UNIVERSITY OF FERRARA
ENGINEERING DEPARTMENT

£y DR
4 [/llf(r)RE H‘\ULX

DOCTOR OF PHILOSOPHY DEGREE IN SCIENCE OF ENGINEERING

CYCLE XXVIII
COORDINATOR PROF. STEFANO TRILLO

NOC-CENTRIC PARTITIONING AND RECONFIGURATION
TECHNOLOGY FOR THE EFFICIENT SHARING OF
GENERAL-PURPOSE PROGRAMMABLE
MANY-CORE ACCELERATORS

SCIENTIFIC DISCIPLINARY SECTOR
ING-INF/01

CANDIDATE ADVISOR
DoOTT. MARCO BALBONI PRrROF. DAVIDE BERTOZZ1

ACADEMIC YEARS 2013-2015

UNIVERSITY OF FERRARA
ENGINEERING DEPARTMENT

& RN
/‘,L’(‘BORE F\(\J(-:‘\)

DOCTOR OF PHILOSOPHY DEGREE IN SCIENCE OF ENGINEERING

CYCLE XXVIII
COORDINATOR PROF. STEFANO TRILLO

NOC-CENTRIC PARTITIONING AND RECONFIGURATION
TECHNOLOGY FOR THE EFFICIENT SHARING OF
GENERAL-PURPOSE PROGRAMMABLE
MANY-CORE ACCELERATORS

SCIENTIFIC DISCIPLINARY SECTOR
ING-INF/01

CANDIDATE ADVISOR
DOTT. MARCO BALBONI PROF. DAVIDE BERTOZZI

ACADEMIC YEARS 2013-2015

Acknowledgements

I have waited for this moment for a long time, basically all my life of student. Now,
[wonder what actually makes this moment unique. Today I feel like the first part of
an exciting journey is overing and a new one is starting. Probably as a child spends
his youth dreaming to become a man similarly I was dreaming to complete my studies
to start my job career. However this moment is much more than this, more than the
excitement of starting a new era of my life. This moment represents the chance to
thank all the people that have helped and supported me on every step until here. This
moment can repay a part, at least a small part, of the infinite faith put in me in all

these years.

My PhD started when my advisor Davide Bertozzi gave me the opportunity to
join the MPSoC group at University of Ferrara. Needless to say, Davide has been
the key person during my PhD. He has been more than a simple advisor, he did not
only show me the way for a prolific research but he also provided me pure lessons of
life. In Ferrara, I had the chance to work on ambitious topics in a great research group.
A research group built around the harmony and the enthusiasm of challenging always
new research problems. Together with endless scientific stimuli, Davide surrounded me
by an unconditioned trust and pushed me to go beyond my limits. In these years, I
had opportunities that I could neither imagine to have. I traveled around the world
taking part to prestigious conferences, I met some of the pioneers in my research field,
[exchanged opinions and point of view with persons of every culture and professional
background, I had the chance to work in many topics and many countries. I'm really
thankful for all these unrepeatable experiences that made me grow and I will always

bring with me.

A special thank you is due to prof. Luca Benini that had me under his wing
as co-advisor for these vears of research, believing in my potentiality and guiding me
with his expertise, competence, knowledge and professionalism, and let me be part
of the great MultithermanLab Group at DEI at University of Bologna. This
latter group represented the best environment where I could ever imagine to develop

my research and spend the most part of these years.

I want to thank all the persons of my research group in Ferrara. Alessandro S.
and Daniele L. that have helped me immensely in the first period of my PhD. They

represented my reference point for every problem, every doubt and every question.

Thanks for all your patience, [have learned a lot from vou guys. I'm thankful to
Alberto, Mahdi, Marta, Lorenzo, Gabriele and Hervé, too. A special thank to Luca to
show me the right way to be part of this group and to support me in each moment of
this PhD. It was fantastic to work side by side with all of you. I have been impressed
by your fairness, your sensitivity and your intelligence. I enjoyed all the moments that
we had together. I even enjoyed the most difficult of them as the times when we had
to work hard until the early morning hours. Together we have been able to meet the
more challenging of the deadlines. Thanks to all of you my friends. I wish you the
greatest satisfaction from the life. I also owe all the people part of my other research
group in Bologna. It was a honor to be part of the "Lab Famiglia” at the basement of
that old building. I will bring all of you in my mind as the best friends and colleagues
of my life. Probably we are destined to work in great companies or research groups in
the future, but for me nothing will be comparable to our group. So again big thanks
to Giuseppe, Francesco B., Francesco C., Francesco P., Daniele 7 Cagarini”, Daniele B.,
Andrea B., Chrstian P., Erfan, Igor, Davide, Thomas and especially to Andrea M. and
Alessandro. You are all more than friends for me.

[could not forget the guys and girls at ARM Ltd in Cambridge (UK), in par-
ticular Rekai, Radhika, René, Andreas S., Stefano, Sasha, Roxana and the king Omar.
I had many enjoyable moments during my internship. A big thank also to the head of
the group Andreas Hansson to be a great leader and to give me the opportunity to
be part of ARM, actually one of the best world’s company. Finally, I owe my parents
and my whole family (mom, dad and Sabri) and in particular my cousins Elli and Luk
to have sustained me in all my choices and to have patiently followed me through all
my sad and happy moments of this long way. Their invisible, but still strong and caring

presence have encourage me several times.

Marco

Ferrara, Italy, April 2016

i

Abstract

During the last few decades an unprecedented technological growth has been at the center of embedded
systems design, with Moore’s Law being the leading factor of this trend. Today, in fact, an ever
Increasing number of cores can be Integrated on the same die, marking the transition from state-ol-
the-art multi-core processors to the new many-core design paradigm. The aim of such many-core
devices Is twolold: providing high computing performance and increasing the energy efficiency of the
hardware in terms of OPS/Wait. Despite the extraordinarily high computing power, the complexity
of many-core systems opens up several challenges to be tackled by designers, concerning the runtime
management of the computing fabric. The challenge tackled by this thesis is twofold. One one hand,
software parallelism does not scale to the same extent of hardware parallelism, therefore the problem
arises about how to share the computation resources among a set of concurrent applications. On
the other hand, management tasks of the many-core system become fundamental runtime operations,

which need to be transparently executed while avoiding to suspend system computation.

This thesis provides a whole set of design methods to master the runtime complexity of feature-rich
industry-ready many-core accelerators, relying on hardware extensions of the on-chip interconnection
network (Network-on-chip, NoC). The key idea is to exploit a Space-Division Multiplexing strategy to
schedule the execution of concurrent applications that require to be accelerated onto the same array
fabric of homogeneous processing tiles at the same time, thus enabling the efficient exploitetion of
the underlying hardware resources. The most advanced application of this idea consists of embedded
system virtualization on top of heterogeneous computing architectures, where multiple virtual ma-
chines running on a host processor may want to offload computation to a many-core programmable
accelerator. In this context, virtualization implies flexible partitioning of computation and memory
resources, isolation for protection, and reconfiguration for workload adaptivity at runtime. While
resource management should be on burden of a ”control tower” in software (hypervisor), partitioning,
Isolation and reconfiguration need to be assited in hardware, especially in the platform integration

framework, consisting of the communication architecture.

The first contribution of this thesis consists of validating the novel SDM-based resource sharing
paradigm. Therefore, it compares an SDM approach with a traditional one based on time-division
multiplexing. To evaluate the different strategies, the thesis makes use of parallelized Image Pro-
cessing benchmarks, whose execution is managed by an optimized version of the OpenMP Runtime
Environment, needed to enable their parallel execution. The benchmarks are executed on different
simulation environments (VirtualSoC and gem5), which required the customization and extension of
such environments with new functionalities to simulate a General-Purpose Many-Core Programmable
Accelerator. As a result, the thesis aims at capturing the impact on performance of parallelism,
size and shape of partitions (numbers of computational clusters reserved, and their position in the

manycore fabric), ag well ag memory configuration.

The second main contribution of the thesis consists of enabling a highly-dynamic resource manage-
ment of manycore accelerators. In fact, the flexible sharing strategy of a networked many-core fabric
depends ultimately on the runtime reconfiguration capability of the NoC routing function, therefore

this thesls alms at a fast and scalable routing reconfiguration mechanism with minimum perturbation

11l

of background traflic. The thesis provides at first a ceniralized sclution to this problem, and finally
a fully distributed one, and assesses the area and performance implications by means of an advanced
FPGA prototype. This contribution paves the way for future fine-grained workload-adaptive system
configurations, as well as for transparent online testing strategies of selective components.

Finally, the thesis aims at the deployment of the developed spatial partitioning strategies into more
futuristic systems, characterized by the integration of manycore fabrics with emerging interconnect
technologies. This thesis focuses on the photonic integration case study, and co-designs the partitioning
and reconfiguration features of a programmable accelerators with the basic requirement of minimizing
the static power overhead of optical NoCs. This is achieved through a re-use technique of laser sources

across computation partitions.
Finally, the thesis re-architects the complete hierarchical communication infrastructure in a tem-
plate heterogeneous parallel computing architecture with photonic integration, and comes up with a

hybrid interconnect fabric that paves the way for future research.

iv

CONTENTS

Contents

Contents
List of Figures ix
List of Tables XV
List of Acronyms and Symbols xvii
Introduction
1 Chapter 1: Background 9
1.1 Heterogeneous parallel computer architectures 9
1.1.1 The end of Dennard scaling and the switch to multicores 9

L2

1.3

1.1.2 Dark Silicon, the utilization wall and the rise of the heteroge-

neps parallelisnt 5 ¢ 2 ¢ s s 2 rreEw e § 5 5 5 5 R 8 8§ B e s 13
1.1.3 Otherissues
1.1.4 Many-core architectures,
1.1.5 Cluster architectures: relevant examples 18
1.1.6 Many-core accelerators

1.1.7 Accelerator types: introducing General-Purpose Programmable

Acecelerators L e

Networks-on-Chip (NoCs)0 i vt v e v it e e e o 26
1.2.1 NoC topologies. 28
1.2.2 Therouter 31
Logic-Based Distributed Routing, 34
1.3.1 LBDR description '

2 Chapter 2: Virtual platforms for heterogeneous parallel computer

architectures 39
2.1 Introduction 39
2.2 SystemC VirtualScoC development
ZBT Owotmlew wws s 6 5 2 5 v v 0 0 2 cmmumms v 5 5 % ¥ ¥ 8 8 & @
0200 Baselimearchiteoture ; : c s s s smmwaws 8 6 5 5563 87 § 8553
2.2.3 Many-core single cluster accelerator 43

CONTENTS

2.3

2.4
2.5

2.2.4 Host-Accelerator Interface
2.2.5 Simulation software support
2.2.6 Modifying VirtualSoC: the target multi-clusters version
gemb development toward heterogeneous parallel computer architectures
2.3.1 A customized gemb-based GPPA
Simulation platforms comparison

BUIMINBLY & 5 oo 6 5 8 8 % £ ¥ 5 8 § §9 Bime § 8 8 £ 8 £ 8 8 8 § 595

(@]

AR
a0

Chapter 3: Making the point for Space-Division Multiplexing for

GPPA

3.1 Time-Division Multiplexing vs. Space-Division Multiplexing

3.2 Fuperimental evalmation: . . « ¢ ¢ v ¢ « v cwmmmus v 5 8 3 9 v v & & 2 2w
Gl BEperimental SetUDPs : ¢ s ¢ 2 a6 e BE 5 55§ 55 5 2 8B BN
3.2.2 Areaand Critical Path
3.2.3 Offload and Partitioning Cost Characterization
3.2.4 Application Benchmarking
3.2.5 Overall scenario: does SDM make sense?

3.3 Towards a resource virtualization environment: partition shapes make
the difference

3.4 Bummary ... e e

Chapter 4: How to support SDM

4.1

4.2
4.3

Software support for SDM in a virtualized environment

4.1.1 Operating System and Hypervisor

(@]

4.1.2 OpenMP Runtime for cluster virtualization and parallel execution 74

Hardware support for SDM in a virtualized environment

SUMIEIY 2 2 v e s § 5 5 8 8 8 $ 8 8 4 S @@ B § 6 68§55 2 28 i

Chapter 5: Runtime reconfiguration of the NoC routing function

5.1
5.2
5.3

5.4
5.5

5.6

Motivation and related works oL
ToEpEieliiem: « « commwmms 5 5 5 2 2 v v 6 & ¢ commwEmEME ¥ B B R T PV & € T L
LIl baselite rechisIshT s 5 s 5 5 s 4 6 6 M@ S ¥ 6 5 F 56 5 A A H BEE
5.3.1 Native OSR technique
932 OSRroite « v v v v v v e e e e e e e e
Bouressvol inefficleney « < s 2 ¢+ ¢ ¢ v o v v vmwmms v 5 5 % ¥ v ¥ o B @ 2w
Optimization of reconfiguration mechanism
551 Local Reconfiguration

5.5.2 Synchronized reconfiguration

5.5.3 Epoch-conversion: towards a fully transparent reconfiguration

Experimental results
5.6.1 Assessing local reconfiguration

5.6.2 Assessing synchronized reconfiguration

vi

CONTENTS

5.6.3 Assessing epoch-conversion reconfiguration 101

BT Summary e e e e 104

6 Chapter 6: Ultra-low latency, scalable and distributed reconfigura-
tion e

6.1 Motivation and related works

6.2 Main issues with OSR.o
6.3 Key idea: synergistic use of multiple networks 109
6.4 Baseline mechanism o 1]
6.4.1 Identification of the region involved by a fault 112
6.5 Optimized mechanism 112
6.5.1 Tunvel propagefinm - = « ¢ « « 2 cmmwmms 5 5 5 2 % ¢ & 8 2 2w 112
6.8, Hapertunnel teiiest : « ¢ ¢ ¢ ¢ semw w5 5 5 5 5 5 £ 8 8 pew e s 118
6.6 Mechanism at work 113
6.7 Experimental evaluation 115
6.7.1 Reconfiguration latency 0o 115
652 Mmenoverlesd ; : 55 svvrrs s s s s 116
6.7.3 Impact on packets’ latency L. L1
6.7.4 Coverage e e 119
6.8 SUMMATY e e e 119
7 Chapter 7: FPGA Prototyping 121
7.1 Introduction 1]
7.2 FPGA platform 123
7.3 Baseline System 124
7.3.1 Basic components: the on-chip network 127
7.4 System Under Test with Xilinx Vivado 129
7.4.1 The physical platform implementation 130
7.5 New mechanism’s application: Lifetime Testing 132
781 Mechonismabwork - < ¢ ¢ c o v cmmmmu v 5 5 5 3 5 8 ¢ 2 2w wws 133
b Experimiental tesulls s s 5 5 2 8 2 5 8 4 6 v E S Bs § 5 5 5 5 5 88§ pewE s 134
7.6.1 Areaoverhead 134
7.6.2 Critical path
7.6.3 Reconfiguration time L. 135
7.6.4 Impact on main network traffic 187
T.T 0 SUMMATY . . o o o o e e e e e e e 138
8 Chapter 8: Optically-Enabled GPPA 143
&1 Optical NoCs: do they make sense? 143
811 Tolrorhgebiom s 5 s 5 5 2 ¢ § 68 5 6 6B B @5 § 68 58 % % F 58§ 600G 144
8.1.2 Target architecture 145
8.1.3 Baseline synchronous design 147

vii

CONTENTS

8.1.4 Asynchronous design 148
81.5 Opticaldesign
&1.6 Energy and power modeling 149
81.7 Energy-per-bit analysis
81.8 Static power assessment
&1.9 Power vs. communication-bandwidth requirements 153
8.2 Validation of the potentials of the concept inside a system 156
B InITEluetin, s 5 5 55 53 3 8§ FEEEBS § 55 F E S A B B BEe 156

8.2.2 GPPA motivations

8.2.3 Target architecture

B2d. Toappmeodsl o « o s s v v v c ez smmmans v 5 8 2 2 9 v ¢ & 2 aww
820 Bxperimental vesulte . : o ¢ ¢ s s smwmns 5 55 8 5 5 5 2 88 pes 166
8.2.6 Application benchmarking
8.3 SDM on top of a photonically-enabled GPPA 178
&3.1 Selection of photonic NoCs 153
8.3.2 Dynamic partitioning 174
83.3 Static partitioning 177
8.3.4 Methodology 178
835 Results 179
BA What'smesbl v wvwms v s 0 25 v v 6 02 ammmms v 5 5 93¢ 7 8 8 8 aws
85 DUMMEIY 20 vees oy § 655 5 ¢ £ 6 8 8 4 GBS § 65 8555 228 885 185
Conclusions and Future Works 187
Bibliography 191
EU- or Italy-funded projects where I was invoved 205
Authors’s Publications List 207
Dichiarazione di Conformita 209

viil

LIST OF FIGURES

List of Figures

1.1

1.2

1.3
1.4
1.5

1.6

L.

1.8

1.9

1.10
1.11
112
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20

2.1
2.2
2.3
2.4
2.5
2.6

Moore’s Law and corollaries. Data shows scaling trends, with clear shifts
in.frend.lines: ot roumghlyr 2004, .« ¢ ¢ ¢ o cwmwmms 5 5 5 % 5 ¢ & & @ o www
A range of implementation options trading off processor area devoted to
cache, and resulting power tradeoffs.
Enhancing throughput while maintaining power envelope.
A depiction of Dark Silicon trends as seen by ARM.
Clustered many-core architecture organized in a 2x2 mesh and off-chip
MAIN=TAEIOTY: - o onms 5 5 5 % 5 & v & % & &w @ s 5 & 6 ¢ % % & @ 0w
Overview (simplified) of P2012/STHORM cluster architecture.
Plurality HAL architecture overview.
Overview (simplified) of Kalray MPPA architecture.
NVidia Tegra K1 floorplan.
O s OGP wowms 5 8 8 % % ¥ 58 5 6 6D 0@ 0 5 8 8 % ¢ £ 5 8 § 60908
Heterogeneous SoCs and types of parallel computing.
Network-on-Chip system.
NoC with direct regular topologies.
NoC with indirect topology {(Fat-tree).,
4-ary 2D-mesh NoC topology.
Main module in a VC-less router.
Dlodbs amibs. cwwmmn 5 0 5 2 5 v v 0 0 2 cmmumms v 5 2 % % 7 6 & & @ www
XY routing from router A torouter B.
LBDR method.
Example of LBDR for an irregular (p) topology with UD routing.

Target simulated architecture.
Single cluster of a programmable many-core accelerator.
Mesh of trees 4x8 (banking factor of 2).
Breenben mde s ms s s 5 s 55 s AR G EMEBES § FEEEE A F HE BB
Heterogeneous {many-core accelerator-based) MPSoC architecture. . . .
GPPA architecture example: 12 switches, 9 with computing clusters and
L2 distributed blocks; 2 additional switches are reserved to the Fabric
Controller (hypervisor) and to the I\NO interface.

ix

LIST OF FIGURES

2.7

2.8
2.9

3:l
3.2

3.3
3.4

3.5

3.6

3.7
3.8
3.9

3.10

3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

A tree topology Dual NoC to deliver configuring bits from the Fabric
Controller to the routers of the NoC. 51
Simplified new VirtualSoC target architecture: 2x2 mesh.
Blocks diagram of the whole system (host processor and many-core ac-

celerator) implemented with gem5 simulation environment. 54

Compound switch of the GPPA. 59
Normalized area: comparison between Time and Resource Sharing ar-
chitectures. SDM approach needs a physical global network to let the
packets overcome the barriers of the partition, if necessary. In this case
we are assuming global network hasno VC
Offload costs chracterization increasing the number of cluster involved.
Speedups showed at increasing the number of computational clusters
reserved for the application under test, considering, as platform setup,
an ideal crossbar and all the memories access latency equal to 1 cycle. .
Applications speedups normalized to ideal benchmark execution to eval-
uate different L2 configurations: (a) 1 cluster per partition, (b) 3 clusters
per partition. e e e e
Deviation normalized to the ideal Fast-Rosten performance for several
L2 conlionrablons: e o5 8 25 2 v 8 8 6 sovimme ¢ 8 8 8 ¢ 8 8 8§ 595
TDM vs SDM-Random vs SDM-BestFit with different L2 configurations. 67
Gaussian Distribution of the random results. 68
Execution times of FAST benchmark considering an increasing paral-
lelism and dedicated computational resources. 68
Speedups of FAST benchmark considering an increasing parallelism and
dedicated computational resources: the values reported are the average
of results for partition that can support more than one shape. 69
Execution times of FAST benchmark considering an increasing paral-
lelism and dedicated computational resources: zoom on partitions of
4-5-6 clusters.

Memory copies to allow data sharing
Many-Core Accelerator sharing infrastructure g
Design of tasking support.
Design of task scheduling loop.
Highly dynamic environment.
Violations of the isolation property. 717
Partitioning support through connectivity bits. 78
Mapping Restrictions to avoid unsafe partitions.

Routing algorithm adaptation: now the d-shape partition in grey can

LIST OF FIGURES

5.1 Two NoC configurations where the routing algorithm needs to be adapted. &4
5.2 Channel dependency graph for two routing algorithms and the combi-
nation of both. &6
5.3 Reconfiguration steps performed in an OSR environment. 86
5.4 Token advance in a network: (a) check for absence of old messages and
input ports epoch, (b) token signal propagation. The token separates
old traffic from new traffic. L.
5.5 Reconfiguration steps performed in an OSSRy, environment. 88
5.6 Reconfiguration steps performed in an OSRy. at switch-level. &89

5.7 Switch input buffer enhanced with the OSRyj. logic and a new set of

TOUBING MECHATISI: 5 5 5 5 ¢ 8 ¢ 5 8 2 ¢ PlEES S § 5 5 5§ 8 5 8 8 § §@ @5 s 9]
5.8 Switch arbiter enhanced with the OSRy. logic.)
5.9 Switch output buffer enhanced with the OSRyj. logic. 92
5.10 Configuration information from neighbor switches and control network. 93

5.11 OSR-Lite propagation over a 4 x 4 mesh topology: (a) scrolling up, and
(Bl serelline domer; w5 5 2 8 8 s ¢ ¢ 8 s 6 eR R PP 55 5 45 E 5 8 EERRS 94
5.12 OSR-Lite propagation over a 4 x 4 mesh topology: (a) scrolling up, and
(by scrolling down. 95
5.13 Local Reconfiguration: processing at input ports (a) and at cutput ports
(b)Y
5.14 Logic behind synchronization between new LBDRbits and token propa-
BABIOT: 2 4 upomems 2 8 5 2 ¢ 8 0 E B N G 35 5 ¥ U 8 B E § HUwms 97
5.15 Optimized switch with two routing alternatives (old and new) at each
Input port. e e e 98
5.16 Experimental results and benefits of local reconfiguration. 100
5.17 Blocking time of all traffic injectors: baseline OSRp;. (red) vs optimized
version {(blue). L 101

5.18 Taking advantage of 2 sets of LBDR registers per port. 103

6.1 4x4 2D mesh: (a)Segments and scroll-up token propagation, (b) faults

ids. . . 108
6.2 Token OSR. 111
6.3 Tunneling Mechanism at Work. 114

6.4 Reconfiguration Latency in a 4x4 mesh: baseline OSRyj.(red), Global
TOSR (Blue) and optimized Local TOSR. (yellow). 115
6.5 Average reconfiguration Latency in an 88 2D mesh. 116
6.6 Impact on upper-network considering a medium injection rate. 118
6.7 Impact on escape network traflic considering a 5% injection rate. 118

6.8 Impact on escape network traffic considering a 40% injection rate. . . . 119

7.1 VC707 baseline prototyping board., 123

xi

LIST OF FIGURES

7.2
7:3
7.4
7.5
7.6
7.7
7.8
7.9

7.10

7.11

7:12

7.13
7.14

7.15

7.16

7.17

7.18

7.19

FPGA platform overview.
Design flow for platform implementation. 126

Basic components of the on-chip network.

Network Inteface blocks diagram. 129
Different resources utilization in terms of Look-Up Table: ISE vs. Vivado130

Escape network and tunnels mechanism implementation. 130

Layout of the full FPGA design. 131
Path followed throughout the network by testing token, to sequentially
tesballthelinls. wwws s 0 6 v s v v 06 2 amwmmmn 56 5 2% v w062 amne 132

Main steps of the testing mechanism: lightblue arrows indicate the paths
towards the escape network.,

Area overhead: baseline switch vs. enriched switch enabling runtime

testing. 135
Area overhead: bageline system vs. system enabling runtime testing. . . 135
Fault [Ds fora 4=x4 2D mesh. 136

Reconfiguration transient latency of different mechanisms: in red the

baseline OSR, in blue a first optimization of the tunneled version and

ey

finally, in vellow, the best optimization of the tunneled OSR.
Minimum, average and maximum rrival latency of packets to destina-
tion considering an injection rate on the main network of 60% specified
for links under test. Horizontal lines are the references (min is green,
max is red and avg is blue) concerning the system without the runtime
testing mechanism, without faulty or unconnected links. On x-axis the
simulation time is reported. Lo 138
Minimum, average and maximum rrival latency of packets to destination
considering an injection rate on the main network of 100% specified
for links under test. Horizontal lines are the references (min is green,
max is red and avg is blue) concerning the system without the runtime
testing mechanism, without faulty or unconnected links. On x-axis the
gimulation time IS Tepartetl: : : 5 ¢ ¢ a6 smwm s 5 5 5 § 5 5 5 2 ¢ & #& % 139
Minimum, average and maximum rrival latency of packets to destina-
tion considering an injection rate on the main network of 40% specified
for links under test. Horizontal lines are the references (min is green,
max is red and avg is blue) concerning the system without the runtime
testing mechanism, without faulty or unconnected links. On x-axis the
simulation time is reported. oL
Focus on the avg and max latency of arrival of the packets in the main
network considering an injection rate of 100% eon'it. 141
Focus on the avg and max latency of arrival of the packets in the main

network considering an injection rate of 40% onit. 141

xii

LIST OF FIGURES

8.1 16x16 Lambda router logic scheme. 147
8.2 Proposed micro-architectural view of the optical link. 149

8.3 Contrasting Energy-per-bit: Optical vs. Synchronous vs. Asynchronous

designs. 150

&4 Static power breakdown to sustain single communication flows, mapped

1-hop away in electronics. 152
&5 Break-even bandwidth for power efliciency with no lager source reuse. . 153
8.6 Break-even bandwidth for power efliciency with laser source reuse. . . . 155
8.7 Heterogeneous (many-core accelerator-based) MPSoC architecture. . . . 158

8.8 CGPPA Architecture.

&9 Compound switch of the electronic on-chip network. 162
8.10 Optical Network Interface Architecture with 3-bit parallelism. 165
8.11 Normalized offload bandwidth as a function of DMA burst size. 166
&.12 Instruction cache refill latency as a function of the number of hops to

The tarset [l wwmos 6 5 5 5 8 5 5 2 8 6 Rl @D SIS § 5 5 ¢ 8 6 8 8 § 454 167
&.13 Fetching time for 16B data chunks. 168
&.14 Fetching time for 5kB data chunks. 169

8.15 Static power for the compound ENoC vs. hybrid ONoC variants. 170
8.16 Dynamic power for the NoCs under test. The compound ENoC is broken

down into its local and global networks, and so is the hybrid NoC. . . . 170
&.17 Color Tracking execution distribution among clusters. 1]
8.18 FAST execution distribution among clusters. 17%]
&.19 The wavelength routing concept. 173
8.20 Truth table of the 8x8 gwor and basic example to set up partitions with

and without wavelength reuse. 175
8.21 Number of allocated wavelengths for our greedy algorithm over the ex-

haustive search algorithm for all the considered topologies in 20 random

initial scenarios. The scenarios are ordered from the highest number of

free nodes (scenario 0, 16 free nodes) to the lowest (scenario 19, 4 free

8.22 Comparison of the A-router with the ring in 20 random initial scenarios
and new partitions of 2, 4, and 6 nodes. The bars represent the number of
allocated wavelengths in the A-router over the ones allocated in the ring
to set partitions of different sizes in the 20 scenarios, with the greedy and
the exhaustive algorithms. Note that a larger value for the exhaustive
algorithm does not mean that it allocates more wavelengths, it simply
means there is a larger difference between the topologies. The absolute
number of allocated wavelengths is always smaller for the exhaustive

algorithm. 181

xiil

LIST OF FIGURES

8.23

8.24
8.25

8.26

Agoregated wavelength-on time for different topologies and partitioning

strategies. L e
Laser source energy for different topologies and partitioning strategies. 182
Execution time of the greedy algorithm to allocate a new partition of 2

and 8 nodes with increasing number of nodes in a ring topology. As a

reference, I also plot a quadratic curve in each graph

Envisioning a request network for the whole hybrid system.

