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Preface 

 

The analysis of the contact interaction is a problem of wide importance which has attracted 

the attention of many scientists and researchers in the mathematical and engineering field. 

In the geotechnical and civil engineering, focusing on study of shallow foundations, 

railroad tracks, road pavements, embankments and rock joint. In the mechanical and 

aeronautical field for delamination of sandwich panel, laminated and composite material. 

In the electronic and biomedical area for the behaviour of MEMS or NEMS devices. 

Interaction of structure and its foundation with soils has been discussed in this thesis. 

The method for the analysis of soil-structure interaction involving foundation has taken 

place over many years. One of the earliest and simplest approaches to soil-structure 

interaction was to represent the resistance of the soil by a distribution of springs. This 

approach, defined by Winkler, can lead to serious error because of independence, not 

interaction, and difficulty to establish the real stiffness values of the elements. 

Furthermore, the model cannot directly take account of substrate layering, and cannot 

predict lateral displace by a vertical load. To overcoming such shortcoming, the substrate 

may be treated as an elastic continuum involving the Boussinesq's solution. The inefficacy 

to determine the continuous behaviour of real support in the Winkler model, as well as the 

complexity of the continuum model, finding limited practical application in the past, carry 

out the investigation of the substrate response with other kind of models, such as 

Filonenko-Borodich, Pasternak, Hetenyi, Kerr, Reissner, Vlasov and Leentiev.  

With the improvement of technology, numerical methods have been applied to analyse 

the interaction of complex problems, such as the finite difference method, finite element 

method (FEM) and boundary element method (BEM). In particular, the FEM provides a 

powerful numerical method, even though a large number of elements could be required to 

model the substrate medium and the computer requirements may not be adequate. To 

improve the efficiency in the computation, FEM can be combined with BIE boundary 

integral equation adopting a simple fundamental solution such as Boussineq's one for 

three-dimensional problem (half-space) or Flamant solution for the response of a half-

plane.   

The earliest application on soil-foundation interaction, by means of the last mentioned 

approach, was led by Cheung and Zienkiewicz for structures on infinitely deep soil. The 

total stiffness of the system may be obtained by inverting the flexibility matrix of soil and 

adding the stiffness matrix of the foundation. A frame structure interacts with soil through 
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rigid foundation was considered by Guarracino et al. adopting a mixed variational 

formulation. In addition, soil-foundation interaction was analysed by treating the 

Timoshenko beam theory on elastic half-plane by Tullini and Tralli. The same approach 

has been adopted to study thin-film devices and coating systems axially loaded and bonded 

to an elastic substrate. The FE.BIE method has also been used to study the buckling of a 

beam and frame in frictionless contact on half-plane, recently published by Tullini et al. 

The aim of this thesis is to develop the present mixed variational formulation analysed 

by coupling finite element and boundary element (FE-BIE). The one-dimensional or two-

dimensional finite elements are described in terms of nodal displacements (and rotation for 

the beam element), while the substrate is represented in terms of surface tractions through 

a boundary integral equation that incorporates a suitable Green's function. The formulation 

has been discussed with the different considerations in each chapter of this thesis.  

In the first chapter, the simple and efficient numerical model introduced by Tullini, has 

been extended in perfect adhesion for stiff and flexible beams. A comparison is made with 

result in the frictionless contact and thin-film having a vanishing of bending rigidity. 

Moreover, with simply load condition, an excellent agreement between the numerical 

analysis and analytical solution available in the literature, is reported. Two examples of 

soil-structure interaction are analysed providing a competent aspect of this work: a two-bay 

frame and a culvert with single or multiple cell. 

In the second chapter, the contact model of a rigid punch or a beam resting on an 

orthotropic half-plane has been considered. A significant aspect of the present analysis is 

applied for reinforcement strip fully adhesive to wood substrate or shallow foundation 

resting on soil. Moreover, it is shown that the shear deformation plays a crucial role on 

shear force at beam end. 

In the third chapter, the method has been developed involving thin-shell (two-

dimensional element) lying on an elastic half-plane. The thin-shell is suitable to represent a 

very thick foundation which could not be approximated with the one-dimensional element. 

Furthermore, the model is well suitable to describe the distribution of the tensile force 

necessary for a geosynthetic reinforcement located between an embankment and subsoil. 

Over the last few years, composite materials have substituted the bonding for welding, 

bolding and riveting in many applications, focusing on the interaction topic. These 

materials are subject to phenomena called delamination which is related mainly to how 

they are constructed. The detachment of a composite is generally characterized by 

weakness of resin glue between adherents. The common defects in adhesively bonded 
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joints are: porosity caused by gases and volatiles in the adhesive; voids caused by air 

entrapment during application of the adhesive; crack associated by thermal shrinkage; and 

incorrect cure because of contaminants or poor mixing. For this reason the thickness, 

modulus and properties of the adhesive are difficult to regulate and to determine. But this 

phenomenon does not always occur, sometimes with different properties of material 

between substrate and reinforcement, the detachment can happen and rupture of less 

resistant material. In the following last two chapters of the thesis, some numerical analysis 

by means of the present technique (FE-BIE) are developed with attempting to simulate the 

delamination phenomenon. 

In the fourth chapter, the problem of reinforcement attached to an infinite substrate has 

been reconsidered under the assumption of no perfect adhesion. Linear behaviour of an 

adhesive is compared with the close-form of Melan's solution. Besides, a formulation 

based on "a priori" description of interfacial contact is adopted through non linear analysis. 

For the sake of simplicity, a fracture process in pure "mode II" along the contact is 

examined, disregarding the effect of peeling or out-of-plane displacement. 

Finally, in the fifth chapter, zero-thickness method is implemented into the coupling 

FE-BIE model where brittle crack propagation within a laminate substrate is considered. 

The substrate is modelled into two parts defined respectively by 2D finite elements (thin-

shell) and half-plane. The growth of crack is supposed within the substrate portion 

constituted by FEs, along the mesh line where interface elements are collocated. The 

interface element is characterized by zero-thickness and setting "a priori" interfacial stress-

slip law.  

Results relative to beam and frame resting on isotropic or orthotropic half-plane, 

mentioned in chapter one and two of this thesis, are published in an international journal. 
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1 Static analysis of shear flexible beams and frames bonded 

to isotropic elastic half-plane 

 

1.1 Introduction 

The interest for contact problems and the analysis of the relevant interface reactions 

concern natural sciences, such as geology [1], as well as many engineering fields, such as 

aeronautics and space applications [2], structural strengthening of concrete with FRP 

composites [3, 4, 5], mechanical engineering [6, 7, 8] and electronics [9]. 

In the field of structural engineering, the assessment of the soil-structure interaction has 

been a challenge for a long time [10, 11]. Analytical solutions were restricted to rigid 

punches or infinite beams resting on isotropic or anisotropic elastic half-space [12, 13, 14]. 

Hence the adoption of simple soil models; in particular Winkler model, based on the 

proportionality between pressure and vertical displacements at every point of the contact 

surface, and the models introduced by Filonenko-Borodish and Pasternak, who assumed 

the existence of a shear layer lying on the top surface of the Winkler bed of linear springs 

[10]. Nevertheless, simplified substrate models like these should be restricted to problems 

in which the effects of transverse interaction between adjacent parts of the soil surface are 

not significant. 

With regard to numerical methods, soil-structure interaction problems were studied with 

several approaches. In one approach, both the foundation beam and the substrate were 

described by means of the Finite Element Method (FEM) allowing for complex soil media 

and surface profiles [10]. However, to ensure vanishing displacements at the boundaries, 

the substrate mesh has to be extended far away from the loaded area, leading to a very 

large number of finite elements and to a discouraging computing time. To improve the 

computational efficiency, infinite elements were used, see [11] and references cited 

therein. It is worth observing that using classical beam theory and two-dimensional finite 

elements for the substrate does not allow for the angular continuity at the contact surface. 

In principle, this problem may be solved by introducing refined two-dimensional 

continuum elements containing rotational degrees of freedom [15]. 

In another approach, the behaviour of the soil medium is approximated by a proper soil 

model. The earliest applications of the elastic half-space model to soil-structure interaction 

problems were due to Cheung and Zienkiewicz [16], and Cheung and Nag [17], who 

developed a model for the analysis of beams and plates resting on elastic foundations that 
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incorporates Boussinesq's solution. Wang et al. [18] extended this procedure to the analysis 

of rigid pavements. Nevertheless, this method and many others adopting a similar approach 

(see [10, 11]) implicitly assume that the beam is connected to the substrate at equally 

spaced points through a finite number of pinned-clamped rigid links. Thus, no angular 

continuity between beam and substrate can be imposed. Moreover, this approach requires 

the explicit inversion of the substrate flexibility matrix. Variational formulations including 

a suitable Green's function of the substrate were first presented in [19, 20]. Bielak and 

Stephan [21] investigated the bending problem of beams on elastic soil using a Green's 

function descending from Boussinesq's influence function. In [22], the analysis of frames 

with rigid footings resting on an isotropic elastic half-space is reported, whereas Bode et al. 

[23] used Green's functions of the soil for the assessment of the soil-structure interaction in 

dynamics. 

Finally, a particularly advantageous tool for reproducing the response of the elastic half-

space is the Boundary Element Method (BEM), because only the boundary of the elastic 

substrate has to be discretized, see [24] and references cited therein. However, soil 

tractions are usually considered as nodal reactions in the FE model of the foundation beam 

and, once again, the rotation continuity between beam and substrate is neglected. In the 

general formulation of BEM dealing with elastic half-space, Mindlin's fundamental 

solution is usually adopted to obtain the displacement field due to a point force applied in 

the interior of a homogeneous three-dimensional elastic solid [25]. The particular problem 

discussed in the present paper refers to loads applied to the ground surface of a two-

dimensional half-space in plane state. Consequently, Flamant' and Cerruti's solutions are 

the proper fundamental solutions to be used [12, 13]. 

In the present paper, a coupled Finite Element-Boundary Integral Equation (FE-BIE) 

model is used for the plane strain or plane stress analysis of beams and frames bonded to a 

homogeneous, linearly elastic and isotropic two-dimensional half-space. The model makes 

use of a standard, displacement-based numerical formulation for the beam, coupled with an 

integral equation for the substrate boundary that includes a suitable Green's function of the 

substrate. The independent variables of the mixed formulation proposed are beam 

displacements and rotations, and soil surface tractions in tangential and normal directions. 

Only the beam in contact with the substrate boundary has to be discretized. In [26], an 

analogous mixed formulation was used for the analysis of Timoshenko beams in 

frictionless contact with the substrate, whereas in [27] structural elements with no bending 

stiffness, such as bars and thin coatings, were investigated. In [28] and [29], using Euler-
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Bernoulli and Timoshenko beam theory, respectively, the coupled FE-BIE method was 

applied to the buckling analysis of beams and frames in frictionless contact with the 

substrate. To the authors’ knowledge, the present proposal to use the FE-BIE model for the 

plane strain or plane stress static analysis of shear deformable beams and frames in 

adhesive contact with the substrate represents a new contribution. 

Differently from the formulations available in the literature (see for example [10, 16, 

17]), the proposed model enforces the angular continuity between foundation beam and 

half-plane boundary at the node locations. Moreover, the proposed model involves 

symmetric soil matrices, whereas the classical FEM-BEM approach based on collocation 

BEM requires an additional computational effort to remedy the lack of symmetry of the 

BEM coefficient matrix. In the present approach the weakly singular BIE is evaluated 

analytically, so avoiding singular and hyper-singular integrals, that are the major concern 

of the classical BEM. Finally, the resolving matrix has dimensions proportional to the 

number of the foundation beam FEs. Conversely, in the standard FEM, a refined mesh 

requires a stiffness matrix with dimensions that are several times the square of the number 

of FEs used for the foundation beam. The advantages outlined result in accurate solutions 

at low computational cost.  

Several numerical examples are presented. For very stiff beams subjected to a point 

force or moment, comparisons are made with available closed-form solutions to the contact 

problem of a rigid indenter. For a rigid punch loaded by a bending moment and a 

foundation beams bonded to the substrate and loaded by a vertical point force, the 

proposed model exhibits a superior convergence rate with respect to other two standard 

numerical models: a standard FE model that uses two-dimensional elastic elements to 

describe the soil and the approach proposed by Cheung in [16, 17]. Moreover, the shear 

deformations are shown to play a crucial role on both beam displacements and soil surface 

tractions. Foundation beams loaded by a horizontal point force at midspan or at one end 

section as well as beams loaded by a bending moment at midspan are considered. Finally, 

the model is applied to the soil-structure interaction analysis of a two-bay frame and a 

culvert with single or multiple cell, both subjected to gravity and lateral loads. 
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1.2 Variational formulation 

A beam bonded to a two-dimensional semi-infinite substrate is referred to a Cartesian 

coordinate system (O; x, z), where x coincides with the centroidal axis of the beam, and z is 

chosen in the downward transverse direction (Fig. 1.1a). The beam has length L and cross-

section depth h. Thus, the half-plane boundary is located at z = h/2. Generalised plane 

stress or plane strain state can be considered in the present formulation. In the latter case, 

cross-section breadth b is assumed to be unitary for both the beam and the half-plane. 

Small displacements and infinitesimal strains are adopted in the analysis. Both the beam 

and the substrate are made of homogeneous, linearly elastic and isotropic materials. In the 

following, elastic constants Eb, Gb, and b denote longitudinal and transverse elastic 

moduli, and Poisson’s ratio of the beam, respectively, whereas Es and s represent Young’s 

modulus and Poisson’s ratio of the substrate. The centroidal axis of the beam is subjected 

to distributions of horizontal and vertical loads px(x) and pz(x), and couples m(x) (Fig. 

1.1b). Moreover, perfect adhesion is supposed between the beam and the half-plane 

boundary. This assumption involves the development of both interfacial shear tractions 

rx(x) and vertical normal tractions rz(x) along the contact region (Fig. 1.1b). 

 

Fig. 1.1. Beam bonded to a two-dimensional half-space (a), and free-body diagram (b).  

 

1.2.1 Total potential energy for the beam 

Assuming positive cross-section rotations  in counter-clockwise direction, axial and 

transverse displacements for a Timoshenko beam can be written as: 

)()()()()( 0, xuzx,u,zxxuzx,u zbzbxbx  , (1.1a, b) 
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where ubx,0 and uz are the axial displacement of the centroidal beam axis and the vertical 

displacement of both the beam and the half-plane boundary, respectively. The horizontal 

displacement of the half-plane boundary is given by ux(x) = ubx,0(x) + (x) h/2.  

Axial and shear strains in the beam are: 

 zbbxb u,zu 0, , (1.2a, b) 

where a prime stands for differentiation with respect to x. Plane state assumption yields the 

following stress-strain relations: 

b = E0 b,     b = Gb b, (1.3a, b) 

where E0 = Eb or E0 = Eb/(1
2
b ) for generalised plane stress or plane strain state, 

respectively, and  Gb = Eb/[2 (1  b)].  

The elastic strain energy for a beam of length L is the sum of strain energies Ubeam,a and 

Ubeam,b, associated with axial strain (subscript a) and bending and transverse shear strains 

(subscript b). Using strain components (1.2a,b) and constitutive laws (1.3a,b), Ubeam,a and 

Ubeam,b can be written as: 

 
L

bxba xuAEU d)(
2

1 2
0,0beam, , (1.4a) 

  
L

zbbbbb xuAGkDU d])([
2

1 22
beam, . (1.4b) 

where Ab = bh is the cross-sectional area, Db = E0bh
3
/12 is the flexural rigidity and kb is the 

shear correction factor [30, 31]: 

  bbbb

b

bbb

b
EG

k
EG

k
/16

5
,

/6

5





 , (1.5) 

for a plane stress or a plane strain state, respectively. 

The total potential energy of the beam, Πbeam = Πbeam,a + Πbeam,b, is obtained from the 

strain energy contributions and the potential of the external loads, resulting in: 

 
L

bxxxaa xurpbU d)( 0,beam,beam, , (1.6a) 

     
L

xzzzbb xhrmurpbU d2/beam,beam, . (1.6b) 
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1.2.2 Total potential energy for the substrate 

The solutions to the two-dimensional problem for a homogeneous, linear elastic and 

isotropic half-plane loaded by a point force normal or tangential to its boundary are 

referred to as Flamant’ and Cerruti’s solutions, respectively [12, 13]. In particular, the 

surface displacement ui(x), with i = x, z, due to a point force Pi( x̂ ) applied to the half-plane 

boundary can be expressed in closed form as ui(x) = g(x, x̂ ) Pi( x̂ ) (Fig. 1.2), where Green's 

function g(x, x̂ ) is given by the following expression: 

 

Fig. 1.2. Green’s function g(x, x̂ ) related to point forces Px( x̂ ), Pz( x̂ ) applied to the half-plane 

boundary. 

d

xx

E
xxg

ˆ
ln

2
)ˆ,(




 . (1.7) 

In Eq. (1.7), E = Es or E = Es/(1
2
s ) for a generalised plane stress or plane strain state, 

respectively, and d represents an arbitrary length related to a rigid-body displacement.  

The horizontal and vertical displacements of a point of the half-plane boundary due to 

the combined action of interfacial shear tractions rx and normal tractions rz can be written 

as [12, 13]: 

 





  
Lx

x
z

x

x
z

L
xx xxrxxr

E

c
xxrxx,gxu ˆd)ˆ(ˆd)ˆ(

2
ˆd)ˆ(ˆ)(

0

, (1.8a) 

 





  
Lx

x
x

x

x
x

L
zz xxrxxr

E

c
xxrxx,gxu ˆd)ˆ(ˆd)ˆ(

2
ˆd)ˆ(ˆ)(

0

, (1.8b) 

where x0, xL are the abscissas of the beam end sections, and c = 1  s or 

c = (1 2 s)/(1  s) for a generalised plane stress or plane strain state, respectively.  

Making use of the theorem of work and energy for exterior domains [32], it is possible 

to show that total potential energy soil for the half-plane equals one half of the work of the 

external loads [26, 27], i.e., 

 
L

zzxx xurur
b

d)(
2

soil . (1.9) 
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Substituting Eqs. (1.8a, b) into Eq. (1.9) yields Πsoil = Πsoil,a + Πsoil,b, where 

  













 
L

x

x
z

x

x
z

L
xxa

L

xxrxxr
E

c
xxrxx,gxxr

b
ˆd)ˆ(ˆd)ˆ(

2
ˆd)ˆ(ˆd)(

2 0

 soil, , (1.10a) 

  













 
L

x

x
x

x

x
x

L
zzb

L

xxrxxr
E

c
xxrxx,gxxr

b
ˆd)ˆ(ˆd)ˆ(

2
ˆd)ˆ(ˆd)(

2 0

 soil, . (1.10b) 

 

1.2.3 Total potential energy for the beam-substrate system 

Making use of Eqs. (1.6) and (1.10), the total potential energy of the beam-substrate 

system turns out to be: 

  = beam + soil = beam,a + beam,b + soil,a + soil,b, (1.11) 

which is a mixed variational formulation with variational functions represented by 

displacements ubx,0, uz and rotation , as well as interfacial shear and normal tractions rx 

and rz along the contact region. It is worth noting that using Green's function given by Eq. 

(1.7) reduces the domain of integration to the beam length only. 

Several particular cases derive from Eq. (1.11). For instance, the frictionless interaction 

of a Timoshenko beam with the underlying substrate involves null interfacial shear traction 

rx along the contact region. Accordingly, the displacement field in Eq. (1.8) reduces to 






  
Lx

x
z

x

x
zx xxrxxr

E

c
xu ˆd)ˆ(ˆd)ˆ(

2
)(

0

, (1.12a) 

  L
zz xxrxx,gxu ˆd)ˆ(ˆ)( , (1.12b) 

and the total potential energy in Eq. (1.11) reduces to Eq. (13) reported in [26], where the 

mixed variational formulation is used to evaluate vertical displacement uz and rotation  of 

the foundation beam, as well as contact pressure rz. 

Pressure rz may be neglected when the bending stiffness of the beam is small, i.e., the 

beam is reduced to a thin coating. Consequently, only the interfacial shear traction rx arises 

and the displacement field in Eq. (1.8) can be rewritten as 

  L
xx xxrxx,gxu ˆd)ˆ(ˆ)( , (1.13a) 






  
Lx

x
x

x

x
xz xxrxxr

E

c
xu ˆd)ˆ(ˆd)ˆ(

2
)(

0

, (1.13b) 
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Moreover, the total potential energy in Eq. (1.11) reduces to Eq. (6) reported in [27], where 

the mixed variational formulation is used to evaluate both the axial displacement ux of the 

thin coating and the interfacial shear traction rx. 

A stiff beam resting on a soft substrate behaves like a rigid indenter. Thus, the surface 

displacements are specified by the indenter profile and strain energies Ubeam,a and Ubeam,b in 

Eqs. (1.4) are equal to zero. Therefore, the total potential energy reduces to 

     
L

xzzzxxxba xhrmurpurpb d2)(soil,soil,  (1.14) 

with xu , zu , and   being the prescribed tangential and normal displacements, and the 

prescribed rotation, respectively. With reference to the profile of a rigid flat indenter, the 

prescribed displacements are 

ooozzoxx xxuxuuxu  )(,)(,)( ,,  (1.15a, b, c) 

where ux,o, uz,o, and o are specified at the origin x = z = 0. The variational principle (1.14) 

can be rewritten as 

   



L zzoL zzozL xxox

ba

xxrpmxrpuxrpub d)(d)(d)( ,,

soil,soil,

 (1.16) 

It can readily be noted that, in Eq. (1.16), each integral in curly brackets imposes a global 

equilibrium equation. 

With regard to an inextensible thin coating bonded to an elastic substrate, pressure 

rz(x) = 0 along the contact region, and variational principle (1.14) yields 

    
L

xxx
L L

xx xurpbxxrxx,gxxr
b

d)(ˆd)ˆ(ˆd)(
2

 (1.17) 

Finally, for an indenter in frictionless contact with the substrate, the interfacial shear 

traction rx = 0 and Eq. (1.14) reduces to 

      
L

zzz
L L

zz xmurpbxxrxx,gxxr
b

dˆd)ˆ(ˆd)(
2

  (1.18) 

Variational forms similar to Eqs. (1.17) and (1.18) have widely been used to determine 

contact areas and pressures in contact problems involving rigid punches, see e.g. [19] and 

references cited therein. 
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1.3 Finite element model 

Both the foundation beam and the substrate boundary are subdivided into FEs. It is worth 

noting that the mesh of the half-plane boundary can be defined independently of that of the 

beam, but in the following the same mesh is adopted. The generic ith FE is characterised 

by initial and end coordinates xi and xi1, length li = |xi1  xi| and dimensionless local 

coordinate  = x/li. As usual in the FEM, vectors uxi = [ux,i, ux,i+1]
T
 and qzi = [uz,i, φi, uz,i+1, 

φi+1]
T
 of nodal displacements characterise the displacement field within the ith element by 

means of the following relations: 

u() = Na() uxi,             [v(), ()]
T
  = Nb() qzi (1.19) 

where vector Na() and matrix Nb() contain the shape functions. In particular, for the 

analyses presented in the following, Na() = [Na,1, Na,2] collects linear Lagrangian 

functions N a,1 = 1   and N a,2 = , whereas matrix Nb() assembles “modified” Hermitian 

shape functions [26, 33-36]: 

 ,1)1(231 32
11, iibN 





   (1.20a) 

   ,12)1(1
2

12, iiib lN 




   (1.20b) 

 ,123 32
13, iibN 





   (1.20c) 

 ,12)1(2
14, iiib lN 





   (1.20d) 

    ,11621, iib lN   (1.20e) 

 ,1)1(341 2
22, iibN 





   (1.20f) 

    ,11623, iib lN   (1.20g) 

 ,132 2
24, iibN 





   (1.20h) 

where coefficient i = 12Db/(kb Gb Ab
2

il ). Polynomials (1.20) follow from the exact 

solution to the homogeneous governing equations of Timoshenko beam theory [33]. 

Moreover, when shear deformations are negligible, coefficients i vanish and polynomials 
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Nb,1j and Nb,2j (j = 1,…,4) in Eqs. (1.20) reduce to the classical Hermitian polynomials and 

to their first derivatives, respectively. 

Soil reactions for the ith element can be approximated by the expressions: 

rx()= [a()]
T
 rxi,            rz()= [b()]

T
 rzi, (1.21a, b) 

where rxi, rzi denote nodal interfacial shear and normal tractions, respectively, and vectors 

a, b collect constant or linear shape functions. 

Substituting Eqs. (1.19), (1.21) into variational principle (1.11) and assembling over all 

elements, the potential energy takes the expression 

xzxzzxzxzzzzxxxx

xzxzzzzzxxxxzzxxzbzxaxzxzx ,

rGrrGrrGrrGr

rHqrΗqrHufqfuqKquKurrqu

TTTT

TTTTTTT

2

1

2

1

2

1

2

1

2

1

2

1
),,(





(1.22) 

where Ka, Kb are the beam stiffness matrices and fx, fz are the external load vectors, whose 

components for the ith FE can be written in the usual form: 

 
1

0
,,0, ξd)ξ()ξ()( jaiabiija NNAElk , (1.23a) 

   














 

d)()()()(
12

)()()(

2,1,2,1,2

1

0 2,2,,

jbjbibib
ii

jbibbiijb

NNNN
l

NNDlk

 (1.23b) 

 
1

0
,, d)()( xiaiix pNblf , (1.24a) 

 
1

0
2,1,, d)()()()( mNpNblf ibzibiiz . (1.24b) 

With regard to the components of matrices Hxx, Hzz, Hxz appearing in Eq. (1.22), the 

following expressions hold for the generic FE: 

 
1

0
,,, d)()( jaiaiijxx Nblh , (1.25a) 

 
1

0
,1,, d)()( jbibiijzz Nblh , (1.25b) 

 
1

0
,2,, d)()(

2
jaib

i
ijxz N

lhb
h . (1.25c) 
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Matrices Gxx, Gzz, Gxz, Gzx are fully populated since they take account of the nonlocal 

relation between beam displacements and surface tractions. The components of these 

matrices are given by: 

 
 


1 1

ˆd)ˆ()ˆ,(d)( ,,,

i

i

j

j

x

x

x

x
jaiaijxx xxxxgxxbg , (1.26a) 

 
 


1 1

ˆd)ˆ()ˆ,(d)( ,,,

i

i

j

j

x

x

x

x
jbibijzz xxxxgxxbg , (1.26b) 

  







 
1

0

ˆd)ˆ(ρx̂d)ˆ(ρd)(ρ
2

,,,,

i

i

Lx

x

x

x

x

x
jbjbiaijxz xxxxx

E

bc
g , (1.26c) 

  







 
1

0

ˆd)ˆ(ρx̂d)ˆ(ρd)(ρ
2

,,,,

i

i

Lx

x

x

x

x

x
jajaibijzx xxxxx

E

bc
g . (1.26d) 

The integrals in Eqs. (26a, b) are weakly singular, i.e. they always exist in the Cauchy 

principal value sense and are finite. Moreover, if equal substrate shape functions are 

adopted, i.e., a = b = , Eqs. (26a, b) involve symmetric matrices and yield Gxx = Gzz, 

whereas Eqs. (26c, d) imply the condition Gzx =  Gxz. 

Requiring the total potential energy in Eq. (22) to be stationary, the following system of 

equations is obtained: 


























 0

f

r

q

GH

HK
T

, (1.27) 

where 





























zzzx

xzxx

zzxz

xx

b

a

GG

GG
G

HH

0H
H

K0

0K
K ,, , (1.28a, b, c) 





























z

x

z

x

z

x

f

f
f

r

r
r

q

u
q ,, . (1.29a, b, c) 

Equation (27) represents the discrete system of equations governing the response of the 

beam-substrate system. From the numerical point of view, vectors q and r are obtained by 

solving Eq. (27). In particular, the following expressions hold: 

r = G
1

 H
T
 q,        (K + Ksoil) q = f,  (1.30a, b) 

where Ksoil = H G
1

 H
T
 is the stiffness matrix of the substrate. Some general 

considerations on stability and convergence properties of the proposed mixed FE model are 

reported in [26, 27], and references cited therein. Furthermore, it is simple to show that 
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Ksoil is symmetric. In fact, (Ksoil)
T
 = (H G

1
 H

T
)
T
 = H G

T
 H

T
 = H G

1
 H

T
 = Ksoil, since 

matrix G is symmetric, as it will be shown in Section 3.2. 

It is worth noting that the second row of Eq. (1.27), containing the governing equation 

of the discrete Galerkin method for the system of Eqs. (1.8a, b), includes the beam 

rotations due to the substrate tractions. In particular, the compatibility of rotation between 

foundation beam and soil substrate is enforced by the following term appearing in Eq. 

(1.6b): 

  
L

xzz xhrurb d2/  (1.31) 

leading to xzxzzzzz rHqrΗq
TT  in Eq. (1.22). Thus, matrices Hzz and Hzx play a key role in 

enforcing the compatibility of nodal rotations. It is also to be noted that the validity of Eq. 

(1.30a) does not depend on the presence of a foundation beam. In other words, Eq. (1.30a) 

may be used to obtain the surface tractions arising from a generic displacement field q 

assigned to the half-plane boundary. The particular case of a flat rigid punch perfectly 

bonded to the substrate will be analysed in Sections 1.3.6 and 1.4.1. 

Differently, Cheung and Nag [17], and many others adopting the same approach (see for 

example [11]), used Eqs. (1.8a, b) to compute the displacements due to piecewise constant 

soil tractions. This method implicitly assumes that the beam is connected to the substrate at 

equally spaced points through a finite number of pinned-clamped rigid links; thus, no 

angular continuity between beam and soil substrate can be imposed. Accordingly, the 

resulting soil matrix has to be augmented by rows and columns of zeros in correspondence 

of the nodal rotations. The numerical performance of the approach proposed in [17] is 

reported in Section 1.4.2.2 for comparison. 

Finally, in the case of a structure connected to a foundation beam, Eq. (1.27) can be 

partitioned as reported in [26, 27]. In particular, denoting with q1 and q2 the vectors of 

nodal displacements referred to the structure only and those shared between structure and 

foundation beam, respectively, and with f1 and f2 the corresponding load vectors, Eq. 

(1.27) takes the form: 
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f

f
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q
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HKK
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2

1

T

2221

1211

 (1.32) 
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1.3.1 Prismatic beam subjected to uniform loads 

For the sake of completeness, classical results referred to a prismatic beam subjected to 

uniform loads px(x), pz(x) and couple m(x) are recalled. Beam stiffness matrices Ka, Kb and 

external load vectors fx, fz can be rewritten as 

bbaab
b

baa bb
L

D

L

AE
ffffKKKK
~

,
~

,
~

,
~

3
0   (1.33a, b, c, d) 

where, by virtue of Eqs. (1.23) and (1.24), the last terms on the right-hand sides are given 

by: 















11

11~
,

i

ia
l

L
K ,    










1

1

2

~
,

ix
ia

lp
f  (1.34a, b) 
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22

3

3

,

)4(symm

612

)2(6)4(

612612

)1(

~

ii

i

iiiii

ii

ii

ib

l

l

lll

ll

l

L
K  (1.35a) 

TT22

, ]2,1,2,1[)1(]12,2,12,2[
~

iiiiiiiiizib llmllllp f  (1.35b) 

Assembly of global stiffness matrices Ka, Kb and load vectors fa, fb from the corresponding 

element matrices Kai, Kbi and load vectors fai, fbi follows the usual procedure. However, 

possible constraint equations among displacements or rotations of the foundation beam can 

be included into the total potential energy of the beam-substrate system (Eq. (1.22)) by 

means of a penalty approach, as illustrated in [28, 29]. 

 

1.3.2 Piecewise constant substrate tractions 

In the following numerical examples, only piecewise constant functions are used to 

interpolate rx and rz, i.e., the shape functions for the soil tractions are assumed to be a() 

= b() = 1. Consequently, matrices Gxx, Gzz, Gxz, Gzx can be written as 

xzxzzzxx
E

cb

E

b
GGGGG
~

,
~

 , (1.36a, b) 

where the components of G
~

 are given by: 












 i

i
ii l

l
g ln

2

32~
2

 (1.37a) 
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 jixxGxxGxxG

xxGllg

ijijij

ijjiij
















for  )()()(

)(
2

32~

11

11
 (1.37b) 

In the previous equation G(x) = x
2
/2 ln|x| and parameter d has been omitted since a rigid-

body displacement can be imposed in the post-processing analysis. The components of 

xzG
~

 are given by: 

















jillg

jig

jillg

g

jiijxz

iixz

jiijxz

xz

 if2~
 if0~
 if2~

~

,

,

,

 (1.38) 

implying the property Gxz = 
T
xzG . Thus, taking into account that Gzx =  Gxz, the relation 

Gzx = 
T
xzG  is obtained. Therefore, matrix G reported in Eq. (1.28c) is symmetric. 

With regard to matrix H = b H
~

, if piecewise constant tractions rx and rz are assumed, 

Eqs. (1.25) yield the following components for the ith FE 

T
, ]1,1[2

~
iixx lh  (1.39a)  

T22
, ]12,2,12,2[

~
iiiiizz llll h  (1.39b) 

T
, ]2,1,2,1[

)1(2

~
iiii

i

ixz ll
h




h  (1.39c) 

The ith column of global matrices Hxx, Hzz and Hxz contains only the vectors represented by 

Eqs. (1.39a), (1.39b) and (1.39c), respectively. Therefore, in a mesh with node and element 

numbers sorted in ascending order and indicating with symbol '' a nonzero entry, global 

matrices Hxx and Hzz are populated as follows: 







































































zzxx HH , . (1.40a, b) 

Moreover, matrix Hxz has nonzero entries in the same positions as Hzz. 

The foundation beam interposed between the substrate and the external load may be 

ignored if axial and bending beam stiffnesses are small. Consequently, beam matrix K can 
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be neglected in Eq. (1.27) and the corresponding equation, Ksoil q = f, gives the 

displacements of the soil surface due to assigned load distributions. As shown in [26] for 

flexible foundation beams in frictionless contact with the substrate, the vertical 

displacements of the soil surface are well approximated by the analytical solution resulting 

from the problem of an elastic half-plane loaded by a uniform vertical load pz. However, 

Fig. 11d reported in [26] shows that pressure rz may be affected by oscillations at the ends 

of the loaded region, similar to Gibbs oscillations in series analysis. 

