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Chapter 1

Introduction

The worldwide increased level of wind generated energy in power grids induces
further requirements in terms of reliability and sustainability of wind turbines.
Wind farms should have the capability to generated the desired value of electrical
power continuously, depending on the current wind speed level and on the grid
demand.

As a consequence, the possible faults affecting the system have to be properly
identified and treated, before they endanger the correct functioning of the turbines
or become critical faults. Wind turbines in the megawatt size are extremely expen-
sive systems, therefore their availability and reliability must be high, in order to
assure the maximization of the generated power while minimizing the Operation
and Maintenance (O & M) services. Alongside the fixed costs of the produced
energy, mainly due to the installation and the foundation of the wind turbine, the
O & M costs could increase the total energy cost up to about the 30%, particularly
considering the offshore installation (Odgaard and Patton, 2012).

These considerations motivate the introduction of fault diagnosis system cou-
pled with fault tolerant controllers. Currently, most of the turbines feature a
simply conservative approach against faults that consists in the shutdown of the
system to wait for maintenance service. Hence, effective strategies coping with
faults have to be studied and developed, for improving the turbine performance,
particularly in faulty working conditions. Their benefits would concern the pre-
vention of critical failures that jeopardize wind turbine components, thus avoiding
unplanned replacement of functional parts, as well as the reduction of the O & M
costs and the increment of the energy production. The advent of computerized
control, communication networks and information techniques brings interesting
challenges concerning the development of novel real-time monitoring and fault
tolerant control design strategies for industrial processes.

Indeed, in the recent years, many contributions have been proposed related to
the topics of fault diagnosis of wind turbines, see e.g. (Chen et al., 2011),(Gong
and Qiao, 2013). Some of them highlight the difficulties to achieve the diagnosis
of particular faults, e.g. those affecting the drive-train, at wind turbine level.
However these fault are better dealt with at wind farm level, when the wind turbine
is considered in comparison to other wind turbine of the wind farm (Odgaard

13



14 CHAPTER 1. INTRODUCTION

and Stoustrup, 2013). Moreover, fault tolerant control of wind turbines has been
investigated e.g. in (Odgaard and Stoustrup, 2015), (Parker et al., 2011) and
international competitions on these issues arose (Odgaard and Stoustrup, 2012),
(Odgaaard and Shafiei, 2015).

Hence, the sustainable control of wind turbine systems has been proven to be
a challenging task and motivates the research activities carried out through this
thesis.

In the following, after an overview about the nomenclature mostly endorsed in
the related literature, a general introduction on fault diagnosis and fault tolerant
control strategies is presented. Finally, the contents of this thesis is summarized.

1.1 Nomenclature

Since 1991 the Symposium on Fault Detection Supervision and Safety for Technical
Processes (SAFEPROCESS), organized by the International Federation of Auto-
matic Control (IFAC), has represented one of the most important international
gathering of academia and industry experts, focused on the topics of: diagnosis of
dynamic systems, fault tolerant control, process supervision, system reliability and
safety, etc. Because of the past inconsistency of the related literature in terms of
nomenclature, the SAFEPROCESS committee suggested a set of definitions that
represent a good introduction to the issue of fault diagnosis and fault tolerant
control. The main definitions, taken from (Isermann and Balle, 1997) and listed
in the following with a brief description, regard the system states and signals, the
functions and tasks, the system properties, and the fault characteristics.

• System states and signals:

– Fault: an unpermitted deviation of at least one characteristic property
or parameter of the system from the acceptable, usual, or standard
conditions.

– Failure: a interruption of a system’s ability to perform a required
function under specified operating conditions.

– Malfunction: an intermittent irregularity in the fulfillment of a sys-
tem’s desired function.

– Error: a deviation between a measured or computed value of an output
variable and its true or theoretically correct one.

– Disturbance: an unknown and uncontrolled input acting on a system.

– Residual: a fault indicator, based on a deviation between measure-
ments and model-equation-based computations.

– Symptom: a change of an observable quantity from normal behavior.

• Functions and tasks:



1.1. NOMENCLATURE 15

– Fault detection: determination of the presence of faults and the time
of occurrence.

– Fault isolation: determination of the kind, location and time of de-
tection of a fault. Follows fault detection.

– Fault identification: determination of the size and time-variant be-
havior of a fault. Follows fault isolation.

– Fault diagnosis: Determination of the kind, size, location and time
of detection of a fault. Follows fault detection. Includes fault detection
and identification.

– FDI: acronym of Fault Detection and Isolation.

– FDD: acronym of Fault Detection and Identification (Diagnosis)

• Models:

– Quantitative model: use of static and dynamic relations among sys-
tem variables and parameters in order to describe the system behavior
in quantitative mathematical terms.

– Qualitative model: use of static and dynamic relations among system
variables in order to describe the system behavior in qualitative terms,
such as causalities.

– Analytical model: the mathematical relations among the system vari-
ables are based on physical laws deriving by the knowledge of the system
behavior.

– Data-driven model: the mathematical relations among the system
variables are inferred on the basis of a set data coming from the system
itself.

• System properties:

– Reliability: ability of a system to perform a required function under
stated conditions, within a given scope, during a given period of time.

– Safety: ability of a system not to cause danger to persons or equipment
or the environment.

– Availability: probability that a system or equipment will operate sat-
isfactorily and effectively at any point of time.

• Faults, time dependency:

– Abrupt fault: fault modeled as stepwise function. It represents bias
in the monitored signal.

– Incipient fault: fault modeled by using ramp signals. It represents
drift of the monitored signal.
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Figure 1.1: The possible fault locations inside the system components.

– Intermittent fault: combination of pulses with different amplitudes
and lengths.

• Faults, typology:

– Additive fault: Influences a variable by an addition of the fault itself.
They may represent, e.g., offsets of sensors.

– Multiplicative fault: are represented by the product of a variable
with the fault itself. They can appear as parameter changes within a
process.

1.2 Fault Diagnosis Methods

There exist several ways in which faults can affect the system. According to Fig.
1.1 a closed loop system can be viewed as the union of interconnected elements,
namely the main process, the actuators, the controller, the input sensors and
the output sensors. Each of these components can be associated to a fault, so
that process faults, actuator faults, controller faults, and sensor faults can be
considered.

In several application domains, a typical approach to fault diagnosis involves
the so-called hardware redundancy (Isermann, 1997). It consists in the usage of
multiple sensors, actuators or components to measure, or control, a particular
signal. The related diagnosis is based on the comparison among the different
redundant hardware information, hence, a voting technique is adopted to decide if
and where a fault occurs. Although the hardware redundancy can be very effective,
it involves extra cost concerning the equipment and the maintenance operations,
that could be in conflict with the sustainability requirements.
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Figure 1.2: The hardware and the analytical redundancy schemes.

On the other hand, the so-called analytical redundancy (Patton et al., 1989),
does not need additional hardware components, but it exploits a model of the
system under investigation for estimating the value of a particular variable on
the basis of the pre-existent sensors, so that a residual signal can be generated
and a diagnosting logic can be inferred. In particular, the residual signal, already
defined in Section 1.1, should be close to zero in normal operating condition and
significantly different from zero when a fault occurs. The analytical redundancy
is often referred to as model-based approach, because of its dependence on the
system model. A model-based module can be implemented via software on a
process control computer, without additional costs on the equipment, as already
remarked. Some drawbacks of the model-based approach concern the accuracy of
the generated estimations, as well as the disturbances and the noise affecting the
process, that can lead to false alarm or missed fault.

The block diagram of Fig. 1.2 illustrates the typical implementation of the
hardware redundancy compared with the analytical redundancy.

In more details, the detection of a fault by means of the model-based approach
relies on the generation and the evaluation of the residual, as depicted in the block
diagram of Fig. 1.3.

The residual is firstly generated as the error between the measured and the es-
timated variable. The latter comes from the model elaboration of the input-output
measurements. The residual, at this stage, should be independent from system in-
put and output, as it is ideally zero for every input-output conditions in fault-free
case. Then, the residual has to be evaluated, in terms of fault likelihood, and a
decision rule has to be applied to determine the fault occurrence. At this stage
the residual can be simply compared to a fixed threshold (also called geometrical
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Figure 1.3: The detection logic based on the residual generation and evaluation.

methods), or pre-processed through a proper function, e.g. a moving average or
more complex statistical methods, ahead of the threshold test.

A particular class of the model-based methods, called signal-based technique,
occurs when only output measurements are available. it includes the case of vibra-
tion analysis, (e.g. related to rotating machinery) that are performed by means of
band-pass filters or spectral analysis.

Among the basic model-based FDI techniques (Simani et al., 2003) can be men-
tioned the output-observer, the parity equation, the parameter estimation. They
require an adequate knowledge of the state-space or input-output behavior of the
system under investigation, that is expressed in terms of analytical relationships.

However, most of the real industrial processes have a strongly nonlinear behav-
ior, that cannot be modeled using a single model for all the operating conditions.
Indeed, the parameters of the system may vary with time and the unavoidable
disturbances and noises have unknown characteristics. The result is a discrepancy
between the plant behavior and its mathematical description, even in fault free
condition, that can lead to the impossibility of generating a residual, as the fault
may be hidden by the modeling errors. The Unknown Input Observer (UIO), the
eigenstructure assignment and the parity relation methods are FDI strategies that
take into account this key issue (Simani et al., 2003).

Therefore, the proper mathematical description of the system under investi-
gation, required by classical model-based FDI strategy, is very difficult to derive
in practice, sometime even impossible. Because of these assumptions, data-driven
modeling approaches offer a natural tool to handle a poor knowledge of the sys-
tem, together with disturbances and noises. Indeed, their implementations exploit
input-output data directly acquired from the system, for deriving the relations
among those variables. In particular, fuzzy logic theory (Babuška, 2012) allows
the representation of the process under investigation by means of a collection of
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local affine fuzzy models, among which the transition are handled by identified
fuzzy parameters. Furthermore, also neural networks can handle complex non-
linear behaviors (Liu, 2012), as they have the capability of learning the system
functioning on the basis of the information provided by the training data. These
considerations support the studies on data-driven strategies applied to the wind
turbine context, because their behavior is characterized by very complex and noisy
nonlinear dynamics, as described in Chapter 2.

1.3 Fault Tolerant Control Methods

Control solutions that are able to cope with possible malfunctions and fault sit-
uation are usually referred to as Fault Tolerant Control system (FTC), as they
possess the capability to automatically manage the faults affecting the compo-
nents (Patton, 2015). Fault tolerant control methods can be classified into two
main categories, namely Passive Fault Tolerant Control (PFTC) and Active Fault
Tolerant Control (AFTC) schemes. PFTC techniques do not require neither fault
diagnosis nor controller reconfiguration, as they are designed to be robust against
a set of possible faults. However, although they do not involve the problem related
to fault diagnosis, as false alarms or missed fault, they have limited fault toler-
ant capabilities. They make use of robust control technique to ensure that the
considered closed loop system remains insensitive to faults, using fixed controller
parameter, without needing information regarding the fault occurrence. This is
accomplished by designing a controller that is optimized for fault-free situations,
while satisfying some graceful degradation requirements in the faulty case.

On the other hand, AFTC reacts to the faults actively by reconfiguring the
control actions so that the performance of the fault-free system can be maintained,
even in presence of faults.

In particular, AFTC is mainly based on a fault diagnosis block, that provides
the real-time information about the faulty, or fault-free, status of the system under
monitoring (Mahmoud et al., 2003). The controller exploits a further control loop
aimed at the compensation of the faulty signals (fault accommodation). The main
advantage of this approach is that the controller can be designed considering only
the nominal operating conditions. The structure of the proposed AFTC scheme is
addressed in Chapter 4.

1.4 Outline of the Thesis

The contents of the thesis are briefly summarized in the following, in order to
provide an overview of the work.

• Chapter 2: it introduces the systems under investigation (i.e. the wind
turbines) describing their characteristics, their categories, and their compo-
nents, together with some global statistics that highlight the importance of
the discussed topics. Then, two realistic benchmark systems are detailed
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presented, that represent high-fidelity simulators of a single wind turbine
and of a wind farm, respectively. They rely on the analytical description of
the system behaviors, and provide also the models of typical fault cases. The
complexity of the nonlinear and uncertain dynamics of the wind turbines and
of the related faults, supports the choice of data-driven approaches.

• Chapter 3: fuzzy logic and neural networks represent an effective tool for
obtaining, from acquired data, a description of the system behavior, without
the requirement of a precise analytical knowledge. Therefore, their function-
ing, their properties and their modeling capabilities are investigated into this
chapter.

• Chapter 4: this chapter shows how the proposed data-driven techniques
lead to the design of fault detection, isolation, and diagnosis schemes that
provide the main component of the fault tolerant controller. Moreover, the
Fault Mode and Effect Analysis (FMEA) is presented, as it represents an
optimization tool able to reduce the complexity of the fault estimators.

• Chapter 5: this chapter addresses the performances achieved by developed
fault diagnosis and fault tolerant control systems, implemented on both the
single wind turbine and the wind farm benchmark models. It reports the
result obtained in comparison with other schemes proposed in literature,
and briefly described. Then, the validation is also performed by means of a
Monte Carlo analysis that takes into account the possible disturbance and
uncertainties affecting the wind turbines. Finally, the HIL test is carried out,
in order to assess the controller performances in a more realistic framework.

• Chapter 6: it summarizes and comments the obtained results and proposes
some future investigations about the discussed topic.

• Appendix A: this appendix relies on an alternative FTC system, based on
adaptive nonlinear filters designed via the geometric approach. This method
cannot be considered a pure data-driven scheme as it deals with the analytical
representation of the system uncertainties, although it is obtained via a data-
driven identification procedure.



Chapter 2

System and Fault Modeling

This chapter considers the system under analysis, i.e. the wind turbines. In
the first section the general outlines are reported, with a brief characterization
of the main wind turbine components and typologies. Some concepts rely on
the control of wind turbines are also presented. Then, a detailed description of
the implementation of the benchmark models used in the simulations is reported.
They are well known models (Odgaard et al., 2013), (Odgaard and Stoustrup,
2013) which offer a realistic simulation framework for a single turbine and for a
small wind park of nine turbines, respectively. Furthermore, several common fault
scenarios can be handled.

2.1 System Description

The recent care about climatic variations, the needs of increasing the usage of
renewable energy and the problems associated to the availability of fossil fuels yield
to a growing attention to the generation of electrical energy from the kinetic wind
energy. This kind of source is especially available in the temperate regions, where
the most industrialized countries are located. During the last decades, several
kind of wind turbines have been proposed and developed: horizontal/vertical-axis,
with a different number of blades, upwind, downwind, etc. The upwind three-
blades horizontal-axis turbine has achieved the recognition for the most suitable
and efficient typology, so that it had a wider development than the other kind of
turbines, in terms of power, size and diffusion (ABB, 2011).

Some interesting data can be taken from the statistics of the National Re-
newable Energy Laboratory (NREL) (GWEC, 2015): the installed wind power
capacity grew at a rate of 30% in 5 years from 2002 to 2007, and in 2013 it reaches
the value of 369.6 GW, as can be seen in Fig. 2.1.

During the biennium 2010/2011 the 50% of the new plants was installed outside
the traditional European and North American market, particularly in China where
the wind power capacity currently oversteps the value of 100 MW installed. Fur-
thermore, many European Countries have achieved relatively high levels of wind
power penetration, with respect to the other sources. As an example Denmark has

21
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Figure 2.1: The global wind energy installed capacity.

the 21% of the stationary electricity production from wind power, Portugal 18%
and Spain 16%.

It is worth observing that also the size of wind turbines strongly increase over
the last decades, responding to the necessity of capturing more energy more effi-
ciently. Fig. 2.2 shows the evolution of wind turbines along time.