Xiv

LIST OF TABLES

List of Tables

1.1 Dennar scaling rules.

5.1 Routing rules for the baseline OSR method and when epoch conversion

is enabled. L

6.1 Area overhead in terms of register bits.

XV

LIST OF TABLES

xvi

List of Acronyms and Symbols

ASIC
BISD
BIST
CMP
CPU
Csu
CcvPp
DDR.
DEMUX
DMA
DUT
DVES
FE
FIFO
FPGA
FSM
GALS
GPPA
GPU
HDL
HWPE
HWS
[P

[SA
ITRS
LBDR
LFSR
LIC
LUT
MIMD
MISR
MoT

Application-Specific Integrated Circuit
Built-In Self-Diagnosis

Built-In Self-Test

Chip MultiProcessor

Central Processing Unit

Central Synchronizer Unit

Clock Variability Power

Double Data Rate

Demultiplexer

Direct Memory Access

Device Under Test

Dynamic Voltage and Frequency Scaling
Flip-Flop

First In First Out

Field Programmable Gate Array

Finite State Machine

Globally Asynchronous Locally Synchronous
General-Purpose Programmable Accelerator
Graphics Processing Unit

Hardware Description Language
Hardware Processing Element

Hardware Synchronizer

Intellectual Property

Instructions Set Architecture
International Technology Roadmap for Semiconductors
Logic-Based Distributed Routing

Linear Feedback Shift Register

Local Interconnect

Look-Up Table

Multiple Instructions Multiple Data
Multiple Input Signature Register
Mesh-of-Trees

xvii

List of Acronyms and Symbols

MMU
MPPA
MPSoC
MUX
NI
NoC
NPM
OCP
P&R
PGAS
RR
RTL
SIMD
SDM
SoC
TCDM
TDM
TLM
TPG
VC
VLSI
VPU

Memory Management Unit
Multi-Purpose Processor Array
Multi Processor System on Chip
Multiplexer

Network Interface
Network-on-Chip

Native Programming Model
Open Core Protocol

Place and Route

Partitioned Global Address Space
Round Robin

Register Transfer Level

Single Instruction Multiple Data
Space-Division Multiplexing
System on Chip

Tightly Coupled Data Memory
Time-Division Multiplexing
Transaction-Level Modeling
Test Pattern Generator

Virtual Channel

Very Large Scale Integration

Visual Processing Unit

xviii

Introduction

Today, embedded systems are rapidly moving from small homogeneous systems with
few powerful computing units, towards the integration of thousands of potentially het-
erogeneous cores on a single chip, leading to high-end heterogeneous Multi-Processor
Systems on Chip (MPSoC). Indeed, driven by flexibility, performance and cost con-
straints of demanding modern applications, heterogeneous MPSoCs are now the domi-
nant design paradigm in the embedded computing domain [95], and they are even shap-
ing the future of high-performance computing systems, which are in desperate need of
energy efficiency. Heterogeneous SoC architectures clearly provide a wider spectrum
for the power/performance trade-off, combining host CPUs along with massively par-
allel accelerator fabrics, holding the potential of bridging the gap between the energy
efficiency (GOPS/W) of hardwired hardware accelerators and the computational power
delivered by throughput computing. As a potential source of hardware acceleration for
many different algorithms [92], today, tile-based many-core programmable accelerators
are gaining momentum. Unfortunately, apart from specific application domains (such
as 3D graphics), the software parallelism does not keep up with hardware parallelism.
Therefore, this latter runs the risk of going underutilized in real-life systems. Fortu-
nately, another concurrent trend seems to be able to offset the above limitation. In fact,
modern high-end embedded systems need to consolidate complex functionalities onto
the same heterogeneous parallel hardware platform, requiring the concurrent execution
and acceleration of several applications, possibly with hetercgeneous and time-varying

performance /reliability /power requirements.

Therefore, the eflicient exploitation of the abundant hardware resources will pro-
gressively go through the sharing of such resources among a large number of concur-
rently executing applications. This new scenaric, with the advent of heterogencous
parallel computing architectures, has profoundly changed the panorama of both hard-
ware and software design, bringing the runtime resource management concern to the

forefront.

The focus of this work is therefore on how to manage the parallel com-
putation resources in SoC/HPC-converging heterogeneous parallel archi-
tectures, relying on two fundamental pillars: spatial-division multiplexing
(SDM) and runtime system reconfiguration. In contrast to Time-Division

Multiplexing, the SDM of manycore programmable accelerators in het-

Introduction

erogeneous architectures enables fine-grain resource allocation, isolation of
concurrently-executing software entities, and workload adaptivity through
flexible partitioning. At the same time, partitioning of a manycore fabric
turns out to be efficient only if ” computation and memory guotas” can be
dynamically allocated and re-negotiated, and if the fragmentation concern
can be limited. This requires runtime modification of the system configura-
tion, which is the second pillar of this thesis. While fostering the above concepts,
the specific focus of this thesis is on (i) the validation of the SDM concept, (ii) the
development of architecture design methods to support the SDM concept, (iii) and
the support for a highly-dynamic SDM concept through the runtime reconfiguration of

enabling features in the on-chip communication architecture.

The proposed management approach of many-core programmable accelerators is
an enabling technology for the effective deployment of embedded system virtualiza-
tion. This scenario strengthens the need for an optimized usage of parallel hardware
resources to cope with this increased level of resource contention and dynamic appli-
cation behavior. Partitioning of array fabrics of homogeneous processor cores (that
by construction underge a differentiation of operating conditions and suffer from the
regularity-breaking effect of manufacturing faults) and isolation of derived partitions
hold promise of pursuing the integration of functionality from separate users/devices
onto NoC-based many-core processors, while meeting their potentially heterogeneous
requirements. Following this trend, this thesis envisions the extensions of traditional
time and space partitioning concepts to parallel hardware platforms to overcome the
challenge of using shared (yet modular) resources in applications that are executed
concurrently. However, a static partitioning scheme cannot keep up with the increased
levels of adaptivity of modern embedded systems, therefore flexible partitioning should
be the target. In practice, partitions should be set up or tore down with few or no
restrictions, and their size and shape potentially changed at runtime [66|. Whether
such a usage paradigm will be feasible or not depends to a large extent on the capa-
bility of reconfiguring at runiime the routing function of the on-chip interconnection
network (NoC), serving as the global communication fabric as well as the system in-
tegration framework. The reason becomes apparent when we consider the lower-level
implications of partitioning and isclation: allocating a computation partition means to
identify a subset of the manycore fabric and to virtualize it as though the computation
systemn were limited to it. Therefore, communication should be limited to the compu-
tation tiles belonging to the partition, and there should be potentially no interference
between the communication flows of nearby partitions. Similarly, the temporary ex-
pansion or restriction of the partition size should be accompanied by the concurrent
reconfiguration of the routing paths. Last but not least, the allocation of a new parti-
tion implies that the identified subset of the system has a valid routing function (e.g.,

deadlock-free). Querall, a resource manager for SDM in manycore computing fabrics

needs to have hardware assistance in the routing mechanism of the underlying on-chip

interconnection network, and in the capability of its safe runiime modification.

In the on-chip domain, runtime reconfiguration of the routing function can be
achieved either by non-reconfigurable fault-tolerant routing strategies, which tolerate
a limited number of faults [34, 58, 60, 67|, or reconfigurable routing mechanisms that
allow unlimited changes to the network. Focusing on schemes of the second category,
in literature, both static reconfiguration methods and dynamic ones are presented.
The former ones consist of draining the network from ongoing packets, modifying rout-
ing tables to configure the new routing paths, and finally resuming traffic injection
but at the cost of large performance penalties. On the contrary, dynamic reconfig-
uration techniques succeed in updating routing tables without stopping user traffic,
but typically result int unacceptable implementation overhead for an on-chip setting
189, 24, 90, 108, 41, 8, 2|. Although runtime performance is more likely to be preserved,
such approaches end up materializing architectures with lower operating speeds (or
higher latencies) by construction. Furthermore, current approaches to runtime network
configuration suffer from large hardware/software overhead and/or lack of scalability.
In general, centralized approaches have the disadvantage that some reconfiguration
tasks (e.g., the computation of the new routing function) are performed in software. In
contrast, distributed reconfiguration mechanisms, like [84], suffer from sub-optimality
of emergency routing solutions, and overly high implementation cost and complexity.
This suboptimal scenario borrowed from literature is the starting point of the work in
this thesis.

An intensive research effort is currently underway in an attempt to find a suitable
design point for chip implementations, including Vicis [48], Immunet [112], Ariadne [4]
and other reconfigurable routing frameworks [50, 46, 143]. With respect to these works,
the recent adaptation of the Overlapped Static Reconfiguration (OSR) [89] method-
ology to the tight resource budgets of embedded systems (OSRLite [128]) provided
an appealing trade-off between reconfiguration performance and implementation com-
plexity. OSR relies on the principle that if packets with the old routing function are
prevented from following packets using the new one, deadlock cannot occur. Enforcing
this ordering mechanism is possible even without draining the network from ongoing
packets, by propagating a separation token between old and new packets throughout
the network. Notwithstanding that, several performance inefliciencies still affect the
OSR mechanism, which can be fundamentally identified as the temporary suspension
of traffic injection during the reconfiguration transient, the packet blocking behind the
self-propagating epoch separation boundary, as well as the network-wide nature of each
reconfiguration event. Furthermore, OSR mechanism is centralized (so the manager
is on the critical path of the reconfiguration process, needing also a separate control
network or virtual channel for communications), and can be triggered from just the

root node of the network and not from each node. Overcoming all the limitations

3

Introduction

and issues of OSRLite, materializing its potentials, thus designing an inter-
connection fabric supporting features suitable for a virtualized and dynamic

environment is one of the goals of the work in this thesis.

In order to tackle the inefficiencies of the mechanism impacting the performance
on ongoing communication flows while a reconfiguration takes place, on one side, I
propose a set of performance optimizations spanning from simple to more aggressive
ones trading performance speedups (approaching latency-insensitive reconfiguration)
with a higher implementation cost, and at the same time aiming at speeding up the
reconfiguration transient itself. The final outcome, considering the best optimizations,
is to have both a limited region involved in the reconfiguration process, and a fully
transparent reconfiguration from the performance point of view, thus enabling more
flexible scenarios, i.e., partition scheduling and reshaping (restriction and expansion
of an existing partition, merging of and splitting into two partitions), avoiding faulty
links or switches, powering-off unused or overheated regions, setting up or tearing
down reserved paths (hard QoS), this way creating the support for a highly dynamic
many-core environment. On the other hand, another contribution of my work consists
of tackling the overhead of a centralized mechanism, but moving from the following
perspective: the synergistic exploitation of routing resources that are already there in
many NoC implementations. In a sense, there is an overhead which is increasingly
accepted in NoC design, and which is justified by other design goals, which consists of
the use of multiple physical networks instead of logic ones. Although this seems to run
contrary to much previous work [57, 142] it is actually motivated by how the relative
costs of network design change for implementation on a single die [27]. Given this, the
solution I proposed is to exploit the existing multiple physical networks to spatially
separate resource allocations that may close dependency cycles: whenever a switch
port processing old traffic has a routing dependency with a port already migrated to
the new epoch, an escape path is sel up into another network plane and taken by the
packets, thus avoiding deadlock. So I developed a reconfiguration methodology around
the above basic idea: through an engineered protocol for inter-network tunnel opening
and closing, the system performs a distributed and fast{low-latency) reconfiguration,
quaranteeing both scalability and minimum perturbation of background traffic in all
NoC's. Applicability of this innovative mechanisms consists of the transparent execution
of system management tasks in the background. For instance, in the presence of large
many-core fabrics, small sections of the fabric can be selectively disconnected without
suspending system operation, and tested in the background. From an implementation
viewpoint, this can be achieved by a distributed test manager having an hardware
agsistance in the distributed capability of the interconnection network to selectively
disconnect its links while re-routing affected traflic elsewhere. The results of this thesis

pave the way for this ambitious scenario.

The burden of extracting peak performance from many-core accelerators is not just

4

on the hardware support, but also on the software layer. Efficient programming abstrac-
tions (programming models, compilers, runtime systems) are paramount to achieving
efficient exploitation of manycores. In particular, modern embedded applications are
increasing in complexity and often expose high degree of parallelism which is irregular
in nature and/or dynamically generated. The tasking execution model represents a
powerful abstraction to exploit this kind of parallelism, as it enables asynchronous,
dynamic creation of units of work in a simple and straightforward manner. Notable
examples of this programming paradigm include Cilk [73], Apple Grand Central Dis-
patch [6], Intel Carbon [79] or the current OpenMP specification [109]. The tasking
abstraction provides a powerful conceptual framework to exploit irregular parallelism
in target applications, but its practical implementation requires sophisticated runtime
system support, which typically implies important space and time overheads. The ap-
plicability of the approach is thus often limited to applications exhibiting units of work
which are coarse-grained enough to amortize these overheads. While this is often the
case for general-purpose systems and associated workloads, things are different when
considering embedded many-core accelerators. Minimizing runtime overheads is thus
a primary challenge to enjoy the benefits of tasking on these systems. So, in my work,
I start from an optimized runtime environment supporting the OpenMP
tasking model for an embedded shared-memory cluster [23], that minimizes
the effect of major bottlenecks implied by the execution model, and I cus-
tomize it to support a dynamic environment, which enables me to test sev-
eral benchmarks and platform configurations (memory configurations and
settings, different shapes of concurrent partitions) in order to validate the

resource sharing approach based on Space-Division Multiplexing.

Moreover, some of the ideas of this thesis were prototyped on FPGA. In fact, this
thesis reports on the prototyping of a 16-core homogeneous programmable
multi-core accelerator with runtime-reconfigurable and dynamically virtu-
alizable on-chip network. The prototyped system validates the NoC capability for

boot-time configuration and runtime reconfiguration of the routing function.

Finally, I consider emerging interconnect technologies and their role in re-architecting
many-core programmable accelerators as well as heterogeneous parallel architectures
as a whole. Indeed, in order to support scaling to future device generations, elec-
tronic NoCs will struggle to deliver the required communication performance within
tight power budgets. In this respect, evolutionary as well as revolutionary intercon-
nect technologies are currently being considered. On one hand, clockless handshaking
materializes GALS systems [25, 122] that completely remove the system clock while
reducing idle power to only the leakage power. On the other hand, the technology plat-
form could be changed, by replacing electrical wires with optical links and networks.
Although there is today consensus on the fact that optical interconnects can relieve

bandwidth density concerns at integrated circuit boundaries, however, when it comes

Introduction

to the extension of this emerging interconnect technology to on-chip communication as
well, such consensus seems to fall apart. The main reason consists of a fundamental lack
of compelling cases proving the superior performance and/or energy properties yielded
by devices of practical interest, when re-architected around a photonically-integrated
communication fabric. So, taking its steps from the consideration that many-core com-
puting platforms are gaining momentum in the high-end embedded computing domain
in the form of general-purpose programmable accelerators, in this thesis I propose the
first assessment of optical interconnect technology in the context of these de-
vices, taking care of Optical NoC Interfaces and evaluating the performance
and energy implications by means of an accurate benchmarking framework
against an aggressively optimized electrical counterpart. Overall, the above
quality metrics paint a promising picture for augmenting GPPAs with optical devices,
while clearly pointing to the most important candidate for optimization: static en-
ergy reduction through technology evolution as well as gating techniques. In order
to minimize and mitigate the most significant contribution to static power dissipation
in optical NoCs, this work relies on the innovative principle of partitioning

optical networks-on-chip, and of reusing laser sources across partitions.

Highlights of key thesis contributions

Overall, the thesis is a comprehensive contribution to the advance in the field of many-

core NoC-based system design. Here I report the key thesis innovations:

w extensions of cycle-accurate simulators with modeling capability of heterogeneous

parallel computing architectures

= extension of transaction-level simulators with modeling capability of heteroge-

neous parallel computing architectures
» validation of SDM performance versus TDM cne
w evaluation of the role of the partition shape over application performance

« runtime reconfiguration capability of the NoC routing function with transparency

property with respect to background traffic
» distributed reconfiguration mechanims enabling selective link disconnection

« FPGA prototyping of an SDM- and NoC-enabled multi-core accelerator with
runtime-reconfigurable routing function (through a centralized as well as dis-

tributed mechanism)

» augmenting Manycore Programmable Accelerators with Photonic Interconnect

Technology

= DM on top of photonically-enabled many-core accelerators

Thesis Organization

The contributions of this thesis are organized in Introduction, eight technical chapters,
in addition to conclusions and future work.

Before presenting my novel contributions, Chapter 1 first provides the necessary
background to understand the work of this thesis. It surveys heterogeneous parallel
computer architectures, mentioning various types of accelerators (in particular fostering
GPPAs, General-Purpose Programmable Accelerators), then on-chip interconnections
used for this kind of systems and, finally, it presents a specific routing mechanism,
named Logic-Based Distributed Routing, on top of which the partitioning, isolation
and reconfiguration mechanisms discussed in next chapters will be constructed.

Chapter 2 introduces the simulation environments used to simulate the platform
consgidered in this thesis at different abstraction layers, presenting the modifications
needed to support the new paradigm of heterogeneous parallel computing architectures,
and pointing out benefits and disadvantages using one simulators versus the other.

Chapter 3 makes the point for Space-Division Multiplexing on GPPAs, presenting
the evaluation of the approach considering the execution of a batch of real applications
and comparing it with the Time-Division Multiplexing case study, thus proving the
benefits in a dynamic scenario. Finally, this chapter also proposes an exploration of
different partition shapes to underline how they can be crucial for the performance.

Chapter 4 presents both hardware and software suppoert to enable the SDM ap-
proach, fostering runtime reconfiguration of the NoC routing function as basic hardware
assistance requirement.

Chapter b, first of all, presents real use case where a runtime reconfiguration
of the NoC routing function is needed in the presence of background traffic, then it
provides an exploration of reconfiguration approaches, starting from static strategies,
and finally comes to the Overlapped-Static reconfiguration idea, which is the baseline
mechanism used as the starting point of my work. The chapter continues by presenting
the optimizations I implemented to overcome the performance penalties of the original
mechanism. The implementation at micro-architecture level of the logic enabling the
optimized mechanism is showed.

Chapter 6 presents the implementation of the final optimization of the OSR mech-
anism, called Tunneled-OSR,, which makes it a fully distributed reconfiguration mech-
anism. The idea is to rely on the synergistic use of multiple physical networks already
existing in the chip, materializing a fully distributed, fast and scalable reconfiguration

mechanism. The chapter describes the complete mechanism at work, underlying the

Introduction

advantages compared to the baseline OSR and also to the other mechanisms in litera-
ture. Finally, the T-OSR mechanism is evaluated in terms of area overhead, coverage,
reconfiguration latency and impact on the ongoing traffic.

Chapter 7 extends the work presented in the previous chapters by reporting on
the prototyping of the proposed design methods on a Xilinx Virtex-7 FPGA. The
FPGA prototype comprises a large number of components that enable observability,
controllability and debugability of the system under test. All these components are
described in detail. Last, the chapter illustrates a use-case of the developed mechanism,
consisting of the feagibility to perform selective runtime Built-In Self-Testing on system
links while an application is running in the background.

Chapter 8 focuses on emerging technologies, in particular on optical interconnec-
tions. Here I present the first work on augmenting GPPAs with optical devices and,
being the static power consumption an open issue, I try to propose a strategy for par-
titioning, reusing and selectively tuning the laser sources. Finally, I envision a whole
new heterogeneous parallel computing system that relies on photonic interconnection
networks to connect the host, main memory, the accelerator and other devices of the
system.

In conclusion, I provide the final remarks on the work presented, summarizing the

thesis outcomes and envisioning possible future developments of the discussed topics.

Chapter 1
Background

This chapter starts by surveying the evolution of computer architectures in the em-
bedded domain with the advent of heterogeneous Multi-Processors Systems-on-Chip
(MPSoCs) and many-core architectures in them, and presents relevant examples of
such architectures, fostering in particular General-Purpose Programmable Accelerators
(GPPAs). Furthermore, it introduces the proper background concerning the on-chip
interconnection infrastructure represented by Networks-on-Chip (NoCs) and, finally,
it presents the routing mechanism adopted by the NoC of this work, the Logic-Based
Distributed Routing (LBDR), that stays at the core of the reconfiguration mechanism
that will be addressed in Chapter 5. Overall, the chapter presents the scenario in which
this thesis is inserted, highlighting and pointing out the issues and challenges for the
designers of many-core programmable accelerator architectures that will be tackled in
this thesis.

1.1 Heterogeneous parallel computer architectures

1.1.1 The end of Dennard scaling and the switch to multicores

Managing the power dissipation of current computer systems is a Grand Challenge

problem. Power affects computer systems at all scales: from the computational ca-

Device or Circuit Parameter | Scaling Factor

Device dimension Ty, L, W 1/k
Doping concentration Na k

Voltage V 1/k

Current I 1/k

Capacitance eA/t 1/k

Delay time per circuit VC/I 1/k

Power dissipation per circuit VI 1/k?
Power density 1

Table 1.1: Dennar scaling rules.

Chapter 1: Background

10,000,000
@ Number of transistors (thousands}
1,000,000 @ Relative performance * z.
Clock speed {MHz)
100,000 Power (W) * L 3
Numnber of cores/chip

o 10,000
s
g
n 1,000
=]
5
H
E 100
10
1
0
1985 1990 1995 2000 2005 2010

Year of introduction

Figure 1.1: Moore’s Law and corollaries. Data shows scaling trends, with clear shifts
in trend lines at roughly 2004.

pacity of our large-scale data centers, to the processing performance of our high-end
servers [21], and the battery life and performance of our mobile devices [125]. To to-
day’s computer architects, the emergence of power as a grand challenge [72] may seem
like a relatively recent issue, but the reality is that the very earliest computer systems
faced vexing power challenges. Owver the decades that have followed, computer sys-
tems benefited from technology refinements that improved circuit performance, cost,
and power. Gordon Moore’s predictions of technology scaling linked integration lev-
els (transistors per chip) to production cost [97|. For many years, these cost-driven
integration improvements also translated quite naturally into performance improve-
ments. Nearly concurrently, Dennard articulated a scaling principle that would lower
supply voltages as transistors became smaller [39]. It is Dennard scaling that enables
the transistor increases predicted by Moore’s Law to be parlayed into performance
improvements and power savings. Despite the benefits of Dennard Scaling, the power

dissipation of integrated systems has spiked before.

So far, the power problem as we have faced it over the past decade is largely due to
two effects. First, it is primarily a consequence of the end of the Dennard scaling rules
(Table 1.1) that parlayed Moore’s Law into performance and power benefits for more
than three decades. Dennard scaling rests on several key shifts that can be made when
transitioning to a smaller feature size. For example, smaller transistors can switch
quickly at lower supply voltages, resulting in more power efficient circuits and keeping
the power density constant. But supply voltages cannot drop forever. A breakdown
of Dennard scaling occurred when voltages dropped low enough to make static power
consumption a major issue. Second, even if Dennard scaling had continued on-track,
our propensity for faster clock rates and larger die sizes meant that each generation’s

power dissipation was scaling up faster than Dennard effects were able to hold it in

10

1.1 Heterogeneous parallel computer architectures

2008, 45nm, 100mm?
100 18

80—\

Case A, 16MB of Cactre —] 16

— 14

oy
. 0‘5"‘8
£ ~ —] 12
) — 10 E
% ?@\ 50MT Logic %
o 6MB Cache s 5
T 40 bif
@ \ 6
- \
20 I— \ — 4
—
?CaseA,GLogic, 8l v S\ —1 2
5 | l | 0
0 20 40 60 Case B| g

Logic Transistors (Millions)

Figure 1.2: A range of implementation options trading off processor area devoted to
cache, and resulting power tradeoffs.

check.

In particular, a key advantage of CMOS technology for many years was its lack
of static power dissipation. That is, the complementary p- and n-networks in CMOS
gates (theoretically) do not allow any path from supply voltage to ground, consum-
ing power only when switching (dynamic power and some glitch power). Static power
consumption was therefore safely ignored at the architectural level. However, when
technology scaling broke the 100 nm barrier, transistors showed their analog nature:
they are never truly off, and this allows sub-threshold leakage currents to flow. Worse,
sub-threshold leakage currents are exponential to threshold voltage reductions. In Den-
nard scaling, the major mechanism to improve power efficiency is the reduction of the
supply voltage, which assumes a reduction of the threshold voltage (since the differ-
ence of the two voltages dictates transistor switching speed). The rise of static power
brought a complete stop to the power benefits architects took for granted for many
technology generations. One-time reductions of static power consumption are possible
but the trends remain the same with scaling. For example, current technologies employ
multi-gate transistors alse known as FinFETs. In these transistors, a fin between the
drain and source is "wrapped” by silicon in a non-planar fashion to enable the gate to
better encompass the channel, which reduces leakage. As one particular example, Intel
switched to 3D or tri-gate transistors in their 22 nm technology [18]. While this change
provided a step reduction in leakage going from 32 nm to 22 nm, further reductions
will be limited in subsequent scalings.