 

1.3.3 Prismatic beam with piecewise constant surface tractions 

Making use of Eqs. (1.33) and (1.36), Eq. (1.27) may be rewritten as follows: 
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where 
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0 , (1.42a, b, c, d) 

with 0 = L/rg and the radius of gyration rg = h/ 12 . Therefore, solutions (1.30) reduce to 

qHGr
T1 ~~ 

 E ,             fqKK
~~

)(
~

soil
33

bLLDb  , (1.43a, b) 

being 
T1

soil

~~~~
HGHK


  the nondimensional stiffness matrix of the substrate and  

3 3
bDLEbL  . (1.44) 

According to references [14, 26, 37], parameter L governs the static response of the 

beam-substrate system. Low values of L characterise short beams stiffer than soil, 

whereas high values of L correspond to slender beams on a relatively stiff soil. It is worth 

noting that a different parameter characterises the elastic response of a thin coating bonded 

to an elastic substrate. This parameter takes the following form [27, 38]: 

L = b E L/(E0 Ab), (1.45) 

yielding the relationship (L)
3
 = (L) 

2
0 . 

As stated above, mesh sizes of beam and substrate boundary can be defined 

independently of one another, and shape functions different from those of Eqs. (1.20) may 
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be adopted as well. For example, in [27] quadratic Lagrangian bar elements including one 

or two equal substrate elements are used. In [26] beam-substrate matrices obtained using 

four equal soil elements for each beam element are reported. 

 

1.3.4 Beam in frictionless contact with the substrate 

For a beam resting in frictionless contact on an elastic half-plane, rx = fx = 0, and Eq. (1.27) 

reduces to the following expression: 
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f

r

q

GH

HK z
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z

zzzz

zzb
T

 (1.46) 

coinciding with Eq. (26) reported in [26]. In particular, the second row of Eq. (1.46) 

contains the governing equation of the discrete Galerkin method for Eq. (1.12b), and 

relates beam rotations to vertical reactions. Differently, in [16] a collocation method is 

proposed to solve Eq. (1.12b), but no angular continuity between the foundation beam and 

the substrate is ensured. Accordingly, static condensation was applied to beam matrix Kb, 

so as to cancel out rows and columns corresponding to the nodal rotations. 

The horizontal displacements at the substrate boundary may be obtained by making use 

of a Galerkin solution to Eq. (1.12a), written in the form: 

  




 
L

x

x
z

x

x
zz

L
xz

L
xxrxxrxxr

E

c
xxuxr ˆd)ˆ(ˆd)ˆ(d)(

2
d)()(

0

. (1.47) 

The previous equation may be solved numerically using a piecewise constant discretization 

of both normal reactions rz, see Eq. (1.21b), and horizontal displacements, i.e., 

ux()= [a()]
T
 uxi, (1.48) 

leading to the following expression: 

zxzxn
E

c
lldiag rGu

~
),,( 1  . (1.49) 

 

1.3.5 Thin coating bonded to the substrate 

With regard to a bar with zero bending stiffness (i.e., a thin coating) bonded to an elastic 

half-plane and having the centroidal axis coinciding with the substrate boundary, rz = fz = 

0, Db = 0, and Eq. (1.27) reduces to the following expression (see Eq. (14) reported in 

[27]): 
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 (1.50) 

The vertical displacements at the substrate boundary may be obtained by making use of a 

Galerkin solution to Eq. (1.13b), written in the form: 
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x

x
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xx

L
zx

L

xxrxxrxxr
E

c
xxuxr ˆd)ˆ(ˆd)ˆ(d)(

2
d)()(

0

. (1.51) 

The previous equation may be solved numerically using a piecewise constant discretization 

of both tangential reactions rx, see Eq. (1.21a), and vertical displacements, i.e., 

v()= [a()]
T
 uzi, (1.52) 

leading to the following expression: 

xzxzn
E

c
lldiag rGu

~
),,( 1  . (1.53) 

 

1.3.6 Rigid flat punch with piecewise constant surface tractions 

Eq. (1.15) shows that vector qo = [ux,o, uz,o, o]
T
, collecting the displacements prescribed at 

the origin, governs the displacement field generated by a rigid flat punch. Thus, 

substituting Eqs. (1.21) into variational principle (1.16), assembling over all substrate 

elements, and requiring the potential energy to be stationary, the following system of 

equations is obtained 
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where 
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H , (1.55a, b) 

vector fo collects the three external load resultants 

 
L

zo
L

zoz
L

xox xxpmMxpPxpP d)(,d,d ,, , (1.56a, b, c) 

whereas vectors ho,xx, ho,zz, ho,z have the following components 
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Assuming constant functions a,i = b,i = 1, Eqs. (1.57) reduces to 

2
, 1

,,,,,,





 ii

iizoiizzoixxo

xx
lbhblhh . (1.58a, b, c,) 

The first relation of Eq. (1.54), Ho qo = fo, imposes compatibility conditions between qo 

and fo, whereas the second relation, G r = Ho
T
 qo, represents the governing equation of the 

discrete Galerkin method for the system of equations (1.8a, b), with displacements 

prescribed by Eqs. (1.15a, b). Moreover, the solutions to Eq. (1.54): 

r = G
1

 T

oH  qo,        Ko qo = fo,  (1.59a, b) 

are similar to Eqs. (1.30a, b), with the only difference that the stiffness matrix of the 

substrate, Ko = Ho G
1

 Ho
T
, is a 3-by-3 matrix. 

For an inextensible thin coating bonded to an elastic substrate, pressure rz = 0 along the 

contact region, the variational principle of Eq. (1.17) applies, and in Eq. (1.54) the 

following relations hold: G = Gxx, Ho = h
T

o,xx, qo = ux,o, r = rx, fo = Px,o. Consequently, Eqs. 

(1.59) reduce to  

Gxx rx = ux,o ho,xx ,              ux,o = Px,o/ko,xx,  (1.60a, b) 

where ko,xx = h
T

o,xx G
1

xx ho,xx, and Eq. (1.60a) represents the governing equation of the 

discrete Galerkin method for first kind integral equations with a logarithmic kernel, see 

[39, 40] and references cited therein. As shown in [27], a thin coating bonded to a substrate 

behaves like an inextensible stiffener for L < 0.5. 

For the contact of a frictionless indenter, interfacial shear traction rx = 0, the variational 

principle of Eq. (1.18) applies, and Eq. (1.54) reduces to 
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 (1.61) 

As shown in [26], a foundation beam in frictionless contact with the substrate behaves like 

a rigid punch for L < 1. 
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1.3.7 Prismatic beam-column with a rigid foundation placed at the bottom 

For a prismatic beam-column element with the bottom node connected with the upper side 

of a rigid foundation beam of height h (node i in Fig. 1.3), a classical transformation matrix 

T has to be adopted to impose the kinematical constraints between the degrees of freedom 

at node i and those at the substrate boundary (node o in Fig. 1.3): 
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Tqq , (1.62) 
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h

  

Fig. 1.3. Rigid footing placed on the half-plane boundary and connected to a beam-column. 

where unspecified entries in Eq. (1.62) are set equal to zero. The corresponding stiffness 

matrix and load vector for the ith element undergo the usual transformation rule, i.e., 

Ki,o = T
T
 Ki T and fi,o = T

T
 fi, whereas matrix Hi of the element must be modified as 
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1.4 Numerical Examples 

1.4.1 Rigid punch 

Accuracy and convergence properties of the proposed coupled FE-BIE formulation are 

first evaluated with regard to the rotation of a rigid punch of length L, bonded to an elastic 

half-plane and subjected to a horizontal force Px or to a bending moment M. Analytical 
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solutions to these problems are available in the literature. In particular, the punch rotation 

can be written in closed form as [13]: 

xP P
LG )ln(

ln)1(
22



  (1.64a) 

M
LG

M 222
)ln(2

)1(




  (1.64b) 

for the case of horizontal force Px, and for that of bending moment M, respectively. In the 

previous equations,  = (3  s)/(1 + s) for generalised plane stress state and  = 3  4s for 

generalised plane strain state, and G = Es/[2 (1+s)].  

For comparison purposes, both uniform and graded meshes are considered. Coordinate 

xj of the generic jth node of the mesh is then given by:  
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 (1.65)  

with nel being the total number of FEs in the mesh and exp the so-called grading exponent 

[41]. A uniform mesh is obtained by assuming exp = 1.  

Figure 1.4a shows relative error eP = |Px/P  Px/o|/(Px/P) versus nel for exp = 1, 2, 3, 

where o is the punch rotation obtained from the present analysis when the punch is 

subjected to force Px. Analogously, Fig. 1.4b shows relative error 

eM = |M/M  M/o|/(M/M) versus nel for exp = 1, 2, 3, where o is the punch rotation 

obtained from the present analysis when the punch is subjected to moment M. In 

evaluating P and M from Eqs. (1.64),  = 2.333 is assumed. In Figs. (1.4a, b), relative 

errors decrease at a rate 0.1
eln  for uniform mesh (exp =1), and at higher rates, equal to 0.2

eln  

and 8.2
eln , for graded mesh with exp = 2 and 3. In particular, for a uniform mesh with nel 

greater than 32, relative error eP is less than 1%, but the same error can be obtained with 

graded meshes having nel  8. Furthermore, relative error eM is equal to 0.8% for a 

uniform mesh with nel = 64, and eM reduces to 0.4% for exp = 2 and nel = 16, or to 0.5% 

for exp = 3 and nel = 8. 
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Fig. 1.4. Rigid punch subjected to a horizontal force Px or a bending moment M. Relative errors 

eP = |Px/P  Px/o|/(Px/P) (a) and eM = |M/M  M/o|/(M/M) (b) versus nel for uniform (exp = 1) 

and graded mesh (exp = 2, 3). P and M are the closed-form rotations (1.64a) and (1.64b), and o is 

the rotation obtained from the proposed formulation  

 

Interfacial shear and normal tractions rx(x) and rz(x) for a rigid flat punch loaded by a 

horizontal force Px and a vertical force Pz are given by Abramov’s formulas [12, 13]: 
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the alternative expressions reported above. It is possible to show that the tractions obtained 

from Eqs. (1.66a, b) fluctuate, in sign an infinite number of times, as x tends to L/2 [12]. 

However, for Px = 0 and s = 0.2, surface tractions become negative for the first time when 

x = + 0.499996 L, which is so close to the edge of the punch that usual continuum 

mechanics hypothesis does not hold anymore.  

In the case of a rigid flat punch subjected to a bending moment M, surface tractions rx(x) 

and rz(x) may be written in closed form as [12, 13]: 
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with c, s and  being obtained from the previously reported expressions.  

The results in terms of surface tractions rx and rz obtained from the proposed FE-BIE 

formulation using a uniform mesh with nel = 512 substantially coincide with the analytical 

solutions of Eqs. (1.66) and (1.67). To evaluate the accuracy of numerical solutions 

obtained using a coarser FE discretization, horizontal and vertical reactions rx and rz 

between a rigid punch subjected to a vertical force Pz and the substrate are estimated by 

means of a graded mesh with nel = 8 and exp = 2. The results are reported in 

nondimensional form in Fig. 1.5 versus the relative position x/L along the punch, where 

they are compared with the reference solutions corresponding to nel = 512 and exp = 1. 

Analytical solutions deriving from Eqs. (1.66) are not reported in the figures because they 

are indistinguishable from the uniform mesh solutions. Analogous comparisons are 

presented in Fig. 1.6 for the case of a horizontal force Px and in Fig. 1.7 for the case of a 

bending moment M. In all cases, the coarse graded mesh with nel = 8 and exp = 2 proves to 

approximate the reference solutions very well. 
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Fig. 1.5. Rigid punch loaded by a vertical point force Pz at midspan. Nondimensional tangential (a) 

and normal (b) reactions versus x/L obtained using a uniform mesh with nel = 512 (thick solid line) 

and a graded mesh with nel = 8, exp = 2 (thin solid line with symbol). 
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Fig. 1.6. Rigid punch loaded by a horizontal point force Px at midspan. Nondimensional tangential 

(a) and normal (b) reactions versus x/L obtained using a uniform mesh with nel = 512 (thick solid 

line) and a graded mesh with nel = 8, exp = 2 (thin solid line with symbol). 
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Fig. 1.7. Rigid punch loaded by a bending moment M at midspan. Nondimensional tangential (a) 

and normal (b) reactions versus x/L obtained using a uniform mesh with nel = 512 (thick solid line) 

and a graded mesh with nel = 8, exp = 2 (thin solid line with symbol).  

 

1.4.1.1 Reactions at the end of the rigid punch 

The study of stress singularity factor, which was investigated by a thin coating [27] or that 

could be also analysed in frictionless condition, can not be examined in perfect adhesion 

because of the nature of tractions which fluctuate in sign an infinite number of times 

toward the ends [12]. 

On the other hand, interfacial reactions at the ends of the rigid punch in perfect 

adhesion, assuming different Poisson's coefficient of the substrate (s), has been 

investigated.  Using 256 logarithmically spaced elements, where, with reference to positive 

axis, a number of 27 elements are used in the interval [10
-4

; 0.1]/L, 27 into [0.1; 0.4]/L and 

72 into [0.4; 0.5-10
-9

]/L, shear and normal reactions are calculated under the action of a 

vertical or horizontal concentrated force, Fig. 1.8a-b and c-d, respectively. Moreover, the 
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normal stress singularity factor KI in the frictionless condition (dashed line in Fig. 1.8b) 

and the shear stress singularity factor KII of the thin coating (dashed line in Fig. 1.8c) are 

reported and defined as 

)()2/(2lim
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The present numerical analysis (in thick solid line) and the analytic solution until (1/2 - 

x/L) = 10
-15

 (in thin solid line) show an oscillation and its length depend on the value of s. 

It is worth noting that the analysis at the ends reaches the atomic nucleus scale if the length 

of beam is assumed equal to 1 meter, vanishing so the condition of a continuum body. 
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Fig. 1.8. Rigid punch loaded by a vertical Pz or horizontal Px point force at midspan, shear (a, c) 

and normal (b, d) reactions. Normal KI and shear KII stress singularity factor (dashed line in (b, c)) 

in frictionless contact and for the inextensible bar, respectively. 
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1.4.2 Beam loaded by point force or moment 

In this section, a beam with L/h = 10 resting on an elastic substrate having c = 0.8 is 

considered. Correspondingly, s = 0.20 or s = 0.167 for a generalised plane stress or plane 

strain state, respectively In all examples presented, unless otherwise specified, a uniform 

mesh of nel = 512 beam elements is used, and the same discretization is applied to the 

substrate boundary. Moreover, the plotted values of horizontal and vertical displacements 

ux and uz refer to the substrate boundary. In some case, for comparison, horizontal 

displacements ubx,0 of the beam at z = 0 are reported in the plots. 

 

1.4.2.1 Beam loaded by a vertical point force Pz at midspan 

The case of a beam with L = 10 perfectly bonded to an elastic half-plane and loaded by a 

vertical point force Pz at midspan is considered first. Dimensionless displacements and 

reactions along the substrate boundary are reported in Fig. 1.9 for both an Euler-Bernoulli 

beam ( = 0, thick solid line) and a Timoshenko beam ( = 0.3, thin solid line). In 

particular, the corresponding plots of horizontal displacements ux (Fig. 1.9a) clearly 

indicate that the beam-substrate systems tend to stretch in the neighbourhood of the loaded 

cross-section, and to contract far away from it. When the horizontal displacements are 

evaluated along the beam axis, a completely different behaviour is observed. For example, 

for the Euler-Bernoulli beam a contraction of the whole beam axis is obtained, i.e., ubx,0 > 0 

for x/L < 0 and ubx,0 < 0 for x/L > 0 (dash-dot line in Fig. 1.9a). Therefore, for perfect 

adhesion, ux turns out to be strongly influenced by the contribution of term  h/2. 

Moreover, the significant discrepancy in the responses of Euler-Bernoulli and Timoshenko 

beams emphasizes the crucial role played by the shear deformations. This feature is even 

more evident from the plot of tangential reactions rx (Fig. 1.9b), which is continuous for 

the shear-rigid beam, but shows a discontinuity at midspan for the shear-flexible beam. 

With regard to vertical displacements uz (Fig. 1.9c), a wedge-shaped plot is obtained for 

the Timoshenko beam, showing a maximum deflection 56% larger than the Euler-

Bernoulli beam. At the same section, the Timoshenko beam shows a singularity in normal 

reactions rz (Fig. 1.9d). This aspect was already noted in [26]. Furthermore, it is worth 

observing that, at the beam end sections, the normal reactions for the two beams take 

opposite sign. 

For comparison, the results obtained for the Euler-Bernoulli beam ( = 0) in frictionless 

contact with the substrate are also reported in Fig. 1.9 (dashed line). In particular, 

differently from the perfectly bonded beam, the frictionless condition yields contraction 
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along the whole beam-substrate interface (Fig. 1.9a). Moreover, as expected, rx = 0 

everywhere (Fig. 1.9b). With regard to vertical displacements uz (Fig. 1.9c), for the beam 

in frictionless contact a maximum increase of 47% is obtained with respect to the perfect 

adhesion case. Finally, vertical reactions rz (Fig. 1.9d) obtained for the Euler-Bernoulli 

beam do not seem to depend appreciably on the contact condition, with the exception of 

the cross-sections lying in the range |x/L| > 0.40.  

The comparison between perfect adhesion and frictionless contact condition is re-

proposed in Fig. 1.10 for a more flexible Euler-Bernoulli beam with L = 100. In this case, 

the two different contact conditions lead to substantially coincident results in terms of 

displacements ux (Fig. 1.10a). With regard to tangential reactions rx (Fig. 1.10b) for the 

beam in perfect adhesion, only the cross-sections lying in the range 0.18  x/L  0.18 

show rx  0, whereas, as is obvious, for the beam in frictionless contact rx = 0 everywhere. 

The beam responses in terms of uz (Fig. 1.10c) and rz (Fig. 1.10d) show larger values for 

the frictionless contact case only in proximity of the loaded cross-section. With regard to 

displacements ux, an intermediate behaviour between those shown in Fig. 1.9a (L = 10) 

and in Fig. 1.10a (L = 100) is illustrated in Fig. 1.11a for L = 40. 
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Fig. 1.9. Beam (L/h=10, L=10) loaded by a vertical point force Pz at midspan. Nondimensional 

values of ux (a), rx (b), uz (c), and rz (d) versus x/L for perfect adhesion with = 0.0 and 0.3 (thick 

and thin solid line), and for frictionless contact with = 0.0 (dashed line). Horizontal displacement 

ubx,0 (dash-dot line in a) is referred to the centreline of the beam in perfect adhesion with= 0.0. 
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Fig. 1.10. Euler-Bernoulli beam (L/h=10, L=100, = 0.0) loaded by a vertical point force Pz at 

midspan. Nondimensional values of ux (a), rx (b), uz (c), and rz (d) versus x/L for perfect adhesion 

(solid line) and frictionless contact (dashed line).  
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Fig. 1.11. Beam (L/h=10) loaded by a vertical point force Pz at midspan, comparison between 

perfect adhesion (thick solid line) and frictionless contact (dashed line). Nondimensional values of 

ux versus x/L obtained for L=40 and = 0.0 (a); and nondimensional values of rz at or in 

proximity of midspan versus L obtained for = 0.0 and 0.3 (b). Horizontal displacement ubx,0 

(dash-dot line in a) is referred to the beam centreline.  
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In particular, for the perfectly bonded beam, a contraction at the beam-substrate interface is 

observed with the exception of a very narrow region centred on the loaded cross-section, 

where a stretching occurs (solid line in Fig. 1.11a). Note that, differently from what is 

observed in Fig. 1.9a, displacements ubx,0 at the centreline of the perfectly bonded beam 

(dash-dot line in Fig. 1.11a) are always larger than displacements ux obtained for the beam 

in frictionless contact (dashed line in Fig. 1.11a). 

The influence of the shear deformations on the normal reaction in proximity of the 

loaded cross-section is then analysed for different values of L. In particular, an Euler-

Bernoulli beam ( = 0) and a Timoshenko beam with  = 0.3 are considered. An accurate 

description of the normal reactions is searched for using a uniform mesh of 1024 elements. 

Reported in Fig. 1.11b are reactions rz(0) and rz(L/1024) versus L for the Euler-Bernoulli 

and the Timoshenko beam, respectively. Note that for the shear-flexible beam, showing a 

singularity in the normal reaction at x = 0 (Fig. 1.9d), one of the nodes closest to the beam 

centroid, located at x = L/1024, is chosen. The figure shows the numerical solutions for 

both perfect adhesion (thick solid lines) and frictionless contact (thick dashed lines). It can 

be noted that for L  1 the normal reactions for the two beams asymptotically tend to 

those of the rigid punch (thin solid and dashed lines). For larger values of L, the normal 

reaction for the Timoshenko beam is significantly larger than that for the Euler-Bernoulli 

beam. 

 

1.4.2.2 Comparison with other numerical formulations 

With the purpose to evaluate the numerical performance of the present analysis, a beam 

perfectly bonded to an elastic half-plane is also analysed using two traditional numerical 

methods: a standard FE model that uses two-dimensional elastic elements to describe the 

soil and the approach proposed in [16, 17]. 

With regard to the two-dimensional FE model, the soil is modelled by means of 

quadrilateral elements in plane state. Three different square soil meshes are compared, 

showing total width equal to 8L (Fig. 1.12a), 16L (Fig. 1.12b) and 32L (not shown 

graphically because of the very large dimensions), with L being the beam span length. In 

the following, these meshes are referred to as FEM 8L, FEM 16L and FEM 32L, 

respectively. For all cases, at the boundaries, the displacements in the normal direction are 

fixed.  
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Fig. 1.12. Meshes adopted for the two-dimensional FE models with a foundation beam subdivided 

into 4 equal FEs. Models with mesh dimension 8L (FEM 8L) (a) and 16L (FEM 16L) (b), and 32L 

(FEM 32L) (c). 
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Fig 1.13. Piecewise constant pressure elements adopted in [17].  
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Fig. 1.14. Rigid punch subjected to a bending moment M. Relative errors eM =  

|M/M  M/o|/(M/M) versus number of equation neq, with o representing the rotation obtained 

from the generic numerical model, and M being the closed-form rotation provided by Eq. (1.64b)
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Fig. 1.15. Euler-Bernoulli beam (L/h=10, L=20) subjected to a vertical force Pz at midspan (a) 

and at one end section (b). Relative errors eM = |MmaxMref|/|Mref| in terms of the maximum bending 

moment versus number of equation neq for the present analysis (PA), Cheung's solution [17] and 

meshes FEM 8L, FEM 16L and FEM 32L.  
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Since for a relatively slender beam non-negligible horizontal displacements are to be 

expected for most of the beam length (see for example Figs. 1.10a for L = 100 and Fig. 

1.11a for L = 40), FEM 16L and FEM 32L meshes were introduced with the aim to 

provide a more accurate description of the beam horizontal displacement. Two nested 

square meshes, showing widths equal to 4L and 2L for FEM 8L, to 8L and 4L for FEM 

16L, and, finally, to 16L and 8L for FEM 32L, are built close to the foundation beam. Each 

edge of the quadrilateral elements of the smaller mesh has the same size of the beam 

elements. In Figs. 1.12, the case of the foundation beam subdivided into 4 beam FEs is 

shown for meshes FEM 8L and FEM 16L. The adopted meshes allow for the accurate 

solution to the soil-structure interaction problem with a number of FEs lower than that 

required by a simpler uniform mesh of quadrilateral elements. 

With regard to the approach proposed in [17], a piecewise constant pressure having 

resultants applied to the nodes of the beam elements is adopted (Fig. 1.13). It is worth 

noting that a half of the end constant pressures lie ostside the foundation beam. Inserting 

piecewise constant surface tractions into Eq. (1.8) yields the following expressions for the 

nodal displacements: 

ux = GC,xx rx  c GC,xz rz (1.69a) 

uz = GC,zz rz  c GC,zx rx (1.69b) 

where 
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corresponds to the classical solution due to a uniform distribution of surface tractions [12] 

and 
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With arguments similar to those reported in Section 3.2, the relations GC,zz = GC,xx and 

GC,zx = T
,C xzG  hold. Thus, the following matrix expression of Eqs. (1.69a, b) is obtained: 
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Differently from Eq. (1.27), the nodal rotations do not appear in Eq. (1.72); thus, nodal 

rotations of the beam are independent of those resulting in the substrate boundary due to 

the surface tractions. Accordingly, the resulting soil matrix KC,soil coincides with 1
C


G  as 

far as nodal displacements are concerned and has rows and columns of zeros in 

correspondence of the nodal rotations. Finally, the soil-structure interaction problem can be 

solved by replacing Ksoil with KC,soil in Eq. (1.30b). 

In the case of beams, indicating with nel  the number of beam FEs, the number of 

equations, neq, associated with the present analysis (PA) is given by (PA)
eqn  = 5 nel + 3. 

Moreover, the number of equations associated with meshes FEM 8L, FEM 16L and FEM 

32L is given by L)8(

eqn = 20.1 2
eln , 6L)1(

eqn = 80.4 2
eln  and L)32(

eqn = 321.6 2
eln , respectively (note 

that, for meshes FEM 8L and FEM 16, the case for nel = 4 is depicted in Fig. 1.12). Finally, 

with regard to the approach proposed in [16, 17], a matrix inversion is required, which is 

computationally equivalent to the solution to 2 (nel + 1) systems of 2 (nel + 1) algebraic 

equations. Therefore, such an approach gives rise to a number of equations (C)
eqn  = 3 (nel + 

1) + 4 (nel + 1)
2
. In the case of a rigid punch, the number of equations associated with the 

present analysis reduces to (PA)
eqn  = 2 nel + 3. 

Because no exact solution to the adhesive contact problem for flexible beams is 

available in the literature, the convergence properties of the proposed formulation are 

preliminarily compared with those exhibited by the other formulations for the case of a 

rigid flat punch. To this aim, the FE-BIE model reduces to the form presented in Section 

3.6, whereas, in the FE models and in the approach proposed in [17], the (flexible) beam 

elements are replaced with (rigid) FEs characterised by a parameter L = 0.5. As already 

abovementioned (Section 4.1), an analytical solution to such a problem exists, and the 

proposed formulation is capable to recover this solution accurately (Fig. 1.4). 

With the purpose of a convergence test, a rigid flat punch subjected to a bending 

moment M is considered. For each of the numerical models compared, a series of mesh 

refinements is obtained by letting nel progressively take the values 8, 16, 32, 64, 128, 254, 

512 and 1024. The analytical solution in terms of rotation, i.e., Eq. (1.64b), is used as 

reference solution for the test. The test results are reported in Fig. 1.14 in terms of relative 

error eM = |M/M  M/o|/(M/M) versus number of equations neq, with o and 
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M indicating the rotations provided by the generic numerical formulation and by Eq. 

(1.64b), respectively. It can readily be observed that, in the log-log representation of Fig. 

1.14, all models, though with different slopes, converge almost linearly to the exact 

solution, as is testified by the progressive reductions of error eM with neq. However, the 

proposed FE-BIE model exhibits a convergence rate larger than twice those shown by the 

other models. In other words, at equal accuracy in the numerical solution, the proposed 

model is computationally more efficient. This feature justifies the use of the proposed 

model as the reference in the numerical examples presented below. 

A further comparison of the various formulations is then carried out with reference to an 

Euler-Bernoulli beam with L = 20 and L/h = 10, and subjected to a point force Pz at 

midspan or at one end section is chosen. For each of the numerical models compared, a 

series of mesh refinements is obtained by letting nel take the same values as for the case of 

the rigid punch just investigated. The numerical solution obtained with the present analysis 

by discretizing the beam with 4096 equal FEs is used as reference solution for the 

comparison. 

The test results are reported in Fig. 1.15 in terms of relative error eM = |MmaxMref|/|Mref| 

versus the number of equations neq, where Mmax indicates the maximum bending moment 

in the beam obtained from the various models for a generic discretization, and 

Mref represents the maximum bending moment corresponding to the reference solution. In 

particular, for Pz acting at midspan (Fig. 1.15a) Mref = + 0.02323 PzL (sagging bending 

moment with tension in bottom fibres), whereas for Pz acting at the beam end section (Fig. 

1.15b) Mref =  0.01567 PzL (hogging bending moment with tension in top fibres). 

It can readily be observed from Fig. 1.15 that, at equal neq, the solution provided by the 

proposed model is significantly more accurate and presents higher convergence rate than 

the other formulations. However, it is to be recognised that the number of elements nel, 

rather than the number of equations neq, is a more representative parameter to compare the 

convergence properties of the numerical models. Therefore, some further remarks are 

presented by assuming the same number of beam elements, though remembering that at 

equal nel the computing time of the present formulation is noticeably lower than that 

required by the other numerical models. For example, for the beam with Pz acting at 

midspan (Fig. 1.15a), assuming nel = 32 yields eM = 2.0%, 2.3% and 1.3% for the present 

analysis (PA), Cheung's solution [17] and all two-dimensional FE models, respectively. 

For the beam with Pz applied to one end beam section (Fig. 1.15b), a mesh refinement is 

required to obtain errors of the same order of magnitude as the previous case. Then, 
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assuming nel = 256 yields eM = 1.7%, 4.6% and 3.0% for the present analysis (PA), 

Cheung's solution [17] and mesh FEM 8L, respectively. 

Table 1.1 reports constant C and exponent of convergence rate C 
eqn  for the curves 

shown in Figs. 1.15a, b (Euler-Bernoulli beam). The present analysis yields an exponent  

larger than 1.95 times the exponents provided by the other formulations. The parameters of 

the convergence rate for a Timoshenko beam with  = 0.3 are also reported in Table 1.1. In 

particular, for Pz acting at midspan, the present analysis yields an exponent  that is 1.93 

times the other exponents. For the same Timoshenko beam, an error eM = 1.8% is obtained 

from the present analysis with nel = 128. Because of the portions of the piecewise constant 

pressure lying beyond the beam end sections (Fig. 1.13), Cheung's solution [17] gives the 

same relative error as the present analysis with nel = 256. The two-dimensional FE models 

provide eM = 2.1% with nel = 128. Moreover, for a Timoshenko beam with Pz applied to 

one end section, the present analysis yields eM = 2.1% with nel = 512 and a value of the 

exponent  that is 2.7 times larger than the other exponents (Table 1.1). To obtain the same 

numerical error with the other methods, more than 2,048 equal beam FEs are to be used. 

In conclusion, the present model can be considered effective to solve beam-soil 

problems, and a number nel = 512 of equal beam FEs gives accurate solutions for all cases 

reported in the following. 

 

 
 

Pz Pz




Pz Pz


Euler-Bernoulli C   C 

PA  504 1.99  56 1.13 

Cheung  124 1.02  16 0.47 

FEM 8L  251 0.98  44 0.51 

FEM 16L  1404 1.02  139 0.55 

FEM 32L  5514 1.02  390 0.57 
       

Timoshenko  C   C 

PA  205 1.47  105 1.07 

Cheung  217 0.76  8 0.34 

FEM 8L  102 0.67  10 0.34 

FEM 16L  77 0.58  12 0.31 

FEM 32L  90 0.53  17 0.31 
 

Table 1.1. Euler-Bernoulli and Timoshenko ( = 0.3) beams (L/h=10, L=20) subjected to a 

vertical force Pz at midspan and at one end section. Parameters of the convergence rate expression 

C 
eqn  for relative error eM in terms of the maximum bending moment. Comparison between 

present analysis (PA), Cheung's solution [17] and two-dimensional FE models.   



 35 

1.4.2.3 Beam loaded by a horizontal point force Px at midspan or at one end section 

When a beam bonded to an elastic substrate is subjected to a horizontal force Px, the 

solution to the beam-substrate interaction problem does not appreciably depend on 

parameter , and the distinction between Euler-Bernoulli and Timoshenko theories 

becomes negligible. The comparison between a beam showing L = 10 and a bar with 

equal cross-section but zero bending stiffness, corresponding to L = 0.83, is reported in 

Fig. 1.16 for the horizontal force acting at midspan. In particular, neglecting the beam 

bending stiffness yields an overall reduction of horizontal displacements (Fig. 1.16a), that 

attains approximately 30% in correspondence of the centroidal cross-section. Nevertheless, 

with regard to horizontal reactions rx (Fig. 1.16b), the influence of the bending stiffness 

proves not to be particularly significant. This is also true for uz (Fig. 1.16c), with the 

exception of the two beam regions |x/L| > 0.30, where differences in the vertical 

displacements up to approximately 20% are observed at the beam end sections. The normal 

reactions (Fig. 1.16d) for the beam show a discontinuity at x = 0, whereas for zero bending 

stiffness, rz is equal to zero everywhere. Analogous considerations hold when the 

horizontal force is assumed to act at one end section (Fig. 1.17), with the exception that the 

horizontal displacements of the bar are larger than those of the beam for x/L > 0.4 (Fig. 

1.17a). 
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Fig. 1.16. Beam with L/h = 10,L = 10 (solid line) and thin coating with L = 0.83 (dashed line) in 

perfect adhesion to a half-plane, loaded by a horizontal point force Px at midspan. Nondimensional 

values of ux (a), rx (b), uz (c), and rz (d) versus x/L. 



 36 

(b)

-0.5 0.0 0.5

x/L

2.0

1.0

0.0

r x
 /(

P
x 
/L

)

(a)

-0.5 0.0 0.5

0.4

0.3

0.2

0.1

0.0

u
x 
/(

P
x 
/E

)

(d)

-0.5 0.0 0.5

x/L

1.0

0.5

0.0

-0.5

-1.0

r z 
/(

P
x
 /L

)

(c)

-0.5 0.0 0.5

1.0

0.5

0.0

-0.5

-1.0

u
z 
/(

P
x 
/E

)

(a)

(b)

(c)

(d)

 

Fig. 1.17. Beam with L/h = 10,L = 10 (solid line) and thin coating with L = 0.83 (dashed line) in 

perfect adhesion to a half-plane, loaded by a horizontal point force Px at one end section. 

Nondimensional values of ux (a), rx (b), uz (c), and rz (d) versus x/L.  

 

1.4.2.4 Beam loaded by a bending moment M at midspan 

The case of an Euler-Bernoulli beam ( = 0) and a Timoshenko beam with  = 0.3, both 

showing L = 10 and perfectly bonded to an elastic half-plane, is investigated (Fig. 1.18). 

Horizontal displacements ux (Fig. 1.18a) for the shear-flexible beam (thin solid line) 

noticeably exceed those for the shear-rigid beam (thick solid line). In particular, at x = 0 

the value of ux attained from the Timoshenko beam is approximately 60% larger than that 

computed for the Euler-Bernoulli beam. The dash-dot line in Fig. 1.18a refers to the 

horizontal displacements at the centreline of the perfectly bonded Euler-Bernoulli beam. In 

particular, for 0.18  x/L  0.18, ubx,0 takes significantly lower absolute values, and even 

opposite sign, with respect to displacements ux evaluated at the substrate boundary. Hence, 

the strong relevance of term  h/2 is confirmed. Although the shear deformations have 

significant influence on displacements ux, tangential reactions rx for the Timoshenko beam 

coincide almost everywhere with those computed for the Euler-Bernoulli beam (Fig. 

1.18b). Moreover, differently from the case of vertical load Pz (Fig. 1.9c, d), normal 

displacements (Fig. 1.18c) and reactions (Fig. 1.18d) for the Timoshenko beam are lower 

than the corresponding quantities for the Euler-Bernoulli beam for all cross-sections 
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located in the range 0.4  x/L  0.4. Only in proximity of the beam end sections, i.e., for 

|x/L| > 0.4, the shear deformations lead to higher displacements and reactions along the x-

axis. 
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Fig. 1.18. Beam (L/h=10, L=10) loaded by a bending moment M at midspan. Nondimensional 

values of ux (a), rx (b), uz (c), and rz (d) versus x/L for perfect adhesion with = 0.0 and 0.3 (thick 

and thin solid line), and for frictionless contact with = 0.0 (dashed line). Horizontal displacement 

ubx,0 (dash-dot line in (a)) is referred to the centreline of the perfectly bonded beam with = 0.0.  
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Fig. 1.19. Beam (L/h=10) loaded by a bending moment M at midspan, comparison between perfect 

adhesion (solid line) and frictionless contact (dashed line). Nondimensional values of ux versus x/L 

obtained for L=40 and = 0.0 (a); and nondimensional values of rx at midspan versus L 

obtained for = 0.0 and 0.3 (b). Horizontal displacement ubx,0 (dash-dot line in (a)) is referred to 

the beam centreline. 
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For comparison, the results obtained for an Euler-Bernoulli beam with L = 10 in 

frictionless contact with the substrate are also presented in Fig. 1.18 (dashed line). A 

completely different behaviour in terms of horizontal displacements is observed with 

respect to the Euler-Bernoulli beam in perfect adhesion. In particular, displacements ux for 

the two contact conditions take opposite sign in a large interval of x/L values (Fig. 1.18a). 

The responses of the shear-rigid beam in terms of normal displacements (Fig. 1.18c) and 

reactions (Fig. 1.18d) for the two contact conditions are qualitatively similar, even if 

perfect adhesion leads to lower absolute values of uz along the whole interface and larger 

absolute values of rz for 0.14  x/L  0.14.  

The horizontal displacements at the substrate boundary for an Euler-Bernoulli beam 

with L = 40 are reported in Fig. 1.19a for both perfect adhesion (solid line) and 

frictionless contact (dashed line). Reported in the same figure is the plot of displacements 

ubx,0 evaluated along the centreline of the beam in perfect adhesion (das-dot line). The 

example confirms that the contact condition has a noteworthy influence on the horizontal 

displacements. Moreover, near the midspan of the beam in perfect adhesion, displacements 

ubx,0 take not only opposite sign with respect to displacements ux, but also larger absolute 

values. Then, the role played by the beam cross-section rotation, already highlighted for 

L = 10 in Fig. 1.18a, becomes crucial for more flexible beams. 

The tangential reaction at midspan for an Euler-Bernoulli and a Timoshenko beam 

