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Introduction

Cancer is a leading cause of death worldwide, accounting for 8.2 million deaths in 2012

[1]. Cancer mortality can be reduced if cases are detected and treated early. Some of the

most common cancer types, such as breast cancer, cervical cancer, oral cancer and colorectal

cancer have high cure rates when detected early and treated according to best practices.

However, a tumour in a early stage of evolution has a very small size and could be located

near radiosensitive organs. Therefore, high-resolution techniques are required to accurately

detect and effectively treat such small tumours.

Going deeper in understanding the processes of carcinogenesis would represent a further

step forward in the fight against cancer. A non-invasive imaging system that allows in

vivo assessment of biological and biomolecular interactions would permit to get insight into

the complex events contributing to the induction of DNA damage, repair, mutagenesis,

and carcinogenesis [2]. While these kind of studies can be performed using conventional

radionuclide imaging techniques such as single-photon emission tomography (SPECT) and

positron emission tomography (PET), these techniques are inherently limited to spatial

resolutions of 1-2 mm [3]. The image resolution could be increased by using an optics

capable of focusing the γ-ray emitted by radionuclides. As the index of refraction of all

materials is . 1 for high-energy photons, common refractive optics can not be used [4]. A

possible solution is to exploit the total external reflection of γ-rays that take place when

they impinge on the surface of a medium at a small glancing angle. A radionuclide imaging

system based on such kind of reflective optics was developed for small animals [5, 6]. This

device is theoretically capable of achieving sub-millimetre spatial resolution with 1 × 10−5

efficiency for γ-photons at 27.5 keV emitted by 125I. However, since the critical angle for

total reflection is inversely proportional to the photon energy and a medical device has to

be as compact as possible, this approach is not suitable for performing radionuclide studies

exploiting γ-lines at higher energy, such as the intense line at 140.5 keV emitted by the

99mTc, which is the most used general purpose radioisotope.

A Laue lens is an optics potentially capable of overcoming this limit. It is composed of an
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Introduction

ensemble of crystals, usually disposed as concentric rings, that exploit Bragg diffraction in

Laue configuration to focus a relatively large number of the photons emitted by a high-energy

source into a small focal spot [7]. Due to focusing, a precise mapping of the radioactivity

distribution inside a small volume can be obtained. Therefore, this device could be exploited

to perform high-resolution radionuclide imaging both for small-animals and humans.

The same optical device can be also used for treating tumour through radiotherapy.

Radiotherapy consists in imparting a radiation dose to a target volume in order to destroy

cancer cells. Any radiotherapy treatment aims to maximize the dose to the tumour, minimiz-

ing at the same time the irradiation of neighbouring healthy tissues. Among radiotherapy

treatments, hadron therapy uses charged particles beams, namely protons or positive ions,

to achieve the aforementioned goal. Indeed, they have a finite range of penetration in a

tissue and a high amount of energy released at the end of their track. However, hadron

therapy is not easily available, because it requires very large investments in equipment and

huge machines [8]. Thus, only a limited number of patients can access to the high-quality

treatment provided by hadron therapy. Conventional radiotherapy is more accessible since

it relies on compact electron linear accelerator producing photon beams in the MeV energy

range to reach the tumour and spare the skin. However, such technique is not comparable

with the hadron therapy in terms of dose deposition accuracy. A device capable of focusing

X-rays would allow concentrating the dose toward the tumour sparing at the same time the

surrounding normal tissues. Indeed, due to focusing, the photon flux would increase with

the penetration depth and would reach the maximum at the focal point. The combination of

this effect with the photon absorption by the tissues would give rise to a depth-dose profile

showing a pronounced peak at the focal depth and a rather rapid fall-off beyond this point.

This dose distribution is somewhat similar to that achievable with hadron therapy. The

phenomenon of diffraction occurring in the crystals composing a Laue lens can be exploited

to focus an X-ray beam. In particular, it is possible to use a conventional X-ray tube with

peak voltage up to 250 kV as a source of radiation and exploit a Laue lens to concentrate

as much radiation as possible toward the focal point of the lens, where the tumour mass is

located. Thus, it would be possible to reach a high precision in the dose delivery with an

equipment orders of magnitude less expensive if compared to the cost of a facility for hadron

therapy and even less expensive than the equipment for traditional radiotherapy based on

MeV X-ray beams.

The work presented in this thesis concerns the study and the realization of Laue lenses

devoted to medical applications. The thesis is divided into 5 chapters plus 2 appendices.

The first chapter deals with the basic concepts of diffraction of high-energy radiation in
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Introduction

various types of crystals, i.e., perfect, mosaic, and curved diffracting planes (CDP) crystals.

The second chapter contains an overview of the usage of bent crystals in modern physics

and of the techniques used to fabricate them. Some innovative bending methods devel-

oped at the Sensor and Semiconductor Laboratory (SSL) of Ferrara in the framework of the

INFN-LOGOS project are described in detail. Furthermore, an experiment devoted to the

demonstration of the focusing capabilities of a bent crystal is described. In the third chapter,

a detailed study and the design principles of a Laue lens for nuclear medicine are presented.

The study was carried out through a specifically written ray tracer, called LAUENM. The

imaging capabilities of the designed lenses were assessed with diverse configurations of the

source. In these cases, the images recorded by a real detector were simulated. The fourth

chapter aims to demonstrate the effectiveness and versatility of a system for radiation ther-

apy based on a Laue lens. Two series of simulations were carried out. The first series was

performed employing a custom made Monte Carlo software, called LAUETHER to calculate

the phase space of the diffracted photons in a plane at an arbitrary distance from the lens.

The second series of simulations was performed through GAMOS, a Monte Carlo particle

tracking code, to calculate the dose distribution inside a voxelized water phantom due to the

beam diffracted by a proposed Laue lens. Various conditions of irradiation were considered.

The fifth chapter is dedicated to describe a first prototype of Laue lens for radiotherapy

developed at the SSL. The result of an experimental test performed at the LARIX labora-

tory of Ferrara is also shown and a comparison with the simulations is given. In Appendix

A, a brief treatment of the theory of linear elasticity is provided. Appendix B contains

a description of the algorithms used in the LAUENM code and the demonstration of the

focusing/defocusing properties of CDP crystals.
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Chapter 1

Diffraction of high-energy radiation

in crystals

1.1 Structure of crystals

An ideal crystal can be viewed as the infinite repetition of identical structural units,

called basis. The spatial distribution of the basis can be described through a set of points

called lattice. It is possible to define the lattice using three vectors, a1 a2 a3, such that the

arrangement of the atoms in the crystal is the same when viewed at the point r or at each

point r′,

r
′ = r + u1a1 + u2a2 + u3a3, (1.1)

where u1 u2 u3 are three arbitrary integer numbers. Vectors ai represent the lattice con-

stants. The volume built on these vectors is called unit cell. The unit cell is therefore the

smallest unit of volume that contains all of the structural and symmetry information to

build-up the macroscopic structure of the lattice by translation. The positions of the atoms

inside the unit cell are described by the set of atomic positions measured from a lattice

point. Lattice and base define the crystal, as the basis indicates the positions occupied by

different atoms in the cell and their type, while the reticle provides the information on the

periodicity of the crystal. The fundamental characteristic of crystals is their invariance,

for appropriate translations and rotations, of their physical properties, such as the optical,

chemical, electrical, and elastic properties. The space group that identifies each type of

crystal defines these degrees of freedom. Base and lattice are not uniquely defined, there

are endless equivalent combinations to describe the same crystal. A cell is called primitive

if it contains only one lattice point.

Silicon and germanium have the crystalline structure of the diamond, which is based on
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Chapter 1 Diffraction of high-energy radiation in crystals

Figure 1.1: Conventional cubic cell of silicon.

the tetrahedral bond between the atoms of the crystal. Each atom forms covalent bonds

with 4 identical neighbouring atoms. The bonds are characterized by the same length and

angular separation and define a tetrahedral structure. However, such type of structure

involves some of the features of the cubic symmetry. Indeed, it can be described through a

face-centred cubic (fcc) lattice with bi-atomic basis composed of identical atoms positioned

at the point of coordinates (0,0,0) and (a/4,a/4,a/4), where a is the lattice constant (5.43

Å for Si) and identifies the side of the conventional cubic cell (Fig. 1.1). This crystalline

structure can also be represented as two interpenetrating fcc lattices shifted with respect to

one another by the vector (a/4,a/4,a/4).

The crystallographic directions and planes are fictitious entities that connect the atoms

in a crystal. Depending on the density of atoms and on the type of bonds, the chemical-

physical properties may change along different directions and planes. Directions and planes

can be identified within a crystal through three integers hkl, called Miller indices. They are

defined as the reciprocals of the fractional intercepts which the lattice plane makes with the

vector defining the conventional cell. If we consider a crystal with a cubic conventional cell

and the planes make intercepts of a/h, a/k, a/l with the axes, then the Miller indices of that

plane are (hkl), written in parentheses. If a plane is parallel to a given axis, its fractional

intercept on that axis goes to infinity and the corresponding Miller index is taken as zero.

If a fractional intercept is negative, it is labeled with an overlined symbol. If the Miller

indices [hkl] are shown in square brackets, they give the direction of a vector orthogonal

of the plane with the same indices. As an example, in Fig. 1.1 a lattice plane and some

directions are shown.
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Section 1.3 1.2 Generalities on diffraction in crystals

1.2 Generalities on diffraction in crystals

X- and γ-ray diffraction is a coherent effect carried out by parallel atomic planes within a

crystalline material. Incident photons are scattered by the electrons in the crystal. Reflected

waves interfere constructively, giving rise to a diffracted beam, provided that their paths

through the crystal leads to a phase shift which is multiple of the wavelength. This condition

occurs if the Bragg’s law is satisfied:

2dhklsinθB = λ, (1.2)

where dhkl is the spacing between atomic planes, θB the angle subtended by the incoming

photon trajectory and the diffracting lattice planes, and λ the wavelength of the radiation.

The Bragg angle, θB, depends on the orientation of the lattice planes. Indeed, for a crystal

having a cubic conventional cell, such as Cu, GaAs, Si, or Ge, the spacing between planes

can be expressed as

dhkl =
a√

h2 + k2 + l2
, (1.3)

where a is the lattice constant of the crystal and h, k, l are the Miller indices of the planes.

Since λ = hpc/E, where hp is the Planck’s constant, c the speed of light in vacuum, and E

the energy of the radiation, by combining equations (1.2) and (1.3), it follows

sinθB =
hpc

√
h2 + k2 + l2

2aE
. (1.4)

Two diffraction geometries are possible. In the first case, called Bragg (reflection) geom-

etry and depicted in Fig. 1.2.a, the diffracted beam comes out from the same crystal surface

on which the incident beam impinges. Conversely, in the Laue (transmission) geometry,

depicted in Fig. 1.2.b, the diffracted beam comes out from the surface opposite to that onto

which the incident beam impinges. For high-energy photons, such as those emitted by a

radiotracer, the Bragg angle is very small and the crystal has to be large to diffract even a

small-size beam. For this reason, the Laue geometry represents a more convenient choice.

1.3 Diffraction in perfect crystals

The diffracted beam intensity depends on the crystal features and can be obtained from

the dynamical theory or from the kinematic theory of diffraction [9]. The dynamical theory,

as developed by Darwin, takes into account the interaction of X-rays with matter by solving

recurrence equations that describe the balance of partially transmitted and partially reflected
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Chapter 1 Diffraction of high-energy radiation in crystals

Figure 1.2: Diffraction geometries. a) Bragg geometry: the diffracted beam comes out from
the same crystal surface on which the incident beam impinges. b) Laue geometry: the
diffracted beam comes out from the surface opposite to that on which the incident beam
impinges.

waves at each lattice plane [10, 11]. On the contrary, the kinematic theory assumes that each

photon is scattered only once. The total diffracted amplitude is simply obtained by adding

the individual amplitudes diffracted by each diffracting centre, taking into account only the

geometrical phase differences between them and neglecting the interaction of the radiation

with matter. Even if the kinematic theory is less rigorous than the dynamical theory, it

gives correct results when a thin perfect crystal or a highly-distorted crystal is considered.

An exhaustive treatment of the subject, in both perfect and distorted crystals, can be found

in specialized books [4] or in review articles [12, 13, 14]. Here, only the concepts that are

relevant for the study of a Laue lens are recalled.

The reflectivity of a crystal is defined as the ratio of the diffracted beam intensity over

the incident beam intensity. Instead, diffraction efficiency is defined as the ratio of the

diffracted beam intensity over the transmitted beam intensity when no diffraction occurs.

For a radiation of energy E and a crystal with lattice planes (hkl), equation (1.4) provides

the incidence angle θ at which diffraction occurs. Actually, both kinematic and dynamical

theories predict a range around the Bragg angle θB for which the intensity of the diffracted

beam is different from zero. If we consider a perfect crystal under Laue symmetrical ge-

ometry1, the rocking curve, i.e. the reflectivity (or the diffraction efficiency) plotted as a

function of ∆θ = θ − θB shows a narrow peak (see Fig. 1.3). Its width at Half Maximum

(FWHM) is called Darwin width δ

δ = 2
dhkl
Λ0

, (1.5)

1In Laue symmetrical geometry, the angle between the lattice plane and the crystal surface is exactly 90◦.
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Section 1.3 1.3 Diffraction in perfect crystals

Figure 1.3: Rocking curves for flat Ge crystal with a thickness of 1 mm and using (111)
lattice planes to diffract 140.5 keV photons.

where Λ0 is defined as the extinction length

Λ0 =
πVc cos θB
reλ|C||Fhkl|

, (1.6)

Vc being the volume of the crystal elementary cell (Vc = a3 for a cubic cell), re the classical

electron radius, λ the wavelength of the radiation, C the polarization factor, and Fhkl the

structure factor. For an unpolarized beam, the polarization factor is C = (1 + cos2 θB)/2.

The structure factor quantifies the scattering efficiency of an elementary cell of the crystal,

by taking into account the repartition of electrons in space and the vibration of lattice ions

via the so-called Debye-Waller factor [15].

The Darwin width defines the angular acceptance of a flat crystal, as well as the energy

bandwidth since Bragg’s law, under small-angle approximation, gives an inverse proportion-

ality between diffraction angle and photon energy. At the energies of interest for medical

applications (50 - 250 keV), typical values for δ are of the order of 1 arcsec. Furthermore,

because of the re-diffraction of the beam, the diffraction efficiency of a thick flat crystal can

be expressed as

ηD =
1

2(1 + (2∆θ/δ))2
, (1.7)

therefore the reflectivity of a thick flat crystal is pinned to 1/2 [9]. A crystal can be regarded

as thick if T0 ≫ Λ0, T0 being the thickness of crystal traversed by radiation. Since in our

case Λ0 is small, this condition is almost always fulfilled. The integrated reflectivity is the

integral of the reflectivity over the angular acceptance (and energy bandwidth) of the crystal

[16]. Since this quantity results to be very poor for a flat perfect crystal, different types

of crystals have been considered by the scientific community for the applications and in
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Chapter 1 Diffraction of high-energy radiation in crystals

Figure 1.4: Sketch of a mosaic crystal.

particular for the realization of a Laue lens. Their features are summarized in the next

sections.

1.4 Diffraction in mosaic crystals

Unlike an ideal crystal, a real crystal presents imperfections due to its growth condition,

and it can be better modeled through the Darwin’s Model [15]. This model, known also as

mosaic model, regards the crystal as an ensemble of microscopic ideal crystals, the crystal-

lites, slightly misaligned to each other (see Fig. 1.4) according to an angular distribution,

which is usually a Gaussian function

W (∆θ) = 2

√

ln 2

π

1

m
e
− ln 2( ∆θ

m/2
)2
. (1.8)

The FWHM of this distribution m is called mosaicity, or mosaic spread, of the crystal. The

reflectivity, under symmetric Laue condition, is

R =
1

2
(1− e2σT0)e−µT0/ cos θB , (1.9)

T0 being the thickness traversed by the beam, µ the linear absorption coefficient of the

crystal, and

σ = W (∆θ)Q. (1.10)
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Section 1.5 1.5 Diffraction in crystals with curved diffracting planes

Q is the integrated intensity diffracted by an individual crystallite per unit of thickness.

From the dynamical theory of diffraction, Q can be written as

Q =
π2dhkl

Λ2
0 cos θB

f(A). (1.11)

Under small-angle approximation, which is valid above 100 keV, the function f(A) can be

written as

f(A) =
2I0(2A)

2A
. (1.12)

I0 is the integral, from 0 to 2A, of zero-order Bessel function. A is defined as

A =
πt0

Λ0 cos θB
, (1.13)

t0 being the thickness of crystallites. f(A) is approximately 1, which is its maximum value,

when t0 ≪ Λ0, namely when the dynamical theory tends to the kinematic theory.

The reflectivity of a mosaic crystal is the product of two terms. The first one is the

diffraction efficiency of the crystal, the second one takes into account the absorption of the

beam. As can be seen by the equation (1.9), reflectivity peaks at ∆θ = 0. The peak height

is at most 1/2 as in the case of a perfect crystal.

The FWHM of the rocking curve, Ω, is proportional to the mosaicity of the crystal and

can be written as

Ω = m

√

− ln(− 1
α ln(12(1 + e−α)))

ln 2
, (1.14)

where α is a dimensionless coefficient given by

α = 4π2

√

ln 2

π

dhklT0

Λ2
0m

. (1.15)

Even though peak reflectivity is at most 1/2, a mosaic crystal with large mosaicity (it

can be several tens of arcsec) may exhibit a large integrated reflectivity. For this reason,

such crystals were chosen for the realization of the first prototypes of Laue lens for nuclear

medicine [17, 18].

1.5 Diffraction in crystals with curved diffracting planes

Another type of crystal is the so-called Curved Diffracting Planes (CDP) crystal. In a

CDP crystal, a stress induces a curvature in the whole lattice structure according to the

elastic properties of the material. Due to the curvature, there is an angular dispersion of
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Chapter 1 Diffraction of high-energy radiation in crystals

Figure 1.5: Diffraction in CDP and perfect crystals. a) In a CDP crystal, due to the
continuous change of the incident angle, re-diffraction is unlikely. b) In a perfect crystal the
beam is reflected many times, limiting the reflectivity to 50%.

the lattice planes within the crystal. The continuous change in the orientation of the lattice

planes makes it unlikely to have re-diffraction inside the crystal and the reflectivity limit

of 50% disappears (Fig. 1.5). Thus, CDP crystals have the potential to achieve a better

performance with respect to both perfect and mosaic crystals.

There are many ways to fabricate a CDP. The easiest one is by means of an external de-

vice (holder) that applies a bending moment to the crystal [19]. This method has been in use

since decades for the realization of high-efficiency monochromators employed in synchrotron

high-energy X-ray beamlines [20, 21]. However, the use of a holder implies additional weight

and space-occupation. These problems represent a severe limitation to the use of such a

crystal as a component of a Laue lens for medical applications. Thus, the crystal curvature

is required to be self-standing. For this purpose, various methods have been proposed by

the scientific community. An overview of the most used and the most innovative techniques

are reported in chapter 2.

Diffraction in curved crystal can be studied through Takagi-Taupin’s equations [22, 23].

They are hyperbolic partial derivative equations obtained from Maxwell’s equations in a

deformed periodic medium. In the general case, these equations cannot be solved explicitly

and a numerical approach has to be used. Alternatively, for slightly curved crystal, the

so-called PPK theory can be adopted. Such theory, based on geometrical optics principles,

has been developed independently by Penning and Polder [24], and by Kato [25]. In the
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Section 1.5 1.5 Diffraction in crystals with curved diffracting planes

PPK theory the distortion of the diffracting planes is described by the strain gradient β,

β =
Λ0

cos2θB

∂2(h · u)
∂s0∂sh

, (1.16)

where s0 and sh are units vectors, parallel to the incident and to the diffracted beams

respectively. h is the reciprocal lattice vector of the reflection hkl and u the displacement

vector. If the curvature of a crystal is uniform, it is possible to demonstrate [26] that the

strain gradient assumes the simpler form

β =
Ω

T0δ/2
, (1.17)

Ω being the angular distribution of the lattice planes, T0 the thickness of the crystal, and δ

the Darwin width given by equation (1.5). The angular distribution of the lattice plane is

directly proportional to the crystal curvature. Indeed, it is

Ω =
T0

RC
, (1.18)

where RC is the radius of curvature of the crystal.

The rocking curve of a curved crystal follows a rectangular distribution with width Ω.

The height of the plateau, which corresponds to the peak reflectivity, depends on the curva-

ture of the diffracting planes as well. In the general case, reflectivity cannot be expressed in

a closed-form. However, for a highly-curved crystal, an extension of the PPK theory exists

that provides the reflectivity under Laue symmetric condition for diffraction [26]. It holds

R = (1− e
−π2dhkl

Λ2
0

T0
Ω
)e

−
µT0

cos θB . (1.19)

A crystal can be regarded as highly-curved when the following condition for the strain

gradient is met

β > βc =
π

2Λ0
. (1.20)

Such condition is fulfilled if the radius of curvature of the diffracting planes RC is smaller

than the critical value RCc = 4Λ0/πδ.

If RC > RCc , a multi-lamellar model can be used for the calculation of the crystal

diffraction efficiency [27]. A multi-lamellar model which takes into account the re-diffraction

of the beam is reported in [28]. Such model merges the results provided by equation (1.19)

for highly-curved crystals with the results provided by the dynamical theory for flat thick

crystals.
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Chapter 1 Diffraction of high-energy radiation in crystals

Figure 1.6: Theoretical rocking curves for a mosaic and a CDP Ge crystal with the same
thickness T0 = 1 mm and angular acceptance Ω = 20 arcsec and using (111) lattice planes
to diffract 140.5 keV photons. a) CDP crystal with radius of curvature RC = 10.3 m. b)
Mosaic crystal with mosaicity m = 13.6 arcsec.

In Fig. 1.6 the rocking curves for a mosaic and a CDP crystal with the same angular

acceptance are compared. Peak reflectivity of a CDP crystal, as calculated by equation

(1.19), does not suffer from the 50% limitation. Hence, CDP crystals can have a very high

integrated reflectivity, resulting very good candidates for the realization of a Laue lens.