In the 1980s and early 1990s (the heyday of Moores Law scaling), architects primar-
ily improved performance by exploiting instruction-level parallelism (ILP)parallelism
found in the dynamic instruction stream during execution of a program. To discover
and exploit this parallelism, significant hardware resources were thrown at the prob-

lem. Sophisticated techniques such as out-of-order execution, branch prediction and

11

Chapter 1: Background

Large-Core Homogeneous Small-Core Homogeneous Small-Core Heterogeneous
Large-core 1 Large-core Large-core 1
throughput throughput throughput
Small-core Small-core Pollack’s Rule Small-core Pollack’s Rule
throughput throughput (5/25)°5%=0.45 throughput (5/25)°5%=0.45
Total 6 Total 13 Total (|
throughput throughput throughput

(a) {b) (e)

Figure 1.3: Enhancing throughput while maintaining power envelope.

speculative execution, register renaming, memory dependence prediction, among oth-
ers, were developed for this purpose. These approaches can be highly complex and do
not scale well. This results in diminishing performance returns {(number of instructions
executed in parallel) for increasing hardware investments. Dynamic power scales even
worse, deteriorating the power efficiency of such approaches. In fact, as illustrated in
Figure 1.1, power dissipation scales as performance raised to the 1.73 power for the
typical ILP core: a Pentium 4 is about six times the performance of an i486 at 23 times
the power [62]!

The shift to multicore architectures started in 2004 as a reaction to this
looming problem of increased power consumption and power density. Effec-
tively, we abandoned frequency scaling (which resulted in significant increases in both
dynamic and static power consumption) in favor of laying down more cores on the
same chip. This dramatic shift to chip multiprocessors (CMPs) in the past decade is
a response to the power wall and the end of Dennard scaling. In particular, Borkar et
al. [19] walks through an example for 45 nm technology that is still instructive. For a
45 nm chip with 150M transistors, Figure 1.2 shows a range of possible options for im-
plementing the processor. To abide by the total limit of 150M transistors, one can use
more logic transistors (x-axis) in opposition with fewer cache transistors. The resulting
power dissipation is shown on the left y-axis, and the resulting cache capacity is shown
on the right y-axis. As one increases the number of transistors devoted to logic, the
power dissipation increases (because caches are ”cool” from a power standpoint). Pol-
lack’s rule [111] argues that microprocessor performance scales roughly as the square

root of its complexity, where the logic transistor count is often used as a proxy to

12

1.1 Heterogeneous parallel computer architectures

quantify complexity., From these rules of thumb, multiple parallel cores essentially
always beat monolithic single cores on power-normalized performance. For example,
Figure 1.3 shows three approaches that use parallel cores to enhance throughput while
maintaining the same power envelope. Case (a) (far left of Figure 1.2) harnesses 6-way
parallelism at a fairly coarse-grain, and is out-performed by Case (b) (far right), which
is more aggressively parallel, when enough thread/task level parallelism exist in the
workload. Case (c) represents heterogeneous parallelism, in which two large cores are
mixed with several small ones, to good effect. An even more heterogeneous approach
would be to include some specialized accelerators, which use very few transistors or
chip area, but have large performance and power benefits when applicable. Overall,
these examples and rules of thumb begin to explain the direction that industry has
taken: a quick and aggressive adoption of medium-scale, on-chip parallelism. Paral-
lelism helps with the impending power wall, by offering a path to high performance
that does not rely on high clock rates and high supply voltages. Parallelism-particularly
heterogeneous parallelism also helps with the so-called utilization wall [138] and the
Dark Silicon problem [44].

1.1.2 Dark Silicon, the utilization wall and the rise of the

heterogeneous parallelism

Our inability to scale a single core to further exploit ILP in a power efficient man-
ner turned computer architecture toward exploring alternative kinds of parallelism
(task/thread parallelism, data parallelism). Multi-core and many-core architectures
are designed for explicit parallelism, and recalling Figures 1.2 and 1.3, they offer greater
performance-per-watt than large monolithic approaches. Unfortunately, even homoge-
necus CMPs will not be sufficient to solve the power problem for more than a few more
generations [96]. This road is also faced with the same problems as with the single
core architecture: we are unable to efficiently extract sufficient speedup from
parallel programs (Amdahls Law [5]). Furthermore, some postulate a near future
in which the number of dynamically active transistors on a die may be greatly con-
strained, forming the " utilization wall” [44]. The concept of the utilization wall is that
power envelopes may lead to scenarios in which few (perhaps 20% or less) of a chip’s
transistors can be "on” at a time. The argument for this possible future is exemplified
in Figure 1.4, If transistor density increases in line with Moore’s Law, a 45 nm chip
will shrink to one-quarter the size at 22 nm in 2014, and one-sixteenth at 11 nm in
2020. Using the I'TRS roadmap for scaling, the smaller chips would be more efficient,
drawing the same power at 22 nm even though the peak frequency increases by a factor
of 1.6, and 40% less at 11 nm with 2.4 peak clock speed. But, if we maintain the same
chip area, we can pack four times the number of transistors at 22 nm and 16 times at
11 nm. For the same initial power budget this means that only 25% of the transistors

can be powered-up in 22 nm, and 10% in 11 nm.

13

Chapter 1: Background

Node 45nm 22nm 11nm

Year 2008 2014 2020

—

Area’ 1 4 16
Peak freq 1 1.6 2.4
Power 1 1 0.6

(4x1)'=25% (16 x 0.6)"= 10%

{in 45nm power budget)

25%

10%
Source = I[TRS 2008

Figure 1.4: A depiction of Dark Silicon trends as seen by ARM.

The answer to the challenge of the utilization wall is the rise of heteroge-
neous architectures where some general-purpose cores are augmented by other cores
of different microarchitectures or even specialized accelerators that offer outstanding
performance-per-watt by being very lean hardware designs for a particular computa-
tional purpose. The approach of heterogeneous parallelism with specialized accelera-
tors is well-suited for ” Dark Silicon” scenarios. A large number of accelerators can be
built on the same chip to be woken up only when needed. These heterogeneous

architectures are fast becoming the dominant paradigm after multicore.

In fact, we do not need to speculate about future heterogeneity, as heterogeneous
paralle]l computing is here today. If we examine the product lines from the major
chip manufacturers we see that they now have separate multicore x86 architectures
targeted at high performance (2-12 cores, 100W, 100 GFLOPs) and low power (1-2
cores, 10W, 10 GFLOPs), and are integrating data-parallel graphics cores onto their
CPU devices with distinct programming and memory models [22]. In the embedded
world, there are a range of cores at different performance/efficiency points (1-8 cores,
2W, 10 GMIPS) with a range of programmable graphics cores [7]. NVIDIA, Samsung,
and Qualcomm all sell heterogeneous ARM/GPU processors with many fixed-function
accelerator blocks for the smart phone market [27, 100, 113], and there are multiple
start-ups with 64-100 core devices [31] for networking and telecom. This present-day
processor heterogeneity forces system and software designers to address the difficult op-
timization challenge of choosing the right processor (both at design time and runtime)
for their products power and performance requirements. Beyond simply considering
heterogeneity in the types of instruction-programmable cores on-chip, the field is also
increasingly considering approaches involving specialized accelerators that may not be

instruction-programmable, and that are tuned to particular application kernels of in-

14

1.1 Heterogeneous parallel computer architectures

terest. Specialized accelerators are a particularly natural response to the Dark Silicon
scenario in which we may have many more transistors than what we can power up
at once. With these "dormant” transistors we could build a plethora of specialized
accelerators that cost little either in terms of "active” area or power when not in use.
The expectations of generality -all transistors must be useful to all applications- shift
considerably in a Dark Silicon world, and what once might have been viewed as ” niche”
accelerators become a viable method for achieving performance goals under dramatic

power constraints,

1.1.3 Other issues

Overall, computer systems have reached an intriguing inflection point. For architects,
power has been a fundamental design constraint for well over a decade now, with the
initial reaction being fairly localized, per-module efforts to improve power efficiency.
These efforts have been the equivalent of turning lights off in unused rooms of one’s
house, i.e. very sensible, but insufficient in leverage to dramatically change the overall
power-performance design landscape. The second wave in power-aware computing has
been the recent and seismic shift toward on-chip parallelism.

Software and Programmability Issues: in many ways, the hardware industry’s
shift toward parallelism has occurred much faster than the abilities of the software
and systems designers to react. We know how to build CMPs, and we must build
them to keep Moore’s Law rolling along. But we do not yet know how to program
them efliciently both in terms of software development time and in terms of getting
the best power-performance outcomes from them. Furthermore, the shift toward on-
chip accelerators offers even greater programmability challenges. Finally, there are
a host of programmability concerns that emanate from the basic goal of elevating
power to a first-class design constraint alongside performance. For example, from a
power perspective, information on the relative criticality of different communication
or computation operations may be very useful, but current programming models offer
few abstractions or constructs to help programmers manage this.

Reliability Tradeoffs: Until now, power-performance tradeoffs have been viewed
by architects as a two-dimensional optimization landscape. There is emerging re-
search, however, on the possibilities of three-dimensional optimization scenarios in
which power, performance, and reliability are traded off against each other. Such
tradeoffs are already frequently considered at the device and circuit level, but in ways
that enable the architecture and software levels to be shielded from their effects; ab-
straction layers give the impression of perfect reliability even when device or circuit
tricks are being employed.

Intuitively, there seem to be rich opportunities for raising the abstraction layer at
which reliability, energy, and performance are traded off, in order to enable architects

to exploit them as well. For example, operating with smaller supply voltage noise

15

Chapter 1: Background

margins (by lowering supply voltage) may offer high leverage on power savings, at the
expense of possible calculation or storage errors. Likewise, reducing or eliminating
parity /checksum protection on memory or interconnect also seems to offer some in-
tuitive power/reliability tradeoff possibility. The key research questions in this space,
however, focus on whether the power/performance benefits achievable through some
approaches are large enough to be appealing given the serious impact of relaxing reli-
ability guarantees to software.

Beyond the Processor Core: Much of the "first wave” of power optimizations
focused on the CPU itself, because the most sericus thermal and power density concerns
were experienced there. And even more specifically, most optimizations were focused on
the CPU’s processor cores and cache memories. As we look, however, to future power
issues and ideas, there is a growing need to look beyond the processor core. Data
communications and on-chip interconnect will play an increasingly important role in
power dissipation, especially since the adoption of parallelism has led to much higher
levels of data motion and inter-processor communication in many cases. One also
needs to consider the energy issues related to the memory hierarchy as well. Chapter
4 covers these topics in this book, but considerable future work in this area is likely to

be forthcoming.

1.1.4 Many-core architectures

Modern homogeneous and heterogeneous multicore and many-core architectures are
now part of the high-end and mainstream computing scene and can offer impressive
performance for many applications. This architecture trend has been driven by the need
to reduce power consumption, increase processor utilization, and deal with the memory-
processor speed gap. However, the complexity of these new architectures has created
several programming challenges, and achieving performance on these systems is often a
difficult task. Several variants of many-core architectures have been designed and are in
use for years now. As a matter of fact, since the mid 2000s we observed the integration
of an increasing number of cores onto a single integrated circuit die, known as a Chip
Multi-Processor (CMP) or Multi-Processor System-on-Chip (MPSoC), or onto multiple
dies in a single chip package. Manufacturers still leverage Moore’s Law (doubling of
the number of transistors on chip every 18 months), but business as usual is not an
option anymore: scaling performance by increasing clock frequency and instruction
throughput of single cores, the trend for electronic systems in the last 30 years, has
proved to be not viable anymore [3, 52, 19]. As a consequence, computing systems
moved to multi-corel designs and subsequently, thanks to the integration density, to
the many-core era where energy-eflicient performance scaling is achieved by exploiting
large-scale parallelism, rather than speeding up the single processing units [53, 19, 3,
81]. Such trend can be found in a wide spectrum of platforms, ranging from general

purpose computing, high-performance to the embedded world.

16

1.1 Heterogeneous parallel computer architectures

CLUSTER CLUSTER
#0 #1
NI | NI
MAIN
SW SW MEM
—_ = {off-chip)
CLUSTER CLUSTER
H2 #3
NI | NI

sw] 1sw]

Figure 1.5: Clustered many-core architecture organized in a 2x2 mesh and off-chip
main-memory.

In the general purpose domain we observed the first multi-core processors al- most a
decade ago. Intel core duo [59] and Sony-Toshiba-IBM (STT) Cell Broad- band Engine
74] are notable examples of this paradigm shift. The trend did not stop and nowadays
we have in this segment many-core examples such as the TILE-Gx8072 processor, com-
prising seventy-two cores operating at frequencies up to 1.2 GHz [32]. Instead, when
performance is the primary requisite of the application domain, we can cite several
notable architectures such as Larrabee [121] for visual computing, the research micro-
processors Intels SCC [68] and Tera- scale project [135] and, more recently, Intels Xeon
Phi [64]. In the embedded world, we are observing today a proliferation of many-core
heterogeneous plat- forms. The so-called asymmetric of heterogeneous design features
many small, energy-efficient cores integrated with a full-blown processor. [ts is emerg-
ing as the main trend in the embedded domain, since it represents the most flexible
and efficient design paradigm. Notable examples of such architectures are the AMD
Accelerated Processing Units [22], Nvidia TEGRA family [100], STMicroelectronics
P2012/STHORM [95] or Kalray’s many-core processors [75].

The work presented in this thesis is focused on the embedded domain
where, more than in other areas, modern high-end applications are asking for increas-
ingly stringent and irreconcilable requirements. An outstanding example consist of the
mobile market. As highlighted in [134], the digital workload of a smartphone (all con-
trol, data and signal processing) amounts to nearly 100 Giga Operations Per Second
{GOPS) with a power-budget of 1 Watt. Moreover, workload requirements increase at

a steady rate, roughly by an order of magnitude every b years.

From the architectural point of view, with the evolution from tens of cores to the
current integration capabilities in the order of hundreds, the most promising architec-
tural choice for many-core embedded systems is clustering. In a clustered platform,
processing cores are grouped into small- medium-sized clusters (i.e. few tens), which
are highly optimized for performance and throughput. Clusters are the basic build-

ing blocks of the architecture, and scaling to many-core is obtained by the replication

17

Chapter 1: Background

] 1
: HWPE HWPE HWPE i
1 1
: WRAP WRAP WRAP :
1 L L L 1
v — Ic)
i L h i
1 [re— 1
v | Tcom STRP7D STXP70 1
: #0 N 3 5
i ce] 15 | 15 _I TIMER :
L] L L 1
] | - 1
' _II. [EH ue |— 2 :
] [1
: |] |] :
H -| Hws ;
: Tcom '
i ZEa, {32 banks) || :
] cie EMCORE | |
] 1

Figure 1.6: Overview (simplified) of P2012/STHORM cluster architecture.

and global interconnection through a scalable medium such as a Network-on-Chip
(NoC), which will be discussed later in this chapter. Figure 1.5 shows a reference
clustered many-core architecture, organized in 4 clusters with a 4x4 mesh-like NoC for
global interconnection. Next section reports some representative examples of recent

architectures with a focus at the cluster level.

1.1.5 Cluster architectures: relevant examples

The cluster architecture considered in this work is representative of a consolidated trend
of embedded many-core design. Few notable examples are described, highlighting the

most relevant characteristics of such architectures.

ST Microelectronics P2012/STHORM

Platform 2012 (P2012), also known as STHORM [95], is a low-power programmable
many-core accelerator for the embedded domain designed by ST Microelectronics [1].
The P2012 project targets next-generation data-intensive embedded applications such
as multi-modal sensor fusion, image understanding, mobile augmented reality [15].
The computing fabric is highly modular being structured in clusters of cores, con-
nected through a Globally Asynchronous Network-on-Chip {GANoC) and featuring a
shared memory space among all the cores. Each cluster is internally synchronous (one
frequency domain) while at the global level the system follows the GALS (Globally
Asynchronous Locally Synchronous) paradigm. In Figure 1.6 is shown a simplified
block scheme of the internal structure of a single cluster. Each cluster is composed of
a Cluster Controller {CC) and a multi-core computing engine, named ENCore, made
of 16 processing elements. Each core is a proprietary 32-bit RISC core (STxP70-V4)
featuring a floating point unit, a private instruction cache and no data cache.
Processors are interconnected through a low-latency high-bandwidth logarithmic in-
terconnect and communicate through a fast multi-banked, multi-ported tightly-coupled
data memory (TCDM). The number of memory ports in the TCDM is equal to the

18

1.1 Heterogeneous parallel computer architectures

Scheduling
NoC

I i Scheduler IF

[Feu 1] FPU\| ALU
Shared .
Accelerators | Register

Register

| 4 1

T3

Shared Memory

Figure 1.7: Plurality HAL architecture overview.

number of banks to allow concurrent accesses to different banks. Conflict-free TCDM
accesses are performed with a two-cycles latency. The logarithmic interconnect consists
of fully combinatorial Mesh-of-Trees (Mo'T') interconnection network. Data routing is
based on address deccding: a first-stage checks if the requested address falls within
the TCDM address range or has to be directed off-cluster. The interconnect provides
fine-grained address interleaving on the memory banks to reduce banking conflicts in
case of multiple accesses to logically contiguous data structures. If no bank conflicts
arise, data routing is done in parallel for each core. In case of conflicting requests, a
round-robin based scheduler coordinates accesses to memory banks in a fair manner.
Banking conflicts result in higher latency, depending on the number of concurrent con-
flicting accesses. Each cluster is equipped with a Hardware Synchronizer (HWS) which
provides low-level services such as semaphores, barriers, and event propagation sup-
port, two DMA engines, and a Clock Variability and Power (CVP) module. The clus-
ter template can be enhanced with application specific hardware processing elements
(HWPESs), to accelerate key functionalities in hardware. They are interconnected to
the ENCore with an asynchronous local interconnect (LIC). The first release of P2012
(STHORM) features 4 homogeneous clusters for a total of 69 cores and a software stack
based on two programming models, namely a component-based Native Programming
Model (NPM) and OpenClL-based [127] (named CLAM - CL Above Many-Cores) while
OpenMP [33] support is under development.

Plurality HAL - Hypercore Architecture Line

Plurality Hypercore [110] is an energy efficient general-purpose machine made of sev-
eral RISC processors. The number of processors can range from 16 up to 256 according

to the processor model. Figure 1.7 shows the overall architecture and the single pro-

19

Chapter 1: Background

{2 (o) (ree)) {Coon J
=) O 0 O O (e)

=]
J=jun
O ko el el ikl

) =) (
0 0O O O

Figure 1.8: Overview (simplified) of Kalray MPPA architecture.

cessor structure, which is designed with the goal of simplicity and efficiency in mind
(no I/D caches nor private memory, no branch speculation) to save power and area.
The memory system (i.e., [/D caches, off-chip main memory) is shared and proces-
sors access it through a high-performance logarithmic interconnect, equivalent to the
interconnection described for STHORM. Processors share one or more Floating Point
Units, and one or more shared hardware accelerators can be embedded in the design.
This platform can be programmed with a task-oriented programming model, where
the so-called "agents” are specified with a proprietary language. Tasks are efficiently
dispatched by a scheduler /synchronizer called Central Synchronizer Unit (CSU), which

also ensures workload balancing,.

Kalray MPPA manycore

Kalray Multi Purpose Processor Array (MPPA) [75] is a family of low-power many-core
programmable processors for high-performance embedded systems. The first product
of the family, MPPA-256, deploys 256 general-purpose cores grouped into 16 tightly-
coupled clusters using a 28nm manufacturing process technology. The MPPA manycore
chip family scales from 256 to 1024 cores with a performance of 500 Giga operations per
second to more than 2 Tera operations per second with typical W power consumption.
Global communication among the clusters is based on a Network-on-Chip. A simplified
version of the architecture is shown in Figure 1.8,

Each core is a proprietary 32-bit ISA processor with private instruction and data
caches. BHach cluster has a 2MB shared data memory for local processors communi-
cation and a full-crossbar. Clusters are arranged in a 4x4 mesh and four 1/O clusters
provide off-chip connectivity through PCI (North and South) or Ethernet (West and
East). Every /O cluster has a four-cores processing unit, and N/S clusters deploy

20

1.1 Hataromeneoms parallel cotnputer srchitectures

gach o DDE, contradlar to 5.4 GE adarnsl memeory. The platform acts a8 an aocnalerstor
for an =%836-based host, conmected via PUT to the North [/0 cluster. Accalarater clus-
ters mn e lightweight operstive systbarmn neemed Node O [28], while [/ 0 clustars ran an
instance of BETENMS [30].

1.1.6 Many-core accelerators

Exaroy afficiency in tarms of OPS/Weatt iz the most influencing factor for on ambeddad
ayatatn dezign, with the fature tarmat to proside 100 GO PS within the ponanar anvalope of
1W . Heteromonaity iz used a8 ol tool to ineresse the anaroyr afficianey of o M PEoC and
sustain the dimraptive computing povrar daelivared by such systams, by steyring writhin
an alvways shrinkdng markot-driven poarar bud set, Varions desion scharnas are seadlabla
today systems composed by o combinetion of powarinl and aner gy efficieant. coras [87],
and slao desions edploiting verions types of spocislized or monarsl purpeose poradlal
accalarators [%8, 71]. The combinstion of diffarent fypes of computing units allows
tha systam to sdapt to diffarent worklosds, prosvddine coraputing posrar whean running
comnplax tasks or runhing on the meore anar gy afficient coras when the parforrosnce is
toh ragmirad. And finally officedine cornputadion to an accalorstcr, whean high parallal
ot pting copabilities ara reguired.

A stepoof-tho-srt hetaromn aoms M PEoC is shown in Figare 1.9, which is the I idia.
Tagra- K1, It iz irnmedistaly visible in the bottom of the imams that o moadti-oore
procassor (Heost prooessor), compesad by four possarful cores end eme smaller and more
anar gy afficient, is flankad by o many-core ambedded GPU acting as o parallal oo
procaszor {Accalarator). The GPUis placed exactly aborva the hest procassor. Horasar,
avan if MPRoCs are dasioned to daliwer high computing parformanos with 2 loar posrar
comanmption, achieving this ool is not o trivial task.

cch newr design parsdimm opans the door to savaral challangas. In this theasis tano of
the many possible are addressed: Hardware desien space explorabion complesdty

TN T T WA N R e
T e Ea T T

Figare 1.9: MVidia Tagrs K1 focrplan.

21

Chapter 1: Background

and Performance scalability.

Hardware design space exploration complexity

Hardware designers have been relying for years on virtual platforms as a tool to reduce
the time to market of a chip design, forecast performance and power consumption and
also to enable early software development before the actual hard- ware is available.
However, the complexity of modern systems forces hardware designers to cope with a
huge design space to be explored to find the best trade-off among energy consumption,
area and performance delivered. Several simulation frameworks are available today
off-the-shelf but almost all of them suffer of three main problems, which make them

not suitable to model a complex MPSoC:

s Lack of models for deep microarchitectural components: hardware designs with
more than hundreds of computing units use various architectural components,
to allow efficient and scalable communication between cores {e.g. Networks-On-
Chip) and complex memory hierarchies. Such components have to be modeled
at the micro-architectural level to enable accurate power estimations and perfor-

mance measurements.

w Lack of support for Full System simulation: modern MPSoCs are composed by
a Host processor and one or more accelerators. The host processor is usually
in charge of executing an operating system (e.g. Linux), while the accelerators
are used as a co-processors to speedup the execution of computationally heavy
tasks. In this scenario the interaction between host processor and accelerators,
being it a memory transfer or a synchronization, may have a significant effect
on applications performance. Virtual platforms have to accurately model such

interactions to enable precise application profiling.

s Sequential simulation: most of the available modeling tools are relying on a
sequential execution model, in which all components of the design are simulated
in sequence by a single application thread. In the near future MPSoCs will
feature thousand of computing units, and such a modeling technique will make

the simulation time of a reasonable application to be to slow for practical use.

Performance scalability

Even if Pollack’s rule states that the increase of performance is proportional to the
square root of the increase in complexity of a system, achieving such performance is
not a trivial task. Programmers seeking for applications performance are thus obliged
to know architectural specific details, and apply complex programming patterns to

adapt their applications to the specific target hardware.

22

1.1 Heterogeneous parallel computer architectures

One of the most performance affective problems is the memory wall, which is due
to a huge gap in the technological advance between CPU and memory speed. An ef-
ficient utilization of the memory hierarchy is thus critical for performance, especially
in a system with thousand of cores where the required memory bandwidth can be ex-
tremely high. However due to some design choices taken for the sake of area and power
consumption reduction, the hardware is not always able to automatically fill the gap
of memory latency. One example is the choice to substitute data caches with scratch-
pad memories, because the latter with the same size in bytes occupies 30% less area
than a cache. Programmers can not rely anymore on data caches to hide the external
memory access latency, and try to overlap as much as possible computation with com-
munication. One common programming pattern is DMA double buffering, in which
computation is divided in chunks and while the actual is computed the next one is read
from external memory. Such type of design choice forces application programmers to
know deep hardware related features to boost the performance of their code, leading
often to complex and error-prone programming. A software runtime is presented in
this thesis which automatically handles external-memory-to-scratchpad memory trans-
fers, without any intervention of the programmer. Another design related challenge is
memory sharing between host processor and many-core accelerator. A general purpose
processor, when running an operating system, uses a virtual memory abstraction to
handle the whole physical memory available on a platform. This is possible thanks to a
Memory Management Unit (MMU), which is in charge to translate any virtual address
to its equivalent in physical memory. State-of-the-art many-core accelerators are often
not equipped with an MMU, meaning that only physical memory addresses can be
used from within the accelerator. In a typical application the Host processor acting
as a master is in charge of handling the main application flow, and input/output data
buffers shared with the accelerator are created under the virtual memory abstraction.
Since most many-core accelerators are only able to directly access physical memory,
input/output buffers have to be copied into a memory region which is not handled
under virtual memory, before being accessible from the accelerator. Those memory
copies affect the overall performance of an application, limiting also the usability of
the accelerator itself for real applications. An example is system virtualization, which
has recently been enabled on embedded systems thanks to the advent of hardware
support for virtualization in ARM cores. In a virtualized system several instances of
an operating system {Guest) run at the same time on the same hardware, and all pe-
ripherals need to have a virtual counterpart to be visible by all guests. In this context
several memory virtualization layers are involved, and a many-core accelerator without

an MMU can not be easily virtualized and used by all the guests running on a system.

23

Chapter 1: Background

Application Code

I—

Compute-intensive
Functicns

—

5% of the code
Rest of Sequential
CPU code

B

CPU with multiple cores GPU with thousands of cores

{a) Number of cores. {(b) How GPU’s acceleration works.

Figure 1.10: CPU vs. GPU.