bonded to an elastic substrate is plotted in Fig. 1.19b versus L. These results follow from 

numerical models based on a uniform mesh of 1024 FEs. Note that, in this case, the shear 

deformations do not influence the beam response (an analogous consideration can also be 

made by observing in Fig. 1.18b the curves for the perfectly bonded Euler-Bernoulli and 

Timoshenko beams in proximity of x/L = 0). The behaviour of a rigid punch is 

substantially re-obtained for L ≤ 1. 

 

1.4.2.5 Reactions at the midpoint or one end of a beam loaded at midspan 

The substrate reactions in the area of the end and close to the load section of a beam under 

the action of a point force or a couple at midspan, have been investigated. A Timoshenko 

beam with = 0.3 in perfect adhesion, assuming the stiffness parameter of beam-substrate 

system equal to L = 10 or 20, has been analysed. Moreover, tangential and normal 

reactions at the end of a rigid punch (L = 0) are reported. A suitable mesh refinement is 

implemented by a number of logarithmically spaced FEs, equal to 238. 
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Firstly, the case of a vertical point force applied at midspan has been studied, Fig. 1.20, 

generating 54 logarithmically spaced elements in the interval [10
-7

; 0.1]/L, 9 into [0.1; 

0.4]/L and 54 into [0.4; 0.5-10
-7

]/L. The numerical analysis, at the load section, shows the 

tangential reaction rx tending to a constant that depends on L value, Fig. 1.20a. Whereas, 

a singularity behaviour is shown in the normal reaction, Fig. 1.20b. At the beam end, the 

interfacial reactions fluctuate in sign an infinite number of times Fig. 1.20c and d. That 

oscillation is observed in the normal reaction until (1/2 - x/L) = 10
-6

, while it is necessary to 

increase the refinement mesh for the tangential one.  

Owing to instability numerical, the case with a horizontal force Px or a bending moment 

M at the midpoint, Figs. 1.21 or 1.22, is analysed with logarithmically spaced elements in 

the following way. 
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Fig. 1.20. Beam (= 0.3) loaded by a vertical point force Pz at midspan, assuming L = 10 and 20. 

Nondimensional substrate reaction rx, rz at the load section (a, b) and beam end (c, d). The 

parameter L = 0 represents the rigid punch. 
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Fig. 1.21. Beam (= 0.3) loaded by a horizontal point force Px at midspan, assuming L = 10 and 

20. Nondimensional substrate reaction rx, rz at the load section (a, b) and beam end (c, d). The 

parameter L = 0 represents the rigid punch. 

 

The representation of behaviour at the beam end are used 36 elements in the interval [10
-7

; 

0.1]/L, 27 into [0.1; 0.4]/L and 54 into [0.4; 0.5-10
-7

]/L, whereas behaviour at the load 

section are used 54 elements in the interval [10
-7

; 0.1]/L and 19 ones into [0.4; 0.5]/L. 

For the beam subjected to the horizontal force in perfect adhesion with the substrate, a 

raise of tangential reaction and constant normal reaction occur at midspan, Fig. 1.21a-b. 

Such behaviour is opposite at that found in the previously load case (Fig. 1.20a-b). 

Nevertheless, both substrate reactions (rx, rz) at the beam end fluctuate in sign. It is evident 

for the tangential reaction up to (1/2 - x/L) = 10
-6

, Fig. 1.21c, but not remarked for the 

normal one, Fig. 1.21d. 
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Fig. 1.22. Beam (= 0.3) loaded by a bending moment M at midspan, assuming L = 10 and 20. 

Nondimensional substrate reaction rx, rz at the load section (a, b) and beam end (c, d). The 

parameter L = 0 represents the rigid punch. 

 

Finally, for the beam subjected to the bending moment M, the numerical analysis shows 

an increase of tangential reaction and a constant value of normal one at the load section, 

Fig. 1.22a and b, respectively. According to reactions at the beam end, the mesh 

refinement assumed until (1/2 - x/L) = 10
-6

 is not enough to show how both interfacial 

reactions fluctuate in sign an infinite number of time. 
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1.4.3 Plane strain analysis of a two-bay frame resting on an isotropic elastic 

substrate  

The present example is aimed at assessing the soil-structure interaction for the realistic 

case of a double-cell box culvert or tunnel (Fig. 1.23a), that is a very common structural 

typology usually made of reinforced concrete. The foundation structures and the upper slab 

with net span length 6.00 m, both showing thickness h = 1.20 m, as well as the three 1 m-

thick abutments, are cast-in-place members. Across the largest span, left and intermediate 

abutments support 1.5 m-high precast I-beams with 2 m spacing, mutually connected at the 

top through a 0.2 m-thick continuous slab. The resulting ribbed slab has a self-weight of 

15 (kN/m)/m and second moment of area I = 0.34 m
4
/m. To obtain monolithic connections 

between precast beams and abutments, suitable cast-in-place joints are provided at the 

beam supports. Then, the generic cross-section of the double-cell tunnel is reduced to the 

plane frame shown in Fig. 1.23b, having a uniform out-of-plane dimension b = 1 m and 

span lengths L1 = 14.50 m and L2 = 7.00 m. Foundation R1 is modelled as a 1.2 m-high 

rigid punch bonded to an isotropic, elastic half-plane, and discretized using a graded mesh 

with nel = 8 and exp = 2. Because of the larger flexibility in comparison with R1, 

foundation F2 is modelled using a uniform mesh of nel = 20 Euler-Bernoulli beam FEs in 

perfect adhesion with the substrate. According to Fig. 1.3 and the transformation rule 

reported in Section 3.5, column B1 is connected at the base to the top node of punch R1, 

resulting in a column height H1 = 7.20 m. Conversely, according with the formulation 

presented in Section 3.3, the FE-BIE elements used for foundation beam F2 have the 

centreline placed at a distance h/2 = 0.6 m from the substrate boundary, leading columns 

B4 and B5 to have a total height H2 = 7.80 m. For both the rigid punch and the foundation 

beam, one single soil element is used for each FE. Euler-Bernoulli beam FEs are used for 

members B1 to B5. A series of preliminary tests confirmed that the numerical model 

described ensures convergent solutions.  

A plane strain analysis is conducted by assuming Es = 30 MPa and s = 0.3 for the 

substrate and )1/( 2

bbE   = 30 GPa for all structural elements. In particular, the two load 

cases shown in Fig. 1.23c are considered, i.e., the self-weight and a horizontal load px 

uniformly distributed along beams B2 and B3. This load can be viewed as a hypothetic 

seismic action of magnitude approximately equal to 20% of the structural self-weight.  

Reported in Fig. 1.24a are the deformed shapes of the frame corresponding to the self-

weight (solid line) and to the lateral load (dashed line) separately acting from one another. 
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Fig. 1.23. Cross-section geometry of the double-cell tunnel investigated (a); corresponding two-bay 

frame analysed under plane strain assumption (b) and load cases considered (c, d).  

 

In the same figure, the undeformed shape is reported for comparison (dash-dot line). The 

maximum vertical deflection is observed in correspondence of the right-hand section of 

foundation beam F2 and is approximately 11 mm for both load cases. The frame lateral 

deflection due to the horizontal force is about 7 mm. Tangential and normal reactions 

underneath foundations R1 and F2 are reported in Fig. 1.24b and Fig. 1.24c, respectively, 

for the two load cases. The maximum reactions are obtained for the frame subjected to 

self-weight. With the exception of the end elements of rigid punch R1, where the reactions 

tend to become excessive because of the foundation stiffness, the values of rx and rz  
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Fig. 1.24. Frame deflections (a) and reactions underneath rigid punch and foundation beam (b, c) 

for the structure subjected to self-weight (solid line) and lateral load (dashed line). Ratio rx/rz for 

the two load cases acting simultaneously (d). Dash-dot line in (a) represents the undeformed frame. 

 

obtained for foundations R1 and F2 for the frame subjected to self-weight are substantially 

comparable. On the other hand, in the presence of the lateral load, the responses of the two 

foundations in terms of tangential reactions rx appear to be completely different (dashed 

lines in Fig. 1.24c). Finally, ratio rx/rz obtained when vertical and lateral loads are applied 

simultaneously is reported in Fig. 1.24d. Note that, with the exception of the end elements 

of the two foundations, ratio rx/rz linearly varies for both R1 and F2, taking values not 

larger than 0.3.  
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Fig. 1.25. Cross-section geometry of the two-bay frame investigated (a), analysis under 

plane strain assumption with three rigid punch foundation (b). 

 

 

Figure 1.25a reports the same frame structure lying on the same isotropic soil of the 

previously case but adopting three single foundations with length 3 m each, situated at the 

abutments. The foundations could be modelled as rigid punch: R1, R2 and R3 of Fig. 

1.25b, using a graded mesh with nel = 8 and exp = 2.  

Deformed shapes of the frame corresponding to self-weight (solid line) and to the lateral 

load (dashed line) are reported in Fig. 1.26a, separately acting from one another. Both load 

cases, the maximum relative vertical displacement appears in correspondence of the right-

hand section of the foundation R3. Note that, the value of relative deflection, due to the 

horizontal force or self-weight, is approximately equal to that of the previously structure. 

Tangential and normal reactions, are reported respectively in Fig. 1.26b and c, showing 

values higher than the case which adopts a continuous foundation. The maximum substrate 

reaction is found for the frame subjected to self-weight. In particular, at the coordinate x = 

17.5 m and 21.5 m, the reactions turn out higher than 200 kPa, unlike from those obtained 

with the continuous beam (F2).  
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Fig. 1.26. Frame deflections (a) and reactions underneath rigid punches (b, c) for the structure 

subjected to self-weight (solid line) and lateral load (dashed line). Ratio rx/rz for the two load cases 

acting simultaneously (d). Dash-dot line in (a) represents the undeformed frame. 

 

Finally, the ratio rx/rz, which is reported in Fig. 1.26d and determined applying 

simultaneously vertical and lateral load, overtakes the value of 0.3 in more zones.  

 

1.4.4 Plane strain analysis of a culvert resting on an isotropic elastic substrate 

The choice of size, shape and number of cell of a culvert plays a fundamental role to 

control the flow of water, especially during extreme weather, such as major floods and 

washouts, determining a significantly cost of project on overall construction. 
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Fig. 1.27. Three cross-sections geometry of a culvert with single (a), double (b) and triple-cell (c).   
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Fig. 1.28. Frame of the culvert under plane strain assumption and load cases considered of single 

(a), double (b) and triple-cell (c). 
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 In this paragraph, three cross-sections of a rectangular reinforced concrete culvert have 

been studied by means of the present interaction analysis. In particular, Fig. 1.27 shows the 

cross-section of the culvert with a single, double and triple cell. The generic cross-section 

of the tunnel is reduced to a plane frame having out-of-plane dimension b = 1 m, height H 

= 6.5 m, as shown in Fig. 1.28. The continuous foundation has thickness h = 1.5 m (beam 

F in Fig. 1.28), where at its extremity are collocated two 1-m thick abutments (beam 

element B1 and B2 in Fig. 1.28). The self-weight of the foundation is equal to 38 kN/m
2
, 

while for the abutment is equal to 25 kN/m
2
. At the top, a ribbed slab high 1.7 m is 

connected by a precast I-beam and a continuous slab thick 0.2 m. For the analysis, it has 

been assumed a hinge joint between the ribbed slab and the abutment, as shown in Fig. 

1.28. The self-weight of the ribbed slab is equal to 15 kN/m
2
. A uniformly distributed 

horizontal load has been considered along the top of structure to simulate a hypothetic 

seismic action of magnitude approximately equal to 20% of the total self-weight. For the 

single box tunnel with length equal to L = 24.5 m, the uniform horizontal load is equal to 

px = 4 kN/m
2
.  

According to the double cell, the same load per square is present for the foundation, two 

abutments and ribbed slab (beam element B3 and B4 in Fig. 1.28b). The separation of the 

two boxes is determined by a concrete wall (beam element B5 in Fig. 1.28b) thick 0.9 m, 

having self-weight of 23 kN/m
2
. The dividing wall separates the two rooms long L1 = 16.3 

m and L2 = 18.7 m respectively. The uniform horizontal load at the top of the double 

tunnel results px = 5 kN/m
2
. 

The cross-section of culvert with triple cell is obtained by a concrete rectangle box 

defined by the beam elements B5, B4 and B6, Fig. 1.28c. The dividing walls B5 and B6 

have the same thickness of 0.9 m, and the slab B6 is a full section high 1.7 m with self-

weight of 43 kN/m
2
. While, the beam elements B3 and B7 are ribbed slab with the same 

self-weigh of 15 kN/m
2
. The length of the three cells is equal to L1 = 13.9 m, L2 = 6.4 m 

and L3 = 21.8 m. The uniform horizontal load of the triple cell is equal to px = 6 kN/m
2
. 

The foundation (beam F) in perfect adhesion with the substrate is modelled using a 

uniform mesh of nel = 512 Timoshenko beam FEs assuming the shear correction factor kb = 

5/6. Moreover, according to the present formulation in this chapter, elements used for the 

foundation beam have the centreline at a distance from the substrate boundary of half-

height of beam. A plane strain analysis is conducted by assuming a substrate soil with 

Young's modulus Es = 30 MPa and Poisson's coefficient s = 0.3. While, for the frame is 

assumed a Young's modulus for the plane strain state equal to Eb/(1-s
2
) = 30 GPa. 
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Fig. 1.29. Single-cell frame deflections (a) and reactions underneath foundation beam (b and c) for 

the structure subjected to self-weight (solid line) and lateral load (dashed line). Ratio rx/rz for the 

two load cases acting simultaneously (d). Undeformed frame in dash-dot line (a). 

 

Figs. 1.29-1.30-1.31a show deformation shape of the culvert with the three kinds of 

frames, acting separately the self-weight (solid line) and the lateral load (dashed line). 

Moreover the undeformed shape is reported (dashed line) for comparison.  

The single-cell box has the stiffness parameter of the foundation-soil system equal to L 

= 3.8 and the ratio length to height of foundation beam L/h  = 16.3. The maximum vertical 

deflection at the top is approximately 5 mm, while the settlement is about 3 mm between 

the edge end and the middle of foundation. The double-cell box has the parameter L = 5.5 

and the ratio L/h  = 23.3. The maximum vertical deflection is 5 mm, while the maximum 

horizontal deflection is about 6 mm.  
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Fig. 1.30. Double-cell frame deflections (a) and reactions underneath foundation beam (b and c) 

for the structure subjected to self-weight (solid line) and lateral load (dashed line). Ratio rx/rz for 

the two load cases acting simultaneously (d). Undeformed frame in dash-dot line (a). 

 

The triple-cell box, having L = 6.6 and L/h  = 28.0, shows the highest maximum 

vertical deflection at the middle cell where it is obtained a displacement of 16 mm. The 

lateral deflection due to the horizontal load is about 7 mm, rather similar to that of the 

double-cell structure.  

Furthermore, the tangential and normal reactions underneath the foundation F are 

reported in Figs. 1.29-1.30-1.31b and c, respectively for the culvert subjected to self-

weight (solid line) and lateral load (dashed line). Notice that, the both maximum reactions 

are obtained for the structure subjected to self-weigh.  

The ratio rx/rz, when self-weight and horizontal load are applied simultaneously, is 

reported in Figs. 1.29-1.30-1.31d overtaking value of 0.3 at the foundation ends. 
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Fig. 1.31. Triple-cell frame deflections (a) and reactions underneath foundation beam (b and c) for 

the structure subjected to self-weight (solid line) and lateral load (dashed line). Ratio rx/rz for the 

two load cases acting simultaneously (d). Undeformed frame in dash-dot line (a). 

 

The value of 0.3, which represents coefficient of friction, might be determined assuming an 

angle friction of the footing-soil for concrete foundation equal to 2/3 of the internal friction 

angle of soil [42]. Overtaking the coefficient of friction, the perfect adhesion condition is 

not ensured and should be disregarded. 
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1.5 Conclusions 

A coupled FE-BIE model for the analysis of prismatic beams and frames in perfect 

adhesion to a homogeneous, linearly elastic and isotropic two-dimensional half-space is 

proposed. In particular, the classical displacement based FE method is used to describe the 

response of beams or frames, whereas a BIE approach is used for the substrate boundary, 

where surface displacements are linked to the applied loads by means of a suitable Green's 

function. Under the assumption of plane strain or plane stress state, the variational 

formulation is obtained through the theorem of work and energy for exterior domains, with 

the independent unknown functions being represented by beam displacements and surface 

tractions. In the more general case, Timoshenko beam theory is used to account for the 

effects of the shear deformations. Locking-free cubic and quadratic Hermitian shape 

functions are selected to interpolate transverse deflection and rotation, respectively, 

whereas axial displacement is approximated by linear functions. In addition, piecewise 

constant shape functions are used to describe both tangential and normal surface tractions. 

If the beam strain energy is ignored, the beam behaves like a rigid punch resting on a two-

dimensional half-space. When tangential tractions and external horizontal forces are set 

equal to zero, the proposed formulation may be applied to the analysis of frictionless 

contact problems. Finally, by neglecting the beam bending stiffness, the problem of a thin 

coating bonded to a half-plane is recovered. 

A number of numerical examples are presented to show the effectiveness of the 

proposed formulation in the analysis of the soil-structure interaction. In the case of a rigid 

punch subjected to point forces or moments, the analytical solutions available in the 

literature in terms of punch rotation and soil reactions are re-obtained. Moreover, it is 

shown that good approximations of these solutions are ensured by a coarse, graded mesh of 

only 8 FEs. 

In the case of a beam subjected to a vertical point force or a bending moment at 

midspan, the shear deformations have a significant influence on both tangential and normal 

surface displacements and soil reactions. Moreover, the difference between horizontal 

displacements evaluated along the substrate boundary and the beam axis indicates a 

noteworthy contribution of the beam section rotation. In addition, the perfect adhesion is 

shown to dramatically modify the beam response with respect to the condition of 

frictionless contact. Both for Euler-Bernoulli and Timoshenko beams subjected to vertical 

point loads, the numerical performance of the proposed model has shown an excellent 

convergence rate in comparison with those of other standard numerical methods. Finally, if 
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the beam is subjected to a horizontal point force, the horizontal displacements are 

completely different from those obtained for a thin coating of equal cross-section, 

indicating a significant effect of the beam bending stiffness. 

The last examples concern the soil-structure interaction analysis for cell box tunnel. 

Assuming plane strain state, the tunnel cross-section is identified with frame subjected to 

self-weight and a distributed lateral load. The loads are transferred to the soil by means of 

a foundation modelled with rigid punch or beam elements in perfect adhesion with the 

substrate boundary. Rigid punches are discretized by graded mesh, while foundation beams 

through uniform mesh of FEs. The proposed formulation is shown to be effective in the 

evaluation of frame deflections and soil reactions. 
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2  Static analysis of shear flexible beam bonded to 

orthotropic elastic half-plane 

 

2.1 Introduction 

The contact problem of bars, beams and plates bonded to an elastic support is an important 

issue that has generated much interest in recent years. It has been widely dealt with in areas 

of aerospace, electronic, marine, transportation and infrastructure. In the framework of 

civil engineering, this topic has been dealt with in order to study soil-structure interaction 

problems or to investigate the effect induced by some reinforcements to increase the load-

bearing capacity of existing structural elements. The latter application has been considered 

in Fiber-Reinforced Polymer (FRP) strengthening of concrete, steel or timber structures [1, 

2, 3]. 

The contact problem involved in the indentation of an elastic half-plane has been treated 

by many authors under the assumptions of frictionless or fully adhesive contact, see [4, 5, 

6] and references cited therein. The solution of a line force acting onto an elastic half-space 

was usually the main tool to study the contact problem. In particular, limiting to 

orthotropic or transversely isotropic half-plane under normal and tangential loadings acting 

onto the half-plane boundary, references have to be made to [7-13]. A mechanical 

application, adopting the contact model of a rigid flat punch or a beam resting on an 

orthotropic half-plane, has been considered in [14, 15, 16] to study a steel clamping joint 

attached to a composite truck leaf spring. 

Early studies concerning thin films coated on an elastic substrate adopted series 

approximation method to solve singular integral equations including proper Green's 

function, see [17, 18] and references cited therein. Series approximation method was also 

used to study the bending problem of Euler-Bernoulli beams resting on an isotropic half-

plane, under the assumptions of frictionless [19] or fully adhesive contact [20]. The 

influence of shear deformation was considered in [21], where the frictionless contact 

between a transversely loaded Timoshenko beam and an elastic isotropic layer is analysed. 

The mechanical behaviour of single or multi-layered systems subjected to different 

loading conditions can be straightforwardly assessed by means of the Finite Element 

Method (FEM) due to its potential and versatility. Nonetheless, FEM undergoes important 

limitations when applied to film-substrate systems [22]. Indeed, owing to the thinness of 

the layers typically involved in many thin film-based devices and coated systems, a refined 
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mesh must be used, thus leading to a computer-time consuming. A proper grid refinement 

is needed in the neighbourhood of geometric discontinuities also in order to capture 

properly stress and strain localizations, whose knowledge is an important issue for many 

engineering issues, ranging from the mechanical behaviour of MEMS and NEMS [23], to 

the analysis of the punch problem of coated systems prone to crack formations [24, 25]. 

Moreover, in order to simulate the half-plane, FE meshes should be extended to a region 

significantly greater than the contact area, with detrimental effect on the time needed to 

carry out the numerical simulations. Finally, it should be remarked that, by modelling the 

covers through beam elements and the underlying half-plane by means of classical two-

dimensional FEs, the angular continuity between the cover and the substrate cannot be 

imposed exactly as the connection between the elements occurs at discrete points. 

Boundary Element Method (BEM) is a particularly advantageous tool for reproducing 

the response of an elastic half-plane because only the substrate boundary has to be 

discretized, see [26] and references cited therein. However, substrate tractions are usually 

considered as nodal reactions in the FE model of the foundation beam and the rotation 

continuity between beam and substrate is neglected. Alternatively, BE technique can be 

used to evaluate the mechanical behaviour of coated systems involving thin layers, as long 

as the nearly-singular integrals existing in the BE formulations are handled correctly [27, 

28]. Nonetheless, beam model can be computationally more efficient than thin layer. 

Otherwise, the behaviour of the soil can be approximated by incorporating a proper 

model for the substrate. As an example, Cheung and Zienkiewicz [29], and Cheung and 

Nag [30] performed a numerical model in which the deflection of the foundation and, in 

turn, the corresponding flexibility matrix, involve the fundamental Boussinesq's solution 

for the elastic half-plane, thus simulating accurately the interaction between loaded beams 

and plates in contact with an elastic support. However, based on such an approach, the 

continuity of the slope between the beam and the half-plane boundary cannot be imposed. 

Indeed, the connection among the beam and the substrate elements is realized by means of 

a finite number of pinned-clamped rigid links acting at equally spaced points, thus 

enforcing the continuity of the transversal deflection only. Moreover, the inversion of the 

substrate flexibility matrix is needed, thus consuming high computer-time. 

In the present chapter, a static analysis of beams in plane strain or plane stress condition 

bonded to a homogeneous, linearly elastic and orthotropic half-plane, with a plane of 

elastic symmetry parallel to the boundary, is performed by using a coupled Finite Element-

Boundary Integral Equation (FE-BIE) model. The proposed approach involves the Green's 
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function for the half-plane, thus providing a proper relation between the displacement and 

the interfacial stress fields at the substrate boundary, whereas a standard displacement-

based formulation is used for the beam. The mechanical response of the half-plane is 

represented through a weakly singular integral equation, which solution is given 

analytically, thus avoiding singular and hyper-singular integrals typically involved in the 

classical BEM formulation. The independent unknowns of the problem are the 

displacement and the stress fields at the interface. It is worth noting that only the beam in 

contact with the substrate boundary has to be discretized. Unlike the numerical analyses 

available in the literature (e.g. [29, 30]), the proposed approach enforces the angular 

continuity between foundation beam and half-plane boundary at the node locations. 

Conversely to the classical FEM-BEM formulations, only symmetric soil matrices are 

involved in the proposed method, thus avoiding the computational cost due to the lack of 

symmetry of the BEM coefficient matrix. Note also that, differently to the standard FEM 

approaches in which a refined mesh requires a stiffness matrix with dimensions that are 

several times the square of the number of FEs used for the foundation beam, in the present 

model the resolving matrix has dimensions proportional to the number of the foundation 

beam FEs. This makes it possible to obtain very accurate solutions with low computational 

cost, as shown in [25], where a static analysis of both Euler-Bernoulli and Timoshenko 

beams bonded to an isotropic half-plane has been performed founding an excellent 

convergence rate as compared with those of other standard numerical methods. 

Once the unknowns have been determined, the internal forces on the beam are 

determined through usual post-processing analysis. Recently, the static analysis of 

Timoshenko beams in frictionless [31] or fully adhesive contact [32] with an isotropic half-

plane has been performed based on a similar mixed formulation (an analogous study 

concerning bars and thin coatings can be found in [33]). Furthermore, the FE-BIE coupling 

method has been also used to study the buckling of Euler-Bernoulli [27] and Timoshenko 

[28] beams in frictionless contact with an elastic support. 

Numerical analysis of a beam with different bending rigidity, and loaded by a 

concentrated vertical force, a horizontal force or a couple at the midspan are considered 

firstly. In particular, the maximum bending moment of the beam subjected to point vertical 

load at the midpoint is investigated and compared with analytic solution present in the 

literature. Secondly, examples of FRP laminate bonded to wood substrate and concrete 

foundation and resting on soil are treated by assuming beam or membrane theory for the 

stiffener and concerning the contact condition, perfect adhesion or frictionless contact. A 
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detached or fully bonded reinforcement subjected to peel force is analysed. Afterwards, a 

stiffener loaded by horizontal force at one end or subjected to a uniform thermal is 

investigated. It is shown that the shear force at the beam ends can be significantly affected 

by shear deformation according to the Timoshenko beam theory. Finally, a shallow 

foundation loaded by a moment at the midspan is studied as a Timoshenko beam in perfect 

adhesion as well as in frictionless contact on an elastic orthotropic soil. 

 

2.2 Variational formulation  

A shear deformable beam with length L, height h and width b, bonded to an orthotropic 

semi-infinite substrate in a generalized plane stress or plane strain state is considered. 

Reference is made to a Cartesian coordinate system (O; x, z) having the x axis coincident 

with the centroidal axis of the beam and the z axis is downward directed (Fig. 2.1). 

Distributed horizontal and vertical external loads px(x), pz(x), couple m(x) as well as 

thermal variation T(x) act along the beam. The beam is supposed in perfect adhesion with 

the half-plane. According to this assumption, both interfacial shear and normal tractions, 

rx(x) and rz(x), will occur within the contact region. 

Here, a mixed variational principle is used to study the beam-substrate system, 

including the Green's function for the orthotropic half-plane. The total potential energy of 

the system  is given by adding the total potential energy of the beam beam to that of the 

substrate soil, i.e.,   = beam + soil. As limit cases, an inextensible thin coating with a 

vanishing bending rigidity bonded to a half-plane and a beam in frictionless contact with a 

half-plane are considered in some detail. 

 

 

 

Fig. 2.1. Beam under general loads bonded to an orthotropic half-plane. 
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2.2.1 Total potential energy for the beam 

Assuming positive cross-section rotations  in counter-clockwise direction, the horizontal 

and vertical components of the displacement field of the Timoshenko beam can be written 

as 

),()()()()( 0, xux,zu,zxxux,zu zbzbxbx   (2.1a,b) 

where ubx,0 is the axial displacement of the centroidal beam axis and uz is the vertical 

displacement of both the beam and the half-plane boundary. The horizontal displacement 

of  the lower side of the beam in contact with the half-plane boundary is given by ux(x) = 

ubx,0(x) + (x) h/2. The corresponding axial and shear strains are 

,0,  zbbxb u,zu  (2.2a,b) 

where prime represents differentiation with respect to variable x. Plane state assumption 

yields the following stress-strain relations: 

b = E0 b,      b = Gb b,  (2.3a,b) 

where E0 = Ex,b or E0 = Ex,b/(1xy,byx,b) for generalised plane stress or plane strain state 

respectively, Ex,b is the Young's modulus of the beam along the x-axis, ij,b is the Poisson's 

coefficient of the beam associated with the pair directions i, j = x, y, z, Gb is the shear 

modulus Gxz,b of the beam. 

The elastic strain energy of the beam, Ubeam, can be written as the sum of the axial strain 

energy Ubeam,a and the bending-transverse shear strain energy Ubeam,b. By using the strain 

components (2.2) and the stress-strain relations (2.3), the elastic strain energies Ubeam,a and 

Ubeam,b can be written as: 
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where Ab = bh, Db = E0 bh
3
/12 are the area and the flexural rigidity of the beam, 

respectively, 0 is the coefficient of thermal expansion of the beam, kb is the shear 

correction factor [36, 37] 
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for a plane stress or a plane strain state, respectively. 

Finally, the total potential energy of the beam, Πbeam, is assessed by adding the axial 

part Πbeam,a to the bending component Πbeam,b, which are obtained from the strain energy 

contributions and the potential energy of the external loads, resulting in 

,d)( 0,beam,beam,  
L

bxxxaa xurpbU  (2.6a) 

     ,d2/beam,beam,  
L

xzzzbb xhrmurpbU  (2.6b) 

 

2.2.2 Total potential energy for the orthotropic substrate 

According to Voigt compact notation [6], the stress-strain relationship of a linearly elastic 

material can be expressed by the Hooke's law = S , where the compliance matrix S can 

be written making reference to the canonical base (O; x, z). As known, for an orthotropic 

body exhibiting three perpendicular planes of elastic symmetry xz, yz, and xz in a plane 

state, the strain-stress relationship reduces to 
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where the elastic compliance constants involved in Eq. (2.7) can be written as  
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for plane stress state, Eq. (2.8), or plane strain state, Eq. (2.9), respectively, where Ei 

denotes the Young's modulus along the directions i = x, z,  Gij and ij are the shear modulus 

and Poisson's coefficient, respectively, associated with the pair directions i, j = x, y, z. In 

particular, due to this special kind of material symmetry, ij/Ei = ji/Ej.  

In the following, three combinations of the elastic compliance constants are used  
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In particular, in plane stress state, making use of Eq. (2.8), Eq. (2.10) reduces to 
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while in plane strain state, by substituting Eq. (2.9) into Eq. (2.10), the constants c1, c2, c3 

become 
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It is worth remarking that, for an isotropic substrate, the elastic compliance component 

R33 of half-plane in z-direction is equal to 1/E and the substrate coefficients are c1 = 1, c2 = 

2, c3 = c, where E = Esoil and c = 1  soil or E = Esoil/(1
2
soilν ) and c = (1 2 soil)/(1  soil) 

for a generalized plane stress or plane strain state, respectively, with Esoil and soil being 

Young's modulus and Poisson ratio of the isotropic substrate. 

The solutions to the two-dimensional problem for a homogeneous, linear elastic and 

orthotropic half-plane loaded by a point force normal or tangential to its boundary are 

given in [12, 13]. In particular, the surface displacement ui(x), with i = x, z, due to a point 

force Pi( x̂ ) applied to the half-plane boundary can be expressed in closed form as 

ui(x) = g(x, x̂ ) Pi( x̂ ), where Green's function g(x, x̂ ) is given by the following expression: 
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  (2.13) 

being d an arbitrary length related to a rigid-body displacement. 

After some cumbersome algebraic manipulation of results reported in [12, 13], the 

horizontal and vertical displacements of a point of the orthotropic half-plane boundary due 

to the combined action of tangential and normal tractions can be written as: 
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where x0, xL are the abscissas of the beam ends. Therefore, a combination of only four 

elastic constants characterises the displacements field (2.14). 

Making use of the theorem of work and energy for exterior domains [38], it can be 

shown that the total potential energy soil for the half-plane equals one half of the work of 

external loads [31, 33, 32], i.e., 
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Substituting Eq. (2.14) into Eq. (2.15) yields Πsoil = Πsoil,a + Πsoil,b, where 
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2.2.3 Total potential energy for the beam-substrate system 

The total potential energy of the beam-substrate system  = beam + soil is a mixed 

variational formulation with variational functions represented by displacements ubx,0, uz 

and rotation , as well as interfacial shear and normal tractions rx and rz along the contact 

region. It is worth noting that using Green's function given by Eq. (2.13) reduces the 

domain of integration to the beam length only. For an isotropic substrate, the total potential 

energy  reduces to that proposed in [32]. 

Several particular cases derive from the proposed mixed variational formulation. For 

instance, a beam in frictionless contact with the underlying substrate involves null 

interfacial shear traction rx along the contact region. Accordingly, the displacement field 

provided by Eq. (2.14) reads 
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and the total potential energy of orthotropic half-plane soil becomes 
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b
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The displacement field (2.17) is similar to Eq. (12) reported in [31], where a beam in 

frictionless contact with an isotropic substrate is considered, except for different values of 

the Young's modulus and the coefficient c. Therefore, an orthotropic substrate behaves like 

an isotropic soil having an equivalent Young's modulus E = 2/(c1 c2 R33) and a ratio c/E = 

c3 R33, with c = 2 c3/(c1 c2). Thus, the FE-BIE methods as well as the results show in [31] 

can be used. In particular, in the case of a rigid punch resting on an orthotropic half-plane, 

the normal traction under the punch is the same of that found for the indentation problem 

of an isotropic half-plane [6]. However, the stress and displacement fields in the half-plane 

will differ from the one in the case of isotropy. 

A beam with a small bending rigidity may be considered as a thin coating where the 

normal tractions rz can be neglected. Then, the displacement field (2.14) reduces to 

,ˆd)ˆ()ˆ,()( 2

1 
L

xx xxrxxgcxu  (2.19a) 

,ˆd)ˆ(ˆd)ˆ(
2

)(
0

33
3





  

Lx

x
x

x

x
xz xxrxxrR

c
xu   (2.19b) 

and the total potential (2.15) becomes  
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The displacement field (2.19) is similar to Eq. (13) reported in [33], where a thin 

coating bonded to an isotropic substrate is studied, except for different values of the 

Young's modulus and the coefficient c. Therefore, an orthotropic substrate behaves like an 

isotropic soil having an equivalent Young's modulus E = 2/( 3
1c c2 R33) = 2 c1/(c2 R11) and a 

ratio c/E = c3 R33, with c = 2 c3/(
3
1c c2). Therefore, the analyses made in [33] can be 

employed. In particular, in the case of an inextensible stiffener bonded to an orthotropic 

half-plane, the interfacial shear tractions rx are the same of those founded for an isotropy 

half-plane. 
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2.3 Finite element model 

Both the foundation beam and the substrate boundary are subdivided into FEs sharing the 

same mesh. Nevertheless, the mesh of the beam could be chosen independently from that 

used for the half-space boundary. The generic ith FE has a length li = |xi1  xi,| where xi 

and xi1 are the initial and end coordinates. Assuming a dimensionless local coordinate 