14



Chapter 2

Usage and fabrication of bent

crystals

2.1 Usage of bent crystals

Manufacturing and development of bent crystals are making progress in different physical

fields. Indeed, bent crystals can be used as optical elements for neutron, X- and γ-rays

as well as optical elements for the manipulation of charged particle beams. In fact, by

exploiting diffraction of high-energy radiation in bent crystals, many modern applications

and tools have been developed, such as monochromators for X-ray beamlines [20], hard X-

ray focusing system for astrophysical [29] and nuclear medicine [18] purposes, and neutron

beam controller with wide angular acceptance [30]. On the other hand, owing to the strong

electric field generated by ordered atoms in a bent crystal, it is possible to manipulate

charged particle trajectories via coherent effects such as channeling and volume reflection

[31, 32]. Bent crystals have already been proposed to be used in collimation systems [33],

for beam steering [34], and extraction [35]. Radiation emission due to curved trajectories of

charged particles in bent crystals was studied in order to yield photon production through

bremsstrahlung, channeling radiation, parametric X-ray radiation (PXR), and undulator

use [36].

2.1.1 Bending techniques

In sight of the great interest by these scientific communities, several techniques for pro-

ducing proper curved crystals have been developed, each of which has positive and negative

aspects. One of the first methods that was used for bending consists is the use of a mechan-

ical mean, i.e., by deforming a crystal through an external device [19, 37]. Using an holder
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Figure 2.1: (a) geometry 1. (b) geometry 2. Red arrows represent an X-ray beam. Courtesy
of Camattari [43].

for bending can be an optimal solution unless there are limitations due to constraints as

encumbrance, weight, or miniaturization. In such latter cases, self-standing bent crystals

are mandatory. A self-standing bent crystal can be obtained by applying a thermal gradient

to a perfect crystal [38]. A bent crystal can also be obtained by concentration-gradient tech-

niques, i.e. by growing a two-component crystal with graded composition along the growth

axis [39]. These techniques have reported good results during experiments; however, such

bent crystals are not easy to manufacture, thus they are not suitable for mass production.

A self-standing curved crystal can be obtained by a controlled surface damage through a

mechanical process performed on one side of a crystal, such as the lapping process [40] and

the “grooving method” [41]. These technique are suitable for mass production, but cause

non-negligible damage in the crystals.

Within the frame of the INFN-LOGOS project, various new approaches have been de-

veloped at Sensor and Semiconductor Laboratory (SSL) of Ferrara to fabricate self-standing

bent crystals. The most promising for the realization of optical elements for a Laue lens

are based on carbon fibre deposition, ion implantation and sandblasting. The details of

these method are exposed in the next section. Before that, the concept of quasi-mosaicity

is introduced, because of its importance in modern physics [42].

2.1.2 CDP and quasi-mosaic crystals

Crystals with curved diffracting planes can be exploited to diffract a photon beam in

Laue condition according to two different configurations. In the first one, shown in Fig.
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Figure 2.2: Schematic representation of a cross section of a Laue lens based on QM crystals.
Gray rectangles represent the crystals. The primary curvature leads to a secondary curvature
of the planes affected by quasi-mosaicity. In this configuration the QM diffracting planes
are perpendicular to the main surface of the plates. The primary curvature allows focusing
diffracted radiation onto the focal plane, while the QM curvature increases the integrated
diffraction efficiency. Courtesy of Camattari [43].

2.1.a and called geometry 1, the crystals are oriented with their major faces “parallel” to

the photon direction and are bent directly along the side traversed by the photon beam. In

the second configuration, shown in Fig. 2.1.b and called geometry 2, the samples expose

their largest surface to the photon flux. In this case, the curvature of the diffracting planes is

obtained exploiting the quasi-mosaic (QM) effect, which is an effect due to the crystal elastic

anisotropy. Under very specific orientations, as a crystal is bent to a primary curvature

by external forces, another curvature (secondary curvature) arises within the crystal, i.e.,

the QM curvature [44]. This effect is fully explained by the theory of linear elasticity in

an anisotropic medium, a brief treatment of which is presented in Appendix A. Crystals

exploiting planes bent through the QM effect to diffract a photon beam are called “QM

crystals”.

A Laue lens composed of QM crystals is an arrangement of curved plates whose primary

curvature lies on a spherical cap of radius RP , while the QM curvature allows diffraction

with CDPs. Due to Bragg diffraction, focusing of each QM sample converges on a focal spot

at a distance f = RP /2 on the symmetry axes of the cap (see Fig. 2.2). This types of Laue
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lens is best suited for an astrophysical application. In fact, in this case, the focal length f

is of the order of tens of meters and the external radius of the lens can reach a few meters.

As consequence, the use of CDP crystals in geometry 1 would require the fabrication and

the setting up of a large number of such crystals to cover the whole lens. Quasi-mosaicity

allows the focusing of the photon flux in a spot smaller than the crystal size. For a quasi-

mosaic crystal, the primary curvature is responsible for focusing, while the secondary (QM)

curvature increases the diffraction efficiency [45]. Thus, since the secondary curvature can

control the size of the focal spot, QM crystals allow focusing with high resolution. As a

result, the sensitivity of a Laue lens devoted to astrophysics could be increased [46]. In

medical applications, the transversal size of the crystals has to be small because of the short

focal length and therefore, Laue lenses are generally envisaged to exploit CDP crystals in

geometry 1. Indeed, in chapters 3 and 4, which deal with the design study of Laue lenses for

nuclear medicine and radiotherapy respectively, geometry 1 is implicitly assumed. However,

in chapter 5, a prototype of Laue lens for radiotherapy exploiting QM Si crystals (geometry

2) is described. QM crystals were used because the prototype was conceived as a concept

demonstrator for low energy photons. Therefore, the number of sample used was small and

the their thickness traversed by the X-ray beam had not to be large.

2.2 Innovative methods to fabricate bent crystals

Three new methods aimed at producing self-standing bent crystals are presented in this

section. They are based on carbon fibre deposition, ion implantation, and sandblasting re-

spectively. These techniques have been developed at Sensor and Semiconductor Laboratory

(SSL) of Ferrara within the frame of the INFN-LOGOS project.

2.2.1 Deposition of a carbon fibre film

The deposition of thin films may be a viable technique to obtain self-standing bent

crystals with a controlled and uniform curvature [47]. The curvature induced by film de-

position is already well known in microelectronics as a drawback of device manufacturing.

The stress due to deposition of the most common materials has been measured, and it is

usually minimized during device manufacturing. This stress can be maximized with a dif-

ferent application of the knowledge of the processes. The study of this stress with the aim of

inducing a large and uniform curvature in crystals is the argument of this section. Finally,

experimental evidences of a silicon crystal bent through carbon fibre deposition are given.

Silicon micromachining techniques provides a wide range of processes to deposit thin
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and thick films on silicon substrates. Deposition techniques are divided in two large areas:

chemical and physical depositions. Chemical depositions involves a fluid or gas precursor

which undergoes a chemical change at a solid surface, leaving a solid layer. Physical depo-

sition uses thermodynamic, mechanical, or electromechanical means to produce a thin film

of solid. The largest part of depositions techniques are carried out at elevated tempera-

tures. For example, dissociation of the precursors used in chemical depositions are typically

reached placing the sample in a heated reaction chamber. In physical deposition, instead,

the material to be deposited is placed in an energetic, entropic environment, so that parti-

cles of material escape from its surface. Facing this source is a cooler surface which draws

energy from these particles as they arrive, allowing them to form a solid layer. In order to

allow the particles to travel as freely as possible, the whole system is kept in a vacuum depo-

sition chamber. As a consequence of cooling of the sample from the deposition temperature

to room temperature, thermal stress generates in the film and in the substrate, causing a

permanent deformation of the sample.

Provided that the stress in the substrate and in the deposited film are not too high to

cause delamination of the film from the substrate or even cracks in the film or in the sub-

strate, deposition of thin or thick films allows achievement of a self-standing bent structure,

removing the need of a mechanical bender, providing in this way space saving samples of

reduced weight.

Deposition of a film of carbon fibre may be an effective method to bend thick crystals.

Self-standing mono-crystals up to 5 mm thick can be produced because of the elevated value

of carbon fibre stiffness. The method is expected to work with different kinds of crystals,

such as silicon, germanium, gallium arsenide, copper, and others. Moreover, the method is

fully compatible with mass production. Indeed, a batch of hundreds of crystal tiles takes

about one hour for fibre deposition in autoclave.

Experimental method and results

A silicon crystal was bent through the deposition of a thick film of carbon fibre. The

sample was shaped at the Sensor and Semiconductor Laboratory (SSL) of Ferrara, Italy,

through a high precision dicing saw (DISCOTM DAD3220). Its dimensions were 20×20×5

mm. The largest surfaces were oriented as (111) planes. Such orientation was chosen because

in order to have isotropic elastic constants. A photo of the sample is shown in Fig.2.3.

The carbon fibre deposition was exploited to obtain an asymmetric laminate capable

of producing a curvature of the substrate. This is mainly due to the cross ply stacking

sequence, whose differential shrinkage and stiffness along two perpendicular directions causes
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Figure 2.3: Photo of the crystal plate. The carbon fibre film is visible.

Table 2.1: Main features of the sample and the beam

Sample size (mm) 20×20×5
Thickness traversed by X-rays (mm) 20
Diffraction geometry 1
Diffracting planes (111)
Beam energy (keV) 150
Beam width (µm) 50×50
Beam monochromaticity (∆E/E) 2x10−3

the bending of the laminate during the curing cycle. For standard composite production,

this phenomenon is avoided by balancing the plies deposition, in order to avoid unwanted

internal stresses, which may bend the substrate as side effect. Instead, for our purpose, we

tried to maximize this effect. The film of fibres consisted of four layers of carbon fibre fabric.

The direction of the fibres in each layer was perpendicular to that of the neighbouring layers.

Each fibre was characterized by an intermediate elastic modulus of E = 230 GPa in weft

direction and an ultra high elastic modulus of E = 600 GPa in the warp direction. The

fibres were bound to the crystals with an autoclave cure cycle at a temperature of 135◦C

and pressure of 6 bar.

The curvature of the sample was tested through hard X-ray diffraction at beamline

ID15A of the European Synchrotron Radiation Facility (ESRF, Grenoble, France). The

beam was set at the highest energy with enough luminosity, namely 150 keV, whereas the

beam width was 50×50 µm2 wide. A monochromator was used to obtain a resolution of

∆E/E = 2x10−3. The sample and beam parameters are listed in Tab.2.1.

The characterization of the samples was carried out by performing rocking curves (RCs),

namely by recording either the transmitted or diffracted beam intensity while the crystal

was being rotated in the beam around the position where the Bragg condition was satisfied.

The full width at half maximum (FWHM) of the RC was a direct measurement of the

angular distribution of the diffracting planes. Fig.2.4 shows the experimental result.
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Figure 2.4: Experimental result. Filled red circles plot the intensity of the transmitted
beam, whereas empty blue circles plot the intensity of the diffracted beam.

The angular spread Ω, namely the FWHM of the RC, is 72± 2 arcsec. Since the traversed

length L was 20 mm, the radius of curvature R of the sample is R = L/Ω ≈ 57± 2 m. The

RC is flat-topped, which means that the sample curvature was homogeneous. The diffraction

efficiency turns out to be 63±6%, which is a value not attainable with a standard mosaic

crystal. Such characteristics make this sample suitable to be used as an optical element for

a Laue lens. The main drawback of the proposed method is that the technique does not

permit producing small bent crystals, and thus it is not suitable for the applications where

miniaturized samples are required.

The sample and the experimental set-up reported here are the same as those reported

in [47]. However, the samples characteristics were not completely identical. Indeed, the

sample described here was bent using different carbon plies, namely the weight and the

density of the carbon fibre were higher. As a consequence, a larger curvature was achieved.

Here, the total thickness of the carbon-fibre film was about 600 µm. It can be concluded

that it is possible to control the curvature of the sample by adjusting the parameters of

the carbon fibre deposition. An analytical model, based on the linear theory of elasticity, is

under development.

2.2.2 Ion implantation

Ion implantation can be exploited to produce self-standing bent crystals. Ion implanta-

tion has been used in the semiconductor industry for several decades [48]. A drawback of

this process for semiconductor manufacturing was the production of stress in the implanted

material [49]. This early disadvantage was later turned into a technology for the correction

of stresses in thin films and substrates. Implanting high-energy ions into a substrate imparts
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compressive stresses, causing controllable deformation of the substrate. For example, ion

implantation has been used for the correction of shape errors in X-ray stepper masks [50],

X-ray mirrors [51], and MEMS (Micro Electro-Mechanical Systems) deformable mirrors [52].

Sample preparation and simulation

In this section, we describe a macroscopic monocrystalline Si plate uniformly bent by

ion implantation, with self-standing curvature. The sample is 10×10 mm large and 0.2 mm

thick. Si is an anisotropic material, thereby the deformation due to ion implantation may

result in a non-uniform curvature even if the induced stress field was uniform. Nevertheless,

(111) Si lattice planes have isotropic elastic constants. For this reason, a (111) oriented

wafer was chosen for the production of the sample.

The sample was implanted using He+ at the INFN Laboratories of Legnaro (Padova,

Italy). Helium ions were accelerated to an energy of 150 keV and directed normally toward

the sample surface. The current density of the ion beam was 1 µA/cm2. The beam flux

was found to be temporally and spatially uniform within 5% over an area of 150 mm of

diameter. The dose implanted into the sample resulted 2×1016 atoms/cm2.

He+ was chosen because light ions interact with the substrate nuclei only near the

stop point, thereby minimizing the lattice damage. Indeed, considering the mass and the

initial energy of the ions, the main mechanism through which the ions lost energy was the

interaction with the electrons [53]. SRIM [54] simulations indicate for 150 keV He+ ions in

Si an initial electronic stopping of about 250 eV/nm and a nuclear one of 2 eV/nm. During

this slowing-down process, ions are deflected very little and move in an almost straight

line, causing few dislocations in the crystalline lattice. The energy lost per unit of path is

described by the Bragg curve [55], which has a peak near the final point of the trajectory

where the ion velocity is low and the transferred momentum is maximum. At this point,

the interactions of the implanted ions with the nuclei of the substrate become significant

and the number of dislocations in the crystalline lattice increases. Under the conditions of

implantation aforementioned, the depth distribution of implanted He+ ions was simulated

through the SRIM program (see Fig.2.5). The ions projected range resulted Rp = 0.88

µm with a straggling of σ = 0.14 µm. When stopped, the ions cause the amorphization of

the substrate and thus its swelling [56]. As a result, the implantation process is capable of

imparting a sub-surface stress, creating a tensile layer buried in the substrate structure [57].

The buried layer of amorphous material extends below the sample surface within ±3σ =

0.84 µm. This layer represents 0.42% of the total volume of the crystal, namely it is a very

thin layer. For this reason, the crystals can be considered “defect-free” for the applications
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Figure 2.5: Depth distribution of implanted He+ ions in a monocrystalline Si substrate
simulated through the SRIM program.

that require a high lattice quality of the crystal bulk.

Fig.2.6.a shows the deformation of the sample as measured using an optical profilometer

(VEECOTM NT1100). The sample resulted uniformly bent with a curvature radius of

10.5±1.0 meters. This curvature is the largest achieved in literature for a macroscopic Si

sample implanted with ions under the MeV energy.

The amorphous-Si phase is metastable and may transform into crystalline-Si. The trans-

formation rate is strongly dependent on temperature and presents an Arrhenius-like be-

haviour with an activation energy of 2.7 eV. At temperatures below ∼300◦C, the amorphous

to crystal transition is kinetically inhibited [58]. Thus, to prove the stability of the obtained

curvature, we submitted the sample to a 300◦C annealing process 3 hours long and then

we measured again the curvature, founding it unchanged. This operation was performed at

SSL using a Lenton ECF 12/6 chamber furnace.

Since the amorphized portion of the sample acts as a tensile film, the Stoney formalism

for an equi-biaxial plane stress regime can be applied [59]:

σf =
Es

6(1− νs)

h2s
hf

1

R
(2.1)

where hs and hf are the thickness of the substrate and of the tensile film, respectively. Es

and νs are the Young’s modulus and Poisson’s ratio of the substrate, σf the film tensile

stress, and R is the local radius of curvature. Since the exact value of the film thickness is

not known, the integrated stress in the film S = σfhf has been used in the computation.

Since R = 10.5 m, using the Stoney’s formula it can be inferred that ion implantation

induced an integrated stress S of 145.4 ± 14.0 Pa×m.

The effect of ion implantation was then simulated through Straus7 finite element (FE)

package [60]. An equivalent Si layer 1 µm thick and with a tensile stress of 145.4 MPa
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Figure 2.6: Square sample bent to a spherical curvature using ion implantation. The surface
that did not undergo the implantation process is displayed. (a) Morphological surface of the
sample measured through interferometric profilometry. (b) Same sample simulated through
FE analysis.

bonded to a Si crystal 10×10×0.2 mm with the same crystallographic orientation as the

manufactured sample was simulated. A net and spherical curvature was obtained, with the

radius of curvature being 10.7 m (see Fig.2.6.b).

The effect of ion implantation was finally analytically calculated through AniCryDe [61],

imposing a couple of perpendicular moments per unit length

M[110] = M[112] = σfhf
hs + hf

2
, (2.2)

to the crystal plate. In this case, the radius of curvature turned out to be 10.4 m.

X-ray analysis

The depth reached by the implanted ions is very small compared to the crystal thick-

ness, that is 200 µm. Then, defects and dislocations do not affect the crystal bulk. In

order to verify that the whole crystal structure is not altered and uniformly bent, the sam-

ple was tested by X-ray diffraction using a beam that passed through the entire crystal

thickness, namely in transmission (Laue) geometry. The characterization was carried out
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Figure 2.7: Rocking curves by X-ray diffraction. Experimental intensities for the diffracted
(blue) and the transmitted (red) beam are plotted taking into account the experimental
uncertainty. The gray areas represent the expected results as calculated by taking into
account the uncertainty on the radius of curvature of the sample.

by performing rocking curves (RCs).

Curved crystalline planes were selected for the diffraction experiment because, in this

case, the RCs contain information related to the crystalline quality of the bulk. Indeed,

the full width at half maximum (FWHM) of the RCs for a perfect bent crystal is equal

to the angle subtended by the curved diffracting planes, since the Bragg condition is met

within the angular range defined by the diffracting plane curvature. If the crystal quality is

deteriorated, the RCs would result broadened and the diffraction efficiency would decrease

with respect to the theoretical value [12]. (311) planes were chosen because they are the

curved lattice planes in Laue geometry with the highest diffraction efficiency. Here, (311)

planes are in asymmetric configuration, holding an asymmetry angle ϕ = 58.52◦ from the

(111) surface [62]. Thus, diffraction occurred according a configuration rotated by 58.52◦

with respect to the geometry 1.

Characterizations were performed at beamline ID15A of ESRF (Grenoble, France). A

highly monochromatic and collimated beam was tuned to 150 keV by a two-reflection Laue

Si (111) unbent monochromator. The monochromaticity was ∆E/E = 2×10−3, the beam

size was 50×50 µm. Diffraction analysis is shown in Fig.2.7. The expected diffraction

efficiency was calculated taking into account an ideal bent crystal. The good agreement
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between experimental data and theoretical expectations indicates that the crystallographic

planes are homogeneously bent and the crystallographic quality preserved. The technique

here proposed is precise and suited for miniaturization, however it requires an ion implanter

and does not permit to bend crystals thicker than few hundreds of µm.

As an elective application of ion implantation to obtain a deformed crystal, we envisage

the fabrication of a crystalline undulator (CU). A CU consists of a crystal whose planes

are periodically bent with an amplitude much larger than the interplanar spacing. Such an

undulator can be exploited as a generator of electromagnetic radiation by ultra-relativistic

positrons channeling in the undulated planes of the CU [36]. Indeed, ion implantation can

be used to produce precise bending of perfect crystals, leaving the bulk substantially defect-

free, which is a necessary condition for channeling experiments. Moreover, ion implantation

can be combined to photolithographic techniques, in order to produce micrometric pattern

of implanted regions. In [63], we numerically simulated a Si CU, 5 mm long, 0.2 mm thick,

and 1 mm wide; the undulating period was 1 mm. The same CU was realized through the

grooving method and successfully tested using a proton beam [64]. These parameters fulfil

the condition for an optimal undulator in the case of 15 GeV positrons.

2.2.3 Sandblasting

Sandblasting (or simply blasting) is a mechanical process that consists in driving a

stream of abrasive material against a surface. A pressurized fluid, typically compressed air,

is used to propel the blasting material. Sandblasting is commonly used to smooth a rough

surface, roughen a smooth surface, shape a surface, or remove surface contaminants. Here,

we propose to use sandblasting for producing self-standing bent crystals. Indeed, the thin

damaged layer that originates at the surface of a blasted crystalline sample acts as a tensile

film able to bent the crystal bulk. The advantages of this technique are that it is suitable

for mass production, it is fast and economical, it does not add any materials to the crystal,

and it permits to bend from thin to thick crystals, up to several mm. The drawback is that

a thin layer of the material results damaged by the process itself. In particular, this type of

self-standing bent crystal would be a very good solution if used as an optical element of a

Laue lens for medical purpose or as an optical element for manipulating charged particles

in the cases where contaminating materials are not allowed.

Experimental method and results

Several Si crystals were prepared and machined at SSL. The samples were shaped through

a high precision dicing saw (DISCOTM DAD3220) as squared tiles 10×10 mm wide, featuring
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Figure 2.8: Schematic representation of the machined Si samples.

Table 2.2: Characteristics of the sandblasting process

Sample material Si
Sample size (mm) 10×10

Sample thickness (mm) 0.5, 1.0, 2.0
Sandblaster SAMAC

Compressed air consumption 560 lt/s @ 6 bar
Blasting medium natron glass

Blasting size (µm) 1 - 50
Blasting density (g/cm3) 2.3±0.3
Blasting hardness (Mohs) 6

Blasting distance (cm) ∼ 10
Blasting time (s) 120

three different thicknesses, namely 0.5, 1.0, and 2.0 mm. In particular, three samples for

each thickness were produced. The crystallographic orientations of the nine samples are

shown in Fig.2.8.

The deformation of the samples was obtained by sandblasting of one of the largest

surfaces of the tiles. The characteristics of the manufacturing process are listed in Tab.2.2.

Then, the curvature of the samples was measured by using an optical profilometer (VEECOTM

NT1100) with 1 µm lateral and 1 nm vertical resolution. Since the machined surface is dam-

aged, the profilometric characterization was carried out on the back face of the samples. The

results of the profilometric measurements are listed in Tab.2.3.