1.1.7 Accelerator types: introducing General-Purpose Pro-

grammable Accelerators

This section seeks to explore many-core systems examples, as well as stand-alone sys-
tems with large numbers of cores like Graphic-Processing Units (GPUs) and various
types of accelerators in the context of general-purpose parallel computing; this can also
include hybrid and heterogeneous systems with different types of multicore processors.

Architectural heterogeneity and many-cores are the design paradigm for SoCs in the
embedded computing domain, driven by flexibility, performance and cost constraints of
demanding modern applications. SoC architecture and heterogeneity clearly provide a
wider power/performance scaling, combining host CPUs along with massively parallel
co-processors or accelerators. The first type of accelerators are the GPUs, also occa-
sionally called Visual Processing Units (VPUs), a specialized electronic circuit designed
to rapidly manipulate and alter memory to accelerate the creation of images in a frame
buffer intended for output to a display. Accelerated computing offers unprecedented
application performance by offloading compute-intensive portions of the application to
the accelerator, while the remainder of the code still runs on the CPU. From a user’s
perspective, applications simply run significantly faster. A simple way to understand
the difference between a CPU and for example a GPU is to compare how they process
tagks and furthermore a CPU consists of a few cores optimized for sequential serial
processing while a GPU has a massively parallel architecture consisting of thousands
of smaller, more efficient cores designed to handle multiple tasks simultanecusly and
to process parallel workloads efficiently, as shown in Figures 1.10{a}) and 1.10(b).

As shown in Figure 1.11 there are a lot of heterogeneous SoCs:

w Shared-memory Multi-Processors (SMP): it provides coarse-grain parallelism,
strong memory consistency models, huge flexibility and is suited for few large

independent threads.

s Throughput computing: it present leading core count, it can provide Single Pro-

24

1.1 Heterogeneous parallel computer architectures

GOPS/W
1 3 6 > 100
. i . l
Sw Mixed HW
1GOPS/mW
General-purpose Throughput
Computing Computing
Accelerator Gap -
CPU GPGPU GPPA HWIP

Figure 1.11: Heterogeneous SoCs and types of parallel computing.

gram- or Single Instruction- Multiple Data (SPMD or SIMD) parallel processing
and is betfitting with thousands of small threads (better if almost identical) to
expose massive hardware multithreading. This is the type of computing used in
General-Purpose Graphics Processing Units (GP-GPUs), that relate the use of
GPUs, which typically handles computation only for computer graphics, to per-
form computation in applications traditionally handled by the Central Processing

Unit (CPU).

« Harware IFPs: they present the highest GOPS/W but have not flexibility and

lower yield.

« General-Purpose Programmable Accelerators(GPPAs): They are cluster-based
many-core and customizable accelerators that can support many, truly indepen-
dent parallel computations based also on Multiple Instruction Multiple Data
(MIMD), with parallel threads that are heavily dependent on local data content

and present branch divergence.

This thesis will focus on these latters, that are holding the potential of
bridging the gap between the energy efficiency (GOPS/W) of hardwired
hardware accelerators and the computational power delivered by through-
put computing. In contrast to graphics processing units, GPPAs present a more
balanced trade-off between latency and throughput requirements, and a different usage
model of the many-core device (that makes them suitable for applicability of optical
interconnect technology, as we will see in Chapter 8). In the latest heterogeneous
Systems-on-Chip (SoC), and even more in future ones, the quest for processing spe-
cialization to deliver ultra-high performance acceleration at reduced energy cost does
not necessarily imply hundreds of dedicated hardware accelerators [88|. There are at

least a couple of reasons against that approach. On one hand, the performance of a

25

Chapter 1: Background

specialized processing engine may in many cases be equally achieved by the parallel
computation of programmable processing units [45]. Execution efficiency can thus be
achieved without sacrificing programmability. On the other hand, the trend towards
simplifying the microarchitecture design of system building blocks is becoming increas-
ingly strong. Only a replication-driven approach ultimately pays off in terms of design
productivity. There are two main architecture families that might in principle suit the
need for many-core programmable accelerators: the former one consists of GP-GPUs
[99] and is optimized for the single instruction multiple data/thread execution model
(SIMD/SIMT), while the latter one relies on the multiple instruction multiple data
(MIMD) model {although not limited to it).

MIMD programmable accelerators do not implement GPU-like data-parallel cores,
with common fetch/decode phases which imply performance loss when parallel cores
execute out of lock-step mode. They are rather independent RISC cores, well suited
to execute both SIMD and MIMD types of parallelism. When coupled with a hierar-
chical organization into clusters like [110, 95, 61], such accelerators lend themselves to
powerful programming abstractions such as nested parallelism [93|. In practice, a first
level of parallelism can be used to distribute coarse-grained tasks to clusters, and one
or more inner levels of fine-grained (e.g., loop-level) parallelism can be distributed to
processors within a cluster.

Furthermore, one reason for the growing interest in many-core accelerators in the
embedded computing domain is that there is a rapidly growing demand for a new
type of interactions between the user and the device, based on understanding of the
environment sensed in multiple manner {(image, motion, sound, etc.) striving to create
more friendly user interfaces {augmented reality, virtual reality, haptics, etc.). Despite
the good degree of data parallelism, parallel threads in this class of applications usually
expose a behavior which is heavily dependent on the local data content, resulting into
many truly independent parallel computations. In such a situation, GP-GPUs lose
efficiency due to large divergence between threads and the above motivations are at
the core of the decision to investigate in this work the potentials of flexible
MIMD/SIMD General-Purpose Programmable Accelerators for the high-

end embedded computing domain.

1.2 Networks-on-Chip (NoCs)

Today’s chip-level multiprocessors (CMPs) feature up to hundred discrete cores, and
with increasing levels of integration, CMPs with hundreds of cores, cache memories,
and specialized accelerators are likely to appear in the near future. As semiconductor
transistor dimensions shrink and increasing amounts of IP block functions are added to
a chip, the physical infrastructure that carries data on the chip and guarantees quality

of service begins to crumble. Many of today’s systems-on-chip are too complex to utilize

26

1.2 Networks-on-Chip (NoCs)

NI

Memory

Processor

Sub-System

Figure 1.12: Network-on-Chip system.

a traditional hierarchal bus or crossbar interconnect approach. Yesterday’s village
traffic has turned into today’s congested freeways. In fact, the classic interconnection
solutions based on shared buses or direct connections between the modules of the chip
are becoming obsolete as they struggle to sustain the increasing tight bandwidth and
latency constraints that these systems demand. So conventional buses and ad-hoc
wiring solutions are not able to manage too many cores with too many signals. In
this scenario, among all feasible solutions that have been proposed to cope with the
on-chip communication infrastructure, the most promising solutions for the future chip
interconnects are the Networks-on-Chip (NoCs) [14, 35, 37]. NoCs are the most viable
solution that lead to meet the performance and design productivity requirements of a
complex on-chip communication infrastructure, providing an infrastructure for better
modularity, scalability, fault- tolerance, and higher bandwidth compared to traditional
infrastructures.

Furthermore, here are two reasons why today’s SoC’s need a NoC TP interconnect

fabric:

w Reduce wire routing congestion: network on chip interconnect fabric technology
significantly reduces the number of wires required to route data in a SoC, reducing
routing congestion at the backend of the design process. Backend wire routing
congestion has become one of the most significant factors causing late designs as

the number of [P blocks on a SoC has increased.

w Higher operating frequencies: NoC technology simplifies the hardware required
for switching and routing functions, allowing SoCs with NoC interconnect fabries
to reach higher operating frequencies. Furthermore, for long or speed-sensitive
paths, the architect can easily place pipeline registers along any connection, al-
lowing for higher frequencies. Precise placement of pipeline registers (also called
"register slices”) allows the interconnect to exactly accommodate the SoC’s tim-

ing budget and meet its target frequency, with less pipeline register latency and no

4174

Chapter 1: Background

effect on neighboring IP block timing. In addition to pipelining, distributed glob-
ally asynchronous locally synchronous (GALS) technology allows synchronous
modules with locally generated clocks, with asynchronous connections between
them. In short, NoC technology’s simpler switching and routing hardware, fine
granularity pipelining capability, and GALS allow NoC interconnects to achieve
higher operating frequencies than inferior multi-layered bus or crossbar intercon-

nects.

Basically, NoCs are networks composed by routers and channels used to interconnect
the different components on the chip. The NoC paradigm addresses these issues by
shifting shared buses from on-chip networks. In NoC architectures, processor modules
exchange data by dedicated point-to-point links, interconnected by routers. Figure 1.12
shows the overall view of NoC model and its three basic elements that are the Physical
Link (PL), the Router (R) or Switch (SW) and the Network Interface (NI). The first
connects the nodes and actually implements the communication. The second instead,
implements the communication protocol: the router basically receives packets from the
links and, according to the address in each packet, it forwards the packet to the core
attached to it or to ancther shared link. Finally, the last block is the network adapter,
and this block makes the logic connection between the IP cores and the network, since

each IP may have a different interface protocol compared to the network.

1.2.1 NoC topologies

A NoC can be characterized by the structure of the routers connection. This struc-
ture or organization is called topology. The network topology is a key factor for the
performance and cost of any NoC design.

The performance of a NoC can be evaluated by three parameters: bandwidth,
throughput and latency. The bandwidth refers to the maximum rate of data prop-
agation once a message is in the network. Throughput is defined as the maximum
traffic accepted by the network [42], that is, the maximum amount of information de-
livered per time unit. Finally, latency is the time elapsed between the beginning of the
transmission of a message (or packet) and its complete reception at the target node.
Depending on the way the router is connected to the end node we can differentiate
between direct topologies and indirect topologies. In the first case, direct topology,
each router is associated to a processor (or more) and this pair can be seen as a sin-
gle element in the system, called node of the network. In this type of topology, each
node is directly connected to a fixed number of neighbours and a message between two
nodes goes through one or more intermediate nodes (Figure 1.13). The most common
NoC implementations are based on orthogonal arrangements of the routers. In these
arrangements, nodes are distributed in a n-dimension space and the packet moves in
one dimension at a time. These topologies are the ones that present the best trade-off

between cost and performance, and also present good scalability. The most common

28

1.2 Networks-on-Chip (NoCs)

Node Node Node
1 1 2 = 3
A
o8
Node Node —.[Node
4 = 5 -C=E 6
] A\
V V V [
Node .| Node Node
7 8 = 9
(a) 2D mesh. (b) 2D torus.
Node
Node Node 1
5 6 Node Node
J/ - -
Node Node
1 2
Node Node
7 3
qude Node
8
/ Node Node
Node Node 6 Node 4
3 4 5

{¢) 3D hypercube.

(d) Octagon.

Figure 1.13: NoC with direct regular topologies.

solution is the 2-I3 mesh direct topology, it is also the most used for the latest com-

mercial products and industrial prototypes, like the Tilera multicore processor family
32|, the Intel 80-core TeraFlops Polaris chip [29] and the Kalray MPPA-256 cores [75].

Figure 1.14: NoC with indirect topology (Fat-tree).

29

Chapter 1: Background

X dimension
25
0 1 2 3
o| O 1 2 3
5 1] 4 5 6 i
o]
121 8 9 10 11
3| 12 13 14 15
\J

Figure 1.15: 4-ary 2D-mesh NoC topology.

In an indirect topology (Figure 1.14) not every router is connected to processing
units as in the direct model. Instead, some routers are only used to propagate the
message through the network, while other routers are connected to the logic and only
those can be source and/or target of a message. Another possible classification for
NoC topologies is related to the regularity of the connection between routers. In
regular networks (Figure 1.13), all the routers are identical in terms of number of
ports connecting to other routers or elements in the network. In particular, in regular
topologies there is a regular predefined pattern that defines how the nodes are connected

with each other. Other properties of the network can be:

s Symmetry: a topology is symmetric when the network is the same from every

router’s point of view.
s Switch degree: it is defined as the number of input/output ports of a router.

» Homogeneity: a topology is homogeneous if all its routers have the same degree,

that is, the same number of ports.

s Bisection bandwidth: it is defined as the smallest aggregated bandwidth of all
the pairs obtained by dividing the topology into two equal-size halves.

s Hop count: it is defined as the maximum number of routers that must be tra-
versed in the topology in order to travel in the network from an end node to

another through a minimal path

In this work the 2D mesh topology is assumed in a way that every router is identified
within the network by its coordinates on a n-dimensional space. A router in a n-
dimensional graph will be numbered by two coordinates, (x, ¥), one of each dimension.

Figure 1.15 shows a 4-ary 2-mesh (4 x 4 2-D mesh) and moving from router 6, with

30

1.2 Networks-on-Chip (NoCs)

'4 N

ROUTING
|

2 INPUT BUFFER —_— -
5 »{ INPUT BUFFER » 2
= =
c T
— =
] o= INPUT BUFFER »
o) e
O
2 b
v »{ INPUT BUFFER »

»{ INFUT BUFFER .

' J

Figure 1.16: Main module in a VC-less router.

coordinates (2, 1), in Y-direction results in router 2 with cocrdinates (2, 0). Routers
are usually numbered by a single 1D, computed as a function of the coordinates and

the number of the routers per dimension.

1.2.2 The router

The routers, or switches, are the basic building blocks of the interconnection network.
Their design critically affects the performance of the whole network both in terms of
throughput and latency. Routers are connected through links, to other routers or to
terminal nodes. Their function is to make routing decisions and to forward packets
which arrive through the incoming links to the proper outgoing links. Typically, the

routers include the following four main modules (Figure 1.16):

» Buffers: the task of a buffer is to store temporarily units of information (typically
called flit, message or packet). These buffers typically follow a FIFO (First
In First Out) access policy; if associated with the input ports, its called input
buffering, if associated with the output port, its called output buffering. Their
dimension and size greatly affects the cost of each router and the performance of

the system.

» Crossbar: the crossbar is the non-blocking network element that allows the con-
nection of all input buffers of the router to all its outputs (buffer or port if the
buffering at the output is not implemented). Crossbars are classified by their

radix, i.e. the maximum number of connections they can make.

» Routing Unit: this unit is in charge of decoding the unit of information provided
by the incoming message, and based on the routing function and destination of

the message, computes the most suitable output ports to transmit the message.

31

Chapter 1. Background

DCSTINATION | G
oA | VHE MEEEAGE PAYLOAD CGHECHEUN
FACHLT I PACKE™ || FAGKLT I| FACHLT

FLIT FLIT

| | FLI_I FLIT

FLI_I FLIT | FLUT | FLT I FLIT| T | FLIT

Figure 1.17: Data units.

| FLIT

» Arbiter Unit (Switch Allocator in the figure): the arbiter is in charge of resolving
conflicting requests for the same resource and granting only one of them. These
units usually guarantee that the grant is received by the request with the highest
priority.

Large network packetz (Figure 1.17) are broken into small pisces called flits {flow
control digits). The first flit, called header flit, holds information about the packsts
route (ID or destination address) and sets up the routing path for all subsequent flits
azzociated to the packet. The head flit is followed by zero or more body flits which
contain the actual payload message of data. Finally, the final flit, called tail flit,
performs the closing connection when it passes through a router. The message enters
into the network from a source node and iz switched or routed towards its destination
through & seriez of intermediate routers. Four many types of switching techniques
may usually be used for this purpose: circuit switching, packet switching, virtual cut-
through switching, and wormhole switching.

In cércudt switching, a dedicated path iz established between the zource and the
destination before dats transfer initiates. Once the data transfer iz initiated, the mes-
sage will never be buffered nor blocked. This is performed by injecting in the network
a head flit, which containg the destination of the transmission and acts as some kind
of routing probe that progresses towards the destination node reserving the channels
that it gets.

In the packet switching {store and forward), a message is divided into packets that
are independently routed towards their destination. The destination address is encoded
in the header flit of each packet. The entire packet iz stored at each intermediate node
and then forwsrded to the next node along its path. The main advantage of packet
gwitching is that the channel resource is occupled only when a packet is actually being
transferred. The major drawback of packet switching iz that, since the packet is stored
entirely at each intermediate node before departurs, the time to transmit a packst
from source to destination iz multiplicative with the number of hops in the path.
Furthermore, at each intermediate node, we need buffer space to hold at least one
packst,

In order to reduce the time to store the packets at each router, virtual cut-through

switching iz used [76]; where, a message leaves the router before it iz completely re-

32

1.2 Networks-on-Chip {NoCs)

ceived, unless the next channel required is occupied by another packet. Despite this,
the buffer requirements are the same as store and forward and packet switehing. This

switching technique is used commonly in off-chip high-performance interconnects [36].

Wormhole switching is a variant of virtual cut-through that avoids the need of
large buffer space. With this switching technique, a packet is transmitted between
routers in units of flit. In wormhole switching, packets are forwarded immediately
before they are entirely received, but as opposed to virtual cut-through, there is no
need of further space for the rest of the message in case the message blocks. Instead,
the message is kept along its path possibly using buffers from different routers. The
main disadvantage of this technique comes from the fact that only the header flit
has the routing information. If the header flit cannot advance in the network due
to resource contention, all the trailing flits are also blocked along the path and these

blocked messages can block other messages.

The transmission of a flit between the input and output ports in a router is a task
performed by the switching technique. The flow control is in charge of administrating
the advance of the packets between the routers. Buffers are temporary resources where
to store flits, but they are finite blocks. Instead, the message is kept along its path
possibly using buffers from different routers. There are three flow control mechanisms

that are commonly used: ack/nack, stop&go and credit-based.

The first flow control protocol (ack/nack) is used for failure detection and retrans-
mission purposes. When the flits are sent to a link, a copy is kept locally at the sender.
When the flits are received, either an ack or a nack signal is sent back. Upon receipt of
the ack, the sender deletes the copy of the flit, whereas upon receipt of the nack, the
sender stops transmitting from its queue and retransmits its local copy starting from

the corrupted one.

The stop&go flow control is a very simple realization of an on/off flow control
protocol. This mechanism reduces the signaling between the sender and the receiver.
When there is an empty buffer space, a go signal is activated. Upon the unavailability
of buffer space, a stop signal is activated. stop&go threshold need to be carefully

defined not te overflow the queue or to make an inherent resume of traffic flow.

In the credit-based flow control, there is a counter for each channel that tracks the
empty buffer space available at the destination buffer. This counter is initialized with
the remote buffer size. When flits are sent from the source, the counter is decremented.
When flits are consumed by the destination on the other hand, credits are produced in

the remote node to indicate that more empty space is available.

The network topology defines the physical organization of the network composed by
the nodes, and thus the available path between all the nodes. The routing algorithm is
responsible for deciding which path the message has to follow to be effectively routed
from its source to its destination. The choice of the routing algorithm becomes of

outmost importance in the network performance. But, even in the presence of available

33

Chapter 1: Background

-

L _
.”.
]

»

-8
L
-

—8 0

E ‘

E U B B
Figure 1.18: XY routing from router A to router B.

physical paths, there are several situations that prevent message delivery:

» Deadlock: the routing is in deadlock situation when two or more packets are
waiting for ever for each other to be routed forward. Both these packets reserve
some resources and both are waiting for each other to release the resource. The
routers do not release the resources before they get the new resources and so the
advance is impossible. The two common ways to deal with deadlock events are
deadlock avoidance, achieved by employing a deadlock-free routing algorithm,

and deadlock detection/recovery.

w Livelock: it occurs when a packet keeps spinning around its destination without
ever reaching it. This problem exists in non-minimal routing algorithms. Livelock

should be avoided to guarantee packets throughput

w Starvation: Using different priorities can cause a situation where some packets
with lower priorities never reach their destinations. This occurs when packets
with higher priorities reserve the rescurces all the time. Starvation can be avoided
by using a fair sheduling policy or reserving some bandwidth only for low-priority
packets [37]

The Dimension Order Routing (DOR) is a typical turn algorithm. The algorithm
determines in which direction packets are routed during every stage of routing [36].
XY routing algorithm (Figure 1.18) is a dimension order routing which routes packets
first in x-direction to the correct column and then in y-direction to the receiver. XY
routing suits well on a network using mesh or torus topology. The coordinates of the
routers (X, v) are their addresses. XY routing never runs into deadlock nor livelock
[38].

1.3 Logic-Based Distributed Routing

Routing can be implemented as source routing or distributed routing. In source routing,

the source node computes the path and stores it in the packet header. Since the

34

1.3 Logic-Based Distributed Routing

header itself must be transmitted through the network, it consumes significant network
bandwidth. In distributed routing, however, each switch computes the next link that
will be used while the packet travels across the network. The packet header contains
only the destination ID. Distributed routing can be implemented in different ways.
The approach followed in regular topologies is the so called algorithmic routing, which
relies on a combinational logic circuit that computes the output port to be used as a
function of the current and destination nodes and the status of the output perts. The
implementation is very eflicient in terms of both area and speed, but the algorithm is
specific to the topology and to the routing strategy used on that topology. To deal
with non-regular topologies, switches based on forwarding tables were proposed. In
this case, there is a table at each switch that stores, for each destination end node,
the output port that must be used. This scheme can be easily extended to support
adaptive routing by storing several cutputs in each table entry. The main advantage
of table-based routing is that any topology and any routing algorithm can be used,
including fault-tolerant routing algorithms. However, memories do not scale in terms

of latency, power consumption, and area, thus being impractical for NoCs.

In this thesis, considering the routing algorithm of my NoC’s routers, I rely on a
very simple mechanism that removes the routing tables at every switch, thus enabling
the implementation of almost any routing algorithm on irregular topologies. The mech-
anism, referred to as Logic-Based Distributed Routing (LBDR) [49], relies on three bits
per output port at every switch and a small logic block containing several gates. It
allows for implementing most of the existing distributed routing algorithms in suitable
topologies for NoCs. Only two routing bits and one connectivity bit are required along
with a small logic block per output port. LBDR is applicable to any routing algorithm

that enforces minimal paths for every source-destination pair.

It is worth recalling that LBDR is a routing mechanism that supports the most
widely used routing algorithms for irregular topologies, including segment- based SR
[50] routing. As proved, whenever a faulty 2D mesh topology can be handled by LBDR
{including its de-route capability), it is always possible to find a suitable SR. instance
that can be used in combination with LBDR to route that topology. Simply, a fault
detection is equivalent to a change in the topology, and the routing, connectivity and
deroute bits of all the switches have to be programmed from scratch or incrementally
updated with respect to the original fault-free scenario. This is on burden of a config-
uration algorithm, which needs the list of failed links to recompute the configuration
bits for correct routing with the available communication resources. Failure of a switch
input or output port (and associated internal logic) can be viewed as the failure of the
connected link. This is the case of XY, SR, and up-down(UD) [54] routing.

35

Chapter 1: Backeround

“'ﬁ“ T

satch : Bazt Rowting and connect vty bits mquited per switch (12 bk, 3 perowkpit pott)

I 4 t-ilsatheHnr&p:-rt(hits 3t the Westport(
Sonth

Ak

-o0—
—

| . B
C Secomd fart of the muking beic
r: I =17 B . W +IF .F Fne+1F W R
S i E'=E.IFT.T+B IF Ren+B .5 Fes
1 W= I .5+ W I Ban+ W T Bwg
C §'=F FE.%W+3 F Re+T W Rew
M :
W= . Cn W= O
Tt — P [. E=F* .Ce -

Figure 1.19: LEDE, methad.

1.3.1 LBDR description

Figure 119 shows the detals of LEDE, The mechamam relies on the use of only thres
kits per switch output port. Therefore 12 bits are nesded per switeh. The walus of
these bita depends on the topolosy and the routing almorithm baing implemented, and
are cammputed and uploaded to the switches before normal operation

Eits are grouped in two sets: routing kats and connectivity bits. Beouting hits
indieate which routing options can be taken, wheress conneetivity bitzindicate whether
2 swikeh 1z connected with its naighbours. Eegarding the routing bits, the bits for the
E output port arelabeled Egpw and Egs. They indieate whether packets routed through
the E output port may later at the next switch take the I port ar & port, respectively.
In other words, thess kits mdicate whether packets are allowed to change direction ak
the next switeh. Burnilarly, for output pert I the bits are accordingly labeled Exg and
Earwr, for output port W Esnr and Eaes, and for output port 8 Egg and B

Eegarding the eonnectivty bits, each output port has o bit, referred to 2z Cy
indicating whether o switch 1z eonnected through the X port. Thus, conneetinty bats
are Oy, O, Cw, and Ca.

The routing loge 1= divided m two parts (se= Fipure 119). The first part computes
the relative position of the packet’s destination. For this, two somparators are used and
Ao and ¥ pare compared with Xay and Yao, Fromthat lome one or two sipnals may
be active (1f the packet iz 1n the N'W quadrant then M and W signals will be active).
HNote alao that packsts forwarded to the loeal port are exeluded from the routing lome.

Cnee the Np, Wp, Ep and Bp agnals are computed, the second part of the loge
eomes inta play. Ik 1s made of four lome umts, one for each output port. Each one ean
be balt with only two inverters, four AND gates and one OF, gate. As all of them are
armuilar we will deseribe only one, the lome assooaated with the I output port. The

36

1.3 Lome-Based Distributed Eoutmg

|—-|—-|—-|—-|—-|—-|—-|—-|—-|—-RIE

==l = = =] = = = = | = Berss

HD:DDC-HI—-HHREIL
|—-|—-:|—-|—-|—-|—-|—-|—-|—-Rﬂ

=[] [=l[=[==[=|[== [~ FEs=~

L B O O A = B TEr 1

= | =l [=l == =l =] =] —]] =| Ras
Ll | i B e e | e e I | e | an
==l =l = =] = = = -] - Bes
I e el el |] = = | = | =) CIL
S == == = = = = - CE
ol | = = | | : ol | e | Bl CE

Figure 1.20: Example of LEDFE, for an irregular (p) topology with UD routing.

N output port 15 considered for mouting the ineorming packst when either one of the

tollewring three conditions 12 met:

= The packet’s destination is on the same eolurnn (N« ExW).

s The padkst’s destination 13 on the NE quadrant and the packet can take the E
port at the next switch through the N port (N' = E¥ = Ryg).

s The packsts destmation 15 on the MW quadrant and the padest can take the W
port at the next switch through the I pert (WY = W/ = Ryar).

If none of the shove conditions 1z met, then the N port can not be taken for routing
the packset. Additionally, the eonnectivty bit Oy 13 1nspected m order to filber the M
port.

LEDE, will mmie performance of most of the routing algonthms. This 13 the cass
for the XY and UD routing algorithms. In thess dlgonthms, the routing restrictions are
located in the same relative position through all the rows and eolumnns. As an exampls,
Figure 1 20 shows all the bits for UD in 2 p topology. MNotiee that for the path 18
output port 3 13 not taken at switch 1 becauzse there 1z o MW routing restriction ot
switch B (bit Raw 15 zero ot switch 1), This demsion doss not impact on performanes
a3 the § output port cannot be taken to forward properly the packst (packst would
never be able to tum to W m the column).