The physical phenomenon of wind is generated by the movement of an air
mass from an area where the atmospheric pressure is high towards an adjacent
low-pressure area. The speed of the air flow is proportional to the difference of
pressure between the areas. Another prominent factor that influences the wind
intensity is the local profile of the land or the sea, indeed the wind gets stronger
on large, flat surface as oceans, or on the top of the rises and in the valley oriented
parallel to wind direction; while it reduces speed on irregular areas as towns or
forests. An evaluation of the World’s wind power potential, oriented to wind
turbine plant realization, has been conducted in (Archer and Jacobson, 2005).
Moreover, the direction and the intensity of the wind change rapidly with respect
to their average value. This phenomenon, known as wind turbulence, not only
can causes the wear and tear of the turbine blade, but also involves important
uncertainty and variability factors that represent one of the main disadvantages
in the generation of electrical energy.

The task accomplished by wind turbines is the transformation of the kinetic
energy of the wind into electrical energy, without any usage of fuel oil, by means
of the conversion into mechanical rotation energy. Indeed, the proper blade design
involves a different profiles for each of the two blade surfaces, so that when the wind
flows on the surfaces, a depression area is created at the upper surface relative to
the lower surface. Because of this pressure difference, a force called lift generates
the movement of the bound blade and its consequent rotation around the hub axis.
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Figure 2.2: The evolution of the size and the nominal power of wind turbines along
time.

The starting point for the evaluation of the mechanical power that can be
ideally generated by the wind is the computation of the kinetic energy Ek of an
air mass m, moving at a certain speed vw:

Ek(t) =
1

2
m(t)vw(t)

2

The derivative of the kinetic energy in time is the available specific power Pav of
the air mass:

Pav(t) =
dEk(t)

dt
=

1

2
q(t)vw(t)

2

Where the capacity q(t) = dm(t)
dt

= ρAv(t) can be calculated as the product of the
air density ρ, the speed vw and the cross-sectional area A of the stream tube of
the air under consideration, thus obtaining:

Pav(t) =
1

2
ρAvw(t)

3 (2.1)

With reference to a wind turbine, A represents the rotor swept area and vw is the
rotor effective wind speed, as described in (Bianchi et al., 2006).

The actual power of the rotor cannot be equal to the theoretical available wind
power, and the difference is expressed by means of the so-called power coefficient
CP (β, λ), which is a function of the pitch angle of the blades β and the tip speed
ratio λ, defined as:

λ =
ωrR

vw
(2.2)
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Figure 2.3: The Cp map as a function of the pitch angle and the tip speed ratio.

Where R is the rotor radius, ωr is the rotor angular speed. Then, the ideal rotor
power becomes:

Pr(t) = Pav(t)CP (λ(t), β(t)) =
ρπR2CP (λ(t), β(t))v

3
w(t)

2
(2.3)

Alternatively, the aerodynamics of the turbine can be described as in (Gasch and
Twele, 2011), considering the rotor torque τr, that is transferred from wind to the
rotor shaft, and the torque coefficient Cq:

τr(t) =
Pav(t)

ωr(t)
λCq(λ(t), β(t)) =

ρπR3Cq(λ(t), β(t))v
2
w(t)

2
(2.4)

It is worth noting that the relationships between λ, β and the power coefficient CP

are not analytically known, but they are represented by means of a two-dimensional
map (look-up table), shown in Figure 2.3. A similar map can be applied to the
torque coefficient Cq.

2.1.1 Wind Turbine Categories

A first categorization of wind turbines is based on the orientation of the rotor axis:
it can be either vertical or horizontal, with respect to the installation surface.
The vertical axis wind turbines constitutes only the 1% of the total amount of
existing plants, while the remaining 99% belongs to the horizontal axis category
(ABB, 2011). The wide diffusion of the latter category is mainly due to its higher
efficiency. Indeed, the horizontal axis turbines can exploit the effects of a more
strong wind, as their rotor is placed on the top of a high tower.

The vertical axis turbines can be divided into three main categories, depend-
ing on the construction technology: Savonius type, Darrieus type, and hybrid
Savonius-Darrieus type. The Savonius turbines are low-speed turbines suitable for
the installation in location characterized by low wind speed, because the blade
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surfaces are completely exposed to the wind, and cannot be reduced in case of
excessive wind speed, that could damage the system without a robust protection
structure. Therefore, they are used only in low-power application. The Darrieus
turbines are faster and more efficient than the Savonius turbine, and their particu-
lar design allows to respond to the variation of the wind speed direction. They are
suitable for low wind speed, but they do not need a robust structure to withstand
extreme winds, so that they can be used also for large power application.

Regarding the horizontal axis wind turbines, they can be upwind, in case the
wind hits the blades ahead of the tower, or downwind otherwise. The main ad-
vantage of the upwind configuration is that the tower does not interfere with the
rotor, and the whole wind power can be captured by the blades. Their rotor can
support one blade with counterweight, two blades or three blades. They need a
mechanical system that align the rotor to the wind main direction, such as a yaw
system or a tall vane. The efficiency increases with the blade number, but also the
cost of production, however, the three blade horizontal axis is the currently most
widespread model so that the systems considered in the following belong to this
category.

2.1.2 Main Components of Wind Turbines

The structure of a wind turbine, with its main components and their connections,
is depicted in Figure 2.4. A brief description of each component will be given in
the following. More details are reported in (Darling, 2008).

• Blades: they interact with the wind producing the movement of the rotor
shaft. The profile of the blade is designed in order to obtain a good value of
the aerodynamic lift with respect to the aerodynamic resistance and, at the
same time, to oppose the proper stiffness to the applied variable mechanical
loads that determine the wear and tear effect along time. The construction
materials should be light, such as plastic materials reinforced with glass,
aluminum or carbon, depending on the blade size.

• Hub: it constrains the blades to the rotor shaft, transmitting the extracted
wind power. It can contain the pitch actuator, that forces the blade to have a
certain orientation relative to the wind main direction, for control purposes.

• Brakes: they can be of various types (mechanical, electrical, hydraulic)
and they are used as parking brakes to avoid the rotor movement when the
turbine has to be kept in not operating conditions.

• Gear box: one (or more) stage gear box is used to adapt the mechanical
power of the rotor shaft to the generator shaft, by increasing the rotational
speed and by decreasing the torque, in order to permit an efficient conversion
of energy. Often the gear box ratio can be greater than 1:100. The design of
the gear box involves epicycloidal or parallel axis gears.
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Figure 2.4: The main components of the considered wind turbine, seen from the outside.
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• Generator: it converts the mechanical energy of the connected shaft to
electrical energy. It can be an asynchronous or a synchronous machine, the
former consists in an induction three-phase motor that works as generator
providing energy to the grid, as its speed is higher than the synchronous speed
and the applied torque is motive. The usual structure of an asynchronous
generator involves a squirrel cage rotor, that implies a low difference between
the synchronous speed and the actual speed in the nominal working region, so
that it can be considered a constant speed machine. The configuration called
doubly-fed, with a power converter located between the rotor and the grid
allows the functioning of the system at a variable rotor speed. Otherwise, the
synchronous generator provides a voltage which frequency is proportional to
its rotational speed. In the configuration called full-converter, similarly to
the doubly-fed generators, a power converter has to be interpose between the
generator and the grid, in order to permit a variable speed functioning. The
output power of a modern turbine can be up to five megawatts.

• Nacelle: it is the shell containing the shafts, the brakes, the gear box, the
generator and the control equipment. It is located at the top of the tower.

• Anemometer: it is the sensor that provides the current wind speed. Its
measurements are exploited in the control system.

• Yaw mechanism: several electrical motors orientate the heading orienta-
tion of the turbine parallel to the main wind direction.

• Tower: it supports the nacelle, the hub and the blades. The height of the
tower determines the height of the hub that is a prominent value in the
generation of power, since the wind speed increases with the distance from
the earth surface.

2.1.3 The Overall Wind Turbine Analytical Description

The way in which the components interact leads to complex nonlinear dynamics,
that are difficult to describe analytically. Currently, the most completed and
used analytical model of horizontal-axis wind turbines is provided by the Fatigue,
Aerodynamics, Structures, and Turbulence (FAST) package, developed by NREL
(Manjock, 2005).

It represents a high-fidelity 24 degrees of freedom wind turbine model, that
become a reference for academia as well as for industry researchers.

According to FAST, the overall model consists of four submodels for the me-
chanical structure, the aerodynamics, the dynamics of the pitch system and the
generator converter system. The compact result is summarized in the following
nonlinear state-space representation:{

ẋ = Ax+Bu+ g(x, vw)

y = Cx
(2.5)
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Where:

• x is the state vector that includes the main system variables as the pitch
angle, the angular position and velocity of the rotor and of the generator,
the linear displacement of the tower and of the blades, together with their
velocity.

• u is the input vector, consisting of the reference pitch angle and the generator
torque.

• vw is the wind speed, considered as a disturbance term.

• y is the output vector that commonly involves some state variables selected
by the matrix C.

• A and B are constant matrices that define the linear part of the model. They
are made up by terms related to the mass, the damping, and the stiffness of
the system components.

• g is the function that takes into account the nonlinearities introduced by the
thrust force acting on the rotor and by the aerodynamic rotor torque, by
means of the power coefficient above mentioned.

The detailed derivation of this state-space expression can be found in (Simani,
2015), but it is beyond the scope of this thesis. Indeed, although the FAST model
represents an appropriate simulation tool for testing the developed control algo-
rithms, the reduced order model offered by the benchmark system described in
Section 2.2 provides the suitable solution for design purposes, as it captures only
the dynamic effects directly influenced by the controller, with a noteworthy reduc-
tion of the computational efforts required by the simulations.

2.1.4 Wind Turbine Control Issues

The control of wind turbines aims at the tracking of reference power curve, whose
typical outline is depicted in Fig. 2.5 for a variable-speed turbine of several kW of
nominal power (Simani, 2015).

It is a function of the instantaneous wind speed. Indeed, the turbine starts
working only when the wind speed is high enough to ensure a power production
greater than the system losses. The cut-in wind speed is usually below to 5 m/s.
Similarly, in order to prevent serious damages, the turbine is powered down and
stopped when the wind speed is too high, usually over the value of the cut-off
speed (about 30 m/s). The operating range between the cut-in and the cut-off
speed can be subdivided into two main region, namely the partial load region and
the full load region. The first tries to maximized the generated power for a given
value of the wind speed, then, in the full load region the power is kept constant to
its nominal value to avoid exceeding safe electrical and mechanical load limits.
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Figure 2.5: The standard reference power curve for a wind turbine, used as target for
the control system.

According to the block diagram of Fig. 2.6 a switch reconfigures the control
system to the current operating objectives between the partial and the full load
regions. In this way two different controllers can be designed for those regions.
The first control system should maintain the pitch angle at this optimal value (0
deg) while controlling the generator torque, in order to capture the maximal power
from the wind. The full load controller acts on the pitch angle of the blade so that
the power is maintained constant, while the generator torque is manipulated to
remove the steady-state errors on the output power.

The transition between the two regions are regulated by a bumpless transfer
mechanism. Indeed, if the switch between the two controller is not softened, a
bump in the control signal may induce oscillations between the controllers, that
may cause instability. The switching condition is based on the generator speed
instead of the wind speed, since the large inertia of the rotor introduces a damping
in the speed signal, with respect to the possible unpredictable changing of the wind
speed.

More advanced controllers are comprehensive of a structural stress damper,
aimed at reducing the drive-train oscillations and the structural stress that affects
the turbine tower.

The controller can be implemented following different schemes (Simani, 2015),
from the most basic PID regulators to the more recent solution relying on data-
driven, adaptive control (Simani and Castaldi, 2013), time-varying approaches
(Johnson et al., 2006). Other examples involve the feedback linearization (Kumar
and Stol, 2010), or gain scheduling quadratic control (Bossanyi, 2003).

With reference to fault tolerant controllers, their design rely on output feedback
and they should take into account the measurement noise. The controllers should
manage the parameter-varying nature of the wind turbine during its operating
conditions, due to the aerodynamics nonlinearities. A common solution is given by
the Linear Parameter-Varying (LPV) modeling. Both AFTC and PFTC strategies
can be proposed, the main difference is that AFTC is based on a fault diagnosis
algorithm, which provides to the controller the on-line information about the faults,
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Figure 2.6: The standard configuration of the wind turbine controller.

often considered as unknown inputs. The knowledge of the fault permits the
reconfiguration of the controller. The fault diagnosis block should compensate,
alongside the faulty signals, the disturbance and the modeling errors.

On the other hand, the PFTC does not need a fault diagnosis module, but
it should be robust against all the presumed faults, as already mentioned in Sec-
tion 1.3. Moreover, for both approaches, the wind speed represents a necessary
information, that can come either from acquired measurement or from a wind
speed reconstructor. Fig. 2.7 shows the comparison between AFTC and PFTC
considering the wind turbine system.
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Figure 2.7: AFTC and PFTC comparison.
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Figure 2.8: The block diagram of the turbine subsystems.

2.2 The Wind Turbine Benchmark System

The single wind turbine benchmark model considered in this thesis is described
in detail in (Odgaard et al., 2013). It has been implemented in Matlab/Simulink
environment and proposes a realistic simulator for a wind turbine system, as well as
some common fault scenarios. It presents a specific kind of wind turbine: a three-
blade horizontal-axis variable-speed pitch-controlled turbine with a full converter
generator. The considered components have been reduced, with respect to the
representation of Figure 2.4. The tower supports the nacelle, that contains the
control systems and the equipment to convert energy from the rotating blades
fixed in the hub to electrical energy for the grid. On the nacelle an anemometer
provides the measurements of the current wind speed at the hub height. The
internal components of the nacelle consist of a gear box that connects the rotor
main shaft to the generator, adapting its torque and speed values; the generator,
that converts the energy into the electrical form; a converter and a transformer
that connect the turbine to the grid; finally the controller adjusts the pitch angle
and the generator torque in order to follow the power reference.

The block diagram of Figure 2.8 shows how the main components are connected
each other and the input/output variables which indicate the relationship among
the blocks.

2.2.1 The Turbine Model

The wind turbine model consists of four submodels: the wind model, the blade
and pitch model, the drive train model and the generator model.

The wind is considered a stochastic process, with the additive contributions of
the effects of wind shear and tower shadows. A complete description of the wind
model is reported in (Dolan and Lehn, 2006). Therefore the wind speed vw is the
sum of four components:

vw(t) = vm(t) + vs(t) + vws(t) + vts(t) (2.6)

Where vm is the mean speed, vs is the stochastic component: a gaussian white
noise, vws is the wind shear effect that takes into account the speed variation due
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to the distance from the earth surface, and vts is the tower shadow effect, that
includes the loss of speed due to the passing of the blade in front of the tower.
Actually, four wind speeds are involved in the benchmark model, one for the wind
vhub acting on the hub, and one for each of the three blades vw1, vw2, vw3. It is
worth noting that the wind shear and the tower shadow terms are considered only
in the blade wind speeds.

For a specific blade i, the wind shear term can be written in analytical form
as:

vwsi(t) =
2vm(t)

3R2
(
R3α

3H
χ+

R4

4
α
α− 1

2H2
χ2) +

2vm(t)

3R2
(
R5

5

(α2 − α)(α− 2)

6H3
χ3) (2.7)

Where: χ = cos(θri), θri is the angular position of the i-th blade, R is the radius
and α,H are two aerodynamic parameters.