The sandblasting process produced dislocations on the machined surface of the samples,

the thickness of the damaged layer being dependent on the sandblasting process. This

layer resulted in a plasticized thin film that bent the crystal. As in other contexts where a

plasticized layer lays on the crystal surface, it is possible to model the layer as a compressive

thin film. Indeed, the plasticized layer is capable of transferring coactive forces to the

crystal bulk, thus producing an elastic strain field within the crystal. Therefore, the Stoney

formalism for an equi-biaxial plane stress regime can be adopted. In order to take into

27



Chapter 2 Usage and fabrication of bent crystals

Table 2.3: Experimental and simulated results for the radius of curvature of the samples
along the [111] direction.

Sample Interferometric Analytical Simulation Simulation
thickness measurements calculation with Straus7 with AniCryDe

0.5 mm 6.2±0.7 m 5.1±0.2 m 5.3±0.1 m 5.1±0.2 m
1.0 mm 20.6±1.8 m 20.4±0.6 m 20.8±0.4 m 20.3±0.7 m
2.0 mm 80.0±6.3 m 81.5±2.6 m 82.5±1.8 m 81.4±2.6 m

account the anisotropic behaviour of Si crystal, the Stoney formula can be written as in

[65]:

σf =
hs

2

6(S11 + S12)hf

1

R
, (2.3)

where hs and hf are the thickness of the substrate and of the compressive film respectively,

σf the film stress, R the curvature radius of the sample, and Sij are the components of

compliance tensor for anisotropic material referred to the (x, y, z) Cartesian system [66].

The film thickness was not directly measurable. It was estimated to be ∼ 5 µm [67]. By

fitting the experimental data with Eq.2.3, σf resulted 374±8 MPa. The effect of sandblasting

was then simulated through Straus7 finite element package. An equivalent damaged Si layer

5 µm thick and with a compressive stress of 374 MPa bonded to Si crystal tiles with the

same size and crystallographic orientation as the manufactured samples was simulated. The

output of the simulations is reported in Tab.2.3. The effect of sandblasting was finally

evaluated using the software AnyCriDe, imposing a couple of perpendicular moments per

unit length to the crystal plate Mx = My = σfhf
hs+hf

2 . The simulation results are reported

in Tab.2.3.

Since the simulations are in good agreement with the experimental data, the thin layer

of damaged material can be appropriately considered as a compressive thin film.

X-ray analysis

To evaluate the crystalline quality, the samples were tested through γ-ray diffraction

at the Institut Laue-Langevin (ILL, Grenoble, France) at DIGRA, that is a facility specifi-

cally built for characterizing instrumentation for astrophysics. The γ-ray beam energy was

181.931 keV and its monochromaticity was ∆E/E ≈ 10−6. The beam flux was produced by

neutron capture in a gadolinium target (15764 Gd) inserted close to the nuclear reactor of ILL

at a temperature of about 400◦C. The beam divergence after a Si (220) monochromator was

∼ 3.5 arcsec, as measured by recording a rocking curve (RC) of the monochromator itself.

The collimated beam size was 1×2 mm2. A standard electrode coaxial Ge detector with
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Table 2.4: Experimental and theoretical results for the rocking curves.

Parameter Sample 1 Sample 2 Sample 2 (QM)

Traversed length (T0 - mm) 10 10 2
Expected angular width (Ω) 30.0±3.0” 30.8±3.1” 3.7±0.2”
Measured angular width (Ω) 26.8±0.5” 28.5±1.0” 3.6±0.3”

Expected diffraction efficiency (η) 0.30±0.01 0.28±0.01 0.23±0.01
Measured diffraction efficiency (η) 0.27±0.03 0.24±0.03 0.25±0.02

25% relative efficiency was used.

Characterization of the samples was carried out by performing RCs. The crystals were

analysed using two different geometries. In the first geometry, the beam passed through

the sample along the [111] direction, traversing 10 mm of material (geometry 1). In this

geometry, the curvature directly induced by the sandblasting process was measurable. In

the second geometry, the beam passed through the shortest side of the crystal, i.e. along

the [11-2] direction (geometry 2). In this configuration, it was possible to record the RC

of the crystallographic planes bent by the quasi-mosaic (QM) effect [42]. Indeed, the (111)

planes resulted bent by the QM effect, as shown in Fig.2.8.

The 2 mm thick samples were selected for X-ray analysis because they were able to show

the highest reflectivity. In particular, two samples were tested in the geometry 1 (Fig.2.9.a

and b), while the second sample was also measured using the geometry 2 (Fig.2.9.c).

By fitting the RCs with the dynamical theory of diffraction, it is possible to derive the

sample curvature, the homogeneity of the curvature, and the quality of the crystal bulk.

Indeed, the width of the RC is proportional to the bending angle of the sample and the RC

peak is a measure of the crystal quality. The diffraction efficiency is given by the formula

η = 1− e
−π2T0dhkl

ΩΛ2
0 , (2.4)

where T0 is the crystal thickness traversed by radiation, dhkl the d-spacing of the diffract-

ing planes (hkl), Λ0 the extinction length as defined in chapter 1 for the Laue symmetric

case, and Ω the bending angle of the curved diffracting planes. Experimental results and

theoretical expectations are reported in Tab.2.4.

The results reported in Fig.2.9.c are here explained. From the theory of elasticity, the

ratio between the QM curvature radius, RQM , and the superficial (primary) curvature radius

(RP = 72.2 m), is
RQM

RP
= 2.61 for the (111) planes, thus RQM = 2.61Rp = 188.5 m [42].

Here, the QM curvature corresponded to an angular spread of 2.19 arcsec for the (111)

planes. Diffraction efficiency was expected to be 94.7%. The RCs reported in Fig.2.9.c
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Figure 2.9: Rocking curves; black dots represent the diffracted beam, red dots the trans-
mitted beam. (a) sample 1 in the geometry 1 (primary curvature); (b) sample 2 in the
geometry 1 (primary curvature): (c) sample 2 in the geometry 2 (QM curvature). Grey
areas represent the theoretical expectation.
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shows a peak far lower than the prediction of the dynamical theory of diffraction. However,

there are some factors that have to be taken into consideration. Indeed, the measured RC

was the convolution of three functions. The first function was a uniform distribution due

to the diffracting QM planes, 2.19 arcsec wide and 0.947 in height. The second function

represented the spread owing to the primary curvature, which was a uniform distribution

2.85 arcsec wide and 1 in height. Indeed, the beam had a finite size of 1 mm along the x

direction; thus, the primary curvature resulted in a rotation of the diffracting planes by 2.85

arcsec. The third function took into account the resolution of the experimental setup, which

was represented by a Normal distribution with standard deviation equal to 3.5 arcsec. As

a result, the RC was a symmetric function with 3.66 arcsec as standard deviation and peak

equal to 0.238. The grey area in Fig.2.9.c represents the theoretical expectation, taking into

account the uncertainty on the primary curvature of the sample. The values reported in

Tab.2.4 for the QM case take into account all the contributions in the convolution.

In summary, Figs.2.9.a, b, and c highlight very good agreement between theoretical

expectations and experimental results; thus, the method did not compromise the quality of

the crystal bulk. Therefore, the samples produced using the sandblasting method can be

profitably used as X-ray optical elements and as charged particle beam steerer.

2.3 Focusing capabilities of a bent crystal

In this section, an experiment devoted to the demonstration of the focusing capabilities

of a bent crystal is described. In particular, a QM Ge sample was produced through the

grooving method [65] and characterized through X-ray diffraction. Exploiting the quasi-

mosaic effect, it was possible to combine high intensity of the diffracted beam due to the

curvature of the diffracting planes with the focusing due to the primary curvature. The

focusing effect was assessed by recording on a detector the image of the sample due to the

diffraction of a polychromatic and divergent hard X-ray beam.

Sample production and characterization

Production and morphological characterization of a bent Ge sample was carried out at

SSL. A sketch of the sample is shown in Fig. 2.10.

A commercially available pure Ge wafer was diced to form a plate of 10×30×2 mm using

a high-precision dicing saw (DISCOTM DAD3220). A permanent curvature was induced

through the manufacture of a grid of superficial grooves on one of the largest surfaces of the

plate. The surface grooving produced a permanent plastic deformation in a thin layer of the
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Figure 2.10: Sketch of the Ge sample. Crystallographic orientations and grooves are high-
lighted, with the coordinate system used.

Table 2.5: Crystal features

Material Germanium
Tile size (mm) 10×30×2

Blade type G1A 320
Blade width (µm) 250

Blade rotation (rpm) 3000
Blade speed (mm/s) 0.1

Diamond grain size µm 5
Groove depth (µm) 1550 ± 5
Number of grooves 9×28
Groove step (mm) 1

Primary radius of curvature Rp along y axis (m) 38.9 ± 1.9
QM radius of curvature RQM (m) 92.9 ± 4.6
QM angular spread ΩQM (arcsec) 4.4 ± 0.2

crystal beneath the grooves, the extension of the plasticized layer being about 5 µm [41, 65].

Such plasticized layer transferred coactive forces into the crystal bulk, thus producing an

elastic strain field within the crystal. The curvature was measured by using an optical

profilometer (VEECOTM NT1100) with 1 µm lateral and 1 nm vertical resolution. Main

features are reported in Tab.2.5.

Exploiting the QM effect, it was possible to obtain two curvatures of two different family

of crystallographic planes. The grooves generated a primary curvature of the largest surfaces

of the plate, which are parallel to the (112) planes of the crystal. As a result, quasi-mosaicity

induced a secondary curvature of the (111) planes within the crystal, as shown in Fig. 2.10.

The primary (Rp) and the QM (RQM ) curvature radii are linked by a ratio that depends on

the material and the crystallographic orientations concerned [45]. For the case of concern,

this ratio is 2.39. Thus, being Rp = 38.9 m, RQM turns out to be 92.9 m.

The structural characterization of the sample was performed through X-ray diffraction

at beamline ID15A of the ESRF (Grenoble, France). A highly monochromatic beam was

set at 150 or 300 keV. The characterization of the samples was carried out by performing
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Figure 2.11: RCs of crystal. The filled red circles plot the intensity of the transmitted beam,
whereas the empty blue circles plot the intensity of the diffracted beam. (a) Beam energy
at 150 keV. (b) Beam energy at 300 keV.

rocking curves. The beam size was 50×50 µm wide, impinging on a region of the sample

free of the grooves. Rocking curves are shown in Fig. 2.11.a and b.

The FWHM of the RCs is a direct measurement of the angular distribution of the (111)

diffracting planes. Since the sample was 2 mm thick, the FWHM of the angular spread

was expected to be 4.4 arcsec. This value was well verified through analysis of broadening

of the RCs at both beam energies. The reflectivity was about 50% for both cases, though

the expected values were 100% at 150 keV and 95% at 300 keV. We observed an effect

similar to that in [68, 69], namely diffraction efficiency was pinned at 50% if the diffraction

occurred in a layer of material rich in defects and cracks. This effect was interpreted in

[69] as a sort of partial mosaicization of the sample due to the grooving process. From

a microstructural point of view, the material close to the grooves is subjected to contact

with numerous particles of the blade at the same moment, which cause different contact

pressures and produce different depth of cut due to their different shape and size. Thus,

metallization, plastic deformation and brittle fracture may occur simultaneously [67]. The

scarce knowledge of the distribution of dislocations, defects and cracks in the structure due to

the grooving process makes it infeasible any attempt to predict analytically the diffraction

efficiency. However, recorded values of diffraction efficiency are quite satisfactory, being

higher than any other performance relying on mosaic crystals.

Focusing of an X-ray beam

In order to highlight the focusing effect driven by the sample curvature, the crystal was

analysed through a diverging and polychromatic X-ray source at Institut Laue-Langevin
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Table 2.6: Experimental and detector parameters an their uncertainty

parameter mean value uncertainty

Source-to-sample distance LS (m) 4.45 0.04
Sample-to-detector distance LD (m) variable 0.02
Source-to-collimator distance (m) 3.03 0.03
Collimator-to-sample distance (m) 1.42 0.01

Collimator width (mm) 9.5×9.5 0.1

CO (mm) 45 1
Portion of crystal hit by the beam l (mm) 14.5 0.6

Source diameter a (mm) 1.0 0.1
Mean Bragg angle θB (degree) 0.58 negligible
Beam divergence ε (degree) 0.100 0.004

Table 2.7: The detector: high-resolution and sensitive X-ray image intensifier coupled with
a CCD camera

Number of pixels 512×512
Size of each pixel (mm) 0.35×0.35

Acquisition time few seconds

(ILL, Grenoble, France) [70, 71]. The diffractometer used a high-voltage and fine-focus X-

ray tube designed for industrial radiography, the X-ray energy range being between 80 and

420 keV. The beam impinged onto the sample with an angle depending on the position at

the entry face of the crystal. Thus, X-rays with different energies were diffracted towards the

image point, which depended on the curvature of the crystal. A sketch of the experimental

configuration is shown in Figs. 2.12.a and 2.12.b.

Diffraction of (111) planes was firstly analysed with the beam impinging on the crystal

surface as in Fig. 2.12.a. Then, the crystal was rotated by 180◦ around the x axis (see

Fig. 2.12.b). The geometrical parameters are reported in Tab. 2.6, whereas the detector

is described in Tab. 2.7. Considering the geometrical configuration, the energy range of

diffracted beam turned out to be 160-227 keV.

The crystal behaved as a cylindrical lens because the focusing effect occurred only in the

scattering plane. Diffraction of a polychromatic and divergent beam produces a line on the

detector [72]. The FWHM of the intensity profile, taken on a cross section perpendicular to

the line, depends on several parameters. In the case of a perfect crystal and the sample-to-

detector distance LD equal to source-to-sample distance LS , the width size depended only

on the X-ray source size and on the crystal thickness traversed by the beam. Conversely,

a curved crystal can concentrate the diffracted X-rays at either smaller or larger distance.
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Figure 2.12: Schematic representation of the experiment with a divergent polychromatic
X-ray beam and the bent crystal with the QM curvature in Laue symmetric geometry.
Depending on the sign of RP , the image distance increases (a) or decreases (b). (c) FWHM
of diffraction profile plotted as a function of sample-to-detector distance LD. Blue filled
circles plot the measured width related to (a) and red empty circles plot the measured
width related to (b). Dashed lines enclose the range of the theoretical width calculated
using Eq. 2.6 and considering the uncertainty over parameters. (d) Diffraction profile with
detector in position P2 (LD = 3.45 m). Blue filled circles refer to (a), red empty circles refer
to (b).
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Indeed, under the small-angle approximation, it is possible to obtain

1

Li
=

1

LS
+

2

RP
(2.5)

where Li is the image distance of a bent crystal with primary radius of curvature equal to

Rp. The plate divides the space into a convex and a concave region1. We set RP < 0 when

the incident beam comes from the part of plane topologically convex (Fig. 2.12.a), while

RP > 0 in the opposite case (Fig. 2.12.b).

To evaluate the focusing capability of the sample, we recorded the FWHM of the diffract-

ing profile on the detector, that is

FWHM =

√

a2 +

(
∣

∣

∣

∣

2tθB + 2LD
t

RQM

∣

∣

∣

∣

+l

∣

∣

∣

∣

1− LD

Li

∣

∣

∣

∣

)2

(2.6)

where a is the source diameter, t the sample thickness traversed by the beam, l the size of the

beam on the crystal surface and RQM the radius of curvature of the QM diffracting planes. In

this case RQM < 0 when the incident beam comes from the part of plane topologically convex

with respect to the QM diffracting planes (Fig. 2.12.a), while RQM > 0 in the opposite case

(Fig. 2.12.b). The term 2LD
t

RQM
represents the contribution of quasi-mosaicity, which can

modify the FWHM of the spot but not the distance Li. If LD = LS it is possible to obtain

the formula described in [73, 74].

The image distance was Li = 5.77 m for Fig. 2.12.a and Li = 3.62 m for Fig. 2.12.b. In

order to verify the effect of the crystal curvature, the detector was positioned at 5 different

points indicated with P1, P2, P3, P4, P5 in Figs. 2.12.a and 2.12.b, while LS was kept

fixed. LD was increased by steps of 1.00 m, starting from 2.45 m for P1 to 6.45 m for P5. In

Fig. 2.12.c the width of the measured diffraction profiles were plotted as a function of LD,

in agreement with their theoretical expectations. Finally, Fig. 2.12.d shows the measured

diffraction profiles with LD = 3.45 m (P2).

1We adopted the mathematical definition of convexity
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Chapter 3

Laue lenses for nuclear medicine

3.1 Motivations

The techniques of diagnostic nuclear medicine, namely scintigraphy, Single Photon Emis-

sion Computed Tomography (SPECT), and Positron Emission Tomography (PET), repre-

sent some of the best methods for medical imaging [75]. While X-ray based Computed

Tomography (CT) and Magnetic Resonance Imaging (MRI) provide accurate images of

anatomical districts, diagnostic nuclear medicine permits the analysis of some metabolic

processes and an early recognition of tumour masses.

More specifically, in a CT exam, the patient’s body is irradiated through an external

X-ray beam emitted by an X-ray tube capable of rotating around the bed. Since the X-rays

are absorbed by tissues basically depending on their density, a morphological imaging can

be performed by detecting the not absorbed radiation through a detector positioned behind

the patient. In nuclear medicine, a molecule directly involved in a specific metabolic process

is marked with a short-lived radioactive atom. Such compound, called radiopharmaceutical

or radiotracer, is given, generally by injection, to the patient and accumulates in a specific

organ or anatomical district. The most used radiotracers are shown in Table 3.1. They are γ-

emitters for scintigraphy and SPECT, and β+-emitters for PET. In the PET case, positrons

annihilate with electrons producing two 511 keV back-to-back photons. Therefore, with

both kinds of radiotracers, a concentration map of the metabolic activity, i.e. a functional

imaging, can be obtained by detecting the emitted photons. Scintigraphy and SPECT

performances are heavily influenced by the collimator positioned before the detector and

used to discriminate the direction of the photons. This element leads to a trade-off between

efficiency and spatial resolution. Typical values for resolution of conventional SPECT and

PET are 5-15 mm and 3-5 mm respectively [75]. In the PET case there is an intrinsic
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Table 3.1: Typical radioisotopes used in diagnostic nuclear medicine

Nuclide Radiotracer Decay mode Decay product T1/2 Eγ [keV] SPECT/PET Usage

99mTc NaTcO4 IT 99Tc 6.02 h 140.5 SPECT general purpose

67Ga Ga citrate, EC 67Zn 78.3 h 93, 185, 300 SPECT tumour imaging
Ga nitrate

111In I salts EC 111Cd 67.8 h 171, 245 SPECT brain study,
intestinal disturbs

123I NaI EC 67Te 13.2 h 159 SPECT thyroid study

201Tl Tl salts EC 201Hg 73.1 h 135, 167 SPECT diagnosis of
coronary artery disease

18F FDG, F-DOPA β+ 18O 109.8 min 511 PET oncology,
neurology

15O O2, CO2, CO β+ 15N 2.03 min 511 PET neurology

11C CO2, CO, β+ 11B 20.38 min 511 PET cardiology
HCN , CH3I

13N NH3 β+ 13C 9.96 min 511 PET cardiology

limitation due to the path of the positrons within the tissue before their annihilation [76].

If a resolution close to 1 mm is required, a pinhole SPECT is typically employed [77].

Nevertheless, this technique allows investigating a limited region and shows a resolution-

efficiency trade-off. Therefore, the conventional techniques suffer from low spatial resolution

and low signal-to-noise ratio for a small radioactive source, e.g. a tumour in its initial stage

of development.

In radionuclide imaging of small animals, a sub-millimetre spatial resolution can be

achieved at the cost of an increased complexity by using a multipinhole system, namely

several tens of pinholes that image onto a single detector [78, 79]. However, it is still

unknown whether these multipinhole methods can achieve spatial resolutions in the range

of 100 µm. Furthermore, this type of system is hardly adaptable for human imaging because

of the geometrical constraints required to reach peak performance.

In radionuclide imaging, the image resolution and quality can be actually increased by

using an efficient focusing device. Since the real part of the index of refraction of all materials

is approximately equal to 1 for high-energy photons, the use of common optical elements is

prevented [4].

The desired effect can be obtained by using a Laue lens, namely a device that exploits

diffraction in crystals to concentrate a large number of photons onto a small area of a

detector. This optics has been initially studied for the realization of a high-energy telescope

[7] and subsequently has also been proposed to be used in nuclear medicine [17]. Fig. 3.1

schematically shows the configuration of a diagnostic system exploiting a Laue lens.

Some prototypes of Laue lens for nuclear medicine have already been realized [18]. How-

ever, they provide at the most the same image resolution achievable with a conventional

PET. Thus, there is the need to further improve the lens performance in such a way that
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Figure 3.1: Schematic representation of a nuclear diagnostic system equipped with a Laue
lens. A fraction of the γ-rays emitted by the radiotracer localized in a specific area of the
patient’s body are focused on the detector through diffraction in the crystals of the lens.

its clinical use can actually become convenient.

In this chapter, a detailed study and the design principles for a Laue lens devoted to

nuclear medicine is presented. The proposed method allows obtaining high-resolution images

of small radioactive sources. The resolution can be one order of magnitude better than the

level attainable in conventional nuclear medicine exams.

3.2 Lens design principles

The design principles of a Laue lens for astrophysics have been well defined in the

literature, see for instance [80, 81, 82]. Even though the requirements of a lens for nuclear

medicine and a lens for astrophysics are the same, the design approach differs significantly.

Indeed, in the astrophysical case, polychromatic hard X- or γ-rays come from very distant

sources and can be considered to be parallel when they impinge on the crystals of the lens.

Conversely, in the nuclear medicine case one has to deal with a monochromatic and divergent

beam, since γ-photons are emitted in any direction by the radioactive source lying inside

the patient’s body.

3.2.1 Geometry of the system

A lens composed of concentric rings of crystals is shown in Fig. 3.2.a. It lies at a distance

LS from a γ-ray point source and LD from a detector. LS and LD are called object distance

39



Chapter 3 Laue lenses for nuclear medicine

Figure 3.2: Schematic representation of the geometry of the system. a) A point source is
positioned in OS , the lens is placed at a distance LS from the source and a detector, centered
in OD, is at a distance LD from the lens. A generic ring of the lens is highlighted, OCij = rj
is the radius of the ring. The crystals of each ring are assumed to be ideantical. b) Detail of
the crystal i in the ring j. TOj is the thickness of the crystal traversed by the photons. αj

is the angle between the crystal axis and the lens axis. In the calculation, we assume that
αj = 0.

and image distance respectively. With an appropriate design, the lens can focus the photons

toward the image point OD, providing a point-to-point imaging.