Hewever, there are atustions (eg more advanesd routing algorithms like 3R)
where LEDE, induces some inefficiencies. Therefore, LEDE, reduces adaptiveness.

It 13 important to note that only the routing kbite refernng to o routing restriction
are set to zero and the remamng ones are sst to one, even those that refer to awitches
not exdsting in the topology (for instance bit Rgw at switeh 0). However, they must be
set to one in order the mechaniam to woerk properly. Thiz can be betber seen through

3T

Chapter 1: Background

an example. Imagine the path at Figure 1.20 from switch 13 to switch 7. Signals N
and B are active at switch 13. N is activate as Ryg although it does not make sense
for routing purposes. This allows the packet to being forwarded north until it reaches
switch 5, where it will take east direction. Notice that output port E will never be

taken at switches 13 and 9 due to the connectivity bit Cg.

38

Chapter 2

Virtual platforms for heterogeneous

parallel computer architectures

In this chapter, I present the two simulation environments I use and augment in this
thesis, trying to cope with the requirements of heterogeneous parallel computing archi-
tectures, and of many-core programmable accelerators in them. In particular, I provide
a description of the VirtualSoC virtual platform and of the modifications I applied to
allow modeling and simulation of a multi-cluster accelerator system with clock cycle
accuracy. Then, I describe the gemb5 environment, targeting a transactional accuracy.
In particular, I report on how I customized it to model heterogeneous systems and to
run parallel benchmarks in order to evaluate novel resource sharing strategies. Finally

[compare the features of the two simulators, highlighting their complementarity.

Key novelty: development of virtual platforms to simulate high-performance het-

erogeneous parallel computer architectures at different abstraction layers.

2.1 Introduction

As reported in Chapter 1, several simulation frameworks are available today off-the-
shelf 24, 29, 75, 77, 84, 87, 126, 136], but almost all of them suffer from three main

problems, which make them not suitable to model a complex MPSoC:

» Lack of models for deep micro-architectural components: hardware designs with
more than hundreds of computing units use various architectural components,
to allow efficient and scalable communication between cores (e.g. Networks-On-
Chip) and complex memory hierarchies. Such components have to be modeled
at the micro-architectural level to enable accurate power estimations and perfor-

mance measurements.

39

Chapter 2: Virtual platforms for heterogeneous parallel computer architectures

» Lack of support for Full System simulation: modern MPSoCs are composed by
a Host processor and one or more accelerators. The host processor is usually
in charge of executing an operating system (e.g. Linux), while the accelerators
are used as a co-processors to speedup the execution of computationally heavy
tasks. In this scenario the interaction between host processor and accelerators,
being it a memory transfer or a synchronization, may have a significant effect
on applications performance. Virtual platforms have to accurately model such

interactions to enable precise application profiling.

= Sequential simulation: most of the available modeling tools are relying on a
sequential execution model, in which all components of the design are simulated
in sequence by a single application thread. In the near future MPScCs will
feature thousands of computing units, and such a modeling technique will make

the simulation time of a reasonable application to be too slow for practical use.

In this chapter I provide two examples of simulators that can cope with the require-
ments of MPSoCs systems, focusing on heterogeneous architectures composed by a

host processor and a programmable accelerator.

2.2 SystemC VirtualSoC development

2.2.1 Overview

Performance modeling plays a critical role in the design, evaluation, and development
of computing architecture of any segment, ranging from embedded to high performance
processors. Simulation has historically been the primary vehicle to carry out perfor-
mance modeling, since it allows for easily creating and testing new designs several
months before a physical prototype exists. Performance modeling and analysis are
now integral to the design flow of modern computing systems, as it provides many
significant advantages: i) accelerates time-to-market, by allowing the development of
software before the actual hardware exists; ii) reduces development costs and risks, by
allowing for testing new technology earlier in the design process; iii) allows for exhaus-
tive design space exploration, by evaluating hundreds of simultaneous simulations in
parallel.

High-end embedded processor vendors have definitely embraced the heterogeneous
architecture template for their designs as it represents the most flexible and efficient
design paradigm in the embedded computing domain. Parallel architecture and het-
erogeneity clearly provide a wider power/performance scaling, combining high perfor-
mance and power efficient general-purpose cores along with massively parallel many-
core-based accelerators. Examples and results of this evolution are AMD Fusion,
NVidia Tegra and Qualcomm Snapdragon. Besides the complex hardware, generally

these kinds of platforms host also an advanced software eco-system, composed by an

40

2.2 SystemC VirtualSoC development

operating system, several communication protocol stacks, and varicus computational
demanding user applications.

Unfortunately, as processor architectures get more heterogeneous and complex, it
becomes more and more difficult to develop simulators that are both fast and accurate.
Cycle-accurate simulation tools can reach an accuracy error below 1-2%, but they
typically run at a few millions of instructions per hour. The necessity to efliciently
cope with the huge HW/SW design space provided by this target architecture makes
clearly full-system simulator one of the most important design tools. Clearly, the use
of slow simulation techniques is challenging especially in the context of full-system
simulation. In order to perform an affordable processor design space exploration or
software development for the tar- get platform, trade-off accuracy for speed is thus
necessary by implementing new virtual platforms that allow for faster simulation speed
at the expense of model- ing fewer micro-architecture details of not-critical hardware
components (like the host processor domain}, while keeping high-level of accuracy for
the most critical hardware components (like the many-core accelerator domain). We
present in this chapter VirtualSoC [20], a new virtual platform prototyping framework
targeting the full-system simulation of massively parallel heterogeneous system-on-chip
composed by a general purpose processor (i.e. intended as platform coordinator and
in charge of running an operating system) and a many-core hardware accelerator (i.e.
used to speed-up the execution of computing intensive applications or parts of them).
VirtualSoC exploits the speed and flexibility of QEMU, allowing the execution of a
full-fledged Linux operating system, and the accuracy of a SystemC model for many-
core-based accelerators.

The specific features of VirtualSoC are:

s Since it exploits QEMU for the host processor emulation, unmodified operating
systems can be booted on VirtualSoC and the execution of unmodified ARM

binaries of applications and existing libraries can be simulated on VirtualSoC.

« VirtualSoC enables accurate manycore-based accelerator simulation: there is a
full software stack allowing the programmer to exploit the hardware accelerator
model implemented in SystemC, from within a user-space application running on
top of QEMU. This software stack comprise a Linux device driver and a user-level

programming APIL

» The host processor (emulated by QEMU) and the SystemC accelerator model
can run in an asynchronous way, where a non-blocking communi- cation interface
has been implemented enabling parallel execution between QEMU and SystemC

environments.

s Beside the interface between QEMU and the SystemC model, it is implemented
a synchronization protocol able to provide a good approximation of the global

system time.

41

Chapter 2: Virtual platforms for heterogeneous parallel computer architectures

aughter board

EXT

j MEM MANY-CORE

\ ACCELERATOR j

Figure 2.1: Target simulated architecture.

\; HOST SUBSYSTEM

» VirtualSoC can be also used in stand-alone mode, where only the hardware ac-

celerator is simulated, thus enabling accurate design space explorations.

To the best of my knowledge, there are no existing public domain, open source simu-
lators that rival the characteristics of VirtualSoC. This section focuses on the imple-
mentation details of VirtualSoC and evaluates the performance of various benchmarks,
and finally presents some example case studies using VirtualSoC.

One of the main advantages of VirtualSoC is that it is a SystemC simulator, en-
abling a cycle-accurate simulation but also allowing the users to create a new emu-
lation framework based on QEMU and SystemC which overcomes the issues of other
simulators. QEMU is chosen amongst all simulators because it is fast, open-source
and also very flexible enabling its extension with a moderate effort. Our approach is
based on thread parallelization and memory sharing to obtain a complete heteroge-
neous SoC emulation platform. In our implementation the target processor and the
SystemC model can run in an asynchronous way, where non-blocking communication
is implemented through the use of shared memory between threads. Beside the inter-
face between QEMU and a SystemC model, there is a lightweight implementation of
a synchronization protocol able to provide a good approximation of a global system
time. Moreover, it was designed a full SW stack allowing the programmer to exploit
the HW model implemented in SystemC, from within a user-space application running
on top of QEMU. This software stack comprise a Linux device driver and a user-level

programming APIL.

2.2.2 Baseline architecture

Modern embedded SoCs are moving toward systems composed by a general purpose
multi-core processor accompanied by a more energy efficient and powerful many-core
accelerator (e.g. GPU). In these kinds of systems the general purpose processor is
intended as a coordinator and is in charge of running an operating system, while
the many-core accelerator is used to speed up the execution of computing intensive

applications or parts of them. Despite their great computing power, accelerators are not

42

2.2 SystemC VirtualSoC development

15

| | I
PE, PE, PE,;

CLUSTER INTERCONNECT {MoT)

[| | | |
L3 E
INTERFACE

BANK BANK ... BANK
0 1 M-1

SHARED L1 TCDM

Figure 2.2: Single cluster of a programmable many-core accelerator.

able to run an operating system due to the lack of all needed surrcunding devices and
to the simplicity of their micro-architectural design. The architecture of VirtualSoC
{(shown in Figure 2.1 is representative of the above mentioned platforms and composed
by a many-core accelerator and an ARM-based processor.

The ARM processor is emulated by QEMU which models an ARM926 processor,
featuring an ARMvS ISA, and interfaced with a group of peripherals needed to run
a full-fledged operating system (ARM Versatile Express baseboard). The many-core
accelerator is a SystemC cycle-accurate MPSoC simulator. The ARM processor and
the accelerator share the main memory, used as communication medium between the
two. The accelerator target architecture features a configurable number of simple
RISC cores, with private or shared [-cache architecture, all sharing a Tightly Coupled
Data Memory (TCDM) accessible via a local inter- connection. The state-of-the-art
programming model for this kind of systems is very similar to the one proposed by
OpenCL or by OpenMP: a master application is running on the host proces-
sor which, when encounters a data or task parallel section, offloads the
computation to the accelerator. The master processor is in charge also of

transferring input and output data.

2.2.3 Many-core single cluster accelerator

The proposed target many-core accelerator template can be seen as a cluster of cores
connected via a local and fast interconnect to the memory subsystem. The following

sub-sections describe the building blocks of such cluster, shown in Figure 2.2.

Processing elements

The accelerator consists of a configurable number of 32-bit RISC processor. In the

specific platform instance that I consider in this chapter [use ARMv6E processor models,

43

Chapter 2: Virtual platforms for heterogeneous parallel computer architectures

Processing
Elements

PEO || PE1 || PE2 || PE3

224} Bunnoy

b AN

aal] iy

Memory

BO || B1 B2 || B3 || B4 || B5 B6 || B7 B
anks

Figure 2.3: Mesh of trees 4x8 (banking factor of 2).

specifically the ISS. To obtain timing accuracy its internal behavior is modified to model

a Harvard architecture wrapping the ISS in a SystemC module.

Local interconnect

The local interconnection has been modeled, from a behavioral point of view, as a
parametric Mesh-of-Trees (MoT) interconnection network (logarithmic interconnect)
to support high-performance communication between processors shown in Figure 2.3,
The module is intended to connect processing elements to a multi-banked memory on
both data and instruction side. Data routing is based on address decoding: a first-
stage checks if the requested address falls within the local memory address range or
has to be directed to the main memory. To increase module flexibility this stage is
optional, enabling explicit L3 data access on the data side while, on the instruction
gide, can be bypassed letting the cache controller take care of L3 memory accesses for
lines refill. The interconnect provides fine-grained address interleaving on the memory
banks to reduce banking conflicts in case of multiple accesses to logically contiguous
data structures. The crossing latency consists of one clock cycle. In case of multiple
conflicting requests, for fair access to memory banks, a round-robin scheduler arbitrates
access and a higher number of cycles is needed depending on the number of conflicting
requests, with no latency in between. In case of no banking conflicts data routing is
done in parallel for each core, thus enabling a sustainable full bandwidth for processors-
memories communication. To reduce memory access time and increase shared memory
throughput, read broadcast has been implemented and no extra cycles are needed when

broadcast occurs.

4

2.2 SystemC VirtualSoC development

TCDM

On the data side, a L1 multi-ported, multi-banked, Tightly Coupled Data Memory
(TCDM) is directly connected to the logarithmic interconnect. The number of memory
ports is equal to the number of banks to have concurrent access to different memory
locations. Once a read or write request is brought to the memory interface, the data
is available on the negative edge of the same clock cycle, leading to two clock cycles
latency for conflict-free TCDM access. As already mentioned above, if conflicts occur
there is no extra latency between pending requests, once a given bank is active, it

responds with no wait cycles.

Synchronization

To coordinate and synchronize cores execution the architecture exploits W semaphores
mapped in a small subset of the TCDM address range. They consist of a series of regis-
ters, accessible through the data logarithmic interconnect as a generic slave, associating
a single register to a shared data structure in TCDM. By using a mechanism such as
a hardware "test and set” it is possible to coordinate access: if reading returns 0 the
resource is free and the semaphore automatically locks it, if it returns a different value,
typically 1, access is not granted. This module enables both single and two-phases

synchronization barriers, easily written at the software level.

Instruction Cache Architecture

The L1 Instruction Cache basic block has a core-side interface for instruction fetches
and an external memory interface for refill. The inner structure consists of the actual
memory and the cache controller logic managing the requests. The module is con-
figurable in its total size, associativity, line size and replacement policy (FIFO, LRU,
random). The basic block can be used to build different Instruction Cache architec-

tures:

» Private Instruction Cache: every processing element has its private I-cache, each
one with a separate cache line refill path to main memory leading to high con-

tention on external L3 memory.

= Shared Instruction Cache: there is no difference between the private architecture
in the data side except for the reduced contention L3 memory (line refill path
is unique in this architecture). Shared cache inner structure is made of a con-
figurable number of banks, a centralized logic to manage requests and a slightly
modified version of the logarithmic interconnect de- scribed above: it connects
processors to the shared memory banks operating line interleaving (1 line consists
of 4 words). A round robin scheduling guarantees fair access to the banks. In

case of two or more processors requesting the same instruction, they are served

45

Chapter 2: Virtual platforms for heterogeneous parallel computer architectures

VSOC-Host

(QEMU) VSOC-Acc

start synch{}

start_accelerator()

Application time
awin

job_completed()

stop_synch(}

i HOST EXECUTION [ACCELERATOR EXECUTION |

Figure 2.4: Execution model.

in broadcast not affecting hit latency. In case of concurrent instruction miss from

two or more banks, a simple bus handles line refills in round robin towards the

L3 bus.

2.2.4 Host-Accelerator Interface

In this section a description of QEMU-based host side of VirtualSoC (VSoC- Host) is

provided, as well as the many-core accelerator side (VSoC-Acc).

Parallel Execution

In a real heterogeneous SoC host processor and accelerator can execute in an asyn-
chronous parallel fashion, and exchange data using non-blocking communication primi-
tives. Usually the host processor, while running an application, offloads asynchronously
a parallel job to the accelerator and goes ahead with its execution (Figure 2.1). Only
when needed the host processor synchronizes with the execution of the accelerator, to

check the results of the computation.

In our virtual platform the host processor system and the accelerator can run in
parallel, with VSoC-Host and VSoC-Acc running on different threads: when the thread
of VSoC-Acc starts its execution triggers the SystemC simulation. It is important to
highlight that the VSoC-Acc SystemC simulation starts immediately during VSoC-
Host startup, and the accelerator starts executing the binary of a firmware (until the

shutdown) in which all cores are waiting for a job to execute.

46

2.2 SystemC VirtualSoC development

Time Synchronization Mechanism

VSoC-Host and VSoC-Acc run independently in parallel with a different notion of time.
The lack of a common time measure leads to only functional simulation, without the
possibility of profiling applications performance even in a qualitative way. Application
developers often need to understand how much time, over the total application time,
is spent on the host processor or on the accelerator. Also, without a global simulation
time it is not possible to appreciate execution time speedups due to the exploitation
of the many-core accelerator.To manage the time synchronization between the two
environments, it is necessary that both VSoC-Host and VSoC-Acc have a time mea-
surement system. VSoC-Host does not natively provide this kind of mechanisms, so
it was instrumented to implement a clock cycle count, based on instructions executed
and memory accesses performed. On the contrary for VSoC-Acc there is no need for
modifications be- cause it is possible to exploit the SystemC time. The synchronization
mechanism used in our platform is based on a threshold protocol acting on simulated
time: at fixed synchronization points the simulated time of VSoC-Host and VSoC-Acce
is compared. If the difference is greater than the threshold, the entity with the greater
simulated time is stopped until the gap is filled.

2.2.5 Simulation software support

In this section, I provide a description of the software stack provided with the simulator
to allow the programmer to fully exploit the accelerator from within the host Linux

system, and to write parallel code to be accelerated.

Linux driver

In order to build a full system simulation environment VSoC-Acc is mapped as a device
in the device file system of the guest Linux environment running on top of VSoC-Host.
A device node /dev/vsoc has been created, and as all Linux devices it is interfaced
to the operating system using a Linux driver. The driver is in charge of mapping the
shared memory region into the kernel 1/0 space. This region is not managed under
virtual memory because the accelerator can deal only with physical addresses, as a
consequence all buffers must be allocated contiguously (done by the Linux driver).

The driver provides all basic functions to interact with the device.

Hot side User-Space library

To simplify the job of the programmer I have designed a user level library, which
provides a set of APIs that rely on the Linux driver functions. Through this library
the programmer is able to fully control the accelerator from the host Linux system.
It is possible for example to offload a binary, or to check the status of the current

executing job (e.g. checking if it has finished).

47

Chapter 2: Virtual platforms for heterogeneous parallel computer architectures

GPPA N
03 [H [- [
P PU CP VS TER. VRSTER e
- e [Forr |
HOST SYSTEM
oC noc oC ILOW-LATEN cy INTERCONNECTl

3oang
€121

< — SHARED-MEMORY CLUSTER

0 p— 2 e SHARED L1 TCDM

<=

uter uter) iter
SLAVE SLAVE SLAVE
PU CP Men PORT
> » e h - E ~ E z g
: > = = =
> NoC o oC

System
Top-Level Interconnect H ol

]
(MemcTRL]

DDR I/O Peripheral
Memory

Figure 2.5: Heterogeneous (many-core accelerator-based) MPSoC architecture.

Accelerator Side Software Support

The basic manner I provide to write applications for the accelerator is to directly call
from the program a set of low-level functions implemented as a user library, called
appsupport. appsupport provides basic services for memory management, core ID
resolution, synchronization. To further simplify programming and raise the level of
abstraction it was also supported a fully-compliant OpenMP v3.0 programming model,

with associated compiler and runtime library.

Summary

VirtualSoC leverages QEMU to model a ARMv6 host processor, capable of running
a full-fledged Linux operating system. The many-core accelerator is modeled with
higher accuracy using SystemC. Extended this combined simulation technology with a
mechanism a gathering timing information is allowed that is kept consistent over the
two computational sub-blocks. A set of experiments over a number of representative
benchmarks demonstrate the functionality, flexibility and efficiency of the proposed
approach. Despite its flexibility, VirtualSoC is still based on sequential simulation
whose speed decreases when increasing the complexity of the modeled platform. In the
next chapter this problem is tackled by exploiting off-the-shelf GPGPUs to speedup

the simulation process.

2.2.6 Modifying VirtualSoC: the target multi-clusters version

In this section I present the modifications of baseline VistualSoC, to enable multi-

clusters simulations, that is the target architecture to cope with the GPPAs require-

48

2.2 SystemC VirtualSoC development

ments.

In Figure 2.5 is reported a typical MPSoC architecture. As described in the previ-
ously in this chapter, VirtualSoC enables the simulation of a many-core system consid-
ering up to 16 cores in the same cluster, in addition to a host processor that is simulated
by QEMU. This is not enough to cope with the modern many-core architectures, that

in fact present more clusters, each one with multi-core.

Figure 2.6 depicts exactly what [need to simulate: a multi-clustered accelerator
{that will be the GPPA) that can contain up to 16 cores for each cluster. It consists of a
configurable number of computing clusters (up to 9 in our basic setup), interconnected
by a 2-D mesh network-on-chip. The topology of the NoC is a simple nxn mesh
{(extended up to 5x5 in some versions) . Hach of the first 9 nodes includes a computing
cluster and a L2 bank. Another node hosts the Fabric Controller, a special cluster
instance with a single processor acting as a main controller for the whole many-core
platform. This node interacts directly with the host system, and is in charge of the boot
sequence of other clusters and their operation control. It has the fundamental role of
managing NoC routing reconfiguration, setting up partitions and starting applications.
Among the remaining three nodes, one switch is reserved to communications with an
[/O interface (GPPA reading and writing ports), while the other two are temporarily
left unused, and are available for future extension of the computation power. Every full-
cluster block is linked to a switch of the on-chip network with two network interfaces

(Nls), a master and a slave one, supporting OCP (Open Core Protocol). The master

p—

IINNRNEN

{jTcom il

DEEEEE

TCOM) IL1

NENNNNNNNND

al N

FABRIC
CONTROLLER
(11

Figure 2.6: GPPA architecture example: 12 switches, 9 with computing clusters and
L2 distributed blocks; 2 additional switches are reserved to the Fabric Controller (hy-
pervisor) and to the INO interface.

Dual NeC
(FRL

FUN NN NN NN NN

49

Chapter 2: Virtual platforms for heterogeneous parallel computer architectures

NI is dedicated to the core transactions, while the slave NI is used for accessing the
internal cluster memory. Accesses to the L2 banks are feasible thanks to dedicated
slave NlIs. Every router has a block that manages LBDR routing. A Round-Robin
arbiter (or allocator) is implemented inside each switch, enriched with up to 16 levels
of priority to guarantee QoS. There is also the possibility, if a global hypervisor or
Fabric Controller requires it, to set circuits between different sources and destinations,

reserving those paths for critical packets (hard QoS).

Each cluster has an internal memory organized as private, per-core L1 instruction
caches plus local L1 scratchpad data memory shared among all cores. I also re-architect
the L2 memory as a multi-bank distributed shared memory, where each NoC router
hosts a L2 bank. This requires to modify the switch arbitration logic, having an addi-
tional bidirectional port per switch toward the memory to be controlled. Finally, also
the Network Interfaces need to be modified, this way introducing address interleaving
for the L2 memory, being this a well-known strategy to speedup and optimize memory
accesses. Overall, the memory system is organized as a partitioned global address space
(PGAS). Each processor in the system can explicitly address every memory segment:
local TCDM, remote TCDMs, L2, and L3 memory. Clearly, transactions that traverse
the boundaries of a cluster are subject to NUMA effects: higher latency and lower
bandwidth. When the GPPA hasg to perform a new computation, the code binary is
copied via global direct memory access (DMA) into the L2. Data is stored in the L3
(main) memory, where it is originally allocated by host programs. Permanently hosting
entire data structures in the L1 TCDMs is not feasible, due to a limited size of 256
KB. The software must thus explicitly orchestrate data transfers from L3 to L1 or L2,
to ensure that the most frequently referenced data are kept close to the processors. To
enable performance and energy-efficient transfers, each cluster is equipped with a local
DMA engine.

Furthermore, there is the possibility to have up to two physical networks {one global
and one local) and up to two Virtual Channels for each of them, to support different
types of communications, separating the ones that can have conflicts and that can
generate deadlock. Of course VC’s arbiters and (de-)multiplexing logic are required to

manage and control of this huge hardware.

To make the routers easier to be reached by the hypervisor, [implement a Dual NoC,
providing an efficient propagation phase very useful to deliver (re-)configuration LBDR
bits. Once the Fabric Controller got the new reconfiguring bits, [have to consider the
way they are provided to each switch. If the focus is on functional validation [can
consider a synchronous way, i.e. at the same time for all the switches of the NoC,
but in this case I relax that assumption and consider a more realistic setting, where
control bits of the reconfiguration process are brought by a dual network. Such a dual
bus may be ancther 2D mesh superimposed to the main one, however this would be

too much of an overhead. I more realistically envision a path topology connecting all

50

2.2 SystemC VirtualSoC development

; P .
2.
2
2.
& g
e ——
it i

Figure 2.7: A tree topology Dual NoC to deliver configuring bits from the Fabric
Controller to the routers of the NoC.

the switches of the main NoC, based on a binary tree of four logic levels, that allows
to reach all the switches of the whole NoC and so to create or reconfigure a partition
without being constrained to the path imposed by the dual bus. The tree topology,
shown in Figure 2.7 improves and optimizes the distribution of the new configuration.

This unconstrained control network guarantees to reach each switch in 3 cyeles because

concerning the possible information width of the bus in worst case. Also thanks to
this dual network, the cost of this phase {i.e. delivering new LBDR bits) is very low
considering the whole scenario.

The final cutcome of this part of the work is a working multi-clustered many-core
system simulator (in Figure 2.5 is reported a 2x2 mesh of the new architectural tem-
plate) with a multi-clustered accelerator. This is the baseline template that has been
furthermore modified and extended in several ways to enable better modeling resources
gharing on the GPPA architecture. The extensions include in particular modifications

to the baseline NoC switches to enable the creation of dynamically reconfizurable par-

P

,Xi e

b
AR A

Figure 2.8: Simplified new VirtualSoC target architecture: 2x2 mesh.

51

Chapter 2: Virtual platforms for heterogeneous parallel computer architectures

titions and to fully support the GPPA NoC architecture, and are described in Chapter
5 and 6.

The main issue with this huge hardware is the simulation time: VirtualSoC in
the multi-clustered variant presents a very poor instructions/sec ratio, so running real

benchmarls the simulations” duration is sometimes unaffordable.

2.3 gemb development toward heterogeneous par-

allel computer architectures

To overcome the long simulation duration of VirtualSoC, needing to run real Image
Processing benchmarks that usually require a lot of simulation cycles, and furthermore
to enable simulations 64bit architecture processors, | leverage the gem5 simulator [17].

gemb is a modular, discrete, event-driven computer systems simulator platform. Its

main features are:

gemb components can be rearranged, parameterized, extended or replaced easily

to suit your needs.
s [t simulates the passing of time as a series of discrete events,
w [ts intended use is to simulate one or more computer systems in various ways.

» [t is more than just a simulator; it is a simulator platform that lets you use as
many of its premade components as you want to build up vour own simulation

system.

gemb is written primarily in C++ (to model the behaviour of hardware components
and the transactions between them) and python to configure the blocks in the system
to be simulated. Most real components models are provided under a BSD style license.
It can simulate a complete system with devices and an operating system in full system
mode (F'S mode), or user space only programs where system services are provided
directly by the simulator in syscall emulation mode (SE mode). There are varying
levels of support for executing Alpha, ARM, MIPS, Power, SPARC, and 64 bit x86
binaries on CPU models including two simple single CPI moedels, an out of order model,
and an in order pipelined model. A memory system can be flexibly built out of caches
and crossbars. Recently the Ruby simulator has been integrated with gemb to provide
even more flexible memory system modeling.