The term relative to the tower effect is represented by the equation:

vtsi(t) =
mθ̄ri(t)

3r2
(Ψ− ν) (2.8)

With:

Ψ = 2a2
R2 − r20

(R2 + r20) sin
2(θ̄ri(t)) + k2

ν = 2a2k2 (r
2
0 −R2)r20 sin(θ̄ri(t) + k2)

R2 sin2(θ̄ri(t)) + k2

m = 1 +
α(α− 1)r20

8H2

θ̄ri(t) = θri(t) +
2π(i− 1)

3
− floor(

θri(t) +
2π(i−1)

3

2π
)2π

In which r0 is the radius of the blade hub, k and a are two aerodynamic parameters.
The so-called blade and pitch model is fed by the wind speed and it is based on

the aerodynamic law 2.4. The final value of the aerodynamic torque at the rotor
shaft is equally provided by the three blade, hence:

τr(t) =
3∑

i=1

ρπR3Cq(λ(t), β(t))v
2
w(t)

6
(2.9)

The actual value of the blade pitch angle β differs from the reference signal βr

provided by the controller by means of a second order transfer function:

β(s)

βr(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

(2.10)

Where ζ is the damping coefficient, ωn is the natural pulsation. It represents a
commonly adopted solution in the modeling of hydraulic piston servo systems. In
nominal conditions the parameters of the transfer function have the same value
for each of the three blades.
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The drive train model describes the power flow through the gear box from the
rotor to the generator. The gear box involves a torque decrement and a speed
increment on the generator shaft. The following two-mass first order differential
equations represent the drive train model:

Jrω̇r = τr(t)−Kdtθ∆(t)− (Bdt +Br)ωr(t) +
Bdt

Ng

ωg(t) (2.11)

Jgω̇g =
ηdtKdt

Ng

θ∆(t) +
ηdtBdt

Ng

ωr(t)− (
ηdtBdt

N2
g

+Bg)ωg(t)− τg(t) (2.12)

θ̇∆(t) = ωr(t)−
1

Ng

ωg(t) (2.13)

Where: Jr,Jg are the moments of inertia of the shafts, Kdt is the torsion stiffness,
Bdt is the torsion damping factor, Bg is the generator shaft viscous friction, Ng is
the gear ratio, ηdt is the efficiency coefficient, and θ∆ is the torsion angle.

The dynamics of the generator and the converter is described by means of a
first order transfer function:

τg(s)

τgr(s)
=

αg

s+ αg

(2.14)

The torque reference signal τgr comes from the controller, αg is a generator pa-
rameter.

Finally, the generated power is computed as the product of the torque and the
speed of the generator, decreased by its efficiency ηg:

Pg(t) = ηgωg(t)τg(t) (2.15)

2.2.2 The Controller Model

The controller has the main task to regulate the power generated by the turbine
on the basis of the wind speed. Figure 2.9 depicts the reference power curve, that
can be divided into four different regions. In the first region (vw < 3m/s) the
wind speed is too low to generate power and the turbine is in idle state. The
second region (3m/s < vw < 12, 5m/s) can be defined as partial load, or power
optimization region as the controller forces the turbine power to its maximal value
for that wind speed range. When the wind speed reaches the value of 12, 5m/s
the maximal power corresponds to the nominal turbine power of 4,8MW, so in the
third region (12, 5m/s < vw < 25m/s) the controller keeps the generated power
constant. In the fourth region (vw > 25m/s) the wind speed is too high and the
turbine is stopped to prevent damage. More detail on the common industrial wind
turbine controllers can be found in (Johnson et al., 2006).

In the partial load region, the optimum power value is obtained by keeping
the blade pitch angles constantly equal to zero: β = 0deg and by controlling the
generator torque reference τgr to its optimal value in order to get the optimal tip
speed ratio λopt, with reference to Eq. 2.2. This value is found by means of the
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Figure 2.9: The reference power curve representing the target of the controller, with
four different functioning regions, depending on the current wind speed.

CP map, as the tip speed ratio can act on the maximal power coefficient CPmax ,
after fixing the pitch angle to zero. The discrete reference torque signal becomes:

τgr[k] =
1

2
ρAR3CPmax

λ3
opt

(ωg[k]

Ng

)2

(2.16)

Where A is the area swept by the blades. In the constant power region the con-
troller is switched to a PI regulator that acts on the pitch angles of the blades
forcing the generator speed to its nominal value ωnom, that implies the generation
of the nominal power. In this region the discrete controller law is:

βr[k] = βr[k − 1] +Kpe[k] + (KiTs −Kp)e[k − 1] (2.17)

Where Kp, Ki are the PI coefficients, e[k] is the error on the generator speed.
Finally the switching logic of the controller is regulated by means of a bumpless

mechanism: indeed, the condition for the switch from Region 2 to Region 3 is:
Pg[k] > Pr[k] AND ωg[k] > ωnom, while from Region 3 to Region 2 is: ωg[k] <
ωnom − ω∆, with ω∆ an hysteresis offset (Odgaard et al., 2013).

2.2.3 The Measurement Model

The measurements available to the controller come directly from several sensors or,
in one case, they are obtained via estimation. In particular, for each of the three
blades, a redundant couple of sensors measures the current pitch angle. Then, a
couple of sensors measures the speed of the rotor and another one the speed of
the generator, while a single sensor is available for the wind speed at hub height
and another one for the generator torque. The wind torque measurements are
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estimated exploiting the hub anemometer. Table 2.1 reports a summary of the
measured variables. The model of the measurements consists in the sum of the
actual value with a white Gaussian noise.

Table 2.1: The measurements that are available to the controller.

Variable Description

β1,m1 Blade 1 pitch angle measurement, from the first sensor
β1,m2 Blade 1 pitch angle measurement, from the second sensor
β1,m1 Blade 2 pitch angle measurement, from the first sensor
β1,m2 Blade 2 pitch angle measurement, from the second sensor
β1,m1 Blade 3 pitch angle measurement, from the first sensor
β1,m2 Blade 3 pitch angle measurement, from the second sensor

ωr,m1 Rotor shaft speed measurement, from the first encoder
ωr,m2 Rotor shaft speed measurement, from the second encoder
ωg,m1 Generator shaft speed measurement, from the first encoder
ωg,m2 Generator shaft speed measurement, from the second encoder

τg,m Generator shaft torque measurement
Pg,m Generated power measurement
vw,m Wind Speed measurement at hub height, from the anemometer

τr,m Aerodynamic rotor torque, estimated from vw,m

2.2.4 The Fault Scenarios

In the benchmark model three kinds of actual faults can be simulated: namely
sensor, actuator and system faults. They are modeled as additive or multiplicative
faults and they involve different degrees of severity, so that they can yield to the
turbine shutdown in case of serious fault, or they can be accommodate by the
controller if the risk for the system safety is low.

Regarding the considered sensor faults, they affect the measurements of the
pitch angles and the measurements of the rotor speed, in form of a fixed value or a
scaling error. They represent a common fault scenario of wind turbines, but their
severity is low and they should be easy to identify and accommodate. In particular,
an electrical or mechanical faults in the pitch sensors, if not handled, results in the
generation of a wrong pitch reference system by the controller with the consequence
of a loss in the generated power. The speed of the rotor is measured by means
of two redundant encoders, an offset faulty signal can affect these measurements
when the encoder does not detect the updated marker, while a gain factor faulty
signal represents the reading of excessive markers each loop, due to dirt on the
rotating part.

The considered actuator faults are modeled either as a fixed value or a changed
dynamics of the transfer function. They affect the converter torque actuator as
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well as the pitch actuator. In the former case, the fault is located in the electronics
of the converter, while in the latter case the fault is on the hydraulic system: it
models the pressure drop in the hydraulic supply system (e.g. due to a leakage
in hose or a blocked pump) or the excessive air content in the oil that causes the
variation of the compressibily factor. The severity of these fault is of medium/high
level.

Finally, the considered system fault concerns the drive train, in form of a slow
variation of the friction coefficient in time due to wear and tear (months or year,
but for benchmarking reason in the model it has been accelerated up to some
seconds). It results in a combined faulty signal affecting the rotor speed and the
generator speed. It can be listed as an high severe fault, as it can yield to the
breakdown of the drive train, but in a long time. More details on these kind of
fault and on its diagnosis at gear-box level are reported in (Hameed et al., 2009).

Table 2.2 shows the considered faults, with a brief description.

Table 2.2: The faults scenarios provided by the turbine benchmark model.

Fault Description Type

1 Fixed value of the blade 1 pitch sensor 1 Sensor fault
2 Scaling error of the blade 2 pitch sensor

2
Sensor fault

3 Fixed value of the blade 1 pitch sensor 1 Sensor fault
4 Fixed value of the rotor speed sensor 1 Sensor fault
5 Combined scaling error of the rotor speed

sensor 2 and the generator speed sensor
2

Sensor fault

6 Pitch system changed response for the
pitch actuator of the blade 2 due to air
content in oil

Actuator fault

7 Pitch system changed response for the
pitch actuator of the 3 due to low pres-
sure

Actuator fault

8 Fixed value of the converter torque con-
trol signal

Actuator fault

9 Changed dynamics of the drive-train System fault

2.2.5 Model Parameters

The parameters adopted in the benchmark model are summarized in Table 2.3.
It is worth noting that some of these parameter values will be change in order to
assess the FDI scheme.
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Table 2.3: The value of the benchmark model parameters

Parameter Value

R 57, 5m
ρ 1,225Kgm−3

ζ 0.6
ωn 11,11 rad s−1

Bdt 775,49Nm s rad−1

Br 7,11Nm s rad−1

Bg 45,6Nm s rad−1

Ng 95
Kdt 2,7× 109Nmrad−1

ηdt 0,97
Jg 390Kgm2

ηg 0,98
αg 50 rad s−1

Ki 1
Kp 4
ωnom 162 rad s−1

Pref 4,8MW

2.2.6 The Complete Model

With these assumptions, the complete model of the system under analysis (Simani
et al., 2015c) can be represented by means of a non-linear continuous-time function
fwt, that describes the evolution of the turbine state vector xwt excited by the input
vector u: {

ẋwt(t) = fwt(xwt,u(t))

y(t) = xwt(t)
(2.18)

Where the state of the system is considered equal to the monitored system output
i.e. the rotor speed, the generator speed and the generated power: xwt(t) = y(t) =
[ωg,m1, ωg,m2, ωr,m1, ωr,m2, Pg,m].

The input vector u(t) = [β1,m1, β1,m2, β2,m1, β2,m2, β3,m1, β3,m2, τg,m] contains the
measurements of the pitch angles from the three sensor couples as well as the
measured torque. These vectors are sampled for obtaining a number of N input-
output data u[k],y[k] with K = 1, ..., N , in order to implement the data-driven
estimators.

2.3 The Wind Farm Benchmark System

The wind farm benchmark model considered in this thesis has been proposed in
(Odgaard and Stoustrup, 2013) by the same authors of the wind turbine bench-
mark model. It consists of nine wind turbines arranged in a squared grid of three
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rows and three columns. The distance between two adjacent turbines is seven times
the rotor diameter R. Two measuring masts (anemometers) are placed in front of
the first line of turbines, at a distance of ten times R, providing the measurements
of the undisturbed wind speed. The considered turbines are 4,8MW three-blades
horizontal axis turbines, represented by a simpler model, with respect to the pre-
viously described turbine. Each of them is provided with a controller, but also a
wind farm controller is included in the benchmark model. Three common fault
scenarios can be simulated. The complete wind farm model consists of three main
submodels: the wind and wake model, the plant model, and the controller model,
interacting as in Figure 2.10.

Figure 2.10: The subsystems of the wind farm benchmark model.

2.3.1 The Wind and Wake Model

The wind and wake model provides the wind speed for each of the nine turbines,
contained in the vector vw, as well as for a measuring mast vw,m. They are de-
termined starting from a certain wind sequence (two different wind sequences are
included in the simulator) and their elaboration takes into account the delay and
the interaction among the turbines depending on wind direction. In particular
the wake is described as reported in (Jensen, 1983) by means of a static deficit
coefficient of 0.9. Finally the turbulence is modeled by an additive Gaussian white
noise.

2.3.2 The Plant Model

The plant model represents the nine wind turbines with the same submodel for
each of them. It receives as input the vw vector and the Pr vector containing
the nine reference signals from the controller. The outputs are the vectors Pg, β,
ωg that contain respectively the generate powers, the pitch angles, the generator
speeds, for each of the nine turbines. Inside the turbine submodel, the current
wind speed is elaborated by means of a look-up table in order to compute the
available power Pw(t). Then, the generated power is computed as:
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Pg(t) = Pc(t) + γp sin(2πσpt) (2.19)

Where the first term Pc(t) is equal to the current lower value between the filtered
available power P̂w and the filtered reference power P̂r:

Pc(t) =

{
P̂w(t), if P̂w(t) < P̂r(t),

P̂r(t), if P̂w(t) > P̂r(t).

The second term of the Equation 2.19 represents the oscillations caused by the
drive train, whose amplitude is γp and whose frequency is σp.

The filtered signals P̂w(t) and P̂r(t) differs from the input variables by means
of a first order transfer function:

P̂w(s) =
τw(vw)

s+ αw(vw)
Pw(s)

P̂r(s) =
τp

s+ τp
Pr(s)

Where the parameter τp is a fixed value, while the parameters τw and αw depends
on the wind speed and are computed by means of a look-up table.

Regarding the pitch angle output, the model is similar to that of the turbine
benchmark model of Eq. 2.10, but the transfer function between the reference
pitch signal and the actual pitch angle has been reduced to a first order transfer
function:

β(s) =
τβ

s+ τβ
Pr(s) (2.20)

Then, The generator speed of each turbine is modeled as:

ωg(t) = fω(Pc(t))
(
1 +

γω
ωg,max

sin(2πσpt)
)

(2.21)

Where fω is computed by means of a look-up table and the oscillation term, due
to the drive train, has an amplitude equal to the ratio between the parameter γω
and the maximal generator speed ωg,max.

Finally, the wind farm controller forces each turbine to follow a reference power
signal Pr[k] that is one-ninth of the wind farm power reference. Moreover, in order
to avoid fast variation of the control signal, the wind farm power reference is low-
pass filtered obtaining P̂wf,r. The controller is discrete-time modeled and uses a
sample frequency of 10 Hz (Odgaard and Stoustrup, 2013).

Pr[k] =
1

9
P̂wf,r[k] (2.22)
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2.3.3 The Fault Scenarios

Three common fault scenarios are implemented. They affect the output variables
of the plant system. These kinds of fault are difficult to detect considering the
single wind turbine, but they can be identified at wind farm level.

The first fault considered represents the debris build-up on the blade surface.
Its effect is a change of the aerodynamic of the affected turbine and the consequent
decreasing of the generated power that is modeled by a scaling factor of 0.97
applied to the generated power signal. An analysis of this kind of fault is reported
in (Johnson et al., 2006).

The second fault is a misalignment of one blade caused by an imperfect instal-
lation. The effect is an offset between the actual and the measured pitch angle of
the affected turbine. This fault can excite structural modes and creates undesired
vibrations that can damage the system severely. The faulty signal involves an
offset of 0.3 deg on the pitch angle.

The third fault represents the wear and tear in the drive train. it has been
demonstrated (Odgaard and Stoustrup, 2012) that this kind of fault is difficult
to detect at wind turbine level, and the current trend is to analyze the frequency
spectra of different vibration measurement. In this benchmark model the fault
affects the generated power increasing the amplitude of its oscillation of the 26%
of the nominal value, and the generator speed increasing the amplitude of its
oscillation of the 130%.

2.3.4 Model Parameters

Table 2.4 shows the parameters used in the wind farm benchmark model.

Table 2.4: The value of the wind farm benchmark model parameters

Parameter Value

R 57, 5m
τp 1,2 rad s−1

γp 1000W
σp 10Hz
τβ 1,6 rad s−1

ωg,max 158 rad s−1

γω 0.4



Chapter 3

Data-Driven Modeling and
Identification

In this chapter, the strongly nonlinear systems that characterize the behavior of
the wind turbine and of the wind farm, summarized in Chapter 2 by Eq. 2.18,
is modeled by means of data-driven strategies, in order to build up the fault
diagnosis blocks as explained in Chapter 1. Two data-driven modeling approaches
are introduced, relying on fuzzy logic and artificial neural networks.

3.1 Fuzzy Modeling and Identification

In this section, after a brief introduction on fuzzy logic, the design of the dynamic
estimators by means of the Takagi-Sugeno (TS) models is described. Indeed, the
unknown relationships between noisy measurements and faults are provided by
fuzzy models, which consist in a number of rules connecting the inputs with the
output of the system under investigation, on the basis of a knowledge of its dynam-
ics in form of IF =⇒ THEN relations, processed by a fuzzy reasoning (Babuška,
2012).

3.1.1 Introduction to Fuzzy Logic as Numerical Approxi-
mation of Linguistic Proposition

A linguistic reasoning commonly is not characterized by a precise numerical mean-
ing as the classic crisp logic would require. Fuzzy logic proposes an effective tool
to approximate an uncertain reasoning.