 = x/li, the displacements of the centroidal axis of beam can be approximated as 

u() = Na() uxi,             [v(), ()]
T
  = Nb() qzi, (2.21a,b)  

where uxi = [ux,i, ux,i+1]
T
 and qzi = [uz,i, φi, uz,i+1, φi+1]

T
 are the vectors of nodal 

displacements, while Na() = [Na,1, Na,2] is the vector collecting the linear Lagrangian 

functions, whereas Nb() is the matrix of the “modified” Hermitian shape functions [31, 

32, 39, 40]. These latter functions reduce to the classical Hermitian polynomials (and to 

their first derivatives) when shear deformations are negligible, so resulting in locking-free 

FEs [41, 42]. 

The tractions may be approximated as 

rx()= [()]
T
 rxi,            rz()= [()]

T
 rzi,  (2.22a,b) 

where rxi, rzi denote nodal interfacial shear and normal tractions, respectively, and vector  

collect constant shape functions, i.e., only piecewise constant functions are used to 

interpolate rx and rz and () is assumed to be unitary along the generic FE. 

Substituting Eqs. (2.21) and (2.22) into the variational principle, assembling over all 

elements and requiring the stationary of the potential energy, the following system of 

equations is obtained: 
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 (2.23) 

where K is the beam stiffness matrix, f is the external load vector, whose components for 

the generic FE can be written in the usual form, (see Eqs. (23) and (24) reported in [32] for 

details), whereas vectors q = [ux, qz]
T
 and r = [rx, rz]

T
 collect the nodal displacements and 

nodal reactions, respectively. Matrix H descends by the potential energy of the substrate 

tractions appearing in Eqs. (2.6a, b) and play a key role as it enforces the compatibility of 

displacements and rotations between beam and substrate. Finally, substrate matrix G is 

fully populated since it accounts for the nonlocal relation between beam displacements and 

surface tractions, and can be written as 
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The components of the matrix G are given by: 
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where the contribution due to the arbitrary length d has been omitted since rigid-body 

displacements can be imposed in post-processing analysis. The integral in Eq. (2.25a) is 

weakly singular, i.e. it always exists in the Cauchy principal value sense and it is finite. 

Substituting piecewise constant functions (2.22) in Eq. (2.25a) yields 
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For an isotropic half-plane, system of equation (2.24) reduces to Eq. (42c) reported in 

[32]. For the sake of completeness, classical results referred to a prismatic beam subjected 

to distributions of loads px(x), pz(x), couple m(x) as well as thermal variation T are 

recalled. The system of equations (2.23) concerning a prismatic beam bonded to an 

orthotropic half-plane can be written in dimensionless form as 
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and, after some manipulations, as 
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with 0 = L/rg and the radius of gyration rg = h/ 12 . Making use of Eqs. (2.21a, b), the 

stiffness matrices of the ith FE read 
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where the coefficient i = 12Db/(kbGbAb
2

il ) accounts for the shear deformation according to 

the Timoshenko beam theory. The vectors of the external load of the ith FE, due to uniform 

load distributions px(x), pz(x), m(x) and thermal variation T, is decomposed into the axial 

and shear-bending components as follows 
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The components of matrix H for the generic FE coincide with Eqs. (25) reported in 

[32]. In particular, the ith FE has the following components 
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To sum, a representation of the matrix (2.28b) is shown in Fig. 2.2, where the beam is 

subdivided into two elements (b1, b2) bonded to two substrate elements (s1, s2) and is 

subjected to pointwise loads Px, Pz, C at the beam midspan. 
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The solutions of Eq. (2.23) reduces to the following equations 
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  the dimensionless stiffness matrix of the substrate and 

 3
33

3
bDRLbL  .  (2.33) 

According to references [31, 32, 43, 44], parameter L governs the static response of the 

beam-substrate system. Low values of L characterize short beams stiffer than soil, 

whereas high values of L correspond to slender beams on a relatively stiff soil. 

Nonetheless, differently from the isotropic case, the three combinations of the elastic 

compliance constants (2.10) play a crucial role in the static response. It is worth noting that 

the elastic response of a thin coating bonded to an elastic substrate is characterized by the 

parameter L = bL/(R33E0Ab), yielding the relationship (L)
3
 = (L) 

2
0  [33, 32, 45]. 

 

 

Fig. 2.2. Matrix system of a beam subdivided in two beam elements b1, b2, each of which is bonded 

to a single substrate element s1, s2, respectively. External pointwise loads Px, Pz and couple C 

applied at the middle. 
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2.4 Numerical examples 

Unless otherwise specified, a number of 512 equal beam FEs have been used. Each beam 

FE includes one substrate element. The solution of the system, Eq (2.23), provides the 

displacements along the centroidal beam axis and the interfacial tractions. The plotted 

values of horizontal interface displacement are obtained by Eq. (2.1a) with z = h/2. The 

axial force N, shear force V and bending moment M along the beam have been calculated 

by means of post-processing analysis, multiplying the local stiffness matrix of the beam by 

the displacement vector obtained by the solution of system (2.23). 

Firstly, a beam loaded by a vertical force acting downward direction at the midpoint is 

investigate in perfect adhesion and frictionless contact. In particular, the normal pressure at 

the midspan as well as the maximum bending moment are studied with regard to the 

parameter L. Secondly, a beam or a thin film subjected to a horizontal force at the 

midpoint is analysed. Moreover, a beam loaded by a couple at the midpoint is considered 

in perfect adhesion and in frictionless contact. Besides the maximum pressure in proximity 

the midspan is reported versus L. The behaviour of the internal shear force of the beam 

has been focused on all the three load cases. Finally, examples of practical meaning are 

considered: a GFRP or aluminium reinforcement bonded to an orthotropic wood and 

concrete foundation resting on an orthotropic soil. 

 

2.4.1 Beam loaded by a point force or a couple at midpoint 

The proposed couple FE-BIE formulation are firstly examined with regard to a beam of 

length L and height h, having ratio L/h = 10. Perfect adhesion and frictionless contact are 

investigated with a Timoshenko beam ( = 0.3) resting on an orthotropic half-plane, as 

well as a Euler-Bernoulli beam ( = 0.0) in perfect adhesion is reported for comparison. 

The results of the system are obtained in plane stress state, assuming the parameter of the 

beam-substrate system L = 10, and substrate coefficients c1 = 0.56, c2 = 3.08, c3 = 0.3. The 

choice of coefficients c is established assuming Young modulus in x-direction ten times 

more than that in z-direction of the substrate in Chapter 1 (E1 = 10 E3). Furthermore, some 

investigation are studied varying the parameter of relative stiffness systemL from 0 to 

10. Although the usual continuum mechanics hypothesis could be not hold anymore when 

x/L > +0.4999L or x/L < 0.4999L, shear force of beam is focussed on at one end, using a 

logarithmically mesh in the interval [0.4, 0.5-10
-4

]. 
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2.4.1.1  Beam loaded by a vertical point force Pz 

The case of beam having ratio L/h = 10, fully bonded to an elastic orthotropic half-plane 

and loaded by a vertical point force at midspan is considered firstly, Fig. 2.3. The 

parameter of the beam-substrate system L = 10, and substrate coefficients c1 = 0.56, c2 = 

3.08, c3 = 0.3 are assumed. Dimensionless displacements and reactions along the substrate 

boundary are obtained by the equation system (Eq. 2.28) and are plotted in Fig. 2.3a-d. 

Through the post-processing analysis, dimensionless value of axial force, shear force and 

bending moment of the beam are calculated, Fig. 2.3e, f, g. 

The interfacial horizontal displacements ux are stretched in the area of the load section 

and contracted far away from it. That is remarkable for the Euler-Bernoulli beam with a 

length of stretching wider. The stretched displacements tend to disappear when are 

evaluated toward the centreline of the beam (dashed-dot line in Fig. 2.3a). Nevertheless, 

for the frictionless contact, ux does not turn out to be influenced by the contribution of the 

term  z, and along throughout contact are only contracted. A wedge-shaped of vertical 

displacements uz is obtained in the Timoshenko beam, showing in perfect adhesion a 

maximum deflections 20% less than in frictionless contact. At the loaded cross-section, a 

discontinuity in the shear reaction for the perfect adhesion and a singularity in normal 

reaction for both contacts are shown in the Timoshenko beam theory. Axial force may be 

calculated in perfect adhesion only, the two beam theories show the same maximum value 

at the midspan and different shape along the beam. The same maximum shear force is 

obtained at the midspan, as well. With regard to the bending moment, the Timoshenko 

beam in perfect adhesion has the maximum value 60% less than that in frictionless. 

The influence of normal stress at the midspan is analysed versus values of L. A 

uniform mesh of 1024 elements can be used to accurately describe the normal reaction in 

perfect adhesion and in frictionless contact. Reporting in Fig. 2.4a, reactions rz(0) and 

rz(L/1024) versus L for the Euler-Bernoulli and Timoshenko beam, respectively. Normal 

reactions of the two beams with L < 1 tend to those under the rigid punch. It is worth 

noting that the normal pressure of punch bonded to orthotropic half-plane is the same as in 

the case of isotropy which illustrated in the Chapter 1. Particular interest is dedicated to 

shear force at beam end, as shown Fig. 2.4b. Assuming several value of , it is noted that 

value of the Timoshenko beam tends to Euler-Bernoulli one with low , except in the 

neighbourhood. Moreover, the shear force takes opposite sign with beam having lower 

than 10
-4

 and in frictionless contact. That happens even in Euler-Bernoulli beam in perfect 

adhesion which, however, does not tends to zero.   
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Fig. 2.3. Beam (L/h = 10, L = 10) loaded by a vertical force Pz at the midpoint, bonded to an 

orthotropic half-plane (c1 = 0.56; c2 = 3.08; c3 = 0.30). Timoshenko beam (= 0.3) in perfect 

adhesion (thick solid line) and in frictionless contact (thick dashed line). Euler-Bernoulli beam in 

perfect adhesion (thin solid line). Nondimensional values of ux (a), uz (b), rx (c), rz (d), N (e), V (f), 

M (g) versus x/L. Horizontal displacement ubx,0 (dash-dot line in a) refers to the centreline of the 

Timoshenko beam in perfect adhesion. 
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Fig. 2.4. Beam (L/h = 10) loaded by a vertical force Pz at midspan, bonded to an orthotropic half-

plane (c1 = 0.56; c2 = 3.08; c3 = 0.30) in perfect adhesion (solid line) and in frictionless contact 

(dashed line). Dimensionless pressure rz at or in proximity the midpoint versus L for  = 0.0 and 

0.3 (a), shear force V at beam end (L = 10) with several value of  (b). 
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Fig. 2.5. Beam (L/h = 10) loaded by a vertical force Pz at the midpoint, bonded to an isotropic half-

plane (dash-dot line) and an orthotropic half-plane with c1 = 0.56; c2 = 3.08; c3 = 0.30 (solid line). 

Bending moment M at the midspan versus L in frictionless contact (a,b) and in perfect adhesion 

(c,d) for  = 0.0 and  = 0.3 (thin and thick line respectively). 

 

2.4.1.2 Maximum bending moment of rigid or flexible beam loaded by point force Pz 

With regard to the relative stiffness beam-substrate L, the maximum bending moment of 

both beam theories, Euler-Bernoulli ( = 0.0) or Timoshenko ( = 0.03), loaded by vertical 

point force Pz at midspan is illustrated in Fig. 2.5. An isotropic (dashed-dot line) or 

orthotropic (solid line) substrate is investigated with frictionless, Fig. 2.5a, b and perfect 

contact Fig. 2.5c, d.  

In frictionless contact, the maximum bending moment, Mmax, of a flat rigid indenter 

loaded by a vertical force Pz, may be calculated by integrating from 0 to L/2 the moment 

induced by the pressure rz given by Sadowsky [4, 6] with respect to the midspan, namely 

,1592.0
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    (2.34) 

where pressure is given by 
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As shown in Fig. 2.5a, the maximum value of the bending moment for L   1 agrees well 

with that predicted by Sadowsky solution. The magnitude of maximum bending moment 

decreases as L increases, hence for flexible or long beams. According to Biot [43], the 

maximum bending moment of an infinite Euler-Bernoulli beam resting on isotropic 

substrate in frictionless contact reads 
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where LLa  /23 . 

It is worth noting from Fig. 2.5b that the maximum bending moment, provided by Eq. 

(2.36), holds for L > 10. Conversely, for an infinite Timoshenko beam is not possible to 

obtain a constant value. Assuming an orthotropic substrate having tangential stiffness ten 

times more than that normal, the maximum bending moment of both beam theories results 

slightly lower than that in the isotropic case. 

For the perfect adhesion condition, the maximum bending moment of a rigid flat punch 

loaded by a vertical force Pz, acting on an elastic isotropic substrate, could be obtained by 

integrating the normal and shear tractions given by Abramov [6]:  
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within the contact region 0  x < L/2 multiplied by their distance from the centroid of the 

rigid punch, as following 

,1443.0)/0795.01522.0(d)2/(
2/

0
max LPLPLhxhrxrM zz

L

xz     (2.38) 

by assuming L/h = 10,   that is  = (3  s)/(1 + s) or  = 3  4s for a generalized 

plane stress or strain state with the Poisson coefficient of isotropic substrate s equal to 0.2 

or 0.167 respectively. As shown in Fig. 2.5c,  Eq. (2.38) holds for both beams (Euler-

Bernoulli and Timoshenko) bonded to an elastic isotropic or orthotropic substrate with L 

  1. Finally, the maximum bending moment of a beam bonded to a substrate in perfect 
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adhesion is 10% lower than that found for a beam in frictionless contact because of the 

presence of tangential traction rx. The analytic solution of Mmax of infinite beam resting on 

substrate in perfect adhesion contact is not present in the literature. However, the 

numerical solution, displayed in Fig. 2.12d, shows a decrease in the maximum value of the 

bending moment, whereas for a beam in perfect adhesion (L = 10) is approximately 20% 

less than that found in the frictionless contact condition for both the beam theories. 

 

2.4.1.3 Beam loaded by a horizontal point force Px 

A beam bonded to an elastic orthotropic substrate and subjected to a horizontal point force 

Px at midspan and towards positive x-direction is studied in this Section. The comparison 

between Euler-Bernoulli and Timoshenko theories is investigated, though the solution of 

beam-substrate system does not significantly depend on parameter , as it has been 

mentioned in Chapter 1. 

A Beam with L = 10 and a thin film (no bending rigidity) with equal cross-section 

corresponding to L = 0.83, is reported in Fig. 2.6. Dimensionless interfacial 

displacements and substrate reactions are shown in perfect adhesion for the beam (solid 

line) and for the thin film (dashed line) versus x/L. The horizontal displacements of the bar 

(thin film) resting on orthotropic half-plane are reduced with regard to the beam-substrate 

system and are less than that the isotropic case, Fig. 2.6a. The same happens for vertical 

displacements, Fig. 2.6b. Furthermore at midspan, shear reaction rx shows a singularity for 

the beam and bar, Fig. 2.6c, while normal reaction rz shows a discontinuity only for the 

beam, Fig. 2.6d. The normal reactions along the bar are everywhere equal to zero. 

The influence of the bending stiffness for axial force N of the beam proves not be 

particularly significant as shown Fig. 2.6e. Only shear force and bending moment of the 

beam in perfect adhesion may be calculated by the post-computation analysis, Fig. 2.6f and 

g respectively. Particular interest is dedicated for the shear force, showing along the beam 

different results with the choice of  value, Fig. 2.7a. A peak is evident at the loaded point 

when the beam tends to the Euler-Bernoulli behaviour. Finally, shear force of Timoshenko 

beam becomes zero toward ends, turning out opposite sign when   10
-5

, Fig. 2.7b. 
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Fig. 2.6. Beam (L/h = 10) loaded by a horizontal force Px at the midpoint, bonded to an orthotropic 

half-plane (c1 = 0.56; c2 = 3.08; c3 = 0.30). Timoshenko beam (= 0.3) in perfect adhesion L = 10 

(thick solid line), and thin film L =  0.83 (thick dashed line). Euler-Bernoulli beam in perfect 

adhesion (thin solid line). Dimensionless values of ux (a), uz (b), rx (c), rz (d), N (e), V (f), M (g) 

versus x/L. 
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Fig. 2.7. Beam (L/h = 10) loaded by a horizontal force Px at the midpoint, bonded to an orthotropic 

half-plane (c1 = 0.56; c2 = 3.08; c3 = 0.30) in perfect adhesion L = 10. Dimensionless shear force V 

along length of beam (a) and at one end (b) with several value of . 
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2.4.1.4 Beam loaded by a couple C 

The beam loaded by a counter-clockwise couple C, resting on orthotropic half-plane has 

been investigated in Fig. 2.8, showing the case with an Euler-Bernoulli beam in perfect 

adhesion (thin solid line) and a shear-flexible beam having  = 0.3 in perfect adhesion 

(thick solid line) and frictionless contact (thick dashed line). When the beam is subjected to 

a couple at the midspan, horizontal and vertical displacements are symmetrical and 

antisymmetrical, respectively. Unlike from the case of beam loaded by vertical force.  

The horizontal displacements at the surface boundary ux are opposite sign than those at 

the centreline of the beam ubx,0 (dot-dashed line) in a wide interval of x/L, confirming the 

strong relevance of term  h/2, Fig. 2.8a. In the frictionless condition, the horizontal 

displacements tend always to contract along length L, with values quite similar to those 

calculated in perfect adhesion at the centreline of beam. The maximum horizontal interface 

displacement of the Timoshenko beam is approximately 60% higher than that computed 

with Euler-Bernoulli beam theory. With regard to vertical interface displacements uz, the 

results in perfect adhesion are lower than those in frictionless contact, except close to ends, 

Fig. 2.8b. Although the shear deformations have a significant influence on displacements, 

tangential tractions rx coincide with both beam theories, where everywhere is zero in the 

frictionless case, Fig. 2.8c.  

The normal tractions rz near the loaded point becomes meaningful with respect to 

influence of the shear beam and typology of contact, Fig. 2.8d. For both beams, axial force 

is plotted in Fig. 2.8e, shear force in Fig. 2.8f which shows a crucial role, and bending 

moment in Fig. 2.8g. Moreover, frictionless condition is reported in shear force and 

bending moment. 

Using 1024 equal FEs, Fig. 2.9a shows the maximum pressure rz at L/4 < x* < 0 versus 

the parameter L   5 whereas no maximum pressure is present in the span for smaller 

values of L. The normal pressures with Timoshenko beam (thick line) are smaller than 

those with Euler-Bernoulli beam (thin line). For both beams, the normal pressures in 

perfect adhesion (solid line) are higher than that in frictionless contact (dashed line). That 

different increases for flexible Timoshenko beams. Finally, Fig. 2.9b shows the shear force 

V in perfect adhesion and frictionless contact, following the numerical models based on 

logarithmically mesh generated in the interval [0.4, 0.510
-4

]. Nevertheless the shear force 

behaviour in the frictionless case does not change significantly, while in perfect adhesion is 

strongly influence from choice of the shear deformations () as already claimed. 
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Fig. 2.8. Beam (L/h = 10, L = 10) loaded by a counter-clockwise couple C at the midpoint, 

bonded to an orthotropic half-plane (c1 = 0.56; c2 = 3.08; c3 = 0.30). Timoshenko beam (= 0.3) in 

perfect adhesion (thick solid line) and in frictionless contact (thick dashed line). Euler-Bernoulli 

beam in perfect adhesion (thin solid line). Dimensionless values of ux (a), uz (b), rx (c), rz (d), N (e), 

V (f), M (g) versus x/L. Horizontal displacement ubx,0 (dash-dot line in a) refers to the centreline of 

the Timoshenko beam in perfect adhesion. 
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Fig. 2.9. Beam (L/h = 10) loaded by a counter-clockwise couple C at the midpoint, bonded to an 

orthotropic half-plane (c1 = 0.56; c2 = 3.08; c3 = 0.30) in perfect adhesion (solid line) and in 

frictionless contact (dashed line). Dimensionless maximum pressure rz at 0.25/L < x* < 0 versus L 

obtained with  = 0.0 and 0.3 (a), shear force V at beam end (L = 10) with several value of  (b). 
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2.4.2  Practical examples of stiffener-wood and foundation-soil interaction 

Examples of practical meaning are considered in plane strain state, unless specified. A 

glass fibre reinforced polymer (GFRP) stiffener loaded by vertical concentrate force and 

bonded to a Balsa substrate. A concrete foundation subjected to vertical point force or 

uniform vertical pressure and resting on orthotropic soil. A peel test of a GFRP wholly 

bonded or partially detached to a Balsa orthotropic substrate. Subsequently, shear test of a 

GFRP reinforcement bonded to a wood substrate in perfect adhesion, with or without 

bending rigidity, and an aluminium reinforcement subjected to an uniform thermal 

variation, resting on different single wood substrate, are analysed. Finally, a study of a 

concrete foundation in perfect adhesion and or in frictionless contact subjected to couple at 

the midspan is investigated. In this case the horizontal displacement ubx,0 of the centroidal 

beam axis has also been reported. The mechanical properties used in these examples have 

been found in the literature, i.e. wood and plywood [46], rock [47, 48], clay [49, 50] and 

sand [51, 52]. Elastic moduli and Poisson's coefficients are reported in Table 2.1 for beams 

(B1, B2, B3) and substrates (S1, S2, S3, S4, S5, S6). The coefficients of the substrate c1, 

c2, c3 have been determined according to Eqs. (2.11) or (2.12). 

 

 

 

Beam Substrate 

GFRP Concrete Alum. Balsa Clay Sand Wood 

T1 T2 T3 S1 S2 S3 S4 S5 S6 

 E1  40 30 70 0.05 0.24 0.18 10 24 5 

 E3  10 30 70 4.0 0.12 0.23 1 1 1 

 E2  - - - 0.2 0.24 0.18 - - - 

 G13  5 12 26 0.15 0.06 0.07 1 2.7 0.3 

 13  0.25 0.2 0.35 0.006 0.14 0.12 0.35 0.06 0.12 

 12  - - - 0.165 0.18 0.19 - - - 

 23  - - - 0.012 0.15 0.12 - - - 

c1 - - - 2.91 0.84 1.06 0.56 0.45 0.65 

c2 - - - 2.24 2.15 2.15 2.22 1.95 2.9 

c3 - - - 7.81 0.62 0.93 0.28 0.2 0.4 

 

Table 2.1. Elastic moduli [GPa] and Poisson's coefficients of beams or substrates and coefficients c 

of half-plane. 

 

2.4.2.1 GFRP stiffener loaded by Pz at midspan and bonded to Balsa substrate 

The case of GFRP Timoshenko beam, with  L/h = 10, L = 106.4 and  = 0.001, perfectly 

bonded to an elastic orthotropic half-plane having c1 = 2.91, c2 = 2.24, c3 = 7.81, and loaded 
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by a vertical point force Pz acting at the midspan is reported in this Section. The adopted 

elastic modulus and Poisson's coefficients of the beam B1 and substrate S1 are listed in 

Table 2.1.  

Dimensionless displacements and reactions along the substrate boundary are shown in 

Figs. 2.10a, b, and c, d, respectively. Dimensionless values of the axial force, shear force 

and bending moment along the beam are shown in Figs. 2.10e, f and g. The cases of a 

beam in perfect adhesion (solid line) and in frictionless contact (dashed line) are reported. 

The horizontal displacement ux corresponding to the frictionless condition produces a 

contraction of the half-plane surface along the whole interface. Conversely, a different 

behaviour occurs in the case of a beam in perfect adhesion, owing to the fact that ux is 

affected by the contribution of the term  h/2 also. Indeed, in such a condition, Fig. 2.10a 

shows a non-monotonic trend for the horizontal displacement which changes its sign into a 

narrow central region (i.e. -0.1 < x/L < 0.1). At the beam ends, the horizontal displacement 

assumes a value 10 times lower than those found for the frictionless contact. The 

maximum value of the vertical displacement uz is achieved at the midpoint (x/L = 0) and, in 

perfect adhesion, it results 20% lower than that found for a beam in perfect contact with 

the half-plane, as shown in Fig. 2.10b. For a beam in perfect adhesion, the tangential 

reaction rx at x/L = 0 and at the beam ends exhibits a finite discontinuity, whereas it is 

equal to zero for a beam in frictionless contact, as reported in Fig. 2.10c. As expected, a 

singularity of normal reaction rz at the midspan is found, as shown in Fig. 2.10d. Note also 

that the peel traction at the beam ends assumes different sign depending upon the contact 

condition. This aspect was already remarked in [31, 32]. The axial force of the beam in 

perfect adhesion is shown in Fig. 2.10e. Shear force and bending moment are not 

significantly affected by the contact condition, as displayed in Figs. 2.10f and g. An 

accurate description of the shear force is obtained using the beam T1 with L/h = 40, see 

Fig. 2.11. The comparison is made among an Euler-Bernoulli ( = 0) and two Timoshenko 

beams ( = 10
-2

 and 10
-5

) in perfect adhesion (solid line) and in frictionless contact (dashed 

line) versus the dimensionless coordinate x/L. The orthotropic substrate S1 is considered, 

leading to L = 42.5. Fig. 2.11a show that the shear force of a Timoshenko beam with 

small value of is analogous to that of an Euler-Bernoulli beam, except at the beam ends. 

The response in terms of shear force is analyzed in detail at the beam ends, using a 

logarithmically spaced mesh in the interval [0.4, 0.5  10
4

], where a different behaviour 

between Euler-Bernoulli and Timoshenko beams is found.  
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Fig. 2.10. GFRP Timoshenko beam (L/h = 100, L = 106.4 and = 0.001) loaded by vertical force 

Pz at the midpoint and bonded to Balsa orthotropic half-plane in plane strain state (c1 = 2.91; c2 = 

2.24; c3 = 7.81) in perfect adhesion (solid line) and in frictionless contact (dashed line). 

Dimensionless values of ux (a), uz (b), rx (c), rz (d), N (e), V (f), M (g) versus x/L. 

(b)

x/L

0.02

0.01

0.00

-0.01

-0.02

V
/P

z

 = 0

 = 10-5

 = 10-2

(a)

-0.5 0.0 0.5

x/L

0.02

0.01

0.00

-0.01

-0.02

V
/P

z

 = 0

 = 10-2

 = 10-5

0.4             0.49           0.499       0.4999

  

 

Fig. 2.11. GFRP Euler-Bernoulli (= 0) and Timoshenko beam (= 10
-2

 and 10
-5

) with L/h = 40 

loaded by a vertical force Pz at the midpoint and bonded to Balsa orthotropic half-plane in plane 

strain state (c1 = 2.91; c2 = 2.24; c3 = 7.81) in perfect adhesion L = 42.5 (solid line) and in 

frictionless for a GFRP Euler-Bernoulli beam (dashed line). Shear force V along length of beam 

along the beam (a) and at the beam end (b). 
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In particular, a singularity of the shear force for the Euler-Bernoulli beam is observed (see 

Fig. 2.11b). Conversely, for beams in the frictionless contact with the half-plane, the shear 

force does not depend significantly on the kind of beam adopted, and it assumes vanishing 

values at the beam ends. 

 

2.4.2.2 Maximum bending moment of foundations loaded by Pz at midspan and resting on 

soils 

The maximum bending moment of concrete beams resting on an elastic medium is a key 

issue in the framework of civil engineering, with particular reference to the design of 

shallow foundation of buildings. A Euler-Bernoulli ( = 0.0) or Timoshenko ( = 0.03) 

concrete foundation beam, loaded by a vertical point force Pz at the midspan, and resting 

on an isotropic or orthotropic soil is considered. Dimensionless maximum bending moment 

at x/L = 0 versus L is reported for a beam in frictionless contact (Figs. 2.12a, b) and in 

perfect adhesion (Figs. 2.12 c, d), respectively. The elastic parameters c1 = 0.84, c2 = 2.15, 

c3 = 0.62, and E3 = 0.12 MPa are taken for the orthotropic soil (solid line), while the same 

Young's modulus is assumed (dash-dot line) for the isotropic soil. Table 2.1 shows the 

elastic modulus and Poisson's coefficients of the adopted beam T2 and soil S2. 

The results are compared with some analytic solutions, as previously mentioned. The 

maximum bending moment of a rigid indentation loaded by a vertical point force and 

resting isotropic or orthotropic soil is about Mmax = 0.1592 Pz L in frictionless contact and 

about Mmax0.1443 Pz L in perfect contact. While the maximum bending moment of an 

infinite Euler-Bernoulli beam resting on isotropic substrate in frictionless contact is given 

by Biot [43], Mmax0.4849 Pz L/L, assuming  that is  = (3  s)/(1 + s) or  = 3 

 4s for a generalized plane stress or strain state with the Poisson coefficient of isotropic 

substrate s equal to 0.16 or 0.14 respectively. Note that for L > 5, the maximum bending 

moment obtained by considering the orthotropic half-plane results about 5% or 10% lower 

than that obtained for an isotropic substrate, respectively in frictionless or perfect contact. 

Whereas the analytic solution could be applied for rigid and short beam having  L   1. 
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Fig. 2.12. Concrete beam loaded by a vertical force Pz at the midpoint, bonded to an orthotropic 

soil with c1 = 0.84; c2 = 2.15; c3 = 0.62; E3 = 0.12MPa (solid line) and isotropic soil (dash-dot line). 

Bending moment M at the midspan versus L in frictionless contact (a,b) and in perfect adhesion 

(c,d) for  = 0.0 and  = 0.03 (thin and thick line respectively). 

 

2.4.2.3 Foundation loaded by a vertical pressure pz over length L/4 at midspan 

In this Section, the case of a Timoshenko beam subjected to a uniform vertical load 

distribution pz acting over a length L/4 centered with respect to the midspan is analysed. 

Dimensionless interface displacements, soil reactions, and axial force, shear force, and 

bending moment along the beam, are reported in Fig. 2.13. Two kinds of orthotropic soil in 

perfect adhesion with the beam are studied, assuming the elastic modulus and Poisson's 

coefficient of concrete beam T2, and clay S2 or sand soil S3 listed in Tab. 2.1. The soil 

coefficients are c1 = 0.84, c2 = 2.15, c3 = 0.62 for clay soil or c1 = 1.06, c2 = 2.15, c3 = 0.93 

for sand soil. Thus, assuming a ratio L/h = 10 for the beam, the parameter L becomes 

equals 3.65 or 4.54, respectively. 

Displacement ux and uz at the substrate boundary for perfect adhesion condition are 

reported in Fig. 2.13a and b respectively, for both soils. It is worth noting that for a beam 

resting on a relatively rigid soil, (i.e. L = 4.54, dashed line), the horizontal interface 
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displacement at the beam end and vertical interface displacement at x/L = 0 are 30% and 

60% higher, respectively, than those calculated for a beam bonded to a relatively soft soil 

(i.e. L = 3.65, solid line), whereas both substrate reactions are quite similar, as shown in 

Fig. 2.13c and d. Conversely, axial force of the beam resting on the relatively rigid soil 

(Fig. 2.13e, dashed line) is about 15% lower than that obtained by considering a soft soil. 

However, almost the same values for the shear force and bending moment along the beam 

are found for both the orthotropic soils. The shear force obtained by considering the Euler-

Bernoulli beam ( = 0.0) with L = 3.65 in perfect adhesion with the soil is also displayed 

in Fig. 2.13f (thin solid line). It is worth noting that, in this case, a completely different 

behaviour of the shear force is observed going toward the beam ends, with respect to that 

found for the Timoshenko beam. In particular, the shear force for an Euler-Bernoulli beam 

takes non zero values, having opposite sign with respect those obtained by considering a 

Timoshenko beam. 
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Fig. 2.13. Concrete beam subjected to a uniform vertical load distribution pz acting over a length 

L/4 centered with respect to the midspan, resting on an orthotropic soil. Timoshenko beam (L/h = 

10, =0.03) bonded to two kinds orthotropic half-planes in perfect adhesion, c1 = 0.84; c2 = 2.15; c3 

= 0.62; L = 3.65 (solid line) and c1 = 1.06; c2 = 2.15; c3 = 0.93; L = 4.54 (dashed line). Shear 

force V of an Euler-Bernoulli beam bonded to a half-plane with c1 = 0.84; c2 = 2.15; c3 = 0.62; L = 

3.65 (thin solid line in f). 
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2.4.2.4 Detached GFRP stiffener loaded by Pz at one end 

A glass fibre reinforcement polymer (GFRP) subjected to vertical point force Pz applied at 

one end upward directed, bonded to a Balsa orthotropic substrate in perfect adhesion is 

investigated. Elastic modulus and Poisson's coefficients are reported in Tab. 2.1 for the 

beam (T1) and substrate (S1).  

Dimensionless interfacial displacements and substrate reactions are show in Figs. 2.14a-d, 

whereas the axial force, shear force and bending moment are displayed in Fig. 2.14e-g, for 

a beam detached from the substrate between x/L = 0.3 and x/L = 0.40 (solid line) and a 

fully bonded beam (dashed line). For the detached beam, a number of 297 logarithmically 

spaced FEs are used, and the length of the beam has been subdivided in 4 intervals to 

capture straightforwardly the stress singularity. Thus a number of 84 logarithmically 

spaced points are generated in the intervals [0.5+10
-8

, 0.1]/L, 85 points into [0.1, 

0.3]/L, 65 points into [0.4, 0.45]/L, and 64 points into [0.45, 0.5-10
-8

]/L.  
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Fig. 2.14. GFRP Timoshenko beam (L/h = 20, L = 21.3 and = 0.02) loaded by a vertical force Pz 

acting at a beam end and detached between x/L=0.3 and x/L = 0.4 (solid line) and perfect bonded 

(dashed line) to Balsa orthotropic half-plane in plane strain state (c1 = 2.91; c2 = 2.24; c3 = 7.81). 

Dimensionless values of ux (a), uz (b), rx (c), rz (d), N (e), V (f), M (g) versus x/L. 
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The result of the detached beam is almost identical to those obtained for the fully bonded 

beam, except in the neighbourhood of the detached region. In particular, at the ends of the 

detached region both the shear and peel stresses appear to be singular. As expected, zero 

substrate reaction and constant axial force are found within the detached region. 

 

2.4.2.5 GFRP stiffener loaded by Px at one end and bonded to wood substrate 

The case of an elastic Timoshenko beam T1 loaded by a horizontal concentrated force 

acting at one end, perfectly bonded to a wood substrate S4 is analysed and compared with 

a beam having a vanishing bending rigidity (thin film assumption) in Fig. 2.15. Plane stress 

state is assumed with ratio L/h = 60. The governing parameter for the beam is L = 40.2 

(solid line), whereas L = 1.50 (dashed line) holds for the membrane assumption. 

Dimensionless interface displacements or substrate reactions for both cases are similar, 

except the normal component of the interfacial stress field, which is zero within the whole 

contact region for the case of a thin film. It is worth noting that the normal component of 

the displacement quickly grows going toward the ends of the stiffener, particularly for the 

case of the Timoshenko beam. Note also that the peel stress changes its sign in the 

neighbourhoods of the beam ends, similarly to the case of a beam loaded by a vertical 

pointwise force acting at the midspan (see Fig. 2.10d). Moreover, a peak value for the peel 

stress occurs in the neighbouring of the load section, as shown in Fig. 2.15d. Besides, the 

shear force and the bending moment could be found for the beam case only. However, the 

solution of the beam-substrate interaction problem where only horizontal forces act on the 

system do not appreciably depend on the parameter  [32]. Hence, concerning this loading 

condition, the choice of Euler-Bernoulli or Timoshenko beam model leads to almost the 

same results. 

Conversely, the shear force is significantly affected by the shear deformation of the 

beam. This fact has been found by investigating a Timoshenko beam loaded by a 

horizontal pointwise force acting at one end of the beam varying the parameter  In 

particular, an Euler-Bernoulli beam ( = 0) and a Timoshenko beam with  = 10
-2

 and 10
-5

 

have been studied in detail. Fig. 2.16 shows the shear force along the beam and in the 

neighbourhood of the external force. As expected, the shear force of a Timoshenko beam 

with small  tends to that of an Euler-Bernoulli beam. However, the main differences 

occur in the neighbourhood of the loaded section, where  the shear force of the Euler-

Bernoulli beam takes opposite sign and does not vanish at the beam ends. 
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Fig. 2.15. GFRP Timoshenko beam (L/h = 60 and = 0.003 with c1 = 0.70; c2 = 2.40; c3 = 0.44) 

loaded by a horizontal force Px acting at one end and bonded to wood orthotropic half-plane in 

plane stress state (c1 = 0.56; c2 = 2.22; c3 = 0.28) with L = 40.2 (solid line), and thin film 

assumption with L =  1.50 (dashed line). Dimensionless values of ux (a), uz (b), rx (c), rz (d), N (e), 

V (f), M (g) versus x/L. 
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Fig. 2.16. GFRP Euler-Bernoulli (= 0) and Timoshenko beams (= 10
-2

 and 10
-5

) with L/h = 60 

loaded by horizontal force Px acting at one end and bonded to a wood orthotropic half-plane in 

plane stress state (c1 = 0.56; c2 = 2.22; c3 = 0.28) with L = 40.2. Shear force V along the beam (a) 

and at the beam end (b). 
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On the other hand, the shear force of a Timoshenko beam at the loaded section vanishes, 

and going toward the inner part of the contact region, it increases in magnitude as the 

parameter  increases. Note also that the maximum value achieved by the shear force of a 

Timoshenko beam occurs at about 0.47÷0.48 x/L, whereas in an Euler-Bernoulli beam it 

occurs in the range 0.46÷0.47 x/L. 

 

2.4.2.6 Aluminium stiffener subject to uniform thermal load T and bonded wood substrate 

The behaviour of a beam resting on an elastic substrate and subjected to a uniform thermal 

variation T, resembles that of a beam symmetrically loaded by two opposite axial forces 

applied at the beam ends, as shown for the bar-substrate problem [33]. The interaction 

between an aluminium stiffener and a wood substrate is investigated. The Euler-Bernoulli 

beam theory is assumed and two kinds of orthotropic half-plane are studied, as shown in 

Fig. 2.17. The elastic moduli and Poisson's coefficients of the beam T3 and the substrates 

S5 or S6 are listed in Table 2.1. In particular, two kinds of half-plane having the same 

Young modulus in z-direction and characterised by c1 = 0.45, c2 = 1.95, c3 = 0.20 (S5, solid 

line), and c1 = 0.65, c2 = 2.90, c3 = 0.40 (S6, dashed line) are considered. Therefore, by 