More in detail, the gemb simulator is a modular platform for computer-system
architecture research, encompassing system-level architecture as well as processor mi-
croarchitecture. It can simulate multiple interchangeable CPU models. gemh provides
four interchangeable CPU models: a simple one-CPI CPU; a detailed model of an
in-order CPU, and a detailed model of an out-of-order CPU. The CPU models use a

52

2.3 gemb development toward heterogeneous parallel computer architectures

common high-level ISA description. In addition, gemb features a KVM-baged CPU
that uses virtualization to accelerate simulation.

There is a NoMali GPU model: gemb comes with an integrated NoMali GPU model
that is compatible with the Linux and Android GPU driver stack, and thus removes
the need for software rendering. The NoMali GPU does not produce any output, but
ensures that CP U-centric experiments produce representative results.

It is, as already said, an event-driven memory system. gemb features a detailed,
event-driven memory system including caches, crossbars, snoop filters, and a fast and
accurate DRAM controller model, for capturing the impact of current and emerging
memories, e.g. LPDDR3/4, DDR3/4, HBM1/2, HMC, WidelO1/2. The components
can be arranged flexibly, e.g., to model complex multi-level non-uniform cache hierar-
chies with heterogeneous memories.

There is a trace-based CPU model that plays back elastic traces, which are depen-
dency and timing annotated traces generated by a probe attached to the out-of-order
CPU model. The focus of the Trace CPU model is to achieve memory-system (cache-
hierarchy, interconnects and main memory) performance exploration in a fast and
reasonably accurate way instead of using the detailed CPU model.

You can instantiate homogeneous and heterogeneous multi-core. The
CPU models and caches can be combined in arbitrary configurations, creat-
ing homogeneous, and heterogeneous multi-core systems. A MOESI snooping
cache coherence protocol keeps the caches coherent. Multiple ISA support is enabled:
gemb decouples [SA semantics from its timing CPU models, enabling effective support
of multiple I[SAs. Currently gemb supports the Alpha, ARM, SPARC, MIPS, POWER
and x86 [SAs.

Finally a co-simulation with SystemC is supported, in fact gemb can be included
in a SystemC simulation, effectively running as a thread inside the SystemC event
kernel, and keeping the events and timelines synchronized between the two worlds. This
functionality enables the gem5 components to interoperate with a wide range of System
on Chip {SoC) component models, such as interconnects, devices and accelerators. A

wrapper for SystemC Transaction Level Modeling {TLM) is provided with the code.

2.3.1 A customized gemb-based GPPA

Relying on the potentials of gemb simulator, I implement the system reported in Figure
2.9. The host sub-system consists of a ARMVS processor (64-bit Cortex A53 or A57).
The cluster presents 1 or 2 cores with both instructions and data L1 cache memory.
[t is connected through a coherent crossbar to second-level cache memory (L2) and
through another crossbar to a DRAM memory (DDR3).

The latter crossbar leverages on a special bridge I created to enable the bidirectional
communication between two crossbar (unsupported in the baseline gemb5), let the host

sub-system communicate with the accelerator sub-system.

53

Chapter 2: Virtual platforms for heterogeneous parallel computer architectures

S 0

cem>S |

i

Coherent
Bar

o

|
Bridge

Coherent
| XBar

ARM
Peripherals

| Customizable Host System

5 | Accelerator System

| ||
Cmmmmad

Figure 2.9: Blocks diagram of the whole system (host processor and many-core accel-
erator) implemented with gem5 simulation environment.

The accelerator is composed by 8 (extended to 9 in some version) ARMvS clus-
ters and through an internal non coherent crossbar the communication inter cluster is
guaranteed. In this case, the memories inside a cluster are [-L1 and D-L1 cache{both
private to the core) but I add (not seen in figure) also a TCDM memory per cluster,
accessible by all the cores of the accelerator. In figure it is shown just one L2 block,
but together with the modifications done on the VirtualSoC platform, I also extended
the .2 memory to a multi-banks one. It is important to point out that this memory is
shared between all the cores of the accelerator and also reachable by the host system

(e.g. it is used to offload code from the host towards the accelerator).

The bridge block has also the important function to let the accelerator directly
access (through the XBar-Bridge-CoherentXBar path), to the DRAM memory, but it
blocks the attempts to access to the L2 of the host. This latter instead can access

everywhere.

All the memory in this gemb5 environment is physically mapped, so to access to
one address you must explicitly refer to the physical address of the memory block you
want to reach. This makes simpler to manage the porting of the applications on this

simulator, in particular the offload phase by the host on the accelerator.

To simulate at least the first-level effects of a NoC, although having a simple crossbar
(the model of the NoC in gem5 is not. well-developed and presents several bugs), [map
on the crossbar all the paths and introduce a delay matching the number of hops of the
NoC a packet should cross to reach the destination: this let the simulation takes into
account, the first-level effects as the differences between paths and also the congestion

at memory side. Congestion due to arbitration inside a switch is instead neglected.

54

2.4 Simulaticn platforms comparison

2.4 Simulation platforms comparison

There are two main differences between the two simulation environments presented in
this chapter. On one hand I have a SystemC cycle-accurate RTL equivalent simulator
that is VirtualSoC. On the other hand I have an event-driven simulator mainly based
on C++ and TLM modeling style. This means that if the experiments I need to run do
not need to be accurate but just validating the functionality or the proper execution
of an application I can rely on the higher instructions/sec ratio delivered by gemb5.

If instead I want to be more accurate, for example to evaluate new hardware blocks
or envisioning a next prototyping on FPGA, it is better to rely on VirtualSoC.

This is exactly what [do in the next chapters: to validate a new reconfiguration
mechanism (requiring hardware blocks and new kinds of signaling) 1 use VirtualSoC.
Instead, to run several benchmarks not taking care about accuracy I use gemb because
it lets me run real benchmarks with a 70% of speedup compared to VirtualSoC with
all the features unblocked. The main features that slow down VirtualSoC simulations

are the number of cores per cluster and the NoC routers.

2.5 Summary

In this chapter, I presented the two simulation environments used in this thesis, which
are customized and augmented variants of VirtualSoC and gemb. Then, I highlight the
benefits and disadvantages of each virtual platform. The key take-away is that there
is not a best choice: it depends on research stage, on the research question, and on the

system scale.

5o

Chapter 2: Virtual platforms for heterogeneous parallel computer architectures

a6

Chapter 3

Making the point for
Space-Division Multiplexing for
GPPA

In this chapter, first of all I present the two main approaches to schedule the execution
of several applications that are offloaded on the accelerator by the host processor, ask-
ing to speedup their execution. Then I want to prove that Space-Division Multiplexing
is more suitable for a many-core environment with respect to Time-Division Multiplex-
ing because it enables resource sharing of the manycore fabric through partitioning.
Finally, I explore the impact of the size and the shape of spatial computation partitions

on a target benchmark.

Key novelty: experimental validation of the SDM approach for hardware resource

sharing in many-core programmable accelerators.

3.1 Time-Division Multiplexing vs. Space-Division

Multiplexing

When the host system wants to accelerate the execution of applications, an offload
procedure begins, enabling the code to be accelerated to be copied or moved to the
accelerator memory. When this phase is terminated the Fabric Controller {(or hyper-
visor) inside the accelerator, or again the host system, triggers the execution of the
application.

Moving now to a congested scenaric, where a lot of applications are requesting to
be accelerated, the common and most used way to overcome this situation is to use

a Time-Division Multiplexing strategy (TDM), that consists of giving access to the

57

Chapter 3: Making the point for Space-Division Multiplexing for GPPA

resources of the accelerator to just one application at a time, thus processing in a
sequential way all the requests. In this case, the lucky application that wins or that
is scheduled first can run but all the others are blocked, waiting for a free time slot to
use the resources.

Another approach is to share the resources between the different applications, thus
virtualizing the resources and enabling the Space- {or Spatial-) Division Multiplexing
(SDM). With this approach, applications can be run concurrently but of course they
cannot have all the platform available (in this case with the term "resources” | am
referring to the computational tiles of a many-core accelerator).

If the speedups due to increasing the number of computational resource were ideal,
TDM should be the most competitive approach for the many-core platform domain.
But, due to Amdahl’s Law and also due to the congestion on the network, from the
literature I can deduce that having a large amount of resources is not always reflected
into great execution speedups.

So this work moves from the fact that parallelism of application does not ideally
scale with the available resources, and probably it is better to have the amount of
resources that enabeles the speedup to be closer to ideal, thus not reserving the whole
accelerator. This can be exploited using an SDM approach, which means to reserve dif-
ferent partitions to different applications and to enable a concurrent execution to avoid
the waste of resources because of inefficient exploitation of the hardware parallelism.

To prove this, I show several experiments with real Image Processing benchmarks.

3.2 Experimental evaluation

In this section I first describe all of the experimental setup; then I present the obtained
results, first in terms of area and critical path, focusing on the critical path degradation
and area overhead, characterizing the cost of the offloading and partitioning of the
resources (managed by the Fabric Controller). Furthermore, | provide a comparison
for different L2 configurations, then considering several image-processing benchmark
runs when varying the number of computational resources dedicated to their execution
(thus comparing the speedups given by a different parallelism). Finally, I consider an

overall experiment to have a final comparison between SDM and TDM approach.

3.2.1 Experimental Setup

To collect the results shown in the subsections below, as already discussed in Chapter
2, [rely on both VirtualSoC [20], a SystemC-based cycle-accurate virtual platform
simulator, and on a virtual platform based on the gem5 simulation environment [17].
This latter option enables to simulate also the ARM64 processors and to speed up the
simulations of real benchmarks. The target architecture is the one already discussed

in this thesis, in this case configured with 8-9 computational clusters and with various

a8

3.2 BExperimental evaluation

far D3R programming
el

| Y [RSTR S S e p———
’-
F
STALL_ouT F
Fa L

WC D I

=

STALL_OUT STALL N

1
1
i
1
i
1
1
P
1
i
i
1
i
1
1
1
|

kL J

GLOBAL LINK GLOBAL LINK

o s e e e e e] e e

.Ha rdwirec Rzgisters
tfull rresh!

Figure 3.1: Compound switch of the GPPA

configurations of [;2 banks. To let the gem?5 simulator match with the requirements for
these experiments, [also make the L2 memory of the accelerator sub-system multi-bank
and distributed, relying always on the non-coherent crossbar for the communication
management, Purthermore I leverage on the implementation in Verilog code of the same
platform developed in SystemC to get results about area and critical path, relying on

a logic synthesis in a 40nm technology library performed with Synopsys tool.

3.2.2 Area and Critical Path

In this subsection I point out the comparison of effective HW usage as well as per-
formance metrics (e.g., parallelization scaling, performance loss due to NoC sharing),
considering the area as well as the critical-path of custom-tailored architectures for the
support of Time Sharing vs Resources Sharing. The logic synthesis performed in this
work hag been carried out by means of a low-power standard Vth-40nm technology
library. The target architecture considered for the SDM approach needs a physical
global network to let the packets overcome the barriers of the partition, if necessary,
In this case we are assuming global network has no VO but in other design we must
rely on two physical networks, one local and one global, both with 2 Vs to manage
different communication flows. The compound switch considered in this part of the
experimental section ls reported in Flgure 3. 1.

In the setup for this experiments, the switch supports two different networks:

» a Local Network, composed of two virtual channels (using the full switch repli-
cation approach), is used to serve local traffic within GPPA partitions:

a Virtual Channel 0 iz used for inter-cluster comrmunications and for read-

Jwrite requests to L2 memory banks;

o4

Chapter 3: Making the point for Space-Division Multiplexing for GPPA

» Virtual Channel 1 is used by L2 memory banks to provide responses to

memaory access requests;

w & Global Network is used to serve global network-wide communication traffic
while avoiding interference with intra-partition local traffic. This network is used
to program the L2 banks with the execution code for each cluster, and to feed
processing data to clusters. Since we currently envision all communication flows
on this network to be made up of write transactions (i.e., offload code is written
into the GPPA, while data is fetched by clusters by programming DMA transfers
through DMA devices which are external to the GPPA, and which will in turn
write into the GPPA), there are no request- response dependencies, hence virtual

channels are not required on this network to avoid message-dependent deadlock.

The top switch in Figure 3.1, associated to virtual channel 0, is provided with a round-
robin arbiter and supports an optimized version of OSRLite{Overlapped Static Re-
configuration}, to enable runtime reconfiguration of the routing function, and circuit
switching (circuit is established at runtime and enables a full bandwidth reservation).
The middle switch, associated to virtual channel 1, has the same functionality of the
VCO0 one except for the circuit switching support, not needed. We in fact currently
envision guaranteed throughput communication only for cluster-to-cluster communi-
cations (in the form of write transactions). The bottom switch is a baseline switch
used for global communication: it doesn’t need circuit switching, nor reconfiguration
support because its routing function is hardwired. It has actually separate links with
respect to the former two switches, thus building up the 2 network architecture.

Finally, routing reconfiguration bits are carried to the first network (for intra-cluster
communication) through a dual interconnect fabric. Note that the VC’s arbiter blocks
are characterized by enabling flit-level arbitration as opposed to internal switch arbiters
that only perform packet-level arbitration. This is a requirement of the multi-switch
approach to virtual channel implementation.

In order to evaluate the area complexity of each architecture (Time Sharing vs.
Resources Sharing), | accomplished a 4x4 mesh synthesis at 500 MHz for both solu-
tions. Results are reported in Figure 3.2 and are normalized with respect to the time
sharing architecture. The complexity gap between time sharing and resources sharing
is around 58%. The most area overhead contribution comes from the additional virtual
channel (~34%). A non-negligible contribution (~15%) results from OSRpy. and cir-
cuit switching logic. The dual-network results lightweight since it introduces an area
overhead of 6%. The remaining overhead (3%) comes from the wrappers (mux and
demux) and virtual channels arbiters, that are a little bit larger than the ones of the
time sharing architecture (mux 3x1 vs. mux 2x1 and arbiter 3x1 vs. arbiter 2x1).

In order to analyze the delay complexity, I performed a 4x4 mesh logic synthesis at
maximum performance for both the solutions. As a result, both platforms achieved a

similar maximum operating speed around 750 MHz. Indeed, the OSRy. reconfigura-

60

3.2 Experimental evaluation

1.8

wDual NoC
W Mux + Demux + Arbiter
16 W Local Network: VC_0
- w Local Network: VC_1 _
u Global Network: VC 0
u Global Network: VC_1
— 1.4
]
L
N 12
]
T
= 1
o
Q
Z 038
S
'
o 0.6
<
04 ——————
0.2 - T

Time Sharing Resources Sharing

Figure 3.2: Normalized area: comparison between Time and Resource Sharing archi-
tectures. SDM approach needs a physical global network to let the packets overcome
the barriers of the partition, if necessary. In this case we are assuming global network

has no VO

tion scheme was designed to avoid long critical-paths and preserve the baseline switch

performance timing,

3.2.3 Offload and Partitioning Cost Characterization

Here I describe the characterization of the offload procedure in terms of relative clock
cycle inflation w.r.t. the basic offload scheme where there is no bridge at all, but just

a locked driver that refuses multiple offload requests at the same time.

Duzl NoC Propagation
30007

| Sofware Overhead
W wirtuzl_ids_copy_8
 virtual_ids_copy_7
W virtual_ids_copy_&
W virtual_ids_copy_5

® virtual_ids_copy_4

® virtual_ids_copy_3
 virtual_ids_copy_2
B virtual_ids_copy_ 1
W Virtual 1D Gen

i
1500 m Unpackage L2 mdata

M Get L2 PTR

CYCLES

1000

500

3 : d 2 - ’ : - # clusters
1 2 3 a 5 6 7 8 {switches)

Figure 3.3: Offload costs chracterization increasing the number of cluster involved.

61

Chapter 3: Making the point for Space-Division Multiplexing for GPPA

The Figure 3.2 presents the costs regarding the full offload procedure. I perform
an evaluation of these costs increasing the number of clusters used by a partition.
Each bar corresponds to a single offload and it shows all the different components need
to properly setup and configure the platforms. The first step consists of the mdata
unpackaging in order to prepare it for the kernel execution. In fact the kernel expects
ag arguments a list of shared variables pointers while the offload task descriptor presents
a list of mdata. Thus, the FabricController {(FC), or hypervisor, creates a list of this
pointers reading all the mdata structures retrieving the corresponding pointers to the
shared variables. This phase cost is independent by the partition size and it takes
around 700 cycles (for only two shared variables!!! Bad!).

At this point the Fabric Controller (or local hypervisor) creates the proper virtual
accelerator setup and it generates the virtual IDs for all the cluster involved. This phase
is linear depended by the partition size and it grows up to 200 cycles for 8 clusters.
As soon as the accelerator information are generated the FC pushes this configuration
to each cluster TCDMs. This phase gets around 250 cycles for each transfer. The
plot presents this cost separately for each copy in each cluster needed. Finally the
FC setups the NoC and the plot presents this cost as two components: the software
cost for NoC reconfiguration API call and the Dual NoC Propagation. The latter one

presents a very low impact considering the whole scenario.

3.2.4 Application Benchmarking
Effects of Parallelism on Speedups

Here I am going to show for each application the level of supported parallelism de-
pendending just on how the code is written, thus evaluating if in the benchmark it
is predominant the portion of the code that can benefit from the improvement of the
resources of the system, or if it is the sequential part being the most preponderant, thus
nullifying the increased number of resources available for the execution. According to
the Amdahl’s law, indeed, the speedup a workload can gain increasing the number of
dedicated resources, thus parallelizing its execution, is as farther from the ideal as the
percentage of the parallelizable code is lower. To let the simulations show this, [need
a particular setup of the platform configured both te minimize the time to access to
the memories and to neglect multi-hop paths in the on-chip network, overlooking the
arbitration due the congestion on a link, too. Thus, I can monitor the ideal speedup
of the application, apart the contention at memory ports, entrusting just on an ideal
crossbar the communication between computational clusters and memory banks and
shortening the latencies to access to all the memory levels to only 1 ideal cycle. Figure
3.4 exhibits the results of the simulations for the applications considered, compared
to the ideal speedup represented by the dotted black line. As depicted in the graph,

there is one benchmark (ROD) that presents a speedup very close to the ideal case

62

3.2 Experimental evaluation

10

———EA FAST
° -
f— 5] connamsso { S LIETE
g e DetectlniScaleResize Distance
R U T Computeleypoints
7
oo Brief
o 3]
jou]
2 I
QI 5 e g g e it
Y. e
& o
g
3
P i
P
2 i
S
it
1 e
a
1 2 3 4 5] 7 kS 4

#usters

Figure 3.4: Speedups showed at increasing the number of computational clusters re-
served for the application under test, considering, as platform setup, an ideal crossbar
and all the memories access latency equal to 1 cycle.

and a set of four benchmarks with an almost ideal speedup especially for a low num-
bers of clusters and an acceptable degradation considering more aggressive parallelism.
Finally a batch of three benchmarks, FAST-Rosten all over each others, emphasizes
an evident degradation compared to the ideal case. Strengthened by these results, it
is evident that for most part of the evaluated benchmarks the approach pursued by
Time Division Multiplexing strategy, dedicating all the computational resources of the
accelerator to the execution of a single application with the most aggressive level of
parallelism, is not the best choice, because the speedup curve is targeted in a point
the farthest from the ideal speedup. On the contrary, targeting a configuration of the
partitions with less computational cluster allocated let the target move to a point in
the curve closer to the ideal case, furthermore enabling the parallel execution of other
applications at the same time because availability of part of the platform and thus

optimizing the platform’s resources usage.

Speedups at different L2 configuration

In this subsection I analyze several possible configuration of the L2 memory of the
many-core accelerator, evaluating what is the best case concerning the resources sharing

approach usage of the platform. In particular [compare the following configurations:

» Centralized [.2: this configuration refers to the case of a three L2 banks (one
per row of the mesh) relying on full interleaving between them. In case of fine

partitioning it is unfeasible reserving one bank per partition because after reserv-

63

Chapter 3: Making the point for Space-Division Multiplexing for GPPA

ing three partitions and having limited L2 banks means running out of available
banks, making part of the accelerator unusable. Where possible, i.e. in a special
cage of the partitions mapping when I consider three partitions of three clusters,
[also take into account a configuration that envisions one bank per partition,

being this not a limit because [am using all the resources.

w Distributed L2 with full interleaving: in this case I am referring to a distributed
multi-bank L2, spread in all the accelerator one bank per each NoC node and
with addresses interleaving (in particular cache-line interleaving). During the ex-
ecution of the benchmarks there is only a partitioning of computaticnal resources
{clusters) and the .2 memory is reachable from all the clusters through a global

networl.

w Partitioned distributed .2 with interleaving: | am considering the same config-
uration described in the previous point but in this case [add a partitioning of
the memory, too; during the execution of an application all the code needed is
locally reachable because it is loaded in banks inside the partition. Furthermore
the addresses interleaving is limited to the banks inside the partition bound-
aries, thus guaranteeing total isolation of traffic running in a partition, apart the

communications with DRAM.

Figure 3.5 shows the results of the different configurations considering the execution
of each benchmark for partitions of one cluster (a) and three clusters (b). Finally, I
also provide an average taking into account all the benchmarks speedups. We com-
pared the different configuration described above normalizing the results to the ideal
benchmark execution. The configuration that presents a multi-bank L2, distributed on
all the accelerator nodes with the possibility of partitioning it in the same way of the
computational resources also the memories, thus guaranteeing isolation of the on-going
traffic inside the partition during the execution, is the best choice. This configuration
is possible because of our hardware support allows the isolation of the traffic due to
the partitioning of both clusters and memory banks, improving the results of baseline
configurations and thus getting close to the ideal speedups of the benchmark. The
distributed L2 with full interleaving configuration presents worse results because it is
affected by the perturbation of the tratfic from other partitions, thus nullifying the
benefits of interleaving approach, and because of NUMA effects to reach the memory
banks distributed over all the accelerator. The worst configuration is represented by
the centralized L2: in this case, indeed, the performance is still decreased because of
NUMA effects, depending on the latency to access different banks, and also because the
perturbation due to the traffic from other partitions plays an inauspicious effect. Fur-
thermore there is more congestion to access the memories because they are centralized.
In figure 3.5(b), I consider also the improvement provided by isolating the L2 banks

inside the partition, presenting this approach as local interleaving. As shown, there

64

3.2 BExperimental evaluation

1 Cluster per Partition
id S UE YU UU Y B IS BY BY U Y B IS BY UL U P SIS S, S0, YA U Y U S ULV, 1LY I 10 0,100 U SIS0 R S U ISP U VS B ISP UL L P Y B BL IR US pU s e 0 b

fHlideal Benchimark Nl - L2 Distributed - Local Interleaving

L omneC - L2 Distritted - Full el esving BNl - L2 Centratized - Full interleaving

i ideal Benchrmark [NoC - L2 Distributed - Local intevisaving
1,20 it ENOC - L2 Distributed - Full Interleaving B NoC- L2 Contralized - Local interleaving
@Ml - L2 Centralized - Full interleaving

I

s
24

5t

S
e,

b
ot

Sa

(b)

Figure 3.5: Applications speedups normalized to ideal benchmark execution to evaluate
different L2 configurations: {a) 1 cluster per partition, (b) 3 clusters per partition,

is a gignificative improvement of performance because it is clear that the perturbation
coming from other applications iz the most significant for the lowering it. Focusing on
the average results, considering 1 cluster per partition, our experiments show that cen-
tralized approach causes a decreasing speedups of 51% compared with the ideal case.
[niroducing a full interleaving approach and a distributed L2 on all the accelerator
nodes provides a soft improvement making the slowdowns reaching the 41%, hecause
again the perturbation on the NoC link and the congestion to access memory banks is
high. Finally, distributed approach with local interleaving, enabled by our hardware
support, let the slowdowns decrease to 4%, and the performance get close to the ideal

case, making using isolated partitions the winning strategy. The trends are confirmed

65

Chapter 3: Making the point for Space-Division Multiplexing for GPPA

e
2.8
- PO i
mwww«awm‘”“"“””w
m»w”””a
L,
s e e A AN e Dl i
a8 ot
T
e
. o
9 ' mwwww«wv«wﬁ”““”www
At e S e
Yo e e et g oot G
5 13 ' o i e VMMjﬁiﬁﬁw:mmwx
] St e
k5
~d
oo
£ oo
e
o
AT
s i
- 00 5 12 Can
s 00 3 173 0
&4 o NG+ 12 Distibuted + Full intedaading + No Perturbation
anmnnn W0+ L2 Centialized 4 Full intg niz & NoPaturbation
1 2 3 4 5 & 7 # G

Clusters

Figure 3.6: Deviation normalized to the ideal Fast-Rosten performance for several 1.2
configurations.

also considering the experiments with 3 clusters per partition. In this case, I add in
purple also the configuration of centralized L2 but isclated inside the partition. Again,
isolating the memory banks from the perturbation of other partition let the speedups
improve up to being better than the distributed approach with full interleaving.

[t is interesting to analize deeply the comparison between a distributed L2 with
full interleaving vs. centralized L2 with izolation. Figure 2.7 depicts the comparison
of all the possible L2 configurations just considering Fast-Rosten (the trends are the
same also for the other benchmarks). The percentage of the deviation from the ideal
benchmark is lower considering the centralized and isolated approach for a fine-grained
partitioning, being for the case of 1 cluster per partition the same of the best approach
that is proven to be the distributed with local interleaving one. Increasing the number
of clusters the graph shows a breakeven point that is from 3 and 4 clusters, meaning
that over 3 clusters the benefits of having a distributed L2 memory with full interleaving

zain the upper hand.

3.2.5 Overall scenario: does SDM make sense?

IFinally I consider a batch of benchmarks, in particular considering nine instances of
the eight benchmarks (overall having a batch of 72 applications).

Figure 4.7 shows the execution time of all the batch considering a SDM approach
with different configurations of the L2 memory , normalized to the TDM approach.
While in this latter [am reserving all the accelerator resource to the applications,

running them sequentially, in the former approach I am considering an aggressive

Jo
L

3.3 Towards a resource virtualization environment: partition shapes make the
difference

1,6
ETDM
B SDM-L2Distributed-Local Interleaving-BestFit
1,4 # SDM-L2Distributed-Local Interleaving-Randem
B SMD-L2 Distributed-Full Inter leaving-BestFit
SMD-L2 Distributed-Full Interleaving-Random
G 1,2 B SDM-L2Centralized-Full Interleaving-BestFit
§ % SDM-L2Centralized-Full Interleaving-Random
©
a
© 1 7
S %
g v
x
=T 08 B 7 o
- ’ # y
o /
e 7 7 7
3E 06 f ’*’
]
x O / /
- _ . _
& 0,4
fa 4 / /
= / /
£ . . .
Q
0,2 /
= . /
i . .
0 t]

Figure 3.7: TDM vs SDM-Random vs SDM-BestFit with different L2 configurations.

virtualization relying on fine-grained partitioning that means having one cluster per
partition.