Indeed, a binomial crisp reasoning deals with two concepts: equal to or not equal
to, whilst fuzzy logic introduces the degree of fulfillment as the similarity between
the concept under analysis and a defined prototype used as basis of comparison.
Therefore, the degree of fulfillment can be expressed by any real number between
the two crisp values 0 and 1. The belonging of an item x to a set A is no more a
dichotomous yes/no issue, but it can be represented by the so-called membership

41
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Figure 3.1: Four meaningful membership functions: Gaussian, Sigmoidal, Generalized
Bell, and Trapezoidal.

function µ defined as:
µA(x) : X −→ (0, 1)

Where X is the domain of x.
Some common membership function shapes are depicted in Figure 3.1, while

Table 3.1 shows the number of required parameters for each function.
A Fuzzy Inference System (FIS) is the engine of the fuzzy reasoning, which pro-

vides the output as a consequence of the input condition. So, if properly designed,
it can model the input-output relations of a system whose knowledge is expressed
by linguistic propositions, instead of mathematical laws. Generally speaking, con-
sidering a Multi-Input Multi-Output (MIMO) system, with x ∈ Rni input vector
and y ∈ Rno output vector, the FIS processing involves three main steps:

• fuzzyfication: the computation of the degree of fulfillment of the input;

• reasoning: the inference process, that provides the conditioned membership
functions of the output;

• defuzzification: the computation of the output value.

In detail, the fuzzification process consists in the computation of the degree of
fulfillment of all the ni measured inputs xi with i = 1...ni referred to the all the
considered predefined ns fuzzy sets in which the domain X has been subdivided.
The result is achieved by means of the membership functions µj(xi) with j = 1...ns.
It is worth noting that a fuzzy set can represent a linguistic term. As an example,
the linguistic term low can be associated to a fuzzy set which the speed domain
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Table 3.1: Some commonly used membership functions, with the mathematical expres-
sion and the number of required parameters

Name Function Number of Parameters

Gaussian f(x) = e
−(x−c)2

2σ2 2
Sigmoidally shaped 1

1+e−a(x−c) 2

Generalized bell-shaped f(x) = 1

1+x−c
a

2 3

Trapezoidal shaped f(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, x < a
x−a
b−a

, a ≤ x ≤ b

1, b ≤ x ≤ c
d−x
d−c

, c ≤ x ≤ d

0, x > d

4

consists of. So the proposition the speed is low can be fuzzified into a membership
function that implies high values (about one) for low speed measurement and a
value close to zero otherwise. Then, the fuzzy reasoning can be carried out, based
on a number of rules R in the general form of:

R : IF (fuzzy combination of inputs) THEN (fuzzy combination of outputs)

Where the antecedents and the consequents indicate the combined membership
functions of the inputs and the combined membership function of the outputs
with reference to the fuzzy set (or cluster as denominated in the following). It
is worth observing that, unlike the input, the output is still unknown but all the
membership functions are defined for the input and for the output as well.

The combination of inputs (or outputs) membership functions can be achieved
either by means of the union or the intersection among the members, depending
on which one better characterizes the inputs relations for the relative rule. The
so called t-norm represents the crisp logic AND operator. It can be performed
though different methods, as reported in Eq. 3.1

µA(x) = t(µ(x1), µ(x2)) =

⎧⎪⎨⎪⎩
min(µ(x1), µ(x2)) intersection

µ(x1)µ(x2) product

max(0, µ(x1) + µ(x2)− 1) Lucasiewicz t-norm

(3.1)
Otherwise, the OR operator is realized by the s-norm of Eq. 3.2

µA(x) = s(µ(x1), µ(x2)) =

⎧⎪⎨⎪⎩
max(µ(x1), µ(x2)) union

µ(x1) + µ(x2)− µ(x1)µ(x2) probabilistic sum

min(1, µ(x1) + µ(x2)) Lucasiewicz s-norm

(3.2)
Afterwards, the fuzzy implication expressed by the THEN operator has to be
defined, such that the relations between the antecedent and the consequent can
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generate the rule output membership function µR(y). The THEN operator is
described by a t-norm, defined in the Cartesian product of the input and output
domains X × Y :

µR(y) = t(µA(x), µB(y)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min(µA(x), µB(y)) Mamdani implication

µA(x)µB(y) product

max(1− µA(x), µB(y)) Kleene implication

min(1, 1− µA(x) + µB(y)) Lucasiewicz implication

(3.3)
Normally, more than one rule R1,R2,etc. are required to model the behavior of a
complex system. So the ELSE operator can be introduced:

R1 : IF µA1(x) THEN µB1(y) ELSE,

R2 : IF µA2(x) THEN µB2(y) ELSE...

The s-norm is the suitable tool for representing the ELSE operator, as it describes
the degree of alternative among the rules.

The last step of the fuzzy reasoning is the defuzzification process, that involves
the generation of the estimated i-th system output ŷ, with i = 1, ...no, given the
inferred membership function µR(yi). The center of gravity of the membership
function is a suitable approximation value:

ŷ =

∫
yiµR(yi)dyi∫
µR(yi)dyi

(3.4)

This reasoning approach was proposed by Mamdani in (Mamdani, 1977). It
is characterized by antecedents and consequents that are both fuzzy propositions
(represented by membership function). It is usually adopted to model systems
which are commonly described by linguistic rules exploiting linguistic terms and
variables, as the membership functions can cope with the uncertainty of expressed
by a linguistic preposition.

3.1.2 Takagi-Sugeno Fuzzy Rules

The approximation of nonlinear Multi-Input Single-Output (MISO) systems (but
also extension to MIMO systems can be considered) is usually better achieved by
the Takagi-Sugeno (TS) fuzzy reasoning, as reported in (Fantuzzi and Rovatti,
1996) and (Rovatti, 1996). According to TS approach, proposed in (Takagi and
Sugeno, 1985), the consequents become crisp functions of the input, while the
antecedents remain fuzzy propositions, therefore the fuzzy rule takes the form of:

Ri : IF (fuzzy combination of inputs) THEN output = fi(inputs) (3.5)

The antecedent does not differ from the Mamdani rules, with a combined mem-
bership function λi(x) that takes into account the logical connectives expressed by
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Figure 3.2: The output of a TS FIS, characterized by two rules, with consequent pa-
rameters a1 = −3, b1 = 10, a2 = 3, b2 = −10. The antecedent membership
functions λ1, λ2 are sigmoidally shaped

linguistic propositions. The rule consequent function fi have a defined structure:
it is instance of parametrized function in the affine linear form:

yi = aT
i x+ bi (3.6)

Where ai is a parameter vector and b is a scalar offset, while yi is the i-th rule
output. The number of rules is supposed equal to the number of clusters nC .
Furthermore, the antecedent of each rule defines the degree of fulfillment for the
corresponding consequent model, so that the rule global model can be seen as a
fuzzy composition of linear local models.

Thus, the TS inference takes the form of the simple algebraic expression of Eq.
3.7:

ŷ =

∑nC

i=1 λi(x)yi∑nC

i=1 λi(x)
(3.7)

The estimated output ŷ is the weighted average of linear functions of the measured
input, where the weights are the combined degree of fulfillment of the system input.
An example of TS models as nonlinear function approximator is depicted in Fig.
3.2 for a Single-Input Single-Output (SISO) system, with nC = 2.

It is worth noting that the nonlinear system under investigation can have either
a static or a dynamic behavior: in the latter case, the considered model input
vector x can contains current as well as previous samples of the system input or
output. Indeed, in order to introduce the time dependence into the model of Eq.
3.5 the consequents are considered as discrete-time linear AutoRegressive models
with eXogenous input (ARX) of order o, in which the regressor vector takes the
form of:

x(k) = [y(k − 1), ..., y(k − o), u(k), ..., u(k − o)]T (3.8)
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Where u and y are the actual system input and output vectors, and k is the time
step. The affine parameters of Eq. 3.6 can be grouped in:

ai = [α
(i)
1 , ..., α(i)

o , δ
(i)
1 , ..., δ(i)o ]T (3.9)

Where the a(i) coefficients are associated to the output samples, and the δ(i) are
associated to the input.

3.1.3 FIS Design from Data

An effective approach to the design of a FIS as approximator of a complex nonlinear
system begins with the partitioning of the available data into subsets characterized
by simpler (linear) behavior.

A cluster can be defined as a group of data that are more similar each other
rather than to the members of another cluster. The similarity among data can be
expressed in terms of their distance from a particular item, exploited as the cluster
prototype. Fuzzy clustering provides an effective tool to obtain a partitioning
of data in which the transitions among subsets are smooth, rather than abrupt.
Indeed, fuzzy clustering allows an item to belong to several cluster simultaneously,
with different degrees of fulfillment, whereas the classic crisp clustering relies on
mutual exclusive subsets. Different clustering methods have been proposed in
literature, see e.g. the review (Jain et al., 1999) or the more recent works (Jun
et al., 2011) and (Graaff and Engelbrecht, 2012).

Typically, the available data consist in noisy measurements acquired from the
system. They are grouped into the data matrix Z, whose columns are the vectors z
containing the measurements of a single observation of the system under analysis:

Z =

⎡⎢⎣z11 ... z1N
...

. . .
...

zn1 ... znN

⎤⎥⎦ (3.10)

Where n is the data dimension, N is the number of available observations.
Most fuzzy clustering algorithms are based on the optimization of the c-means

goal function J(Z,U,V) that depends on:

• Z: the data matrix above defined;

• U = [µik]: the so-called fuzzy partition matrix, that contains the values of
the membership function for the couple i-th measurement/k-th cluster;

• V = [v1...vnC
], containing the cluster prototypes, that have to be determined

and that represent the centers from which the distance of each measurement
can be calculated.

The widespread c-means goal function adopted in this work was formulated in
(Bezdek, 2013):

J(Z,U,V) =

nC∑
i=1

N∑
k=1

(µik)
mD2

ikA (3.11)
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With m > 1 weighting exponent, and

D2
ikA = ∥zk − vi∥2A = (zk − vi)

TA(zk − vi), i = 1, ..., nC , k = 1, ..., N (3.12)

that is a squared inner product distance norm. The matrix A determines the
cluster shape.

The minimization algorithm exploits a series of Picard iterations consisting
in the updating of the cluster prototypes and of the partition matrix, until the
stop criterion is met. A brief summary of the algorithm steps is reported in the
following.

1. Initialization: set up Z from acquired measurements and fix the value of
nC , m, A and of the termination threshold ϵ. Then, initialize randomly the
partition matrix U;

2. Computation of cluster prototypes: start the iteration computing the
cluster prototypes as the weighted average of observations:

vi =

∑N
k=1 µ

m
ikzk∑N

k=1 µ
m
ik

, i = 1, ..., nC (3.13)

3. Computation of distances: according to Eq. 3.12 calculate the distance
of each observation vector from the cluster prototypes;

4. Updating the partition matrix: the degrees of fulfillment can be updated
by means of the expression:

µik =
1∑nC

j=1(
DikA

DjkA
)

2
m−1

(3.14)

5. Check the termination criterion: if the norm of the difference between
the current and the previous partition matrix is bigger than ϵ, then start
another iteration from step 2.

An important point concerns the determination of the optimal number of clus-
ters nC , as the clustering algorithm operates on the assumption of a certain number
of clusters, regardless of whether they are really present in the data or not. Once
the partition matrix has been estimated, the antecedent degrees of fulfillment are
easily derive by interpolation or curve fitting methods.

Then, the design of the FIS assumes the form of an identification problem ad-
dressed to the estimation of the consequent parameters ai and bi of Eq. 3.6 in a
noisy environment. The identification scheme adopted in this work was proposed
in (Simani et al., 1999) and successfully exploited in the approximation of non-
linear functions through the piecewise affine models (Fantuzzi et al., 2002). This
approach consists in the minimization of the prediction errors of the individual TS
local models understood as nC independent problems. Their solutions rely on the
so-called Frisch scheme (Beghelli et al., 1990).
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Considering a discrete-time MISO system, the noise is supposed to affect the
input u as well as the output y measurements in form of the additive signals ũ, ỹ
on the noise-free unmeasurable quantities u∗, y∗ :

u(k) = u∗(k) + ũ(k)
y(k) = y∗(k) + ỹ(k)

(3.15)

Thus, considering the i-th TS consequent of the type of Eq. 3.7 and the as-
sociated dynamic local ARX model of order o with the regressors grouped into
the vector x as in Eq. 3.8, the acquisition of Ni noisy measurement of input and
output samples permits the construction of the i-th data matrix X(i) defined as:

X(i) =

⎡⎢⎢⎢⎣
y(k) xT (k) 1

y(k + 1) xT (k + 1) 1
...

...
...

y(k +Ni − 1) xT (k +Ni − 1) 1

⎤⎥⎥⎥⎦ (3.16)

The i-th covariance matrix Σ(i) from the acquired data can be computed as:

Σ(i) = X(i)TX(i) ≥ 0 (3.17)

That is a positive-definite matrix consisting in the sum of two terms:

Σ(i) = Σ(i)∗ + ¯̃Σ(i) (3.18)

Where Σ(i)∗ concerns the noise free signals, while ¯̃Σ(i) is the noise covariance ma-
trix, which depends on the unknown noise variances ¯̃σu,¯̃σy through the expression:

¯̃Σ(i) = diag
[
¯̃σyI, ¯̃σuI, 0

]
(3.19)

The solution of the identification problem above mentioned requires the estimation
of ¯̃σu and ¯̃σu, that can be performed solving the equation:

Σ(i)∗ = Σ(i) − Σ̃
(i)

(3.20)

with Σ̃
(i)

= diag
[
σ̃yI, σ̃uI, 0

]
, in the variables σ̃u,σ̃y.

In case all the assumption regarding the Frisch scheme (Simani et al., 1999)
are satisfied, there exists one common point belonging to all the surfaces Γ(i) = 0
determined as the root locus of Eq. 3.20, that represents the actual noise variance
values (¯̃σu, ¯̃σy). However, in real cases, the Frisch assumptions are commonly
violated, so that a unique solution cannot be obtained. In these situations the
identification aims at finding the nearest point of all the surfaces.

After the computation of the variances, the covariance noise matrix can be
built as in Eq. 3.19, and the linear parameters in each cluster (therefore in each
TS consequent) can be finally determined as a solution of the following expression:(

Σ(i) − ¯̃Σ(i)
)
ai = 0 (3.21)
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3.2 Neural Network Modeling and Identification

Alongside the fuzzy models, another data-driven approach, based on neural net-
works, has been proposed in order to implement the fault diagnosis block. In
this section, after a brief introduction on the general structure, the properties,
and the functioning of a neural network, the architecture of an open-loop Non-
linear AutoRegressive with eXogenous input (NARX) network is reported, as it
represents, in combination with the backpropagation Levenberg-Marquardt train-
ing algorithm, the exploited solution for the implementation of the neural network
fault estimators.

3.2.1 Introduction to Neural Network

The denomination neural network refers to its architectural analogy with the hu-
man brain. Indeed, a neural network consists of many interconnected elemental
units, called neurons, each of which processes its input and produces its output in
order to accomplish the final global task of the network. The way in which neurons
are connected, and the elaboration that they execute, determine the typology of
the network and its suitability to solve a particular problem.

The objective of a neural network can be summarized into the combination of
the human brain properties with the processing rate and accuracy of electronics.
Indeed, the brain is a highly complex, nonlinear and parallel information process-
ing system, currently more effective than any computer in the field of pattern
recognition, classification and decision making. However, transistors are thousand
times faster than brain neurons and more precise in computation. The result is an
artificial intelligence system, with data-driven learning and adaptation properties,
capable of approximate any nonlinear multidimensional function.

In this work, a set of neural estimators is designed and trained in order to
reproduce the behavior of the systems under investigation, thus accomplishing the
modeling and identification task.

The structure of the i-th single neuron (Haykin et al., 2009), also called per-
ceptron, is depicted in Fig. 3.3. It features a MISO system where the output yi
is computed as a function f of the weighted sum vi of all the ni neuron inputs
ui,1...ui,ni

, with the associated weights wi,1...wi,ni
.

The function f , denominated activation function, represents the engine of the
neuron. Although any differentiable function can be exploited as activation func-
tion, the most common choices are shown in Fig. 3.4 and their expression are
reported in Table 3.2.

