = γi(t, τ,y) = y + vi(t− τ),
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There isn’t any difference between the characteristic related to iα-th class of
agents and the one related to iβ-th class. Along characteristics the solution
is written as

fiα(t,x) = f iα(γi(0, t,x)) +

∫ t

0

Jiα(f(τ, γi(τ, t,x)))dτ. (4.7)

In the previous chapter we saw that in order to use fixed point theorem to
prove existence and uniqueness, a crucial point consists in showing that the
interaction kernel is a locally Lipschitz function in a functional space that in
the present case becomes:

X = (L1(RN) ∩ L∞(RN))nm. (4.8)

For f ∈ X we define

‖f‖X := ‖f‖1 + ‖f‖∞ =
n
∑

i=1

m
∑

j=1

‖fiα‖L1 + sup
iα

‖fiα‖L∞ .

Lemma 4.1.1. Let η, Biγ
hα,kβ and w be functions verifying (4.2), (4.3), (4.4)

and (4.5). Then, the function J defined in the r.h.s. of (4.1) maps X into
itself. Moreover, it is locally Lipschitz in X.

Proof. Let f ∈ X. We have to check that

‖J(f)‖X = ‖J(f)‖1 + ‖J(f)‖∞ <∞.

We start to consider the first part ‖ · ‖1
∫

R2

|Jiα(f)| ≤
∫

R2

|Γiα(f)|+
∫

R2

|Λiα(f)|,

∫

R2

|Γiα(f)|dx ≤ Cw

n
∑

h,k=1

m
∑

β,γ=1

‖fhβ‖L1

∫

R2

|η(f(y))Aiα
hβ,kγ(f(y))fkγ(y)|dy

≤ CηCw

n
∑

h,k

m
∑

β,γ=1

‖fhβ‖L1‖fkγ‖L1 <∞.

In the same way we find

∫

R2

|Λiα(f(x))|dx ≤ CwCη‖fiα‖L1

n
∑

h=1

m
∑

β=1

‖fhβ‖L1 <∞,
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which gives the boundedness of ‖J(f)‖1. On the other hand

|Γiα(f(x))| ≤ CwCη

n
∑

h,k=1

m
∑

β,γ=1

‖fhβ‖L∞‖fkγ‖L1 <∞,

and

|Λiα(f(x))| ≤ CwCη‖fiα‖L∞

n
∑

h=1

m
∑

β=1

‖fhβ‖L1 <∞,

which gives the boundedness of ‖J(f)‖∞. In order to check that J is locally
Lipschitz, let r > 0 and f ,g ∈ X such that ‖f‖X , ‖g‖X < r,

|Jiα(f)(x)− Jiα(g)(x)| ≤ |Γiα(f(x))− Γiα(g(x)|+ |Λiα(f(x))− Λiα(g(x))|,

|Γiα(f(x))− Γiα(g(x))|

≤
n
∑

h,k=1

m
∑

β,γ=1

∣

∣

∣

∣

fhβ(x)

∫

Di
x

η(f(y))Biγ
hα,kβ(f(y))fkγ(y)w(x.y)dy

− ghβ(x)

∫

Di
x

η(g(y))Biγ
hα,kβ(g(y))gkγ(y)w(x,y)dy

∣

∣

∣

∣

≤ Cw

n
∑

h,k=1

m
∑

β,γ=1

(

|fhβ(x)− ghβ(x)|
∫

R2

|η(f(y))Biγ
hα,kβ(f(y))fkγ(y)|dy

+|ghβ(x)|
∫

R2

|η(f(y))Biγ
hα,kβ(f(y))fkγ(y)− η(g(y))Biγ

hα,kβ(g(y))gkγ(y)|dy
)

,

and thus

|Γiα(f(x))− Γiα(g(x))| ≤ CwCηr
n
∑

h,k=1

m
∑

β,γ=1

|fhβ(x)− ghβ(x)|

+CwCη

n
∑

h,k=1

m
∑

β,γ=1

|ghβ(x)|
∫

R2

|fkγ(y)− gkγ(y)|dy

+CwLηr

n
∑

h,k=1

m
∑

β,γ=1

|ghβ(x)|
∫

R2

|f(y)− g(y)|dy

+CBrCηCwr

n
∑

h,k=1

m
∑

β,γ=1

|ghβ(x)|
∫

R2

|f(y)− g(y)|dy.
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From this last inequality we find

‖Γiα(f)− Γiα(g)‖L∞ ≤2mnCηCwr‖f − g‖∞
+ rmnCw(2r(Lη + CBrCη) + 1)‖f − g‖1,

(4.9)

‖Γiα(f)−Γiα(g)‖L1 ≤ mnCw[(mn+1)Cη + (Lη+CBrCη)r]‖f − g‖1. (4.10)

In a similar way,

|Λiα(f(x))− Λiα(g(x))| ≤CηCwr|fiα(x)− giα(x)|
+ (Lηr +mnCη)Cw|giα(x)|‖f − g‖1,

and thus

‖Λiα(f)− Λiα(g)‖L∞ ≤mnCηCwr‖f − g‖∞
+ (Lηr +mnCη)Cwr‖f − g‖1,

(4.11)

‖Λiα(f)− Λiα(g)‖L1 ≤ +(Lηr + (mn+ 1)Cη)Cwr‖f − g‖1. (4.12)

From inequalities (4.9), (4.10), (4.11) and (4.12) we have local Lipschitzianity
of J, which ends the proof.

We are now able to give an existence and uniqueness results.

Theorem 4.1.1. Let f ∈ X be an initial datum for (4.6). Then, there exist
T > 0 and a unique f ∈ C([0, T ], X) mild solution for (4.6). Moreover, if f
is a non-negative initial datum

f iα(x) ≥ 0, ∀x ∈ R
2, i = 1, . . . , n, α, 1, . . . ,m,

then the solution f remains non-negative

fiα(t,x) ≥ 0, ∀(t,x) ∈ [0, T ]× R
2, i = 1, . . . , n, α, 1, . . . ,m.

The proof of the previous theorem is based on a fixed point argument and is
completely similar to the one used for Theorem 3.3.4. Again, it isn’t difficult
to prolongate the solution up to T = +∞.

Theorem 4.1.2. Let f ∈ X be a non-negative initial datum for (4.6), then
there exists a unique non-negative mild solution f ∈ C([0,∞), X) of the
Cauchy problem (4.6).
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Proof. As in the proof of Theorem 3.3.7 we have only to verify that ‖f(t)‖X <
∞ for all t > 0. Thanks to (4.3) we have that

∑

i Ji(f) = 0 and the conser-
vation of agents’ number

N(t) =
n
∑

h=1

∫

R2

fh(t,x)dx =
n
∑

h=1

∫

R2

f(x)dx = N(0).

Hence, due to non-negativity of the solution, the L1-norm is not only bounded
but also conserved,

‖f(t)‖1 =
n
∑

h=1

m
∑

β=1

|fhβ(t,x)|dx = N(0),

while for the L∞-norm we use the integral equality (4.7),

|fiα(t,x)| = fiα(t,x) = f iα(γi(0, t, x)) +

∫ t

0

Jiα(f(τ, γi(τ, t,x)))dτ

≤ f iα(γi(0, t,x)) +

∫ t

0

Γiα(f(τ, γi(τ, t,x)))dτ

≤ ‖f iα‖L∞ + CηCw

n
∑

h,k=1

m
∑

β,γ=1

∫ t

0

fhβ(τ, γi(τ, t,x))

∫

Dγi(τ,t,x)

fkγ(τ,y)dydτ

≤ ‖f‖∞ + CηCw

∫ t

0

N(τ)
n
∑

h=1

m
∑

β=1

fhβ(τ, γi(τ, t,x))dτ

≤ ‖f‖∞ + CηCwN0

∫ t

0

n
∑

h=1

m
∑

β=1

‖fhβ(τ)‖L∞dτ

≤ ‖f‖∞ + nmCηCwN0

∫ t

0

‖f(τ)‖∞dτ,

and thus by using Gronwall’s Lemma we find the inequality:

‖f(t)‖∞ ≤ ‖f‖∞ exp (nmCηCwN0t) , (4.13)

that ends the proof.

The proof of previous theorem is basically equal to that of Theorem 3.3.7.
In other words, the introduction of the weight function w and of an activity
parameter does not create problem from the well-posedness viewpoint, except
for a heavier notation.
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4.2 Qualitative results

In this section we want to study system (4.6) in some easy cases. We are
interested to solutions that show an emergent behavior induced by the pres-
ence of a desired velocity. In this section we once again forget the activity
variable, while the set of velocities, fixed an n ∈ N with n ≤ 2, is

vi = (cosϑi, sinϑi),

with ϑi =
2π(i−1)

n
. Agents can only change their directions, and for sake of

simplicity the interaction rate is assumed to be constant η = 1. We study
qualitatively the solutions with respect to changes in the interaction weight
w.

Fixed an index i∗ ∈ {1, . . . , n}, we start to study the simplest case, when
the transition probability density is defined as:

Bi
hk =

{

1 if i = i∗,

0 otherwise.
(4.14)

In other words, there is a desired direction vi∗ , and agents try to achieve this
latter unconditionally, taking no interest in other agents, while the change
in direction is not gradual.

Theorem 4.2.1. Let the transition probability density be as in (4.14). Then,
for any initial datum f ∈ X+ we have

lim
t→∞

∫

R2

fi∗(t, x)dx = m0 =:
n
∑

i=1

∫

R2

f i(x)dx. (4.15)

Proof. We remind that m0 is the total mass, or number of agents, of the
system and it conserved. If m0 = 0 the limit (4.15) is obvious. If m0 > 0
we start by evaluating the residual mass, that is, the number of agents that
haven’t reached vi∗ :

∫

R2

fi∗(t, x)dx = m0 −
∑

h 6=i∗

∫

R2

fh(t, x)dx.

Integrating the equality (4.7) over the whole spatial domain we find

∫

R2

fh(t, x)dx =

∫

R2

fh(x)dx−
∫ t

0

∫

R2

∫

R2

fh(t, x)
n
∑

k=1

fk(t, y)w(w, y)dydxdτ.
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The r.h.s. is a decreasing function of t, and thus it has to be

lim
t→∞

∫

R2

∫

R2

fh(t, x)
n
∑

k=1

fk(t, y)w(w, y)dydx = 0,

otherwise it would be possible to have a negative mass. Reminding that the
integrated function is positive, this implies

lim
t→0

fh(t, x)
n
∑

k=1

fk(t, y)w(w, y) = 0, (4.16)

a.e. x ∈ R
2, y ∈ R

2. Thanks to (4.16) with y = x and to the obvious
inequality

f 2
h(t, x)w(x, x) ≤ fh(t, x)

n
∑

k=1

fk(t, x)w(x, x).

we have

lim
t→∞

f 2
h(t, x)w(x, x) = 0,

a.e. x ∈ R
2, and thus,

lim
t→∞

fh(t, x) = 0,

a.e. x ∈ R
2 with h 6= i∗, that ends the proof.

The previous theorem says us that if the transition probability density is
as in (4.14), then there is a complete synchronization, i.e., all agents reach the
velocity vi∗ .The behaviour doesn’t change if we allow for a gradual velocity
changing. Fixed p ∈]0, 1], we modify the transition probability density as
follows.
If vh · vi∗ = −1,

Bi
hk =















p/2 if i = h+ 1,
p/2 if i = h− 1,
1− p if i = h,
0 otherwise;

(4.17)

if vh = vi∗ ,

Bi
hk =

{

1 if i = i∗,
0 otherwise.

(4.18)

These latter describe two opposite cases. In the first one is the candidate
agent has the worst velocity, of opposite direction with respect to vi∗ , so he
would absolutely change his velocity, while in the second one the candidate
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already moves at the desired velocity, so he doesn’t change direction. In
general, if vh · vi∗ > vk · vi∗

Bi
hk =

{

1 if i = h,
0 otherwise,

(4.19)

in other words an interaction with a test agent that has the worse direction
doesn’t produce a change in the direction of candidate agents. If vh · vi∗ ≤
vk · vi∗ ,

Bi
hk =















1− p if i = h,
p if i = h+ 1 and vh · vi∗ ≤ vh+1 · vi∗ ,
p if i = h− 1 and vh · vi∗ ≤ vh−1 · vi∗ ,
0 otherwise,

(4.20)

clearly, if i = 1 then h − 1 := n and if i = n then h + 1 := 1. This last
includes also the case vh = vk, agents have the tendency to reach desired
velocity and we describe this tendency by a gradual adaptation. Also in this
case we have a qualitative result.

Theorem 4.2.2. Let the transition probability density be as in (4.17),(4.18),
(4.19) and (4.20). Then, for any initial datum f ∈ X+ we have

lim
t→∞

∫

R2

fi∗(t, x)dx = m0 =:
n
∑

i=1

∫

R2

f i(x)dx, (4.21)

Proof. Thanks to (4.18) it is easy to verify that
∫

R2 fi∗(t, x)dx is an increasing
function of time. First of all we prove that

lim
t→∞

∫

R2

fh(t, x)dx = 0.

If h 6= i∗, limit (4.21) follows from the conservation of agents’ number. If
there is an opposite velocity, and an associated index j such that vj ·vi∗ = −1,
then for (4.17)

∫

R2

fj(t, x)dx =

∫

R2

f j(x)dx− p

∫ t

0

∫

R2

∫

R2

fj(τ, x)
n
∑

h=1

fh(τ, y)w(x, y)dxdtdτ,

and using the same argument presented in the proof of Theorem 4.2.1 we
have

lim
t→∞

fj(t, x) = 0,
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a.e. x ∈ R
2. Forgetting the variables we have

∫

fh−1 =

∫

f j−1 +
p

2

∑

h

∫∫∫

fjfhw − p
∑

h 6=j

∫∫∫

fi−1fhw,

and the same equality for fj+1. Only agents having velocity vj reach vj−1 (or
vj+1), on the other hand agents having vj−1 (or vj+1) change their velocity
with probability p reaching vj−2 (or vj+2), the gain term goes to zero, so we
can use the same argument of Theorem (4.2.1) to obtain,

lim
t→∞

fj+1(t, x) = lim
t→∞

fj−1(t, x) = 0,

a.e. x ∈ R
2. We have found a recursion to obtain

lim
t→∞

fh(t, x) = 0,

a.e. x ∈ R
2, with h 6= i∗. This ends the proof.