First, the energy E of the monochromatic source and the object distance LS have to be

set. Then, the lens geometry can be determined. The lens is formed by N rings, each of

them exploiting a different set of crystalline planes and/or a different crystalline material.

The crystals of each ring are assumed to be identical. To obtain the diffraction of the

photons, the radius of the j-th ring, rj , has to be set according to

LS =
rj

tan(θBj − αj)
, (3.1)

where αj is the angle between the crystal axis and the lens axis (see Fig. 3.2.b). The

photons diffracted by each crystal are focused toward the point 0D if the image distance is
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set to

LD =
rj

tan(θBj + αj)
. (3.2)

Under small-angle approximation, tan θBj ≈ sin θBj ≈ θBj , it is possible to obtain the same

equation for thin lenses in visible optics [83]

1

LS
+

1

LD
=

1

f
, (3.3)

where f is the focal length of the lens, namely the distance from the ring to the focus for a

distant source

f =
rj

tan(2θBj )
. (3.4)

The source-to-detector distance, LS + LD, is minimum when αj = 0, namely when the

crystals are perfectly aligned with the lens axis. Since the system should be as compact as

possible, hereinafter we will assume that this condition is fulfilled. Moreover, we will always

use the small-angle approximation. Therefore, it follows that

rj
θBj

= LD = LS . (3.5)

By combining equations (3.5) and (1.4), the radius of the j-th ring can be written as

rj =
hpc

2a

LS

E

√

h2 + k2 + l2. (3.6)

Therefore, once the material and the lattice plane (hkl) used for a ring have been set,

the ring radius is determined. The higher the Miller indices the larger the ring radius.

For what concerns the arrangement of the crystals in each ring, we assume the polygonal

arrangement that best approximates the ring, i.e. the polygon inscribed in the circle with

radius (rj − Lrj/2)/ cos(π/nj). To determine the number of crystals in each ring, the

tangential length Ltj and the radial length Lrj have to be set. The latter has been already

shown in Fig. 3.2.b, while Ltj is the size of the side orthogonal to the plane of the figure.

The number of crystals in each ring, nj , turns out to be

nj =
π

arctan

(

Ltj

2rj−Lrj

) . (3.7)

Not all the lattice planes (hkl) can be selected for a given material and size because different

crystals would occupy approximately the same position in the lens. This limitation becomes

more severe as LS decreases.

41



Chapter 3 Laue lenses for nuclear medicine

Figure 3.3: Schematic representation of a crystal in a generic ring (not to scale). OC = r is
the radius of the ring. The crystal diffracts the photons emitted with a polar angle θ within
the range [θB − Ω/2, θB +Ω/2], where Ω is the crystal acceptance.

3.2.2 Efficiency calculation

Type and thickness of the crystals have to be set to optimize the lens performance. An

important figure of merit is the lens efficiency. It is defined as the ratio between the number

of photons with energy E diffracted per second by the lens and the number of photons with

energy E emitted per second by the source. The latter quantity is given by the product of

the source activity and the probability of emission of the considered γ-line. Even if the lens

efficiency is a dimensionless quantity, it can be expressed in cps/Bq, which is the unit of

measurement used in nuclear medicine. Indeed, the number of counts per second (cps) of

the signal on the detector is equal to the number of photons diffracted per second by the

lens, provided that the air absorption is neglected, an ideal detector is considered, and the

counts due to the background and to the not coherently scattered photons are subtracted.

Furthermore, in nuclear medicine the ratio described above is often called sensitivity. Thus,

for our purposes, the two terms are considered as synonyms.

The efficiency of the lens is strictly related to the integrated reflectivity of the crystals

that compose the lens. Let us consider Fig. 3.3, which sketches a crystal in a generic ring.

The crystal diffracts only the photons emitted with a polar angle θ belonging to the interval

[θB − Ω/2, θB + Ω/2]. Ω is the angular acceptance of the crystal and is considered to be

equal to the FWHM of its rocking curve. This is exact if a CDP crystal is considered,

but is only an approximation for a mosaic crystal. Likewise, the integrated reflectivity of

a mosaic crystal is considered to be simply the product of the peak reflectivity and the

angular acceptance as in the case of a CDP crystal. These approximations allow us to
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develop our analytical calculation in the same way for both types of crystal. It is possible

to notice that not all the crystal volume diffracts the photons emitted by a point source.

Equivalently, not all the surface on which the photons impinges acts as collecting area. Since

OSQ = OSO−QO = LS − T0/2 ≈ LS , by considering the 2 triangles ˆOSQE and ˆOSQB, it

can be calculated that AE = EB = Ω/2LS . Therefore, the collecting area of the crystal is

LSΩLt. Since LSΩ < Lr, the collecting area is smaller than the geometric area LrLt. The

collecting area of each ring is equal to the number of crystals nj times their collecting area

Acj = njLSΩjLtj . (3.8)

The effective area of each ring is defined as the collecting area of the ring times the reflectivity

of the crystals. The effective area of the lens is the sum of the effective area of the N rings

Aeff =

N
∑

j=1

Aeffj =

N
∑

j=1

AcjRj , (3.9)

Rj being the peak reflectivity of the crystals in the j-th ring. If ṄS is the number of γ-

photons per second emitted by the point source, the photon flux on the lens is Φ̇L = ṄS

4πL2
S
.

Hence, the number of photons per second diffracted by the lens is ṄD = Φ̇LAeff . Therefore,

the efficiency of the lens can be written as

ϵ =
ṄD

ṄS

=
Aeff

4πL2
S

=
1

4πL2
S

N
∑

j=1

AcjRj . (3.10)

It follows that

ϵ =
1

2

N
∑

j=1

njLtj

2πLS
ΩjRj =

1

2

N
∑

j=1

njLtj

2πrj
θBjΩjRj . (3.11)

Since
njLtj

2πrj
≈ 1, (3.12)

we obtain

ϵ =
N
∑

j=1

ϵj =
1

2

N
∑

j=1

θBjΩjRj . (3.13)

The efficiency of a ring is approximately given by

ϵj =
1

2
θBjΩjRj . (3.14)

In a first approximation, ϵj does not depends on LS , nor on nj , nor on the surface on which

the photons impinge. Indeed, by raising the object distance, a larger number of crystals
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Figure 3.4: Normalized efficiency at 140.5 keV of a ring exploiting the planes (111) of Ge
crystals, as a function of the thickness and the acceptance of the crystals. The solid black
lines gives the optimum thickness as a function of the acceptance Ω.

can be arranged in each ring. Thus, an increase in Aeff can be obtained. However, this

gain is approximately compensated for by the decrease in the photon flux hitting the lens.

Conversely, ϵj depends on the Bragg angle, on the acceptance, and on the thickness of the

crystals. For a ring of crystals of a given material and a given set of lattice planes, Ωj and

T0j are 2 free parameters that can be chosen to maximize the efficiency of the ring.

To proceed further in the analysis, highly-curved crystals are considered. In this case,

dropping the subscript j and using equation (1.19), the efficiency of a generic ring assumes

the form

ϵ =
1

2
θBΩ(1− e

−π2dhkl
Λ2
0

T0
Ω
)e

−µT0
cos θB . (3.15)

Since cos θB ≈ 1, efficiency depends almost linearly on θB. However, by equation (1.4) it

follows that a higher value of the Bragg angle implies higher indices and hence higher value

of Λ0, leading to a decrease in the ring efficiency. For this reason, the outermost rings in

the lens gives a small contribution to the overall efficiency. As a result, it is not convenient

to increase the number of rings over a certain value, which depends on the specific case.

Otherwise, there would be only an increase in the lens complexity without an appreciable

increase in the lens efficiency.

Fig. 3.4 plots the efficiency at 140.5 keV of a ring exploiting the planes (111) of Ge

crystals. The acceptance has to be as high as possible to maximize the efficiency of the ring.

Moreover, for each value of Ω, there is a relatively narrow range of thickness T0 for which

the efficiency attains its maximum value.

Another parameter which is generally used to quantify the diffraction capability in the
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whole lens, especially those for astrophysics, is the lens diffraction efficiency, which has

not to be confused with the crystals diffraction efficiency. The lens diffraction efficiency is

defined as the ratio between the number of photons per second diffracted by the lens ṄD

and number of photons per second incident on the lens ṄL. It turns out

ϵD =
ṄD

ṄL

=
Aeff

AL
, (3.16)

where AL =
∑N

j=1 njLtjLrj is the geometric area of the lens.

3.2.3 Point Spread Function calculation

The Point Spread Function (PSF), i.e. the system response to a point-like source, is

the physical quantity that fully characterizes an imaging system. Indeed, the image of a

extended source is obtained by the convolution of its spatial distribution and the PSF of

the system [84]. The PSF of the system is given by the convolution of the PSF of each

individual element that contributes to the formation of the image. In our case, only the lens

and the detector contribute to the formation of the image. Thus, for an ideal detector, the

PSF of the system coincides with the PSF of the lens. The spatial resolution of the system

is defined as the FWHM of its PSF. This quantity affects the capability to distinguish small

details of the image and hence has to be as small as possible.

An ideal situation would be if the crystals, other than possessing the curvature of the

planes of diffraction, were bent to perfectly fit in the ring in which they are positioned

(sagittal focusing [83]). In this case, a perfect focusing into a single point could be achieved.

Unfortunately, due to mechanical stiffness of the crystals, this condition cannot be met and

each crystal focuses only in one direction. Therefore, on the image plane, where the detector

is positioned, the distribution function of the incoming photons is spread out around the

center OD. This spread, and hence the lens resolution, depends on several parameters.

If the lens is composed of highly-curved crystals disposed under Laue symmetric ge-

ometry, the photon trajectories and their distribution on the detector can be calculated.

Because of the variation of the orientation of the lattice planes due to the curvature, a pho-

ton penetrates into the crystal until the zone where the Bragg condition is satisfied. Such

a zone is narrow enough that the photon trajectory undergoes a kink [26]. Therefore, each

photon is diffracted only once and then proceeds along its trajectory undergoing normal

absorption. These are the conditions provided by the kinematic theory.

Let us consider the situation sketched in Fig. 3.5. A photon impinges on the surface of

a crystal with azimuthal angle equal to zero. The coordinates of the diffraction point in a
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Figure 3.5: Schematic representation of diffraction in a highly-curved crystal under Laue
symmetric geometry. The kink of the trajectory is due to the large variation of the lattice
planes orientation over a distance equal to the extinction length.
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Figure 3.6: Diffraction in a highly-curved crystal under Laue symmetric geometry. (a)
RC = HC is the radius of curvature of the diffracting planes. (b) Trajectory of the photons
with azimuthal angle equal to zero.

frame with origin at crystal centre can be calculated as

yD = 0, (3.17)

zD = −T0

Ω
∆θ, (3.18)

xD = −∆θ(
T0

Ω
θ − LS). (3.19)

The equation that expresses the z-coordinate of the diffraction point zD can be demon-

strated as follows. Curved diffracting planes under Laue symmetric geometry can be de-

scribed through x = k − z2/(2RC), where k is a real parameter and HC = RC = T0/Ω the

radius of curvature of the diffracting planes (Fig. 3.6.a shows the plane obtained if k = 0).

This equation represents a family of parabolas with the x-axis as the symmetry axis. The

variation of orientation of the diffracting planes due to the curvature, along the direction of

propagation of the photon beam, is dx/dz = −z/RC ≈ α. By identifying α with ∆θ = θ−θB

we have equation (3.18). The expression of xD can be obtained through a series of trigono-

metric calculations. In fact, from Fig. 3.6.b, it follows that xD = CB = AB − AC. Since

AB ≈ zDθ and AC = OLC − OLA = θBLS − θLS = −∆θLS , we have xD = zDθ + ∆θLS

and, substituting the expression of zD, equation (3.19). It is worth noting that, if ∆θ = 0,

diffraction occurs at the origin of coordinates, namely at the middle of the crystal, as ex-
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Figure 3.7: Composition of the crystal images on the plane at a distance LD = LS from
the lens. A lens composed of 1 ring with 16 crystals is considered. Assuming a perfect
alignment, the images of crystals located in diametrically opposite points overlap perfectly.

pected.

The distance of the arrival point of the photons on the detector, with respect to OD,

turns out to be

xDET = r + xD − (LD − zD)θe, (3.20)

where r is the radius of the ring to which the crystal belongs and θe = θB − ∆θ. Since

LD = LS , by considering all the possible values for the polar angle θ, the image obtained on

the detector is a line of width |2T0θB−2ΩLS |. Due to the focusing effect provided by curved

diffracting planes, this value is lower than the radial size of the crystal Lr. Furthermore,

including in our analysis the photon azimuthal angle, it is possible to see that a point source

produces a rectangle with sides |2T0θB − 2ΩLS | and 2Lt as an image of each crystal (see

Appendix B). The PSF of the lens can be estimated by taking into account such contribution

for all crystals in each ring (see Fig. 3.7). In the next section, a specific lens will be considered

and its PSF shown. The FWHM of the PSF depends on the object distance, on the Bragg

angle of each ring, on thickness and on the acceptance of the crystals. Conversely, the tails

of the PSF are basically determined by the tangential side of the crystals.

The PSF can also be calculated if the lens is composed of mosaic crystals [85]. In this

case, the width of the image spot is at least equal to the radial size of the crystals Lr

and becomes larger, due the so-called mosaic defocusing, as LS increases over the value
√

2 ln(2)Lr/m, m being the mosaicity of the crystals [15]. Therefore, the image resolution

attainable with a lens composed of CDP crystals is much better than for a lens composed
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of mosaic crystals.

A parameter that combines efficiency and focusing capability of a lens is the focusing

factor G. It is defined as [81]

G = fph
Aeff

AD
, (3.21)

Aeff being the effective area of the lens and AD the area of the spot on the detector that

contains a fraction fph of photons reflected by the lens.

3.2.4 Field Of View estimation

The Field Of View (FOV) of the lens is the portion of space within which a source has to

lie so that it can be correctly reproduced on the image plane. In particular, we consider only

the portion of space within which the lens response is stationary, namely it does not depend

on the source position. This issue can be precisely addressed by a numerical simulation.

However, an estimation can be performed as follows. Let us consider a Laue lens composed

of crystals of the same type and size. Let us also assume that Lr ≤ Lt. If a point source is

positioned in OS , the lens provides a point-to-point imaging with a blur given by the the lens

resolution. If the point source is moved away from OS , the lens diffracts the photons with

no efficiency loss nor blur increase only if the transaxial displacement is approximatively

lower than Lr/2. Beyond this distance, diffraction may not occur for some polar angles

within the nominal acceptance range. Indeed, through a modified version of equation (3.19)

which includes the source shift and the azimuthal angle contribution (see Appendix B), it

is possible to calculate that the diffraction point lies outside the crystal. Since the lens

transaxial FOV is approximately given by the radial side of the crystals, there is a trade-off

between the need for small Lr (to enable the diffraction from all the desired planes) and the

need for a large value of Lr (to magnify the transaxial FOV). The axial FOV of the lens is

far broader than the transaxial one. Indeed, it is approximatively equal to Ω1LS/θB1 , θB1

being very small.

3.2.5 Response of the lens vs. energy

A lens designed for a specific monochromatic source can be also used with different

sources. Indeed, equation (3.6) settles a proportionality relationship between E and LS .

Thus, if the source energy changes, the object and the image distances have to be set

accordingly. However, the lens efficiency and resolution change as well.

The efficiency worsens at high energy. Indeed, the crystal thickness should be increased

to maintain a high value of reflectivity. Furthermore, even if one considers the optimum
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Table 3.2: Features of the proposed Laue lens

E 140.5 keV
LS 0.25 m
LD 0.25 m
N 10

crystals Ge (CDP)
T0 5.0 mm
Lt 1.0 mm
Lr 1.0 mm
RC 11.5 m
Ω 90 arcsec

thickness, the lower Bragg angle leads to an increase in Λ0 and hence to a decrease in

diffraction efficiency at high energy. Such decrease is stronger than the increase in the

absorption factor and, as a result, the reflectivity decreases.

The shape of lens PSF also changes with energy. Indeed, it depends on LS and on the

Bragg angles of each ring and, in turn, these physical quantities vary with energy. As will

be shown in the next section, there is an energy range within which the resolution assumes

its best value. However, this condition leads to a smaller fraction of photons enclosed by a

circle with diameter equal to the FWHM of the PSF.

3.3 Proposal of a high-resolution lens

In this section, the design of a Laue lens for high-resolution diagnostic nuclear medicine

using the 140.5 keV γ-lines from 99mTc is illustrated. The object distance LS is set to 25

cm.

We consider a lens composed of 10 rings of CDP Ge crystals whose transaxial size is 1.0

× 1.0 mm. Furthermore, we take under consideration crystals with a radius of curvature

of 11.5 m. In the previous section, it has been shown that each ring should be composed

of crystals with different thicknesses. However, in this case, the optimum thickness does

not change very much from one ring to another. Thus, for the sake of simplicity, we set

the thickness of all the crystals to be 5.0 mm. Their angular acceptance turns out to be 90

arcsec. Finally, we consider a symmetric Laue geometry and a perfect crystals alignment.

The features of the lens are summarized in Table 3.2.

For each ring, the lattice planes, the radius, and number of crystals exploited are listed in

Table 3.3. By using such diffracting planes, the lens assumes the geometry depicted in Fig.

3.8. The lens is very compact, having a diameter of 3.4 cm. Through equation (3.11), the

lens efficiency turns out to be about 1×10−5, which is lower than the levels for SPECT and

PET and is indeed comparable to that of a pinhole SPECT. The efficiency of the proposed
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Table 3.3: Rings of proposed Laue lens

ring lattice planes number of crystals radius

1 (111) 18 3.38 mm
2 (220) 31 5.52 mm
3 (400) 45 7.80 mm
4 (422) 56 9.56 mm
5 (440) 66 11.04 mm
6 (620) 74 12.35 mm
7 (444) 81 13.53 mm
8 (642) 88 14.61 mm
9 (800) 95 15.63 mm
10 (751) 103 16.92 mm

Figure 3.8: Perspective view of the designed lens. The black central disk represent an
absorber that stops the direct beam near the lens axis. The photons passing through the
voids between the rings do not reach the sensitive volume of the detector.
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Figure 3.9: Section of the lens PSF along the X axis of the image plane.

Figure 3.10: Fraction of the diffracted photons enclosed by a circle of increasing diameter.

lens is also of the same order of magnitude if compared with the already realized prototypes

[17, 18].

By application of the method exposed in the previous section, the PSF of the lens can

be calculated. It is a function of the 2 coordinates on the image (detector) planes. However,

due to the nearly perfect rotational symmetry of the lens, a section along any axis can be

considered. Fig. 3.9 shows the section of the PSF along the X axis.

The majority of the photons are focused near to the image point OD. Indeed, the FWHM

of the curve is 0.30 mm and the number of the diffracted photons enclosed by circle whose

diameter is 0.30 mm is about 50%. Furthermore, a spot of 0.84 mm contains 80% of the

diffracted photons. Fig. 3.10 plots the fraction of the diffracted photons, fph, enclosed by a
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Table 3.4: Lens performance at 140.5 keV

Number of crystals 657
Lens diameter 3.4 cm
Filling Factor 71%

Diffraction efficiency 1.2%
Efficiency 1× 10−5

Resolution 0.30 mm
fph at 0.30 mm 50%

d80% 0.84 mm
G80% 8

Figure 3.11: Efficiency of the lens as a function of source energy.

circle of increasing diameter dfph .

Due to the focusing power of the lens, a very low blur in the image of a point source is

guaranteed. A resolution of 0.30 mm would be an outstanding performance for a technique

in nuclear medicine. This value is one order of magnitude better than that obtainable

with PET and it can be only approached by some pinhole SPECTs, but in such cases, the

efficiency would be far lower than for the lens described here.

The lens performance at 140.5 keV is summarized in Table 3.4.

Finally, the efficiency and the resolution of the lens as a function of energy are shown

in Fig. 3.11 and Fig. 3.12 respectively. As claimed in the previous section, the efficiency

decreases monotonically at high-energy due to the decrease in reflectivity of the crystals.

The PSF of the lens varies vs. energy because of the variation of LS and of the Bragg

angle relative to each ring. When the condition for best resolution occurs, a smaller fraction

of diffracted photons is enclosed by a circle with diameter equal to the FWHM of the PSF.

Furthermore, the diameter of a circle enclosing 80% of diffracted photons is larger.
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Figure 3.12: Characteristic parameters of the lens PSF as a function of the source energy.
Red circles joined by the red solid line plots the resolution (FWHM of the PSF) of the
lens (mm). Green crosses joined by the green dot-dashed line plots the fraction of photons
enclosed by a circle whose diameter is equal to the FWHM of the lens PSF. Blue squares
joined by the blue dotted line plots the diameter of the circle (mm) that encloses 80% of
diffracted photons.

It can be argued that the lens is still usable when other monochromatic sources are

considered. Naturally, the best performance is achieved at the energy for which the lens has

been designed.

3.4 Imaging capabilities of a Laue lens for nuclear medicine

In order to achieve an in-depth knowledge about the imaging capabilities of a Laue lens

for nuclear medicine, several Monte Carlo simulations were performed through a custom-

made code named LAUENM (see Appendix B for details). The code, which is implemented

in Matlab language [86], enables one to design the lens and to simulate the diffraction

process. The lens can be composed of crystals of different material and different structure

(CDP or mosaic). The code is modular and each module faces a particular task. A specific

module manages the photon source, which can take various shapes and activity distributions.

The photons are emitted randomly in direction. The same module works out the lens

geometry starting from the input parameters set by the user. The main processing module

manages the interaction of the photons with the crystals and calculates the arrival point

of the photons on the detector. Finally, a post-processing module, taking into account the

detector feature, computes the obtained image and all the figures of merit regarding the

lens.

A series of simulations were carried out considering a lens with 10 rings composed of 5

mm thick CDP Ge crystals with 1.0 × 0.5 mm traversal size and curved diffracting planes

with a radius of curvature radius of 11.5 m.
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Figure 3.13: a) Normalized efficiency of a lens composed of crystals with 1.0 × 0.5 mm
traversal size as a function of xS and zS . b) Contour of the normalized lens efficiency.