3.2.2 Neural Network Architectures

A structural categorization of neural networks concerns the way in which their
elements are connected each others (Liu, 2012). In a feedforward network, also
called multilayer perceptron, neurons are grouped into unidirectional layers, as
shown in Fig. 3.5. The first of them, namely the input layer, is fed directly by
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Figure 3.3: The model the i-th elemental neuron which forms the network.

Figure 3.4: The shape of some common activation functions.

Table 3.2: Some commonly used activation function, with the mathematical expression
and the number of required parameters

Name Function Number of Parameters

Identity f(x) = x 0

Bipolar Step f(x) =

{
−1, x < 0

1, x ≥ 0
0

Sigmoidally shaped 1
1+e−a(x−c) 2

Gaussian f(x) = e
−(x−c)2

2σ2 2
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Figure 3.5: The architecture of a feedforward network, with the input layer, one hidden
layer and the output layer.

the network inputs, then each successive hidden layer takes the inputs from the
neurons of the previous layer and transmits the output to the neurons of the next
layer, up to the last output layer, in which the final network outputs are produced.
Therefore, neurons are connected from one layer to the next, but not within the
same layer. The only constraint is the number of neurons in the output layer,
that has to be equal to the number of actual network outputs. Often neurons of
different layers can have different activation functions.

On the other side, recurrent networks (Medsker and Jain, 1999) are multilayer
networks in which the output of some neurons is fedback to neurons belonging
to previous layers, thus the information flow in forward as well as in backward
directions allowing a dynamic memory inside the network.

A noteworthy intermediate solution is provided by the multilayer perceptron
with a tapped delay line, which is a feedforward network whose inputs come from a
delay line. This kind of network represents a suitable tool to model, or predict, the
evolution of a dynamic system. in particular the open loop Nonlinear AutoRegres-
sive with eXogenous inputs (NARX) network belongs to this latter category as its
inputs are delayed samples of the system inputs and outputs. Indeed, if properly
trained, a NARX network can estimate the current (or the next) system output
on the basis of the acquired past measurements of system inputs and outputs.

Generally speaking, considering a MIMO system, the elaborations of the open-
loop NARX network follow the law:

ŷ(k) = fnet
(
u(k)...u(k − du),y(k − 1)...y(k − dy)

)
(3.22)

Where ŷ is the estimation of the system output, u and y are the measured system
inputs and outputs, k is the time step, du and dy are the number of delay of
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Figure 3.6: The open loop NARX network, that reconstructs the system output on the
basis of the delayed measurements.

inputs and outputs, respectively. fnet is the function realized by the network, that
depends on the layer architecture, the number of neurons, their weights and their
activation functions. The functioning of an open-loop NARX network used as
estimator is depicted in Fig. 3.6.

It is worth noting that when only input measurements are available, a NARX
network can become a recurrent network by closing the loop feeding back the
network outputs to the inputs, as shown in Fig. 3.7.

The parameters on which the designer can act concerns the overall architecture
(number of neurons, connections between layers), while the value of the weights
inside each neuron are derived from the network training.

3.2.3 Training the Network

A neural network is a learning system requiring an initial training procedure that
adjusts the weights to improve the network performance. When the network task
is the estimation of a nonlinear function, the training is performed by presenting
to the network a set of examples of proper behavior, consisting in the inputs and
the desired outputs (targets) for the relative inputs. Training can be implemented
in two different ways:

• Incremental mode: each couple input-target generates an updating of the
network weights;
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Figure 3.7: The closed loop NARX network, that reconstructs the system output on
the basis of the delayed measurements and estimation.

• Batch mode: all inputs and targets are applied to the network before the
weights are updated.

Although this kind of training requires more memory storage capability, with
respect to the incremental mode, it is characterized by a faster convergence
and produces smaller errors, thus it will be considered in the following.

The training objective is the minimization of a performance function E, which
depends on the weight vector w.

Generally speaking, considering a number P of available example patterns con-
sisting in the input-target pairs (up, tp), with p = 1, ..., P , defining ŷp the output
generated by the network fed by up, the p-th error vector can be expressed as:

ep = [tp − ŷp] = [ep,1, ..., ep,M ]T (3.23)

with p = 1, ..., P and M number of outputs.
Furthermore, the global error vector ē collects each ep:

ē = [e1,1, ..., e1,M , ..., eP,1, ..., eP,M ]T (3.24)

Consequently, the performance function becomes:

E(w) =
1

P

P∑
p=1

(ti − ŷi)
2 =

1

P

P∑
p=1

M∑
m=1

e2p,m (3.25)
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Where the dependence of E by the N parameters grouped in the vector w =
[w1, ..., wN ]

T is implicit in the generated output ŷ = ŷ(w).
Any standard numerical optimization algorithm can be used to update the

parameters, in order to minimize E. Among these, the most commons are iterative,
and make use of characteristic matrices, such as the gradient g (or the Hessian H)
of the performance function, or the Jacobian J of the estimation error, defined as:

g =
∂E(w)

∂w
=

[ ∂E
∂w1

, ...,
∂E

∂wN

]T
(3.26)

H =

⎡⎢⎢⎣
∂2E
∂w2

1
... ∂2E

∂w1wN

...
. . .

...
∂2E

∂wNw1
... ∂2E

∂w2
N

⎤⎥⎥⎦ (3.27)

J =

⎡⎢⎢⎢⎢⎣
∂e
1,1

∂w1
...

∂e
1,1

∂wN
∂e
1,2

∂w1
...

∂e
1,2

∂wN
...

. . .
...

∂e
P,M

∂w1
...

∂e
P,M

∂wN

⎤⎥⎥⎥⎥⎦ (3.28)

The successive iterations of these algorithms consist in the updating of the
parameters and the calculation of the new value of the performance function, until
a stop criterion is met. The updating rules of the most common optimization
algorithms (i.e. the gradient descent, the Newton, the Gauss-Newton and the
Levenberg-Marquardt algorithm) are reported in Table 3.3.

Table 3.3: The parameter updating rules of the most common optimization algorithm,
aimed at the minimization of the performance function E. k is the iteration
index, α is the learning rate and µ the combination coefficient.

Algorithm Updating rule

Gradient Descent wk+1 = wk − αgk

Newton wk+1 = wk −H−1
k gk

Gauss-Newton wk+1 = wk −
(
JT
k Jk

)−1
Jkēk

Levenberg-Marquardt wk+1 = wk −
(
JT
k Jk + µI

)−1
Jkēk

It can be demonstrated that the gradient descent algorithm, for a sufficiently
small learning rate α value, is asymptotically convergent: around the solution g,
the gradient is close to zero and the weights do not meaningfully change. Other-
wise, the Newton and the Gauss-Newton algorithms provide a faster convergence,
but they both involve the computation of the inverse of a matrix which may not be
invertible, causing instability in the procedure. Moreover, the Hessian matrix en-
tails a burdensome computational effort, as it contains the second order derivative
terms.
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The Levenberg-Marquardt algorithm, originally proposed in (Marquardt, 1963),
introduces an approximation of the Hessian matrix asH ≈ JTJ+µI, where the first
term of the sum is the Jacobian approximation (also exploited in Gauss-Newton)
and the second term, driven by the combination coefficient µ > 0, ensures the
invertibility of the resulting matrix.

Therefore, the Levenberg-Marquardt algorithm provides both a fast and a sta-
ble convergence and it represents a suitable tool to train a neural network. Indeed,
as explained in the next chapter, the neural network fault estimator blocks have
been trained exploiting this method.

The training of a neural network based on the Levenberg-Marquardt algorithm,
as explained in (Hagan and Menhaj, 1994), uses a technique denominated back-
propagation training, in order to compute the Jacobian matrix for the updating
rule.

Its name refers to the backward processing that starts from the output layer
of the network towards the first layer, after a previous forward computation of
neuron outputs.

Indeed, considering a multilayer network, the j-th neuron is fed by nj inputs uj,i

with i = 1, ..., nj and produces the output yj by means of the activation function
f and the neuron weights wj,i associated to the inputs:

yj = f(netj) (3.29)

netj =

nj∑
i=0

wj,iuj,i (3.30)

Then, the complex relations existing between a given output yj of a neuron and
a given output of the network ŷm is expressed by means of an unknown nonlinear
function F :

ŷm = Fm,j(yj) (3.31)

Where the dependence of F by other neurons outputs are implicit. The point of
view of the single j-th neuron shown in Fig. 3.8, where the remaining part of the
network can be seen as a black box represented by the function F .

The construction of the Jacobian matrix of Eq. 3.28 relies on the computation
of terms in form of:

∂ep,m
∂wj,i

=
∂(tp,m − ŷp,m)

∂wj,i

= −∂ŷp,m
∂wj,i

(3.32)

As the targets do not depend on the neuron weights.

Three useful derivative terms are derived in the following, as they act an im-
portant role in the Jacobian computation:
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Figure 3.8: The point of view of a single neuron of the network: the elaboration of its
input uj,i results in the neuron output yj , then the remaining part of the
network can be seen as a nonlinear function that maps yj into a network
output ŷm.

∂netj
∂wj,i

= uj,i (3.33)

∂yj
∂netj

=
∂f(netj)

∂netj
= f ′

j (3.34)

∂ŷm
∂yj

=
∂Fm,j(yj)

∂netj
= F ′

m,j (3.35)

Hence, Eq. 3.32 can be rewritten as the product of these terms:

∂ep,m
∂wj,i

= −∂ŷp,m
∂wj,i

= −∂ŷm
∂yj

∂yj
∂netj

∂netj
∂wj,i

= −F ′
m,jf

′
juj,i (3.36)

It is worth noting that each uj,i has been computed during the forward phase,
as well as the derivative of the activation function f ′

j, whilst the term F ′
m,j is

computed recursively, starting from the output layer where its value is initialized
to:

F ′
m,j =

{
1 if m = j

0 otherwise
(3.37)

Once the Jacobian matrix has been computed, the iterations of Levenberg-Marquardt
can start.

It is worth observing that a proper modification to the algorithm can be applied,
when it is exploited to train a network. Indeed, many common implementations
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of the algorithm decrement the combination coefficient by a µdec factor after each
iteration that provides a smaller value of the performance function. Otherwise,
the weights are restored to the previous value and the combination coefficient is
incremented by a µinc factor. The algorithm stops when the performance function
oversteps a prefixed threshold. Finally, the overall training procedure is summa-
rized in the block diagram of Fig. 3.9

3.2.4 Other Training Algorithms

In the related literature, many other training algorithms have been proposed, in
(Hagan et al., 1996) a detailed overview of the most common training procedures
is reported.

Although the backpropagation is an endorsed technique that is currently adopted
in most of the training strategies, the rule according to which weights are updated
may vary on the basis of the requirements of the application.

Table 3.4 reports some further examples of updating rule, the symbol ∆ means
the difference between two consecutive iterations, while α,Z,A,B,m are design pa-
rameters. With reference to the resilient algorithm the multiplication is understood
as element-wise.

Table 3.4: Several optimization algorithms commonly used for training a network

Algorithm ∆wk = wk+1 − wk

Conjugate gradient with Powel restart −gk + Z ·∆wk−1

Conjugate gradient with Fletcher updates −gk +
∥gk∥2

∥gk−1∥2
·∆wk−1

Conjugate gradient with Polak updates −gk +
∆gTk−1gk

∥gk−1∥2
·∆wk−1

one-step secant −gk + A∆wk−1 +B∆gk−1

Resilient A∆g · sgn(gk−1)
Gradient descent with momentum m∆wk−1 + α(1−m)gk
Gradient descent with adaptive momentum m∆wk−1 + αmgk

3.2.5 Problems Related to Neural Networks

The generalization skill of a neural network, understood as the capability to provide
an approximately correct answer when presented with inputs that has not been
used for training, strongly depends on the example patterns exploited for the
training. Normally, a new input leads to an accurate output if it is close to an
input already processed during the training, therefore the training data sets should
be representative of all the operating conditions.

However, another problem may arise, although the training patterns cover the
whole range of cases that may occur. It is called overfitting and involves a poor
generalization capability due to memorization of the training examples.
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Figure 3.9: The block diagram of the training procedure, exploiting the backpropagation
algorithm in combination with the Levenberg-Marquardt iterations.
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Overfitting is often caused by an oversized network. Thus, in order to improve
the network generalization, an appropriate number of neurons and layers should
be adopted. Small networks do not have the power to overfit data, but they
cannot realize complex nonlinear functions. The technique called early stopping
prevents overfitting during the training processing. A validation data set is re-
moved from the training example patterns and used to monitor the generalization
performances. When, during the training, the error on validation data set start
increasing, the training is stopped, as the excessive number of patterns presented
results in the network overfitting.
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Chapter 4

Fault Diagnosis and Fault
Tolerant Control Design

This chapter introduces the Fault Diagnosis and the Fault Tolerant schemes adopted
in the simulations of Chapter 5. Firstly, the Fault Mode and Effect Analysis is
described, as it leads to an effective design of the fault estimators. Then, the Fault
Diagnosis scheme is presented highlighting its features of the Fault Detection and
Isolation. Finally, the implementation of the Fault Tolerant Controller is shown.
It relies on the on-line accommodation of the system faults, modeled as either
actuator (input) faults or sensor (output) faults.

4.1 Fault Mode and Effect Analysis

Following the guidelines reported in (Stamatis, 2003), a Failure Mode and Effect
Analysis (FMEA) has been performed on the wind turbine system, as well as on
the wind farm. The FMEA is a sensitivity analysis aimed at estimating the most
sensitive measurements with respect to the simulated fault conditions.

In practice, the monitored fault signals have been injected into the benchmark
simulators, assuming that only a single fault may occur in the considered plant.
Then, the relative mean square errors (RMSE) between the fault-free and faulty
measured signals are computed, so that, for each fault, the most sensitive signal
can be selected. The results of the FMEA are shown in Table 4.1 for the wind
turbine.

Table 4.1: The most sensitive measurements with respect to the faults, for the wind
turbine benchmark

Fault 1 2 3 4 5 6 7 8 9

Measurement β1,m1 β2,m2 β3,m1 ωr,m1 ωr,m1 β2,m1 β3,m2 τg,m ωg,m1

RMSE 11,29 0,98 2,48 1,44 1,45 0,80 0,73 0,84 0,77

Afterwards the FMEA can be conducted on the basis of a selection algorithm

61
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that is achieved by introducing the normalized sensitivity function Nx, defined as
in the follow:

Nx =
Sx

S∗
x

Where:

Sx =

xf [k]− xn[k]

2xn[k]


2

(4.1)

S∗
x = max

xf [k]− xn[k]

2xn[k]


2

(4.2)

Its value represents the effect of the considered fault case with respect to a certain
measure signal x[k]. The subscripts f and n indicate the faulty and the fault-free
case, respectively. Therefore the measurements most affected by the considered
fault imply a value of Nx equal to 1. Otherwise, a small value of Nx, i.e. close
to zero, denotes a signal x not affected by the fault. The signals characterized by
high value of Nx can be selected as the most sensitive measurements and they will
be considered in the design of the FDI blocks. The results of the FMEA sensitivity
are reported in Table 4.2 and in Table 4.3, for the wind turbine and for the wind
farm, respectively.

Table 4.2: The selected signals for each fault included in the wind turbine benchmark,
divided by inputs and outputs

Fault Most Sensitive Inputs Most Sensitive Outputs

1 β1,m1, β1,m2 ωg,m2

2 β1,m2, β2,m2 ωg,m2

3 β1,m2, β3,m1 ωg,m2

4 β1,m2 ωg,m2, ωr,m1

5 β1,m2 ωg,m2, ωr,m2

6 β1,m2, β2,m1 ωg,m2

7 β1,m2, β3,m2 ωg,m2

8 β1,m2, τg,m ωg,m2

9 β1,m2 ωg,m1, ωg,m2

Table 4.3: The selected signals for each fault included in the wind farm benchmark

Fault Most Sensitive Measurements

1 β2, Pg,2, β7, Pg,7, vw,m

2 β1, ωg,1, β5, ωg,5, vw,m

3 β6, Pg,6, β8, ωg,8, vw,m

As a result, the fault diagnosis blocks that have to be designed, can implement
the reduced fault models instead of the overall system model of Eq. 2.18 with a
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Figure 4.1: The faults affecting the system under analysis, i.e. the wind turbine or the
wind farm, as additive signals on the input (actuator) and output measure-
ments.

noteworthy simplification of the inner structure, thus providing a decrease in the
computational effort.