The crucial point in the previous two theorems is that an interaction
between two agents having same velocity vh gives rise to a possible change if
vh 6= vi∗ .

Theorem 4.2.3. Let transition probability densities be as follows. Let j be
an index such that

Bi
jj =

{

1 if i = j
0 for others i 6= j.

(4.22)

Then, if the initial datum f ∈ X+ is such that

fh(x) = 0, ∀x ∈ R, h 6= j,

the solution of the Cauchy problem (4.6) is a traveling wave

fh(t, x) = fh(x− vht). (4.23)

Proof. It is an easy computation to check that (4.23) is a solution of (4.7),
and hence the unique solution of the Cauchy problem (4.6).

The idea of previous theorem is quite simple: if all agents start to move
with a velocity that in their opinion is good, they will not change it. The
term Bi

hh describes also a self-interaction. If it is as in (4.22) then the ve-
locity change is related only to the interaction between agents with different
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velocities. On the other hand, if Bh
hh < 1, there is a self-interaction that pro-

duces an alteration of velocity. The previous two easy systems lead always
to a synchronization independent from interaction weight w, produced by
self-interactions of agents that haven’t reached desired velocity. If we remove
the self-interaction, then the shape of interaction function becomes impor-
tant. From now on, fixed a desired velocity vi∗ , we work with the following
transition probability density.
If vh = vk,

Bi
hh =

{

1 if i = h,
0 otherwise,

(4.24)

while if vh · vi∗ > vk · vi∗ we maintain (4.19), and also if vh · vi∗ < vk · vi∗ we
maintain (4.20). Clearly, in this case Theorem 4.2.3 holds, and we have more
information. In order to simplify the notation we call

mh(t) :=

∫

R2

fh(t, x)dx, mh :=

∫

R2

fh(x)dx = mh(0).

Thanks to positiveness of initial datum functions mh is stricly related to L1

norm of solution, in other words mh > 0 say us that there are some agents
travelling with velocity vh.

Theorem 4.2.4. Let Bi
hk be transition probability density like (4.24), (4.19)

and 4.20 and let w = cw > 0 be a constant weight function. Then, if mi∗ > 0
the following limit

lim
t→∞

mi∗(t) = m0 (4.25)

holds.

Proof. If mi∗ = m0, then by Theorem 4.2.3 we have also the limit (4.25),
while if mh > 0 for h 6= i∗, we start to estimate other densities from fj with
j such that vj · vi∗ = −1; if mj = 0 then

fj(t, x) = 0, ∀x ∈ R
2, t > 0,

otherwise

mj(t) ≤ mj − cw
p

2

∫ t

0

m2
j(τ)dτ,

and thus
lim
t→∞

mj(t) = 0.

Now we are able to evaluate mj−1 and mj+1.

mj−1(t) ≤ mj−1 + cwp

∫ t

0

(

m0mj(τ)−
1

2
m2

j−1(τ)

)

dτ,
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and thus
lim
t→∞

mj−1(t) = 0;

we can find the same limit for mj+1, using the same iterative argument we
have that,

lim
t→∞

mh(t) = 0, if h 6= i∗,

the agents’ number ends the proof.

A constant weight function doesn’t take into account distance between
agents. Reminding that it is unnatural, anyway the previous result gives us
a convergence in case of mi∗ > 0.

Theorem 4.2.5. Let w be a weight function with bounded domain, fixed a
pair of indexes such that h 6= k there exists an initial datum f with mh > 0
and mk > 0 such that

fj(t, x) = f j(x− vjt), j = 1, . . . , n, (4.26)

is a solution of the Cauchy problem (4.6).

Proof. Fixed two indexes we have to construct a suitable initial datum. We
define

A(x) = {y ∈ R2|w(x, y) 6= 0} ⊂ R
2,

the support of w once we have fixed x and

δ(x) = diamA(x) <∞,

clearly δ is a constant function δ(x) = δ0. Fixed ε > 0, we define

fh(x) := χBε(xh)(x), fk(x) := χBε(xk)(x),

and f i(x) = 0 if i 6= h, i 6= k, where xh = nvh and xk = nvk and n ∈ N such
that Bε+δ(xh) ∩ Bε+δ(xk) = ∅. Then it is easy to compute that:

mh = mk = πε2 > 0,

and (4.26) is a solution of (4.6). This concludes the proof.

Theorem 4.2.6. Let w be a weight function with bounded domain, then there
exists an initial datum f , with mj > 0 for all j = 1, . . . , n, such that

fj(t, x) = f j(x− vjt), j = 1, . . . , n, (4.27)

is a solution of the Cauchy problem (4.6).
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Proof. We generalize the same argument used in the proof of Theorem 4.2.5.

These last two Theorems say us that if the support of the weight func-
tion is bounded, or rather if the interaction domain is bounded, then the
agents do not interact with the whole population, it is possible to construct
configurations of system in which the agents do not interact each other.



44 CHAPTER 4. TWO DIMENSIONAL PROBLEMS



Chapter 5

Generalizations

In this chapter we make some remarks on results found in previous chapters,
in particular on the functional spaces where solutions are searched, and on
the interaction kernel of kinetic equations previously studied.

5.1 Periodic initial data

In relation to the study of vehicular traffic, especially in the one dimensional
case, it is of great importance to work with a bounded spatial domain, even
from an experimental viewpoint. In order to deal with this task we introduce
a periodic problem. If the initial datum is periodic ,then there exists a L > 0
such that

f(x+ L) = f(x), ∀x ∈ R.

Clearly the norm ‖·‖1 related to the number of agents is in general unbounded
if we consider the whole R as the integration domain. On the other hand,
fixed a (t, x) in the t−x space, with t > 0, we define the domain of influence
of (t, x) as

Dt,x = {(τ, ξ)|τ ≥ 0,Πij(τ, ξ) ≤ 0, i, j = 1, . . . , n, i 6= j},

where Πij is the hyperplane generated by i-th and j-th characteristics passing
through (t, x),

γi(t, τ, ξ) = ξ + vi(t− τ), γj(t, τ, ξ) = ξ + vj(t− τ).

The solution in (t, x) depends only on the values attained into the domain
of influence Dt,x. Moreover, it depends only on initial data Dt,x ∩ {t = 0}.
Thanks to this observation, it is obvious to see that if the initial data are
independent of one of the space variables, then the solution of the problem

45
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(3.1) is itself independent of this variable. Similarly, if the initial data are
periodic functions, then the solution is also periodic with the same period.
Hence, if we introduce the space XL of L-periodic functions, with

‖u‖XL
= ‖u‖1,L + ‖u‖∞,L = max

i
sup

x∈[0,L]

|ui(x)|+
n
∑

h=1

∫ L

0

|ui(x)|dx,

we have no problem in studying the Cauchy problem (3.1) with f ∈ XL. We
have only to do one remark: given the interaction domain Dx = [x−∆−, x+
∆+], then

∆+ +∆− ≤ L. (5.1)

Lemma 5.1.1. Let η, Bi
hk and w be functions verifying (3.4), (3.6), (3.7)

and (4.5), let Dx satisfying (5.1), then function J maps XL into itself, more-
over is locally Lipschitz on XL.

The proof of previous lemma is equal to the one given for lemma 3.3.3. We
remind only that we have to replace integrals over entire R with integral over
[0, L]. Once we have local Lipschitzianity, it easy to prove prove following
theorem.

Theorem 5.1.1. Let η, Bi
hk and w be functions verifying (3.4), (3.6), (3.7)

and (4.5), let Dx satisfying (5.1). Then, given f ∈ XL, there exists a T > 0
and a unique f ∈ C([0, T ], XL) mild solution of (3.1). Moreover, if f is non-
negative, i.e. f i(x) ≥ 0 for all i = 1, . . . , n and for all x ∈ R, then the mild
solution is non-negative for all t ≥ 0 and T = +∞.

5.2 Unbounded interaction rate

In this section we give an existence result related to problem (4.6), making
different hypotheses on η. Previously, we have worked with Lipschitz and
bounded interaction rate η,

|η(f1)− η(f2)| ≤ Lη|f1 − f2|, ∀f1, f2 ∈ R
n,

|η(f)| ≤ Cη, ∀f ∈ R
n.

(5.2)

Forgetting boundedness, in this section we suppose that interaction rate is
only a Lipschitz function, and thus there exists a constant Lη > 0 such that

|η(f1)− η(f2)| ≤ Lη|f1 − f2|, ∀f1, f2 ∈ R
n. (5.3)
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Though an unbounded interaction rate could seem not so physically consis-
tent, on the other hand it is pretty interesting from a mathematical view-
point. Lipschitzianity implies also that the interaction rate is sublinear

|η(f)| ≤ Lη|f |+ η0, (5.4)

where η0 = η(0). Like in the previous chapter we look for solutions in
(X, ‖ · ‖X).

Lemma 5.2.1. Let Bi
hk be functions satisfying (3.4) and (3.7) for all indexes,

let η and w be functions satisfying respectively (5.3) and (4.5). Then, the
function J = (Ji(f)), defined as:

Ji(f) :=Γi(f)− Λi(f)

=
n
∑

h,k=1

∫

Di
x

η(f(y))Bi
hk(f(y))fh(x)fk(y)w(x,y)dy

− fi(x)
n
∑

h=1

∫

Di
x

η(f(y))fh(y)w(x,y)dy,

(5.5)

maps X into itself.

We notice that J defined in this lemma is different from the one defined
in (4.1) due to the absence of the activity variable. On the other hand we
have shown that adding a discrete activity does not introduce any problem
concerning existence and uniqueness of solutions but only a heavier notation.

Proof. We have to prove that if f ∈ X then:

‖J(f)‖X = ‖J(f)‖1 + ‖J(f)‖∞ < +∞.

We start analyzing the L1 norm ‖ · ‖1. We have:

∫

R2

|Ji(f(x))|dx ≤
∫

R2

|Γi(f(x))|dx+

∫

R2

|Λi(f(x))|dx,

∫

R2

|Γi(f(x))|dx ≤
n
∑

h,k=1

‖fh‖L1

∫

R2

|η(f(y))Bi
hk(f(y))fk(y)w(x,y)|dy

≤
n
∑

h,k=1

CwLη‖fh‖L1

∫

R2

|f(y)||fk(y)|dy + η0Cw

n
∑

h,k=1

‖fh‖L1

∫

R2

|fk(y)|dy.
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Reminding that |f | =∑n

h=1 |fh|, we have

∫

R2

|Γi(f(x))|dx ≤
n
∑

h,k,j=1

CwLη‖fh‖L1‖fk‖L1‖fj‖L∞+η0Cw

n
∑

h,k=1

‖fh‖L1‖fk‖L1

≤ nCwLη‖f‖21‖f‖∞ + ‖f‖21 > +∞.

Similarly, we have:

∫

R

|Λi(f(x)|dx ≤ CwLη‖fi‖L1

n
∑

h,k=1

‖fh‖L1‖fk‖L∞ < +∞.

Coming to analyze the L∞ part, we find:

|Γi(f(x))| ≤ CwLη

n
∑

h,k,j=1

‖fh‖L∞‖fj‖L1‖fk‖L∞ < +∞,

which gives the boundedness of ‖Γi(f)‖L∞ . Furthermore:

|Λi(f(x))| ≤ CwLη‖fi‖L∞

n
∑

h,k=1

‖fh‖L1‖fk‖L∞ < +∞,

which ends the proof.

Lemma 5.2.2. The function J is locally Lipschitz on X.

Proof. Let r > 0 and f ,g ∈ X such that ‖f‖X , ‖g‖X < r. Then:

|Ji(f(x)− Ji(g(x))| ≤ |Γi(f(x))− Γi(g(x))|+ |Λi(f(x))− Λi(g(x))|.

After some inequalities we find,

|Γi(f(x))− Γi(g(x)| ≤ (nr2Lη + η0r)Cw

n
∑

h=1

|fh(x)− gh(x)|

+(CwLηr(CBrr + n+ 1) + η0Cw(r + CBr))‖f − g‖1
n
∑

h=1

|gh(x)|,

from which follows, taking the L∞ norm,

‖Γi(f)− Γi(g)‖L∞ ≤ LΓ(r)‖f − g‖X ; (5.6)

while if we integrate over the whole spatial domain

‖Γi(f)− Γi(g)‖L1 ≤ LΓ(r)‖f − g‖X (5.7)
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with a suitable Lipschitz constant

LΓ(r) = max
{

(CwLηr(CBrr + n+ 1) + η0Cw(r + CBr))r, (nr
2Lη + η0r)Cw

}

In a similar way:

|Λi(f(x))− Λi(g(x))| ≤
n
∑

h=1

|fi(x)− gi(x)|
∫

R2

|η(f(y))fh(y)w(x,y)|dy

+
n
∑

h=1

|gi(x)|
∫

R2

|(η(f(y))fh(y)− η(g(y))gh(y))w(x,y)|dy,

≤ rCw (nLηr + η0) |fi(x)− gi(x)|+ (nLη(r + 1) + η0)Cw|gi(x)|‖f − g‖1,
which leads to the following inequalities:

‖Λi(f)− Λi(g)‖L∞ ≤ LΛ(r)‖f − g‖X , (5.8)

and,
‖Λi(f)− Λi(g)‖L1 ≤ LΛ(r)‖f − g‖X , (5.9)

in this cases a suitable Lipschitz constant is

LΛ(r) = rCw (nLη(r + 1) + η0) ,

Combining (5.6), (5.7), (5.8) and (5.9) we conclude the proof.

The Lipschitz constant found in the previous proof is for sure not the
optimal ones. Anyway, it is crucial in order to use a fixed point to ensure
existence and uniqueness of solution related to the system

{

∂tfi(t,x) + vi · ∂xfi(t,x) = Ji(f(t,x))

fi(0,x) = f i(x),
i = 1, . . . , n. (5.10)

Theorem 5.2.1. Let Bi
hk, η and w be functions verifying (3.4), (3.6), (5.3)

and (4.5); then, given f ∈ X, there exists a T > 0 and a unique f ∈
C([0, T ], X) mild solution of (5.10), with interaction kernel J equal to (5.5).
Moreover if f is non-negative, i.e. f i(x) ≥ 0 for all i = 1, . . . , n and for all
x ∈ R

2, then the mild solution is non-negative for all t ∈ [0, T ].