The graph points out that with the best optimization of the L2 memory
(distributed with local interleaving) I can reach up to 35% of speedup with
SDM approach considering the best-fit scheduling of the application execution and
an average of 19% considering a random scheduling.

Figure 3.8 represents the gaussian distribution of the results obtained with 100
simulations of the random scheduling, highlighting that the great part of the samples
are on the left respect to the average value shown in the graph and so that the average
shown is a plausible value, strengthening the assumption proposed in this chapter that

is that SDM performs better than TDM in many-core environments.

3.3 Towards a resource virtualization environment:

partition shapes make the difference

Here I study how the size and the shape of the partitions can affect the speedups of
the benchmarks, relying on VirtualSoC simulation environment and considering just a
parallel vesrion of Fast-Rosten [118] as monitored benchmark, configuring and modify-
ing the OpenMP Runtime to enable the parallelism of the benchmark and mapping in
the proper way the cores that are part of the team involved in the computation, being
inside the considered partition.

Furthermore, to automate the LBDR bits generation, needed to setup new parti-

tions and the routing restrictions, I create a script that can generate the list of all the

67

Chapter 3: Making the point for Space-Division Multiplexing for GPPA

Bandow Results Distribution

p=24B07 4 ¢r=1851.7
5,000 r.
¥, %
‘»“x’
N
£
(L0000 ;;g X’ﬁg
FRES : 3‘%‘
s Y
4 E
%
w‘f x“wv
",
i iy
o g T e
isei R 22861 24863 PELER 21

Applcations Batch Tote! Execution Thne [oyeiag]
Figure 3.8 Gaussian Distribution of the random results.

FAST ALGORITHM cycles

1600 I ‘ I

1400 —

1200

1000

800

cycles (10°3)

600

400 —

200 —

cores

Iigure 3.9: Execution times of FAST benchmark considering an increasing parallelism
and dedicated computational resources.

needed bits just configuring the partition I want to create.

Figure 3.9 shows the execution time of the benchmark increasing ithe number of
computational resources dedicated. The behaviour is the one expected: the execution
time decreases increasing the parallelism.

However, as deeply studied in the second section of this chapter and shown in
IFigure 2.10, the speedups are not ideal and become worse increasing the number of
clusters involved due to Amdahl’s Law and to the overhead of communication {data
and instruction are potentially in parts of the memory that are accessible by all the
other cores and so congestion can occur).

Figure 4. 11 represents instead a zoom on partitions of size 4, 5 and 6, reporting

6%

3.3 Towards a resource virtualization environment: partition shapes make the
difference

several shapes named as the alphabetical letter that match with their footprint. It
is surprising, as shown, that partitions with less cores but with a more suited shape
present better results in terms of execution cycles to run to the end the benchmark.

This means that the shape of the partition makes the difference and it is not

FAST ALGORITHM speedup

—&— simulation
—5— Ideal

speedup %

cores

Figure 3.10: Speedups of FAST benchmark considering an increasing parallelism and
dedicated computational resources: the values reported are the average of results for
partition that can support more than one shape.

FAST ALGORITHM cycles
560 T T T T T T T T T T

TIONNEE [} 1

520 B | [7

500 B | 1 7

480 B | 1 7

cycles (10°3)

460

440

420

400 =
4 4L 4T 4Q 5L 5V 55 BY 5BF 65X 5G 6L 6G B8R

cores

Figure 3.11: Execution times of FAST benchmark considering an increasing parallelism
and dedicated computational resources: zoom on partitions of 4-5-6 clusters.

69

Chapter 3: Making the point for Space-Division Multiplexing for GPPA

a trivial choice for the hypervisor that is responsible for the virtualization
of the many-core system, because it determines how the communications flows are
located in the network with the possibility to have more congestion and thus slowing-

down the executicon of the benchmarks.

3.4 Summary

In this chapter I evaluate the SDM approach to schedule several applications that
require to be accelerated on the GPPA, proving that resource sharing through SDM
approach, enabling the concurrent execution of several applications at the same time,
has more benefits than reserving all the platform in time slots, as the traditional TDM
strategies do. This is due to the fact that the parallelism of the application does
not ideally scale with the increasing number of reserved resources, therefore TDM is
ineflicient because vou keep computational blocks busy without getting the expected
improvements in speedups. Finally, I prove also that size and shape of partitions to
be set up are not trivial choices and can have a significant impact over the execution

speedups of the benchmarks.

70

Chapter 4

How to Support SDM

In this chapter, first of all, I introduce software support for the many-core GPPA de-
vice, mentioning also the OpenMP Runtime that is used to parallelize the execution
of the applications in the manycore fabric (thus running the experiments in Chapter
3), configuring the runtime environment to different teams of cores, this way matching
also the size and shapes of the partitions created on the accelerator. Then I focus on
hardware issues, showing several scenarios enabled by the SDM and the related pos-
sible issues that can be solved by augmenting the hardware with supporting features.

Finally, I pinpoint a strategy to overcome these problems..

Key novelty: contribution of new design methods for SDM-enabled GPPA archi-

tectures.

4.1 Software support for SDM in a virtualized en-

vironment

Here I describe some of the software features to be enabled to exploit the potential of

partitioned many-core accelerators, and used in this thesis.

4.1.1 Operating System and Hypervisor

In this section, the Operating System support that allows the sharing of a many-core
accelerator is described. This infrastructure has been developed for KVM based vir-
tualization systems, but can be easily extended for other hypervisors (e.g. XEN).
In KVM I/0 is completely emulated and not handled by the hypervisor itself, but
is rather demanded to QEMU [13] which is the standard KVM machine emulator.
Based on the last assumption, the introduction of a new virtualized devices does not
involve any modification to KVM. Our main idea is to share the accelerator between

different virtual machines in a space-wise fashion, with each virtual machine having an

71

Chapter 4: How to Support SDM

L N J { Lol J L “__J Guest Memory

_: 1. Copy to Linux Shared Memory
1 done by accelerator virtual device

L2 Copy to Contiguous Physical

1

1

--- A Memory done by Virtuzl !
| Machines bridge .

' [_ | Contiguous
| Binary J L -‘L _ J Physical Memory

Figure 4.1: Memory copies to allow data sharing

isolated view of the accelerator with respect to the others. This is to allow offloaded
kernels coming from different virtual machines to run concurrently onto the accelera-
tor. Each Virtual Machine {(executed by a separate QEMU process) will have the idea
of a dedicated accelerator, thanks to a virtual device(vACC') emulating the behavior
of the accelerator. The virtual device is an extension of the architecture modeled by
QEMU and is accessible by the guest operating system as a standard character device
(/dev/v_ace). Guests are also equipped with a Linux device driver (acc_vdriver) com-
municating with the virtual Device. From the host system point of view the accelerator
is a standard Linux device, appearing in the system as a character device (/dev/ace).
The host has a complete view of the accelerator and is aware of the availability of
all its resources(e.g. number of free clusters, memory). To handle concurrent access
requests coming from different virtual machines, I implemented a bridge process (A CC
Bridge) application which, running in the user-space of the Host system, is in charge
of collecting all requests and forwarding them to the real Accelerator device through a
Linux device driver {acadriver).

The main issue tackled in this framework is data sharing between a virtual machine
and the accelerator. When offloading a kernel, the binary to be executed and any
possible shared data buffer have to be visible to the accelerator. One assumption
is that the accelerator is not able to deal with virtual memory references, thus only
physical contiguous memory can be used to share data. During the boot of the host
system a subset of the systemn memory (256 MB) is reserved, which will be addressed
physically from both host and accelerator. Each time data sharing is needed, data is
copied first from the Guest Virtual Memory space to the Host virtual memory space
(Figure 4.1) and finally into the contiguous shared memory segment.

The whole framework is composed by the following layers (the description follows
Figure 4.2):

1. Acceleretor’s virtual device driver: The Accelerator Virtual driver is located at

the very top of the virtualization stack presented in this work. It is used to

72

4.1 Boftware support for 3DM 1n 2 virtuslized environment

| II,-" . -:-\ T |‘r" ; : \1 y
arp l’-u-_ Aﬂ.l._ .-"': I "'\-_I ﬁu ;u_ 3 _:_m
-— L :_‘.-) i
Karmal | rpnawdriver 4 pRawsdrer Karms|
! || [Resources ! GUEST |
. - allocation/ '}‘f !
----- -___- l‘MInaEE'rl'n!th s R
Al GPPA
b i
'-,\ DIERMLE - H¥TA -"‘J I__ QEMILY - KW -/_,l
Kernel | Ky] gRpadriver
|. llll
A host

.

-—

Figure 4 2: Many-Core Accelerator sharing infrastructure

give each guest Operating System the illusion of a dedicated Accelerator device.
Applhieations communicate with the driver using the Limux 100t] syatem call. The
interface implemented via 1octl defines the following services: Tosk Offfoad, Wait
Tosk Complefion. The firat 13 used to offload a task to the accelerator, and takes
as parameter the pointer to a task offload deseriptor. The second service 12 used

by applieations to wait for the completion of o speafie task

2. Aseslerator smedafion dewios {ﬂACG): the ermlation deviee = 3 software mod-

ule which 15 developed 25 an extension of QEMIJ. Onee designed each wirtual
device 13 attached to the bus of the platform modeled by QEMU and mapped
at 2 user-defined address range. Any 1foread\1fowrite call made by applications
running on a guest operating aystem, and falling within the address ranges where
the custom devices are mapped, 13 caught by QEMU and redirected towards
the virtual device. Bach vACC device 13 interfaced with the ACC Endee using
POBRIX queues, which are an [nter Process Communieation mechanism provided
by Linwx-bazed systems. In particulsr, | define o single FOBIE queue for mes-
sages going from guests to the ACC bridge, while o POSIE queus per wirtual
machine for messages coming back from the ACC Bridee, When the device 1=
imitialized, 1t first creates itz private message queue, whose unigque reference n
the system iz compesed by the string " \queue” coneatenated with the PID of
the QEMU process. The wirtusl device 13 then sttached to the shared PORIK
queue. ¥ henever a request from o guest srrves to the vACO, 1t 13 immediately
forwarded to the ACT Erdee using the shared PORIE queue. Eefore actually
forwarding the request, the first copy takes place (Figure 4 1), For comvenience

data 13 copied from the Guest virtual memory to o Linux Shared Memory. [use

. ACT Bridge: The ACC Endee 13 the heart of the proposed virtualization infras-

tructure. In thiz module all decimions recarding the sharing of the Accelerator
are taken. This module 13 2 server process compesed by two FORBIE threads,

T3

Chapter 4: How to Support SDM

in charge of forwarding requests to the real Accelerator and providing responses
to the various Guests, respectively. At startup this process creates the shared
POSIX message queue used by all guests to push offload requests to the GPPA.
This queue has a unique name inside the system which is known to all guests.
The bridge accepts three possible commands from Virtual Machines: REGIS-
TER_VM, OFFLOAD_TASK, TASK_END. The first one is used to register a
new virtual machine running on the system. The second is used to actually re-
quest the offload of a task. The last command is sent by virtual machine waiting

for the completion of a specific offloaded task.

4. Host accelerator driver (acc_driver): This is the lowest level of our framework.

The accelerator host driver is in charge of communicating with the real acceler-
ator, receiving offload requests from the ACC Bridge. The request comes into
the form of a pointer into the contiguous shared memory to the pointer of a
task offload descriptor. The pointer is pushed into the tasks queue of the fabric

controller.

4.1.2 OpenMP Runtime for cluster virtualization and parallel

execution

Cluster-based architectures are increasingly being adopted to design embedded many-
cores. These platforms can deliver very high peak performance within a contained
power envelope, provided that programmers can make effective use the available parallel
cores. This is becoming an extremely diticult task, as embedded applications are
growing in complexity and exhibit irregular and dynamic parallelism. The OpenMP
tasking extensions represent a powerful abstraction to capture this form of parallelism.

In this thesis [rely on a optimized runtime environment [23] supporting the OpenMP
tasking model on an embedded shared-memory cluster.

OpenMP 3.0 introduces a task-centric model of execution. The new "task” con-
struct can be used to dynamically generate units of parallel work that can be executed
by every thread in a parallel team. When a thread encounters the task construct, it pre-
pares a task descriptor consisting of the code to be executed, plus a data environment
inherited from the enclosing structured block.

"shared” data items point to the variables with the same name in the enclosing
region. New storage is created for "private” and "firstprivate” data items, and the
latter are initialized with the value of the original variables at the moment of task
creation. The execution of the task can be immediate or deferred until later by inserting
the descriptor in a work queue from which any thread in the team can extract it. This
decision can be taken at runtime depending on resource availability and/or on the
scheduling policy implemented (e.g., breadth-first, work-first). However, a programmer

can enforce a particular task to be immediately executed by using the if clause. When

74

4.1 Software support for SDM in a virtualized environment

#pragma omp [l TASK SCHEDULING #pragma omp #pragma omp
task POINT task if (FALSE) taskwait

Figure 4.3: Design of tasking support.

the conditional expression evaluates to false the encountering thread suspends the

current task region and switches to the new task.

On termination it resumes the previous task. Specifications also enable work-unit
based synchronization. The "taskwait” directive forces the current thread to wait for
the completion of every tasks generated from the current task region. Task scheduling
points (TSP) specify places in a program where the encountering thread may suspend
execution of the current task and start execution of a new task or resume a previously
suspended task.

Figure 4.3 shows the layered approach to designing the primitives for the tasking
constructs. These constructs are depicted in the top layer blocks (in black). To manage
OpenMP tasks, the optimizations proposed rely on a main work queue where units of
work can be pushed to and popped from (bottom layer block). The gap between
OpenMP directives and the work queue is bridged by an intermediate runtime layer
(gray blocks), which operates on the queue through a set of basic primitives (white
blocks) to implement the semantics of the tasking constructs.

This design relies on a centralized queue with breadth-first, LIFO scheduling. Tasks
are tracked through descriptors which identify their associated task regions and which
are stored in the work queue. The two basic operations on the queue are task insertion
and extraction. Inserting a task has two effects: i) creating a new descriptor for it, and
ii) registering it as a “child” of the executing task (its "parent”).

Let me consider the simple example of the task construct in the code snippet of
Figure 4.4. The parallel directive creates a team of worker threads, then only one of
them executes the single block. This thread acts as a work producer, since it is the
only one encountering the task construct. The control flow for the rest of the threads

falls through the parallel region to the implied barrier at its end.

The most important part of the implementation of the tasking execution model is

Task Scheduling Points (T'SP). Parallel threads are allowed to switch from one task to

75

Chapter 4: How to Support SDM

;

Usage of task construct while (1)
SCHEDULING
#pragma omp parallel LOOP l T

*
.
L]
.
.
N | TASK COUNT > MAX " .
|| UNDEFERRED ? $nci TASK COUNTI=0 ? |
— #pragma cmp single b |
Y { Y .
T recsTer Task | for (1 - 1...W) { TRYFETCH TASK .
REGISTER TASK = n
| ___#pragma omp task if() -
: .
% EXEC ** WORK (i) ~ | ¥ EXEC ** | : |
>
e |) L yorer e |
NOTIFY END -
—_— Y /* Implicit bar */ —H All children are

running

CREATE TASK

UNLOCK
(barrier lock;

7:

EEENIERANEEEAARENERRRA R Rt

ssssssswEmsEEEEEEmEEEEnEmmmnn®

(oo

]

R A RN AN,
thssamsfssnssnssannurnnnnnnnnnnnnhud

— v ——
parentin taskwait 2=

: UNLOCK
N aasaessapees askwait loc

Figure 4.4: Design of task scheduling loop.

n-l--r--n-tng_wr--n--l----n-’

®
.

another:
= at task constructs;
» at implicit and explicit barriers;
» at the end of the current task;
» at taskwait construct.

In this thesis, | use the OpenMP runtime environment just briefly described, and
setting the composition of the teams let me manage to run several applications with

different levels of parallelism.

4.2 Hardware support for SDM in a virtualized en-

vironment

Space-Division Multiplexing is a scheduling approach for the execution of the appli-
cations, that need to be accelerated, that enables virtualization of the resources and
resources sharing. The usage requirements, that means having a lot of applications
that to the limit can run concurrently on the same platform, makes the environment
highly dynamic.

As Figure 1.5 shows, enabling effective virtualization implies:
= some form of partitioning;

= isolation for protection;

» partition scheduling;

» partition reshaping;

76

4.2 Hardware suppert for SDM in a virtualized environment

RESERVED

Figure 4.5: Highly dynamic environment.

s avoiding faulty links or switches
s powering-off unused or overheated regions
» setting up or tearing down of reserved paths {(hard QoS)

In this scenario, the iselation property is a fundamental requirement: the traffic
generated by different applications can collide in the NoC of the GPPA (as shown in
Figure 4.0} as the NoC paths are shared between nodes assigned to different applica-
tions {a} but even for smart allocation schemes (b). Smart allocation is not encugh:

there iz the need of true partitioning with partition isolation.

Mliwed fraffic betwien Oand 1

© Application

Apgpheation U

C Apghastion 1

Application 2 Appplieation 1

Apehicstion 3

() (b)

Figure 4.6: Viclations of the isclation property.

~-J
-

Chapter 4: How to Support SDM

Iﬁ._“j;*_{_b _{o

10 11
& . &7 .
12 123 14 15
Application 0 Application 1

Figure 4.7: Partitioning support through connectivity bits.

A basic partitioning support is setting connectivity bits to zero at partition bound-
aries prevents messages from escaping from their partition (Figure 4.7): this solution
has side benefits like having a complexity scaling with switch radix and not with net-
work size, no modifications of the routing algorithm and no additional provisioning to
guarantee deadlock freedom are required (as long as routing bits are not touched, the

routing algorithm is not affected!), and finally no virtual channel are needed (yet).

The problem with this basic approach is that not all the partition shapes are fea-
sible. This is due to the fact that there is a mismatch between partition shapes and
the underlying routing algorithm and in fact another routing algorithm works for the
same partition shapes! There are two possible solutions: i) setting up only those par-
tition shapes that are legal for the chosen routing algorithm; ii) adapting the routing

algorithms to the partition shapes.

They don’t need Simple compatibility check needed!
compatibility checks Check for routing restriction at the intersection switch
with minimal routing of the sub-rectangles of the partition:

Figure 4.8: Mapping Restrictions to avoid unsafe partitions.

78

4.2 Hardware support for SDM in a virtualized environment

The first solution relies on the fact that the hypervisor will avoid incompatible
mappings with a specified global routing algorithm, like defining predefined partition
shapes (as depicts in Figure 4.8).

Another disadvantage arises with this solution: in fact this approach may reject
allocation requests in heavily loaded scenarios, although enough free resources are
available.

Considering the second solution, it relies on the fact that the hypervisor will avoid
the rejection of an incompatible mapping request by adapting the underlying routing
algorithm. (Figure 4.9). Special care should be devoted to this scenario in particular
that previously compatible running partitions may become incompatible, deadlock may
arise as an effect of the temporary coexistence of two routing functions and furthermore
runtime reconfiguration procedure may induce performance perturbations in running
partitions.

So finally the solutions to this problem are mainly two:

s having Global routing without VCs, that means tha tthe global traffic and
the intra-partition traffic must follow the same routing algorithm that does not

change, avoiding deadlock

s relying on Per-partition routing with VCs, where Different algorithms are im-
plemented in each partition, locally deadlock-free but globally not: per-partition
routing algorithms are unrelated. However global traffic support is not straight-

forward any more

In the latter solution two virtual channels are needed to separate local and global
traffic to avoid deadlock and each virtual channel has its own routing algorithm(s),
that means from the LBDR viewpoint that routing bits need to be duplicated as well,
thus leading to a rough 2x increase in complexity of the routing algorithm!

As already said, a dynamic runtime environment means that runtime modifications

of the routing algorithm may be needed in order to enable/maximize/adapt/prolong

&~

|12 —f 13 H

Application 0 Application 1 - Application 0 ' Application 1

L ! I— |

Figure 4.9: Routing algerithm adaptation: now the d-shape partition in grey can be
allocated to Application 2!.

79

Chapter 4: How to Support SDM

utilization of GPPA resources and so | need to change routing function also with
background traffic running., thus enabling a dynamic QoS , lifetime testing and fine-
grained platform control.

This flexible partitioning and resource management requires a control tower in
software (hypervisor) but also a command execution support in hardware.

The proper course of action following the hypervisor commands is taken
by the on-chip network. So the NoC becomes the system integration and
control framework, thus he feasibility of flexible partitioning/resources man-
agement concept depends mainly on the runtime reconfiguration capability
of the NoC routing function!

All the challenges about this latter will be tackled in the next chapters of this thesis.

4.3 Summary

In this chapter I intreduced the sw and hw support to SDM approach. In particular,
focusing on the hw, the virtualization of the resources, basis of the approach, requires
to NoC the runtime reconfiguration capability, allowing to efficiently face several open
issues of dynamic environments, as providing QoS, aveiding fragmentation among por-
tions with different routing functions and safely enabling the reshap. The runtime
reconfiguration capability of the NoC is the challenge that will be addressed in next
chapters (Chapter 5 and 6) and stays at the core of this thesis.

80

Chapter 5

Runtime reconfiguration of the

NoC routing function

In order to cope with an increased level of resource contention and dynamic appli-
cation behaviour, the runtime reconfiguration of the routing function of an on-chip
interconnection network is a desirable feature for multi-core hardware platforms in the
embedded computing domain. The most intuitive approach consists of draining the
network from ongoing packets before reconfiguring its routing tables, thus preventing
the occurrence of deadlock from the ground up. The impact on application performance
is however unacceptable. On the other hand, truly dynamic approaches are too much
of an overhead for an on-chip setting. Recently, the overlapped static reconfiguration
{OSR) method was proven to be capable of routing reconfiguration in the presence of
background traffic with only a mild impact on the resource budget.

This chapter finds that this method is still far from materializing its potentials
in terms of reconfiguration performance (both impact on background traffic, which is
still there to some extent, and duration of the reconfiguration transient). Therefore,
it proposes a set of optimization methods for OSR spanning the trade-off between
performance improvements and implementation cost. To the limit, fully transparent

reconfiguration is delivered.

Key novelty: design methods and associated circuit technologies for runtime recon-

figuration of the NoC routing function, optimizing the baseline OSRy. mechanism.

5.1 Motivation and related works

Today, multi- and many-core architectures are gaining momentum as a potential source
of hardware acceleration for many different algorithms[92], especially in the embedded

computing domain[95]. At the same time, modern embedded systems integrate more

81

Chapter 5: Runtime reconfiguration of the NoC routing function

and more complex functionalities, requiring the concurrent execution of several applica-
tions onto the same hardware platform, possibly with heterogeneous and time-varying
performance/reliability /power requirements. The recent trend for embedded system
virtualization is finally strengthening the need for an optimized usage of parallel hard-

ware resources in a contention-sensitive scenario.

Partitioning of array fabrics of homogeneous processor cores and isclation of derived
partitions are gaining momentum as means of pursuing the integration of functionality
from separate users/devices onto NoC-based many-core processors, while meeting their
potentially heterogeneous requirements. Following this trend, the traditional time and
space partitioning concept is being extended to parallel hardware platforms to overcome
the challenge of using shared (vet modular) resources in applications that are executed
concurrently. However, a static partitioning scheme cannot keep up with the increased
levels of adaptivity of modern embedded systems, therefore flexible partitioning should
be the target. In practice, partitions should be set up or tore down with few or no
restrictions, and their size and shape potentially changed at runtime[66]. Whether such
a usage paradigm will be feasible or not depends to a large extent on the capability of
reconfiguring at runtime the routing function of the on-chip network (NoC), serving as

the global communication fabric ag well as the system integration framework.

Techniques for runtime reconfiguration of the routing function have been investi-
gated in the off-chip networking domain, however their application to an on-chip setting
is still in the early stage. These approaches are either non-reconfigurable fault-tolerant
routing strategies, which tolerate a limited number of faults [34, 58, 60, 67], or recon-
figurable routing mechanisms that allow unlimited changes to the network. I focus on
schemes of the second category. Static reconfiguration methods simplify the problem
at the cost of large performance penalties. They in fact consist of draining the network
from ongoing packets, modifying routing tables to configure the new routing paths,
and finally resuming traffic injection [16, 120]. This way, deadlock cannot occur during
the reconfiguration transient, when packets of the old and of the new routing function
could otherwise co-exist. On the contrary, dynamic reconfiguration techniques succeed
in updating routing tables without stopping user traflic, but typically result into unac-
ceptable implementation overheads for an on-chip setting 24, 90, 108, 41, 91, 8, 2, 89].
Although runtime performance is more likely to be preserved, such approaches end
up materializing architectures with lower operating speeds {or higher latencies) by

construction.

An intensive regearch effort is currently underway in an attempt to find a suitable
design point for chip implementations, including Vicis[48], Immunet[112], Ariadne[4]
and other reconfigurable routing frameworks[46, 143, 50]. With respect to these works,
the recent adaptation of the Overlapped Static Reconfiguration (OSR) [89) method-
ology to the tight resource budgets of embedded systems provided an appealing trade-

off between reconfiguration performance and implementation complexity[128]. OSR.

82

5.2 Inspiration

relies on the principle that if packets with the old routing function are prevented from
following packets using the new one, deadlock cannot occur. Enforcing this ordering
mechanism is possible even without draining the network from ongeing packets, by
propagating a separation token between old and new packets throughout the network.
Notwithstanding that, several performance inefficiencies still affect the OSR mecha-
nism, which can be fundamentally identified as the temporary suspension of tratfic
injection during the reconfiguration transient, the packet blocking behind the self-
propagating epoch separation boundary, as well as the network-wide nature of each
reconfiguration event.

This work moves from the consideration that although the work in [128] has largely
cut down on the implementation cost of OSR, thus bringing it within reach of embedded
systems, the mechanism is still far from materializing its potentials in terms of recon-
figuration performance. In practice, I aim at minimizing the performance penalties of
ongoing communication flows while a reconfiguration event takes place. With this re-
spect, we propose techniques spanning a trade-off between the performance
optimization they achieve and their implementation cost. To the limit, 1
prove the feasibility of a totally transparent reconfiguration process from
the network performance viewpoint. At the same time, [aim at speeding up the
reconfiguration transient itself by making it local to the partition concerned with the
modification of its routing function, while leaving the remaining part of the network
unaffected. While in principle simple, this optimization requires careful engineering of

switching hardware to avoid critical races and/or inconsistent states.