taking a length-to-height ratio L/h = 10, both cases are characterized by L = 60. 

Dimensionless interface displacements and substrate reactions versus x/L are plotted in 

Fig. 2.17a, b and c, d, respectively. The axial force, shear force and bending moment of the 

beam are shown in Fig. 2.17e, f and g. It is worth remarking that the substrate S5 having a 

high elastic stiffness in x-direction higher (solid line) exhibits a horizontal component of 

the interfacial displacement 25% lower than that found for the substrate S6 (dashed line). 

Conversely, the vertical component of the interfacial displacement is 60% higher with 

respect that exhibited by the wood substrate S6. On the other hand, shear and normal 

components of the interfacial stress field for a substrate having a low value of Young 

modulus in x-direction (namely, the substrate S6), are quite uniform along the beam, with 

relatively low peak values attained at the beam ends, see Fig. 2.17c, d. This circumstance 

holds for the axial force, shear force and bending moment also, which magnitude decrease 

by assuming the wood substrate S6. Note also that the peel tractions change sign in the 

range 0.3÷0.4 x/L for both the substrates. For comparison, in Fig. 2.17f is plotted the shear 

force of a Timoshenko beam ( = 0.03) also, which vanishes at the end sections, as 

expected. Similarly to the previous loading condition, also for the case of a uniform 

thermal variation, the shear force of an Euler-Bernoulli beam in the neighbourhoods of the 

beam ends change its sign with respect that found for a Timoshenko beam.  
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Fig. 2.17. Aluminium stiffener subjected to a uniform thermal variation +T bonded to a wooden 

substrate. Euler-Bernoulli beam (L/h = 10, L = 60) resting on two kinds of orthotropic half-plane 

with c1 = 0.45; c2 = 1.95; c3 = 0.20 (solid line) and c1 = 0.65; c2 = 2.90; c3 = 0.40 (dashed line) in 

perfect adhesion. Dimensionless values of ux (a), uz (b), rx (c), rz (d), N (e), V (f), M (g) versus x/L. 

Shear force V of a Timoshenko beam (=0.03) bonded to half-plane with c1 = 0.45; c2 = 1.95; c3 = 

0.20 (thin solid line in f). 

 

2.4.2.7 Foundation loaded by C at midspan and bonded to soil 

A concrete foundation loaded by a counter-clockwise couple C acting at midspan and 

resting on orthotropic soil is investigated in this Section. Fig. 2.18 shows the results of a 

Timoshenko beam T2 with L/h = 10,  = 0.03 in perfect adhesion (solid line) and in 

frictionless contact (dashed line) with an orthotropic soil S5 having c1 = 0.84, c2 = 2.15, c3 

= 0.62. 

The horizontal component of the interfacial displacement of a Timoshenko beam 

perfectly welded to the half-plane assumes an opposite sign and values lower (in modulus) 

than those found for a beam in frictionless contact, as displayed in Fig. 2.18a. In the same 

figure is plotted the displacement at the centreline ubx,0 of of a beam perfectly bonded to 

the substrate, thus confirming the relevance of the term  h/2 affecting the horizontal 

component of the displacement field. The vertical component of the interfacial 
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displacement of a beam in perfect adhesion is almost the same of that of a beam in 

frictionless contact, as shown in Fig. 2.18b. The same circumstance holds for the peel 

traction except at the loaded section, where the peel traction of a Timoshenko beam in 

perfect adhesion with the half-plane exhibits a discontinuity. As expected, the shear 

reaction and, in turn, the normal force along the beam are zero when frictionless contact is 

supposed. It is worth noting that the shear traction of a Timoshenko beam in perfect 

adhesion with the half-plane is singular across the loaded section. The axial force, shear 

force and bending moment of the beam are shown in Fig. 2.18e, f and g, respectively. Note 

that the axial force attains the maximum value at about 0.3 x/L and, owing to symmetry, it 

vanishes at x = 0. Moreover, the shear force and bending moment are not significantly 

affected by the contact condition. For both the contact conditions here considered, the 

maximum value achieved by the shear force turns out to be 1.5 C/L and it occurs at x = 0. 

Moreover, |M(0
+
)| = |M(0


)| = C/2, as expected due to symmetry. 
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Fig. 2.18. Concrete beam modeled as a Timoshenko beam (L/h = 10, =0.03, L = 3.65) loaded 

by a counter-clockwise couple C acting at the midpoint and bonded to an orthotropic soil (c1 = 

0.84; c2 = 2.15; c3 = 0.62) in perfect adhesion (solid line) and in frictionless contact (dashed line). 

Dimensionless values of ux (a), uz (b), rx (c), rz (d), N (e), V (f), M (g) versus x/L. Horizontal 

displacement ubx,0 (dash-dot line in a) refers to the centreline of the beam in perfect adhesion. 
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2.5 Conclusions   

A coupled FE-BIE method for the analysis of a prismatic beam bonded to an elastic 

orthotropic half-plane is considered in plane stress and plane strain state. The mixed 

variational formulation is obtained through the theorem of work and energy for exterior 

domain. Unknown functions are represented by beam displacements and surface tractions 

by means of classical FE method and BIE approach respectively. A generalised Green 

function of orthotropic half-plane, characterised by three substrate coefficients, has been 

used, providing the relationship between displacements and interface reactions. Linear 

shape function is selected to approximate axial displacement, whereas cubic and quadratic 

shape functions are used to interpolate transverse deflection and rotation, respectively. 

Shear and normal surface tractions are described by piecewise constant shape functions. 

The proposed method is utilised to study in detail the contact problem of a finite elastic 

Timoshenko beam bonded to an orthotropic half-plane in perfect adhesion as well as in 

frictionless contact. The case of a beam having a vanishing bending rigidity has been 

investigated also. In particular, when shear tractions and external horizontal forces are set 

to zero, the proposed formulation resembles a frictionless contact. The thin film problem 

can be properly handled by neglecting the beam bending rigidity. Moreover, through post-

processing analysis, the axial force, shear force and bending moment of the beam are 

determined. The use of the Timoshenko beam theory to analyse the effects of the shear 

deformation leads to values for the internal shear force sensibly different than that 

calculated by assuming the Euler-Bernoulli theory.  

A variety of examples are presented and discussed considering a beam loaded by a 

horizontal or vertical force and a couple. In the case of a beam subjected to a vertical point 

force it is shown that the relative stiffness of beam-substrate significantly affects the 

maximum bending moment. Moreover, for such a loading condition, the peel traction 

displays a singular behaviour just across the loaded section for both the contact conditions 

considered in the analysis. The analytic solutions available in the literature for the problem 

of the rigid punch and the maximum bending moment of an infinite Euler-Bernoulli beam 

resting on an isotropic substrate are retrieved. Furthermore, the present model can be used 

in forthcoming studies in the framework of contact mechanics. As an example, peel or 

shear tests of a glass fibre reinforcement polymer or aluminium stiffener bonded to wood 

substrate are analysed. The case of a detached or fully bonded beam has been investigated 

also, finding almost the same results, except in the region close to the detachment. 

Furthermore, a stiffener subjected to a uniform thermal variation has been studied, showing 
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a decrease in the stress response for orthotropic substrates having the same elastic modulus 

in z-direction and lower in x-direction. Finally, in the last application regarding the soil-

foundation interaction when a concentrated couple acts at the beam midspan, the contact 

condition (i.e., perfect adhesion or frictionless contact) does not effect the response of the 

system, except for the horizontal displacement. It must be remarked that, for a beam 

perfectly welded to the substrate subjected to a such a loading condition, the shear traction 

appears to be singular whereas the peel stress displays a finite jump across the loaded 

section. 
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3  Static analysis of layer bonded to elastic half-plane 

 

3.1 Introduction 

In solid mechanics, the contact problem that involves an elastic layer lying on an elastic 

half-plane, has been very widely studied. In geotechnical engineering, some applications 

have interested important structures, such as foundation grillages, pavements in roads and 

runways, railway ballast, and other structures consisting of layered media. 

The interaction of a foundation beam resting on soil is a problem that has been studied 

by several investigators by using different models for the soil. The simplest model that has 

been used for the soil medium is the Winkler model [1]. This model assumes that the 

surface displacement of the soil medium at every point is directly proportional to the stress 

applied to it at that point and completely independent of stresses or displacements, implies 

there is a lack of continuity in the medium which is physically unrealistic. To overcome 

this deficiency, a two-parametric model has been developed which accounts for the 

continuity of displacements. Several continuum models have been developed ranging from 

homogeneous, isotropic and linearity elastic soils to more complex inhomogeneous 

anisotropic and non-linear soils. The implications and difficulties in solving soil-structure 

interaction problems using the various continuum models have been discussed by 

Selvadurai [2] and Feda [3]. Moreover, the soil-structure interaction has been studied using 

not only theoretical approach but also photoelastic methods [4]. 

The problem of contact between a layer and a substrate are treated by some researchers: 

Keer et al. [5] examined the smooth receding contact problem between an elastic layer and 

a half space formulated under the assumption of plane stress, plane strain and 

axisymmetric conditions. The same problem was accounted by Borgi et al. [6] for the 

functionally graded layer. Ratwani et al. [7] considered the plane smooth contact problem 

for an elastic layer lying on an elastic half space with a compressive load applied to the 

layer through a frictionless rigid stamp. Civelek et al. [8] investigated the general 

axisymmetric double frictionless contact problem for an elastic layer pressed against a 

half-space by an elastic stamp under the assumptions that the three materials have different 

elastic properties. Gecit [9] studied the frictionless contact problem of a semi-infinite 

cylinder compressed against a half-space. Comez et al. [10] investigated the plane double 

receding frictionless contact problem for a loaded rigid stamp in contact with two different 

elastic layers. Furthermore, a rigid indenter (so called punch) has been investigated, 
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involving circular flat or conical punch in frictionless contact with elastic layer on a rigid 

base [11, 12], as well as square rigid punch pressing normally onto an elastic layer, itself 

attached to an elastically half-plane [13]. These mentioned contacts between layers bonded 

to homogeneous substrate are considered according to the theory of elasticity neglecting 

friction forces. In actual practice, the footing may experience a certain amount of interface 

friction that appears to be no way of finding the actual amount. However, the effect of 

friction normally tends to reduce the foundation pressure and surface displacement and 

hence often, for the purpose of analysis, the condition of smooth interface (frictionless) or 

perfectly bonding could be assumed. 

In the present Chapter, interactions of finite layer bonded to semi-infinite plane are 

studied using a coupled Finite Element-Boundary Integral Equation (FE-BIE) in perfect 

adhesion. The model makes use of standard formulation of two-dimensional finite element 

(plate) for the layer in plane strain or plane stress state [14], coupling boundary substrate 

with integral equation which involves the Green's function [15]. The analysis of a layer-

substrate system involves the same basic steps as those described for the beam-substrate 

interaction problem in Chapters 1 and 2. The layer region could be described by two-

dimensional finite elements, such as triangles, rectangles or quadrilaterals, which are 

connected to each other at nodal points of the elements. The plane elements could be dealt 

with isotropic or anisotropic materials, where the material properties are specified by 

supplying the constitutive matrix as input variable to the element functions. The 

representation of a given layer region by a set of elements, called discretization or mesh 

generation, is an important choice for the analysis. Moreover, the interpolation functions of 

2D finite element depend on the number of nodes in the element, the number of unknowns 

per node, and the shape of the element. For the sake of simplicity, the domain of layer is 

subdivided into rectangle elements, though the simplest geometric shape is triangle. The 

coupling of 2D finite elements with the boundary integral equation of elastic half-plane is 

briefly described, adopting traditional quadrilateral isoparametric elements in plane stress 

or strain state. The model makes use of displacements based on numerical formulation of 

the 2D finite element (plate), coupled with integral equations for the substrate boundary, 

including the Green's function. Thus, the independent variables of the mixed formulation 

proposed are plate nodal displacements of the plate and boundary substrate tractions in 

tangential and normal directions.  

Some examples of plate-substrate interaction are compared with an analogous beam-

substrate model, though the model in this Section does not enforce the nodal rotation.  
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Finally, the last example of this Chapter deals with the interaction of embankment-soil 

that could be aimed to assess the choice and location of reinforcement constituted by 

geosynthetic, such as geotextile or geogrid. The reinforced embankment has been broadly 

employed in the construction of high-speed railways over soft soils. This technique has the 

merits of rapid construction, controllable deformation and global stability [16]. It has been 

proven that the geogrid can help facilitate in controlling the lateral displacement of the 

embankment and the settlement of the subsoil [17, 18]. Therefore, the aim of this last 

analysis could help to determine the distribution of the tensile force necessary for a geogrid 

design which has raised great concerns in the past decade [19, 20, 21]. A presumed 

interaction of an embankment loaded by a foundation beam and resting on subsoil, has 

been investigated using the present coupled FE-BIE model. Assuming unidimensional 

finite element for the foundation structure, bidimensional finite element for the 

embankment and boundary integral equation for the semi-infinite subsoil. 

 

3.2  Variational formulation  

A layer in plane state, length L, height h and width b, resting on semi-infinite isotropic 

homogeneous and elastic material is investigated, Fig. 3.1. The problem is referred to a 

Cartesian coordinate system (O; x, z), where x coincides with the boundary between layer 

and half-plane while z is chosen in the downward transverse direction. The layer is defined 

in a domain  bounded by  
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in particular two displacement are represented in (x,z) domain, defined in global direction 

x and z, respectively by 
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The stress-strain relationship of the layer, which depend on the constitutive matrix (called 

with the letter C), is given by (x,z) = C , where for plane stress is 
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while for plane strain is 
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defined Ep the elastic modulus and p the Poisson's coefficient of the layer. 

 

 

Fig. 3.1. A layer bonded to a half-plane (a), and free-body diagram (b). 

 

3.2.1  Total potential energy for the layer-substrate system  

The total potential energy for the layer-substrate system is given by  

  =  plate +  soil  (3.6) 

which is a mixed variational formulation with variational functions represented by nodal 

displacements of layer (ux, uz) as well as interfacial shear and normal tractions (rx, rz) along 

contact region. 

The potential energy of the layer is defined as plate = UpWp where Up is the elastic 

strain deformation given by 
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and Wp is the energy produced by the external forces: 
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with fb and fs the body forces and surface loads, respectively. Finally, the total potential 

energy for the half-plane soil in perfect adhesion is mentioned in the Chapter 1. 

 

3.3  Finite element model 

Given domain of a layer denoted by and a boundary denoted by , the n-noded finite 

element displacement vector is definite by 2n degrees of freedom 

  ....,,,,...,,,
T

2121 znzzxnxx
e uuuuuuu  (3.9) 

The unknown displacement vector in each element is interpolated by the nodal 

displacements as 
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where e
iN denotes the element shape functions. The displacements can also be expressed in 

matrix form as 
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and the strain vector can be obtained by derivation of the displacements as 
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The strain-displacement matrix B is needed for computation of the stiffness matrix and the 

stress vector at the each element. The derivatives with respect to the global coordinates can 

be found as   /.../... 1
Jx  where J is the Jacobian operator, relating natural and 

global coordinates. 

Soil reactions for the ith element can be approximated by the expressions: 

rx()= [a()]
T
 rxi,            rz()= [b()]

T
 rzi, (3.13) 
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where rxi, rzi denote nodal interfacial shear and normal tractions, respectively, and vectors 

a, b collect constant or linear shape functions. 

Substituting Eqs. (3.9) and (3.13) into variational principle and assembling over all 

elements, the total potential energy of the whole system assumes the following generalized 

expression: 
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Requiring the total potential energy in Eq. (3.14) to be stationary, the following system of 

equations is obtained 


















































 0

f

f

r

u

u

GH0

HKK

0KK

2

1

2

1

T

2221

1211

pp

pp

 (3.15) 

denoting with u1 and u2 the vectors of nodal displacements referred to the layer, unshared 

and  shared with the substrate elements respectively, and f1, f2 the corresponding load 

vectors. The vector of nodal force f is obtained as 

 
 dd TT

sb bb fNfNf   (3.16) 

 

3.3.1 Layer subdivided to quadrilateral element plate 

A quadrilateral element with four nodes in natural coordinates () is considered [22]. 

The coordinates (x, z) are interpolated as  
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where Ni are the Lagrange shape functions as given 
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,4/)1)(1()()(),( 122  llN  (3.18b) 

,4/)1)(1()()(),( 223  llN  (3.18c) 

,4/)1)(1()()(),( 214  llN  (3.18d) 

Hence displacements ux, uz are interpolated as Eq. (10) at any point in the element with the 

nodal displacements uxi, uzi, i = 1, ..., 4. 
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The stiffness matrix of the layer Kp is obtained as 

  dT
CBBK bp   (3.19) 

which dependent on the number of integration points in the , directions and the 

corresponding weights  
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The stiffness matrix of the layer is computed using 2x2 Gauss points having unit weight. 

 

3.3.2  Piecewise constant substrate tractions 

A piecewise constant functions are used to interpolate tractions rx and rz, hence the matrix 

G does not vary with respect to the case shown in Chapter 1. With regard to matrix 

H = b H
~

, if piecewise constant tractions rx and rz are assumed, the components bonded to 

semi-infinite substrate for the ith FE are 

,]1,1[2
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~ T
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In conclusion, Fig. 3.2 shows a representation of the matrix system of Eq. (3.15). The layer 

is subdivided into two plates, where only one of them is bonded to one substrate element 

(s1). Two point forces Px, Pz are applied at the top right of the layer. 

 

 

 

Fig. 3.2. Matrix system of a layer subdivided in two plate elements where only one of them is 

bonded to one substrate element (s1). External point loads Px, Pz are applied at the top right. 
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3.4  Numerical example 

The domain of a layer, length L and height h, is discretized by horizontal and vertical 

subdivision nel,x and nel,z, obtaining a mesh of nel = nel,x x nel,z quadrilateral elements having 

length li and height hi. The perfect adhesion interface between layer and half-plane is 

considered. The horizontal and vertical interface displacements (ux, uz), through FE 

method, as well as tangential and normal tractions (rx, rz), through BIE approach, are 

determined by the equation system (Eq. 3.15). The values of interfacial displacements and 

substrate reactions are plotted non-dimensionally along the boundary contact. Moreover, 

stresses in x and z direction (xx, zz) of the layer are post-calculated and plotted into plane 

finite elements.  

The solutions which are obtained by the static response of the beam-substrate system, 

calculated in Chapter 1 with parameter L = 10, are proposed again and compared with the 

contact of an analogous layer (same mechanical characteristics and geometry of beam) 

bonded in perfect adherent to the half-plane. In all examples presented, unless otherwise 

specified, a plane stress state is used. 

  

3.4.1  Layer loaded by pressure at central  

In this Section, a layer with ratio L/h = 10 and resting on an elastic isotropic half-plane 

having c = 0.8 is investigated. The layer is subdivided by rectangular mesh, using a number 

of elements nel,x = 16 in the x-direction and nel,z = 2 in the z-direction, hence  

comprehensively a number of plate elements nel = 32. The isotropic substrate is discretized 

using the same number elements of the layer in x-direction (nel,x). Three cases, having a 

pressure applied at central, are following examined. 

 

3.4.1.1 Layer loaded by uniform vertical pressure pz  

The case of a layer bonded to elastic half-plane and loaded by a uniform vertical pressure 

pz at central cross section is considered first. Dimensionless displacements and reactions 

along the substrate boundary are reported in Fig. 3.3 for layer-substrate system (thick solid 

line) and for the analogous beam-substrate problem (thick dashed line). In particular, a 

Timoshenko with the same number elements of x-direction nel,x (nel = 16) and subjected to 

point force Pz = pz Ab at midspan is compared. The value of  has been determined 

considering the shear modulus Gb = Eb/[2(1+b
2
)] and the shear correction factor kb = 



 107 

5/(6bGb/Eb), hence obtained  = 12/5(1b/12)/(1b)(L/h)
2
 = 0.024. A good agreement 

of results between the two models is illustrated. The evolution of dimensionless layer 

displacements and layer stresses are plotted in Fig. 3.4.   

The horizontal displacements evaluated along centroidal axis of layer are in contraction 

(Fig. 3.3a and Fig. 3.4a). They tend to stretch in the area of the contact region close to the 

load section. That behaviour is also proved in the beam-substrate model that is influenced 

by the contribution of term  h/2. The shear reactions of substrate (rx) show a discontinuity 

at the midspan, Fig. 3.3b, having a correlation with the plate stresses in x-direction (xx). 

The latter stresses, Fig. 3.4b, identify a compression zone at the top and a tense zone at the 

bottom of the layer. With regard to vertical displacements of the substrate boundary, the 

same values appeared along the cross-section, showing maximum deflection at central 

(Fig. 3.3c and Fig. 3.4c). The normal reactions of substrate (rz) of the two models are 

plotted in Fig 3.3d, where its maximum value is at x/L = 0, the highlighted peak is also 

reported in the normal plate stresses (zz), Fig. 3.4d. 

 

3.4.1.2 Layer loaded by uniform horizontal pressure px  

A layer bonded to an elastic isotropic substrate, is loaded by a uniform horizontal pressure 

px at central cross-section. The value of pressure is chosen such that the resultant become 

equal to Px = px Ab with target to compare the solutions with those of an analogous beam-

substrate interaction problem. 

Dimensionless results of the system, and plate stresses calculated by the post-processing 

analysis, are plotted in Figs. 3.5 and 3.6. Horizontal displacements, along boundary surface 

or centroidal axis of layer, are in good conformity with the analogous Euler-Bernoulli 

beam resting on the same substrate (dashed line in Figs. 3.5a). Notice that, the horizontal 

displacements, which are relative to the value found at the bottom end point, increase 

toward the top of the layer, as shown Fig. 3.6a. With regard to tangential reactions (rx), Fig 

3.5b, the influence of the two interaction systems (layer-substrate and beam-substrate) are 

not particularly significant. In the central zone where a peak reaction comes up by presence 

of pressure, plate stresses in x-direction provide opposite sign, distinguishing compression 

and tension zone, Fig. 3.6b. Antisymmetric vertical displacements are observed in Fig 3.5c, 

where negative values occur in the interval [0.5, 0)/L and positive one into (0, 0.5]/L, 

providing a clockwise rotation. Same displacements turn out along the cross-section of the 

layer, showing in Fig. 3.6c. A quite insignificant difference between normal substrate 

reactions obtained by the two kinds of systems (layer-substrate and beam-substrate), is 



 108 

illustrated in Fig. 3.5c. In particular, a peak value occurs at the ends which could be 

compared with the maximum plate stress in z-direction reported in Fig. 3.6d. 

 

3.4.1.3 Layer loaded by varying horizontal pressure px  

The case of a layer loaded by a couple is not possible to investigate, because of the 

neglected nodal rotation in the formulation of two-dimensional finite element. To 

overcome that, a varying horizontal pressure is applied along the cross-section with the 

purpose of simulating a moment given by an analogous couple C at the midspan. The 

dimensionless interfacial displacements and substrate reactions are plotted in Fig. 3.7 

Analogous beam-substrate system (in dashed line) has been compared using a Timoshenko 

beam with  = 0.024, loaded by the couple C at midpoint. Furthermore, layer 

displacements and layer stresses are reported in dimensionless, Fig. 3.8.  

The horizontal displacements along centroidal axis of the layer (ux,0) take absolute 

values lower and opposite sign with respect to interfacial horizontal displacements (ux), 

shown in Fig. 3.7a. That is highlighted in the layer displacements, Fig. 3.8a, near the 

central cross-section, where positive values are found at the bottom and those negative at 

the top of layer. Shear reactions of the substrate coincide almost everywhere between two 

kinds of systems, Fig. 3.7b. Besides, the stress in x-direction shows the difference between 

compression zone with negative values and zone of the layer with tension fibres through 

positive values, Fig. 3.8b. With regard to vertical displacements, in the interval [0.5, 0)/L 

they have down-direction, whereas up-direction into (0, 0.5]/L (Figs. 3.7c and 3.8c), 

providing so a counter-clockwise movement. The response of the interaction layer-

substrate with analogous beam-substrate system, in term of normal interfacial reaction, is 

plotted in Fig. 3.7d, showing an expected discontinuity at the central. The stresses in z-

direction reported in the layer, Fig. 3.8d, confirm the values higher at the midspan and 

toward the contact region . 
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Fig. 3.3. Layer loaded by uniform vertical pressure pz at central (solid line) and analogous 

Timoshenko beam (L/h = 10 L = 10,  = 0.024) subjected to point Pz at midspan (dashed line). 

Nondimensional values of ux (a), rx (b), uz (c), and rz (d) in perfect adhesion. Horizontal 

displacement ubx,0 is referred to the centreline of layer or beam (respectively thin solid or thin 

dashed line in (a)). 

 

Fig. 3.4. Layer loaded by uniform vertical pressure pz at central. Nondimensional values of ux (a), 

xx (b), uz (c), and zz (d) in perfect adhesion.  
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Fig. 3.5. Layer loaded by uniform horizontal pressure px at central (solid line) and analogous Euler-

Bernoulli beam (L/h = 10 L = 10) subjected to point Px at midspan (dashed line). Nondimensional 

values of ux (a), rx (b), uz (c), and rz (d) in perfect adhesion. Horizontal displacement ubx,0 is 

referred to the centreline of layer or beam (respectively thin solid or thin dashed line in (a)). 

 

Fig. 3.6. Layer loaded by uniform horizontal pressure px at central. Nondimensional values of ux 

(a), xx (b), uz (c), and zz (d) in perfect adhesion.  
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Fig. 3.7. Layer loaded by varying horizontal pressure px at central (solid line) and analogous 

Timoshenko beam (L/h = 10 L = 10,  = 0.024) subjected to couple C at same section (dashed 

line). Nondimensional values of ux (a), rx (b), uz (c), and rz (d) in perfect adhesion. Horizontal 

displacement ubx,0 is referred to the centreline of layer or beam (respectively thin solid or thin 

dashed line in (a)).  

 
Fig. 3.8. Layer loaded by varying horizontal pressure px at central. Nondimensional values of ux 

(a), xx (b), uz (c), and zz (d) in perfect adhesion. 
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3.4.2  Layer loaded by pressure at one end 

The same interaction layer-substrate problem has been investigated in this Section 

applying pressure at one end. Vertical or horizontal uniform pressure and horizontal 

varying pressure are considered. Dimensionless relative displacements, substrate reactions 

and plate stresses are reported using a mesh with 32 uniform rectangle elements. 

Moreover, an analogous beam-substrate problem assuming Euler-Bernoulli or Timoshenko 

beam theory bonded in perfect adhesion with 512 uniform elements is compared. 

 

3.4.2.1 Layer loaded by uniform vertical pressure pz  

When the layer is subjected to a uniform vertical pressure pz at one end, the highest 

displacement, substrate reaction or stress is located at the area of the load section. The 

following results are reported when the pressure is applied toward up-direction.  

Relative horizontal displacements, assessed along the substrate boundary, are positive, 

indeed tend to stretch the layer-substrate system. Contrarily, the horizontal displacements 

at centroidal axis of layer show negative sign with absolute values lower, Fig. 3.9a. In 

particular, the negative horizontal displacements indicate that layer-substrate systems tend 

to contract. This feature is shown in the plot of layer displacements, Fig. 3.10a, with values 

relative to unloaded edge end. In Fig. 3.9b, shear substrate reactions show negative value at 

the ends with an opposite sign peak near the load section. The zone of layer with 

compression and tension fibre is reported in Fig. 3.10b by means of plate stress in x-

direction. As expected, the relative vertical displacements are all negative, Fig. 3.9c and 

3.10c, as well as the normal substrate reaction, Fig. 3.9d. These effects make an uplift, 

highlighted even by stresses in z-direction of the layer, Fig. 3.10d. 

 

3.4.1.2 Layer loaded by uniform horizontal pressure px  

A layer loaded by a uniform horizontal pressure, having resultant Px = px Ab, toward 

positive direction of x-axis and applied at one end, is studied consequently.  

Dimensionless displacements and reactions along the boundary substrate are reported in 

Fig. 3.11. Moreover, the horizontal displacements assess at the centroidal axis of layer, ux,0, 

are shown in Fig. 3.11a. Two remarkable peaks appear in the shear substrate reaction, Fig. 

3.11b. The effect of stretch is highlighted by horizontal displacement, while the uplift in 

the left zone or the lowering in the right zone of layer could be noted by vertical 

displacements, Fig. 3.11c. The normal substrate reaction values turn out with opposite 
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peaks at the two ends, Fig. 3.11d. Nondimensional displacements and stresses into the 

layer are illustrated in Fig. 3.12. The positive horizontal displacements are affirmed in Fig. 

3.12a, indeed all fibres of the layer are in tension, Fig. 3.12b. The vertical displacement of 

the layer, Fig. 3.12c, describes the uplift and lowering effect as mentioned. Finally, two 

peaks of stress in z-direction at the contact of edge ends of the layer are shown in Fig. 

3.12d. 

 

3.4.1.3 Layer loaded by varying horizontal pressure px  

A varying horizontal pressure is applied at one end of the layer such that simulates a 

moment described by a counter-clockwise couple. Dimensionless displacements and 

substrate reactions are shown in Fig. 3.13, where displacements are relative to the value at 

unload edge end (x/L = 0.5). In particular, the stretch behaviour of layer is shown by 

positive value of horizontal interfacial displacements reported between the interval [0.3, 

0.5]/L, instead elsewhere negative values are found, Fig. 3.13a. Moreover, the horizontal 

displacements are reported in the layer, Fig. 3.14a. The maximum peak of shear substrate 

reactions is shown in Fig. 3.13b, provides tension at the bottom fibres and compression at 

the top fibres of layer, Fig. 3.14b. An uplift of layer occurs at the end where the pressure is 

applied. This behaviour is shown by the negative value of relative vertical displacements, 

Figs 3.13c and 3.14c. Finally, normal substrate reaction, Fig. 3.13d, and stresses in z-

direction of the layer, Fig. 3.14d, put in evidence a peak at the load region and close to the 

contact. 
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Fig. 3.9. Layer loaded by uniform vertical pressure pz at one end (solid line) and analogous 

Timoshenko beam (L/h = 10 L = 10,  = 0.024) subjected to point Pz at same end section (dashed 

line). Nondimensional values of ux (a), rx (b), uz (c), and rz (d) in perfect adhesion. Horizontal 

displacement ubx,0 is referred to the centreline of layer or beam (respectively thin solid or thin 

dashed line in (a)). 

 

 
Fig. 3.10. Layer loaded by uniform vertical pressure pz at one end. Nondimensional values of ux (a), 

xx (b), uz (c), and zz (d) in perfect adhesion. 
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Fig. 3.11. Layer loaded by uniform horizontal pressure px at one end (solid line) and analogous 

Euler-Bernoulli beam (L/h = 10 L = 10) subjected to point Px at same end section (dashed line). 

Nondimensional values of ux (a), rx (b), uz (c), and rz (d) in perfect adhesion. Horizontal 

displacement ubx,0 is referred to the centreline of layer or beam (respectively thin solid or thin 

dashed line in (a)). 

 

Fig. 3.12. Layer loaded by uniform horizontal pressure px at one end. Nondimensional values of ux 

(a), xx (b), uz (c), and zz (d) in perfect adhesion.  
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Fig. 3.13. Layer loaded by varying horizontal pressure px at one end (solid line) and analogous 

Timoshenko beam (L/h = 10 L = 10,  = 0.024) subjected to couple C at same end section 

(dashed line). Nondimensional values of ux (a), rx (b), uz (c), and rz (d) in perfect adhesion. 

Horizontal displacement ubx,0 is referred to the centreline of layer or beam (respectively thin solid 

or thin dashed line in (a)). 

 
Fig. 3.14. Layer loaded by varying horizontal pressure px at one end. Nondimensional values of ux 

(a), xx (b), uz (c), and zz (d) in perfect adhesion. 
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3.4.3  Layer loaded by two pressures at ends 

The goal of examples in this Section is to investigate the contact behaviour with symmetric 

or antisymmetric load condition, where two pressures at the edge ends of layer are applied. 

An elastic isotropic layer, with ratio L/h = 10 and L = 10, bonded to a half-plane is 

examined. For the layer, a rectangular mesh refinement of nel = 128, having in the x-

direction nel,x = 32 and in the z-direction nel,z = 4 is used. The same number of subdivision 

along the x-direction is assumed for the half-plane. Dimensionless results of the 

displacements and substrate reactions are reported. Furthermore, dimensionless stresses in 

x and z direction of the layer are calculated through the post-processing analysis. Finally, 

results obtained by the interaction of an analogous beam-substrate system, assuming the 

Euler-Bernoulli beam theory, and using a uniform mesh of nel = 512, has been reported for 

comparison. 

 

3.4.3.1 Layer loaded by symmetric uniform vertical pressure pz  

The contact layer-substrate problem with two uniform vertical pressure pz at the edge ends 

of layer and both are applied toward up-direction, is illustrated in Figs. 3.15 and 3.16.  

An antisymmetric behaviour of the horizontal displacement is found, where values become 

opposite sign reaching the top layer, Fig. 3.15a and Fig. 3.16a. The same antisymmetric 

behaviour is shown in the shear substrate reaction, Fig. 3.15b, having opposite peaks at the 

two ends. The effect provides a tension stress at the bottom and a compression stress at the 

top of layer, as shown the stress in x-direction (xx), Fig. 3.16b. The vertical displacement 

turns out to be symmetric, Fig. 3.15c, with the maximum value at x = 0 and constant along 

the cross-section, Fig. 3.16c. In particular, both figures show relative displacements with 

respect to its end value. With regard to normal substrate reaction, the magnitude is almost 

constant in the interval [0.25, 0.25]/L, and increase at the ends, Fig, 3.15d. Nevertheless, 

stresses in z-direction of the layer show peak values at the contact ends, which decrease 

toward the top of layer, Fig. 3.16d. 

 

3.4.3.2 Layer loaded by antisymmetric uniform vertical pressure pz  

Results in figures 3.17 and 3.18 show the case of the layer subject to two antisymmetric 

and uniform vertical pressures pz applied at the ends.  

Relative horizontal displacements (ux, and ux,0) are plotted with regard to their end 

values. In particular, the maximum interfacial horizontal displacement ux occurs at the 
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midspan, Fig. 3.17a. While, the horizontal displacements reported in the layer are relative 

to the end value at centroidal axis, Fig. 3.18a. and obviously are not zero at the ends of the 

contact. A symmetric shear substrate reaction occurs, showing two negative peaks before 

to reach the edge ends, Fig. 3.17b. The stress of layer in x-direction changes sign along the 

cross-section, showing at the right side of layer a tension zone at the bottom and a 

compression zone at the top of fibres, vice versa happens in the other side, Fig. 3.18b. With 

regard to vertical displacements, negative values appear in the interval [0.5, 0)/L while 

those positive into (0, 0.5]/L, giving a clockwise rotation, Figs. 3.17c and 3.18c. Normal 