Prologability of solution is an interesting and hard problem. Conserva-
tion of agents’ number ensures also conservation, and thus boundedness, of
the ‖ · ‖1 norm. The problem is to find a bound for ‖ · ‖∞ norm. In the
previous chapters we found prolongability results dominating the interaction
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kernel with the gain term, i.e. Ji(f) ≤ Γi(f), and using Gronwall’s lemma.
Unfortunately, if we repeat a similar reasoning here we don’t get the same
result. Actually

|fi(t,x)| = fi(t,x) = f i(γi(0, t,x)) +

∫ t

0

Ji(f(τ, γi(τ, t,x)))dτ

≤ f i(γi(0, t,x)) +

∫ t

0

Γi(f(τ, γi(τ, t,x)))dτ

≤ ‖f i‖L∞ + Cw

n
∑

h,k=1

∫ t

0

fh(τ, γi(τ, t,x))

×
∫

Di
γi(τ,t,x)

(Lη|f(τ,y)|+ η0)fk(τ,y)dydτ

≤ ‖f i‖L∞ + Cwη0

n
∑

h=1

∫ t

0

fh(τ, γi(τ, t, x))

∫

R2

ρ(τ,y)dydτ

+ CwLη

n
∑

h=1

∫ t

0

fh(τ, γi(τ, t, x))

∫

R2

(

n
∑

k=1

fk(τ,y)

)2

dydτ

≤ ‖f‖∞ + Cwη0

n
∑

h=1

∫ t

0

N(τ)fh(τ, γi(τ, t, x))dτ

+ CwLη

n
∑

h=1

∫ t

0

fh(τ, γi(τ, t, x))‖f(t)‖L∞‖f(t)‖L1τ

≤ ‖f‖∞ + CwN0

n
∑

h=1

∫ t

0

(η0‖fh(τ)‖L∞ + Lη‖fh(τ)‖2∞)dτ,

and thus we have

‖f‖∞ ≤ ‖f‖∞ + nCwN0

∫ t

0

‖f(τ)‖∞(η0 + Leta‖f(τ)‖∞)dτ.

In this case we can’t use Gronwall’s lemma because an unbounded interaction
rate produces a quadratic term. However we are able to furnish other results.

Proposition 5.2.3. Let f ∈ X be a positive initial datum, let f ∈ C([0, T ), X)
a mild solution of Cauchy problem (5.10) related to f and let j ∈ {1, . . . , n}
and index such that

lim
t→T

‖fi(t)‖L∞ < +∞,

for all i 6= j. Then we have the boundedness of fj:

lim
t→T

‖fi(t)‖L∞ < +∞,
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Proof. Thanks to positivity of the initial datum we have positivity of the
solution and thus for t ∈ [0, T ) and x ∈ R

2,

|fj(t,x)| = fj(t,x) = f j(γj(0, t,x)) +

∫ t

0

Jj(f(τ, γj(τ, t,x)))dτ

≤ ‖f j‖L∞ +
∑

h 6=j

n
∑

k=1

∫ t

0

fh(τ, γj(τ, t,x))

×
∫

D
j

γj(τ,t,x)

η(f(τ,y))fk(τ,y)w(x,y)dydτ

≤ ‖f j‖L∞ + Cw

∑

h 6=j

n
∑

k=1

µh

∫ t

0

∫

R2

η(f(τ,y))fk(τ,y)dydτ,

where µh is defined as

µh := sup
t∈[0,T )

sup
x∈R2

|fh(t,x)| = sup
t∈[0,T )

‖fh(t)‖L∞ , (5.11)

which is bounded by hypothesis for all h 6= j. Taking

µ :=
∑

h 6=j

µh, (5.12)

we find

|fj(t,x)| ≤ ‖f j‖L∞ + µCw

n
∑

h=1

∫ t

0

∫

R2

(Lη|f(τ,y)|+ η0)fk(τ,y)dydτ,

≤ ‖f j‖L∞ + µCw

n
∑

h,k=1

∫ t

0

(Lη‖fh(t)‖L∞ + η0)

∫

R2

fk(τ,y)dydτ.

Reminding that total number of agents is conserved, we get

|fj(t,x)| ≤ ‖f j‖L∞ + µCwη0N0

(

t+
n
∑

h=1

∫ t

0

‖fh‖L∞

)

≤ ‖f j‖L∞ + µCwη0N0

(

(µ+ 1)t+

∫ t

0

‖fj(t)‖dτ
)

,

and thus

‖fj(t)‖L∞ ≤ A(t) + A0

∫ t

0

‖fj(t)‖dτ,

where
A(t) := ‖f j‖L∞ + µCwη0N0(µ+ 1)t,
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A0 := µCwη0N0.

In this case we can use Gronwall’s lemma, finding

‖fj(t)‖L∞ ≤ A(t)eA0t,

and the proposition is proven.

The previous property states that if we are able to control n− 1 compo-
nents of f , then we can control also the last one. This is possible because
we write the n-th component, along n-th characteristic, as function of n− 1
remaining components. In other words, it is not possible that only one com-
ponent blows up in a finite time. We are able to give more information about
prolongability only in one special case. Let us fix j ∈ {1, . . . , n} and consider
the following table of games:

Bi
hk(f) =

{

1 if i = j,
0 otherwise,

(5.13)

for all h, k = 1, . . . , n. In this particular case we can easily write the interac-
tion kernel J̃ as

J̃i(f) =























∑

h 6=j

n
∑

k=1

fh(t,x)

∫

Di
x

η(f(t,y))fk(t,y)w(x,y)dy if i = j,

−fi(t,x)
n
∑

h=1

∫

Di
x

η(f(t,y))fh(t,y)w(x,y)dy otherwise.

(5.14)
This kernel kernel represents the “worst” case of (5.10) for j-th solution’s
component, when every agent collapses in the j-th velocity class. The Cauchy
problem (5.10) with an interaction kernel like (5.14) clearly posses a local
solution f ∈ C([0, T ), X). Moreover, in order to prolongate it, we have only
to give a bound of the norm ‖f(t)‖∞. If i 6= j

‖fi(t)‖L∞ ≤ ‖f i‖L∞ , (5.15)

while if i = j

|fj(t,x)| = fj(t,x) = f j(γj(0, t,x)) +

∫ t

0

J̃j(f)(τ, γj(τ, t,x))dτ

≤ ‖f j‖L∞ +
∑

h 6=j

∫ t

0

(

∫

R2

η(f(τ,y))
n
∑

k=1

fk(τ,y)w(x,y)dy

)

fh(τ, γj(τ, t,x))dτ
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≤ ‖f j‖L∞ + LηCw

∑

h 6=j

∫ t

0

(

∫

R2

n
∑

k,i=1

fi(τ,y)fk(τ,y)dy

)

fh(τ, γj(τ, t,x))dτ

+Cwη0
∑

h 6=j

∫ t

0

(

∫

R2

n
∑

k=1

fk(τ,y)dy

)

fh(τ, γj(τ, t,x))dτ

≤ ‖f j‖L∞ + LηCwN0

n
∑

k=1

∑

h 6=j

∫ t

0

‖fk(τ)‖L∞‖fh(τ)‖L∞dτ

+Cwη0N0

∑

h 6=j

∫ t

0

‖fh(τ)‖L∞dτ

≤ ‖f j‖L∞ + (Lηα + η0)CwN0αt+ LηCwN0α

∫ t

0

‖fj(τ)‖L∞dτ,

where α :=
∑

h 6=j ‖fh‖L∞ , which gives:

‖fh(t)‖L∞ ≤ ‖f j‖L∞ + (Lηα + η0)CwN0αt+ LηCwN0α

∫ t

0

‖fj(τ)‖L∞dτ.

(5.16)
Using Gronwall’s inequality with this last inequality gives

‖fh(t)‖ ≤
(

‖f j‖L∞ + (Lηα + η0)CwN0αt
)

eLηCwN0t,

and the prolongability of solution.

Theorem 5.2.4. Let η and w be functions verifying (5.3) and (4.5); then,
given f ∈ X a non-negative initial datum, there exists a unique f ∈ C([0,∞), X)
mild solution of (5.10), with interaction kernel J equal to (5.14), and it re-
mains non-negative for all t > 0.

In a certain sense we are not able to control solution of problem (5.10)
with (5.5) as interaction kernel but we are able to control the collapse of all
agents in the j-th class of velocity. On the other hand the following inequality

Jj(f) ≤ J̃j(f),

for all f ∈ X, does not ensure the same inequality for two solutions

fj ≤ f̃j,

where f̃ is the solution related to interaction kernel (5.14), even if they start
with the same initial datum.
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5.3 Local interactions

In this section we study the well-posedness of a system different from (3.1).
While in the class of models described by system (5.10) the interactions
among agents are non-local, occurring in a spatial domain Di

x
around the

actual position x, in the present case we consider models in which different
agents interact only if they occupy the same spatial position (local interac-
tions).
Let us consider the initial value problem:

{

∂tfi(t,x) + vi · ∇xfi(t,x) = J i(f)(t,x),

fi(0,x) = f i(x),
i = 1, . . . , n, (5.17)

where J = (J i) is written as:

J i(f) = Γi(f)− Λi(f),

with:

Γi(f(t,x)) :=
n
∑

h,k=1

η(f(t,x))Bi
hk(f(t,x))fh(t,x)fk(t,x), (5.18)

and:

Λi(f(t,x)) := fi(t,x)
n
∑

h=1

η(f(t,x))fh(t,x). (5.19)

Unlike ((5.5), in the latter expressions there is not any spatial integral, as
two agents interact only when they share the same position. It is immediate
to verify that, maintaining equality (3.4)

n
∑

i=1

J i(f) = 0.

We can study Cauchy problem in the same functional space (X, ‖ · ‖X) of
previous non-local system.

Lemma 5.3.1. Let Bi
hk be functions satisfying (3.4) and (3.7) for all indexes,

let η be a function satisfying (5.3), then function J = (J i(f)), maps X into
itself, and it is locally Lipschitz.

Proof. Given f ∈ X, we find,

|Γi(f(x))| ≤
n
∑

h,k=1

(Lη|f(x)|+ η0)|fh(x)fk(x)|

≤
(

Lη‖f‖2∞ + η0‖vf‖∞
)

n
∑

h=1

|fh(x)|,
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and thus
‖Γi(f)‖1 ≤

(

Lηn
2‖f‖2∞ + η0n‖vf‖∞

)

‖f‖1,
‖Γi(f)‖∞ ≤ n

(

Lηn
2‖f‖2∞ + η0n‖vf‖∞

)

‖f‖∞.
While for the loss term we have similarly

‖Λi(f)‖1 ≤ (Lηn
2‖f‖2∞ + η0n‖f‖∞)‖f‖1,

‖Λi(f)‖∞ ≤ (Lηn
2‖f‖2∞ + η0n‖f‖∞)‖f‖∞,

hence we have that ‖f‖X < +∞. Let r > 0 be a positive number and
f ,g ∈ X be functions such that ‖f‖X < r and ‖g‖X < r. Then, we have:

|J i(f)− J i(g)| ≤ |Γi(f)− Γi(g)|+ |Λi(f)− Λi(g)|,

where we have omitted the dependence on x.

|Γi(f)− Γi(g)| ≤ [rnLη(2 + (CBr + 1)nr) + rnη0(1 + rnCBr)] |f − g|

and thus:

‖Γ(f)− Γ(g)‖X ≤ n [rnLη(2 + (CBr + 1)nr) + rnη0(1 + rnCBr)] ‖f − g‖X ,
(5.20)

for the loss term we have

|Λi(f)− Λi(g)| ≤ (Lηr + η0)|fi − gi|+ Lηr|f − g|

and thus,
‖Λ(f)−Λ(g)‖X ≤ n(2Lηr + η0)‖f − g‖X , (5.21)

Combining inequalities (5.20) and (5.21) we conclude the proof.

Thanks to the last proposition, we immediately get the following result con-
cerning local existence and uniqueness of solutions to (5.17).

Theorem 5.3.2. Let η and Bi
hk be functions satisfying (3.4), (3.6), (5.3)

and (4.5), let f ∈ X ba an initial datum, then there exists T > 0 and a
unique f ∈ C([0, T ], X) mild solution to (5.17).

Clearly if initial datum f are non-negative, then the solution remains non-
negative and the total number N of agents in the system is conserved. We
do another hypothesis on interaction rate, supposing another time that it is
bounded

|η(f)| ≤ Cη, ∀f ∈ X.

Thanks to boundedness of interaction rate we can use same argument of
previous section.
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Proposition 5.3.3. Let f ∈ X be a positive initial datum, let f ∈ C([0, T ), X)
a mild solution of Cauchy problem (5.17) related to f and let j ∈ {1, . . . , n}
and index such that

lim
t→T

‖fi(t)‖L∞ < +∞,

for all i 6= j. Then we have the boundedness of fj,

lim
t→T

‖fi(t)‖L∞ < +∞,

Proof. Thanks to positiveness of initial datum we have positiveness of solu-
tion and thus for t ∈ [0, T ) and x ∈ R

2,

|fj(t,x)| = fj(t,x) = f j(γj(0, t,x)) +

∫ t

0

J j(f(τ, γj(τ, t,x)))dτ

≤ ‖f j‖L∞ + Cη

∑

h 6=j

n
∑

k=1

∫ t

0

fh(τ, γj(τ, t,x))fk(τ, γj(τ, t,x))dτ

≤ ‖f j‖L∞ + Cη

∑

h 6=j

n
∑

k=1

µh

∫ t

0

∫

R2

fk(τ,y)dydτ

≤≤ ‖f j‖L∞ + µ2Cηt+ µCη

∫ t

0

fj(τ, γj(τ, t,x))dτ,

≤≤ ‖f j‖L∞ + µ2Cηt+ µCη

∫ t

0

‖fj(τ)‖L∞dτ,

where µh and µ is defined like in (5.11) and (5.12), bounded by hypothesis,
using Gronwall’s inequality we have

‖fj(t)‖L∞ ≤ A(t)eA0t,

where
A(t) := ‖f j‖L∞ + µCwη0N0(µ+ 1)t,

A0 := µCwη0N0,

this ends the proof.