First, the lens FOV was calculated as follows. The lens efficiency was recorded as a

function of the position of a point source. In particular, the source was moved along a

transaxial direction and along the axial direction, namely along the axes xS and zS of a

frame centred at OS . Fig. 3.13 plots the normalized lens efficiency as a function of xS and

zS . It is possible to recognize that within a transaxial distance equal to 0.25 mm from OS

there is no efficiency decrease. This distance corresponds to Lr/2. The axial distance within

which there is no efficiency decrease is approximatively equal to 4.0 mm, which corresponds

to Ω1LS/2θB1 . It is worth noting that over these distances the response does not vanish, but

undergoes a progressive loss accompanied by an increase in the photon spread. This affects

the ability of obtaining a correct image of the source. Hence, the FOV of the lens has to be

considered limited to the value within which the normalized efficiency is 1, to be capable of

reconstructing the image of an extended source. Fig. 3.14 summarizes the images obtained

when various source configurations are considered. The background and the not coherently

scattered photons are neglected and an ideal detector with 100% efficiency and 40 × 40

µm2 pixel is considered. Fig. 3.14.a plots the image obtained in the nominal configuration,

i.e. with a point source positioned in OS . Fig. 3.14.b plots the image related to a point

source positioned in yS = -0.2 mm, which is a point inside the FOV of the lens. It can be

seen that an exact image of the source is reproduced on the detector. Fig. 3.14.c plots the

image related to a point source positioned in xS = +0.4 mm, a point outside the FOV of the

lens as defined above. In this case is still possible to recognize that the peak of the photon

distribution is centred at X = +0.4 mm. However, there is a broadening of the peak and an

asymmetry in the tails, which are much more extended in the opposite direction with respect
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Figure 3.14: Images, on a ideal detector, provided by a lens composed of crystals with
1.0 × 0.5 mm traversal size. Various source configuration are considered. a) Point source
positioned in OS . b) Point source moved 0.2 mm transversely (along yS) with respect to
OS . c) Point source moved 0.4 mm transversely (along xS) with respect to OS . d) Point
source moved 10 mm axially (along zS) with respect to OS . e) Two point sources of different
activity are considered, one in OS and the second, having an activity equal to one half with
respect to the former, moved 0.25 mm along xS . f) Circular source with a radius of 0.32
mm.
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to the source shift and are almost absent in the perpendicular direction. This asymmetry

makes it very difficult to reconstruct the image when an extended source is considered. In

Fig. 3.14.d the point source is moved 10 mm axially with respect to OS , thus it is outside

the FOV. Due to the fact that the part of the crystals closer to the lens axis does not diffract

almost any photon, a central hole appears, making the image reconstruction impossible. In

Fig. 3.14.e 2 point sources with different activity are considered. One is centred at OS and

the other, having an activity equal to one half with respect to the former, is moved 0.25 mm

along xS . Both the sources are perfectly resolved and the activity difference is perceptible.

Indeed, both the sources are inside the FOV and are separated by a distance larger than

the spatial resolution. Finally, in Fig. 3.14.f it is shown the image of a circular source with

a radius of 0.32 mm, which is correctly reproduced.

3.5 Lens-detector coupling

Even if is not the purpose of this work treating the design of the detector used to record

the image of the radioactivity distribution inside the patient’s body, it is important to

highlight the required features and indicate a possible solution.

As previously mentioned, the image recorded by the detector is the convolution of the

lens response with the PSF of detector itself. Since the main reason to employ a Laue lens

in diagnostic nuclear medicine is to provide high-resolution functional images, it follows that

the detector must have a spatial resolution better than that of the lens to not spoil the lens

imaging performance. Furthermore, the detector efficiency, namely the number of detected

photons over the number of photons impinging on the detector sensitive volume, must be as

high as possible at the energy range of interest (100 - 300 keV). Since the transaxial FOV

of the lens is narrow, the sensitive area of the detector is required to be relatively small.

Diverse detection strategies can be adopted, pixelated solid state detectors composed of

materials with high density and atomic number represent a possible solution. CdTe or CZT

(Cadmium Zinc Telluride) pixel detectors were recently proposed for the realization of the

focal plane detector for a focusing telescope based on a Laue lens, as they combine high

absorption efficiency and good spectral resolution while operating at room temperatures

[87, 88]. A detection efficiency of about 50% at 200 keV can be obtained with a thickness

of 5-6 mm, while Ge detectors would require a far larger thickness and a proper cooling

system.

CdTe/CZT pixel detectors can be also used for medical applications. In order to have a

high spatial resolution, the pixel size should be of the order of 100-200 µm. One important
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issue that could spoil the spatial resolution is due to Compton scattering. The Compton

cross section in CZT crystals at 200 keV is approximately one third of the total cross

section. Therefore, the effect of Compton scattering is important at this energy, however

it is not really the factor limiting the spatial resolution. Indeed, these kind of events can

be recognized with a good reliability and therefore can be corrected by using a logic of

coincidence or anti-coincidence. Actually, the main limitation on the achievable spatial

resolution is due to the charge sharing effect. Indeed, the cloud of carriers generated due

to the photon interaction tends to enlarge by diffusion during the movement under the

influence of the collecting electric field. The size of the cloud depends on the distance that

the charges travel before being collected and therefore on both the configuration of the

collecting field and on thickness of the sensitive volume. The charges could be collected

from multiple adjacent electrodes (pixels) and therefore the actual spatial resolution could

worsen. However, by using a ratio of the pixel size over the thickness of the order of 0.1 and

a sufficiently intense electric field, the spreading of the cloud of carriers can be limited to a

value significantly lower than the pixel size. Therefore, the achievable spatial resolution is

comparable to the pixel size or better [89].

A further improvement can be achieved by using a more sophisticated detection strat-

egy based on layers of Double Sided Strip Detectors (DSSDs). Because they are position

sensitive, these detectors are able to reconstruct the lens response [90].
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Figure 3.15: Schematic representation of the simulated radioactivity distribution in a portion
of the patient’s body equal to lens FOV. LFIELDx = LFIELDy = 1 mm, LV OXELx =
LV OXELy = 0.11 mm.

3.6 Images provided by the proposed lens in realistic cases

In order to further highlight the potentiality of a Laue lens for radionuclide imaging,

in this section, we show the images recorded by a real detector as they result from the

simulations performed considering particular distributions of radioactivity lying inside the

patient’s body. Two significant cases are treated. The first case involve a complex activity

distribution within a portion of space equal to the FOV the lens. In the second case, an

extended source requiring a scan to be imaged is considered. In both cases, the optics is the

lens proposed in section 2.3 and the source of radiation is the 140.5 keV line from 99mTc.

For the first case the, effect of crystal misalignment is assessed.

3.6.1 Complex activity distribution within the FOV of the lens

Let us consider the source (region under analysis) shown in Fig. 3.15. It is a uniform

field of radiation with transversal dimensions LFIELDx and LFIELDy both equal to 1 mm

and axial dimension equal to 10 mm. Thus, the source is entirely contained within the

lens FOV. Inside this volume, there is a small asymmetric region having sharp edges and

an activity concentration 10 times higher than the remainder of the volume. The goal of

our analysis is to assess how this hotspot is imaged by the lens on a detector with finite

efficiency and resolution. The remainder of the volume emits a background radiation, thus

it is called background region. In the simulations, the region under analysis is divided in
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9 × 9 voxels with size 0.11 × 0.11 × 10 mm. Each voxel is modeled as a point source

isotropically emitting 140.5 keV photons.

In order to estimate the time required to obtain a high-quality image, some concepts have

to be introduced. First of all, one has to consider that there is a limitation to the amount of

radiotracer that can be given to the patient due to radioprotection constraints. Moreover,

only a fraction of the injected activity accumulates in a given tissue. The ratio of the

activity in a given tissue over the total injected activity is called uptake. Generally speaking,

a tumour retains a higher activity concentration because of the increased vascularization,

reaching 500 µCi/cc [16].

The hotspot and the background activities can be calculated once the amount of in-

jected radiotracer and the uptake values are known. Concerning the injected activity, we

can assume a value of 10 mCi (370 MBq), which is typical for 99mTc. Furthermore, we

can hypothesize an uptake of 0.05 and 0.005 for the hotspot and the background region

respectively. In the case of concern, the source has an overall volume of 0.01 cc, whereas the

hotspot has a volume of about 0.001 cc. The mean uptake of the region under analysis is

u =
uhsVhs + ubVb

V
, (3.22)

where V is the volume of the region, uhs and ub are the uptake values for the hotspot

and the background respectively, while Vhs and Vb are their volumes. The activity of the

hotspot Ahs and of the background Ab can be calculated solving the following simultaneous

equations

Ahs +Ab = uAi, (3.23)

Ahs/Vhs

Ab/Vb
=

uhs
ub

, (3.24)

Ai being the injected activity. The solution of the system is

Ahs =
nhsuhs

nhsuhs + nbub
uAi, (3.25)

Ab =
nbub

nhsuhs + nbub
uAi, (3.26)

where nhs and nb are the number of voxels of the hotspot and of the background region

respectively. The activity involved in the region under analysis is A = uAi = 37 kBq. The

activities per voxel of the hotspot and of the background region are Ahs/nhs = 2.3 kBq

and Ab/nb = 0.23 kBq respectively. These values are used in LAUENM simulations. Since
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Figure 3.16: Sketch of a diagnostic system composed of two Laue lenses aimed at the same
point in order to improve the detection efficiency.

they are quite low and the lens efficiency is 1×10−5, several identical lenses (and detectors)

working in parallel according to the scheme depicted in Fig. 3.16 are required in order to

obtain a high-quality map of the radioactivity distribution of the region under analysis in a

reasonable amount of time.

In order to perform realistic simulations, the effect of Compton scattered photons by

the crystals and the effect of the background on the detector are also taken into account.

The number of Compton scattered photons reaching the detector is roughly estimated as

follows. The geometric area of each ring is approximately given by

Ag ≃ π((r + Lr/2)
2 − (r − Lr/2)

2) = 2πrLr, (3.27)

r being the ring radius and Lr the crystal radial size. Since the flux on a lens is Φ̇L = ṄS

4πL2
S
,

where ṄS is the number of photons emitted per second by the source, the photons impinging

per second on each ring is

Ṅg = AgΦ̇L =
rLr

2L2
S

, (3.28)

where LS is the source-to-lens distance. The number of photons scattered per second by

each ring is

Ṅc = Ṅg(1− e−µcT0), (3.29)
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Figure 3.17: Simulated image of the activity distribution inside the region under analysis
on a real detector.

where T0 is the crystal thickness, and µc is the linear attenuation coefficient due to Compton

effect. The number of photons scattered by all the rings of the lenses composing the imaging

system can be obtained summing all the contributions calculated through equation (3.29).

Only a small fraction of all the scattered photons reaches the detectors. Because the sensitive

area of the detectors is small, we estimate that this fraction is about 1%. These photons

are randomly distributed between the pixels of each detector.

Further data required to perform realistic simulations concern the depth at which the

region under analysis lies and the nature of the tissue. In this way the the photon absorption

can be taken into account. We assume that the region is at a depth of 2.5 cm within an

ICRU Four-Component soft tissue, namely a tissue composed of H (0.1%), C (0.11%), N

(0.03%), and O (0.76%) [91].

Fig. 3.17 shows the image on a detector with 50% detection efficiency and 200 µm

resolution obtained using 14 lenses and a time of acquisition of 20 min as it results form

the simulation. As can be seen by comparing Fig. 3.15 and Fig. 3.17, the proposed

Laue lens is capable of providing a very good image of the activity within a portion of

space entirely contained within the lens FOV, even in the case of a complex distribution

such that considered here. This outstanding imaging performance is obtained at cost of

an increased complexity of the system. However, it is not achievable through conventional

nuclear medicine methods.
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Figure 3.18: Misalignment angles of a crystal lying in a generic ring of a Laue lens. (a) φa,
(b) φb.

Figure 3.19: Simulated image of the activity distribution inside the region under analysis
on a real detector taking into account axial misalignment φa.

3.6.2 Effect of crystal misalignments

An essential requirement for a Laue lens to work properly is the alignment of the crystals.

The misalignment of a crystal can be described using three angles, two of them affect the

photon distribution on the detector [92]. They are depicted in Fig. 3.18.

The misalignment angle of a crystal with respect to the lens axis φa has a much stronger

effect since it causes a first-order variation on the nominal Bragg angle of each ring, whereas

φb has a second-order effect. A series of LAUENM simulation were performed to quantify

these effects. For each crystal, φa and φb were two random variables with a uniform prob-

ability density function over a symmetric interval around zero. It resulted that φa affects
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Figure 3.20: Schematic representation of a field of radiation requiring a scan to be imaged.
LFIELDx = LFIELDy = 5 mm.

mainly the size of the spot on the detector, causing a doubling of the FWHM of lens PSF

if its maximum value φamax is 30 arcsec. φb causes a wider spread of the tails of the photon

distribution on the detector and a decrease in the lens efficiency of 7% per degree.

Fig. 3.19 shows the effects of φa on the image of the activity distribution inside the

region under analysis considered in the previous paragraph. It is evident that, for φamax =

60 arcsec, the image does not correspond any more to the real radioactivity distribution,

whereas a value of 30 arcsec does not spoil the imaging properties of the proposed lens.

Furthermore, it is worth noting that an accuracy in crystal position within 10-20 arcsec

has been reached by the groups involved in the realization of Laue lenses [92, 93], thus an

alignment within 30 arcsec is achievable in practice.

3.6.3 Scan of an extended source

As aforementioned, the transversal FOV of the lens is limited by the crystal radial length

Lr, while the axial FOV is typically one order of magnitude greater. Since the size of the

region to image could be wider than the lens FOV, particularly in the transversal direction,

it could be necessary to perform a scan.

Let us consider the 140.5 keV photon source shown in Fig. 3.20. It is a uniform field of

radiation with transversal dimensions LFIELDx and LFIELDy both equal to 5 mm and axial

dimension equal 10 mm. Thus, the source has a cross section wider that the transversal

FOV of lens proposed in section 2.3. Inside this volume, there is a 1 × 1 × 10 mm hotspot

with an activity concentration 5 times higher than the remainder of the volume. As done
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Figure 3.21: Simulated image of the activity distribution inside the a region wider than the
lens FOV.

before, we want to simulate the image of this source. Considering the source size and the

lens FOV, a 2D scan with 5 steps of 1 mm in each transversal direction (xS and yS) is

necessary. The scan is envisaged to be performed by moving the bed where the patient lies.

The activity of 99mTc is 370 MBq, while the uptake is 0.05 and 0.01 for the hotspot

and the background region respectively. The depth at which the source lies, the tissue and

the detector feature are the same as before. At each step, we consider 14 lens acquiring in

parallel the signal from the source for 2.5 min. Thus, the scan would take about 1 hour.

The result of the simulation is shown in Fig. 3.21.

In order to quantify the quality of the image, a series of parameters are here introduced.

Let Nhs and Nb be the mean counts related respectively to the hotspot and to neighbouring

background regions with the same area of the hotspot. The ratio

∆N

Nb
=

Nhs −Nb

Nb
(3.30)

is called contrast. It is one of the most important parameter defining the quality of a

diagnostic image [94], it is related to the ability of the human eye to distinguish sharp

variations of intensity in a grey scale image (Fig. 3.21 is a false colour image). A more

meaningful and frequently used measure in assessing digital images, related to contrast, is
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the contrast-to-noise ratio (CNR) defined as

CNR =
∆N

σn
, (3.31)

where σn is the noise in the image [75]. If we assume, as usual, that the counts follow a

Poisson Statistics, σn =
√
Nb.

The Rose criterion states that a CNR of at least 5 is needed to be able to distinguish

image features at 100% certainty [95]. In the case of concern, CNR is about to 60 and

therefore the Rose criterion is fully satisfied. Indeed, the hotspot is perfectly recognisable

over the background radiation. Therefore, the proposed Laue lens could be used to effectively

image both small and extended source of radiation lying inside the patient’s body.
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Laue lenses for radiation therapy

4.1 Motivations

External beam radiotherapy is a technique commonly used for the treatment of tumours.

The most widely used particles for radiotherapy are protons, electrons, and X-rays [96]. An

important physical quantity used to describe the effects induced by a radiation beam is the

absorbed dose, which represents the mean energy imparted to matter per unit mass. The

dose distribution inside the patient has a fundamental importance to assess the effectiveness

of the treatment. Indeed, the aim of any radiotherapy treatment is to cause as much damage

as possible to cancer cells while harming only a few of the healthy ones [97].

Hadron therapy is a technique that can provide precise dose delivery because of the

Bragg peak, i.e., the highest ionization density of the hadron beam is near the end of the

range [55]. Thus, most of the beam energy is delivered near the stopping point, where the

target volume is located. There 63 hadron therapy centres around the world, half of which

are in the USA and Japan [98]. These facilities are based on cyclotrons or synchrotrons,

the diameter of which spans from a few meters for the smallest cyclotrons to a few tens of

meters for the largest synchrotrons [8].

Electron and X-ray beams are more accessible, because they are produced using compact

electron linear accelerators (LINACs). They have widespread use in the world, typically with

electron energies within the range 4-25 MeV. In particular, electron beams are useful for

treating superficial lesions because the maximum of the dose deposition occurs near the

surface. The dose then decreases rapidly with depth, sparing underlying tissue [99].

A method to reach deeper tissues consists of using X-ray beams [96]. The depth-dose

released by an X-ray beam is described by an initial build-up, where the maximum dose

is reached, followed by a long decreasing exponential curve, given by the tissue absorption.
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Figure 4.1: Photon flux Φ̇, namely the number of photons per second per unit area, versus
penetration depth in a tissue. A monochromatic beam with energy E is ideally focused at
a depth zf . Φ̇ = Φ̇0 · z2f/(zf − z)2 exp(−µz), where Φ̇0 is the value of the photon flux at

z = 0 and µ is the total attenuation coefficient at energy E. The term z2f/(zf − z)2 takes
into account the variation of the beam cross-section with the penetration depth. The term
exp(−µz) takes into account the photon attenuation by the tissue. Under charged-particle
equilibrium conditions, the absorbed dose-rate is Ḋ = Φ̇Eµen/ρ, where µen is the absorption
coefficient at energy E and ρ is the tissue density [100]. Being Ḋ proportional to Φ̇, the
absorbed dose-rate follows the same behaviour as the flux. The singularity of the flux at
the focal depth is due to the perfect focusing and disappears if a real optics is considered.

The X-ray energy is typically in the MeV range to reduce the dose to the skin, because in this

case the maximum dose is delivered at a depth of 2-4 cm. Such high-energy photon beams

are usually produced through bremsstrahlung, which accelerated electrons undergo passing

through a target of a high-Z material, such as tungsten and copper-tungsten alloys. With the

aim of reducing the damage to healthy tissues, increasingly sophisticated beam techniques

have been developed, e.g. Three-Dimensional Conformal Radiation Therapy (3DCRT),

Intensity-Modulated Radiation Therapy (IMRT), Stereotactic Radiation Therapy (SRT),

and Tomotherapy [97].

A device capable of focusing a photon beam towards a target volume would pave the

way to an innovative radiotherapy methodology. Indeed, for a focused photon beam, the

flux along the beam axis increases with the penetration depth, reaching its peak at the

focal point and showing a rapid fall-off beyond this point. This effect can be understood by

considering the simple case shown in Fig. 4.1, which illustrates the depth-flux curve for a

monochromatic photon beam ideally focused at a depth zf inside a tissue. Under charged-

particle equilibrium conditions, the absorbed dose-rate is proportional to the photon flux

and therefore, the depth-dose profile shows the same peak of the flux.

Recently, various approaches were proposed to produce a convergent X-ray beam for
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radiotherapy application. A first method relies on an equipment applying magnetic and/or

electric fields to properly adjust the trajectory of an electron beam from a LINAC [101, 102].

The electrons impinge perpendicularly on the surface of a thin spherical anodic target and

generate X-rays with non-isotropic angular-spatial distribution through Bremsstrahlung.

The concentration of the photons is greater in the focal direction, which is defined by the

geometry of the anode. A properly curved collimator is attached to the back of the anode. X-

rays reach the focus passing through the small holes of the collimator. This method requires

a LINAC and could be used to focus photons within the energy range 0.4-4 MeV [103]. A

further approach to obtain a convergent X-ray beam for radiotherapy application consists of

using an X-ray tube and a polycapillary lens as a focusing device [104, 105]. A polycapillary

lens exploits multiple total reflections of X-rays inside many hollow glass channels to focus

the photon beam towards a target. Since the critical angle for total reflection is inversely

proportional to the photon energy, the effectiveness of such approach is limited to photons

with energy up to 80 keV [106]. Moreover, the irradiation depth is typically limited to 5 cm.

The focal spot size is 100-200 µm wide because of the small radius of the channels. Such a

small focal spot implies that even a tumour of 1 cm3 would require a very time consuming

scan of the beam to be uniformly irradiated.

A Laue lens is an optics that would be capable of overcoming these limitations. Fig.

4.2 shows the configuration of a radiotherapy system equipped with a Laue lens. Here an

X-ray tube instead of a LINAC is considered as a source of X-rays. The X-ray tube is

located at a distance LS from the lens, which is positioned at the same distance from the

focus. The tumour is positioned at the focus, which is at a depth zf inside the patient’s

body. A conical metallic applicator joined with the X-ray tube enclosure, similar to that

shown in [107], holds both the lens and a collimator. The collimator is positioned just before

the patient and stops the photons that transmit through the lens and those that undergo

Compton scattering. Furthermore, the lens is equipped with a beam stopper, which stops

the direct beam near the optical axis. Hence, ideally only the diffracted beam reaches the

patient. A similar approach, based on Bragg-type lens elements, has been proposed in [108].

In this case the energy of the convergent beam is limited to 160 keV, while a Laue lens

remains effective to an energy of some hundreds of keV.