substrate reaction turns out antisymmetric with the maximum values occur at the ends, 

Figs. 3.17d. The same remark is shown in Fig. 3.18d with peaks of stress in z-direction at 

the ends of contact.  

 

3.4.3.3 Layer loaded by symmetric uniform horizontal pressure px  

A layer subjected to tension load generated by two opposite and uniform horizontal 

pressure px is analysed. 

The solutions in terms of horizontal displacement are reported in Figs. 3.19a and 3.20a, 

where the values in the contact region (ux) and along centroidal axis of layer (ux,0) are quite 

similar. An antisymmetric behaviour of shear substrate reactions (rx) are shown in Fig. 

3.19b. The stresses in x-direction (xx) are all positive, Fig 3.20b, and are not constant 

along the cross-section. The lifting effect could be observed by negative values of the 

vertical displacement with maximum at the midspan, Figs. 3.19c and 3.20c. Finally, 

constant normal substrate reactions, Fig. 3.19d, and constant stresses in z-direction, Fig. 

3.20d, are found into [0.25, 0.25]/L, while the peak values are reached at the ends.  

 

3.4.3.4 Layer loaded by antisymmetric uniform horizontal pressure px  

Considering the same layer subjected to two uniform horizontal pressure px at ends but 

toward the positive direction of x-axis. The effect of antisymmetric load condition provides 

symmetric horizontal displacement and shear substrate reaction. While vertical 

displacement and normal substrate reaction turn out to be antisymmetric. 

The horizontal displacements (ux and ux,0), plotted in Fig. 3.21a, are either relative to 

their end value. The interfacial displacements ux have absolute relative values lower than 

ux,0. Difference reference is taken for the Fig. 3.22a, where the value is zero at half-height 

of the edge ends. With regard to shear substrate reactions, a good agreement between 
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layer-substrate and beam-substrate is delineated, showing positive values throughout the 

contact, Fig. 3.21b. The compression and tension zone are shown through xx, Fig. 3.22b. 

The two pressures provide a clockwise rotation, clearly evident by vertical displacements, 

Figs. 3.21c and 3.22c. Normal substrate reactions and stresses in z-direction emphasize 

peak values occur at ends of the contact, Figs 3.21d and 3.22d. 

 

3.4.3.5 Layer loaded by symmetric varying horizontal pressure px  

The simulation of two couple at ends could be produced by a varying horizontal pressure 

px along the cross-section. The direction of pressure depend on couple direction which, in  

this Section, provide tension at the top fibres of layer. 

The interfacial horizontal displacements ux tend to contract throughout the contact, 

while stretched behaviour is observed along centroidal-axis of the layer, Fig 3.23a. This 

effect is also marked in Fig. 3.24a. Antisymmetric behaviour of shear substrate reaction is 

reported in Fig. 3.23b. Besides the tense zone at the top and compression region at the 

bottom of layer are confirmed in Fig. 3.24b. The vertical displacements result negative and 

are constant along the cross-section, Figs. 3.23c and 3.24c. Finally, two peaks of the 

normal reactions (rz) are found before to reach the edge ends where maximum values 

occur, Figs. 3.23d. Moreover, the behaviour of stress in z-direction (zz) is reported in Fig. 

3.24d, showing high values at the ends, as expected. 

 

3.4.3.6 Layer loaded by antisymmetric varying horizontal pressure px  

A layer loaded by two horizontal pressure px which vary along cross-section such that have 

the purpose to simulate two antisymmetric couples in clockwise direction, is analysed. 

The antisymmetric load condition provides symmetric behaviour of the horizontal 

displacement and shear reaction, while the vertical displacement and normal reaction turn 

out antisymmetric. The relative horizontal displacements ux and ux,0 are reported in Fig. 

3.25a, showing opposite sign each other, Fig. 3.26a. Constant and positive shear substrate 

reactions occur in the interval [0.25, 0.25]/L, which become negative with peak value at 

the two ends, Fig. 3.25b. Tension fibres at the bottom and compression fibres at the top are 

on the left side of layer, while vice versa happen on the right side, Fig. 3.26b. The spin of 

layer in the clockwise direction could be noticed by the vertical displacements Fig. 3.25c 

and 3.26c. Finally, normal substrate reaction and layer stresses in z-direction show in Fig. 

3.25d and 3.26d report both high values at ends of the contact. 
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Fig. 3.15. Layer loaded by symmetric uniform vertical pressure pz at ends (solid line) and 

analogous Euler-Bernoulli beam (L/h = 10 L = 10) subjected to point Pz at ends (dashed line). 

Nondimensional values of ux (a), rx (b), uz (c), and rz (d) in perfect adhesion. Horizontal 

displacement ubx,0 is referred to the centreline of layer or beam (respectively thin solid or thin 

dashed line in (a)). 

 
Fig. 3.16. Layer loaded by symmetric uniform vertical pressure pz at ends. Nondimensional values 

of ux (a), xx (b), uz (c), and zz (d) in perfect adhesion.  
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Fig. 3.17. Layer loaded by antisymmetric uniform vertical pressure pz at ends (solid line) and 

analogous Euler-Bernoulli beam (L/h = 10 L = 10) subjected to point Pz at ends (dashed line). 

Nondimensional values of ux (a), rx (b), uz (c), and rz (d) in perfect adhesion. Horizontal 

displacement ubx,0 is referred to the centreline of layer or beam (respectively thin solid or thin 

dashed line in (a)). 

 
Fig. 3.18. Layer loaded by antisymmetric uniform vertical pressure pz at ends. Nondimensional 

values of ux (a), xx (b), uz (c), and zz (d) in perfect adhesion.  
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Fig. 3.19. Layer loaded by symmetric uniform horizontal pressure px at ends (solid line) and 

analogous Euler-Bernoulli beam (L/h = 10 L = 10) subjected to point Px at ends (dashed line). 

Nondimensional values of ux (a), rx (b), uz (c), and rz (d) in perfect adhesion. Horizontal 

displacement ubx,0 is referred to the centreline of layer or beam (respectively thin solid or thin 

dashed line in (a)). 

 
Fig. 3.20. Layer loaded by symmetric uniform horizontal pressure px at ends. Nondimensional 

values of ux (a), xx (b), uz (c), and zz (d) in perfect adhesion. 
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Fig. 3.21. Layer loaded by antisymmetric uniform horizontal pressure px at ends (solid line) and 

analogous Euler-Bernoulli beam (L/h = 10 L = 10) subjected to point Px at ends (dashed line). 

Nondimensional values of ux (a), rx (b), uz (c), and rz (d) in perfect adhesion. Horizontal 

displacement ubx,0 is referred to the centreline of layer or beam (respectively thin solid or thin 

dashed line in (a)). 

 

 
Fig. 3.22. Layer loaded by antisymmetric uniform horizontal pressure px at ends. Nondimensional 

values of ux (a), xx (b), uz (c), and zz (d) in perfect adhesion.  
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Fig. 3.23. Layer loaded by symmetric varying horizontal pressure px at ends (solid line) and 

analogous Euler-Bernoulli beam (L/h = 10 L = 10) subjected to couple C at same sections 

(dashed line). Nondimensional values of ux (a), rx (b), uz (c), and rz (d) in perfect adhesion. 

Horizontal displacement ubx,0 is referred to the centreline of layer or beam (respectively thin solid 

or thin dashed line in (a)). 

 

Fig. 3.24. Layer loaded by symmetric varying horizontal pressure px at ends. Nondimensional 

values of ux (a), xx (b), uz (c), and zz (d) in perfect adhesion. 
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Fig. 3.25. Layer loaded by antisymmetric varying horizontal pressure px at ends (solid line) and 

analogous Euler-Bernoulli beam (L/h = 10 L = 10) subjected to couple C at same sections 

(dashed line). Nondimensional values of ux (a), rx (b), uz (c), and rz (d) in perfect adhesion. 

Horizontal displacement ubx,0 is referred to the centreline of layer or beam (respectively thin solid 

or thin dashed line in (a)). 

 

Fig. 3.26. Layer loaded by antisymmetric varying horizontal pressure px at ends. Nondimensional 

values of ux (a), xx (b), uz (c), and zz (d) in perfect adhesion.  
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3.4.4  Embankment subjects to foundation beam and resting on half-plane soil 

A number of researchers have examined the behaviour of reinforced embankments 

providing the basis for the development of design methods. The current design methods are 

usually based on limit equilibrium analysis which is relatively simple but can not 

adequately describe soil-reinforcement interaction. The tensile force of the geogrid is 

directly related to its service performance. When the tensile force of the geogrid is larger 

than the anchoring force provided by the resistance on the interface between the geogrid 

and soil, the geogrid will be pulled out or even be ruptured. The effect, behaviour and 

design of geosynthetic-reinforced embankments over soil have attracted considerable 

attention in the literature. Numerical analysis results and laboratory model test of cases 

with and without reinforcement has been discussed and compared. The results indicate that 

the reinforcement had a positive effect on embankment stability and did not have an 

obvious effect on the subsoil response. In other words, geosynthetic reinforcements within 

an embankment constructed on soft soils can substantially improve stability without 

influence on settlement, allowing construction to heights in excess of that which would be 

practicable without reinforcement. The analysis and design of embankments require 

consideration of soil-structure interaction, where the effectiveness of the reinforcement 

depend on the relative stress and strain of the embankment-subsoil contact.  

An example of embankment, subjected to a load foundation, resting on subsoil is 

reported. Two embankments with same length L = 3 m, but different height H (1 or 0.5 m) 

are studied with a foundation beam at the top middle and loaded by a vertical force equal 

to 1000 KN/m downwards and at the midspan. Plane strain state analysis is conducted by 

assuming the length of the foundation beam 1 m, and ratio length-to-height equal to 10. 

The foundation is made of concrete having Young's modulus Eb = 30 GPa and Poisson's 

coefficient b = 0.2. Euler-Bernoulli theory is assumed subdividing the beam into 8 

uniform FEs. An isotropic elastic material soil is supposed for the embankment and subsoil 

with mechanic parameter Es = 0.2 GPa and s = 0.3. Perfect adhesion has been set between 

the contact of the embankment and half-plane soil. Dimensional horizontal, vertical 

displacements [mm] and tangential, normal reactions [MPa] underneath embankment are 

reported in Fig. 3.27. In particular, higher values of displacements and reactions are 

obtained for the lower embankment because of high load pressure near the base of 

embankment. Notice that, doubling the height of embankment, the maximum tangential 

reaction (rx) decreases of 35%, Fig. 3.27b. While, the vertical displacement at the bottom 

middle of embankment decreases about 20%, Fig. 3.27c, halving the corresponding normal 
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boundary reaction (rz),  Fig. 3.27d. Moreover, displacements (ux, uz) and stresses (xx, zz) 

into the embankment are shown in Figs. 3.28 and 3.29 for the dike correspondingly high H 

= 0.5 m and 1 m. A contraction behaviour turns out along the length of embankment, 

clearly indicated by opposite sign of horizontal displacements with a strongly difference at 

the top side. Besides, a peak stress in x-direction occurs at the beam ends. Finally, high 

vertical displacement and the corresponding stresses in z-direction are reported underneath 

the beam foundation, where their distribution depend on the beam stiffness.  
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Fig. 3.27. Embankment (L = 3 m) subjected to load foundation (Pz = 1 MN/m) and resting on half-

plane soil. Interfacial displacements [mm] (a, c) and boundary substrate reactions [MPa] (b, d) of 

an embankment having height H = 1 m (solid line) and 0.5 m (dashed line). 
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Fig. 3.28. Embankment (L = 3 m, H = 0.5 m) subjected to load foundation (Pz = 1 MN/m) and 

resting on half-plane soil. Plate displacements [mm] (a, c) and plate stress [MPa] (b, d). 

 

 
Fig. 3.29. Embankment (L = 3 m, H = 1 m) subjected to load foundation (Pz = 1 MN/m) and resting 

on half-plane soil. Plate displacements [mm] (a, c) and plate stress [MPa] (b, d). 
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3.5  Conclusions 

The couple FE-BIE method is used to evaluate the mechanical behaviour of elastic finite 

layer bounded in perfect adhesion to a homogeneous half-plane under horizontal or vertical 

pressure. The FE method is used to describe the plane element of the layer, whereas the 

behaviour of the semi-infinite substrate has been represented by the BIE approach. 

A mixed variational formulation involving the Green function of the half-plane, 

providing a proper relation between horizontal, vertical displacements and shear, normal 

interfacial stresses. The proposed method is used to study in detail the contact problem of 

an elastic quadrilateral element bonded to a half-plane. Displacement field of the 

quadrilateral element has been interpolated by means of the Lagrange shape function in the 

four nodes.  

Interaction of a stiffener resting on a substrate, adopting two-dimensional finite element 

(layer) or one-dimensional finite element (beam) for the reinforcement, are analysed with 

various load condition. A good agreement, in terms of displacements and boundary 

substrate reactions, is obtained for the system having radio length-to-height of the stiffener 

L/h =  10 and parameter L = 10. Moreover, through the post-processing analysis, plane 

stresses in x and z direction are calculated showing the tension or compression zones of the 

layer.     

Furthermore, a model of a foundation resting on an embankment which lying on a half-

plane subsoil has been proposed. The aim of this analysis is to determine the interfacial 

stress for the project of geosynthetic reinforcements having mainly the purpose of 

improving the stability of embankment. The investigation is done with two embankments 

having the same mechanical properties and length L but different height H. The foundation 

is discretized by means of a uniform mesh of 8 beam FEs. The load are applied at midspan 

of the foundation which is collocated at the top middle of the embankment. A mesh with 

quadrilateral elements is used to descretize the embankment that is bonded in perfect 

adhesion to the subsoil. The proposed formulation shows to be effective to assess the 

deformation and soil reactions of an embankment on an elastic subsoil. 
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4  Linear and Non-linear static analysis of bar attached to 

elastic half-plane 

 

4.1 Introduction 

In the last few decades, repairing and strengthening of existing structures made of 

concrete and masonry [1, 2], or rehabilitation of tubular steel structures [3, 4, 5] emerge as 

a cutting edge issue in structural engineering. The use of Fibre Reinforced Polymer (FRP) 

strips became more and more common as a technical solution, reducing times of 

installation with great advantages in terms of structural efficiency. Plenty of studies focus 

on the issue of strengthening Reinforced Concrete (RC) members with externally bonded 

FRP sheets [6]. A simply solution of a beam reinforced is presented by Taljsten, Qiao et al. 

[7, 8] using an elastic linear behaviour for the adhesive interface. In particular, the effect of 

the deformation has been studied assuming the Euler-Bernoulli theory, transferring normal 

and tangential stresses from the top and bottom adhered through a thin adhesive layer 

bonded perfectly.    

In the present chapter, the problem of a reinforcement attached to an infinite substrate 

has been reconsidered under the hypothesis no perfect adhesion between two bodies. A 

couple Finite Element-Boundary Integral Equation (FE-BIE) model is implemented, 

assuming a jump of  displacement (slip) between the two elements. The contact link 

between reinforcement and substrate, so-called "weak interface", is firstly assumed linearly 

proportional to the interface reactions. Comparing some numerical results with analytic 

solution in the literature, results show how the interface stiffness influences the 

displacements and reactions solutions. The problem of transmission of stress in the case 

with a concentrated force acting on the middle of a reinforcement have been calculated and 

checked with the close-form of Melan's solution [9], who, in 1932, determined the 

interface tangential stress between a infinite stiffener and an infinite linear elastic sheet. 

Several authors have reconsidered and extended the Melan's soluction, especially in the 

field of reinforcing aircraft structures and, later, in the field of fibro-reinforced composites. 

Russian schools have also studied the previously cited work, their numerous contributions 

are summarized in Grigolyuk and Tolkachev [10]. 

A non-linear analysis of the proposed numerical model is adopted for simulating the 

debonding in FRP-strengthened reinforced concrete substrate. The mechanical properties 
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of adhesive interaction between composite strip and substrate can be obtained throughout 

pull-out tests, adopting different layouts such as single slipping test with fixed back side 

[11] or double pull-out shear schemes [12], to predict an intermediate crack (IC) [13] and 

critical diagonal crack (CDC) [14] debonding failure. Theoretical models are currently 

available to simulate the debonding failure. Closed-form solutions [15, 16], numerical 

models [17, 18], as well as codes and standards issues derived from simplified mechanical 

models calibrated by means of experimental results [19], are generally aimed at predicting 

the bond-slip response of FRP strips glued to substrate. These formulations are generally 

based on adopting "a priori" analytical expression for describing the interface bond-slip 

law, assuming a fracture process in pure "mode II", disregarding the effect of interface 

normal stress (peeling) and occurrence of out-of-plane displacement (uplift). Although, the 

interface peeling stress and uplift, experimentally observed through advanced optical 

systems [20], are developed by eccentricity between applied force and interface. Recently 

models [21, 22] have demonstrated, taking into these components which affect the ultimate 

bearing capacity of the adhesive joint, a negligible influence on the distribution of interface 

slips throughout the contact.  

A comparison of the present model, with experimental results and the prediction of 

another model found in the literature, is made to validate the novel aspect based on 

assuming "a priori" of a bilinear bond-slip law applied into the FE-BIE method, simulating 

the behaviour of the adhesive interface in pure mode II.  

 

4.2 Variational formulation 

An elastic bar with length L and cross section A attached on an elastic half-plane is 

considered, as shown in Fig. 4.1. Reference is made to a Cartesian coordinate system (O, x, 

z) centred at the middle of bar, with the vertical axis z directed toward the half-plane and 

the x-axis placed along the interface. Both the bar and the semi-infinite substrate are made 

of homogeneous and isotropic solids. Where elastic constants Eb and b are the Young's 

modulus and Poisson's coefficient of the bar, whereas Es and s characterise the substrate. 

Generalised plane stress or plane strain regime can be considered in the present 

formulation. For the later state, the width of the half-plane b will be assumed unitary. The 

thickness of the coating is assumed thin, so making possible to neglect its bending 

stiffness. Being ignored the vertical component of reactions (peeling stress), only shear 
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stress rx(x) occurs along the contact region. The system is subjected to a generically 

distributed horizontal load px(x) or thermal variation ΔT(x). 

Unlike of the contact between bar and half-plane proposed by Tullini, et al. [23], the 

adhesion could be considered as a third material with its mechanical characteristics. This 

assumption involves the development of bar and half-plane displacements, ux,b and ux,s. 

 

  

Fig. 4.1. Bar weakly attached on semi-infinite substrate (a), and free-body diagram (b). 

 

4.2.1  Total potential energy for the bar 

Using the strain components εx = u'x(x) and the constitutive laws σx,b = E0 εx(x). The strain 

energy of a bar long L, in terms of mechanical and thermal components of axial strain [24], 

can be written as follows:  

,d])([)(
2

1 2
00,bar  

L xbx xTxuxAEdU  (4.1) 

where the Young's modulus of bar and coefficient of thermal expansion are 

correspondently  E0 = Eb, α0 = αb for a generalized plane stress or E0 = Eb/(1
2
b ), α0 = 

(1+b)αb for plane strain state. It is worth noting that axial force in the bar is N(x) = 

E0A(x)[u'x (x)α0ΔT] and prime denotes differentiation with respect to x. 

Thus, the potential energies for the bar Π
bar

 can be written as the strain energy Ubar 

minus the work related to the external loads, as following 

.d)()]()([barbar  
L xxx xxuxrxpbU  (4.2) 

 

4.2.2  Total potential energy for the substrate 

The solutions of the elastic problem for a homogeneous isotropic half-plane loaded by a 

point force to its boundary are known as Flamant or Cerruti solutions [25]. In particular, 
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the horizontal displacement u(x) due to the interfacial tractions acting along the boundary 

between the half-plane and the bar can be found by integrating 

 L xx xdxrxxgxu ,ˆ)ˆ()ˆ,()(  (4.3) 

where the Green function )ˆ,( xxg can be expressed  

.
ˆ

ln
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)ˆ,(
d

xx

E
xxg




   (4.4) 

In Eq. (4.4), E = Es or E = Es/(1
2
s ) in the plane stress or plane strain, respectively, and d 

is an arbitrary length associated with a rigid displacement.  

Using the theorem of work and energy for exterior domains [26], the strain energy 

stored in the half-plane is 

,d)()(
2

soil 
L xx xxuxr

b
U  (4.5) 

hence the potential energy of the half-plane Π
soil can be rewritten as the strain energy Usoil 

minus the work related to the external loads 

,d)()(
soilsoil 

L xx xxuxrbU  (4.6)  

replacing the Eq. (4.3) into the Eq. (4.6) is obtained 

 
L L xx xxrxxgxxr

b
.ˆd)ˆ()ˆ,(d)(

2
soil   (4.7) 

 

4.2.3  Total potential energy for the adhesive 

Adding the interface energy into the total potential energy of the system, it can be 

described also the behaviour of adhesive between the contact surface and of many kinds of 

not perfect bonding such as fractured and damaged. In fact, when a stiffener is glued to a 

support by an adhesive, there is a jump of displacement which is proportional to the 

transmission stress, although the continuity of the tension is maintained for equilibrium. 

Therefore, assuming the transmission stress linearly depends on the jump of displacement 

ux between bar and half-plane displacement as 

,)( ,, xxsxbxxx ukuukr   (4.8) 
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where parameter kx summarizes mechanical characteristics of the interface, and it can be 

resolved from elastic moduli of the interface on the basis of formulas reported [9]. The 

variation of displacement ux between bar and half-plane can be written as 

.
x

x
x

k

r
u 

  (4.9) 

Noting that from a physical point of view, this interface energy is like the energy of a 

lot of springs spreadable between bar and half-plane. Assuming the complementary 

energy, it may be written as 

.
22

2

spring  
L

x

x

L xx
k

rb
dxur

b
 (4.10) 

 

4.2.4  Total potential energy for the bar-adhesive-substrate system 

Maxing use of Eqs. (4.2), (4.7) and (4.10), the total potential energy of the whole system 

turns out to be 

,),( springsoilbar  xx ru  (4.11) 

which is a mixed variational formulation represented by bar displacement ux = ux,b and 

interfacial shear tractions rx along the contact region. Nonetheless Eq. (4.11) has been 

suggested to axially study, namely bar resting on elastic half-plane, similar variational 

formulation could also be applied for a Timoshenko beam underlying soil [27].  Useful 

mathematical references of contact problem are found [28, 29, 30], where the variational 

problem and the corresponding Galerkin solution is well-posed.  

 

4.3  Finite element model 

The bar and substrate are subdivided into FEs of length li = |xi+1  xi| where xi+1 is end and xi 

initial coordinates. Axial displacements field ux are characterized in each finite element by 

vector N() which containing the shape functions, and by nodal displacements uxi, as 

shown  

ux(ξ) = [N(ξ)]
T
 uxi , (4.12) 
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where = x/li represents the dimensionless local coordinate. Using a set of linear Lagrange 

polynomials, where the shape functions Ni() are N1 = 1and N2 = or quadratic 

Lagrange polynomials by means of N1 = 1

 N2 = 4 and N3 = . 

The mesh of the half-plane boundary can be defined independently of the bar, but 

similar subdivision has been adopted. The approximation soil reaction can be described as 

rx(ξ)= [ρ(ξ)]
T
 rx,i , (4.13) 

where rx,i is the known vectors of nodal substrate reaction while ρ(ξ) assembles the shape 

functions. 

Substituting Eqs. (4.12) and (4.13) in variational principle (4.11) and assembling over 

all the elements, the potential energy takes the expression 
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TTTTT
xkxxxxxxxxxxxxxaxxx rGrrGrrHufuuKuru    (4.14) 

where aK  is the bar stiffness matrix and fx the external load vector, whose elements take 

the usual form 
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The components of matrices Hxx and Gxx are given by the following expressions 
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Imposing the potential energy functional to be stationary, the solution of the problem is 

given by 
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it can be written in matrix form as following  
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The solution of Eq. (4.20) provides the nodal displacements and tractions 
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rx = (Gxx+Gkx)
-1

 Hxx
T
 ux , (4.21)  

(Ka + Ksoil) ux = fx , (4.22) 

where Ksoil is the stiffness matrix for the substrate in the weak interface condition, defined 

as: 

Ksoil = Hxx (Gxx+Gkx)
-1

 Hxx
T
. (4.23) 

The Eq. (4.22) represents the discrete system of equations governing the response of the 

bar-adhesive-substrate system. 

In the case of a bar detached from the substrate between the nodes d1 and d2, no shear 

stress is transmitted, the bar stiffness matrix aK  is assembled as usual and system (4.20) 

can be partitioned as follows: 
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where ux,L = [ux,L1, ..., ux,Ln]
T
 and ux,R = [ux,R1, ..., ux,Rn]

T
 are the nodal displacements at the 

left and right side of the detached region having nodal displacements ux,d  = [ux,d1, ..., ux,dn]
T
 

and fx,L, fx,R and fx,d are the corresponding external load vectors. Moreover, tractions rx as 

well as matrices Hxx,L, Hxx,R are defined in the bar FEs attached to the substrate only. The 

set of the vectors ux,L, ux,d and ux,R give the total vector ux.   

 

4.3.1 Prismatic bar subjected to uniform loads and thermal variation 

As for the discrete problem, a prismatic bar element subjected to uniform loads px and 

thermal variation with one constant substrate pressure has been considered. Bar stiffness 

matrix aK , vector of equivalent external load Fx and matrix Hxx can be rewritten for the 

case of Lagrange linear functions as  
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while for Lagrange quadratic functions as  
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Finally, components of matrix G are as follows 
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where G(x) = x
2
/2 ln|x| and parameter d has been omitted since a rigid-body displacement.  

 

4.3.2 Solution and post-computation 

The solution of the FE-BIE analysis, Eq. (4.20), gives nodal displacement of bar ux = ux,b 

and substrate reaction rx. Once the nodal values of the primary variables are known, we can 

use their to computer the desired quantities, such as the axial force N and the displacement 

of the substrate ux,s. This process of computing is termed post-computation or post-

processing, these words are meant to indicate that further computations are made after 

obtaining the solution of the equation system. It is worth noting that the derivative duxi/dx 

of the approximation uxi based on Lagrange interpolation is discontinuous, for any order 

element. The error of the strain ε, therefore axial force of the bar N, decreases when 

increasing the number of elements and/or the degree of interpolation.  

In summary, the general flow of the proposed analysis of reinforcement bar resting on 

elastic substrate requires that the following steps be taken: 

-  discretize the bar element and the underlying substrate by dividing them into FEs; 

-  calculate element matrices aiK , Hxxi and vectors fxi for every element; 

-  assemble element matrices aiK  and vectors fxi into the global matrix aK  and vector fx; 
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- assemble element matrices Hxxi into the global matrix Hxx and calculate global matrix 

Gxxi and Gkxi; 

-  apply possible constraints to global matrix and vector as usual; 

-  solve the matrix equation Eq. (4.20) or Eq. (4.24) for the primary variables ux,b and rx; 

-  compute secondary variable ux,s and N. 

 

4.4 Numerical Examples 

Several loading cases of a bar with weak interface to the underlying half-plane are 

considered and discussed. Moreover they are compared with cases of perfect bonding. 

Similarly to [10] and to [23], the parameter characterising the elastic response of the bar-

substrate system is taken as 

.
0AE

LbE
L   (4.28) 

Low values of βL characterise short bar and stiffer than the substrate. The bar performs like 

an almost inextensible stiffener. Increase the values of βL, the bar become more flexible 

than the substrate. Then long bar bonded to stiff substrate, the values of βL is high. 

Introducing a new parameter γL which regard the weak interface. 

,
0

2

AE

Lk
L x  (4.29) 

where kx is the spring stiffness, representing the presence of third material, i.e. the layer of 

glue between bar and support. 

 

4.4.1 Bar loaded by a single horizontal point force at midpan or one end 

This section, a bar subject to a horizontal concentrated force Px applied at midspan, 

comparing with analytic solution given by Melan, or at one end section are considered. A 

number of 512 uniform finite elements is used, adopting quadratic Lagrange polynomials 

as shape functions for bar element including one equal constant substrate element.  

A simply uniform subdivision of mesh might not be able to describe a correctly 

behaviour at end section and close the concentrate force. In order to obtain accurate results, 

a power graded mesh is used, as was proposed in the Chapter 1, characterized by a grading 

exponent exp. It is worth noting that the refinement mesh turns out uniform using a unitary 
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grading exponent, while with values of exp > 1, elements close to end sections become 

smaller and those ones near the midpoint become bigger. Hence the results at midspan are 

not accurate. To get around this trouble, the graded mesh formulation [31] has been used 

twice along bar length, into the interval [-0.5, 0]/L and [0, +0.5]/L. So in this section, 

coordinate xj of the generic jth node of the mesh is given by following expression  
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being nel the total number of FEs. Uniform mesh is obtained by assuming exp = 1.  

 

4.4.1.1 Bar loaded by horizontal point force Px at midspan 

Dimensionless axial displacement ux/(Px/E), axial force N/Px and shear reaction rx/(Px/L) 

are reported versus the dimensionless abscissa x/L. In particular, perfect and weak bonding 

are plotted in Figs. 4.2, 4.3 and 4.4, assuming value of parameter βL equal to 1, 10, 100, 

respectively. The weak interface cases are reported with parameter L = 5 (solid line), 

whereas the perfect bonding (dashed line, L = inf.) was calculated by Tullini et al. [23].  

The case with βL = 1, in Fig. 4.2, shows the behaviour of an inextensible bar. Even 

though value of L is low, bar displacement ux,b, axial force and shear reaction of the weak 

interface case are similar to perfect bonding results. Only substrate displacement ux,s, 

appearing in the weak contact, is higher and tends to the value of bar displacement ux,b 

when the parameter L increased.     

With the same parameter L and rising βL, bar displacements of the weak interface 

increase, whereas substrate displacements decrease, Figs. 4.3a and 4.4a. Axial force keeps 

more or less a linearly behaviour along bar, exhibiting a discontinuity in correspondence at 

the point of load application. Basically, this linear effect turns out when interface boundary 

is low, Figs. 4.3b and 4.4b. In presence of a flexible bar, shear reactions assume low 

values, except at bar end and around load section. The peak of stresses is reduced with the 

weak contact, Figs. 4.3c and 4.4c, spreading tractions along the length of contact.  

Using a graded mesh with nel = 256 and exp = 3, by means of quadratic Lagrange 

polynomials as shape functions of the bar element, including one equal constant substrate 



 143 

element. Bar displacements and substrate reactions at the midpoint versus parameter βL 

and L are reported on logarithmic scale in Fig. 4.5 and 4.6, respectively. The bar 

displacement behaviour is linear versus βL and quite constant versus L, when the 

parameter βL is lower than 10. While, for higher values of βL, the linearity occurs reaching 

a enough high value of L. Substrate reactions at the midpoint are compared with Melan's 

solution, given by Lenci who considered an isotropic elastic infinite sheet [9]. 

The general distribution of tangential reaction rx of Melan's problem in the weak 

interface can be obtained from 
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Fig. 4.2. Bar (L = 1) loaded by a point force 

Px at midspan. Nondimensional values of ux 

(a), N (b) and rx (c) versus x/L for weak (solid 

line) and perfect contact (dashed line). 

 Fig. 4.3. Bar (L = 10) loaded by a point force 

Px at midspan. Nondimensional values of ux 

(a), N (b) and rx (c) versus x/L for weak (solid 

line) and perfect contact (dashed line). 

 



 144 

 

 

,

1
2

1
)(ˆ

2

2









s
LL

s
Psr xx   (4.31) 

using the inverse Fourier transform 




 dsesfxf isx)(ˆ
2

1
)(ˆ


, then the Eq. (31) can be 

expressed in x coordinate as following 
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Fig. 4.4. Bar (L = 100) loaded by a point 

force Px at midspan. Nondimensional values 

of ux (a), N (b) and rx (c) versus x/L for weak 

(solid line) and perfect contact (dashed line). 

 Fig. 4.5. Bar loaded by a point force Px at 

midspan. Nondimensional value of ux at the 

bar midpoint x/L = 0 versus L (a) and L (b). 
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where the constants α1 and α2 are 
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while )()cos()()sin()( xcixxsixxg  , with the sine integral si(x) and the cosine integral 

ci(x) express as 
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In the positive part of the x-axis, the transmission stress rx(x) is a decreasing function 

vanishing for x→∞. Therefore the maximum value is in x = 0 (rx,max= rx(0)). In the general 

case with kx, the Eq. (4.32) becomes  
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The Eq. (4.35), that represent the value of maximum substrate reaction, is plotted by dot 

line in Fig. 4.6a and b versus βL and γL, respectively. In particular in Fig. 4.6a, it could be 

observed that shear stresses versus βL become constant when the ratio βL /L > 1. 

Looking at the case of perfect bonding (kx→∞) therefore when γL→∞, the maximum 

shear stress rx,max, Eq. (4.35), tends to infinite. The term L [1(L/L)
2
]

-0.5 
of the Eq. 

(4.35) could be written in the following as L [(L/L)
2
1]

-0.5
. Notice that when the 

parameters βL and γL are equal, the shear reaction of the Eq. (4.35) can not be determined. 

The case in perfect bonding, Eq. (4.32) becomes 
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In the area of the point load (x→0), shear reaction of perfect bonding is given by  
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where for x→0, ci(x) ≈ γEul+ln(x)  and γEul ≈ 0.577 is the Euler constant. Equations (4.37) 

and (4.38) are reported in Tullini et al. [23]. 

In summery, the shear stress with weak interface is given by the Eq. (4.32), while the 

maximum value of shear stress rx,max is in x = 0, Eq.(4.35). For the perfect bonding, the 

shear stress is given by Eq. (4.36) or Eq. (4.37), where Eq. (4.38) is its maximum value. 
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Fig. 4.6. Bar loaded by a point force Px at midspan. Nondimensional value of rx at the bar midpoint 

x/L = 0 versus L (a) and L (b), with analytic solution (thin solid line with symbol). 
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Fig. 4.7. Bar loaded by a point force Px at midspan. Nondimensional value of rx in the 

neighbourhood of the midpoint bar with analytic solution (thin solid line with symbol) (a) and bar 

end (b). 



 147 

Dimensionless shear reactions rx in the neighbourhood of the midpoint bar versus βx[1-

(βL/γL)
2
]

-0.5
, Fig. 4.7a, and rx it the area of the bar end versus x/L, in Fig. 4.7b, are obtained 

by a mesh refinement by 202 logarithmically space, using bar elements with quadratic 

Lagrange polynomials as shape functions and one equal constant substrate element. 

Considering the substrate reaction close at the bar midpoint, in Fig. 4.7a is reported the 

condition using βL = 1 with γL = 10 and 100, as well as βL = 10 with γL = 100 and 1000. 

Moreover assuming value of βL bigger than 10, the substrate reactions are overlapped at 

the case βL = 10 with the corresponding ratio βL/γL. Furthermore, analytic solution is 

reported for the cases with βL/γL = 0,1 and 0,01 (dashed line in Fig. 4.7a). It is worth 

noting that different value of βL or L but with the same ratio βL/γL, shear stresses are 

characterised by the same slope. 

In the neighbourhood of the bar end, Fig. 4.7b, it is compared the case with γL = 50, 

varying βL to 1, 10 and 100. In particular, the case with γL = 50 and βL = 1, hence when 

βL/γL = 0.02, could be well approximated by the analytic expression of an inextensible 

stiffener given by 

  
.
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   (4.39) 

Decreasing the ratio βL/γL, the substrate reaction increases at the midpoint bar where the 

force is applied, and at the bar end. It is observed that the value of shear stress tends to the 

case in perfect contact, when the ratio βL/γL tends to zero.   

 

4.4.1.2 Bar loaded by horizontal point force Px at one end 

The case of a bar loaded by a horizontal point force Px at one end section is investigated, 

assuming the same parameters βL and γL of the previously example. Dimensionless values 

of displacements, axial force and substrate reaction along the bar are reported in Figs. 4.8, 

4.9, 4.10. 

Nevertheless for a short bar and stiffer than the substrate, case in Fig. 4.8 with βL = 1, 

bar displacement, axial force and shear stress of the weak contact are very similar to the 

perfect bonding, except substrate displacement which depend on the choice of interface 

parameter γL. 

With the same interface condition, in particular assuming γL = 5, the behaviour of a 