Like in previous section we fix an index j ∈ {1, . . . , n} we start to study
(5.17) with an interaction kernel similar to (5.14), even if with punctual
interaction, using a table of games like in (5.13)

Ĵi(f) =







∑

h 6=j

η(f(t,x))fh(t,x)ρ(t,x) if i = j,

−η(f(t,y))fi(t,x)ρ(t,x) otherwise.
(5.22)
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Existence and uniqueness of a local-in-time solution for (5.17), with (5.22)
as interaction kernel, is granted. Concerning its prolongability, given f ∈
C([0, T ), X) mild solution of Cauchy problem corresponding to a non-negative
initial datum, we have:

fi(t, x) ≤ ‖f i‖L∞ ,

if i 6= j. Otherwise, for the j-th class, supposing the boundedness of interac-
tion rate, we have

|fj(t,x)| = fj(t,x) = f j(γj(0, t,x)) +

∫ t

0

Ĵj(f(τ, γj(τ, t,x))dτ

≤ ‖f j‖L∞ + Cη

∑

h 6=j

n
∑

k=1

∫ t

0

‖fh‖L∞fk(τ, γj(τ, t,x))dτ

≤ ‖f j‖L∞ + Cetaα
2t+ Cηα

∫ t

0

fj(τ, γj(τ, t,x))dτ,

where:
α :=

∑

h 6=j

‖fh‖L∞ .

The last inequality gives us:

‖fj(t)‖L∞ ≤ ‖f j‖L∞ + Cηα
2t+ α

∫ t

0

‖fj(τ)‖L∞dτ,

and thus, using Gronwall’s lemma:

‖fj(t)‖L∞ ≤ (‖f j‖L∞ + Cηα
2t)eCηαt.

The previous considerations are summarized in the following theorem.

Theorem 5.3.4. Let η be a function verifying (4.4); then, given f ∈ X
a non-negative initial datum, there exists a unique f ∈ C([0,∞), X) mild
solution of (5.17), with interaction kernel Ĵ equal to (5.22), and it remains
non-negative for all t > 0.

Summarizing the previous results, we have found estimates for the prob-
lem (5.17) in the case of a very particular interaction rate, like (5.22), that
ensures prolongability of local solutions. We notice that this estimate is also
quite similar to the one found for the Cauchy problem (5.10), with (5.14)
as interaction kernel. On the other hand, the last result does not ensure
prolongability for the general problem (5.17).
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Chapter 6

Bounded domain

There is a vast literature concerning the study of complex systems like vehic-
ular traffic, crowds dynamics and tumor growth by a kinetic point of view.
On the other hand, there are few works that study these kinetic models in
a bounded domain. In other words, while the Cauchy problem in an un-
bounded domain has been largely analyzed, a relatively small number of
Authors addressed their attention to the richness of phenomena happening
in a bounded domains Ω ⊂ R

n, with n = 1, 2, such that

diam(Ω) <∞,

having a boundary ∂Ω that verifies suitable regularity properties, that we
will discuss later.

The initial-boundary value problem for a system of first-order hyperbolic
evolution equations is treated in [32, 36], while in [33, 38] the discrete Boltz-
mann equation in a bounded domain has been studied. Writing again the
general equations analyzed in the previous chapters:

∂tfi(t,x) + vi · ∇xfi(t,x) = Ji(f(t,x)). (6.1)

we understand that the first problem is to give a different definition of the
interaction kernel Ji in the r.h.s. of (6.1). Conversely from discrete Boltz-
mann equation, where the interaction kernel is punctual, in (6.1) the agents
interact each other in an visibility domain Di

x
. The presence of this non local

interaction creates some troubles near the boundary. The simplest idea to
avoid this problem it is to intersect the interaction domain with the whole

59
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domain

Ji(f(t, x)) =Γi(f(t,x))− Λi(f(t,x))

=
n
∑

h,k=1

∫

Di
x∩Ω

Bi
hk(f(t,y))η(f(t,y))fh(t,x)fk(t,y)dy

− fi(t,x)
n
∑

h=1

∫

Di
x∩Ω

η(f(t,y))fh(t,y)dy.

(6.2)

With this choice the measure of interaction domain Di
x
decreases if x is close

to the boundary and vi points outside the boundary.

Figure 6.1: In this case interaction domain depends on velocity maintained
by an agent, near boundary it is smaller then in other places.

6.1 One dimensional case

In this section we study the existence and uniqueness of solutions related
to the one dimensional initial-boundary value problem in a bounded region
Ω = [0, L]:















∂tf(t, x) + V ∂xf(t, x) = J(f(t, x))

f(0, x) = f(x)
f+(t, 0) = B+f−(t, 0) + b+(t)
f−(t, L) = B−f+(t, L) + b−(t),

(6.3)

where
f = (f1, . . . , fn), V = diag(vi),

J(f) = (J1(f), . . . , Jn(f)), f = (f 1, . . . , fn).
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Let
I = {1, . . . , n}, I+ = {i ∈ I|vi > 0}, I− = {i ∈ I|vi < 0},

then we can define

f± = (fi)i∈I± , B
± = (Bij)i∈I∈I±,j∈I∓ , b

± = (bi)i∈I± .

In other words f+ describes agents traveling with positive velocities, while f−

describes those traveling with negative velocities. The boundary conditions
for (6.3) are written in the most general case and they are divided into two
parts. The first term B±f∓ describes the boundary conditions due to the
collision on the boundary x = 0, L, while the term b± describes the possible
inner flow inside the domain. It is quite obvious to impose that

b±i ≥ 0, B±
ij ≥ 0.

We investigate briefly the case where there aren’t any inner or outer flows,
and there is a complete reflection on the boundary. The absence of inner
flow implies that

b±(t) = 0,

for all t ≥ 0. It is clear that a complete absorption is given by B± = (B±
ij ) =

0; on the other hand a complete reflection has to give a mass conservation.
Summing over i equations of (6.3) and integrating, we find

n
∑

i=1

∫ L

0

(∂tfi(t, x) + vi∂xfi(t, x))dx = 0.

Under suitable conditions we have

n
∑

i=1

(∫ L

0

∂tfi(t, x)dx+ [vifi(t, x)]
x=L
x=0

)

= 0, (6.4)

and thus
n
∑

i=1

vifi(t, 0) =
n
∑

i=1

vifi(t, L) = 0. (6.5)

These two latter identities could seem quite artificial, since from (6.4) we
expect only

n
∑

i=1

vi (fi(t, 0)− fi(t, L)) = 0.

On the other hand the identities (6.5) have a strong physical meaning, as
the balance between agents traveling with a positive velocity and the other



62 CHAPTER 6. BOUNDED DOMAIN

ones it is related to point where takes into account the reflection. If we use
boundary conditions of (6.1) we find

∑

i∈I+

vifi(t, 0) +
∑

i∈I−

vifi(t, 0) =
∑

j∈I−

fj(t, 0)



vj +
∑

i∈I+

viB
+
ij



 = 0,

and finally,

vj +
∑

i∈I+

viB
+
ij = 0, for all j ∈ I−, (6.6)

similarly we have

vj +
∑

i∈I−

viB
−
ij = 0, for all j ∈ I+. (6.7)

The previous two equalities are related to the case of a complete reflection
when agents arrive to the boundary. On the other hand if we take into
account also an absorption we find

vj +
∑

i∈I+

viB
+
ij ≤ 0, for all j ∈ I−, (6.8)

vj +
∑

i∈I−

viB
−
ij ≥ 0, for all j ∈ I+. (6.9)

We have to remind that we are interested to describe complex system, and
in the case of traffic flow and crowds dynamic on the boundary there are
only two different cases, a complete reflection or a complete absorption. If
we consider for example a one dimensional hallway which has only one exit,
placed in x = L, and in the other extremity x = 0 there is a wall, we have
different behaviors on the boundary. In x = 0 we have a complete reflection,
agents traveling with negative velocities collide with the wall and change at
least the sign of their velocities, while in x = L there is a complete absorption,
due to the exit, and thus B− = (B−

ij ) = 0.

6.2 Two dimensional case

In the one dimensional case we have no problem about the domain regularity.
On the other hand, this issue becomes crucial in the two dimensional case,
when Ω ⊂ R

2. In order to understand more deeply this point we start to
discuss an easy case. Let us consider a domain Ω ⊂ R

2 in which there are
only two achievable velocities v and −v. In this case the agents can move
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along the direction given by v, see Figure 6.2. Thanks to this observation the
problem can reduced to the one studied in the one dimensional case, when an
agent arrives to the boundary x ∈ ∂Ω, with velocity v, we require a collision
and agent changes his velocity with −v. Forgetting the possible inner flow,

Figure 6.2: An idea of rectangular domain, where only two velocity are
achievable, v and −v. In this case agents can move along the straight lines,
given by v.

i.e. b = 0, in the general case we can write the problem as follows:







∂tfi(t,x) + vi · ∇xfi(t,x) = Ji(f(t,x))

f(0,x) = f(x), ∀x ∈ Ω,
f−(t,x) = B(x)f+(t,x), ∀x ∈ ∂Ω,

(6.10)

where f±(x) = (fi(x)) is a vector such that,

f± = (fi)i∈I±(x),

given x ∈ ∂Ω, I−(x) is the set of indexes satisfying the following property,

∃ε > 0, such that x+ εvi ∈ Ω, ∀ε ∈ (0, ε). (6.11)

Conversely, given x ∈ ∂Ω, I+(x) si defined as the complement of I−(x), in
the set of indexes,

I+(x) ∪ I−(x) = {1, . . . , n}, I+(x) ∩ I−(x) = ∅.

Property (6.11) permits us to bypass the absence of a normal vector. The sets
I±(x) are different from the ones defined in the previous section, as in this
case I±(x) clearly depends on x. Once we have defined I±(x) we understand
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the role of f± in (6.10). f+ is the set of agents distributions whose velocities
lead them outside the domain in x; if we want to study problem (6.10), we
have to impose boundary conditions related to f−, whose characteristics at
the boundary go outside the domain Ω. We are particularly interested to
two phenomena at the boundary:

• a complete absorption, which mimics the presence of an exit on the
boundary. As in the one dimensional one, if there isn’t any inner flow
in the domain it is easy to understand that we have to require:

Bij = 0, i ∈ I−, j ∈ I+. (6.12)

• There is a complete reflection, which clearly mimics the presence of a
wall on the boundary. In this case we require:

|vj| −
∑

i∈I+

|vi|Bij = 0, for all j ∈ I−. (6.13)

We always suppose that Bij ≥ 0 for all pairs of indexes. If it is clear the
meaning of (6.12) with respect to a complete absorption at the boundary,
it could be less clear the meaning of (6.13). In equation (6.13) are enclosed
equations (6.6) and (6.7), which give reflections on the boundary in the one
dimensional case. The hypotheses are not stringent because only the con-
servation of mass is required, while we don’t need nor the conservation of
momentum or that of the kinetic energy as in the discrete Boltzmann equa-
tion models.

We don’t spend any words on regularity of Ω, as we are not interested
to point out which are the weakest hypotheses that ensure the existence of
a solution. We will suppose that Ω is a non-empty connected set with a
piecewise smooth boundary.

Once we have fixed boundary conditions we have only to define the func-
tional space where the solutions of the initial-boundary problem live; after
that we are in condition to give an existence and uniqueness result. Given
the functional space:

XΩ = (L1(Ω) ∩ L∞(Ω))n,

for u ∈ XΩ we define

‖u‖Ω = ‖u‖1,Ω + ‖u‖∞,Ω =
n
∑

i=1

‖ui‖L1(Ω) +max
i

‖ui‖L∞(Ω).

Clearly XΩ, endowed with the norm ‖ · ‖Ω, is a Banach space. We are then
able to state the following theorem.
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Theorem 6.2.1. Let Ω ⊂ R
2 be a bounded set, let Bi

hk and η be functions
verifying (3.4), (3.6) and (3.7). Then, given f ∈ XΩ a non-negative initial
datum, there exists a unique f ∈ C([0,∞), XΩ) solution of the following
initial-boundary value problem







∂tfi(t,x) + vi · ∇xfi(t,x) = Ji(f(t,x)),

f(0,x) = f(x), ∀x ∈ Ω,
f−(t,x) = B(x)f+(t,x), ∀x ∈ ∂Ω, t ≥ 0,

(6.14)

with Bij verifying (6.13). Moreover, we have

dN

dt
(t) =

d

dt

(

n
∑

i=1

∫

Ω

fi(t,x)dx

)

= 0. (6.15)

We don’t show the detailed proof of previous theorem as it is similar
to existence and uniqueness results given in the previous chapters, limiting
ourselves to sketch the main ideas. We remind that the interaction domain,
defined in (6.2), is intersected with the entire domain Ω and thus the in-
teraction kernel is always well defined in Ω. The hypotheses on interaction
rate and transition probability density ensure that J = (Ji(f)) is a locally
Lipschitz function, and thus we can use a fixed point argument to obtain
existence an uniqueness of a solution, local in time, f ∈ C([0, T ], XΩ) with
T > 0. Thanks to Gronwall’s inequality we can extend globally-in-time such
a solution. The total number of agents is conserved, thanks to reflection on
the boundary. If we suppose that there isn’t any reflection on the boundary
we have the following theorem.

Theorem 6.2.2. Let Ω ⊂ R
2 be a bounded set, let Bi

hk and η be func-
tions verifying (3.4), (3.6) and (3.7). Then, given f ∈ XΩ a non-negative
initial datum, there exists a unique f ∈ C([0,∞), XΩ) solution of the initial-
boundary value problem







∂tfi(t,x) + vi · ∇xfi(t,x) = Ji(f(t,x)),

f(0,x) = f(x), ∀x ∈ Ω,
f−(t,x) = 0, ∀x ∈ ∂Ω, t > 0.