The aim of this chapter is to demonstrate the efficiency and versatility of a system for

radiation therapy based on a Laue lens. Such a system, based on well-known techniques cur-

rently exploited in the field of crystal micromachining, would provide favourable depth-dose

curves, comparable with those obtained by high-definition irradiation technologies (IMRT,

Tomotherapy or Hadrotherapy) but with significantly less demanding investment in facili-
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Figure 4.2: Schematic representation of a radiotherapy system exploiting a Laue lens. A
fraction of the X-rays emitted by the X-ray tube are focused by the lens towards a target
volume that contains the tumour inside the patient’s body. The collimator positioned just
before the patient together with the beam stopper positioned in the central part of the lens,
stop the direct beam and the Compton-scattered photons. Hence, ideally only the diffracted
beam reaches the patient.

ties. To show the effectiveness of the proposed system, two series of simulations have been

carried out. The first series was performed employing a custom made Monte Carlo soft-

ware, called LAUETHER and developed in MATLAB language [86]. In the code, the beam

emitted by an X-ray tube and the interaction of the photons with the crystals of the lens

were taken into account to calculate the phase space of the diffracted photons in a plane at

an arbitrary distance from the lens. Starting from the results obtained using LAUETHER,

a second series of simulations was carried out considering a voxelized water phantom po-

sitioned at a distance Lp from the lens. These latter simulations were carried out using

GAMOS [109], a framework based on GEANT4 [110]. The aim of these simulations was to

calculate the dose distribution inside the phantom and to determine the dose delivered to a

target volume lying inside the phantom itself.

4.2 Lens design principles

The aim of using a Laue lens is to obtain a nearly monochromatic X-ray beam, focused

towards a small focal spot. The features and the design method for a Laue lens employed to

diffract a monochromatic and divergent beam for diagnostic applications was widely treated

in the previous chapter. In the context of this chapter, the source is an X-ray tube, which
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emits a polychromatic and divergent beam. Such kind of X-ray source was taken into account

for two reasons: first, X-ray tubes are widely available and they emit high fluxes; second, a

Laue lens can be designed to focus a narrow portion of the source spectrum. Therefore, the

design here proposed is an evolution of that described before.

In the case of a focused X-ray beam, the dose distribution inside the patient’s body

depends on the properties of the employed optics. For a Laue lens, the nominal energy of

the diffracted beam E0 and the focal distance LS can be chosen independently. Once they

are set, the geometry of the lens can be determined. The crystals that compose the lens are

envisaged to be disposed as N concentric rings. Each ring is formed by identical crystals

that are initially assumed to be perfectly positioned and aligned. The material, structure,

size, and lattice orientation of the crystals have to be set to satisfy some requirements that

will be specified in the following.

The materials commonly considered for the fabrication of the optical elements of a Laue

lens are monocrystals of Cu, GaAs, Si, and Ge. They are widely available and their growth

technology is well-known [53]. The crystal structure of these materials is cubic and they

have a high electronic density that ensures a high diffraction efficiency [111].

For each ring, a geometric condition has to be satisfied to permit the focusing of the

X-ray beam. Let us consider the line passing through the source and the centre of a crystal.

The angle between such line and the lens axis has to be equal to the Bragg angle for the

crystal at nominal energy E0. For a crystal with a cubic lattice and under small-angle

approximation, this condition can be expressed as

r

LS
= θB0 =

hpc

2aE0

√

h2 + k2 + l2, (4.1)

where r is the radius of the ring to which the crystal belongs, θB0 the nominal Bragg angle,

hp the Planck’s constant, c the speed of light in vacuum, a the lattice constant of the crystal,

and h, k, l the Miller indices of the diffracting planes. Equation (4.1) represents Bragg’s (

see equation 1.4) law and permits to determine the ring radius once the material and the

lattice orientation of the crystals have been set. Crystals that exploit lattice orientations

with large Miller indices and/or crystals with small lattice constant fill the outermost rings.

Fig. 4.3 schematically shows the diffraction occurring in a generic crystal of the lens. A

symmetric Laue (transmission) geometry is considered. The photons traverse the crystal

thickness T0 and are diffracted at the portion of the crystal where Bragg’s law is satisfied.

The ring radius is OLC. The radial size of the crystal Lr is highlighted in the figure. The

tangential size Lt is the size of the crystal in the direction perpendicular to the plane of the
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Figure 4.3: Sketch (not to scale) of a generic crystal in the lens. T0 is the crystal thickness
traversed by the beam and Lr is the radial size of the crystal. OLC is the ring radius. The
X-ray source S is at a distance LS from the center of the lens OL, the lens focus F is at the
same distance but in the in the opposite direction. For a given crystallographic orientation,
photons with different energy Ej are diffracted at a different Bragg angle θBj .

figure. Since the X-ray tube emits photons with different energy, they are diffracted at a

different Bragg angle and diffraction occurs in a different position in the crystal.

The crystals may be arranged in each ring according to a polygonal arrangement that

best approximates the ring. In this way, the outermost rings contain a higher number of

crystals. In general, different rings can be composed of optical elements made of diverse

materials and exploiting different crystallographic orientations to satisfy equation (4.1).

This is the same approach adopted in the previous chapter. The lens has to concentrate as

much incident photons as possible toward the focus. Namely, the crystals should have a high

integrated reflectivity. For this reason, crystals with mosaic structure or with self-standing

curved diffracting planes (CDP) are the best choice for the fabrication of a Laue lens [81].

For the selection of size and type (mosaic or CDP) of the crystals that compose the

lens, some figures of merit that strongly depend on these quantities have to be introduced.

The efficiency of the lens ε is defined as the ratio of the diffracted photons to the photons

emitted by the X-ray tube within the solid angle subtended by the Laue lens. The diffraction

efficiency of the lens εD is defined as the ratio of the diffracted photons to the photons

impinging on the surface of the crystals. These parameters quantify the diffraction process

occurring in the whole lens once the energy band of the impinging beam has been specified.

They are linked to one another through the equation

ε =
AL

Aoi
εD, (4.2)

where AL is the total geometric area of the crystals and Aoi is the area of the intersection

of the solid angle subtended at the source by the lens with the midplane of the lens itself.
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AL is

AL =
N
∑

j=1

njLrjLtj , (4.3)

nj being the number of crystals in the jth ring. Aoi is just

Aoi = πr2ext, (4.4)

rext being the external radius of the lens.

Three important physical quantities for the therapeutic use of convergent X-ray beams

are the size of the focal spot, the energy passband of the diffracted beam, and the number

of diffracted photons per mAs of the X-ray tube ND. The mAs of the tube, namely the

product of the anodic current (mA) and the time of irradiation (s), represents the electron

charge (mC) impinging on the anodic surface. mAs is used because, together with the peak

voltage, it is a parameter that is commonly used to describe the setting of an X-ray tube.

The bandwidth B of the diffracted beam around the nominal energy E0 can be derived

as follows. Bragg’s law, under small-angle approximation, gives an inverse proportionality

between diffraction angle and photon energy. Differentiating this relationship, it follows that

a relative increase in diffraction angle is equal to a relative decrease in the photon energy,

namely
∆E

E0
= −∆θB

θB0

. (4.5)

From Fig. 4.3, it can be seen that, for a crystal in a given ring, the maximum variation of

the diffraction angle ∆θB from the nominal Bragg angle θB0 is

∆θB = ±1

2

(

Lr

LS
+Ω

)

, (4.6)

where Lr is the radial size of the crystals and Ω the angular acceptance of the crystals due to

mosaicity or to the curvature of the diffracting planes. A negative value of ∆θB corresponds

to an increase in the diffracted photon energy ∆E+ = E+ − E0 = E0/θB0(Lr/LS + Ω)/2,

while a positive value of ∆θB corresponds to a decrease in the diffracted photon energy

∆E− = E−−E0 = −E0/θB0(Lr/LS+Ω)/2. Therefore, the bandwidth ∆E for the considered

ring is

∆E = ∆E+ −∆E− =
E0

θB0

(

Lr

LS
+Ω

)

. (4.7)

The lens bandwidth B is the maximum value among the ∆E of the rings. A lens composed

of crystals having a large radial size would have a wide bandwidth. However, for a fixed

size of the lens, large values of Lr could imply a decrease in the number of rings. As a
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consequence, the usage of all the desired lattice orientations could be prevented. Thus,

a trade-off has to be chosen. It is worth noting that the aforementioned band is centred

around E0, but also the bands centred around the low- and high-order harmonics from E0

may be present in the diffracted beam spectrum depending on the source spectrum and the

considered lattice orientations. However, in the practical cases, their intensity is negligible

compared to that of the nominal band.

The distribution of the diffracted photons around the focal point F results from the

combination of focusing and defocusing effects. The main focusing effect is due to lattice

orientations chosen so as to satisfy equation (4.1). The main defocusing effect arises because

the crystals cannot be sagittally bent to a radius of curvature equal to the radius of their

ring [83]. If the crystals composing the lens are flat, these are the only effects that have to

be taken into account. On the contrary, CDP crystals provide a further focusing/defocusing

effect that depends on the radius of curvature of the diffracting planes (see Appendix B).

For a CDP crystal, the width of the diffraction profile at the focal distance is equal to

2|T0θB0 − ΩLS |, provided that a point source is considered. For a flat crystal, the width

of the diffraction profile is 2T0θB0 . Therefore, if the radius of curvature of the diffracting

planes RC = T0/Ω is larger than LS/(2θB0), the width of the diffraction profile is smaller

than for a flat crystal, giving rise to a focusing effect. On the contrary, if RC < LS/(2θB0),

a defocusing effect arises. For very small radius of curvatures, this defocusing can be even

larger than the defocusing due to the lack of sagittal curvature. If the lens is composed of

mosaic crystals instead of CDP crystals, a further defocusing effect arises due to the spread

of the diffracting planes [15]. In practical cases, with both types of crystal, the dominant

effect is the defocusing due to the lack of sagittal curvature. Under this condition, the full

size of the spot, namely the diameter s of a circle enclosing all the photons, is simply

s = 2Ltmax . (4.8)

Crystals with a large tangential size would lead to a large focal spot, lowering the precision

in dose delivery. On the other hand, a sub-mm spot would imply the necessity to use several

scanning steps to irradiate uniformly even a small tumour mass, causing an increase in the

total irradiation time. Hence, we considered Lt equal to 3 mm at most, which is a good

trade-off between precision in dose deposition and irradiation time.

The lens efficiency ε can be accurately evaluated only through a simulation of the system

because the distribution of the diffracted photons cannot be analytically described in closed
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form. However, εD and therefore ε, can be roughly estimated within ±30% as follows.

εD =

∑N
j=1 njRpeakjΩj
∑N

j=1 njLrj

LS
B

BS
fc, (4.9)

where Rpeakj is the mean peak reflectivity of the crystals composing the j-th ring over the

lens bandwidth, N the number of the rings, BS the bandwidth of the source spectrum, and

fc a correction factor that takes into account the variation of the crystal reflectivity over

the lens bandwidth and that can be assumed to be 0.5 in practical cases.

Once ε is known, the number of diffracted photons per mAs of the X-ray tube ND can

be calculated through the following equation

ND = ε

(

Lref

LS

)2

Aoi

∫ EH

EL

dΦ(E)

dE
dE, (4.10)

where EL and EH are the lowest and the highest energies of the photons emitted by the

source, and dΦ(E)/dE is the differential photon fluence per mAs, at the reference distance

Lref .

The photons emitted by the source that are not focused by lens, namely those that do

not impinge on the lens and those that impinge but do not undergo diffraction, have to

be stopped by a proper collimation system to avoid harming the patient. We envisage a

collimation system composed of a beam stopper positioned just before the central part of

the lens and a collimator positioned just before the patient. Given the source spectrum,

5-mm-thick lead absorbers would suppress the non-focused beam reaching the patient by a

factor of about 0.001 with respect to the focused beam. As shown in Fig. 4.2, a conical

metallic applicator joined with the X-ray tube enclosure holds both the beam stopper and

the collimator.

4.3 LAUETHER simulations

The LAUETHER software was used to determine the features of the crystals that provide

the desired lens performance. In the next subsections, some details about this custom made

Monte Carlo code and the design of a specific Laue lens are presented.
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Figure 4.4: Spectrum of the X-ray tube considered in the simulations. The tube had a
tungsten anode with an inherent filtration of 0.8 mm of Be. A filtration of 2 mm of Al
was added and the peak voltage was set to 120 kV. The spectrum was calculated using the
SpekCalc program. The bin width is 1 keV.

4.3.1 The LAUETHER code

The LAUETHER computer program was developed in MATLAB language and is com-

posed of an ensemble of scripts functionally grouped in three main modules. The pre-

processing module manages the lens geometry and the photon generation. The processing

module handles the interaction of the photons with the crystals and calculates the phase

space of the diffracted beam. Finally, the post-processing module computes the lens figures

of merit and generates several plots of interest. LAUETHER can be considered a general-

ized version of the LAUENM code described in chapter 3 and Appendix B. It can manage

sources with arbitrary spectral and spatial distributions. However, since a small-focus (∼
500 µm) X-ray tube is envisaged to be used to preserve the focusing capability of the lens,

a point-like source is initially assumed in the simulations for the sake of simplicity. Further-

more, photons are randomly generated inside the solid angle subtended at the source by the

lens neglecting the Heel effect, namely the variation of the intensity of X-rays depending on

the direction of emission. Indeed, the aperture of the solid angle cone is typically < 5◦. The

photon energy is a random variable with a probability density function defined according

to the source spectrum. In particular, the X-ray tube considered in our simulations had a

tungsten anode with an inherent filtration of 0.8 mm of Be. A filtration of 2 mm of Al was

added and the peak voltage was set to 120 kV. The spectrum of such a tube was calculated

through the SpekCalc software [112] and it is shown in Fig. 4.4.

The processing module considers X-ray diffraction in absorbing crystals. The algorithm

is similar to that of the corresponding module of the LAUENM code (see Appendix B). The
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Figure 4.5: Sketch of the diffraction process. A photon with energy E impinges on the
crystal surface with an angle θ with respect to a line parallel to the lens axis. Diffraction
occurs in the region of the crystal where the Bragg condition is met (point D).

main difference is that here the variation of the nominal Bragg angle θB0 of the crystals

for photons of energy E ̸= E0 is taken into account through equation (4.5). The Compton-

scattered photons are not tracked by the program because their contribution to the delivered

dose is negligible with respect to that due to the diffracted photons. Fig. 4.5 depicts

the diffraction process occurring in a generic crystal in the lens. The orientation of the

diffracting planes varies throughout the traversed thickness due to the mosaicity/curvature

of the crystal. A photon with energy E impinging on the crystal surface with an angle θ

with respect to a line parallel to the lens axis is diffracted at the region of the crystal where

the Bragg condition is met. The probability that this process occurs is given by the crystal

reflectivity at energy E. The arrival point of the diffracted photons on the phantom surface

and the related direction cosines are calculated.

4.3.2 Proposal of a Laue lens for radiotherapy

As a practical case, we worked out the design of a lens to be used in combination with

the X-ray tube described in the previous subsection. In particular, the lens provides a

convergent beam with a nominal energy E0 = 80 keV if the source-to-lens distance LS is

set to 50 cm. The lens is composed of CDP Si crystals because they provide the highest

diffraction efficiency at this photon energy [69]. Moreover, Si is a widely available material

and its growth technology is well-known since it is usually used in microelectronics. The

crystals are considered to be square tiles 2 × 2 mm in size. Table 4.1 summarizes the

77



Chapter 4 Laue lenses for radiation therapy

Table 4.1: Rings of the lens.

ring crystals ring radius Bragg angle reflection harmonics

1 31 CDP Si 12.4 mm 1.42◦ 80 keV (111) -
2 53 CDP Si 20.2 mm 2.31◦ 80 keV (220) -
3 63 CDP Si 23.7 mm 2.71◦ 80 keV (311) -
4 77 CDP Si 28.6 mm 3.27◦ 80 keV (400) -

Figure 4.6: Perspective view of the Laue lens designed to focus an 80 keV beam at a distance
of 50 cm. The rings of the lens are composed of CDP Si crystals exploiting different lattice
orientations. The black disk represents the beam stopper that stops the photons of the
direct beam near the lens axis. The photons of the direct beam passing through the voids
between the rings are stopped by the collimator positioned before the patient.

physical quantities featuring the rings of the lens, such as number of crystals, radius, lattice

orientation, etc.

For each crystal, the traversed thickness T0 is set to 5 mm and the radius of curvature of

the diffracting planes RC is set to 34.4 m. Therefore, the angular acceptance of the crystals

is Ω = 30 arcsec. The designed lens is depicted in Fig. 4.6. The black disk represents the

beam stopper, which is positioned just before the central part of the lens. It stops the direct

beam, which otherwise would reach the phantom surface near the lens axis. The photons of

the direct beam passing through the voids between the rings of the lens are stopped by the

collimator positioned before the patient’s skin.

A simulation of the proposed system was carried out to calculate the lens performance.

Fig. 4.7 shows the spectrum of the diffracted beam as it comes out from the simulation.

The spectrum is approximately symmetric around the nominal energy with a bandwidth of

13 keV, in agreement with the value calculated through equation (4.7). The slightly lower

intensity for energies higher than 80 keV with respect to the symmetric counterpart is due to

the decrease of intensity in the spectrum of the source. Since the maximum energy emitted
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Figure 4.7: Spectrum of the diffracted beam. The bin width is 0.5 keV.

by the source is 120 keV, there are no high-order harmonics.

The lens has an efficiency ε equal to 3.2× 10−3 considering its passband (73.5-86.5 keV)

and equal to 6× 10−5 considering the whole energy band of the source (12-120 keV). ND is

about 1× 107 photons/mC. These values include the contribution of the photon absorption

due to air and to the lens support. In particular, we considered a Si support with a thickness

of 2 mm.

Fig. 4.8 shows the distribution of the diffracted photons at a distance z from the lens

equal to Lp and LS respectively. As can be seen from Fig. 4.8.a, the diffracted beam has

an hollow cross section before the focus. This is due to the lens geometry, which does not

present crystals in the innermost part. Fig. 4.8.b shows the focal spot. In this case, the

curvature of the diffracting planes leads to a focusing effect. The number of photons in

the focal plane enclosed by a circle increases linearly with the diameter of the circle. In

particular, the spot core including 50% of the photons is about 2 mm wide. The full spot

size is 4 mm, in agreement with the value calculated through equation (4.9), Ltmax being 2

mm.

So far a perfect crystal alignment was supposed, hence the diffracted beam has a perfect

rotational symmetry. Actually, such condition is not practically achievable. Therefore,

as done for the diagnostic case, we investigated the effect of crystal misalignment on the

lens performance. There are three possible misalignment angles; two of them exert a non-

negligible influence on the diffracted beam [92]. These angles are represented in Fig. 4.9.

The angle φa has a much stronger effect since it causes a first-order variation on the nominal
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Figure 4.8: Scatter plots showing the transversal coordinates (x, y) of the diffracted photons
at different axial distances (z) from the lens. (a) z = Lp = 45.25 cm, (b) z = LS = 50 cm.

Figure 4.9: Misalignment angles of a crystal in a given ring. (a) φa, (b) φb.
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Table 4.2: Lens performance as a fucntion of misalignment angle φa.

φa range (arcmin) Bandwidth (keV) ND (photons/mAs) spot size (mm)

0 13.0 9.78× 106 4.00
±1 17.0 9.72× 106 4.10
±2 20.5 9.70× 106 4.20
±3 23.0 9.77× 106 4.30
±4 26.0 9.54× 106 4.40
±5 30.0 9.65× 106 4.60

Table 4.3: Lens performance as a fucntion of misalignment angle φb.

φb range (◦) Bandwidth (keV) ND (photons/mAs) spot size (mm)

0 13.0 9.78× 106 4.00
±1 13.0 8.94× 106 4.80
±2 13.0 8.12× 106 5.60
±3 13.0 7.28× 106 6.40
±4 13.0 6.35× 106 7.20
±5 13.0 5.89× 106 7.20

Bragg angle of each ring, whereas φb has a second-order effect [73]. We performed a series

of LAUETHER simulations to quantify the effect of the misalignment angles. For each

crystal, φa and φb were two random variables with a uniform probability distribution over

a symmetric range around zero. It resulted that both φa and φb affect the shape of the

focal spot and cause an increase in its size. Furthermore, the lens bandwidth increases

almost linearly with φa and the lens efficiency inversely depends on φb. Tables 4.2 and 4.3

summarize the simulation results. As we show in the next paragraph, φa and φb have a

small effect on the dose distribution inside a phantom provided that their maximum value

is smaller than 1 arcmin and 1◦ respectively. These values are well above the state of the

art of alignment techniques currently adopted for the fabrication of a Laue lens. Indeed,

a positioning accuracy within 10-20 arcsec has been reached by the groups involved in the

assembly of Laue lenses devoted to astrophysics [92, 93].

Other issues that may degrade the lens performance are the non-uniform bending of the

crystals and the sub-surface damage and strain due to the fabrication process. Indeed, they

cause a decrease in the diffraction efficiency of the crystals [69].

4.4 GAMOS simulations

To assess the effectiveness of the convergent beam diffracted by the proposed lens in the

treatment of tumours, the dose distribution inside a voxelized water phantom was calculated.
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Figure 4.10: Geometry of the system considered in the simulations. A voxelized water
phantom is at a distance Lp from the lens. The target volume is a portion of the phantom
lying at a depth zf , where Lp + zf = LS . The adopted system of coordinate Oxyz is
highlighted.

GAMOS, a GEANT4 wrapper, was used to accomplish this task. GEANT4 is a general

purpose Monte Carlo code for particle tracking inside matter [110, 113]. GAMOS was chosen

because it allows the user to define the geometry of the system, the particle generator, the

physics list, and the required output information in a single input script. Then, the core

of the program instantiates the GEANT4 classes required to perform the simulation. The

coordinate system adopted in the simulation is shown in Fig. 4.10. The origin was set at

the intersection of the phantom surface with the lens axis (z-axis). The focus of the lens

was at a depth of 4.75 cm along the z-axis. The phantom was described by exploiting the

GmSimplePhantomGeometry command. Its size was 1.95×1.95×9.50 cm, which was divided

into 288990 cubic voxels having a volume of 0.125 mm3 each. An input text file, containing

the phase space of the diffracted beam at the phantom surface, was produced according

to the format required by the GmGeneratorFromTextFile command. this file was used in

the input script as a particle generator. About 1 × 107 primary photons were considered

to obtain good statistical significance of the calculated dose per voxel. The PENELOPE

[114, 115] physics lists for photons, electrons, and positrons were used in our simulation.

The output of the simulation was a 3ddose file, containing the dose to each voxel of the

phantom.

Fig. 4.11 shows the percent depth-dose (PDD) profile calculated along the central axis.