long bar and more flexible than the substrate is shown in Figs. 4.9 and 4.10 with the 

parameter βL = 10 and 100 respectively. Comparing to the perfect adhesion, bar 
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displacement ux,b increases, while substrate displacement ux,s decreases until it becomes 

about zero. Obviously, their different depend on the parameter γL assumed. Axial force 

tends to become almost linear along the bar, Figs. 4.9b and 4.10b, and the maximum shear 

reaction decreases transferring stresses everywhere along the length of contact, Figs. 4.9c 

and 4.10c. This is one of particular advantages of having weak bonding between 

reinforcement and substrate.   

As previously example, maximum axial displacements versus the parameter βL and γL 

are investigated using a graded mesh by nel = 256 and exp = 3 of quadratic bar elements 

including one equal substrate elements, Fig. 4.11. The maximum bar displacement 

increases when bar becomes long and flexible, whatever condition of adhesion is applied. 

Interesting are the maximum substrate reactions rx(x/L=0.5), Fig 4.12, which are constant 

varying the parameter βL and linear versus γL with the same slope. 
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Fig. 4.8. Bar (L = 1) loaded by a point force 

Px at one end. Nondimensional values of ux 

(a), N (b) and rx (c) versus x/L for weak (solid 

line) and perfect contact (dashed line). 

 Fig. 4.9. Bar (L = 10) loaded by a point force 

Px at one end. Nondimensional values of ux 

(a), N (b) and rx (c) versus x/L for weak (solid 

line) and perfect contact (dashed line). 
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Fig. 4.10. Bar (L = 100) loaded by a point 

force Px at one end. Nondimensional values of 

ux (a), N (b) and rx (c) versus x/L for weak 

(solid line) and perfect contact (dashed line). 

 Fig. 4.11. Bar loaded by a point force Px at 

one end. Nondimensional value of ux at the 

bar end x/L = 0.5 versus L (a) and L (b). 
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Fig. 4.12. Bar loaded by a point force Px at one end. Nondimensional value of rx at the bar end x/L 

= 0.5 versus L (a) and L (b). 
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4.4.1.3 Axial force of the bar loaded by Px at midspan or at one end 

As mentioned, axial forces and substrate displacements are calculated by means of post-

processing analysis. In particular, dimensionless axial force of the bar (βL = 10) loaded by 

Px at midpsan or at one end are reported in Fig. 4.13, versus βx  or βL/2 -βx respectively, 

and assuming two weak adhesion condition γL = 10 and 100. 

Moreover, the case with concentrated force, acting at midspan, is compared with axial 

force that is computed integrating the rx(x) of the Eq. (4.32) given by Melan's solution, 

permitting to conclude 
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where 1 and 2 are defined by Eq. (4.33) while f (x) = sin(x)ci(x)cos(x)si(x) with g(x) = 

df(x)/dx. The limit of N when x tend to 0 is equal to Px/2, as expect 
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The Eq. (4.40) is reported in Fig. 4.13a (line with symbol) where βL has been assumed 

about 9.999 for the case βL = 10 and γL = 10, because of Natural Logarithm.  
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Fig. 4.13. Bar loaded by a point force Px at midspan and one end. Nondimensional value of N in the 

neighbourhood of the midpoint bar with analytic solution (line with symbol) (a) and bar end (b). 
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4.4.2  Bar loaded by a double horizontal point forces at ends or inside 

The case of an elastic bar loaded by two opposite equal horizontal concentrate forces, each 

equal to Px/2, is considered. The forces are applied at ends, Fig. 4.14, or inside bar at x/L = 

 1/4 as shown Fig. 4.15, comparing with the analytic solution given by Melan. 

A number of 512 elements are used with a uniform mesh. Quadratic Langrange 

polynomials and piecewise constant functions are used to interpolate the bar displacements 

ux,b and shear tractions rx. A post-processing analysis is used to determine substrate 

displacements ux,s and axial force N. Nondimensional value of ux, N and rx versus x/L are 

reported for the weak adhesion with βL = 10 and γL = 5 and in perfect bonding (γL→∞).  

Noting that, for the weak interface condition, bar displacements increase, while 

substrate ones decrease. Besides their different become lower with the raise of γL. 

Nevertheless the magnitude of axial forces diminish and shear reactions are more 

distributed along the bar, reducing the peak close the force zones. Furthermore, the Melan's 

solution of an infinite stiffener shows that the interaction depends strongly on the 

properties of the interface, and on the distance between the forces. The shear traction of 

two equal and opposite forces P = Px/2, acting on the x-axis at the points x = d and x = +d 

is given by  
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Inverting Eq. (4.43) by using the inverse Fourier transform, one could be obtained  
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The expression of axial force N(x) is obtained integrating Eq. (4.44), when x < d 
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while if x > d 
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where α1, α2 are defined by Eq. (4.33), 3 = L[(L/L)
2
1]

-0.5
, while  

g(x) = sin(x)si(x)cos(x)ci(x) and f(x) = sin(x)ci(x)cos(x)si(x). 
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Fig. 4.14. Bar (L = 10) loaded by two 

opposite equal point force Px/2 at end. 

Nondimensional values of ux (a), N (b) and rx 

(c) versus x/L for weak (solid line) and perfect 

contact (dashed line). 

 Fig. 4.15. Bar (L = 10) loaded by two 

opposite equal point force Px/2 at x/L= 1/4. 

Nondimensional values of ux (a), N (b) and rx 

(c) versus x/L for weak (solid line) and perfect 

contact (dashed line). 
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Fig. 4.16. Bar loaded by two opposite equal point force Px/2 at end. Nondimensional value of rx (a) 

and N (b) in the neighbourhood of bar end with analytic solution (line with symbol). 
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In particular, shear tractions and axial force of the bar (βL = 10) loaded at end (d = 0.5), 

with two weak interface condition (γL = 5 and 50), are reported in Fig. 4.16a and b, 

respectively. 

Although, the Melan's solution, Eqs. (4.44) and (4.45), could not be compared with the 

result of the present analysis (FE-BIE) because a finite bar is considerate in the present 

problem. Results of shear reaction and axial forces of both analysis are quite equivalent.  
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Fig. 4.17. Bar (L = 10) loaded by a point 

force Px at one end and detached between x/L 

= 0.30 and 0.40. Nondimensional values of ux 

(a), N (b) and rx (c) versus x/L for weak (solid 

line) and perfect contact (dashed line). 

 Fig. 4.18. Bar (L = 10) subjected to a 

thermal variation -ΔT and detached between 

x/L = 0.30 and 0.40. Nondimensional values 

of ux (a), N (b) and rx (c) versus x/L for weak 

(solid line) and perfect contact (dashed line). 
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4.4.3  Detached bar subjected to horizontal point force at one end or thermal load 

In this section, a bar with βL = 10 and resting partially on an elastic substrate in weak 

adhesion γL = 5 and in perfect bonding (γL→∞), is considered. Bar displacements and 

substrate reactions for detached case are obtained by solving the Eq. (4.24). Dimensionless 

displacement, stress reaction and axial force of the bar loaded by horizontal point force Px 

at one end, Fig. 4.17, or subject to uniform compression thermal load T, Fig. 4.18, are 

studied assuming a detached between x/L = 0.30 and 0.40.  

A set of quadratic Langrange polynomials for bar elements and piecewise constant 

functions for substrate are used, subdividing the bar in three zone and applying each one a 

graded mesh with exp = 3. The accuracy of refinement in the neighbourhood of 

detachment depend on type of adhesion contact, therefore γL parameter. Consequently, a 

number of 192 finite elements are used, where 128 of them are generated in the intervals [-

0.5, 0.3]/L, 32 elements into [0.3, 0.4]/L and other 32 ones into [0.4, 0.5]/L. 

The case of an elastic bar subject to uniform compression thermal variation (-ΔT) is 

analogous at the case of a bar loaded by two opposite forces applied at the end, see Fig. 

4.14, assuming as magnitude of force Θ = E0Aα0ΔT. 

As expected, along the detached region, constant axial force and no substrate reaction 

are found. Nevertheless, in presence of the weak contact, axial forces decrease and the 

peak of shear reaction vanishes at the edges of detachment and bar ends. 

 

 

4.5  Non-linear analysis of shear test 

This paragraph presents the solution of an adhesive interface, simulating the delamination 

of a strip bonded to a general material. The debonding occurs when the slip between the 

strip and substrate reaches a critical value that causes separation. The shear test could be 

used to determine not only the ultimate load but even the local bond-slip behaviour of the 

interface [32, 33, 34, 35] where a reliable estimation is of fundamental importance to 

understanding the debonding failures. The local bond-slip curves from shear test is 

commonly determined in two ways: 

-  from axial strains of the reinforcement measured with strain gauges; 

-  from load-displacement curves (slip at the loaded end). 

The first method, apparently simple, does not produce accurate local bond-slip curves 

because the axial strains, measured on the thin FRP plate on concrete, generally show 

violent variations due to the heterogeneity and presence of crack into the substrate. 
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Consequently, the bond-slip curves found from different tests could be substantially. The 

second method is an indirect method, where the local bond-slip curve is determined 

indirectly from the load-displacement curve, but as results that different local bond-slip 

curves may lead to similar load-displacement curves. 

In the scientific literature there are plenty of experimental results available of shear-out 

tests especially carried out on FRP plates bonded on concrete blocks, such as Yao et al. 

[36]. The bilinear elastic-softening bond-slip relationship is among the most commonly 

adopted [37], where other proposals are based on exponential [15] or rational [17] bond-

slip law. A closed-form analytical solution is presented by Caggiano et al. [38], modelling 

the mechanical behaviour of FRP plates adhesively bonded to a rigid supporting material. 

In particular a globally softening behaviour is observed in shear-out tests for "short" 

anchorage, and a snap-back behaviour for "long" anchorage length. This latter 

computational behaviour can be considered as a further evolution of Yuan et al. [39]. 

 

4.5.1  Interface relationship  

The debonding process in shear-out test due to the applied axial force Pxi  is analysed in 

this section, Fig. 4.19a. For the sake of simplicity, the fracture behaviour of Mode II is 

introduced throughout the interface, which is based on a general assumption of a bilinear 

elastic-softening rx -ux relationship. The evolution of the mechanical response of the 

adhesive interface throughout the bonded length is simulated using a step-by-step 

approach. Global load-displacement response Pxi -uxi of the pull-out test, axial strain 

distributions of FPR and shear reaction distributions rx along the contact length, are 

investigated. 

 

 

Fig. 4.19. Shear test on a bar to semi-infinite substrate with weak interface (a), bond-slip rx - ux 

law for nonlinear analysis (b). 
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The bilinear bond law rx -ux, plotted in Fig. 4.19b, simulates the relationship between 

the shear stresses and interface slips throughout the adhesive interface. An linear ascending 

branch is described by the stiffness parameter kx,E until reach the elastic limit rx,0, then 

followed by a linear softening with descending slope kx,S. Beyond the ultimate slip ux,u = 

rx,0/kx,E + rx,0/kx,S, no bond stresses can be transferred on the interface. Based on the 

assumption that area of the bar keeps unchanged throughout the bonded length, the 

centroidal bar is coincident with substrate, namely assuming thickness of the reinforcement 

negligible. Besides, considering a unique bond-slip law rx -ux, the following infinitesimal 

equilibrium condition can be written 

),(d/))((dd/)(d 0 xrxxuAExx xxx,b   (4.46) 

where rx is the bond shear stress transferred at the interface and x,b(x) = E0Au'x(x) the 

axial stress on the bar section, being E0 the elastic modulus and A cross-section area of the 

bar. The constitutive equations for the adhesive behaviour can be expressed as 
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where kx,E and kx,S are the bond stiffness of the interface shear-slip relationship and ux,e = 

rx,0/kx,E is the elastic slip limit. The three different expressions of Eq. (4.47) describe the 

elastic, softening and debonding branch, respectively. The area under the bon-slip curve, 

Gf, is the fracture energy: 

.2/dG ,0,
,

0 uxx
uxu

xxxf uruur  


  (4.48) 

All substrate reactions are in elastic stage for low loads. The elastic-softening stage 

starts once the slip reach the elastic limit ux,e = rx,0/kx,E. Two possible alternative 

evolutions of beyond the elastic-softening can occur: 

-  The slip ux at x = L reaches the ultimate slip value, ux(L) = ux,u, with the minimum 

slip (ux at x = 0) inferior to elastic limit slip, ux(0) < ux,e. Leading to the transition to 

the new elastic-softening-debonding stage (ESD). 

-  The slip ux at x = 0, reaches the elastic limit slip ux(0) = ux,e, with ux < ux,u 

following the new only softening stage (S). 

The evolution depends on the parameters of the interface bond-slip law. Any given 

interface relationship (namely for every triplet of rx,0, ux,e, ux,u) a particular length value 
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L
*
 (called critical bond length) exists for which the two mentioned conditions ux(L) = 

ux,u and ux(0) = ux,e are achieved at the same time.  

The reinforcement with bonding length L > L
*
 follows the first evolution, such case will 

be associated to "long" anchorage length. On the contrary, when L < L
*
, the mechanical 

system follows the second one, which characterises "short" anchorage length. A conceptual 

map, reported in Fig. 4.20, delineates the two possible mechanical behaviour, depending 

on the bonding length L, namely on interface law of FRP glued on substrate. In case of 

"long" anchorage (L > L
*
), the bond-slip process following the previously (ES) stage is 

characterised by a debonding zone in the neighbours of the loaded end. For finite lengths, 

the behaviour in terms of shear-out force versus slip shows an unstable snap-back branch. 

While for ideal infinite anchorages the shear-out curve develops an indefinite plateau. In 

case of "short" anchorage (L < L
*
), the mechanical stage of the adhesive interface that 

follows the Elastic-Softening (ES) stage is wholly described by the Softening (S) branch. 

 

 

 

Fig. 4.20. Schematic representation of the debonding process.  
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4.5.2  Results of the numerical model 

In this section, the response of a CFRP bonded to a concrete substrate has been 

investigated, using the proposed formulation FE-BIE. The interface proprieties have been 

calibrated by Faella et al. [37, 38] on experimental results reported in Chajes et al. [40]. 

The calibration procedure of each specimen in Faella has different interface properties, that 

assumption derives from the randomness of the mechanical properties of the concrete 

substrate. In particular, the numerical analysis is carried out on two specimens 

characterised by bond lengths, about 50 and 200 mm. The CFRP is modelled by means of 

bar FEs having E0 = 100 GPa and A = 25 mm
2
, while the substrate through BIE assuming 

Young's modulus E = 30 GPa. 

The difference evolution of the axial strain and interface shear stress throughout the 

bonding length emphasize deeply the cases of "short" and "long" anchorages, Figs. 4.21 

and  4.22. For the "short" one is assumed a stress limit rx,0 = 6.9 MPa with stiffness kx,E = 

135 N/ mm
3
 and kx,S = 25 N/mm

3
, while for long anchorage rx,0 = 5 MPa with kx,E = 5000 

N/ mm
3
 and kx,S = 100 N/ mm

3
. A good agreement between the numerical predictions and 

experimental results have been found, as shown in Fig. 4.21b in terms of axial strain. 

The force-slip response of "short" anchorage is shown in Fig. 4.21a where the closed-

form analysis of Caggiano et al. [38] is reported (dashed line with symbol). The 

corresponding values of axial strains of FRP in Fig. 4.21b, and substrate reaction in Fig. 

4.21c, are illustrated in elastic state (solid line) and softening state (dashed line) throughout 

bond length. An exponential shape of axial strain, x,FRP, turns out until to reach the 

maximum load Px (i.e. D point in Fig. 4.21a). Afterwards, the trend of x,FRP becomes 

linear and decreases achieved the complete detachment. The evolution in terms of the 

corresponding interface shear stress, rx, is clearly reported in Fig. 4.21c. Showing an 

exponential shape in early stages, a transition starts from the achievement rx(L) = rx,0 (i.e. B 

line in Fig. 4.21c) until it reaches the condition when every points have overcome the 

stress limit rx(0) =  rx,0 (i.e. D line in Fig. 4.21c). Finally a progressive decline of the 

reactions up to failure, corresponding to maximum displacement ux,u.  

A different global behaviour of the force-slip response is observed in the "long" 

anchorages, showing a snap-back in Fig. 4.22a. The axial strains of FRP and substrate 

reaction are reported in elastic state (solid line) and softening stage (dashed line) along the 

bonding length, Figs. 4.22b and 4.22c respectively. The behaviour is similar to the 

previously specimen in early stages (i.e. B point in Fig. 4.22a), after that an elastic-

softening-debonding stage occurs. In the zone of detachment, the axial strain of FRP 
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remains constant and does not increase. While, the shear stress moves to the softening-

debonding stage (i.e. G line in Fig. 4.22c). In the end, a decline of strength appears with 

reduction of slip ux.   

It is worth noting that the maximum slip ux is equal to ux,u when the bonding length L 

is lower than the limit value L
*
, while it is bigger than ux,u as the bonding length L longer 

than L
*
. It is demonstrated that in case of " long " anchorage, increasing the bond length (L 

> L
*
), does not have significant effect on the maximum load. While for "short" one, the 

length parameter L affects the maximum debonding load.  
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Fig. 4.21. Complete bond-slip process 

considering "short" anchorage (L = 50 mm). 

Shear-out curve (a), x,FRP versus x (b) and rx 

versus x (c). Results by Caggiano (linea with 

symbol in (a)) and experiment tests by Chajes 

(dots in (b)).  

 Fig. 4.22. Complete bond-slip process 

considering "long" anchorage (L = 200 mm). 

Shear-out curve (a), x,FRP versus x (b) and rx 

versus x (c). 
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4.6  Conclusions 

The simple and effective FE-BIE method is proposed to investigate the problem of axially 

loaded thin structures weakly attached to a homogeneous elastic substrate. Bar FEs have 

been used to simulate the thin structure, while the behaviour of the semi-infinite substrate 

has been represented through BIE. Making use of a mixed variational formulation 

including the Green function of the half-plane, the axial displacement of the bar is 

interpolated using Lagrange polynomial of first or second order. Whereas, the interfacial 

shear stress is approximated by piecewise constant functions. A third element is interposed 

between the bar and substrate to simulate the weak bond of adhesive. Transmission stress 

of the weak interface is considered proportional to the relative bar-substrate displacement 

through a parameter L, which reproduces the case of perfect bonding with value tends to 

infinite. Moreover, the response of system is handled by another parameter L that 

characterises short or long bar on rigid or flexible substrate. 

A number of numerical examples are presented to show the effectiveness of the 

proposed formulation. In particular, shear reaction and axial force of a bar subjected to 

point force at midspan or two opposite force at ends are compared with analytical solutions 

available in the literature. Moreover, the behaviour of displacement or reaction close to the 

force applied at midspan or one end is discussed with regard to two parameters L and L. 

Furthermore, a detached bar loaded by an axial force at one end or by a thermal load is 

reported.  

Finally, non-linear analysis through step-by-step approach is used to simulated 

delamination of a bar stiffener glued to a substrate, assuming "a priori" the behaviour of 

adhesive by means of a constitutive law between interfacial shear reaction and slip. This 

model can be generally considered for investigating the adhesion behaviour of composite 

reinforcement glued on rigid or flexible substrate such as concrete, steel, wood, masonry or 

any other material which can be strengthened by externally gluing FRP. In this Chapter, 

the present formulation reports clearly the concepts of "long" and "short" anchorage, 

showing the difference in terms of shear stresses, axial strains throughout the bonded 

length and global shear force-displacement relationship. A comparison of the present 

model with experimental measures in term of axial strains and analytical formulation of 

global force-displacement present in the literature are reported with a good agreement. 
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5  Zero thickness analysis of a layer bonded to traditional 

boundary condition or to an elastic half-plane 

 

5.1 Introduction 

Crack and fracture behaviour of brittle materials such as concrete, rock or ceramics [1] 

have been proposed in the literature through a number of methods and techniques [2]. 

Several applications cover a wide range of cases, such as simulation of mechanical 

behaviour of joints, bounding surfaces and fracture propagation.  

An example of a modern technique of analysis is the extended finite element method 

(XFEM) [3]. That requires the identification of a crack path line using the so-called 

"tracking algorithm", completely independent of the mesh. The XFEM is based on local 

enrichment functions incorporated into a finite element approximation [4], allowing the 

simulation of the crack growth without remeshing. 

Another approach develops efficiently since the 90s, is the zero-thickness interface 

elements, considering each line in the 2D mesh or surface in the 3D mesh as a potential 

crack, evaluating inter-element forces and stresses. Although the crack can only be 

developed along the mesh lines or mesh surface, this technique describes crack 

propagation in an automatic way without the need of tracking or remeshing and without 

any limitation on how many times the crack opens, closes and reopens. The interface 

elements are treated as finite elements characterized by zero thickness, connected and 

detached in deformation configuration. When a given cracking criterion is exceeded, a 

fracture-based interface constitutive law is activated, leading to crack opening predictions. 

The approach has led to realistic predictions of cracking and fracture mechanisms under 

complex stresses in 2D [5, 6] and recently in 3D [7, 8], involving multiple cracks which 

start, get connected, arrested with other cracks. The opening crack at corner node of the 

mesh from several lines which are potential cracks, has been examined [9] assuming rigid-

plastic cracking laws for each potential crack line. Nevertheless, sometimes, the opening of 

an interface element may be ruled by cohesive laws that allows for the transmission of 

cohesive stress after the opening. Moreover, the simulation of mortar joints or filled rock 

joints has also been studied by means of finite thickness interface elements with interface 

stiffness obtained by the ratio of the Young's modulus of the joint material and thickness of 

the joint [10], but that case has not been treated in this thesis. 
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In this work, the zero-thickness interface elements are implemented into the coupling 

FE-BIE model in order to model contact surfaces and potential cracks of the layer. The 

relative displacement in the mesh of layer is interpolated through shape functions and 

nodal displacement values. A constitutive law in terms of stress-displacement relationship 

defines the behaviour of interface element. This means that in the deformed configuration, 

the interface element generates detachment and separation of the continuum elements. The 

discontinuity reproduces the formation of a crack or debonding. In particular, linear elastic 

or rigid brittle fracture interface are considered. The interface allows transmission of 

stresses in the material, remaining close for the rigid behaviour or simulating an opening 

based on elastic proprieties, as long as a certain failure condition is reached developing an 

interfacial detachment. The interface elements are inserted, after defining the geometry of 

the problem, along the mesh layer where certain failure conditions could be satisfied. The 

negative side of this implementation requires a large number of node, limiting the 

maximum problem size that can be analysed for given computer resources. 

 

5.2  Variational formulation  

A layer bonded to traditional boundary conditions at the bottom edge, is referred to a 

Cartesian coordinate system (O; x, z), where x coincides with the bottom of the layer, and z 

is chosen in the downward transverse direction. The layer is subdivided into two-

dimensional finite elements. A two-dimensional linear zero-thickness interface element is 

inserted between the plane elements. In particular, the interface element is characterised by 

two lines, indicated as S
+
 and S

-
, where the displacement field is interpolated from nodal 

values using shape functions and nodal displacements. The interface local reference system 

is represented by the vectors (n, s), while the global reference system is (x, z), Fig. 5.1. 

 

Fig. 5.1. A two-dimensional linear four-node interface element. Local (n, s) and global (x, z) 

reference system (a), equivalent spring system using the Lobatto integration rule for the element 

stiffness matrix K
e
 (b).  
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The potential energy of the layer with interface elements turns out to be  = layer + 

interface, where the total potential energy of the layer (layer) has been treated in Chapter 3, 

whereas the total potential energy of the interface (interface) is discussed and studied in the 

following Section according to the Principle of Virtual Work states.  

 

5.3  Finite element model  

The constitutive law at any point of the interface is defined as a relation between stress  

and relative displacement u
*
, where the notation (*) denotes variables in terms of local 

coordinates, as defined in [11]. The relative displacement field u
*
 = (un, us) is a function of 

the internal coordinate variable , and can be written as  

   ,)(),()()()(
T***   sn uuuuu  (5.1)  

in which *
u  and *

u  represent absolute displacement field on the surface S
+
 and S

-
 

respectively, in local coordinates. The relative displacement field in global coordinates u = 

(ux, uz)  are obtained considering the nodal relative displacement vector 
e
 in the (x, z) 

coordinates system: 

  .,,,
T

)8,6()7,5()4,2()3,1(
e
z

e
z

e
x

e
x

e δ  (5.2) 

The approximation of relative displacement field in (x, z) component is interpolated by 

means of linear shape function: 

e
δNu )()(   (5.3) 

where N = [N1, ... , Nnp] with np is equal to the pair of nodes of the interface. 

Assuming a linear elastic constant interface along its length, it could be obtained  

   )(,)( *T
 uDσ ns  (5.4) 

being D the constitutive parameter matrix with the decoupled form 

  
0

0










n

s

K

K
D  (5.5) 

with Kn and Ks the elastic interface parameters. 

Thus, the internal virtual work (Wint) can be expressed as 
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,d )()(d )(*)(
0

T

0

T
 

iL eiL
intW δNu  (5.6) 

being Li the length of the interface, while the external work (Wext) can be defined as 

,
T ee

extW δf  (5.7) 

where f
e
 is a vector conjugated to 

e
.  

By equality Eqs. (5.6) and (5.7), the weak form of equilibrium is obtained  

 
iLe

0

T .d)()(Nf  (5.8)  

Replacing in the elastic constitutive equation Eq. (5.4), the Eq. (5.8) becomes f
e
 = K

e
 

e
. 

Being K
e
 the stiffness element matrix associating relative displacements to pair of forces, 

defined as follows 

.d)()(
0

T
 

iLe NDNK  (5.9)   

The interface stiffness matrix K
e
 may be integrated using the Lobatto integration rule [12]. 

This numerical integration rule includes two end-points of the interface length Li, defining 

as 

  


1

0 1
)(d)(

nq

i ii xfxxf  (5.10)  

where the weights of the Lobatto integration rule for the linear interface elements (nq = 2) 

are all equal to i = 0.5 for an interface of unit length. 

Although, the Gauss rule may be more accurate for polynomial functions, results 

through the Lobatto rule is more appropriate, avoiding spurious oscillations. A decouple 

scheme is provided, where the forces at each pair of nodes are proportional only to the 

displacements at the same pair of nodes, as shown in Fig. 5.1b for the case of a 2D linear 

interface element. The Lobatto rule for nq = 2 is know as trapezoidal integration. Using 

this rule for the 2D linear interface, the equation f
e
 = K

e
 

e
 of Fig. 5.1a becomes 
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 (5.11)  

where matrix K
e
 is a diagonal form when the global reference system (x, z) coincide with 

the local system (n, s) 
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Whereas the case in which the global reference system (x, z) does not coincide with the 

local system (n, s), the Eq. (5.4) must be multiplied by a rotation matrix. That expression is 

shown in [11].  

It is worth noting that according to the expression of Eqs. (5.11), the insertion between two 

continuum elements of an interface integrated with the trapezoidal rule corresponds, from a 

physical point of view, to insert tangential and normal springs at the nodes of the 

continuum elements, Fig. 5.1b. In conclusion, the elastic interface used in an FE mesh does 

not correspond to physical interfaces, but is used as means to compute the inter-element 

forces and stresses. 

 

Fig. 5.2. Matrix system of two-dimensional finite element subjects to horizontal and vertical point 

force at right top, in the classic FEM (a) and applying zero-thickness interface element (b).  



 170 

The matrix system of a layer, subdivided by two quadrilateral finite elements (p1, p2) 

and subjected to horizontal and vertical point force (Px, Pz) at right top, is shown in Fig. 

5.2. In particular, classic element analysis which does not assume interface element (Fig. 

5.2a), and the model that include zero-thickness element between the two plane elements 

(Fig. 5.2b). The unknowns of the system are represented by x symbol, while the filling 

spaces are the known values.  

 

5.4  Numerical example 

Crack opening or sliding of brittle materials are studied supposing constant the mechanical 

parameters of the continuum elements and the stiffness parameters ks and kn of the 

interface until a limit stress imposed "a priori". The interface elements are implemented 

duplicating nodes along mesh lines which are considered a potential crack. The failure 

surface or cracking surface is assumed in terms of the normal and shear components of the 

corresponding stress.  

 A layer subjected to loads or displacements and bonded to classic boundary condition 

has been analysed firstly, using linear elastic, rigid/plastic or elastic/plastic interface. In 

particular, the bond is sufficiently rigid when the interfacial stiffness k > k
*
Ep/dl with k

*
 = 

10
3
, as cited in [11]. A bilinear stress-displacement relationship of interface is supposed for 

the hardening and softening branch. Moreover, opening crack of a cantilever, subjected to 

two opposite displacements at end, is investigated applying several brittle interface 

elements. Finally, the zero-thickness method is implemented in the FE-BIE model, 

studying the mode I and II crack of a stiffener or beam (one-dimensional finite element) 

bonded to a substrate which is subdivided in two part by a layer or plate (two-dimensional 

finite element) and a half-plane defined through boundary integral equation (BIE). The 

depth of the part of substrate described by plate elements, where interface elements could 

be applied, is chosen such to predict a possible fracture pattern.  

 

5.4.1  A layer subjected to a uniform vertical displacements at the top 

A layer of length L = 1 m and height H = 2 m is subdivided into two quadrilateral plate 

elements (dl = dx = dz = 1 m), having wholly 6 nodes which two of them are in common. 

Each node has two degrees of freedom, horizontal and vertical displacement. The plate 

element is made of homogeneous linearly isotropic elastic material, with elastic modulus 

Ep = 30 MPa and Poisson's coefficient p = 0.3. Assuming plane stress state with unitary 
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thickness (t = 1 m) of the plate element, two vertical displacements v  = 0.1 m are applied 

at the top toward up. Boundary conditions are applied to the bottom layer in order to block 

the vertical move, and at the left side stopping the horizontal move, as shown Fig. 5.3a. An 

interface element is applied between contact of the square finite elements, adding 2 nodes, 

hence increase the number degrees of freedom from 12 to 16. The matrix of the global 

system is reported in Fig. 5.3b, highlighting the matrixes of the two quadrilateral elements 

(Kp1, Kp2) and an interface element with nodal stiffness k1 and k2. The latter element links 

the two plate elements through nodes 3-5 and 4-6. Nevertheless, it is not shown in Fig. 

5.3b, each force, each stiffness and each displacement has horizontal and vertical 

component. In other words, force f1 has f1x, f1z, stiffness k1 has k1x, k1z, and displacement u1 

has u1x and u1z.   

 

 

Fig. 5.3. Isotropic element subdivided into 2 quadrilateral FE, subjected to a uniform displacements 

v  at the top, and bonded to boundary condition at left and bottom edges (a). Matrix of the global 

system with stiffness of the interface element (b).  

 

5.4.1.1 Comparison deformation between FEM and ZTM 

A comparison is made between the classic finite element method (FEM) and the zero-

thickness method (ZTM). The first method does not have interface elements, while the 

second one has been assumed a tangential and a normal interface stiffness (ks, kn) enough 

rigidity (high) to not have detachment. The value of the single stiffness is equal to tdl/2(kEp 

/dl) [kN/m]. Deformation of the plate element for FEM and ZTM is reported in Fig. 5.4a 

and 5.4b, respectively. It is noted that the same deformation and stress are calculated when 

k = k
* 

= 10
3
. In particular in the FEM, the stress in z-direction (zz) is 1500 kN/m

2
, while in 

the ZTM is equal to 1499 kN/m
2
. Furthermore, two cases with low normal interface 

stiffness (kn) and setting a rigid tangential stiffness (ks = k
*
) is analysed assuming the same 

material, load and boundary condition. The detachment between the two plate elements is 

equal to duz = 33 mm or 83 mm assuming respectively kn = k
*
/10

3
 or kn = k

*
/10

4
. Stress in 
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z-direction is found low when displacement of the detachment (duz) is high, consequently 

equal to 1000 kN/m
2
 and 250 kN/m

2
, as shown in Fig. 5.4c-d. In conclusion, with the same 

value of the external displacements v , the vertical interface slip (duz) increase when the 

normal stiffness of interface (kn) decrease. The plate elements become less deformed with 

low value of plane stress in z-direction. Instead, when constant external vertical forces are 

applied at the top, the stress in z-direction results always same, independent from the 

interface, and obviously equal to the external force divided by the area of its cross-sections. 

 

 

Fig. 5.4. Deformation of the plane element subjected to a uniform displacements v . Classic 

analysis FEM (a), as well as assuming an interface element (ZTM) with tangential stiffness ks = k
*
 

and different normal stiffness kn = k
*
 (b), kn = k

*
/10

3
 (c) and kn = k

*
/10

4
 (d).  

 

5.4.1.2 Interface element with a rigid-plastic behaviour 

In this section, a rigid-plastic relationship between stress and displacement of the interface 

element is considered. The analysis is executed through step-by-step approach at 

displacement control with increment displacement of d v  = 0.1 mm. A bilinear curve is 

assumed, having rigid stiffness ks = kn = k
*
 until an yield or ultimate plate stress zz,B = 

1000 kN/m
2
. Overcoming this step, two different behaviours are studied: hardening or 

softening branch, as shown in Fig. 5.5, in the normal direction of interface. The stiffness of 

the hardening branch is kn = k
*
/10

4
, with rupture stress zz,D = 1.1zz,B. While, stiffness of 

the softening one is kn = k
*
/10

3
, until to reach the step immediately before zero stress.  
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The deformation of the layer, achieving the point A and B of the effective stress-

separation relationship (Fig. 5.5), is reported in Fig. 5.6. The interface displacement 

obtained may be disregarded because of very small value equal to duz = 0.017 mm with 

zz,A = 510 kN/m
2 

and duz = 0.033 mm with zz,B = 990 kN/m
2
. The point A or B of stress-

slip curve is reached applying external displacement v  = 34 or 66 mm, respectively.  

For the hardening branch, the deformation of the layer becomes as shown in Fig. 5.7. 

The increase of the external displacement, until v  = 86 mm, reaches the point C of the 

stress-slip curve (Fig. 5.5a) obtaining plate stress zz,C = 1054 kN/m
2 

and interface 

displacement duz = 16.7 mm. Finally, the rupture is achieved applying external 

displacement v  = 104 mm, where zz,D = 1099 kN/m
2 

and duz = 31.7 mm occur. 

Conversely, the raise of the external displacement ( v ) in the softening branch shows a 

decrease of the plate stress (zz) and an increase of the interface displacement (duz). That is 

remarked in the deformation of the two plate elements, Fig. 5.8. Assuming an external 

displacement v  = 83 mm, the point C of the rigid-softening curve (Fig. 5.5b) is reached 

(zz,C = 494 kN/m
2 

and duz = 17.0 mm). Whereas, the ultimate point D is obtained at v  = 

98 mm (zz,D = 44 kN/m
2 
and duz = 32.0 mm).  

It is worth noting that the deformation of the layer turns out extension for the beginning 

and hardening branch, while starts to be in contraction when interface contact reaches the 

softening branch until an initial state of deformation characterised by null stress and 

ultimate interfacial displacement. 
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Fig. 5.5. Effective stress-slip relationships: bilinear rigid-hardening (a) and rigid-softening (b) 

behaviour.  
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Fig. 5.6. Deformation of the layer at the point A (zz = 510 kN/m
2
, duz = 0.017 mm in (a)) and B 

(zz = 990 kN/m
2
, duz = 0.033 mm in (b)) of the rigid-plastic curve.  

 

Fig. 5.7. Deformation of the layer with hardening behaviour at the point C (zz = 1054 kN/m