(6.16)

Moreover:
dN

dt
(t) ≤ 0. (6.17)

Last theorem asserts, roughly speaking, that if there is not any wall, hence
we have complete absorption on the boundary, then when agents arrive on
the boundary they exit from domain. We can intersect these two theorems
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as follows. First of all we divide the boundary in two subsets W,E ⊂ ∂Ω
such that

W ∩ E = ∅, W ∪ E = ∂Ω,

and H1(E) > 0, H1(W ) > 0, where H stands for Hausdorff measure. The
last two inequalities ensure, roughly speaking, that there is a large exit and
that we want to avoid exits whose that reduce to single points.

Theorem 6.2.3. Let Ω ⊂ R
2 be a bounded set, and let Bi

hk and η be functions
verifying (3.4), (3.6) and (3.7). Then, given f ∈ XΩ a non-negative initial
datum, there exists a unique f ∈ C([0,∞), XΩ) solution of following initial-
boundary value problem















∂tfi(t,x) + vi · ∇xfi(t,x) = Ji(f(t,x)),

f(0,x) = f(x), ∀x ∈ Ω,
f−(t,x) = 0, ∀x ∈ E, t > 0,
f−(t,x) = B(x)f+(t,x), ∀x ∈ W, t ≥ 0,

(6.18)

with
dN

dt
(t) ≤ 0. (6.19)

We don’t specialize the system 6.18. On the other hand, if we want to
describe an evacuating crowd, the transition probability density Bi

hk will de-
scribe the presence of a desired velocity inside the set of achievable velocities,
which minimize the path which brings to exit.

The interaction kernel in the r.h.s. of (6.1) models interactions among
agents. If there is a change of velocity induced only by the domain envi-
ronment, like the shape of domain or the presence of obstacles, agents don’t
want to collide with walls and if there is any exit they want to reach rapidly
it.
An idea, that has been suggested also in [1], is to introduce an extra term in
the r.h.s. of (6.1):

Ji(f ,x) = Γi(f)− Λi(f) + Ai(f ,x),

such that
n
∑

i=1

Ai(f ,x) = 0.

The function A = (Ai) describes the interaction between agents and domain.
We don’t discuss here this point but we are going to come back on it in the
following chapter.



Chapter 7

Spatial discretization

Models arising by discretization of achievable velocity are based on semilinear
hyperbolic equations. In the previous chapter we deeply studied existence
and uniqueness of solutions for these systems and, under suitable regularity
properties for the interaction kernel, we were also able to give existence for
all positive time. On the other hand, it is well known that the study of
long-time behavior for general Boltzmann-like systems is a hard issue that
still presents aspects difficult to overcome. In order to treat such systems
a number of authors [28, 29, 30] suggested to discretize the spatial variable
together with the velocity one, to obtain a system of ordinary instead of
partial differential equations.

7.1 One dimensional case

Inspired by [28], we start to recover a model with one spatial variable. The
domain Ω = [0, L] ⊂ R is divided in m cells, or intervals

[0, L] =
m
⋃

i=1

Ii,

with Ii ∩ Ij = ∅ if i 6= j and x ≤ y,for all x ∈ Ii, y ∈ Ii+1, i = 1, . . . ,m − 1;
moreover, the intervals have constant size ℓ = L/m. The crucial assumption
is that inside a given cell Ii the distribution function, which describes agents
traveling with velocity vj, does not depend on the spatial variable and thus
the functions f i

j(t) represent the distribution functions of agents that have
velocity vj and are located in the i-th cell at time t:

f(t, x, v) =
n
∑

j=1

m
∑

i=1

f i
j(t)χIi(x)δvj(v).

67
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The number of agents that have velocity vj in the i-th cell is N i
j = f i

jℓ, the
total number of agents in the i-th cell is

Ni =
n
∑

j=1

N i
j ,

and the total number of agents in Ω

N =
m
∑

i=1

Ni.

As usual, we can find macroscopic quantities like density and flux in the
following way:

ρ(t, x) =
n
∑

j=1

f i
j(t)χIi(x), q(t, x) =

n
∑

j=1

vjf
i
j(t)χIi(x).

As in [28], in order to obtain equations describing the evolution of f i
j , we

start to evaluate the variation of N i
j :

N i
j(t+∆t)−N i

j(t) = Gi
j([t, t+∆t])−Li

j([t, t+∆t])+J i
j(t)ℓ∆t+o(∆t). (7.1)

The term Gi
j describes the agents, with velocity vj, that flow into i-th cell

from near cells. If we suppose vj ≥ 0 and vj∆t ≤ ℓ we can assume that Gi
j

depends only on N i−1
j . Then, we define:

Gi
j([t, t+∆t]) =

vj∆t

ℓ
N i−1

j (t) + o(∆t). (7.2)

Making the same assumptions we define the outer flow:

Li
j([t, t+∆t]) =

vj∆t

ℓ
N i

j(t) + o(∆t). (7.3)

By comparing with the previous chapter, the term J i
j is like the usual in-

teraction kernel Jj, apart from one point that we will remark later, and it
describes the agents in th i-th cell that change velocity. If we divide equation
(7.1) by l∆t and take the limit ∆t→ 0, we find:

df i
j

dt
+
vj
ℓ
(f i

j − f i−1
j ) = J i

j(f), (7.4)

where f ≡ (f i
j) ∈ R

nm. We write explicitly the interaction kernel J i
j as

follows:

J i
j =

n
∑

h,k=1

ηhk(i)B
j
hk(i)f

i
hf

i
k − f i

j

n
∑

h=1

ηjh(i)f
i
j . (7.5)
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We notice that in the previous chapter we have studied a non local interaction
kernel, described by an integral over a visibility zone Dx. In this chapter we
forget this issue, focusing on the interactions that take place in the cells.
The function Bj

hk(i) in (7.5) describes the probability that an agent, with
velocity vh, changes his velocity in vj after an interaction with an agent
having velocity vk. As in the previous chapters, it has to verify the following
conditions:

0 ≤ Bj
hk(i) ≤ 1, h, k, j = 1, . . . , n, i = 1, . . . ,m;

n
∑

j=1

Bj
hk(i) = 1, h, k = 1, . . . , n, i = 1, . . . ,m.

(7.6)

The function ηhk(i) in (7.5) is the interaction rate which represents the num-
ber of interactions between f i

h and f i
k.

Equation (7.4) is well defined only for i = 2, . . . ,m. In order to study
a system of mn ordinary differential equations like (7.4) we have to impose
boundary conditions f 0

j = f 0
j (t) with j = 1, . . . , n. Moreover, we have to

make the typical hypotheses on functions which are present in the interaction
kernel J i

j that guarantee the well-posedness.

7.2 Periodic problem

We start studying the periodic problem that corresponds, for example, to a
circular hallway or a closed track. The appropriate boundary conditions for
this situation are f 0

j (t) = fm
j (t). Clearly this is not the unique way to close

(7.4), as we will see later. However, once we have fixed the initial datum, we
have the following Cauchy problem:











df i
j

dt
+
vj
ℓ
(f i

j − f i−1
j ) = Jij(f) i = 1, . . . ,m, j = 1, . . . , n

f i
j(0) = f

i

j.

(7.7)

The previous system shows interesting properties induced by the periodic
boundary conditions. If we sum equations (7.7) over j, reminding the prop-
erties of Jij we have

dρi
dt

(t) +
n
∑

j=1

vj
ℓ
(f i

j(t)− f i−1
j (t)) = 0.

Now, if we sum over i we find

d

dt

(

m
∑

i=1

ρi(t)

)

= 0.
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The last equality gives us the usual conservation of the total number of agents
in the whole domain. In order to obtain a solution to the Cauchy problem
(7.7) we have to impose some hypotheses on the interaction rate and on the
transition probability density.
Following the ideas used in previous chapters we suppose that ηhk(i) and
Bj

hk(i) depend on f = (f i
j) and that they are Lipschitz functions, i.e., for all

h, k, j = 1, . . . , n and i = 1, . . . , n there exist µ, µ′ ≥ 0 such that

|ηhk(i)(f1)− ηhk(i)(f2)| ≤ µ|f1 − f2|, (7.8)

|Bj
hk(i)(f1)− Bj

hk(i)(f2)| ≤ µ′|f1 − f2|, (7.9)

for all, f1, f2 ∈ R
nm, h, k, j = 1, . . . , n and i = 1, . . . , n. Clearly Bj

hk(i) verifies
(7.6), for all f ∈ R

nm and for all indexes. We can easily prove the following
theorem.

Theorem 7.2.1. Let f = (f
i

j) ∈ R
mn be a positive initial datum and let ηhk(i)

and Bj
hk(i) be functions verifying (7.8), (7.9) and (7.6), then there exists a

unique continuous function f : [0,∞) → R
mn solution of (7.7). Moreover f

has the following properties

f i
j(t) ≥ 0, ∀j ∈ {1, . . . , n}, i ∈ {1, . . . ,m}, t ≥ 0, (7.10)

n
∑

j=1

m
∑

i=1

f i
j(t) =

n
∑

j=1

m
∑

i=1

f
i

j. (7.11)

We omit the proof, as it is just an elementary application of a fixed point
argument.

7.3 Desired velocity model

In this section we specialize the transition probability density Bj
hk and inter-

action rate ηhk(i), in order to study more deeply the system obtained by the
spatial discretization procedure. Suppose that 0 < v1 < . . . < vn, we define
the table of games Bj

hk as follows.
If h = k

Bj
hk =

{

1 if j = h(= k)
0 otherwise.

(7.12)

If vh > vk

Bj
hk =

{

1 if j = h
0 otherwise.

(7.13)
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Elsewhere, if vh < vk

Bj
hk =







1− p if j = h
p if j = h+ 1
0 otherwise,

(7.14)

with p = (0, 1]. The table of games, previously written, says us that agents
have a desired velocity, which is the faster one vn, and they increase their
velocity only when they interact with agents that have a larger speed. We
remark that from (7.12) there are not self-interactions in the system. We
start to look for stationary solution. Hence we have to search solutions of
following system:

vj
ℓ

(

f i
j − f i−1

j

)

= J i
j(f)

i = 1, . . . ,m, j = 1, . . . , n.

We expect that a stationary solution f̂ is at least a spatially homogeneous
one, in other words that fh

j = fk
j , for all indexes h, k = 1, . . . ,m. If we write

explicitly the equation for j = 1 and suppose that there is only one index i
such that f̂ i

1 6= f̂k
1 and moreover f̂k

1 = f̂k′

1 for k, k′ 6= j then

f̂ i−1
1 = f̂ i

1(1 +
ℓp

v1

n
∑

h=2

η1hf̂
i
h) := f̂ i

1Pi.

and

f̂ i
1 = f̂ i+1

1 (1 +
ℓp

v1

n
∑

h=2

η1hf̂
i+1
h ) = f̂ i+1

1 Pi+1,

= f̂ i−1
1 Pi+1 = f̂ i

1PiPi+1,

and thus we find a contradiction. At the end we have that f̂ i
1 = f̂ i−1

1 for all
i, from which it follows that if f̂ i

1 > 0 then f̂ i
j = 0 for j = 1, . . . , n. If we

repeat the same strategy for all j we have the complete proof of the following
theorem.

Theorem 7.3.1. For all N > 0 there exist n stationary solutions related to
α for system (7.7) with table of games defined in (7.12), (7.13) and (7.14).
Moreover, for all j∗ ∈ {1, . . . , n}

Ej∗ = (f̂ i
j) =

{

N/m j = j∗ and i = 1, . . . ,m
0 otherwise,

is a stationary solution.
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In the previous theorem N represents the total number of agents in the
system, which is constant in time. Once we have fixed the number of agents
we have n stationary solution related to (7.7), where n is the number of
velocity classes; each stationary solution describes a state in which all agents
travel with the same velocity and are homogeneously distributed in the m
cells.
In order to study stability of stationary solutions, found in Theorem 7.3.1,
we fix the number of velocities to be n = 2 and the number of cells at m = 3,
and for simplicity we take a constant interaction rate ηhk := η > 0. Given a
N > 0, thanks to the conservation of agents’ number we study the evolution
system on the hyperplane of equation:

3
∑

i=1

2
∑

j=1

f̂ i
j = N =

3
∑

i=1

2
∑

j=1

f i
j = N.

In this way we can reduce the equations number, replacing f 3
2 (t) with

N − f 1
1 (t)− f 1

2 (t)− f 2
1 (t)− f 2

2 (t)− f 3
1 (t),

so we write






























































df 1
1

dt
= −αf 1

1 f
1
2 − v1

ℓ

(

f 1
1 − f 3

1

)

df 1
2

dt
= αf 1

1 f
1
2 − v2

ℓ

(

f 1
1 + 2f 1

2 + f 2
1 + f 2

2 + f 3
1 −N)

)

df 2
1

dt
= −αf 2

1 f
2
2 − v1

ℓ

(

f 2
1 − f 1

1

)

df 2
2

dt
= αf 2

1 f
2
2 − v2

ℓ

(

f 2
2 − f 1

2

)

df 3
1

dt
= −αf 3

1 (N − f 1
1 − f 1

2 − f 2
1 − f 2

2 − f 3
1 )−

v1
ℓ

(

f 3
1 − f 2

1

)

(7.15)

where α = pη. By means of Theorem 7.3.1 of the previous section we have
that equilibrium points of the reduced system are:

E1 = (N/3, 0, N/3, 0, N/3),

E2 = (0, N/3, 0, N/3, 0).

In order to study stability of equilibria we evaluate the Jacobian matrix
related to (7.15)

J =













−αf 1
2 − v1

ℓ
−αf 1

1 0 0 v1
ℓ

αf 1
2 + v2

ℓ
αf 1

1 − 2v2
ℓ

−v2
ℓ

−v2
ℓ

−v2
ℓ

v1
ℓ

0 −αf 2
2 − v1

ℓ
−αf 2

1 0
0 v2

ℓ
αf 2

2 αf 2
1 − v2

ℓ
0

αf 3
1 αf 3

1 αf 3
1 + v1

ℓ
αf 3

1 2αf 3
1 − v1

ℓ













.
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After cumbersome calculations we find that the eigenvalues associated to
J (E2) are roots of the polynomial:

P (λ) = (λ2 + 3cλ+ 3c2)(b3 + (b+ λ)(b+ a+ λ)2) = 0,

where a = αN
3
, b = v1

l
and c = v2

l
. It is easy to see that all roots have strictly

negative real part, so we have that E2 is asymptotically stable. Since we have
only two stationary solutions and we know that one of them is asymptotically
stable, we conclude that the other one, that is E1, has to be unstable.
The analysis just performed Previously concerns the stability of stationary
solutions for the periodic case in a very particular case. On the other hand, m
and n can be larger numbers, specially m. We know that 7.7 has n stationary
solutions, but we would like to avoid to go through the eigenvalues’ analysis
of the Jacobian matrix.