This curve shows a pronounced peak at the depth of the focus. The Full Width at Half

Maximum (FWHM) of the curve is about 1.2 cm and in the following it will be referred to

as depth of field. To avoid harming radiosensitive tissues beyond the tumour, it is important

that the dose drops to zero as rapidly as possible. Fig. 4.11 shows a rather rapid fall-off

of the dose beyond the focus. It is worth noting that for a hadron therapy beam the dose

drops at a faster rate. The dose along the lens axis is close to zero in the superficial voxels
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Figure 4.11: Percent Depth-Dose curve along the lens axis (z-axis).

Figure 4.12: Ratio of the maximum dose in each slice to the absolute maximum dose given
to the voxels of the phantom.

83



Chapter 4 Laue lenses for radiation therapy

Figure 4.13: Dose distribution in two phantom slices lying at a different depth. (a) Dose
distribution in the first (superficial) slice. (b) Dose distribution in the focal slice.

because of the hollow transverse section of the diffracted beam. Fig. 4.12 shows ratio of

the maximum dose in each slice to the absolute maximum dose given to the voxels of the

phantom. As can be seen, the maximum dose in the superficial voxels is about 22% of the

absolute maximum dose.

Fig. 4.13 shows the dose distribution in the superficial slice and in the focal slice, whereas

Fig. 4.14 and Fig. 4.15 show the dose distribution in the plane y = 0. It is evident how

the dose peak is well-localized at the focal depth, while the surrounding regions receive a

lower dose. This behaviour makes the proposed system actually suitable for radiotherapy

applications.

To show the effectiveness of the proposed system, the time required to give a dose of 2

Gy 1 to a target, localized at a depth of 4.75 cm and whose x×y×z size is 0.2×0.2×1.2 cm,

is calculated. From the simulation, it turns out that a dose of 9.78× 10−10 Gy per event is

given to the target. Since the lens provides about 1× 107 photons per mAs, the irradiation

time would be about 10 s with an anodic current of 20 mA.

The effect of the crystal misalignment has been evaluated assuming a range for φa and

φb of ±1 arcmin and ±1◦ respectively. The results of these simulations are summarized

in Table 4.4. The performance decrease does not spoil significantly the effectiveness of the

method.

1A dose of 2 Gy is commonly considered as a reference dose in radiotherapy. Indeed, the surviving
fraction of the cells irradiated with an X-ray dose of 2 Gy is an indicator of the radiosensitivity of that
tissue. Moreover, the total dose prescribed to treat a given tumour is generally fractionated, each irradiation
delivering a dose of 2 Gy [97].
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Figure 4.14: Dose distribution in the plane y = 0.

Figure 4.15: Dose distribution in the plane y = 0 around the lens focus. Isodose curves are
shown.

Table 4.4: Effect of the misaligment angles on the dose distribution inside the phantom.

misalignment range depth of field superficial Dmax target dose (Gy/event)

φa = φb = 0 1.19 cm 22.0% 9.78× 10−10

φa: ±1 arcmin 1.56 cm 30.6% 9.70× 10−10

φb: ±1◦ 1.23 cm 23.0% 9.60× 10−10
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Figure 4.16: Percent depth-dose curve along the lens axis considering two different source
shapes. (a) point-like source, (b) circular source with a diameter of 1.2 mm.

A further issue that could degrade the lens performance is due to the finite size of the

X-ray tube focus. A simulation was performed with a 1.2 mm source to assess its effect on

the dose distribution inside the phantom. Fig. 4.16, compares the PDD curve obtained in

this case with the PDD obtained considering a point-like source. The depth of field increases

from 1.2 cm to 2.9 cm. The spread of focal spot increases also in traversal direction, doubling

its size. Furthermore, the maximum dose in the superficial voxels becomes about 45% of

the absolute maximum dose. Thus, the overall lens performance worsens if the X-ray tube

focus is larger than 1 mm. Through a series of simulations with sources of different size, we

found that the lens performance are virtually unchanged if the focus of the X-ray tube is of

the order of 500 µm.

So far, we have considered a target localized at a depth zf of 4.75 cm within the phantom.

However, using a given lens, it is possible to irradiate a target volume positioned at a depth

zf +∆zf in two different ways. In the first way, the source and the lens have to be moved

towards the phantom both by ∆zf so that the source-to-lens distance remains equal to the

focal length LS . In this case, the spectrum of the diffracted beam does not vary significantly.

In the second way, the source has to be moved backward by ∆zf , so the focal length varies

by the same quantity ∆LS = ∆zf . In this case, by differentiating equation (4.1), it follows

that
∆E0

E0
=

∆LS

LS
. (4.11)

In other words, the nominal energy of the diffracted beam increases proportionally to the

source-to-lens distance. As a consequence, the lens efficiency suffers a slight decrease.
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Figure 4.17: Dose distribution in two phantom slices lying at two different depths, obtained
with 17 scanning steps along x-axis (∆x = 0.5 mm). (a) Dose distribution in the first
(superficial) slice. (b) Dose distribution in the focal slice.

4.5 Scan of an extended tumour mass

Since the tumour to irradiate could have an extension larger than the focal spot, a scan

of the beam could be necessary. To scan the beam, the bed where the patient lies can be

moved through remotely controlled motors while X-ray unit is kept fixed. Alternatively, due

to the compactness of the system that we propose, it could be favourable to keep the bed

fixed and move the source. A series of GAMOS simulations were carried out to demonstrate

the capability of irradiating with good uniformity a target located at a depth of 4.75 cm

and whose x× y × z size is 0.8×0.2×1.2 cm. Given the target size, the focal spot size, and

the depth of field, the beam has to be scanned along the x direction only. The step width

depends on the required grade of uniformity of the dose delivered to the target volume.

In particular, 9 steps with ∆x = 1.0 mm were necessary to obtain an uniformity of 40%,

while 17 steps with ∆x = 0.5 mm leaded to an uniformity of about 7%. The total dose

distribution inside the phantom is reported in Fig. 4.17 and Fig. 4.18 for the scan of 17

steps.
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Figure 4.18: Dose distribution in the plane y = 0 obtained with 17 scanning steps along
x-axis (∆x = 0.5 mm). The Black rectangle represents the target contour.

As can be seen, the purpose was reached while maintaining at the same time a relatively

low dose in the neighbouring regions. However, in the case of a tumour extended in both

traversal directions (x and y), a pure linear scan of the beam would cause a shift of the peak

dose towards the phantom surface. This effect is due to the superposition of the beams and

can be avoided by associating a rotation with each translation of the beam, as in Abbas et

al. [105]. In particular, we envisage to translate and tilt the source in such a way that the

X-rays hit different portions of the target from diverse angles. As shown in Fig. 4.19, a step

∆x along the x-axis involves a rotation of the source by an angle ∆α around the y-axis.

Similarly, a step ∆y along the y-axis is accompanied by a rotation by the same angle around

the x-axis.
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Figure 4.19: Schematic representation of an irradiation involving translation and tilt of the
source.

In Fig. 4.20 and Fig. 4.21, the total dose distribution inside the phantom is reported

for the case of a scan along x and y performed with 5 steps of 1 mm in each direction

accompanied by a rotation of 2◦ at each step. As can be seen from the figures, the goal

of broadening the focal spot, avoiding at the same time an excessive overlap of the beam

before and after the focus itself, was achieved. A side effect consists in a shift in the depth

of the focus of about 1 cm. However, one can easily take into account this contribution.
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Figure 4.20: Dose distribution in two phantom slices lying at two different depths, obtained
with 5 × 5 scanning steps along x-axis and y-axis (∆x = ∆y = 0.5 mm, ∆α = 2◦). (a)
Dose distribution in the first (superficial) slice. (b) Dose distribution in the focal slice.

Figure 4.21: Dose distribution in the plane y = 0 obtained with 5 × 5 scanning steps along
x-axis and y-axis (∆x = ∆y = 0.5 mm, ∆α = 2◦).
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Chapter 5

Prototype of a Laue lens for

radiation therapy

The fabrication of a Laue lens is an engineering problem that encompasses the physics

of diffraction of high-energy radiation in crystals. Crystalline samples suitable to be used as

optical elements for a Laue lens can be profitably produced exploiting one of the techniques

described in chapter 2. The major issue in assembling a Laue lens concerns the stringent

requirement on the alignment of the samples. In particular, for astrophysical applications

involving focal lengths of the order of tens of meters, the maximum value for the misalign-

ment angle with respect to the lens optical axis, φa, has to be as small as 10 arcsec in order

to not spoil the sensitivity of the lens [92]. A Laue lens for nuclear medicine requires an

alignment slightly less strict, tolerating a maximum value for φa of the order of 30 arcsec

without a degradation of its imaging capability (see chapter 3). To achieve this level of

accuracy, the research groups involved in the fabrication of Laue lenses have adopted an

approach consisting in positioning each crystal tile on the lens support under the control of

an X-ray beam. This implies the necessity of using a robotic system to position the samples

and a very time-consuming procedure [93].

A Laue lens for radiotherapy tolerates a larger misalignment with respect to the previous

cases. For example, the lens proposed in chapter 4 can be built with a maximum misalign-

ment φa of the order of 60 arcsec without a significant degradation of its performance.

Depending on the specific case, values of φa up to 120 arcsec could be still acceptable. In-

deed, in this case, there is not the need of an extremely narrow focal spot since the lens is not

used for imaging purposes. Due to the more relaxed requirements on the crystal alignment,

a prototype of Laue lens for radiotherapy was developed at the Sensor and Semiconductor

Laboratory (SSL) of Ferrara in the last months of 2015. This prototype represents the first
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Table 5.1: Features of the lens prototype.

Photon energy band of interest 24 - 39 keV
Source-to-lens distance LS 35 cm

Lens-to-detector distance LD 35 cm
Number of rings of the lens 1 (radius r = 22 mm)

Crystals of the lens 4 QM silicon samples
Diffraction geometry 2

Diffracting planes (111)
Traversal size of the crystals Lt × Lr = 10× 10 mm

Thickness of the crystals T0 = 2 mm
Radius of curvature of the crystals Primary 80 m, QM 210 m

sample of Laue lens for medical applications produced so far by the SSL. It was conceived as

a concept demonstrator using low energy photons and was assembled and tested exploiting

the expertise and the equipment available at Ferrara.

5.1 Design and assembling of the prototype

A key point of the prototype design was to test the ability to align crystals through a

mechanical method, avoiding the positioning under the control of an X-ray beam. Since

the main goal was the alignment, a small numbers of diffracting crystals was chosen. The

prototype was designed to diffract a photon beam with energy band 24 - 39 keV at a focal

distance of 35 cm. The features of the lens prototype are listed in Table 5.1. The transversal

size of the crystals was 10 × 10 mm, while the thickness traversed by the X-ray beam was

2 mm. The crystalline samples exploited (111) curved diffracting planes obtained through

the quasi-mosaic (QM) effect, to increase the flux of the diffracted beam. The geometry 2

was used because the number of sample and their thickness traversed by beam were small.

The 4 silicon crystals composing the prototype were shaped through a high precision

dicing saw (DISCOTM DAD3220) from a commercial wafer with a diameter of 100 mm

and a thickness of 2 mm. Furthermore, the miscut angle, namely the angle between the

nominal direction of the wafer major face ([112] in this case) and the actual direction was

low, being less than 0.05◦. Crystals were bent by sandblasting their [112] face under the

same conditions described in chapter 2. Sandblasting damaged a thin layer of the surface

of the samples, which acted as a compressive film. As a consequence, the substrate of the

samples was permanently deformed according to its elastic properties. Being the samples

2 mm thick, their expected primary radius of curvature was about 80 m, according to

the model described in chapter 2. The primary curvature of the samples was measured

through an optical profilometer (VEECOTM NT1100) with 1 µm lateral and 1 nm vertical
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Figure 5.1: Interferometric measurement of the backside of a crystalline sample composing
the lens prototype. Left side: 3D view analysis. Right side: Cross sections of the deformation
pattern along x and y directions, as taken on the centre of the sample. The average radius
of curvature along x is Rx = 78.6 m, while that along y is Ry = 73.3 m.

Figure 5.2: Photo of the assembled lens prototype.

resolution. Since the machined surface was damaged, the profilometric characterization was

carried out on the back face of the samples. Fig. 5.1 shows the characterization of one of the

samples. The measured radii of curvature along the main directions are in agreement with

expectations. The radius of curvature of QM (111) diffracting planes, R111, was calculated

from the theory of linear elasticity (see Appendix A). It turned out to be about 206 m for this

sample. In fact, for the crystallographic orientation of the crystals, it holds R111/Rx = 2.62.

The fabricated crystalline samples were arranged in a cross configuration on a proper

machined support. The centres of the crystals lied on a circle with a radius of 22 mm. The

prototype support was a commercial 4 inches silicon wafer with a thickness of 5 mm and

a miscut angle of 0.05◦. On the surface of the wafer, a series of grooves were performed.

The grooves hosted a series of thin (200 µm) silicon lamellae acting as a guidance for the
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Figure 5.3: Photo of the experimental setup used to test the lens prototype at the LARIX.

positioning of the diffracting samples. Once the samples were in the correct position, they

were fixed to the support through a special heat curable glue that minimized the stress

imparted to the crystals during hardening. A photo of the prototype is shown in Fig. 5.2.

5.2 Test of the prototype

The assembled Laue lens prototype was tested at the LARge Italian X-ray facility

(LARIX) of Ferrara. Within this laboratory, which is mainly aimed at testing X-ray optics

for Astrophysics, an experimental line for research on medical imaging is also available.

Measurements were carried out in collaboration with the medical physics research group of

Ferrara.

The experimental setup used to test the prototype is shown in Fig. 5.3. The lens was

positioned approximately halfway between an X-ray source and an imaging detector, the

source-to-lens distance LS being 35 cm. The source was a molybdenum anode X-ray tube,

the features of which are listed in Table 5.2. The lens prototype was taken in position through

a custom made holder, which was designed to perfectly house the lens support. A manual

rotating stage (around y-axis) and a manual shifter (along z-axis) plus two motorized shifters

(along x- and y-axis) were used to control the positioning of the prototype with respect to the

X-ray beam. The detector was a matrix of CMOS photodiodes coupled with a scintillator.

The features of the detector are reported in Table 5.3. A thin layer of small crystalline

particles of Gadolinium Oxysulfide (GOS) enclosed in a graphite screen was chosen as a

scintillator. Indeed, GOS is one of the most efficient scintillators available in terms of light

output per incident X-ray energy. In addition, its high atomic number and density make

it an effective absorber of X-rays. The scintillator was of the same size of the active area
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Table 5.2: Feature of the X-ray tube used to test the lens prototype.

Anode material Molybdenum
X-ray exit window Beryllium

Filtration absent
Focus size 150 µm

Maximum voltage 40 kV
Maximum current 30 mA

Maximum exposure time 5 s

Table 5.3: Features of the detector used to test the lens prototype.

Detector type CMOS image sensor coupled with a scintillator
Detector model RadEye R⃝100 (Rad-icon imaging group)

Active area 49.2×98.3 mm2

Number of pixels 512×1024
Size of each pixel 96×96 µm2

Average dark current at 23◦C 50000 electrons/s
Quantum efficiency at 550 nm 50%

Conversion gain 0.18 µV/electron
Number of grey level (GL) 2048 (11 bit)

Conversion factor 2.048 GL/mV
Scintillator type Gadolinium Oxysulfide (GOS)

Scintillator thickness 50 µm
Scintillator light yield 77 photons/keV

Light collection efficiency ∼ 40%
Scintillator enclosure Graphite layer with a thickness of 0.5 mm

of the CMOS sensor and was mounted directly on the latter. The light collection efficiency

was about 40 %.

X-ray tube and detector were aligned through a laser, while the alignment of the proto-

type with respect to the center of the X-ray beam emitted by the source was obtained by

making a radiograph of the prototype and checking if the central cross realized using some

silicon lamellae (see Fig. 5.2) was at centre of the image.

Once the prototype was aligned and a lead absorber was positioned on its backside to

stop the direct beam near the optical (z) axis, the image on the detector due to the diffraction

of the photon beam from the crystals was acquired. The lens-to-detector distance LD was

finely varied until the distance leading to a focused diffracted image was found. In fact, the

actual focal distance was a few mm different from the theoretical value LD = LS because of

the primary curvature and the miscut of the crystals. In particular, the diffraction image was

the sum of 10 images, each obtained acquiring the diffracted beam for 1 s with the X-ray tube

set at 40 kV and 30 mA, namely at its maximum power. The obtained image was corrected

by acquiring the dark image and the white image. The dark image was obtained with the
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Figure 5.4: Corrected image due to X-ray diffraction from the crystals composing the pro-
totype. The green lines highlight the diffraction pattern due to the crystalline support.

X-ray source off and thus, was due only to the thermally generated carrier within the CMOS

sensor and the environmental background radiation. The white image was acquired with

the source set at the operating point but without the Laue lens prototype. This image was

useful to take into account any spatial inhomogeneity of the CMOS sensor. The grey level of

the pixel (x, y) of the corrected image, GLcorr(x, y), was calculated from the corresponding

measured value GLraw(x, y) through the formula

GLcorr(x, y) =< GLwhite(x, y)−GLdark(x, y) >
GLraw(x, y)−GLdark(x, y)

GLwhite(x, y)−GLdark(x, y)
, (5.1)

where GLdark(x, y) and GLwhite(x, y) are the grey levels of the pixel (x, y) of the dark and

white image respectively. < GLwhite(x, y) − GLdark(x, y) > is the mean grey level of the

image obtained subtracting the the dark image from the white image. The result of this

operation is shown in Fig. 5.4.

Analysing the diffraction image, the goodness of the crystal alignment could be assessed.

Each couple of crystals located at diametrically opposed points produced a single line with

a length of about 20.3 mm, the expected value in the ideal case being 2Lt = 20 mm. This

enlargement is compatible with a maximum misalignment of the crystals with respect to the

lens axis, φa, of about 90 arcsec. On the contrary, since the two diffraction lines resulted to

be almost perfectly perpendicular, the azimuthal misalignment (described through the angle

φb) was negligible. Since the support of the prototype was made of crystalline silicon like

the 4 samples, a series of diffraction lines due to the support are also present in the image.

These lines appear split because the centre of the support and the centre of the samples were

3.5 mm apart. Therefore, the diffraction images due the samples and the support could not
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Figure 5.5: (a) Simulated spectrum of the X-ray tube (20 - 40 keV) for 1 s of irradiation.
(b) Simulated spectrum of the photon beam diffracted by the lens.

be focused at the same time. This feature of the prototype is unwanted and in the future it

can be avoided by using an amorphous support.

In order to get a deeper understanding of the experimental result, the experiment was

simulated with the LAUETHER code. The properties of the crystals, the setting of the X-ray

tube and the features of the detector were considered. The photon beam attenuation due to

air and to the lens support, as well as an estimation of the Compton scattered photons were

also taken into account. The diffraction process was modeled as described in chapter 4. Fig.

5.5 shows the spectrum of the source and the spectrum of the diffracted beam respectively.

The number of diffracted photons per mAs of the X-ray tube was ND = 2.6× 104.

The image formation on the detector was modeled as follows. First, the arrival point of

the X photons on the focal plane was binned. The bin width was 96 µm, namely the size

of a pixel of the CMOS sensor. The resulting distribution was convolved with a Gaussian

function centred in zero and having a FWHM of 50 µm and a unit area. In this way, the

spreading due to the scintillator was taken into account. This procedure was carried out

for each energy of the X photons. In particular, the bandpass of the lens was subdivided

in nbin bins, whose central value was Ei. Therefore, the number of photons with energy Ei

firing the pixel of coordinates (x, y) was calculated. This value was indicated with Ni(x, y).

Then, the energy deposited in each pixel Edep(x, y) was calculated as follows

Edep(x, y) =

nbin
∑

i=1

Ni(x, y) exp(−µG(Ei)tG)
µen
GOS(Ei)

µGOS(Ei)
Ei(1− exp(−µGOS(Ei)tGOS)), (5.2)

where tG and tGOS are the thicknesses of the graphite screen and the scintillating GOS layer

respectively. µG(Ei) is the linear attenuation coefficient of graphite at energy Ei, µ
en
GOS(Ei)
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Chapter 5 Prototype of a Laue lens for radiation therapy

Figure 5.6: Comparison between the experimental (a) and the simulated (b) image produced
by the crystals of the lens on the detector. The experimental image was corrected subtracting
the dark and the white images.

and µGOS(Ei) are the energy-absorption coefficient and the linear attenuation coefficient of

GOS at energy Ei respectively [91]. Once the energy deposited in each pixel was known,

the corresponding grey level GL(x, y) was calculated as

GL(x, y) = α · β · η · γ · δ · Edep(x, y), (5.3)

where are α is the scintillator light yield, β the light collection efficiency, η the quantum

efficiency of the CMOS photodiodes, γ the conversion gain, and δ the GL/mV conversion

factor. The values of these parameters are listed in Table 5.3.

The comparison between the experimental and the simulated image is shown in Fig.

5.6. The simulation was carried out under the assumption that there was no error in

the positioning of the samples (∆pos = 0), nor azimuthal misalignment (φb = 0). While, a

misalignment of the samples with respect to the lens axis was hypothesized. For each sample,

the misalignment angle φa was set choosing a value uniformly at random from the interval

[-90,90] arcsec. Indeed, the maxim misalignment angle inferred from the experimental image

was 90 arcsec. Fig. 5.6 shows a very good agreement between experiment and simulation,

providing a first validation of the LAUTHER code and of the used models. Moreover, the

results of the characterization show that the achieved accuracy in the positioning of the

samples is satisfactory. A maximum misalignment of 90 arcsec is a very good performance

for a mechanical alignment method, which is much more simple, economic and time-saving

with respect to a X-ray assisted positioning method. Thus, the goal of the experiment
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has been reached. Moreover, it has been demonstrated that the assembling of a effective

prototype of a Laue lens for radiotherapy is within reach. As a development of this work,

further prototypes will be fabricated through the proposed method. A key point will be to

increase the number of crystals composing the prototype and reduce their transversal size,

maintaining the same level of alignment.
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The aim of this thesis is to describe study and realization of Laue lenses for medical

applications. Since a Laue lens exploits the diffraction of high-energy radiation from crystals,

their performance strongly depends on the choice of the crystals themselves. From the short

review provided in chapter 1, crystals with curved diffracting planes (CDP) emerged as

the best optical elements for a Laue lens devoted to a medical application. Indeed, they

guarantee a high integrated reflectivity and can be fabricated in such a way to provide a

good focusing power to the lens. CDP crystals can be arranged in a Laue lens according

to two geometries. The geometry 1, which foresees that the photon beam enter the crystals

from their minor face and that the crystals are bent only along the direction of propagation

of the beam, has been recognized as the most suitable geometry for a medical application.