4.2 Fault Diagnosis

In the following the discrete-time monitored systems, i.e. the wind turbine and
the wind farm, is assumed to be affected by additive faults on the input (actuator)
and output (sensor) measurements, as represented in Fig. 4.1, in forms of:

u(k) = u∗(k) + fu(k) (4.3)

y(k) = y∗(k) + fy(k) (4.4)

Where u∗(k),y∗(k) are the actual unmeasurable variables, u(k),y(k) represent
the sensor acquisitions, affected by both the measurement noise and the faults.
fu(k), fy(k) are additive signals, that assume values different from zero only in
presence of faults.

Among the different approaches to generate the residual signals, recalled in
Chapter 1, the solution adopted in this work exploits fuzzy and neural network
models, which provide an on-line estimation of the faulty signals. Hence, as shown
in Fig. 4.2 residuals r are generated by means of the direct comparison of the
measured y(k) and the estimated outputs ŷ:

r(k) = ŷ(k)− y(k) (4.5)

The fault diagnosis process involves, as first step, the fault detection task. It
is performed here by using a proper thresholding logic operating on the residuals
after their elaboration into a proper evaluation function:

re(k) = f(r(k)) (4.6)
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Figure 4.2: The residual generation achieved by the difference between the acquired
measurements and the estimated outputs.

Where the proposed function f can be the identity function, in case of fuzzy es-
timator, or the moving average or variance in case of neural networks, as explained
in Chapter 5. Then, the occurrence of the i-th fault can be detected according to:{

r̄ei − δσri ≤ rei ≤ r̄ei + δσri fault-free

rei < r̄ei − δσri or rei > r̄ei + δσri faulty
(4.7)

Where the i-th item rei of the residual vector re is considered a random variable,
whose unknown mean r̄ei and variance σ2

ri
can be estimated in fault-free condition,

after the acquisition of N samples, as follows:

r̄ei =
1

N

N∑
k=1

rei(k) (4.8)

σ2
ri
=

1

N

N∑
k=1

(rei(k)− r̄ei)
2 (4.9)

The tolerance parameter δ ≥ 2 has to be properly tuned in order to separate the
fault-free from the faulty condition. The δ value determines the trade-off between
the false alarm rate and the fault detection probability. A common choice of δ
relies on the three-sigma rule, otherwise extensive simulations can be performed
to optimize the δ value.

Consequently to the fault detection, the fault isolation task is achieved by
means of two observer schemes. Faults are here subdivided into two main groups:
the faults concerning the inputs fu and the faults concerning the output fy. Fol-
lowing the generalized observer scheme of Fig. 4.3, in order to uniquely isolate one
of the input faults, under the assumption that no output faults occur in the mean-
while, a bank of MISO estimators is used, whose number is equal to the number
of input faults to be isolate. Then, the i-th fault estimator is driven by all but
the i-th input, so that, when the i-th fault occurs, its residual signal is the only
one that does not detect the fault. In particular, when the i-th fuzzy or neural
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Figure 4.3: The general observer scheme: the fault estimators are driven by all but one
input, so that the relative residual is insensitive only to the fault affecting
that input.

network estimator, insensitive to the i-th fault has to be designed, all but the i-th
input, in addition to the output, are considered in the regressor vector, for the
fuzzy models, and in the training of the neural networks.

It is worth noting that multiple faults occurring at the same time cannot be
correctly isolated, using this configuration.

On the other hand, in order to isolate one or multiple output faults, under the
assumption of no input faults occurring, another bank of estimator is used. In
this case, the i-th estimator provides directly the i-th residual as it is driven by all
the system inputs and only the i-th output. This configuration is better known as
dedicated observer scheme.

The isolation capabilities of the adopted observer banks can be summarized
by means of the so-called fault signature, depicted in Table 4.4, where each entry
that is characterized by a value equal to 1 means that the considered residual is
sensitive to the fault (zero otherwise), under the hypothesis above mentioned.

The FMEA, that has to be executed before the design of the observers, suggests
how to select the inputs-output configuration for the fault estimator blocks. Then,
the design of the fuzzy or neural networks model can be performed. Finally, the
threshold test logic of Eq. 4.7 allows the achievement of the fault diagnosis task.
A summary of the complete design flow is shown in Fig. 4.5.
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Figure 4.4: The dedicated observer scheme: all the fault estimators are driven by all
inputs and each of them generates the residual relative to only one output
faulty signal.

Table 4.4: The fault signatures for input and output observer schemes

u1 u2 ... ur y1 y2 ... yr

ru1 0 1 ... 1 0 0 ... 0
ru2 1 0 ... 1 0 0 ... 0
...

. . . ...
...

rur 1 1 ... 0 0 0 ... 0
ry1 0 0 ... 0 1 0 ... 0
ry2 0 0 ... 0 0 1 ... 0
... ...

. . .
...

rym 0 0 ... 0 0 0 ... 1
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Figure 4.5: The block diagram of the overall FDI design procedure.
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Figure 4.6: The FTC strategy adopted in this work: the FDI block provide the on-
line fault estimations, that are used to compensate the faulty input-output
signals, so that the controller can force the system to track the desired
reference.

4.3 Fault Tolerant Control

The structure of the FTC system proposed in this work, and applied to both the
wind turbine and the wind farm benchmarks described in Chapter 2, is mainly
based on the Fault Diagnosis module that provides the on-line fault estimation by
using fuzzy or neural network models. The result of a proper fault identification
permits the compensation of the faulty measurement signals, before their access
to the controller, so that the proper reference signal can be send to the turbine
system, without the modification of the pre-existent controller. Fig. 4.6 shows the
overall FTC strategy.

Therefore, the fault estimations f̂u,f̂y are exploited for the compensation of
both the input and the output measurements used by the system controller. In
particular, the actuator signal coming from the controller is compensated by f̂u,
while f̂y corrects the output measurement acquired from the monitored system.
After the fault accommodation the controller can track the nominal power reference
signals. It is worth noting that, thanks to this fault estimation feedback, the
controller could be easily designed considering the fault-free system condition.

Further investigations regarding the stability analysis of the overall FTC mod-
ule are highlighted in Chapter 5, where it is shown that the variables of the mod-
els remain bounded in a set, which assure control performance, even in presence
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of faults. Moreover these faults do not modify the system structure, hence the
global stability is guaranteed. However, whilst the fault effect is eliminated in
steady-state condition, during the transient the compensation can be not properly
handled, and the stability properties should be considered.
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Chapter 5

Simulations, Experiments and
Results

This chapter shows the simulations related to the considered benchmark systems,
in which the proposed solution for the fault diagnosis and the fault tolerant control
have been implemented. Firstly, the focus is placed on the single wind turbine
benchmark, both the fuzzy and the neural network fault estimators are analyzed
and validated by means of a Monte Carlo analysis. Then, their performances
are compared to those of other fault diagnosis methods, commonly adopted in
the related literature. Furthermore, the tracking capability of the fault tolerant
controller, based on the fault accommodation strategy, is evaluated.

Afterwards, the wind farm benchmark system is considered. Similarly to the
analysis carried out for the single turbine system, the developed fault diagnosis
and fault tolerant control modules are tested, validated and evaluated with respect
to other commonly adopted solutions.

Finally, in order to assess the proposed systems in a more realistic framework,
the Hardware in the Loop (HIL) test has been performed, by means of an industrial
computer interacting with the on-board electronics.

5.1 Wind Turbine Simulations

In the following, with reference to the wind turbine benchmark model of Section
2.2, all the simulations are driven by the same wind mean speed sequence (see
Eq. 2.6), reported in Fig. 5.1. It comes from real acquisition of wind speed data
from a wind farm. It represents a good coverage of typical operating condition, as
it ranges from 5 to 20 m/s, with a few spikes at 25 m/s. The other wind speed
components are represented by uniform random variables.

The simulations last for 4400 s, during which only one fault may occur. The
discrete-time benchmark model runs at a sampling frequency of 100 Hz, so that
N = 440000 samples per simulation are acquired. With reference to the different
scenarios described in Sec. 2.2.4, Table 5.1 reports the shape and the time of the
fault signals affecting the system. They are modeled as input (actuator) or output
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Figure 5.1: The wind speed sequence driving the simulations.

(sensor) additive fault, based on the FMEA results of Section 4.1.

Table 5.1: The characteristics of the faults affected the system during the simulation

Fault Type Shape Time (s)

1 actuator step 2000− 2100
2 actuator step 2300− 2400
3 actuator step 2600− 2700
4 actuator step 1500− 1600
5 actuator step 1000− 1100
6 sensor step 2900− 3000
7 sensor trapezoidal 3500− 3600
8 sensor step 3800− 3900
9 sensor step 4100− 4300

In order to highlight how faults affect the system, the comparison between
the faulty and the fault free signal is represented in Fig. 5.2, regarding the most
affected signals of the FMEA test.

5.1.1 Fault Diagnosis via Fuzzy Identified Models

The issue on the Fault Diagnosis of the wind turbine benchmark model via fuzzy
models is discussed in (Simani et al., 2015a) and (Simani et al., 2015c). As ad-
dressed in Section 3.1, the fuzzy c-means clustering exploits a number nC = 4 of
clusters and o = 3 delay on input and output regressors. The algorithm generates
the membership function points, that are fitted through Gaussian membership
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Figure 5.2: The faulty signals (black line) compared with the fault-free signals (grey
line), in case of fault 1,2,3, and 8.
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functions.
Afterwards, the regressand α and δ of Eq.3.9 is identified for each cluster,

following the procedure explained in Section 3.1. As a result, the TS models can
be implemented and the nine fault estimators are built and organized into the two
observer schemes of Section 4.2, in order to accomplish the fault diagnosis and
identification task.

The modeling capabilities of the fuzzy TS models are evaluated in terms of
Root Mean Squared Error (RMSE), where the error is calculated as the difference
between the measured and the estimated signals, for each output provided by the
fuzzy estimators, in nominal fault-free condition. Table 5.2 shows the achieved
modeling performances of the nine designed fault estimators.

Table 5.2: The capability of the estimators to reconstruct the system output in fault-
free-condition, in terms of RMSE.

Fault Estimator 1 2 3 4 5 6 7 8 9

RMSE 0.016 0.023 0.021 0.020 0.019 0.021 0.017 0.021 0.019

Furthermore, these error signals are directly exploited as residual and they are
compared with the thresholds of Eq. 4.7, optimally selected in order to achieve
the optimization of the fault diagnosis performance indices, e.g. the missed fault
and the false alarm rate, defined in the following. Table 5.3 reports the adopted δ
value for the threshold logic of each fault estimator.

Table 5.3: The design parameter δ for each residual generator, that determines the
threshold logic.

Residual 1 2 3 4 5 6 7 8 9

δ 3.8 4.3 4.2 4.5 3.7 4.4 4.3 3.5 3.9

The meaningful simulation results, proposed in the following, consider two
actuator faults fu and two sensor fault fy, namely faults 1,4 and faults 8,9 of the
scenarios described in Section 2.2.4.

These faults change the monitored input and output signal u, y affecting the
residual r1,r4 and r8,r9 generated by the fuzzy fault estimators. These residual are
depicted in Fig. 5.3, that clearly show the achievement of the fault detection task,
as they are significantly above the threshold bounds only when the relative fault
is active.

5.1.2 Fault Diagnosis via Neural Networks

Nine open-loop NARX neural network (see Sec. 3.2) have been designed to esti-
mate the nonlinear behavior between the acquired measurements and the proposed
faults. The selected architecture of the networks involves two layers, namely the
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Figure 5.3: The residuals generated in faulty conditions by fuzzy estimators (black con-
tinuous line) compared the fault-free residuals (grey line) and the fixed
thresholds (dotted line). The considered residuals regard fault 1,4,8 and 9
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hidden layer and the output layer. The number of neurons in the hidden layer has
been fixed to nh = 16. Finally, a number of du = dy = 4 has been chosen for the
input-output delays. Similarly to the fuzzy models, the neural networks modeling
capabilities have been tested in terms of RMSE and the results are reported in
Table 5.4.

Table 5.4: The capability of the neural networks to reconstruct the system output in
fault-free-condition, in terms of RMSE.

Fault Estimator 1 2 3 4 5 6 7 8 9

RMSE 0.009 0.009 0.009 0.012 0.011 0.011 0.009 0.009 0.014

The fault detection task is achieved by comparing the residual with a fixed
optimized threshold, in this case, in contrast to the direct approach exploited by
the fuzzy estimators, the residuals are filtered by an evaluation function ahead of
the threshold comparison. This evaluation function can be either a mobile average
(MA) or a mobile variance (MV), with a properly tuned window size, as reported
in Table 5.5.

Table 5.5: The residual filter functions, for each fault estimator.

Residual Evaluation function Window samples

1 MV 20
2 MA 60
3 MV 20
4 MA/MV 45/55
5 MA 50
6 MV 60
7 MV 70
8 MA 50
9 MA 50

Figure 5.4 shows some meaningful residual signal for actuator faults, together
with the relative thresholds, while Fig 5.5 shows the residual regarding the sensor
faults. Further details on validation and comparative results are described in the
following.

5.1.3 Validation and Comparative Analysis

The evaluation of the performances of the considered Fault Diagnosis strategies is
based on the computation of the following indices:

• False Alarm Rate (FAR): the ratio between the number of wrongly de-
tected faults and the number of simulated faults;
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Figure 5.4: The residuals generated in faulty conditions by neural network estimators
(continuous line) compared the fixed thresholds (dashed line). The consid-
ered residuals concerns the actuator faults 1-4.
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Figure 5.5: The residuals generated in faulty conditions by neural network estimators
(continuous line) compared the fixed thresholds (dashed line). The consid-
ered residuals concerns the sensor faults 6-8.
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• Missed Fault Rate (MFR): the ratio between the total number of missed
faults and the number of simulated faults;

• True FDI Rate (TFR): the ratio between the number of correctly detected
faults and the number of simulated faults (complementary to MFR);

• Mean FDI Delay (MFD): the delay time between the fault occurrence and
the fault detection.

A proper Monte Carlo analysis has been performed in order to compute these
indices and to test the robustness of the considered FDI schemes. Indeed, the
Monte Carlo tool is useful at these stage, as the efficacy of the diagnosis depends
on both the model approximation capabilities and the measurements errors.

In particular, a set of 1000 Monte Carlo runs has been executed, during which
realistic wind turbine uncertainties have been considered by modeling some mean-
ingful variables as Gaussian stochastic processes around the nominal values and
with standard deviations corresponding to the realistic minimal and maximal error
values of Table 5.6.

Table 5.6: The realistic variation of some model parameters, simulated during the
Monte Carlo analysis.

Parameter Nominal Value Min. Error Max. Error

ρ 1,225Kg/m3 ±0.1% ±20%
J 7,794× 106Kg/m3 ±0.1% ±30%
Cp Cp0 ±0.1% ±50%

In addition to the proposed fuzzy and neural network fault estimators, the
performance indices of other fault diagnosis schemes are analyzed.

The first alternative approach considered here uses a Support Vector machine
based on a Gaussian Kernel (GKSV) developed in (Laouti et al., 2011). The scheme
defines a vector of features for each fault, which contains relevant signals obtained
directly from measurements, filtered measurements or their combinations. These
vectors are subsequently projected onto the kernel of the Support Vector Machine
(SVM), which provides suitable residuals for all of the defined faults. Data with
and without faults were used for learning the model for the FDI of the specific
faults.

The second scheme consists in an Estimation-Based (EB) solution shown in
(Zhang et al., 2011). In particular, a fault detection estimator is designed to
detect a fault, and an additional bank of estimators is derived to isolate them.
The method was designed on the basis of a system linear model and used fixed
thresholds. Each estimator for fault isolation was computed on the basis of the
particular fault scenario under consideration.