We intuitively expect that only one stationary point, the one related to
faster velocity vn, is asymptotically stable, and the others are at least saddles.
We start to show that E1:

E1 =

{

N/m if j = 1, i=1,. . . ,n
0 otherwise,

is actually a saddle. For any ε > 0 we take P defined as:

P =







N
m
− ε

3m
if j = 1, i=1,. . . ,n

ε
3m

if j = 2, i=1,. . . ,n
0 otherwise,

as initial datum. First we remind that if the initial datum is spatially homo-
geneous, i.e., it does not depend on index i, f i+1

j = f i
j , then the solution is

also spatially homogeneous. In addition, the solution f(P, t) of (7.7) with P

as initial datum has the property:

f i
j(P, t) = 0, for t ≥ 0, i = 1, . . . , n and j = 3, . . . ,m.

In this case we can reduce (7.7) to:

df1
dt

= −αf1f2
df2
dt

= αf1f2

where we have omitted the dependence on i. We have that f1 is a decreasing
function and f2 is increasing and

df1
dt

= −αf1f2 < − αε

3m
f1,
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and thus

f1(P, t) ≤
(

N

m
− ε

3m

)

e−
αε
3m

t.

Using this last inequality we find that f i
1 → 0 and f i

2 → N
m

when t→ 0, from
which follows that E1 is at least a saddle. Following the same steps we are
able to prove the instability of E2, . . . ,En−1. Now we want to prove that En

is asymptotically stable, and this is a task more difficult than the previous
one.
Let us fix a point P = (P i

j ) with the property that

P i
n > 0, i=1,. . . ,m. (7.16)

and notice that every point in a sufficiently small neighborhood of En does
have the previous property. Now we study the trend of the solution f(P, t)
of (7.7) starting from P, and we’ll prove that f(P, t) → En when t → ∞.
Let

fj :=
m
∑

i=1

f i
j ,

be the number of agents having velocity vj. The idea is to prove that each
fj, with j 6= n decays for t→ ∞. Let

Pj =
m
∑

i=1

P i
j = 0,

then, if P1 = 0 from the nature of system (7.7) and of Bj
hk,

df1
dt

(t) = 0,

and thus f1(t) = 0 for all t ≥ 0. On the other hand, if P1 > 0, that is, if there
are agents with lower velocity, then f1(t) > 0 at least in a interval [0, T ) and
moreover it is easy to see that:

df1
dt

(t) = −α
m
∑

i=1

n
∑

h=2

f i
1(t)f

i
h(t) = −α

m
∑

i=1

f i
n(t)f

i
1(t)

≤ −αmin
i

(

f i
n(t)

)

m
∑

i=1

f1(t) = −αmin
i

(

f i
n(t)

)

f1(t),

Again:
min

i

(

f i
n(t)

)

≥ min
i
P i
n = γ > 0,
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thanks to (7.16). By using Gronwall’s lemma we find

f1(t) ≤ P1 exp (−αγt) .

Thanks to this last inequality we are able to study the trend of f2. Indeed:

df2
dt

(t) = α

m
∑

i=1

n
∑

h=2

f i
1(t)f

i
h(t)− α

n
∑

i=1

n
∑

h=3

f i
2(t)f

i
h(t)

≤ αNf1(t)− αγf2(t)

≤ αNP1 exp (−αγt)− αγf2(t),

from which
f2(t) ≤ (P2 + αNP1t) exp (−αγt) .

follows. For the sake of clearness we repeat the same calculations for f3(t):

df3
dt

(t) = α

m
∑

i=1

n
∑

h=3

f i
2(t)f

i
h(t) + α

n
∑

i=1

n
∑

h=4

f i
3(t)f

i
h(t)

≤ αN (P2 + αNP1t) exp (−αγt)− αγf2(t),

from which it follows that:

f3(t) ≤
(

P3 + αN

∫ t

0

(P2 + αNP1τdτ)

)

exp (−αγt)

≤
(

P3 + αNP2t+ α2N2P1t
2
)

exp (−αγt) .

Finally, we can state that:

fj(t) ≤ pj−1(t) exp (−αγt) ,

for j = 1, . . . , n−1 and pj is polynomial of degree j with positive coefficients,
and

lim
t→∞

fj(t) = 0, j = 1, . . . , n− 1.

Reminding that the total number of agents is conserved we have

lim
t→∞

fn(t) = N.

Hence we have proved a large part of following theorem.

Theorem 7.3.2. Let N > 0 and let

C =

{

x ∈ R
nm

∣

∣

∣

∣

∣

xij ≥ 0,
m
∑

i=1

n
∑

i1

xij = N

}

,
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the nm-simplex related to N , and

D =
{

x ∈ C
∣

∣∀i, xin > 0
}

⊂ C.

Then, if we take the initial datum f of (7.7) such that f ∈ C, then f(t) ∈ C
for all t. Moreover, if f ∈ D then the solution converges to En, that is:

lim
t→∞

f(t) = En.

It is worth stressing that we have only proved that all agents achieve the
maximal velocity, i.e.,

lim
t→∞

fn(t) = N.

On the other hand we have not proved that the solution converges to the
homogeneous state En. Actually, this assertion is strictly related to the
properties of the flux term ψi

j(f) and will be discussed in Section 7.9.

7.4 Non-dimensionalization

Though from a theoretical point of view it is not important, when one would
like to perform some simulations it becomes convenient to work with di-
mensionless variables. We choose characteristic length, time and velocity as
follows:

xc := ℓ, vc := vmax, tc :=
xc
vc

=
ℓ

vmax

,

from which we find dimensionless variables and functions

x∗ :=
x

xc
, t∗ :=

t

tc
, v∗ =

v

vc
, gij(t

∗) := f i
j(tct

∗);

if we substitute these variables into the equations we find

dgij
dt∗

+ v∗j (g
i
j − gi−1

j ) = (J i
j)

∗(g)

where the new dimensionless interaction rate is

η∗hk(i) := tcηhk(i).

and the new velocity lattice is such that 0 ≤ vi ≤ 1 for all i = 1, . . . , n.
Omitting asterisks and substituting g with f we have new dimensionless
equations

df i
j

dt
(t) + vj(f

i
j − f i−1

j ) = J i
j(f).
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7.5 Transition probability depending on local

density

In section 7.3 we have studied a model in which the transition probability
does not depend on density. On the other hand we have an existence results
that allows for a dependence on f through the local density ρi. We recall an
idea introduced in [26] and we adjust it to the present framework. First of
all we introduce the dimensionless density

ρ∗i (t) :=
ρi(t)

NM

,

where NM is the maximum number of vehicles, corresponding, in the vehicu-
lar traffic context, to a bump-to-bump traffic jam. Once again, in the sequel
we will omit asterisks. Thanks to normalization we have

N(t) =
m
∑

i=1

ρi(t) ≤ 1.

As in [26] we introduce the probability of passing depending on local density

p = p(ρi) = (1− ρi)
q, with q ≥ 1, (7.17)

and we fix the transition probability through p. When h < k the candidate
agents is interacting with a faster agent and he will change or maintain his
velocity depending on surrounding environment:

Aj
hk(i) = Aj

hk(ρi) =







1− (1− ρi)
q if j = h,

(1− ρi)
q if j = h+ 1,

0 otherwise.
(7.18)

On the other hand, if h > k candidate agents will decelerate if there will be
an high density inside cell, and thus:

Aj
hk(ρi) =







1− (1− ρi)
q if j = k,

(1− ρi)
q if j = h,

0 otherwise.
(7.19)

Finally, we fix the transition probability related to an encounter between two
agents that have the same velocity, h = k, the easiest choice is the following:

Aj
hh(ρi) =

{

1 if j = h,
0 otherwise.

(7.20)
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We spend few words about the exponent q in the probability of passing. If
we have m cells the maximum density achievable inside each cell is 1/m and
we have to choose q such that if ρi ≈ 1/m then p(ρi) ≈ 0. Another possible
choice could be a piecewise function

p(ρi) =

{

1−mρi if ρi ≤ 1/m,
0 otherwise.

(7.21)

7.6 Elastic collisions at the boundary

We derived (7.4) supposing that vj ≥ 0. On the other hand we can suppose
that vj ≤ 0 for all j = 1, . . . , n. After similar steps we find

df i
j

dt
+
vj
ℓ
(f i+1

j − f i
j) = J i

j(f), (7.22)

for all i, j. Comparing equation (7.4) with (7.22) we notice that the spatial
derivative is replaced by different terms: in (7.4) there is a backward dif-
ference while in (7.22) there is a forward difference, and this is due to the
different signs of velocities. Clearly if vj < 0 the inflow is proportional to f i

j ,

while the outflow is related to f i+1
j and not to f i−1

j as in (7.4).

We have to prescribe boundary conditions related fm+1
j = fm+1

j (t) which
describe the inner flow respect to negative velocities.
We mix equations (7.4) and (7.22) in order to allow for both positive and neg-
ative velocities. Let j be the index which labels velocity, j ∈ {−n, . . . , 0, . . . , n}.
If we associate to a negative index −j a negative velocity −vj, we can con-
tinue to impose periodic boundary conditions, taking fm+1

−j (t) = f 1
−j(t). On

the other hand it is also interesting to consider the possibility of collisions
at the boundary, meaning that agents can’t leave Ω. The simplest idea is to
impose elastic collisions:

f 0
j (t) = f 1

−j(t),
fm+1
−j (t) = fm

j (t).

With this choice we have only to impose initial conditions to study the fol-
lowing system:



























df i
j

dt
(t) +

vj
ℓ
(f i

j(t)− f i−1
j (t)) = J i

j(f(t))

df i
−j

dt
(t) +

v−j

ℓ
(f i+1

−j (t)− f i
−j(t)) = J i

−j(f(t))

f(0) = f ,

(7.23)
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where the interaction kernel has the same properties as in the periodic case,
and

n
∑

j=−n

J i
j(f) = 0.

Similarly to the periodic case we have, under the same hypotheses, existence
and uniqueness of a solution and its prolongability in time.

7.7 Two dimensional case

The work done in the previous section permits to treat velocities with dif-
ferent directions, that is the first step to make possible studying problems
that take place in more complicated spatial domains. For example, if we
want to describe the vehicular traffic flow it is sufficient to work with a one
dimensional spatial variable, i.e. x ∈ R, while if we want to model a crowd
exiting from a room it is necessary to account for x ∈ R

2. In this section we
derive a spatially discrete model when the domain Ω is a square set

Ω = [0, L]× [0, L] =
m
⋃

i,p=1

Iip,

where Ii,p arem
2 disjoint square sets of fixed area ℓ2, such that L/ℓ = m ∈ N,

ordered in the following sense: let (x1, y1) ∈ Ii1,p1 , (x2, y2) ∈ Ii2,p2 , then

x1 < x2 ⇒ i1 < i2, y1 < y2 ⇒ p1 < p2.

Inside Ii,p the agents distribution function is spatially homogeneous. As in
the previous section we suppose that the set of achievable velocities is finite.
The first step is to take into account four velocities

{v1 = (1, 0),v2 = (0, 1),v3 = (−1, 0),v4 = (0,−1)}.

The agents distribution function, which describes the evolution of the system,
depends again only on time t in Ii,p:

f(t,x,v) =
m
∑

i,p=1

4
∑

j=1

f i,p
j (t)χIi,p(x)δvj(v).

On the other hand, the flux term related to spatially discretization like the
second term in the l.h.s. in (7.4) is strictly related to the orientation of
velocity, see for example the difference between (7.4) and (7.22). For example,
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(i, j) (i+ 1, j)(i− 1, j)

(i, j − 1)

(i, j + 1)(i−1, j+1) (i+1, j+1)

(i+1, j−1)(i−1, j−1)

v1v3

v2

v4

Figure 7.1: cells indexing in the two dimensional case and the four achievable
velocities.

if we take v2 and fix Ii,p and we want to find the equation like (7.4) which
describes the evolution of f i,p

2 , the flux will be connected to f i,p−1
2 . If we do

same assumptions as in the previous section, we find

df i,p
2

dt
+
ξj
ℓ
(f i,p

2 − f i,p−1
2 ) = J i,p

2 (f), (7.24)

with f = (f i,p
j ). The interaction kernel is equal to (7.5), except for the

presence of another index p,

J i,p
j (f) =

4
∑

h,k=1

ηhk(i, p)A
j
hk(i)f

i,p
h f i,p

k − f i,p
j

4
∑

h=1

ηjh(i)f
i,p
j . (7.25)

Making the same for all j = 1, 2, 3, 4, we have

df i,p
j

dt
+ ℓ−1ψi,p

j (f) = J i,p
j (f), (7.26)

where

ψi,p
j (f) =















f i,p
1 − f i−1,p

1 ,

f i,p
2 − f i,p−1

2 ,

f i−1,p
3 − f i,p

3 ,

f i,p−1
4 − f i,p

4 .

(7.27)

Equations (7.26) are well defined for i, p = 2, . . . ,m− 1. On the other hand
we have to impose boundary conditions along walls, and make hypotheses on
ηhk(i) and B

j
hk(i, p). In particular we here suppose that an agent, reaching a

wall with normal velocity, has an elastic collision, that is:

f 0,p
1 (t) = f 1,p

3 (t),

fm+1,p
2 (t) = fm,p

4 (t),

f i,m+1
3 (t) = f i,m

1 (t),

f i,0
4 (t) = f 2,1

2 (t).
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In addition, we assume that ηhk(i, p) and Bj
hk(i, p) are Lipschitz functions

depending on f = (f i,p
j ), and thus for all f1, f2 ∈ R

4m, h, k, j = 0, . . . , 4 and
i, p = 1, . . . , n there exist λ, λ′ ≥ 0 such that

|ηhk(i, p)(f1)− ηhk(i, p)(f2)| ≤ λ|f1 − f2|, (7.28)

|Bj
hk(i, p)(f1)− Bj

hk(i, p)(f2)| ≤ λ′|f1 − f2|. (7.29)

Moreover,

Bj
hk(i, p)(f) ≥ 0,

4
∑

j=1

Bj
hk(i, p)(f) = 1, (7.30)

for all f ∈ R
4m and for all indexes. Now we are able to study the Cauchy

problem:










df i,p
j

dt
+ ℓ−1ψi,p

j (f) = J i,p
j (f) i = 1, . . . ,m, j = 1, . . . , n

f i,p
j (0) = f

i,p

j ,

(7.31)

for which the following result holds.