2
, duz = 

16.7 mm in (a)) and D (zz = 1099 kN/m
2
, duz = 31.7 mm in (b)) of the rigid-plastic curve.  

 

Fig. 5.8. Deformation of the layer with softening behaviour at the point C (zz = 494 kN/m
2
, duz = 

17.0 mm in (a)) and D (zz = 44 kN/m
2
, duz = 32.0 mm in (b)) of the rigid-plastic curve.  
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5.4.1.3 Interface element with a general bilinear curve 

The same layer is also studied applying interface elements having a bilinear curve of 

stress-slip shown in Fig. 5.9. In the first elastic branch, interface normal stiffness is 

assumed equal to kn = 2k
*
/10

3
, while interface shear stiffness is always considered rigid (ks 

= k
*
). In particular, the point A is reached with external displacement v = 42 mm, while the 

yield or maximum stress (zz,B = 1000 kN/m
2
) with v  = 83 mm. The deformation of layer 

is reported in Fig. 5.10 for the state obtained by A or B point, showing more shift between 

the two plates (duz) than the previously case having an interfacial rigid-plastic behaviour. 

The plate stress zz,A = 504 kN/m
2 

and duz = 8.4 mm are obtained in the point A, whereas 

zz,B = 996 kN/m
2 

and duz = 16.6 mm in the point B.  

For the hardening behaviour with normal stiffness kn = k
*
/10

4
, a raise of the interfacial 

displacement and an expansion of the layer are shown in Fig. 5.11, as expected. In the 

stress-slip curve, point C of the elastic-hardening behaviour (zz,C = 1056 kN/m
2 

and duz = 

32.6 mm in Fig. 5.9a), is achieved applying v  = 102 mm. Whereas, rupture occurs at the 

point D (zz,D = 1098 kN/m
2 

and duz = 46.8 mm) applying v  = 119 mm. 

According to the interfacial softening behaviour, plate stress decreases and interface 

displacement increases when external displacement rises. Fig. 5.12 shows a reduction of 

plate deformation with value of external displacement v  higher than the case with rigid-

softening interface. The point C of the stress-slip curve (Fig. 5.9b) is reached applying v  = 

100 mm, obtaining plate stress zz,C = 498 kN/m
2 

and interfacial displacement duz = 33.8 

mm. While, the ultimate point D, zz,D = 18 kN/m
2 

and duz = 49.8 mm, are achieved with 

external displacement v  = 116 mm.  
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Fig. 5.9. Effective stress-slip relationships: bilinear elastic-hardening (a) and elastic-softening (b) 

behaviour. 
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Fig. 5.10. Deformation of the layer at the point A' (zz = 504 kN/m
2
, duz = 8.4 mm) and B' (zz = 

996 kN/m
2
, duz = 16.6 mm) of the bilinear elastic-plastic curve.  

 

Fig. 5.11. Deformation of the layer with hardening behaviour at the point C' (zz = 1056 kN/m
2
, duz 

= 32.6 mm) and D' (zz = 1098 kN/m
2
, duz = 46.8 mm) of the bilinear elastic-plastic curve.  

 

Fig. 5.12. Deformation of the layer with softening behaviour at the point C' (zz = 498 kN/m
2
, duz = 

33.8 mm) and D' (zz = 18 kN/m
2
, duz = 49.8 mm) of the bilinear elastic-plastic curve.  
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In conclusion, the deformation of the plate element goes on to expand with an increase 

of stress when interface element has a hardening behaviour. Whereas, a contraction 

deformation of the layer with a decrease of stress is exhibited for interfacial softening 

behaviour.  

 

 5.4.2  A layer subjected to uniform load at the top and right edges 

A plate element of length L = 2 m and height H = 2 m, subjected to uniform vertical 

load at the top and uniform horizontal load at the right edge P = 1000 kN/m, bonded to 

supports in z-direction at the bottom and to supports in x-direction at the left edge, is 

investigated in this Section. Assuming an isotropic elastic material with Ep = 30 and p = 

0.3, the layer is subdivided into four homogenous quadrilateral finite elements. Plane stress 

state is supposed with unitary thickness. Four interface elements are introduced, where two 

of them are horizontal (HI1, HI2) and other two vertical (VI1, VI2), see Fig. 5.13a. Cases 

with several values of interface stiffness are analysed. These examples are presented just to 

show the quality of the displacement field when interface stiffness values are or are not 

rigid.  

The first case, supposing all rigid stiffnesses (kHI and kVI =k
*
) shows the same 

deformation obtained by the traditional FE analysis without interface elements, Fig. 5.13b. 

 Then, three cases are analysed assuming all rigid shear stiffnesses (ks = k
*
), and low 

values of the normal stiffness (kn = k
*
/1000) in vertical and/or horizontal interface 

elements. In particular, a shift turns out in z-direction when low normal stiffness is applied 

only in the horizontal interface elements Fig. 5.13c. Instead, toward x-direction when only 

low normal stiffness is presented in the vertical interface elements, Fig. 5.13d. Whereas, an 

opening occurs in both directions when all interface elements have low values of the 

normal stiffness, Fig. 5.13e. 

Furthermore, two cases are studied applying rigid normal stiffness for all interface 

elements and low values for the shear stiffness into horizontal interface, Fig. 5.13f, or into 

vertical interface, Fig. 5.13g.  

Finally, the deformation of layer using low stiffness in shear and normal component for 

all interface elements (kHI = kVI = k
*
/1000) is reported in Fig. 5.13h. 
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Fig. 5.13. Isotropic plate element, subdivided into 4 quadrilateral FE, bonded to boundary condition 

at left and bottom edges, and subjected to uniform load p at the top and right edges. Sketch of the 

horizontal (HI) and vertical (VI) zero-thickness interface (a) and deformation of the layer with: all 

rigid interfaces k
*
 (b), normal (c,d,e) or shear (f,g) stiffness interface equal to k

*
/10

3
, and all 

interfacial stiffnesses k
*
/10

3
 (h).   

 

5.4.3  A cantilever subjected to two opposite displacements at the end 

The double cantilever beam (DCB) is the simplest example used to understand and 

determined pure "mode I" of fracture. The generalized Griffth energy criterion and the 

linear elastic fracture mechanics (LEFM) are used to characterise crack propagation, 

providing a foundation for development of interfacial failure simulation in a finite element 

model at analysing of complex problems. Moreover, some examples are presented in the 

literature based on (CZM) cohesive zone model [14, 15, 16]. 
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In this Section, deformation of the structure is limed to a linear elastic (LEFM) 

behaviour with only fracture interface has the ability to fail. The surface between adjoining 

material constrains them together with zero ductility until it fails. The failure at this point 

dissipates a finite amount of energy (Gc) per unity growth of the crack. However, if the 

bond material is extremely thin relative to the adjoining components, it may be assumed to 

be infinitely thin and its behaviour is lumped into the behaviour of the fracture interface. 

Under these conditions, the compliance of the structure C (reverse of the stiffness) can be 

defined in terms of the applied load Fz and opening displacement duz as C = duz/Fz. The 

elastic internal energy can be obtained Gc = (Fz
2
/2t)dC/da0, where dC/da0 represents the 

change in compliance  of the structure as the crack length changes a0. That equation is 

valid provided that no inelastic deformation occurs in the structure, excluding the bond 

material, and that the fracture interface and bond material behaves with zero ductility until 

it fails. In other words, brittle material behaviour is characterised by the fact that no 

significant inelastic deformation occur prior to fracture. The brittle interfacial failure, is 

one of the major sources of failure in devices that consist of multiple thin and stacked 

layers, where delamination is a failure phenomenon that occurs frequently. It may arise 

under various circumstances, such as low velocity impacts, mechanical loading, 

temperature fluctuations, etc.  

 

Model Series dl Int. ks kn Fig. 

1  

1 1.0 H k
*
 k

*
 5.17 

2 1.0 H k
*
 k

*
/10

4
 5.18 

 

3 0.5 H k
*
 k

*
/10

4
 5.19 

2 
 

1 0.5 H k
*
/10

3
 k

*
/10

3
 5.20 

 

2 0.25 H k
*
/10

3
 k

*
/10

3
 

 

5.21 

 

3 

 

1 0.5 H k
*
/10

3
 k

*
/10

3
 

5.22 
V k

*
 k

*
 

2 0.5 H k
*
/10

3
 k

*
/10

3
 

5.23 
V k

*
 2k

*
/10

3
 

 

Table 5.1. Meshes and interfaces adopted for a cantilever. 
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A cantilever of length L = 4 m, height H = 2 m, and unitary thickness (t = 1 m), 

characterized by brittle interface failure through zero-thickness elements, has been 

investigated. The structure is bonded with hinges at left side, and subjected to two opposite 

displacement v  at the other end, Fig. 5.14a. Plane stress state is used adopting a material 

with Ep = 10 MPa and p = 0.3. The cantilever is subdivided into quadrilateral plane 

elements with length mesh dl = dx = dz. A step-by-step analysis is made with increment of 

external displacement d v  = 0.1 mm. Several cases, applying horizontal and vertical 

interface elements, are investigated with different values of interfacial stiffness and, for the 

sake of simplicity, constant in each step. Linear elastic brittle behaviour has been supposed 

into the interfacial contact, where the failure of the zero-thickness element occurs at one 

limit stress, which is assumed "a priori" and equal to lim = 10 kPa. Overtaking the limit 

stress at one point, the contact link of this point is separated. Three models are studied 

where their sketches are reported in Table 5.1, showing the length of finite element (dl) 

and the stiffness (ks, kn) of horizontal or vertical interface element assumed k
* 

= 10
3
 kN/m.  

 

 

Fig. 5.14. Cantilever subject to two opposite displacements v  at the end (a), sketch of horizontal 

zero-thickness interface elements (b).  

 

Fig. 5.15. Cantilever subject to two opposite displacements v  at the end (a), sketch of horizontal 

and vertical zero-thickness interface elements (b). 
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The first model of cantilever assumes horizontal interface at the half-height (z = 1 m). 

The structure is subdivided with a number of plane square elements nel = 8 having unitary 

length (dl = 1 m) and with 4 horizontal interface elements, Fig. 5.14. The stiffness of bond 

material is supposed rigid (high) for both shear and normal components (Model 1 Series 1 

in Tab. 5.1), as well as rigid shear stiffness and low normal stiffness (Model 1 Series 2, in 

Tab. 5.1). In particular, the latter Series has also been studied using a mesh refinement with 

length of plate element dl = 0.5 (Model 1 Series 3 in Tab. 5.1), hence with nel = 32 plate 

elements and 8 horizontal interface elements. Plane stress in z-direction and normal stress 

of the horizontal interface is reported for the opening crack at coordinate x = 4.0; 3.0 and 

2.0 m. For the Series 1 of Model 1, the first crack (x = 4.0) occurs applying an external 

displacements v  = 1.5 mm. Figs. 5.17a and b show stress in z-direction into the plate 

element (zz) and normal stress of the horizontal interface (n), respectively. Notice that, 

the maximum zz is equal to 12 kPa, while the n of the horizontal interface does not 

exceed the limit stress imposed. In this situation, the detachment does not occur, but 

overcoming this step, a crack turns out along horizontal direction. High value of stresses 

are at x = 3.0 m, before to reach the second crack obtained with v  = 3.0 mm, Fig. 5.17c-d. 

Finally, the crack propagation is stopped at x = 2.0 with an external displacement v  = 9.1 

mm, showing the maximum values in Fig. 5.17e-f. Note that, the interfacial stresses in the 

detachment area become zero because of the rupture. The crack of the Series 2, Model 1 is 

shown in Fig 5.18. Owing to low value assumed in the normal stiffness, an opening crack 

is developed throughout interface contact before to reach the first crack with deformation 

higher than the case with rigid bond. Moreover, the plate stresses are not only concentrated 

at the failure node but they are spread along the interface line. The crack at coordinate x = 

4.0; 3.0 and 2.0 m is attained respectively with v  = 26.8; 45.5 and 91.1 mm. The same 

displacements are gotten with a more accurate mesh having length of element equal to 0.5 

m, Fig. 5.19, where the same crack occurs with v  = 24.7; 42.0; and 82.1 mm, respectively.  

The global external load-displacement behaviour (Fz v ) is obtained with several mesh 

refinement for the cantilever of Model 1 with rigid shear stiffness (ks = k
*
) and low normal 

stiffness (kn = k
*
/10

4
) for the horizontal interface elements. Fig. 5.16 reports the force-

displacement relationship of the cantilever with number of elements nel = 8; 32; 128; 512 

and 2048. Moreover, the mesh with nel =  32 and 8 interface elements is checked through a 

software at traditional finite element (dashed line in Fig. 5.16 a). The solutions of the two 

analyses show a good agreement. The maximum load is reached before the first crack and 

converges at a value with the rise of number of elements (Fig. 5.16 b). 
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Fig. 5.16. Cantilever with horizontal interface ks = k
*
 and kn = k

*
/10

4
 at half-height (z = 1 m). Curve 

of external force Fz and external displacement v  of the present analysis (solid line) and FEM 

(dashed line), assuming several mesh refinement (a). Maximum external load Fz,max versus number 

of plate elements nel (b). 

 

Furthermore, the same cantilever has been studied with more horizontal interface lines, 

as shown Model 2 in Tab. 5.1. The structure is subdivided with three horizontal contact 

lines at coordinate z = 0.5; 1.0 and 1.5 m (Model 2 Series 1) and with seven horizontal 

contact lines situated at one distant of 0.25 m from each other (Model 2 Series 2). A mesh 

with length of quadrilateral element equal to dl = 0.5 for the Series 1 and  dl = 0.25 m for 

Series 2 is assumed. The cantilever is discretized with 32 or 128 plate elements, 

respectively for the structure having 3 or 7 contact lines. The stiffness of the glue (bond 

material) for both models is supposed weak and elastic-brittle in the shear and normal 

components along the interface line. Plate stress in z-direction (zz) and normal stress of 

horizontal interface (n) are reported for the cracks at coordinate x = 4.0 and 3.0 m. The 

two cracks are obtained applying external displacement v  = 5.0 and 14.8 mm for the 

Series 1, Fig. 5.20, and v  = 7.4 and 27.4 mm for the Series 2, Fig. 5.21. During the 

incremental analysis, the shear interface stresses result always lower than the normal ones, 

therefore the mode I crack (opening mode) is kept on along the fracture path. It is worth 

observing that the rupture does not occur at half height of the cantilever, but turns out 

simultaneously at the top and bottom level, heading to horizontal direction. Moreover, the 
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crack at one point for the case with more horizontal interface (Model 2 Series 2) is reached 

with value of external displacement higher than other case having less contact interface 

lines (Model 2 Series 1).  

Finally, horizontal and vertical interface elements (HI, VI) are set between the edge of 

the plane elements, as shown the cantilever in Fig. 5.15. With regard to corner node, the 

detachment of the horizontal or vertical interface contact occurs when at least one of the 

two interfaces exceeds the limit stress lim. In other words, looking at Fig. 5.15b, if the link 

between nodes 15 and 23 is disconnected, then even correspondent link between nodes 14 

and 22 is interrupted. A square mesh with 32 plane elements is assumed and represented by 

Model 3 in Tab. 5.1. Two kinds of bond materials are investigated. In particular, a model 

with low stiffness in the horizontal interface elements and rigid in the vertical ones, ksHI = 

knHI = k
*
/10

3
, ksVI = knVI = k

*
, (Model 3 Series 1); and other one with same stiffness except 

for the normal component of the vertical interface elements, ksHI = knHI = k
*
/10

3
, ksVI = k

*
 

and knVI = 2k
*
/10

3
, (Model 3 Series 2). Plate stress in z-direction and normal stress of the 

horizontal interface are reported for the crack at x = 4.0; 3.5 and 3.0 m. The solutions of the 

Model 3 Series 1 is shown in Fig. 5.22, and could be compared with the Model 2 Series 1 

which is reported in Fig. 5.20. The three opening cracks occur applying respectively the 

external displacement v  = 8.2; 15.5 and 29.8 mm. Different deformation turns out in the 

Model 3 Series 2 where opening crack are higher because of the weak stiffness into 

vertical interface, Fig. 5.23. The external displacement applied for the respectively crack 

are v  = 8.3; 22.6 and 50.3 mm. 
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Fig. 5.17. Cantilever of the Model 1 Series 1, subjected to two opposite displacements v  at the end 

and assuming 4 horizontal interfaces with ks = kn = k
*
 at z = 1 m. Plate stress zz and normal stress 

n of the horizontal interface [kN/m
2
] for crack at x = 4.0 m with v  = 1.5 mm (a, b), at x = 3.0 m 

with v  = 3.0 mm (c, d) and at x = 2.0 m with v  = 9.1 mm (e, f). 
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Fig. 5.18. Cantilever of the Model 1 Series 2, subjected to two opposite displacements v  at the end 

and assuming 4 horizontal interface with ks = k
*
 and kn = k

*
/10

4
 at z = 1 m. Plate stress zz and 

normal stress n of the horizontal interface [kN/m
2
] for crack at x = 4.0 m with v  = 26.8 mm (a, 

b), at x = 3.0 m with v  = 45.5 mm (c, d) and at x = 2.0 m with v  = 91.1 mm (e, f). 
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Fig. 5.19. Cantilever of the Model 1 Series 3, subjected to two opposite displacements v  at the end 

and assuming 8 horizontal interface with ks = k
*
 and kn = k

*
/10

4
 at z = 1 m. Plate stress zz and 

normal stress n of the horizontal interface [kN/m
2
] for crack at x = 4.0 m with v  = 24.7 mm (a, 

b), at x = 3.0 m with v  = 42.0 mm (c, d) and at x = 2.0 m with v  = 82.1 mm (e, f). 
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Fig. 5.20. Cantilever of Model 2 Series 1, subjected to two opposite v  at the end, assuming 

horizontal interface ks = kn = k
*
/10

4
. Plate stress zz and normal stress n of the horizontal interface 

[kN/m
2
] for crack at x = 4.0 m with v  = 5.0 mm (a,b) and at x = 3.0 m with v  = 14.8 mm (c,d). 

 

Fig. 5.21. Cantilever of Model 2 Series 2, subjected to two opposite v  at the end, assuming 

horizontal interface ks = kn = k
*
/10

4
. Plate stress zz and normal stress n of the horizontal interface 

[kN/m
2
] for crack at x = 4.0 m with v  = 7.4 mm (a,b) and at x = 3.0 m with v  = 27.4 mm (c,d). 
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Fig. 5.22. Cantilever of Model 3 Series 1, subjected to two opposite v  at the end and assuming 

horizontal interface ks = kn = k
*
/10

4
, and vertical interface ks = kn = k

*
. Plate stress zz and normal 

stress n of the horizontal interface [kN/m
2
] for crack at x = 4.0 m with v  = 8.2 mm (a, b), at x = 

3.5 m with v  = 15.5 mm (c, d) and at x = 3.0 m with v  = 29.8 mm (e, f). 
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Fig. 5.23. Cantilever of Model 3 Series 2, subjected to two opposite v  at the end and assuming 

horizontal interface ks = kn = k
*
/10

4
, and vertical interface ks = k

*
, kn = 2k

*
/10

4
. Plate stress zz and 

normal stress n of the horizontal interface [kN/m
2
] for crack at x = 4.0 m with v  = 8.3 mm (a, b), 

at x = 3.5 m with v  = 22.6 mm (c, d) and at x = 3.0 m with v  = 50.3 mm (e, f).  
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5.4.4  A beam resting on layer which is lying on half-plane 

In Chapter 4, the effect of the delamination due to crack propagation into the interface 

contact has been studied. This detachment between the surface contact of two materials 

does not always happen, sometimes the crack takes part into the support element, as 

commonly occurs in the brittle materials, such as the delamination of fibre reinforcement 

polymer glued to concrete substrate [13].   

In this Section, a model has been realized to study the propagation of crack into the 

substrate. In particular, the reinforcement has been represented by a one-dimensional finite 

element (beam), while the support could be subdivided into two parts: a two-dimensional 

finite element layer and a half-plane. The mesh may be automatically generated choosing 

beam length L, length and height of the layer, respectively L+2nl L and  H, as well as the 

hypothetical region affected by crack through "zero-thickness" interface elements into the 

layer. The sketch of present model is shown in Fig. 5.24. For the sake of simplicity, 

quadrilateral element (dx = dz) are used. The interface elements could be applied on whole 

substrate investigated by plate elements, except the contact between beam and plate or 

plate and half-plane. User might select the area subjects to fracture through the input of 

number of element in x and z-direction (nx and nz). Moreover, for an accurate solution, the 

number of beam elements (nel) and the length of layer (nl), Fig. 5.24b. 

 

5.4.4.1 Peeling of beam resting on substrate with BC or lying on half-plane  

An Euler-Bernoulli beam of unitary length (L = 1) and length-to-height ratio L/h = 10, 

resting on substrate and subjected to vertical displacement v  or vertical point load Pz 

toward up at the midspan, is investigated. The beam is subdivided into nel = 16, while 

substrate is formed by quadrilateral elements with dx = dz = L/ nel = 0.0625 m. The 

substrate has length of 3 m (nl = 1) and height H = 0.25 m. The interface elements are set 

underlying the beam with number of plate elements determined by nx = 1 and nz = 3. The 

limit stress of interface element (lim) is supposed equal to 10 kPa. Every interfacial 

stiffness is presumed rigid, except the normal stiffness into the horizontal interface element 

(ksHI = knVI = ksVI = k
*
, knHI = k

*
/10

4
). Plane stress state is assumed with unitary thickness. 

The Young's modulus and Poisson's coefficient of beam are respectively Eb = 100 MPa and 

b = 0.3, while for the part of substrate define by plate elements are Ep = 5 MPa and p = 

0.3.  
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Fig. 5.24. Beam bonded by plane element which is lying on half-plane (a), mesh of the plate 

element substrate (b) and sketch of interface elements through "zero-thickness" analysis (c). 
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Fig. 5.25. Peeling of beam L resting on substrate with boundary conditions at the bottom edge. 

Horizontal (a) and vertical (b) displacements [mm], plate stresses zz (c) and normal stresses of the 

horizontal interface n (d) [kN/m
2
].  
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Fig. 5.26. Peeling of beam L resting on substrate which is lying on half-plane. Horizontal (a) and 

vertical (b) displacements [mm], plate stresses zz (c) and normal stresses of the horizontal 

interface n (d) [kN/m
2
]. 
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First, the isotropic substrate bonded to traditional boundary condition (BC) at the 

bottom edge is analysed. Horizontal and vertical displacement, plate stress in z-direction 

and normal stress of horizontal interface are plotted in Fig. 5.25. Results are obtained when 

the maximum interfacial stress reaches the limit stress lim. That occurs when it is applied 

external displacement v  = 2.7 mm or the corresponding external load Pz = 60.25 kN. The 

horizontal displacements turn out sign opposite, indicating a contraction along the contact 

of plane elements. The maximum absolute value of ux is 0.2 mm, collocated at half-height 

of layer in correspondence at beam end, Fig. 5.25a. With regard to vertical displacements, 

maximum value is situated under the beam at the midspan as expected, Fig. 5.25b. Note 

that far away from the beam, the displacements are null. Consequently, maximum plate 

stress in z-direction (zz = 12 kPa) and normal stress of the horizontal interface are 

positioned in the same zone of the highest vertical displacement, Fig. 5.25c-d.  

The case with substrate bonded to an elastic homogenous isotropic half-plane is 

following analysed, Fig. 5.26. Assuming the Young's modulus Es = 2 MPa and Poisson's 

coefficient s = 0.3 of half-plane, displacements turn out higher than the previously case 

with boundary condition. In particular, the maximum horizontal displacement is plotted at 

the top end of layer with absolute value of 0.8 mm, Fig. 5.26a. While, it has been found 

that the maximum value of vertical displacement, plane stress zz and normal stress of 

horizontal interface n underneath and at the midpoint of the beam. It is worth noting that 

the maximum uz is increase of 70% respect to previously case, Fig. 5.26b. Instead, the 

same maximum value occurs for the zz or n, Fig. 5.26c-d. The limit stress of interfacial 

elements is achieved applying vertical displacement equal to v  = 4.6 mm, that 

corresponding to vertical point load Pz = 6.531 kN.  

 

5.4.4.2  Mode I crack of substrate lying on half-plane 

In this Section, a beam resting on substrate and subjected to vertical displacement v  at 

beam end is investigated. The substrate is modelled with plate elements bonded to a half-

plane in perfect adhesion. Elastic and isotropic material with Ep = 30 MPa and p = 0.3 is 

used for the substrate defined by two-dimensional finite element, while Es = 50 MPa and s 

= 0.3 for the half-plane. The Euler-Bernoulli beam theory is assumed with Young's 

modulus Eb = 30 GPa, Poisson's coefficient b = 0.2 and length-to-height ratio L/h = 10. 

 A number of 8 equal FEs are used for the discretization of beam, and zero-thickness 

interface elements are set in the area below the beam with nx = nz = 3. Horizontal and 

vertical elements of interface are considered underneath the beam. Supposing a brittle 
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behaviour of the substrate, the stiffness of interfaces are assumed constant with a stress 

limit equal to 100 kPa. In this case, all interface elements have rigid stiffness, except the 

normal stiffness of the horizontal interface (ksHI = knVI = ksVI = k
*
, knHI = k

*
/10

4
). Moreover, 

only one vertical interface, where the plate element below the beam end is linked to that 

immediately after the tip of beam, shear stiffness (ksVI) is assumed low in order to permit 

shift between the two elements. 

In the following figures, results in plane stress state are reported reaching opening crack 

at x = 2.0 and 1.75 m. For the first crack, displacements of substrate in horizontal and 

vertical component are plotted in Fig. 5.27. Highlighting, opposite sign of the horizontal 

displacements at the top substrate between left and right zone of the point where the 

external displacement v  is applied, Fig. 5.27a. The high values of vertical displacements 

are turn out between beam-plate contact at beam end, Fig. 5.27b. 

 

 

 

Fig. 5.27. Mode I crack at x = 2.0 m of a beam resting at x = 1.0-2.0 m (L = 1) with nel = 8, resting 

on substrate which is lying on half-plane. Solution of the system: horizontal (a) and vertical 

displacements (b) [mm] into plane elements.  
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Fig. 5.28. Mode I crack at x = 2.0 m of a beam resting at x = 1.0-2.0 m (L = 1) with nel = 8, resting 

on substrate which is lying on half-plane. Post-processing analysis: plate stress xx (a), tangential 

stress of vertical interface t (b), plate stress zz (c), and normal stress of horizontal interface n (d) 

[kN/m
2
]. 
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Fig. 5.29. Mode I crack at x = 1.75 m of a beam resting at x = 1.0-2.0 m (L = 1) with nel = 8, resting 

on substrate which is lying on half-plane. Solution of the system: horizontal (a), vertical 

displacements (b) [mm] into plane elements, and post-processing analysis: plate stress zz (c), 

normal stress of horizontal interface n (d) [kN/m
2
]. 
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Through the post-computation, plate stress in x-direction (xx), tangential stress of vertical 

interface (t), plate stress in z-direction (zz) and normal stress of horizontal interface (n) 

are reported in Fig. 5.28a-d. Note that, the first crack (x = 2) occurs simultaneously in the 

normal component of the horizontal interfacial and the tangential component of the vertical 

one, Fig. 5.28b and d. Furthermore, solution of the system (ux and uz), plate stress zz and 

normal stress of horizontal interface n are reported for opening crack at x = 1.75 m, in Fig. 

5.29a-d. Opposite signs of horizontal displacement turn out between the top and bottom 

edge of the plate elements underneath the beam, Fig. 5.29a. Although, the vertical 

displacements of Fig. 5.29b show high values close to the external displacement v , the 

peak of plate stress in z-direction (zz) is at the neighbourhood of the crack, Fig. 5.29c. 

While, the normal stress of the horizontal interface are plotted in Fig. 5.29d. 

For comparison, the same example is analysed disregarding the stiffness of beam. 

Horizontal and vertical displacements into the plate elements are reported in Fig. 5.30 for 

the first crack. While, results of the post-processing analysis are plotted in Fig. 5.31. 

 

 

Fig. 5.30. Mode I crack at x = 2.0 m of substrate which is lying on half-plane and without beam. 

Solution of the system: horizontal (a) and vertical displacements (b) [mm] into plane elements. 
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Fig. 5.31. Mode I crack at x = 2.0 m of substrate which is lying on half-plane and without beam. 

Post-processing analysis: plate stress xx (a), tangential stress of vertical interface t (b), plate 

stress zz (c), and normal stress of horizontal interface n (d) [kN/m
2
]. 
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Fig. 5.32. Mode I crack at x = 1.75 m of substrate which is lying on half-plane and without beam. 

Solution of the system: horizontal (a), vertical displacement (b) [mm] into plane elements, and 

post-processing analysis: plate stress zz (c), normal stress of horizontal interface n (d) [kN/m
2
].  
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The deformation of substrate shows different behaviour with regard to the previously case 

with the beam. That is evident above all for the opening crack at x = 1.75 m, where 

displacements of Fig. 5.32 are higher and closer to the zone subjected to the external 

displacement v . In conclusion, the presence of a rigid beam allows more distribution of 

the stresses along the contact avoiding high displacement in the load zone. 

 

5.4.4.3  Mode II crack of substrate lying on half-plane 

A Euler-Bernoulli beam subjected to horizontal displacement u  at one end is investigated. 

The beam, having length L and ratio L/h = 10, and resting on an isotropic substrate which 

could be supported by boundary condition BC or by half-plane. Plane stress state is 

assumed with Young's modulus and Poisson's coefficient of the beam respectively Eb = 30 

GPa,b = 0.2. The material of substrate is considered elastic and isotropic with Ep = 30 

MPa and p = 0.3 for the part with plate elements, while with Es = 10 MPa and s = 0.3 in 

the half-plane. The discretization of beam is made with a number of 16 equal FEs. The 

interface elements in the layer is involved in the zone defined by nx = 8 and nz = 3. The 

interfacial stiffness is assumed rigid unless the shear component of horizontal interface 

(knHI = knVI = ksVI = k
*
, ksHI = k

*
/10

4
). A limit stress of the interface element is supposed 

equal to 100 kPa. 

Firstly, the layer of substrate bonded with boundary condition at the bottom is analysed, 

Fig. 5.33. The solution of the system in terms of displacement is reported in Fig. 5.33a and 

b for horizontal and vertical component, respectively. High values of the horizontal 

displacements turn out along the contact between beam-layer. Whereas, at the beam ends 

there developed a high vertical displacement. The plate stress in x-direction, Fig. 5.33c, 

shows a concentrated zone of compression at the top substrate after the application point of 

the external displacement u . While, the tension zone is found at the opposite side at the 

beam end. It is worth observing that shear crack is along the contact surface between beam 

and substrate and does not involve in depth. Moreover, the tangential stress of the 

horizontal interface, Fig. 5.33d, shows the first crack developed throughout the length of 

contact beam-layer. In this contest, the model used in the Chapter 4 could be a good 

simplification of delamination for reinforcement subjected to horizontal load. 

Secondly, the layer is supported by half-plane with mechanical parameters, previously 

mentioned. In this situation, relative displacements are reported in Figs. 5.34a-b. Through 

different deformation from the case with boundary condition, the stress xx of the substrate 

and t of the horizontal interface are developed in the same zone, Fig. 5.34c-d. 
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Finally, the shear crack is investigated neglecting the stiffness of the beam in the model 

where the layer is support by half-plane. The results in terms of horizontal displacement, 

Fig. 5.35a, show a peak at the neighbourhood of the application point of the external 

displacement u  (or load point). On the left of that point, a lift of substrate is developed, 

how is reported by opposite sign of the vertical displacements in Fig. 5.35b. As expected, 

the plate stress xx and t of the horizontal interface are concentrated at the neighbourhood 

of the load point, Fig. 5.35c-d. 

 

 

 

 

Fig. 5.33. Mode II crack of beam L subdivided into nel = 16, resting on substrate with boundary 

conditions at the bottom edge. Values of ux (a), uz (b) [mm] and xx (c), t (d) [kN/m
2
]. 
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Fig. 5.34. Mode II crack of beam L subdivided into nel = 16, resting on substrate which lying on 

half-plane. Values of ux (a), uz (b) [mm] and xx (c), t (d) [kN/m
2
]. 

 

 

Fig. 5.35. Mode II crack of substrate which is lying on half-plane and without beam. Values of ux 

(a), uz (b) [mm] and xx (c), t (d) [kN/m
2
].  



 204 

5.5  Conclusion 

In this Chapter, the elastic "zero-thickness" interface element has been proposed for the 

simulations of crack. The variational formulation is obtained through the theorem of work 

and energy for external domains. Using the Lobatto integration rule, the presence of the 

interface elements do not alter the response of the continuum elements when elastic 

stiffness parameters is higher than k
*
E/dl with k

* 
= 10

3
. In other words, the solution with 

rigid interface coincides to that of the classic FEM. A bilinear constitutive law defined in 

terms of stress-displacement relationship has been investigated with hardening or softening 

behaviour between two plate elements which are linked by an interface element. Both 

cases show a separation, allowing the transmission of stresses. In particular, an extension 

of the plate elements turns out in the case of hardening interface. While a contraction, until 

reaching the initial deformation, occurs following the softening branch. 

The propagation of crack depend on the stiffness of interface elements, as remarked in 

the case of a cantilever subjected to two opposite displacements. In particular, a rigid or 

weak elastic brittle behaviour are inserted in the horizontal or vertical line interface of the 

mesh. Opening crack of the cantilever at half-height or at the top and bottom level is 

established by the set of the interface elements. The solution of the model with only elastic 

horizontal interface could be compared with that having elastic horizontal interfaces and 

rigid vertical interfaces. Besides, it is shown a good agreement, in terms of external force-

displacement curve, between the analysis run by the present model and those calculated 

through a software at traditional finite element with spring elements between notes. 

Furthermore, a model of beam resting on substrate which is lying on half-plane is 

generated, inserting automatically "zero-thickness" interface elements in the area affected 

by the crack. A coupled FE-BIE model, for the analysis of a layer bonded in perfect 

adhesion to homogeneous linearity elastic half-plane, is proposed. The classic 

displacement based on FE method is used to describe the response of the beam and the 

plate element (layer). Whereas, the BIE approach is used for the substrate boundary, where 

surface displacements are defined by means of a suitable Green's function, as mentioned in 

Chapter 3. Unknown functions are represented by the beam and plate displacements and 

are independent from the surface tractions. A number of examples are presented to show 

the opening and sliding crack with the proposed formulation. Displacements and stresses 

are calculated and reported in some states of crack propagation. Finally, results with 

neglected beam stiffness or assuming the traditional boundary conditions are illustrated 

showing a different response in terms of deformation and stresses. 



 205 

References  

[1]  Deng Y, Lawn BR, Lloyd IK. Characterization of damage modes in dental ceramic 

bilayer structures. Journal of Biomedical Materials Research 2002; 63(2): 137–145. 

[2]  Caballero A, William KJ, Carol I. Consistent tangent formulation for 3D interface 

modeling of cracking/fracture in quasi-brittle materials. Comput Methods Appl Mech 

Engrg 2008; 197(33-40): 28042822. 

[3]  Belytschko T, Gracie R, Ventura G. A review of the extended/generalized finite 

element methods for material modelling. Model Simul Mater Sci Eng 2009; 17 

(24pp). 

[4]  Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without 

remeshing. Int J Numer Meth Engng 1999; 46(1): 131–50. 

[5]  Ciancio D, Carol, Cuomo M. On inter-element forces in the FEM-displacement 

formulation, and implications for stress recovery. Int. J. Numer. Meth. Engng 2006; 

66: 502–528.  

[6]  Ciancio D, Castellazzi G. Fictitious Elastic Stiffness Parameters of Zero-Thickness 

Finite Elements at Bi-Material Interfaces", Applied Mechanics and Materials, 2014; 

553: 16–21.  

[7]  Caballero A, Lopez CM, Carol I. 3D meso-structural analysis of concrete specimens  

underuniaxial tension. Comput Meth Appl Mech Engng 2006; 195(52): 7182–7195. 

[8]  Ciancio D, Carol I, Cuomo M. A method for the calculation of inter-element stresses 

in 3D. Comput. Methods Appl. Mech. Engrg. 2013; 254: 222–237. 

[9]  Ciancio D, Carol I, Cuomo M. Crack opening conditions at ‘corner nodes’ in FE 

analysis with cracking along mesh lines. Engineering Fracture Mechanics, 2007; 

74(13): 1963–1982. 

[10]  Lotfi H, Shing P. Interface Model Applied to Fracture of Masonry Structures. J. 

Struct. Eng. 1994; 120(1): 6380. 

[11]  Ciancio D, Carol I, Castellazzi G. Optimal penalty stiffness values of concurrent 2D 

elastic interface elements leading to accurate stress tractions. Int. J. Numer. Meth. 

Engng 2004; 98: 344370. 

[12]  Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element 

Analysis. Prentice-Hall: Englewood Cliffs, New Jersey, 1987. 

[13]  Carpinteri A. Cornetti P. Lacidogna G. Paggi M. Towards a Unified Approach for 

the Analysis of Failure Modes in FRP-Retrofitted Concrete Beams. Advances in 

Structural Engineering 2010; 1(13): 875‒889.  



 206 

[14] Diehl T. On using a penalty-based cohesive-zone finite element approach, Part I: 

Elastic solution benchmarks. Int. J. Adhesion & Adhesives 2008; 28: 237‒255. 

[15]  Diehl T. On using a penalty-based cohesive-zone finite element approach, Part II: 

Inelastic peeling of an epoxy-bonded aluminum strip. Int. J. Adhesion & Adhesives 

2008; 28: 256‒265. 

[16]  Park K. Paulino GH. Cohesive Zone Models: A critical review of traction-separation 

relationships across fracture surfaces. Applied Mechanics Reviews 2013; 64(6).  