The third method relying on Up-Down Counters (UDC) was addressed in
(Ozdemir et al., 2011). These tools, are commonly used in the aerospace frame-
work, and they provide a different approach to the decision logic applied to the FDI
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residuals. Indeed, the decision to declare the fault occurrence involves discrete-
time dynamics and is not simply a function of the current residual value.

The fourth approach Combines Observer and Kalman filter (COK) methods
(Chen et al., 2011). It relies on an observer used as a residual generator for
diagnosing the faults of the drive-train, in which the wind speed is considered a
disturbance. This diagnosis observer was designed to decouple the disturbance
and simultaneously achieve optimal residual generation in a statistical sense. For
the other two subsystems of the wind turbine, a Kalman filter-based approach was
applied. The residual evaluation task used a generalized likelihood ratio test, and
cumulative variance indices were applied. For fault isolation purpose, a bank of
residual generators was exploited. Sensor and system faults were thus isolated via
a decision table.

Finally, the fifth method is a General Fault Model (GFM) scheme, which is
a method of automatic design (Svärd et al., 2011). The FDI strategy consists of
three main steps. In the first step, a large set of potential residual generators was
designed. In the second step, the most suitable residual generators to be included
in the final FDI system were selected. In the third step, tests for the selected set
of residual generators were performed, which were based on comparisons of the
estimated probability distributions of the residuals, evaluated with fault-free and
faulty data.

The comparative analysis results are reported in Table 5.7.
The results show the efficacy of the proposed FDI solutions. In details, both

fuzzy and neural network estimators seem to work better than other approaches,
and they have a noteworthy performance level considering the mean delay time,
which is significantly lower than 10 s for all the fault cases. Also false alarm and
missed fault rate are often lower than those of other approaches, particularly neural
networks features an almost null missed fault rate for all the considered faults.
However, for both fuzzy and neural networks FDI design, optimization stages are
required, for example for the selection of the optimal thresholds. Furthermore,
GKSV involves delays bigger than 25 s, with false alarms and missed fault rate up
to 35 %. EB has comparable performance with respect to GKSV in terms of false
alarm, true detection and missed fault rate, but with a quicker detection. UDC
often involves high false alarm rates, bigger than 12% for all the detectable faults.
COK and GFM have similar performances, with delay time higher than 10 s, false
alarm and missed fault bigger than 10 %. Fault 9 concerns the drive train. This
fault is difficult to detect at wind turbine level, therefore it is investigated also
in the context of the wind farm benchmark. However, the fuzzy estimators can
detect it, with a minimum delay but with a lower True FDI Rate, with respect to
the other fault cases.

5.1.4 Fault Tolerant Control

The fault diagnosis modules, working as nonlinear adaptive filters (Simani et al.,
2014a), are exploited to create a further control loop, so that the accommodation
of the diagnosed faults allows the system to work properly with the pre-existent
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Table 5.7: The comparative analysis of different approaches to the fault diagnosis of
the wind turbine benchmark model, among these the fuzzy and the neural
network estimators.

Fault Index GKSV EB UDC COK GFM Fuzzy Neural

1 FAR 0.001 0.001 0.001 0.001 0.001 0.001 0.001
MFR 0.002 0.003 0.002 0.003 0.002 0.001 0.001
TFR 0.978 0.977 0.987 0.977 0.982 0.999 0.999

MFD (s) 0.03 0.03 0.04 10.32 0.05 0.02 0.01

2 FAR 0.234 0.224 0.123 0.003 0.235 0.001 0.228
MFR 0.343 0.333 0.232 0.029 0.532 0.003 0.001
TFR 0.657 0.667 0.768 0.971 0.468 0.997 0.999

MFD (s) 47.24 44.65 69.03 19.32 13.74 0.08 0.08

3 FAR 0.004 0.141 0.123 0.056 0.135 0.003 0.001
MFR 0.006 0.132 0.241 0.128 0.232 0.008 0.001
TFR 0.974 0.868 0.769 0.872 0.768 0.992 0.999

MFD (s) 0.05 0.54 0.05 19.32 0.74 0.02 0.01

4 FAR 0.006 0.005 0.123 0.056 0.236 0.004 0.001
MFR 0.005 0.006 0.113 0.128 0.333 0.004 0.001
TFR 0.975 0.994 0.887 0.872 0.667 0.996 0.999

MFD (s) 0.15 0.33 0.04 19.32 17.64 0.02 0.69

5 FAR 0.178 0.004 0.234 0.256 0.236 0.002 -
MFR 0.223 0.005 0.254 0.329 0.242 0.003 -
TFR 0.777 0.995 0.746 0.671 0.758 0.997 -

MFD (s) 25.95 0.07 0.04 31.32 9.49 0.03 -

6 FAR 0.897 0.173 0.334 0.156 0.096 0.042 0.001
MFR 0.987 0.234 0.257 0.129 0.042 0.033 0.001
TFR 0.013 0.766 0.743 0.871 0.958 0.967 0.999

MFD (s) 95.95 11.37 12.94 34.02 9.49 3.03 0.01

7 FAR 0.899 0.044 0.134 0.134 0.123 0.047 0.676
MFR 0.899 0.035 0.121 0.101 0.098 0.023 0.001
TFR 0.101 0.965 0.879 0.899 0.902 0.977 0.999

MFD (s) 99.95 26.17 13.93 35.01 29.79 5.07 6.87

8 FAR 0.004 0.045 0.144 0.109 0.099 0.003 0.466
MFR 0.007 0.011 0.101 0.032 0.124 0.002 0.001
TFR 0.993 0.989 0.899 0.968 0.876 0.998 0.999

MFD (s) 0.07 0.08 0.09 0.06 8.94 0.05 0.20

9 FAR - - - - - 0.134 -
MFR - - - - - 0.165 -
TFR - - - - - 0.835 -

MFD (s) - - - - - 0.30 -
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Figure 5.6: The pulse sequence representing the fault 1 injecting into the system in
order to test the performance of the designed FTC system. The black line
is the actual fault, while the grey line is the estimation of the fuzzy FDI
module.

controller, designed in fault-free condition, as addressed in Section 4.3. The fol-
lowing test refers to the simulation of the actuator Fault 1, but the fault shape has
been changed into a sequence of rectangular pulses, with different size and length.
The considered FDI block, in this case featured by fuzzy estimators, provides an
accurate tracking of the fault signal, with minimal detection delay, as depicted in
Fig. 5.6. Under this condition, Fig. 5.7 highlights the effectiveness of the FTC,
which improves the tracking capabilities, in presence of faults. Indeed, the fig-
ure shows the output signal compared with its desired reference value, with and
without FTC. In particular the FTC has been applied at t = 250s during a 500s
simulation in which the fault 1 of Fig. 5.6 has been injected into the system.

The pulse sequence can represent a typical and realistic fault shape, however
the fault estimator can be easily generalized to reconstruct different shaped signals,
e.g. polynomial faults (Baldi et al., 2013).

Finally, the tracking capability of the proposed FTC strategy has been eval-
uated in terms of per-cent Normalized Sum of Squared Error (NSSE), generally
defined as:

NSSE% = 100

√∑N
k=1

(
r(k)− y(k)

)2

∑N
k=1 r

2(k)
(5.1)

Where r is the reference signal, y is the output, N the number of acquired sample
per simulation. The NSSE has been computed after the execution of 500 Monte
Carlo runs, characterized by the parameter uncertainties of Table 5.6, and the
result is reported in Table 5.8, for the best, the average, and the worst case occurred
over the 500 simulations of the fault 1, 2, and 3, modeled as pulse sequences.
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Figure 5.7: The comparison between the tracking of the desired generator speed, with-
out FTC (0 s-250 s) and with FTC (250 s-500 s), together with the control
signal β.

Table 5.8: The best, the average, and the worst value of NSSE% relative to the tracking
error computed after the simulations of three fault cases.

Simulated fault Best NSSE% Average NSSE% Worst NSSE%

1 8.04 11.23 15.05
2 9.01 12.23 14.74
3 7.96 10.35 13.83
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Figure 5.8: The mean wind speed sequence driving the simulations.

5.2 Wind Farm Simulations

The following simulations refers to the wind farm benchmark model associated with
the fuzzy fault estimators (Simani et al., 2015b), and highlight how the proposed
data-driven fault tolerant control strategy involves performance similar to those
related to the single wind turbine system.

Similarly to the wind turbine benchmark, the mean wind sequence driving all
the simulations covers the most common operative range from 5 m/s up to 15 m/s,
with a peak value of about 23 m/s. The wind and wake submodel processes this
sequence in order to generate the actual wind speed signal for all the turbines of
the wind farm and for both the measurement musts associated with the two wind
scenarios provided by the benchmark model (see Section 2.3), taking into account
the disturbances and the interaction among turbines. Fig. 5.8 depicts the leading
wind sequence.

The available data consist of 440000 samples of input-output measurements,
with a sampling rate of 100 Hz.

The three proposed faults affect different wind turbines at different times, by
influencing the measured variables, i.e. βi, ωg,i, Pg,i. These faults are difficult to
detect at wind turbine level (see e.g. the fault 9 of the wind turbine benchmark
that is addressed also in the wind farm as fault 3). However, they can be more
easily detected at wind farm level, by comparing the performance of different
wind turbines. Table 5.9 shows the affected turbines per fault, together with the
occurrence time.

The shape of the simulated faults is the same for all the three cases: they are
modeled as an abrupt additive rectangular pulse.
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Table 5.9: The turbine on which a fault acts, together with the time during which the
fault is active.

Fault Affected Turbine Time (s)

1 7 1000-1100
2 3000-3100

2 1 1300-1400
5 3300-3400

3 6 1600-1700
8 3600-3700

5.2.1 Fault Diagnosis

Here, as addressed in (Simani et al., 2014b), the fuzzy fault estimators are de-
signed choosing a number of nC = 5 clusters and o = 2 delays on the input and
output regressors, related to the signals selected by the FMEA. The TS models
exploit Gaussian membership functions. Afterwards, the fault estimators are orga-
nized into a dedicated observer scheme that fulfills the isolation of the three faults
provided by the benchmark model.

Firstly, the model capabilities of the three estimator can be evaluated in terms
of Predicted Per Cent Reconstruction (PPCRE), defined as the per cent difference
between the measurements and the estimation, computed in fault free conditions.
It expresses the percentage of data not correctly reconstructed by the estimator.
As highlighted in Table 5.10, although this index increases when computed on data
which is not used for estimation (i.e. validation and test data sets), however, the
percentage is always smaller than 5%, thus featuring a good modeling capability.

Table 5.10: The Predicted Per Cent Reconstruction Error of the fuzzy fault estimators,
relative to the wind farm fault scenarios.

Data Set PPCRE (%)
Fault 1 Estimator Fault 2 Estimator Fault 3 Estimator

Estimation 0.90 0.87 0.92
Validation 2.80 1.80 2.10

Test 4.20 3.50 4.00

Then, the detection of the three faults is achieved by means of the residual gen-
erated by the fault estimators, after the proper tuning of the threshold parameter
δ. In particular, Fig. 5.9 highlights the residual relative to the fault 1 estimator,
whose value is bounded by the thresholds when the fault is not active, while it is
significantly over the threshold when the fault occurs on the two different turbines.
Similar results are achieved by the fault 2 estimator, whose residual is depicted in
Fig. 5.10.

Finally, the performances of the fault estimators, in terms of False Alarm Rate
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Figure 5.9: The residual generated by the fault 1 estimator (continuous line), with its
threshold levels (dotted line).

Figure 5.10: The residual generated by the fault 2 estimator (continuous line), with its
threshold levels (dotted line).
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(FAR), Missed Fault Rate (MFR), True FDI Rate (TFR), Mean FDI Delay (MFD)
are computed exploiting a Monte Carlo analysis, in which realistic uncertainties
on the model parameters are considered. In order to maintain the consistency of
the performance indices, the same values of Table 5.6 are adopted to execute the
analysis on the wind farm benchmark. The results are shown in Table 5.11, which
reports also the optimized values of the threshold parameter δ.

Table 5.11: The performance indices of the wind farm fault estimators, computed by
means of a Monte Carlo analysis.

Fault estimator FAR MFR TFR MFD (s) δ

1 0.002 0.003 0.997 0.75 4.8
2 0.001 0.001 0.999 0.95 4.5
3 0.002 0.003 0.997 0.60 4.6

The achieved results lead to some considerations: the proper choice of the δ
parameter can provide false alarm and missed fault rates of less than 0.3%, and true
detection rates bigger than 99.7%, with minimal mean detection delay. Moreover,
the Monte Carlo analysis validates the robustness and the stability of the proposed
fault diagnosis scheme, with respect to error, noise and uncertainty.

5.2.2 Comparative Analysis

Based on the considered benchmark model, an international competition has been
proposed at the IFAC World Congress 2014, where the developed fuzzy FDI strat-
egy (Simani et al., 2014b) was awarded among the best contributions (Odgaaard
and Shafiei, 2015).

Two noteworthy solutions proposed at the Congress are taken into account for
the comparison with the fuzzy fault diagnosis module. The first of them is the
fault detector developed by (Borchersen et al., 2014), that relies on a Cumulative
Sum (CUSUM) method for the evaluation of the residual signals. The generation
of the residuals depends on the estimation of the wind speed and direction. This
set of information is used to group the different wind turbine of the wind farm
with similar operating conditions, so that different turbines in the same group can
be compared. This relatively simple approach can represent a common industrial
implementation.

The second scheme considered in the comparative analysis is based on the
Interval Parity Equation (IPE) (Blesa et al., 2014). Here, the fault detection
scheme exploits parity equations and an unknown, but bounded, description of
the noise and modeling errors. The detection evaluates if the acquired input-
output measurements are within the interval prediction bounds. The isolation is
performed by means of observer based schemes.

Similary to the comparative tests carried out in the context of the single wind
turbine fault diagnosis, detection time and missed faults rate are used as perfor-
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mance indices. They are calculated in terms of average values, captured over a
significant number of simulations.

Table 5.12 and Table 5.13 report the comparisons.

Table 5.12: The mean fault detection delay time of the considered detectors, relative to
the three fault cases.

Method Fault 1 (s) Fault 2 (s) Fault 3 (s)

CUSUM 2.2 - 1
IPE 0.8 6.3 1.4
Fuzzy 0.75 0.95 0.60

Table 5.13: The mean missed fault rate of the considered detectors.

Method Fault 1 (%) Fault 2 (%) Fault 3 (%)

CUSUM 0 - 0
IPE 30 30 60
Fuzzy 0.1 0.3 0.1

Although, the CUSUM-based method does not detect the fault case 2, it has
the best performance in terms of missed faults, with a small detection delay. The
IPE method perform a quick detection of fault cases 1 and 3, but with a high
number of missed fault. The fuzzy detector seems to provide the faster detection
of all the fault cases (less than 1 s), with a small number of missed faults.

5.2.3 Fault Tolerant Control

As already remarked, the fault diagnosis module has been completed by means
of the standard wind farm controller implemented in the benchmark model. The
nonlinear filters featured by the fault estimators provide the on-line correction to
apply to the faulty input-output signals, according to the block diagram of Fig.
4.6.

In order to test the tracking capability of the proposed FTC strategy, the fault
case 1 has been injected into the system changing its shape into a sequence of
rectangular pulses of different length and size. Fig. 5.11 shows the actual fault
signal compared with the estimated one.

Finally, the effectiveness of the control is highlighted in Fig. 5.12, where the
wind farm reference power is compared with the total generated power. More
precise information on the tracking performances can be inferred considering the
per cent Normalized sum of Squared Error (NSSE%), already defined in Eq. 5.1.
Its values, reported in Table 5.14, are computed also in this case by exploiting the
Monte Carlo tool.
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Figure 5.11: The pulse sequence representing the fault 1 injecting into the system in
order to test the performance of the designed FTC system. The black line
is the actual fault, while the grey line is the estimation of the fuzzy FDI
module.

Figure 5.12: The tracking of the reference signal by means of the proposed FTC strat-
egy, in presence of faults.