Theorem 7.7.1. Let f = (f
i,p

j ) ∈ R
4m be a positive initial data and let

ηhk(i, p) and B
j
hk(i, p) be functions verifying (7.28), (7.29) and (7.30). Then,

there exists a unique continuous function f : [0,∞) → R
4m solution of (7.31).

Moreover, f has the following properties

f i
j(t) ≥ 0, ∀j ∈ {1, . . . , 4}, i ∈ {1, . . . ,m}, t ≥ 0, (7.32)

4
∑

j=1

m
∑

i,p=1

f i
j(t) =

4
∑

j=1

m
∑

i,p=1

f
i

j. (7.33)

The proof of previous theorem is equal to the (7.2.1) one. It is possible
to make some generalizations.

• We can increase the number of velocities, introducing velocities with
different norms. In this case the equations are written as follows,

df i,p
j

dt
+ |vj|ℓ−1ψi,p

j (f) = J i,p
j (f).

In this case, in order to close the systems of ODEs we can impose again
elastic conditions.

• We can introduce a zero velocity distribution, which describes agents
that are not moving trough cells, i.e. v = 0. In this case the flux term
is equat to 0,

ψi
0(f) = 0,

and there are no boundary conditions.
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Figure 7.2: Boundary conditions in the four velocities case and an example
of 12 velocities.

7.8 Eight velocities model

In view of applications, it is to increase the number of directions of velocities
and not only their norms. in the scheme of Figure 7.3 we have eight velocities

v1v5

v2v4

v6 v8

v3

v7

Figure 7.3: Eight velocities case and elastic boundary condition related to
eight velocities case.

v1 = (1, 0),v2 = (
√
2/2,

√
2/2),v3 = (0, 1),v4 = (−

√
2/2,

√
2/2),

v5 = (−1, 0),v6 = (−
√
2/2,−

√
2/2),v7 = (0,−1),v8 = (

√
2/2,−

√
2/2).

Each velocity is associated to a different flux. For v1, v3, v5, v7 the flux
term is equal to the one in (7.27), while for the others

ψi
2(f) = ℓ−12−

1
2 (f i,p

2 − f i+1,p+1
2 ),

ψi
4(f) = ℓ−12−

1
2 (f i,p

4 − f i−1,p+1
4 ),

ψi
6(f) = ℓ−12−

1
2 (f i,p

6 − f i−1,p−1
6 ),

ψi
8(f) = ℓ−12−

1
2 (f i,p

8 − f i+1,p−1
8 ).
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In Figure 7.3 there is also an example of elastic boundary conditions related
to the eight velocities case.
We want to describe an exiting crowd from a square room. In this case we
have to impose different boundary condition in cells near exits. In order to
explain this idea we make an example. Let us suppose that there exists one
exit on the right wall and that it is large as one cell. We remind that each
cell on the boundary, that are those of the type: I1,i, Ii,1, Im,i and Ii,m for
i = 1, . . . ,m show some problem with particular velocities. For example cells
of the type I1,i have problem with f i,i

1 , f i,i
8 and f i,i

2 because we have to create
ghost cells of I0,i to close their evolution equations. With elastic boundary
condition, we join these distribution functions with the others of close cells

ψ1,i
1 (f) = ℓ−1(f 1,i

1 − f 1,i
5 );

if there is an exit we have no inner flow and in this case it is

ψ5,i
1 (f) = ℓ−1f 1,i

1 .

In the case of a closed bx we have the conservation of agents number but if

Figure 7.4: There are different ideas of modeling an exit.

we have an exit clearly we find

dN

dt
(t) :=

d

dt

(

m
∑

i,p=1

8
∑

j=1

f i,p
j (t)

)

≤ 0,

We describe formally the presence of exits in this frame. First of all the
domain Ω

Ω = intΩ ∪ ∂Ω,
is divided into square cells, that have different properties: the internal cells

intΩ = {Ii,p|1 < i < m and 1 < p < m} ,
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and the boundary cells

∂Ω = {Ii,p|i = 1,m or p = 1,m}

In presence of some exits the boundary is divided into wall cells and exit cells

∂Ω = E ∪W.

Now, for all Ii,p, there exists a desired direction that minimizes the distance
between Ii,p and the exit cell at the boundary:

des(Ii,p) := min
Ih,q∈E

Ih,q − Ii,p
‖Ih,q − Ii,p‖

,

where the difference between two cells is the difference between their centers.
Finally, we are able to define the desired velocity labeled with an index
j∗(i, p),

j∗(i, p) := argmax
j

(vj · des(Ii,p)) .

Once we have defined the desired velocity we can choose the transition

des(Ii,p)

vj∗ (i, p)

Figure 7.5: Idea of construction of desired velocity, It is strictly related to
vector between two cells.

probability Bj
hk(i, p). The simplest way is the following:

Bj
hk(i, p) =

{

1 if j = j∗(i, p)
0 otherwise.

(7.34)

This choice could seems too simple because it does not account for the local
or neighbor density, but it is the first step in order to carefully describe
this phenomenon. If we look at Figure 7.6 it is not clear if N(t) → 0
when t → ∞. First of all we study the case in which there isn’t a wall
and the desired velocities will be the ones pointing it. If we suppose that
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Ne N(1) N(4) N(8) N(12) N(16) N(20)
1 0.9989 0.9956 0.9909 0.9861 0.9810 0.9759
3 0.9975 0.9901 0.9797 0.9688 0.9575 0.9460
5 0.9962 0.9845 0.9686 0.9519 0.9347 0.9171
7 0.9948 0.9790 0.9574 0.9352 0.9122 0.8889
9 0.9934 0.9735 0.9463 0.9185 0.8899 0.8610
11 0.9921 0.9680 0.9353 0.9018 0.8677 0.8332
13 0.9907 0.9625 0.9242 0.8852 0.8456 0.8056
15 0.9907 0.9625 0.9242 0.8852 0.8456 0.8056
17 0.9893 0.9570 0.9131 0.8686 0.8235 0.7780
19 0.9870 0.9476 0.8943 0.8404 0.7857 0.7305
21 0.9856 0.9421 0.8833 0.8238 0.7634 0.7025

Table 7.1: In the table we observe that a large exit enhances the escape. Ne

is the number of exit cells, in this case m = 21 and each simulation starts
from a homogeneous initial data such that N(0) = 1.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

t

N

Figure 7.6: In this figure we report the percentage of agents N in function
of time t, in three special case. The blue line is the case of Ne = 1, the green
one Ne = 11 and the red one Ne = 21. In this last case there isn’t any right
wall.
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there isn’t any right wall, the desired velocity is v1. Moreover we suppose
that interaction rate is constant and it is not restrictive to assume η = 1.
Defining

β(t) =
m
∑

p,i=1

∑

j 6=1,5

f i,p
j (t)

then, reminding that f i,p
j (t) ≥ 0 for all indexes and all time, we find

dβ

dt
=

m
∑

i,p=1

∑

j 6=1,5

J i,p
j − 1√

2

m
∑

p=1

(fm,p
2 + fm,p

8 )

≤
m
∑

i,p=1

∑

j 6=1,5

J i,p
j = −

m
∑

i,p=1

∑

j 6=1,5

f i,p
j ρi,p

≤ −
m
∑

i,p=1

∑

j 6=1,5

f i,p
j

8
∑

h=1

f i,p
h ≤ −

m
∑

i,p=1

(

∑

j 6=1,5

f i,p
j

)2

≤ −β2

and thus,

β(t) ≤ 1

t+ k1
, (7.35)

with k1 > 0 if β(0) > 0. On the other hand if β(0) = 0 then β(t) = 0 for
all t. Resuming, the last inequalities say us that, not even if we forget the
absorption phenomenon caused by the absence of right wall, all agents will
change their velocities.
Now, defining

λi(t) =
m
∑

p=1

f i,p
5 (t)

we find
dλm
dt

=
m
∑

p=1

(Jm,p
5 (f)− fm,p

5 )

≤ −λm(λm + 1) ≤ −λm,
and thus

λm(t) ≤ λm(0)e
−t.

The content of last inequality is quite obvious. Even if we forget the change
of velocity caused by the interaction kernel, thanks to absorption boundary
conditions we have all agents flowing out, and hence we can use it as follows

dλm−1

dt
≤ −λm−1 + λm ≤ λm−1 + λm(0)e

−t.
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and thus
λm−1(t) ≤ e−t (λm−1(0) + λmt) .

Recursively, we have that

λk(t) ≤ e−t

k
∑

h=0

λm−k+h(0)t
h = e−tpk(t). (7.36)

We can start to evaluate the number of agents having velocity v1. Similarly
we define

γi(t) =
m
∑

p=1

f i,p
1 (t),

we have
dγ1
dt

=
m
∑

p=1

(

J1,p
1 − f 1,p

1 + f 1,p
5

)

=
m
∑

p=1

8
∑

h=1

∑

k 6=1

(

f 1,p
h f 1,p

k − f i,p
1 + f i,p

5

)

≤ (N(0) + 1)λ1 − γ1.

It is obvious, using (7.36) for k = m and integrating

γ1(t) ≤ e−t (γ1(0) + Pm(t))

where Pm is a polynomial of degree m given by integration of pm−1 present
in (7.36). Finally we find the following estimate

γh ≤ e−tPm−1+h(t), (7.37)

with Pm−1+h a polynomial of degree m− 1 + h and with non-negative coef-
ficients. At the end, reminding

N(t) = β(t) +
m
∑

i=1

(γi(t) + λi(t)),

and using estimates (7.35), (7.36) and (7.37) we have

lim
t→∞

N(t) = 0.

What can we say about cases where exits have different shapes? We have
just studied a special case, and we can pass to another one, in particular
to the smallest possible, when there is only one exit cell, Ne = 1. It is not
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restrictive to suppose that the exit is on the right wall, having indexes (m, p).
It is obvious that cells with indexes of type (i, p) for all i = 1, . . . ,m have
v1 as desired velocity. On the other hand there could be other cells having
different desired velocities. We start reminding that

dN

dt
(t) ≤ −fm,p

1 (t).

Let be ℓ ∈ R such that

lim
t→∞

fm,p
1 (t) = ℓ,

then ℓ = 0. Indeed, by non-negativity:

0 ≤ fm,p
1 (t) ≤ N(0),

we find ℓ ≤ N(0); on the other hand if we suppose that ℓ > 0, then there
exists a ε > 0 such that for all t ∈ [ε,∞[

|fm,p
1 (t)− ℓ| ≤ ℓ

2
,

for all t ≥ ε
dN

dt
< − ℓ

2
,

from which it follows N(t) → −∞ when t → ∞. Finally it must be ℓ = 0.
Now we have to spend few words about regularity of solutions. The solution
of the evolution equations is not only continuous but has also continuous
time derivative, thanks to regularity of r.h.s. of system, so that:

lim
t→∞

dfm,p
1

dt
(t) = 0.

Reminding that v1 is the desired velocity in cell (m, p) and thus

dfm,p
1

dt
(t) + fm,p

1 (t) = Jm,p
1 (f(t)) + fm−1,p

1 (t)

≥
∑

h,k 6=1

fm,p
h (t)fm,p

k (t) =

(

∑

h 6=1

fm,p
h (t)

)2

,
(7.38)

Thanks to the last inequality, we can conclude for cell (m, p) that

lim
t→∞

fm,p
j (t) = 0, j = 1, . . . , 8.
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We have found information about exit cell. Now we are able to study neighbor
cells, thanks to the fact that desired velocities of these latter point exit cell
(m, p), and they are connected by a suitable flux term. For example, the cell
(m, p− 1) has v3 as desired velocity and we have

dfm,p
3

dt
= −fm,p

3

8
∑

h=1

fm,p
h − fm,p

3 + fm,p−1
3

≤ −fm,p
3 + fm,p−1

3 ,

and thus

lim
t→∞

fm,p−1
3 (t) = lim

t→∞

dfm,p−1
3

dt
(t) = 0,

where the limit of time derivative follows from a regularity argument. Once
again we can write an inequality like (7.38)

(

∑

h 6=3

fm,p−1
h (t)

)2

≤ dfm,p−1
3

dt
(t) + fm,p−1

3 (t),

and finally we obtain information also about cell (m, p− 1)

lim
t→∞

fm,p−1
j (t) = 0, j = 1, . . . , 8.

The same argument can be used for other neighbor cells. In general, using the
same reasoning in a recursive way we can prove that f i,p

j (t) → 0 when t→ ∞
for all indexes. At the end we emphasize that the method just presented can
be replicated in the general case with different exits; on the other hand we
have to remark that unfortunately it mainly consists in a theoretical result
and it does not furnish any estimate about convergence. We can resume
what we have just found in the following theorem.

Theorem 7.8.1. Let E 6= ∅, let f̂ = (f̂ i,p
j ) be a non-negative initial datum

related to system,

f i,p
j

dt
+ ψi,f

j (f) = J i,p
j (f),

for i, p = 1, . . . ,m and j = 1 . . . , 8, let Bhk
j be a transition probability density

defined as (7.34) and let ηih = 1 be constant interaction rate. Then:

lim
t→∞

f(t) = 0.
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Roughly speaking, if there are some agents inside the room and the set
of exit cells on the boundary is not empty, sooner or later they will leave the
room.
The table of games (7.34) aims to describe a reaction of agents induced by
the shape of the domain that is not a binary interaction among agents, and
the model does not react so quickly to direction changing. In [1] the authors
model this dynamics by a term different from the previous interaction kernel
J i
j(f). We adjust their term to our framework

df i,p
j

dt
+ ψi,p

j (f) = J i,p
j (f) +W i,p

j (f), (7.39)

where

W i,p
j (f) = µ(f)

(

n
∑

h=1

Aj
h(i, p)f

i,p
h − f i,p

j

)

. (7.40)

We briefly describe terms present in (7.40),

• The function µ is an interaction rate and it weights the interaction.