Indeed, In this way, a large number of crystals can be arranged even in a very compact

lens. There are many way to bend a crystal, each of them has positive and negative aspects.

The most used bending techniques have been described in chapter 2, together with three

innovative methods developed at SSL. Among these, the sandblasting method emerged as

the most suitable to fabricate self-standing CDP crystals with a thickness up to few mm

and a radius of curvature of the diffracting planes down to some tens of m. This method

is economic, reproducible, and fast. Thus, it is suitable for mass production. All of these

features are very important when one has to assemble a compact device composed of many

identical parts like a Laue lens for medical applications.

The design principles of Laue lenses optimized for both diagnostic purposes in nuclear

medicine and radiotherapy have been described in this thesis.

In chapter 3, it has been demonstrated that a system of Laue lenses capable of providing

a high-resolution functional image of a small region of the patient’s body can be obtained

by properly selecting the features of the crystals. A limitation is due to the fact that the

transaxial field of view is limited to the radial size of the crystals and ranges within 0.3-5 mm.

By moving the bed where the patient lies, it would be possible to perform a high-resolution

scan over a region of interest of a few of cm2 in a reasonable amount of time. The obtained

101



Conclusions

image may help the specialists to gain a better understanding of some metabolic processes

or to recognize more accurately the extension and the position of a tumour mass in an early

stage of evolution. Generally speaking, the lens could be used in those cases where the

results of a conventional diagnostic exam are doubtful. Due to its capability, an ensemble

of Laue lenses could be also exploited for performing in vivo functional imaging in small

animals, allowing the study of complex processes such as mutagenesis and carcinogenesis.

In chapter 4, it has been demonstrated that a specifically designed Laue lens could also

be used in radiotherapy, in combination with an X-ray tube, for producing a convergent

X-ray beam capable of releasing the maximum dose to a tumour target while sparing the

surrounding normal tissues. It has been shown how the features of the crystals composing

the lens can be chosen to maximize the photon yield of the lens and, at the same time,

optimize the size of the focal spot. In this way, an effective system capable of a high

precision in the dose deposition could be designed. The proposed system can be exploited

for irradiating both sub-cm and larger tumours. In the former case, a single irradiation of

few seconds with a convergent beam could be sufficient. In the latter case, a scan of the

beam is required. In this case, a linear scan accompanied by a rotation of the beam might be

exploited to avoid of delivering too high a superficial dose with respect to the dose given near

the focus. It was not the purpose of this work to identify the oncological pathologies that

could be best treated using the proposed methodology. This task, as well as a comparison

with hadron therapy and conventional radiotherapy will be accomplished in a future work.

Generally speaking, it can be envisaged that the proposed technique may be very effective

when it is necessary to treat small tumours located just before radiosensitive organs. This

can be done with hadron therapy, but one of the main advantages of using a system based

on a Laue lens with respect to a hadron therapy system relies in the cost and the size of the

former, which are orders of magnitude lower than that of the latter.

An important feature of a Laue lens suitable for radiotherapy is the relaxed requirement

on crystal alignment, which represented so far the main issue in assembling a Laue lens

for astrophysics or nuclear medicine. As described in chapter 5, a prototype of Laue lens

for radiotherapy was successfully assembled at SSL and tested at the LARIX laboratory

in collaboration with the medical physics group of Ferrara. The prototype was composed

of a small number of crystals and the size of the latter was not optimal from the point

of view of the precision in the dose delivery, however, the mechanical tolerances required

for the realization of an effective Laue lens were fulfilled. Thus, the realized prototype

represents the first step toward the assembling of an effective Laue lens that could be really

used in a radiotherapy treatment. Such a lens requires a rather large number (hundreds)
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of mm-sized bent crystals to guarantee a high precision in the dose delivery and a high

flux of diffracted photons. Recently, the Italian National Institute for Nuclear Physics

(INFN) funded LAUPER, a project aimed at demonstrating the feasibility of such kind of

lens. Within the framework of this project, the full potentiality of the assembly methods

proposed in this thesis will be assessed.
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Appendix A

Theory of linear elasticity in

crystals

Primary and secondary curvatures within a crystal can be calculated through the theory

of linear elasticity. Elasticity expresses the relationship between stress σ (force per unit

area) and strain ε (ratio of deformation over initial length) in a medium. A crystal can be

considered as a homogeneous continuous medium rather than as a periodic array of atoms

for elastic waves of wavelength longer than 10−8 m (i.e. with frequencies below 1011 - 1012

Hz). In the linear approximation, stress and strain are linked by first order equations. In

particular, for Si and Ge the relationships between stresses and strains are linear up to the

breaking point [116]. In tensor notation, it is:

σ = Cϵ,

ϵ = Sσ, (A.1)

where C is the tensor of stiffness and S the tensor of compliance, S = C−1. Once the

crystallographic orientation of the crystals has been set, S and C contain all the useful

information about the elastic behaviour of the sample. In general, fourth-rank tensors

3×3×3×3 are needed when dealing with S and C. However, owing to the symmetry of

the stress and strain fields, the stress-strain relationship can be represented through second-

order tensors by using the Voigt compact notation. Thus, without loss of generality, stiffness

and compliance tensors are completely defined by 6×6 matrices. It is
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Figure A.1: Stress tensor components.



























σ1

σ2

σ3

σ4

σ5

σ6



























=



























C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

Sym C55 C56

C66





















































ε1

ε2

ε3

ε4

ε5

ε6



























, (A.2)

where, for the Voigt notation, the indices ranging from 1 to 6 correspond to the following

directions

1 −→ x,

2 −→ y,

3 −→ z,

4 −→ yz,

5 −→ zx,

6 −→ xy.

The stress tensor components acting on a unit volume are shown in Fig. A.1. As afore-

mentioned, the shear stress components are symmetric, thus σyx = σxy, σyz = σzy, and

σxz = σzx. It is also worth noting that they are often indicated with the Greek letter τ

instead of σ.

The Si and Ge C tensors for ([100], [010], [001]) as (xyz) axes are well known in the
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literature:

CSi =


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




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GPa.

Since crystals are inherently anisotropic media, their elastic properties depend on the

crystallographic orientation. To calculate the anisotropic properties along an arbitrary crys-

tallographic orientation, the C and S tensors for ([100], [010], [001]) orientation have to be

rotated so that the axes are aligned with the directions of interest:

C ′ = ΩCΩT ,

S′ = ΩSΩT . (A.3)

It is not straightforward to calculate the orthogonal rotation tensor Ω. The complete

formulae needed for the transformation can be found in [61].

Three important parameters used to describe the elastic properties of a medium are the

Young’s modulus, the Poisson’s ratio and the shear modulus. They are here described:

• The Young’s modulus or elastic modulus E is the ratio of normal stress σ along an axis

over the deformation ε along that axis. Thus, it represents a measure of the stiffness

of an elastic material.

• The Poisson’s ratio (ν) describes the deformation of a body occurring along a direction

orthogonal to the direction of applied tension. Usually, it assumes positive value, thus

if a body is stretched, it exhibits a transverse contraction.

• The shear modulus or modulus of rigidity (G) describes the material response to shear

stress.
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Figure A.2: Couples of moments applied to an anisotropic thin plates.

They can be calculated in terms of the (rotated) compliance tensor as follows:

Ej =
1

Sjj
, (A.4)

vij = −Sji

Sii
, (A.5)

Gij =
|ϵijk|

Sk+3,k+3
, (A.6)

with i,j=1,2,3 and ϵ the Levi-Civita tensor.

The complete description of the deformations in anisotropic bodies can be found in [117].

For our purposes, crystals can be modeled as a thin rectangular plate (e.g. [82]). Moreover,

the load acting on a crystal can be equivalently described by a system of bending moments

acting only at the edges of the sample [118], according to the scheme depicted in Fig. A.2.

The curvature of the crystallographic planes can be calculated through the displacement

field described by u(r), v(r), and w(r), which are the displacements along the x -, y-, and

z -axis respectively. The displacements can be calculated trough their relationship with the

deformations. In turn, the deformations can be obtained once the stress tensor components

are known.

εx =
∂u

∂x
, εy =

∂v

∂y
, εz =

∂w

∂z
,

εxy =
∂u

∂y
+

∂v

∂x
, εyz =

∂v

∂z
+

∂w

∂y
, εzx =

∂w

∂x
+

∂u

∂z
. (A.7)

The normal (σ) and tangential (τ) components of the stress tensor are bound up to me-
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Figure A.3: Schematic representation of a crystal plate with the coordinate system used for
the modeling. Two moments are applied to the sample. Crystallographic orientation and
quasi-mosaic curvature are highlighted.

chanical moments Mx and My applied to the crystal via

σx =
My

Iy
z, σy =

Mx

Ix
z, σz = 0,

τyz = 0, τxz = 0, τxy = 0, (A.8)

where Ix and Iy are the moments of inertia about x- and y-axis respectively. Under the

following boundary conditions

dw

dx

∣

∣

∣

∣

0

=
dw

dy

∣

∣

∣

∣

0

= 0,
dv

dx
− du

dy
= 0, u(0) = v(0) = w(0) = 0, (A.9)

which impose that there is no deformation and displacement in the center of the plate nor

a rigid rotation, the displacement field arising from the deformation of a crystal plate turns

out to be

u =
1

2Iy
[My(S51z

2 + S61yz + 2S11xz)] +

1

2Ix
[Mx(S52z

2 + S62yz + 2S12xz)],

v =
1

2Iy
[My(S41z

2 + 2S21yz + S61xz) +

1

2Ix
[Mx(S42z

2 + 2S22yz + S62xz)],

w =
1

2Iy
[My(S31z

2 − S11x
2 − S12y

2 − S16xy +

1

2Ix
[Mx(S32z

2 − S12x
2 − S22y

2 − S26xy)], (A.10)

where Sij are the components of compliance tensor referred to the (x, y, z) Cartesian system.

These three values completely define the displacement field of the crystal plate. Once

the crystal features and the crystallographic orientation are set, by differentiating twice

equations A.10 with respect to x, y, and z, the curvature along a given axis can be calculated.

As an example, let us consider the configuration described in Fig. A.3. In this case, the
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compliance tensor for silicon is

S =


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If we apply two momenta Mx and My to the sample, the curvature of middle plane of the

plate along x and y, i.e., the principal curvature on the two perpendicular directions, turns

out to be

1

RPx

=
∂2w

∂2x
= −

(

My

Iy
S11 +

Mx

Ix
S12

)

,

1

RPy

=
∂2w

∂2y
= −

(

My

Iy
S12 +

Mx

Ix
S22

)

. (A.11)

The secondary curvatures, namely those arising within the solid as a consequence of the

primary curvature, can also be calculated. They strongly depends on the crystallographic

orientation, and in particular on the terms S41, S42, S51, and S52 of the compliance tensor.

For the case sketched in Fig. A.3 these terms are not null and a QM curvature in yz planes

is present

1

RQM
=

∂2v

∂2z
=

My

Iy
S41 +

Mx

Ix
S42. (A.12)

Considering a spherical curvature with Mx/Ix = My/Iy, the ratio between the primary and

the QM curvatures is

RQM

RPy

= −S12 + S22

S42 + S42
. (A.13)

Thus, imparting a spherical bending to (224) Si plates results in a QM curvature of the (111)

planes. Experimental evidence of X-ray diffraction with a silicon sample that exploited (111)

planes bent through the quasi-mosaic effect can be found in [82].

112



Appendix B

Features of diffraction of

high-energy radiation in CDP

crystals

B.1 Modelization of the diffraction process in the LAUENM

code

The LAUENM code allows the user to design and simulate optimized Laue lens for

diagnostic nuclear medicine. The code was developed as an ensemble of MATLAB scripts

and functions [86]. MATLAB was chosen because of its excellent capabilities of managing

vectorial and matricial data as required when dealing with Laue lenses. Moreover it permits

to parallelize complex numerical calculations through the Parallel Computing Toolbox. As

mentioned in chapter 2, LAUENM is divided in three main functional modules. The pre-

processing module manages the source and the geometry of the lens, the processing module

simulates the diffraction process and the post-processing module computes the image on a

detector and all the figures of merit regarding the lens.

In LAUENM, the diffraction process is modeled as follows.

• A photon is generated in a random direction defined by the polar angle θ and the

azimuthal angle φ from a point S of the source (see Fig. B.1).

• The program assesses if the photon impinges on a crystal of the lens (whose nominal

Bragg angle is θB), otherwise another photon is generated.

• The program checks if the angular deviation ∆θ = θ− θB is smaller than the angular

acceptance of the crystal, otherwise another photon is generated.
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Figure B.1: Sketch of photon emission. The polar angle θ and the azimuthal angle φ of the
photon are indicated. The source volume is divided in several identical cubic voxels. Each
voxel is considered as an isotropic point source (point S).

• The program calculates the potential diffraction point within the crystal.

• A random number with uniform distribution within [0,1] is generated. If this number

is lower than the crystal reflectivity, then diffraction occurs, otherwise another photon

is generated.

• The program calculates the arrival point PDET = (xDET , yDET ) on the detector plane.

Fig. B.2 and Fig. B.3 depict the diffraction process occurring in a crystal of the lens

and show the systems of coordinates used by the program.

Three coordinate systems are exploited to describe the diffraction process. The main one

is the system Oxyz with origin at the centre of the lens. The second coordinate system is

parallel to the previous one but it is centred at point OS . This frame is used to describe the

shape of the source. The third coordinate system Ox′y′z′ is obtained by rotating the system

Oxyz around the z axis by an angle equal to the azimuth of the crystal where diffraction

potentially occurs. Thus, this latter system depends on the photon we are considering.

As aforementioned, a photon emitted by the source with a polar angle within the angular

acceptance of a crystal could be diffracted, thus the program calculates the potential point

of diffraction. Let θB be the nominal Bragg angle and φM the azimuthal angle of the crystal,

respectively. First, z′D, namely the coordinate of the diffraction point along the lens axis in

the Ox′y′z′ frame, is calculated depending on the type of crystal. If the crystal is a mosaic,

a random value within the crystal is taken. If the crystal is a CDP, the program takes the
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Figure B.2: Sketch of diffraction process of a photon within a crystal (side view).
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Figure B.3: Sketch of diffraction process of a photon within a crystal (top view).

coordinate where the Bragg condition is satisfied

z′D = LZD = −T0

Ω
(∆θ + φa) cosφa +∆z, (B.1)

where T0 is the thickness traversed by the photon beam, Ω the angular acceptance (bending

angle), φa the axial misalignment, and ∆z the mispositioning of the crystal in z direction.

For both types of crystals x′D and y′D are calculated. A intermediate step consists

in calculating the parameters LXD, LYD, LZD shown in Fig. B.2 and Fig. B.3. From

trigonometric considerations, we have

LXD = z′Dθ +∆θLS + x′s − z′sθ − φa +∆x,

LYD = LXD tan∆φ, (B.2)

Where x′s, y
′
s, z

′
s are the coordinates of the point of the source which emitted the photon,

LS the source-to-lens distance, ∆φ = φ− φM , and ∆x the mispositioning of the crystal in

x direction. x′D and y′D are

x′D = r + LXD,

y′D = (r − x′s) tan∆φ+ y′s + LYD, (B.3)

r being the radius of ring where the crystal lies.

kh = (1,− tan∆φ,−1/θe), where θe = θB−∆θ+φa, is a vector parallel to the diffracted
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photon trajectory. The arrival point on the detector can be calculated as the intersection

of the line passing for the point of diffraction (x′D,y
′
D,z

′
D) and parallel to vector kh and the

plane of equation z′ = LD, where LD is the lens-to-detector distance. In the frame Ox′y′z′,

it results

x′DET = x′D − (LD − z′D)θe,

y′DET = y′D + (LD − z′D)θe tan(∆φ− φb). (B.4)

The same point is calculated in the frame Oxyz through a rotation of the axes

xDET = x′DET cosφM − y′DET sinφM ,

yDET = x′DET sinφM + y′DET cosφM . (B.5)

It is worth noting that, considering a perfect crystal alignment and positioning (φa =

φb = 0 and ∆x = ∆y = ∆z = 0), an azimuthal angle equal to zero (φ = φM = 0), a

point source centred in OS (x′s = y′s = z′s = 0), the source-to-lens distance equal to the

lens-to-detector distance (LD = LS), we obtain the same equations presented in chapter 3,

provided to identify xD with LXD, yD with LYD and zD with LZD.

B.2 Focusing/defocusing properties of CDP crystals

Under the assumptions mentioned at the end of the previous section, the focusing/defo-

cusing properties of CDP crystals can be demonstrated.

Using the formalism adopted in chapter 3, the coordinates of the arrival point on the

detector plane can be rewritten as

xDET = r + xD − (LS − zD)(θB −∆θ),

yDET = 0. (B.6)

Substituting r = θBLS and zD = −T0/Ω∆θ in the previous relations, it turns out

xDET = −2∆θ

Ω
(T0θB − ΩLS),

yDET = 0. (B.7)

Calculating these relations for ∆θ = −Ω/2 and ∆θ = +Ω/2 and taking the absolute value

of the difference between the results, we obtain the width W of the profile on the image
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plane due to diffraction from a crystal

W = |2T0θB − 2ΩLS |, (B.8)

as is claimed in this thesis. Furthermore, taking into account the contribution of the photon

azimuthal angle φ, it is possible to calculate the length L of the line obtained as an image

of each crystal. Indeed, from Fig. B.3, it results that ∆φmax = arctanLt/2r. Thus, if we

consider photons emitted by the source with a polar angle θ = θB, we obtain yDETmax =

2r tan∆φmax. Therefore

L = 2yDETmax = 2Lt, (B.9)

as is claimed in chapters 3 and 4. A curvature of the crystal along the tangential direction

(sagittal curvature) would reduce the value of L and improve the focusing capabilities of the

sample. However, an appreciable effect is not achievable in practice, because of the stiffness

of the small crystals suitable for a Laue lens devoted to medical applications.

So far we considered photons impinging on concave1 diffracting planes. If photons im-

pinge on convex diffracting planes, equation (B.8) becomes

W = |2T0θB + 2ΩLS |. (B.10)

For a flat crystal W = 2T0θB, thus photons impinging on convex diffracting planes always

cause an enlargement of the diffraction profile, namely a defocusing effect (see Fig. B.4.b).

On the contrary, if the photons impinge on concave diffracting planes, a focusing or a

defocusing effect arises depending on the value of the radius of curvature of the diffracting

planes RC = T0/Ω. If RC < LS/(2θB), there is a defocusing effect, otherwise a focusing

effect (see Fig. B.4.a). If T0θB = ΩLS , namely RC = LS/θB, a perfect focusing occurs

in x direction. In fact, all the diffracted photons impact the image plane in xDET = 0.

Unfortunately, this condition can not be exploited for improving image resolution. Indeed,

because of the lack of sagittal curvature there is a defocusing in y direction causing the

spread of the photon distribution on the detector. It is worth noting that these results

hold also in the case of a polychromatic source, though the case treated here concerns a

monochromatic source.

The focusing capability of CDP crystals can also be put in evidence as follows. Let us

1The intuitive meaning of the term has to be intended here
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Figure B.4: Sketch of diffraction occurring in CDP crystal with photons imping on concave
(a) and convex (b) diffracting planes.

rewrite equation (B.2) as

xD = −∆θ(
T0

Ω
θB − LS)−∆θ2

T0

Ω
. (B.11)

If RC = LS/θB, it results

xD = −∆θ2
T0

Ω
. (B.12)

Since ∆θ = −zD/RC , if we set RRW = RC/2, we can write

xD = − z2D
2RRW

, (B.13)

which is the equation of a parabola with vertex in the origin (in this case the centre of the

crystal) and xD as symmetry axis. Near the origin, this parabola approximates the circle

with radius of curvature RRW passing for the origin. This circle can be recognized to be

the Rowland circle, namely the circle on which diffraction points have to lie in order to

have perfect meridional focusing [16]. Fig. B.5 depicts the situation considered here. The

Rowland circle is highlighted.
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Figure B.5: Diffraction of a photon in a CDP crystal with radius of curvature RC = LS/θB.
The point of diffraction is on a circle with radius of curvature RRW = RC/2 (solid curve).

B.3 Variation of the spacing between the diffracting planes

in a CDP crystal

Let us consider the bent crystal depicted in Fig. B.6. The scheme represents a CDP

crystal of the type considered in chapters 3 and 4. T0 is the mean thickness of the crystal

traversed by the photon beam and RC is the radius of curvature of the diffracting planes

in Laue geometry. As a consequence of the bending, the crystal is stretched on the convex2

side and compressed in on the concave side. Through the Poisson’s ratio ν, it is possible to

calculate the variation of the spacing between the diffracting planes d. It holds

∆d

d
= −ν

∆T0

T0
. (B.14)

Being T0 = ΩRC and ∆RC = Lr, it follows that

∆d

d
= −ν

Lr

RC
. (B.15)

2The intuitive meaning of the term has to be intended here
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Figure B.6: Variation of the spacing between the diffracting planes in a CDP crystal. Lr is
the radial dimension of crystal, Ω the bending angle and RC = OCC the radius of curvature.
In the figure, the variation of the spacing has been exaggerated for better visibility.

Thus, the curvature of the diffracting planes implies a reduction of the crystal spacing on

the convex surface and an increment of the crystal spacing on the concave surface.

The variation of the crystal plane spacing potentially increases the angular acceptance

for a given photon energy, indeed it causes a variation of the Bragg angle along the thickness

of the crystal traversed by the photon beam. Differentiating Bragg’s law, we have

∆θB
θB

= −∆d

d
, (B.16)

thus, the total variation of the Bragg angle ∆θB due the variation of d turns out to be

∆θB = νθB
Lr

RC
. (B.17)

In the practical cases, this variation is negligible with respect to the spread of the diffracting

planes directly due to bending Ω. For example, Let us consider a (111) CDP silicon crystal.

Poisson’s ratio is about 0.26, while θB is about 0.02 rad (1.1◦) at 100 keV. If we take typical

values for Lr and RC , ∆θB turns out to be lower than 0.2 arcsec, thus it is even lower than

the Darwin width, which is 0.5 arcsec in this case. For this reason, the variation of the

crystal plane spacing has not been taken into account in this thesis.
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