Table 5.14: The best, the average, and the worst value of NSSE% relative to the wind
farm tracking error computed after the simulations of three fault cases.

Simulated fault Best NSSE% Average NSSE% Worst NSSE%

1 11.14 12.63 14.05
2 12.31 13.63 15.74
3 10.46 11.55 12.73
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Figure 5.13: The block diagram of the hardware in the loop test rig.

5.3 Hardware in the Loop Test

The Hardware In the Loop (HIL) test-rig (Simani, 2012) has been implemented
in order to assess the proposed fault diagnosis schemes in more realistic real-time
working conditions. These experimental tests aim at validating the noteworthy
results obtained in simulations, considering the almost real conditions that the
systems under analysis (i.e. the wind turbine and the wind farm) may deal with,
during their working situations.

The set-up of the test-rig, represented in Fig. 5.13, consists of three intercon-
nected components:

• Simulator: the models of the system dynamics have been implemented in
LabVIEWr environment, and consider factors such as disturbance, measure-
ment noise and uncertainty, in addition to the system models described in
Chapter 2. This software tool runs on an industrial CPU and allows the
real-time monitoring of the simulated system parameters.

• On board electronics: The fault tolerant controller has been implemented
in the AWC 500 system, which features standard wind turbines specifications.
This element receives the signals relative to the generated power and the
generator angular rates. Then, it processes the control algorithm, including
the fault diagnosis module, and produces the generator torques and pitches
command signals transmitted to the simulator.

• Interface circuits: they carry out the communication between the sim-
ulator and the on board electronics, receiving the output signals from the
simulator and transmitting the signal generated by the control algorithm.
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Table 5.15 and Table 5.16 refer to the fuzzy fault diagnosis and summarizes the
results obtained using this real-time HIL set-up, respectively for the wind turbine
and the wind farm simulated system.

It is worth observing the consistency of the almost real-time test with respect to
the Monte Carlo analysis above mentioned in Section 5.1 and Section 5.2. Although
the performances of the Monte Carlo analysis seem to be better than those obtained
using the HIL platform, some issues have to be taken into account. Indeed, the
numerical accuracy of the on-board electronics, which involves float calculations
is more restrictive than the CPU of the simulator. Moreover, also the analog
to digital and the digital to analog conversions can motivate possible deviations.
Note that real situations do not require to transfer data from a computer to the
on board electronics, so that this error is not actually introduced.

However, the obtained deviations are not critical and the developed control
systems can be also considered in real wind turbine applications. 5.16

Table 5.15: The Fault Diagnosis performance indices relative to the wind turbine HIL
test.

Simulated fault FAR MFR TFR MFD

1 0.005 0.005 0.995 0.07
2 0.004 0.004 0.996 0.49
3 0.004 0.004 0.996 0.08
4 0.005 0.005 0.995 0.07
5 0.003 0.004 0.997 0.06
6 0.004 0.005 0.996 0.76
7 0.005 0.004 0.995 0.64
8 0.005 0.004 0.995 0.06
9 0.004 0.005 0.996 0.18

Table 5.16: The Fault Tolerant Control performances, relative to the wind farm HIL
test.

Simulated fault Average NSSE%

1 13.74
2 14.37
3 15.01
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Chapter 6

Conclusions and Further
Investigations

The results achieved by the proposed system, reported in Chapter 5 lead to several
considerations.

This thesis firstly proposes a procedure for the fault detection and isolation
of both a single wind turbine and a wind farm benchmark model using data-
driven approaches, relying on fuzzy logic and neural networks, and involving a
design based on uncertain input-output measurements. It is assumed that the
process under investigation is characterized by a complex nonlinear behavior, and
its available measurements are normally not very reliable, due to the wind speed
unpredictable and uncertain nature.

The residual generators considered here for diagnosis purposes have either the
form of Takagi-Sugeno (TS) fuzzy models or recurrent neural networks.

In particular, the fuzzy models were derived using the combination of a cluster-
ing technique, called c-means clustering, and an identification procedure aimed at
optimizing the coefficients of the TS local affine models, solving the noise-rejection
problem.

On the other hand, the neural network residual generators are based on the
open-loop Nonlinear AutoRegressive with eXogenous Input (NARX) architecture,
as it provide an effective strategy to menage the relations between input-output
past and current data. The networks are trained using target patterns coming from
noisy measurement acquisitions and exploiting the Levenberg-Marquart backprop-
agation algorithm.

After the data-driven design of the estimators, they are tested in fault-free
condition showing good modeling capabilities. Then, the fault detection and the
fault isolation scheme are derived. The first exploits the evaluation of the gener-
ated residuals by means of a threshold logic which can be preceded by a filtering
function. The threshold levels are optimized on the basis of the statistical proper-
ties of the residuals. The isolation scheme uses a bank of generalized or dedicated
observers for highlighting the fault location.

Finally, the effectiveness of the proposed approaches is tested on the data
acquired from the simulated benchmark systems. The detection and isolation of

93



94 CHAPTER 6. CONCLUSIONS AND FURTHER INVESTIGATIONS

the faults affecting sensors, component and actuators of the process under diagnosis
is properly achieved. The performances are evaluated in terms of false alarms,
missed faults and mean detection delay and compared with those of other advanced
fault diagnosis schemes. A Monte Carlo analysis validates the robustness and the
stability of the fault diagnosis by taking into account the typical variation and
uncertainty affecting several model parameters.

As a result of the proper accomplishment of the fault diagnosis task, a fault
tolerant controller can be implemented on the basis of the generated fault estima-
tions. Indeed, following an Active Fault Tolerant Control (AFTC) strategy the
input-output faulty signals are compensated by means of a second control loop, in
order to accommodate the inner control action. In this way, the main controller
can be designed for fault-free nominal conditions.

Also the proposed fault tolerant control scheme is tested in the context of
the wind turbine and wind farm benchmark models, obtaining interesting per-
formances in terms of tracking errors in faulty conditions. The validation of the
controller relies on a Monte Carlo analysis, which demonstrates the robustness
against parameter uncertainties and disturbances.

In order to investigate the performances of the overall fault tolerant control
scheme in a more realistic real-time framework, the Hardware In the Loop (HIL)
test has been carried out. It consists of a simulator, running on an industrial com-
puter, that interacts with the on-board electronics through the interface circuits.
The simulation involves the system under monitoring, together with additional
noise and disturbances, then, the on-board electronics implements the fault toler-
ant controller that receive the simulated measurements and generates the control
action. The HIL test shows good tracking capability in faulty condition, charac-
terized by performance indices similar to those obtained in the pure simulations.

It is worth noting that further related researches can be carried out, aimed at
optimizing the residual generators, in particular the neural network schemes, as
different architectures, as well as different training algorithm can be tested and
compared, in order to optimize the modeling capability. Furthermore, also the
AFTC can be improved by investigating different solutions for the main controller,
as the simple pre-existent controller as been exploited in this thesis. Moreover,
a noteworthy validation should be fulfilled by testing the proposed AFTC in dif-
ferent benchmark systems, first of all the Fatigue, Aerodynamics, Structures, and
Turbulence (FAST) simulator.

However, the overall achieved result induces future studies concerning the ap-
plication to real wind turbine installations, where the currently adopted control
strategies are often too conservative, as they involve the shutdown of the faulty
turbine to wait for maintenance services.

Concluding, wind energy is a fast growing industry and this growth implies
a large demand for better modeling and control. Possible faults, malfunctions,
uncertainties and disturbances make the control a challenging task to overcome.
These considerations motivate the need for advanced modeling and further de-
velopment of sustainable control strategy, with the main objective of reducing the
wind energy cost. This clean and renewable energy source should match the global
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electricity needs, and it represents the proper candidate to solve the future World
energy requirements, if the technological barriers will be overcome. The industrial
application of sustainable control is still in its prototyping phase, and there exist
many opportunities to significantly improve the efficiency and the lifetime of wind
farms.
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Appendix A

Active FTC via Nonlinear
Geometric Approach

With reference to the wind farm benchmark model of Section 2.3, this appendix
addresses the development of an Active Fault Tolerant Control (AFTC) system,
involving a fault accommodation scheme. The proposed fault diagnosis module,
required by the control scheme, is based on adaptive filters designed via the Non-
linear Geometric Approach (NLGA) (De Persis and Isidori, 2001). It generates
the on-line fault estimation, that is exploited by a second control loop for com-
pensating the faulty signals. Moreover, the nonlinear filters are decoupled from
both the disturbance affecting the measurements and the interaction among wind
turbines of the wind farm.

The direct application of the NLGA would be impossible, because of the poor
knowledge of the analytical model of the system, particularly concerning the aero-
dynamics of the wind turbine, that are expressed by means of the look-up tables
(e.g. for the power coefficient Cp, see Section 2.1). Therefore, in order to design
a disturbance decoupled fault estimation module, the Cp map is approximated as
second order polynomial functions. The same approach is used for deriving the
wake model, that takes into account the effects of the interactions among turbines.

The first stage of the nonlinear filter design involves the estimation of the
disturbance distribution functions, which allow the decoupling of the disturbance
acting on the system. These disturbances are mainly due to two terms: the first
contribution comes from the wind speed of the i-th turbine, vw,i that affects the sys-
tem through its power coefficient Cp,i; the second contribution includes the effects
of the interference of the i-th turbine with the j-th turbine, and it is represented
by the signals vwm,j of the wake model.

The estimation of the disturbance distribution related to the first disturbance
term, follows the procedure described in (Simani and Castaldi, 2014) and includes
the estimation of the analytical functions relying on the Cp coefficient, as well as
on the wind speed vw,i. This method deals with the identification of the nonlinear
relations of the uncertainty distribution from input-output data acquired from
the turbine. Similarly, also the estimation of the wake disturbance distribution
requires an analytical knowledge about the unknown inputs vwm,j, that is derived
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exploiting the same technique.
Afterwards, the derivation of the nonlinear filter can be performed. Their struc-

ture is obtained by exploiting a disturbance decoupling scheme belonging to the
NLGA framework. In more details, a coordinate transformation highlights a sub-
system affected by the fault but decoupled by the disturbances, here represented
by the vector d = [vw,i, vwm,j].

The starting point is given by the overall nonlinear model, expressed as:{
ẋ = n(x) + g(x)c+ l(x)f + pd(x)d

y = h(x)
(A.1)

Where x is the state vector, c(t) is the control input vector, f(t) is the fault signal,
d(t) is the disturbance and y is the output vector. n(x), l(x), the columns of g(x)
and pd(x) are smooth vector field, h(x) is a smooth map.

A coordinate change in the state and output space leads to new local state and
output (x̄, ȳ) transforming A.1 into:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

˙̄x1 = n1(x̄1, x̄2) + g1(x̄1, x̄2)c+ l1(x̄1, x̄2, x̄3)f

˙̄x2 = n2(x̄1, x̄2, x̄3) + g2(x̄1, x̄2, x̄3)c+ l2(x̄1, x̄2, x̄3)f + p2(x̄1, x̄2, x̄3)d

˙̄x3 = n3(x̄1, x̄2, x̄3) + g3(x̄1, x̄2, x̄3)c+ l3(x̄1, x̄2, x̄3)f + p3(x̄1, x̄2, x̄3)d

ȳ1 = h(x̄1)

ȳ2 = x̄2

(A.2)

This elaboration yields to an observable subsystem, that if exists, is affected
by the faults but not by the disturbance. Therefore, the new reference frame can
be represented by the x̄1 subsystem:{

˙̄x1 = n1(x̄1, ȳ2) + g1(x̄1, ȳ2)c+ l1(x̄1, ȳ2, x̄3)f

ȳ1 = h(x̄1)
(A.3)

Where x2 is denoted with y2 as it is considered as independent input. NLGA can
be designed if the following constraints are satisfied:

• x̄1 is independent from x̄3;

• the fault is a step function of the time;

• there exists a proper scalar component x̄1,s of the state vector x̄1 such that
the corresponding scalar component of the output vector is ȳ1,s = x̄1,s and
the following relation holds: ˙̄y1,s = M1(t)f +M2(t), with M1,M2 functions
of input output measurements.

The proposed NLGA adaptive filter deals with a least-square algorithm with for-
getting factor β, described by the adaptation law:{

Ṗ = βP − 1
N2P

2M̆2
1 , P (0) = P0 > 0

˙̂
f = PϵM̆1, f̂(0) = 0

(A.4)
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Figure A.1: The scheme of the integrated AFTC solution.

With N2 = 1 + M̆2
1 normalization factor.

Then, the output estimation and the corresponding normalized estimation error
are formulated as: {

ˆ̄y1,s = M̆1f̂ + M̆2 + λˆ̆y1,s

ϵ = 1
N2 (ȳ1,s − ˆ̄y1,s)

(A.5)

λ > 0 is a parameter related to the bandwidth of the filter. The variables denoted
by the superscript ·̆ are obtained by means of a low pass filter, as follows:⎧⎪⎪⎨⎪⎪⎩

˙̂
M1 = −λM̆1 +M1, M̆1(0) = 0
˙̂
M2 = −λM̆2 +M2, M̆2(0) = 0
˙̂y1,s = −λy̆1,s + y1,s, y̆1,s(0) = 0

(A.6)

Finally, Eq. A.4, A.5, and A.6 provide the considered adaptive filter.
Once the fault diagnosis module has been derived, the fault estimations are used

for the compensation of the faulty signals related to the generated power, the pitch
angle and the generator speed, namely Pg,β,ωg, respectively. The compensated
signals are exploited by the wind farm pre-existent controller, designed in fault-
free nominal conditions, as shown by Fig. A.1.

As a consequence of these corrections, the controller provides the nominal track-
ing of the reference signal.

With reference to the input-affine model A.1, the state variables and the control
input vector, applied to the i-th turbine are:

x = [x1, x2]
T = [ωg,i, Pg,i]

T (A.7)

c = [Pr,iβi] (A.8)
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Hereafter the fault case 2 is considered, in which the fault acts on the pitch angle.
The result of the modeling leads to:

n(x) =

[
−ρA

2J
0.0010R3x2

1 − 1
J

−pgenx2

]
(A.9)

g(x) =

[
0 ρA

2J
0.0003R3x2

2 − 1
J

pgen 0

]
(A.10)

l(x) =

[
0 ρA

2J
0.0003R3x2

1 − 1
J

0 0.0001

]
(A.11)

pd(x) =

[
ρA
2J
0.0010R2x1 0.0011

0.0002 ρA
2J
0.0027x2

]
(A.12)

Where the index i is dropped and the wind turbine parameters are defined as
follows: A is area swept by the rotor, R is the rotor radius, ρ is the air density, J
is the rotor inertia.

Finally, the design of the NLGA adaptive filter for the reconstruction of the
fault 2 is based on the expression:

˙̄y1,s = M1f +M2 (A.13)

With: {
M1 = 0.8x2

1 − 0.036x1

M2 = 1.02x2
2 + 15.7x2 − 0.3x3

1 + 0.77x2
1

(A.14)

The derivation of the NLGA adaptive filters for the reconstruction of the fault
cases 1 and 3 depends on a different selection of the vector A.11.

The fault diagnosis block provides an accurate estimation of the fault size, with
minimal detection delay (see (Simani et al., 2015d) for more details). In order to
summarize the tracking capabilities of the proposed strategy, the performance of
the AFTC via NLGA has been evaluated in terms of Normalized Sum of Squared
tracking Errors (NSSE), calculated by means of a Monte Carlo analysis consisting
of more than 500 runs, which considers typical parameters variations.

Table A.1 highlights the comparison between the proposed approach and the
FTC relying on fuzzy model described in Section 5.2.

Table A.1: Comparison of achieved performance in terms of average NSSE%.

AFTC methods Fault 1 Fault 2 Fault 3

AFTC via NLGA 10.33% 11.56% 10.47%
AFTC via fuzzy TS model 14.07% 15.06% 15.34%

Despite the performance of the NLGA adaptive filters seem to be quite better
respect to those of the identified TS fuzzy models, they strongly depend on the
goodness of the analytical description, rather than the acquired data. Therefore,
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the application to real system may leads to a decreasing of the performance due
to modeling errors that the data-driven approaches should be able to capture and
manage more effectively.
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