• Ai
h is the transition probability, and it describes the transition caused

by the environment, the presence of wall or exits near agent, and it has
also the following normalization property:

n
∑

i=1

Ai
h = 1, ∀h = 1, . . . , n.

Thanks to the last equality we have

n
∑

j=1

W i,p
j (f) = 0,

and hence the conservation of mass. From an analytic viewpoint we first
compare the new term W = (W i,p

j ) with the classical interaction kernel,

df i,p
j

dt
+ ψi,p

j (f) = W i,p
j (f). (7.41)

Then, in order to understand the different responses of the two terms we set

µ(f) = 1
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Ne N(1) N(4) N(8) N(12) N(16) N(20)
1 0.9980 0.9713 0.8705 0.7025 0.5103 0.3303
3 0.9955 0.9524 0.8162 0.6184 0.4145 0.2381
5 0.9930 0.9380 0.7856 0.5844 0.3862 0.2166
7 0.9906 0.9238 0.7588 0.5584 0.3655 0.2006
9 0.9882 0.9099 0.7352 0.5376 0.3486 0.1871
11 0.9857 0.8963 0.7151 0.5210 0.3344 0.1756
13 0.9833 0.8835 0.6990 0.5077 0.3225 0.1657
15 0.9809 0.8720 0.6867 0.4970 0.3125 0.1575
17 0.9785 0.8627 0.6777 0.4885 0.3043 0.1509
19 0.9765 0.8562 0.6711 0.4819 0.2979 0.1458
21 0.9744 0.8512 0.6656 0.4762 0.2925 0.1415

Table 7.2: In the table the total number of agents N is reported as a function
of time for different number of exits Ne, placed together on the right wall.
In this case m = 21 and each simulation starts from an homogeneous initial
data such thatN(0) = 1 and there are only interactions with the environment
W = (W i,p

j ).

and the environmental interaction term similar to (7.34)

Aj
h(i, p) =

{

1 if j = j∗(i, p)
0 otherwise.

(7.42)

Let us compare the two tables 7.8 and 7.8. In the first one we have an
exiting homogeneous crowds only with interaction kernel J. In the second
one there is not any interaction among agents and there are only interactions
with the environment. We observe that in the second case we have a more
quickly exit, as can be seen also in Figure 7.8.

We can also observe the difference between system (7.41) and the one
with only interaction kernel J . Coming back to case with no wall studied
before and defining

µ(t) =
n
∑

i,p=1

∑

l 6=1

f i,p
j (t),

it is the amount of agents that have not desired velocity if µ(0) > 0 we have

µ(t) ≤ µ(0)e−t,

taking into account only environmental interactions (7.41), while in the other
we have

µ(t) ≤ 1

t+ 1/µ(0)
.
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Figure 7.7: In this figure we can see the percentage of agents N as a function
of time t, considering only environmental interaction W, in three special
cases: the blue line is the case of Ne = 1, the green one Ne = 11 and the red
one Ne = 21. In this last case there is not any right wall.
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Figure 7.8: Comparison of N as a function of time, between system with
interaction kernel among agents, green line, and system with environmental
interaction, blue line, with homogeneous initial data with m = 21 and Ne =
21.
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In other words agents in this second case change slowly their velocities. We
conclude the discussion with the following theorem.

Theorem 7.8.2. Let E 6= ∅, let f̂ = (f̂ i,p
j ) be a non-negative initial datum

related to system of equations like (7.41), for i, p = 1, . . . ,m and j = 1 . . . , 8,
let Ahk

j be an environmental inteaction like (7.42) and let µ(f) = 1 be constant

interaction rate, then f(t) the solution related to f̂ has the following property

lim
t→∞

f(t) = 0.

Now we discuss an easy generalization related to the norm of velocities. Here
we take into account not only velocities which differs only in direction but
also in norm. To this end we introduce one more index

vj,q, with j = 1, . . . , 8, q = 1, . . . , n,

such that vj,q 6= 0 for all indexes and vj,q · vj,q′ = |vj,q||vj,q′ | for q, q′ =
1, . . . , n, the first index is related to the direction and the second one to the
norm. In this case system is described by the following functions

f i,p
j,q : [0, T ] → R

+, i, p = 1, . . . , n, q = 1, . . . , n, j = 1, . . . , n,

whose evolution equations are

df i,p
j,q

dt
+ ψi,p

j,q(f) = J i,p
j,q (f) +W i,p

j,q (f).

The flux term is strictly related to direction and norm of velocity and differs
from the one written in the eight velocities model only for the presence of
|vj,q|. The elastic conditions can easily be generalized maintaining the norm.
This generalization allows us to describe the decreasing of velocity caused by
the presence of different densities. As suggested in [9] we split the change of
norm and the change of angle as follows:

Bjq
hr,ks(f) = Cj

h,k(f)D
q
r,s(f),

where:

• the angle transition Cj
h,k describes the probability that an agent, mov-

ing with a velocity whose direction is summarized by the angle θh =
π(h − 1)/8, changes his direction in θj after an interaction with an
agents that travels in direction θk.

• the norm transition Dq
r,s describes the change of velocity modulus.



94 CHAPTER 7. SPATIAL DISCRETIZATION

The previously defined transition functions verify:

0 ≤ Cj
h,k ≤ 1,

8
∑

j=1

Cj
h,k = 1, h, k = 1, . . . , 8,

0 ≤ Dq
r,s ≤ 1,

8
∑

q=1

Cq
r,s = 1, r, s = 1, . . . , n,

and thus
8
∑

j=1

n
∑

q=1

Bjq
hr,ks = 1

for all indexes. In order to obtain some numerical results and a theorem
concerning the long time behavior of solutions we fix all these functions in
such a way that the angular transition is the same as in previous section
(7.34), while the norm transition is equal to (7.18) and (7.19). We do make a
little modification on transition probability density describing an encounter
between two agents that have the same norm,

Dq
r,r(ρi) =







(1− ρi)
q if q = r + 1,

1− (1− ρi)
q if q = r,

0 otherwise,
(7.43)

if r 6= n, while for q = n

Dq
n,n(ρi) =







(1− ρi)
q if q = n,

1− (1− ρi)
q if q = n− 1,

0 otherwise.
(7.44)

Theorem 7.8.3. Let E 6= ∅, let f̂ = (f̂ i,p
j ) be a non-negative initial datum

related to Cauchy problem,


















df i,p
j,q

dt
+ ψi,p

j,q(f) = J i,p
j,q (f)

f(0) = f̂

i, p = 1, . . . ,m, j = 1, . . . , 8, q = 1, . . . , n.

(7.45)

for i, p = 1, . . . ,m and j = 1 . . . , 8, let Cj
h,k be the angle transition like (7.34)

and Dq
r,s be the norm transition like (7.18), (7.19), (7.43) and (7.44); let

µ(f) = 1 be constant interaction rate, then f(t) the solution related to f̂ has
the following property

lim
t→∞

f(t) = 0.

We omit the proof of the previous theorem as it is similar to that of 7.8.1.
The crucial point is that there isn’t any velocity vj,q = 0.
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7.9 Some remarks on transport term

In this section we finally discuss a property of flux term. For the sake of
simplicity we return to the one dimensional case. The crucial assumption
is that there exists intervals inside the domain where we can suppose that
densities are spatially homogeneous. After that we have to connect neighbor
cells with an extra term, essentially replacing spatial derivative. The idea we
used in the present work is to substitute it with an unbalanced difference.
Forgetting the interaction kernel, this choice permits to rewrite the transport
part of the evolution equation as:

∂tf(t, x) + ∂xf(t, x) = 0 −→ df i

dt
(t) +

f i(t)− f i−1(t)

ℓ
= 0.

A linear partial differential equations is substituted by a linear system of m
ordinary differential equations. This system preserves both positiveness and
mass conservation like a transport equation; on the other hand we get an
homogenization of solution, in the sense that if we start from a given initial
data f0 = (f i

0) then the solution converges to f∞ = (f i
∞) when t→ ∞ in such

a way that
m
∑

i=1

f i
∞ =

m
∑

i=1

f i
0 f i

∞ = f j
∞,

for all i, j = 1, . . . ,m. Indeed, if we denote by A the matrix related to system
of ODEs

A =















−a 0 0 · · · a
a −a 0 · · · 0
0 a −a · · · 0
...

...
. . . . . .

...
0 0 · · · a −a















,

where a = 1/ℓ, the solutions of ḟ = Af are related to the eigenvalues of A
which are solutions of

(x+ a)m − am = 0.

It easy to verify that the roots λi of the previous polynomial are such that
Reλi ≤ 0. This observation sheds light on an important aspect: an unbal-
anced discretization is very natural by a physical viewpoint but we loose a
transport property caused by the presence of a diffusive phenomenon. A
different idea could be to substitute the spatial derivative with another ap-
proximation, but it does not work good. Actually, if we replace it with a
centered difference (f i+1 − f i−1)/ℓ, forgetting by the moment that it has no
physical sense, we have that A, the matrix related to linear system of ODEs,
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Figure 7.9: An example of diffusive phenomenon. In this particular case
m = 10 and ℓ = 1. In the first picture is the initial datum, then f(t) = (f i(t))
for t = 1, 5, 25, respectively. In the last picture we can observe that the
solution is close to a homogeneous state.

is skew-symmetric and hence it has purely imaginary eigenvalues. This leads,
in a certain sense, to the absence of diffusive phenomenon, while we loose the
positiveness of solution. In conclusion, the diffusivity results to be strictly
related to the discretization of spatial variables.
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Conclusions

In this thesis we mainly focus on two different kinds of complex systems, i.e.,
vehicular traffic and pedestrian dynamics. In order to describe the traffic
flow, a single spatial variable is sufficient. On the other hand, if we want
to obtain a reasonable modeling of pedestrian dynamics we cannot avoid
increasing the number of spatial dimensions. Among the many different
mathematical frameworks that can be adopted to model the systems at hand,
in this dissertation we adopt the discrete velocity kinetic modeling. The
models that arise in this way are characterized by a discretization of the
velocity variable of the kinetic evolution equations and lead to a system of
semilinear hyperbolic PDEs, whose general aspects are discussed in Chapter
2. One of the fundamental questions to which the thesis answers concerns
the well-posedness of these models. In the first part we largely study this
issue.

From a mathematical point of view, the simplification effect of velocity
discretization related to the transformation of a single kinetic equation to a
system of semilinear hyperbolic equation is evident. In Chapter 3 we analyze
the Cauchy problem, in one spatial dimension, for a general discrete velocity
problem related to vehicular traffic flow. Under weak analytic hypotheses and
in a general modeling context, we furnish a result of existence and uniqueness
of solutions, global in time, without assuming a priori restrictions on the
model’s macroscopic quantities, such as density. These results are the object
of the paper [4].

The next step consists in analyzing problems in higher spatial dimensions.
In the case of two dimensional spatial domains, in Chapter 4 we recover re-
sults similar to those found in Chapter 3. Moreover, we observe that the
introduction of a discrete activity variable, that models specific attitudes of
the agents involved in the systems at hand, in spite of increasing the num-
ber of semilinear equations, does not change the mathematical properties of

97
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models. In order to obtain global well-posedness in two spatial dimensions we
don’t need to change any hypotheses on functions that enter the interaction
kernel.

On the other hand, if we try to weaken the hypotheses we use in Chapters
3 and 4 we show that, in general, it is not possible to find existence of
solutions for all positive time. In particular in Chapter 5 we observe that
if we do not suppose the boundedness of the interaction rate we cannot use
Gronwall’s lemma to prolongate the local solution, except for a particular
case, we explicitly study therein, in which the transition probability density
corresponds to the case when all agents try to adapt their velocity to an a
priori prescribed desired velocity vi∗ . In this latter case, we actually do prove
global existence and uniqueness of a solution. An interesting question which
we are not able to answer is the following: is there any connection between
special results found in Chapter 5 and the general case when we require
the interaction rate to be only Lipschitz continuous? Finally, we remark
that unlike the large part of literature related to discrete velocity models, in
which the interaction rate and the transition probability density are taken
as functions of local density ρ =

∑

fi, in this thesis we study the problem
of well-posedness assuming a more general dependence of these quantities on
the vector distribution function f = (fi).

Once established existence and uniqueness of solutions to the Cauchy
problem and their prolongability, the next question we try to answer concerns
their long-time behavior. Are we able to find out any eventual property
of solutions, reflecting eventual collective behaviors of agents? We cannot
avoid observing that it is very difficult to furnish a general, mathematically
rigorous answer to this question. We give some qualitative result only in easy
cases, with constant transition probability density Bi

hk, or studying spatially
homogeneous problems as in Section 3.2, where we find a nice result, inspired
by the paper [30], which emphasizes the presence of a phase transition in
vehicular traffic flow, as is experimentally reported in [34].

In order to obtain further insight on long-time behavior results, in Chap-
ter 7 we move to consider models which are also spatially discrete, in this
way obtaining a system of ordinary differential equations in place of a sys-
tem of hyperbolic partial differential equations. Unlike the approach taken
by [28], [29], we choose to replace the continuous spatial derivative with for-
ward or backward differences. In this framework existence and uniqueness
of solutions and their prolongability is just an elementary exercise. Instead,
we are able to give some results related to asymptotic time behavior, to exis-
tence of stationary solutions and to their stability, both for one and for two
dimensional spatial domains.

Finally, in Chapter 6 we start to treat initial-boundary value problems
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for kinetic discrete velocity models, for which the literature is pretty limited
[1], [11], [27]. While if we limit to consider vehicular traffic then the Cauchy
problem or possibly a periodic initial-boundary problem can suffice, if we
come to consider, for example, pedestrian dynamics we cannot avoid to pose
the mathematical problem in a bounded domain with suitable boundary
conditions. Though we are able to give results on the initial-boundary value
problem only in simple cases, without specializing the interaction kernel,
we anyway decide to include them in this dissertation and to put them in
Chapter 6 for continuity reasons with respect to the whole content of the
thesis.
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