5.2 Inspiration

The new mobile usage models that are coming about require the execution of multiple
use cases on the same device while optimizing resource consumption for each of them.
On the other hand, the hardware and software design convergence in todays complex
embedded systems call for an upgrade of architecture building blocks in the direction
of runtime reconfigurability and adaptivity. As a result, applications should be able
to frequently reconfigure the underlying hardware platform on-the-fly and in a cost-
effective way, thus selecting the most convenient operating point that suits their needs
and allows an efficient use of system resources.

Modern multi-core integrated systems achieve scalable computation horse-power
and power efficiency by integrating a large number of processing cores on the same
silicon die. This trend is unmistakable since current products already include tens and
even hundreds of processing cores, such as the Tilera multicore processor [32]. In this
context, on-chip interconnection networks (networks-on-chip, NoCs) are typically used
to provide communication parallelism and the reference integration infrastructure for

the whole system.

83

Chapter 5: Runtime reconfiguration of the NoC routing function

i

=]
NN ua -85
(o= e B o W S o R R

(a) Configuration A. (b) Configuration B.

Figure 5.1: Two NoC configurations where the routing algorithm needs to be adapted.

To address the new functionalities, the textbfNoC must be enriched with an efficient
reconfiguration process which enables the smooth and transparent transition between
system configurations. For instance, Figure 5.1 shows two different configurations of a
multicore system over time. In the first one (configuration A) different applications are
mapped to the NoC nodes and execute concurrently, while other resources are powered
down. Later, the resource manager may trigger a chip reconfiguration to power on
unused resources and thus activate a new application (configuration B).

The transition between configurations needs a careful design of the NoC routing
algorithm, which establishes the paths for every packet in the network. At each config-
uration a different routing algorithm is needed. In both cases, the algorithm must be
deadlock-free {should not introduce cycles in its channel dependency graph). However,
in the transition between configurations, both algorithms can induce extra dependen-
cies that lead to deadlock.

Therefore, in order to migrate from one configuration to the other, one possible
approach is to drain the network, then changing the routing algorithm to the new one
and finally resuming traffic injection with the new algorithm. This is the case of the
so called traditional static reconfiguration (TSR). In this case system performance is
likely to be heavily impacted by the reconfiguration process due to the temporarily
low resource utilization. Alternatively, the network can be dynamically reconfigured,
in the sense that traffic is not stopped during the reconfiguration process, but an effort
is needed to avoid deadlock situations. This is typically achieved by devoting extra
resources to the network. I refer to this case as the dynamic reconfiguration.

In this chapter [advance state-of-the-art in reconfiguration frameworks for NoC-
based systems. However, instead of designing a brand new reconfigura-tion mechanism,
I recognize the large amount of bibliography and proposals made for reconfiguration
mechanisms in high-performance off-chip networks. In this sense, I pick the approach

that better suits the NoC domain and the tight resource budgets of the on-chip envi-

84

5.3 OSR: baseline mechanism

ronment.

The Ouerlapping Static Reconfiguration process (OSR) in [89] enables a transparent
system reconfiguration process. Furthermore, to cope with the on-chip resource bud-
get | present also OSRp. [128] by which it is possible to reconfigure a whole 64-node
network in a few hundreds of cycles, enabling the entire and transparent transition be-
tween any pair of independent and unrelated configurations. Moreover, this is achieved
with no impact on network latency and with no impact on switch delay. The reconfig-
uration performance of OSSRy makes it the enabling tool for planned reconfigurations
in multicore systems.

In this thesis I find that OSSR, is still far from materializing its potentials in terms
of reconfiguration performance, so [propose a set of optimizations for the mechanism.
The following specific scenarios are part of the ones that can be therefore materialized

by the outcome of this work:

» Virtualization of the system. Our method enables the runtime division of the
entire network into sets of virtual regions for assignment to different applications

running concurrently.

= Power management. The reconfiguration mechanism can be exploited for pow-
ering down unused resources; such functicnality becomes com- pulsory to keep

power consumption levels to reasonable bounds.

= Reliability. When a NoC is augmented with transient fault tolerance, then this
kind of faults can be tolerated without any loss of information. However, inter-
mittent faults are likely to be an indicator of the gradual onset of a permanent
fault (typically, a wear-out fault). In this case, OSRp;,. can be used to recon-
figure the network so to exclude the affected link/switch component, before the

permanent fault shows up and causes packet loss.

5.3 OSR: baseline mechanism

5.3.1 Native OSR technique

Typically, a routing algorithm is deadlock-free when its channel dependency graph
{CDG) is acyclic {we do not consider fully adaptive routing algorithms). The CDG
is set by representing the resources of the network by vertices {mainly the buffers
associated with the ports of each switch) and the dependencies between two resources
by arcs. There is a dependency between two resource r; and rs if & message can use ry
and request rs.

Two routing algorithms R; and Rs are deadlock-free when they have an acyclic
channel dependency graph. However, when using both algorithms at the same time

new extra dependencies are induced potentially leading to deadlock. This can be seen

85

Chapter 5: Runtime reconfiguration of the NoC routing function

@ - cpg[0%+ Ix- 2x+ 3x- " 1x-
—) LA |
1y+ Oy+ 3y- 2y+ Oy+

Xy
| o cog[OY+ 2y- Iy+ 3y yx 2x+
-~ SRR i
— Ox+ 3% 1Ix- 3y-

X+ : \ |_

Figure 5.2: Channel dependency graph for two routing algerithms and the combination
of both.

X
i—
3
3

in Figure 5.2 where a cycle is formed when using two routing algorithms (XY and YX)
at the same time. During a reconfiguration process I refer to Rgq as the old routing
function and R,., as the new routing function. Similarly, packets routed with R g will
be referred to as old packets and packets routed with Ry will be referred to as new
packets.

The native OSR method is based on the fact that those cycles are created only
when old packets using R4 are routed after new messages using Rp.. If old packets
are guaranteed to never go behind new packets the extra dependencies do not cccur
in practice and then no deadlock can be formed. Indeed, in a static reconfiguration
process the entire network is drained thus guaranteeing old packets will never go behind

new ones.

OSR . is a static reconfiguration process but localized at link/router level, and not

CENTRAL @ Failure detection
MANAGER @ New algorithm computation

(3) New routing info distribution
End End End End
Nods Node """e Nods @ Tripgering tokens from end nodes

@ Token progresses and switches

+ use both routing tables.
I
o] — e e e e
| ﬂo
f ROUTING
I

I

|

|

| —

|

I TABLES
__J_ T+ [®
|

I

|

| =

|

Figure 5.3: Reconfiguration steps performed in an OSR environment.

86

5.3 OSR: baseline mechanism

UPSTREAM SWITCH

-~ e — UPSTREAM SWITCH
eck empty of old message: A
E rEn Check Input ports epoch E 5 ﬁ \g
- i B = - —
TOKEN
ADVANCES INPUT
i RS o
Sl % OUTPUT INPUT /
(]
1 c
IE 0] 3 1 OE =
OE e / IE 3
“ SOUTH ~—‘J \r -
c | bi Control bit o c i bi 5' % SOUTH
ATEe. bt per input 2 Contral bit antroLbit 1% & S
peroutput nort @ngch > per output perinput | O =
port epoch 3 — port epoch port epoch | §
=z .
vl =
o =g 0 2
IE IE —i
DOWNSTREAM SWITCH DOWNSTREAM SWITCH
(a) (b)

Figure 5.4: Token advance in a network: (a) check for absence of old messages and
input ports epoch, (b) token signal propagation. The token separates old traffic from
new traffic.

at network level. Indeed, it guarantees that new packets are only forwarded via links
that have been drained from old packets. This is achieved by triggering a token that
separates old packets from new packets. The token is triggered by all the end nodes
and tokens advance through the network hop by hop. Indeed, tokens follow the CDG of
the old routing function, draining the network from old packets. However, in contrast
with static reconfiguration, the new packets can enter the network at routers where the
token already passed. Figure 5.3 shows the complete native OSR mechanism, involving
a central manager. In a first step, a reconfiguration action is triggered, either by the
detection of a malfunctioning component or by a higher level manager in the system
stack requiring a reconfiguration, e.g. a new application is admitted. In any case,
when needed the central manager may receive event notifications through the network
{step 1). Then, in step 2, the new algorithm for the new configuration is computed by
the central manager. The resulting information is disseminated to all the switches in
step 3. In step 4 the end nodes trigger the token and the OSR reconfiguration spreads
throughout the network (step 5).

Figure 5.4 shows how tokens advance in a network. At a given output port, a token
is triggered to the next downstream router indicating the output port has been drained
from old packets. This is guaranteed when the token has been received through all the
input ports of the switch that have old (Rold) output dependencies with the output
port. These port dependencies can be extracted from the R,g routing algorithm.
Notice that the token divides two epochs in the network, the old epoch (when packets
are routed with the Roq routing function) and the new epoch (when packets are routed

with the Rpew routing function).

87

Chapter 5: Runtime reconfiguration of the NoC routing function

y CENTRAL (3 @ oerecTioN
ooy MANAGER (2) FAST COMPUTATION (SOME BITS LEDR)

....... ?9!‘:"‘:.‘2':!‘.5.'!‘.'9'.‘!‘.----_.__ (3) FASTSPREAD OF NEW LBDRBITS
b

@ TOKENS TRIGGERED AT SWITCHES
GNCE NEW LBDR BITS RELEASED

Figure 5.5: Reconfiguration steps performed in an OSSRy environment.

5.3.2 OSRpgite

The OSR mechanism needs to be modified in order to better suit the NoC environment
so to become an efficient and plausible mechanism for planned reconfigurations. Indeed,

with OSRyp;;. the main issues solved are the following:

» Codification of the routing information. During the reconfiguration pro- cess both
routing algorithms coexist at the same time at routers. This means resources
need to be sized for both algorithms. In OSR, routing tables were used to store
the routing info. In NoCs, however, routing tables are an expensive resource
in terms of access time, area, and power consumption. Therefore, hosting two
routing tables per switch input port does not appear to be a cost-effective solution
for OSSR ie.

« Control virtual channel (VC) used in OSR. Different actions (sending routing in-
formation to routers, triggering the reconfiguration process) are performed during
the OSR reconfiguration which imply the ex- change of information between a
central manager and the routers or theendnodes. In [48] this was implemented
by means of a control VC. Unfortunately, using VCs only for that purpose has
a large impact on router implementation {will be seen later) and is not fully

justified in an on-chip.

» [nvolvement of end nodes in the reconfiguration process. In OSR the end nodes
were notified to trigger the reconfiguration. This is done by end nodes injecting
the token directly as a new packet. In NoCs, reach- ing the end nodes via
dedicated packets from the central manager would be a time-consuming course
of action. In order to cut down on the re- configuration latency, involving only
switches and not end-nodes in the reconfiguration would be an appealing property

in a NoC setting.

OSRiite approach addresses all these issues. Figure 5.0 shows all the steps and

the main modifications performed. In particular, it exploits a control network through

88

5.3 OSR: baseline mechanism

DUAL NOC OF NEW LBDR BITS
BY A CENTRAL MANAGER.
North Port mo CHECKING FOR INCOMING
i @TOKENS.

.......

NI HOOd3
T
1
1
1
|
— @
|
'S
Z
o
=
-
o
o
+

= "(:) 31 . CHECKING FOR OLD EPOCH
TOKEN IN L
=T N ~ TRREN °UT® PACKETS PENDING AT INPUT
East Port g L’ & @ BUFFER.
@ T = ,’: D]] ” IF NO OLD PACKETS, UPDATE
s 3, e
ek Sl 2 /f L, A oot
South Po RS |/ @ o [ISouth Port @
g i 2 ALLTHE INPUT PORTS WITH
S 211 By EI:D e --> DEPENDENCIES TO A SPECIFIC
TOKEN IN 11 ST ol EN ouT OUTPUT PORT (e.g. NORTH
= 71 o
West Port % S| @ 8 [west Port OUTPUT PORT SHOWN).
_)@ T 2F l:l::l x = CHECKING FOR OLD EPOCH
—— =" 3 —
Whrdobe + J 2l) gLLLIje PACKETS PENDING AT OUTPUT
=1 4 c======x = TOKEN out BUFFER.
Local Port § K 8 [[Local Port IF NO OLD PACKETS, UPDATE
L _>@ e‘l = z e OUTPUT EPOCH AND
TOKEN IN = \ LS YT OKEN ouT PROPAGATE TOKEN OUT.
INPUT PORTS OUTPUT PORTS

Figure 5.6: Reconfiguration steps performed in an OSRp;. at switch-level.

which routers can inform about expected topology changes (e.g., an output link is
having frequent transient failures and is going to fail soon, or a region of the NoC
is overheated and needs to be powered down). The control network collects all the
notification events and sends them to a central manager (step 1). If the reconfiguration
is instead initiated by a resource manager in the context of power management or
virtualization strategies, step 1 can be skipped. The central manager then computes
the new configuration (step 2) and disseminates the new routing information to the
switches (step 3). Then, every switch starts the OSRy reconfiguration process in step
4. Notice that end nodes are not involved in the reconfiguration process.

The control network can be used also in step 3 for routing bit dissemination to the
switches, through a dual network [56] for switch-to-global manager bidirectional sig-
naling, thus offloading critical control tasks from the main data network. In that work,
the dual network was used to notify diagnosis information to the manager following the
main NoC testing phase, and to notify configuration bits of the routing mechanism to
the switches. The same network could be reused for other purposes, such as congestion
management, deadlock recovery and software debugging. In it is showed to be a cost-
effective solution for control signaling, which can be easily and effectively made reliable
through a combination of fault-tolerant and online testing strategies. For this reason,
this work relies on such a fault-tolerant dual network to convey control information of
the reconfiguration process.

Furthermore, [56] also reports an efficient computation algorithm that comes up
with the routing configuration bits of a new network partitioning or topology shape.
This is the algorithm the controller runs in step 2. Given that the control network
and the computation algorithm are covered by previous work, now on I focus on the
core reconfiguration process of the network and on the micro-architectural support for
that. The reader should keep in mind that all these mechanisms will work together

in the complete reconfiguration framework. In the next section I describe the router

89

Chapter 5: Runtime reconfiguration of the NoC routing function

implementation in more detail.

OSE i implementation

Without lack of generality, the xpipesLite switch architecture [126] proves viability of
OSRijte mechanism. The switch implements both input and output buffering, relies on
wormhole switching and on a stall/go flow control protocol.

The switch architecture is extremely modular and implements logic-based dis-
tributed routing (LBDR): instead of relying on routing tables, each switch has simple
combinational logic that computes target output ports from packet destinations. The
support for different routing algorithms and topology shapes is achieved by means of
16 configuration bits for the routing mechanism of the switch (hereafter denoted as
LBDR bits). LBDR bits carry the routing algorithm information (expressed in terms
of routing restrictions), the connectivity information of switch output ports and special
detour bits. Such bits make LBDR a flexible routing mechanism while at the same time
significantly cutting down on the memory requirements of routing tables.

LBDR bits are computed by a central NoC manager and disseminated to the switch
input ports through the dual control network. Indeed, two sets of LBDR bits are
allocated at each router for OSRri.. Upon receiving the new routing bits, a router
triggers the reconfiguration process by auto-generating initial tokens at its local input
port {port connected to an end node) and processing the tokens accordingly.

The logic enabling the OSRp,t. mechanism is integrated into the above mentioned
baseline switch taking care to preserve its modularity together with its performance.
Thus, the OSRri. logic is designed in new modules plugged into the switch without
affecting the existing blocks. Moreover, the new modules are instantiated for each
switch port following the modularity of the baseline blocks (the OSRp;i. mechanism

can be extended for switches of every arity by means of simple logic replication).

OSR . at Input Ports

As a first step, the baseline switch was enhanced with a second routing logic unit
(LBDR;) collecting the new routing info coming from the central manager. This unit
is connected to the input buffer as the baseline LBDR block (see Figure 5.7) although
is used exclusively for routing packets in the new epoch (new packets). The switch
arbiters need to select the routing info from the appropriate routing logic block (either
LBDRgy or LBDR;). This is obtained from a multiplexer configured by the current
epoch of the input port (in a flip-flop).

In order to reduce the reconfiguration latency, the input port evolves to the new
epoch as soon as there are no stored header flits at the input port with the epoch bit
set to zero (Epoch 0 headers signal) and the token has been received from the upstream
switch (upstream epoch signal). Notice that in the case of the ports connected to end

node {local port; local port flag), the token is assumed to arrive with the arrival of

90

5.3 OSR: baseline mechanism

Local Port Flag

-
LBDR1 Flag —
Upstream Epoch Epoch 0 Headers \ EF Input Epoch

4 To Arbiter
—>
BASELINE INPUT BUFFER
flitA '—" IbdrO =0 | Routing bits to arbiter
flitB " lbdr1 —1
Valid
Valid to Arbiter
:I OSR-LITE .
Logic — Input Epoc
Ll LBDR1 Flag

Stall from Arbiter

Figure 5.7: Switch input buffer enhanced with the OSRp. logic and a new set of
routing mechanism.

the new configuration bits (LBDR, flag). In this case, the header flits located in the
buffers are considered of the new epoch when the new configuration bits have arrived
and the routing mechanism (LBDR;) is set. Notice that local ports do not introduce
dependencies between channels that may lead to deadlocks, therefore is safe to assume
all the injected flits as belonging to the new routing function. To notice that the token

propagation will always start from local ports at switches, not involving end nodes.

The number of flit headers to be routed by LBDRy and stored in the buffer is
detected by a 2 bits counter monitoring the incoming and outgoing headers of the
input buffer module. The counter increases its value when a header is accepted and
the incoming token is low and decreases its value when a header is sent. In order
to preserve the max performance of the baseline switch, sequential logic stages were
exploited to avoid impacting the critical path in the OSRy . mechanism. Notice that
the implementation prevents possible race conditions from occur- ring. For instance,
a token may be received from the upstream switch be- fore the new routing bits are
received. In that case, the header flits in the input buffers are stalled and declared not

valid to the internal switch logic until LBDR; is set.

OSRj,;i. at the Arbiters

OSRyite requires a lightweight new module plugged around the baseline arbiters. The
logic is reported in Figure 5.8. Basically, a set of AND/OR logic blocks together with
a set of EXOR blocks allow the arbiter to process an incoming header exclusively when
the epoch of the switch input port is the same as the one of the destination output

port.

On the contrary, a packet residing in an input port with the new epoch is stalled
until the output port evolves to the new epoch (guaranteeing old packets go first and

then new packets).

91

Chapter 5: Runtime reconfiguration of the NoC routing function

Valid from Input

Arbiter Stall

Stall to Input =
— >
—

BASELINE ARBITER

OSR_LITE
Input Epoch “T 1~ Output Epoch] Logic

Figure 5.8: Switch arbiter enhanced with the OSR . logic.

OSRjyite at the Output Ports

Concerning the output port, an output port evolves to the new epoch when all the
input ports with output dependencies to this output port have evolved to the new
epoch. In order to efficiently deal with the dependencies, OSRy;. takes profit of the
routing bits used in LBDR. Routing bits indicate the routing restrictions that exist at
neighboring switches. Therefore, they can be seen also as channel dependencies.

If the Ry, bit is set it means that there is a link dependency between the output
port x and the output port y at the next switch. On the contrary, if the bit is reset
it means there is no dependency and in that case I can safely assume no packets will
come through the port x requesting output port y. Therefore, the output port needs
to receive both the epochs of the input ports and the routing restrictions located at
the neighboring switches. The mechanism is enabled by a set of OR blocks (each of
them belonging to a different input port) followed by an AND block, as represented in
Figure 5.9.

In contrast with the baseline OSR technique (where the routing restriction in-

formation was saved in the routing table), the OSRyi. mechanism needs to obtain

To the arbiter
Epoch O
Routing Restriction O D
e
] Local Epoch]
Epoch n . > Output Epoch
p—) Epoch 0 Header — FFl—
Routing Restriction n —
s
flitN =~
flitB =™
|:| OSR-LITE - . [
Logic flitA =

BASELINE OUTPUT BUFFER

Figure 5.9: Switch output buffer enhanced with the OSRy . logic.

92

5.3 03E; bassline rmeachanism

UK
WPETREANM 5 e 5 L
L9 i - o i
£ iz - S —" | wrer "
4 o " e g E
o o RF_ET ¥ 5
r —
| oLl | RE_EE .
L RF_ES - —
: FETTEN
| L. EPOCHTORER . -~ ; -.' wanE |
arsuT = P P—— i T __.i:.
- S e] =T |
ey N TN -
b L .-'___ FEITROCTICWT AND i [l v
S— LY JOREN PRI I o | E E
i el 1 b
LT R L T A T = E =
= o=
=| 7| w
= =
.0 =
B A TR IRATION TS
LR R S BF N . 9 e L H . S _HLE IS
HTCETARL FROTA ZOMTROL RETHIRS ETOTANL

CONTROL NFTWIORK

Fimire §.10; Confiouration inforrostion fror nachber switchas and control natareel;.

channel dependencies frorn the rontine logie locstad af neighbor switches. As aremlh,
throa sdditionsl remting bits sre sent by the LEDEg logic of the upstresran switch
togethar with the token bit. Th note that LEDEg recsaived its romting bits information
thromeh the contmol netwerk in an esrlior comfimration steme. In addition, the input
pott needs to send the incominge ronting restriction signals to the approprista ontput
ports. Thus ewery link is edandad by 4 additiemal wires e, 1 token wire 4 5 rmting
rastriction wires). HDee Figure 510

Finally, the tdben is sant by the ontput port to the dosrnstresa switch when sll the
input ports with dependencies with the oatput port hese avalwed to the new apoch,
resring all these input ports have drained all the old peckets from their nffars (e
the LocalEpoch senal in Fiowe 55) Onece the network has completaly migpatad to
Epoch 1, the central mensgmsr cen safely fill LEDE, bits with & copy of LEDE, bits,
and instruct all the switches to zafaly swap to Epoch) amsin. This allows for the systam
to be resdy in fewr ayecles for & new reconfiouration proocass.

Syztarm-Level evaluabion: propagation

In this sacticm, I showr heoar the OB, propegstas oear the network, sitnmlatine the
reconfignraticn provess in ah event-driven cyolescomrate netwerk simulstor. A 8x 8
mash iz nzed with wormhole switding {althemeh the propesaed method also works for
virtual eut-throngh switching). Figure 511 shews hemr 05 Eg 5, tokens propagede ovar
& mash when thara is o traffie treaveling thromeh the netwerk, The dismonal arroars
rapresant the bidirectiomal restrictions impoeed by the romting slgrithm (Gegnent-
Besed ronting in this cese). In thiz fisure, the numbers inside the switches reprasent
the oyele when the tokan simal iz propagsted to its neighbors. Moreower, the srmnows
among switches depict the direction of the tokan signal propagstions. As [can ses, the

93

Chapter 5: Runtime reconfiguration of the NoC routing function

39 l{36 33 «—130| [39 42 a5 48
A - I |
36 33 30 le—i 27 48—l 51
A ' v Y 7'y
%

15 18 21 24 57 54
F :

b 4 ¥
12 le—1 9 ole—pa (ee)—Tl58 i

(a) (b)

Figure 5.11: OSR-Lite propagation over a 4 x 4 mesh topology: (a) scrolling up, and
(b} scrolling down.

token signals propagate among switches throughout the network in the order of the
routing channel dependency graph, where Figure 5.11{a) follows a scrolling up zig-zag
direction, and Figure 5.11(b) follows a scrolling down zig-zag direction.

When no messages are traveling through the network and a regular 21} mesh is
considered then the number of clock cycles required for the OSRp. reconfiguration

process is modeled by the following formula:

PropagationTime= (dx Dx{(D-1))-1

where D represents the mesh dimension. As I can see, it is a very fast process as the
protocol uses only 223 cycles when a 8x8 mesh is considered.

The high speed of the OSRe reconfiguration process allows to perform frequent
planned reconfigurations without affecting the integrity of the system operations. How-
ever, when there are messages traveling through the network the switches must drain
the input queues of old messages before propagating the token signal. This fact delays
the OSRyie propagation depending on the network load. In the following, T analyze
all the sources of inefficiency, as starting point for the optimizations proposed in this

thesis.

5.4 Sources of inefficiency

The scroll-up phase showed in Figure 5.11(a) is then completed by a similar scroll-
down phase since inter-switch links are bidirectional. The total reconfiguration time is
given by the sum of the two phases (which amounts to 75 cycles) with some sensitivity
to ongoing traffic conditions. Intuitively, token propagation is trigegered by buffers

emptied by old packets, hence traffic congestion can slow down token propagation.

94

5.4 Sources of ineficiency

b

new LBOR _bifts readyy

Figure 5.12: OSR-Lite propagation over a 4 = 4 mesh topology: {a) scrolling up, and
{b) scrolling down.

Finally, it iz impertant to point cut that new packets from input perts already in
the new epoch cannot be forwarded o ocutput ports that are still in the old epoch,
to enforce the sirict ordering principle of OSKH. They have to wait for such ocutputs
to evolve to the new epoch as well. See 128 for details. Despite a lower impact on
background traffic performance than static reconfiguration methods, I identified two
main sources of inefliciency in OSHp.. One one hand, fokens have to be propagaled
throughout the entire network. This requirement does not match with the most recent
uzage models for large integrated networks, which consist of network partitioning and
isolation. In this case, OSSRy ends up making a local partition reconfiguration a global
event, which not only causes performance inefficiencies, but alzo viclates the isolation
principle. As an example, when the routing function of partition B in Figure &.1%(b)
needs to be reconfigured at runtime, token propagation is not limited to B, but spans
the entire network, including the switches in A, which should however not modify their
routing function. As a result, performance of traffic inside A is temporarily perturbed
by the reconfiguration process without proper justification.

On the other hand, as shown in Figure 5.12(a), to understand what such perturba-
tion actually consisie of, I should recall that fhe possible misalignmeni between foken
ard routing bil propagation across the network causes blocking of lraffic injection, caus-
ing a temporary suspension of traffic injection during the reconficuration transient and
the packet blocking behind the self-propagating epoch separation boundary, due to the
network-wide nature of each reconfiguration event. In fact, whenever a switch receives
new routing bits, its local port instantaneously evolves to the new epoch. However,
trafic injection is only resumed when the target output port of the head-of-the-line
packet evolves to the new epoch as well. This requires that the token has been re-
ceived at specific switch input ports. If such tokens are delayed, new trafic cannot

meanwhile be injected into the switch by its local port. Such mizalignment iz highly

a5

Chapter 5: Runtime reconfiguration of the NoC routing function

token_in

epoch_out,
effective
token_in

new CBITs

effective

switch epoch epoch_out

new CBITs
(a) (b)

Figure 5.13: Local Reconfiguration: processing at input ports (a) and at output ports

(b).

likely, since tokens and routing bits are propagated through different transport lay-
ers and protocols. Tokens are in fact carried through dedicated wires that increase
the width of inter-switch links. In contrast, routing bits are carried through the dual

control network.

5.5 Optimization of reconfiguration mechanism

In this section [illustrate one of the contribution of this thesis, i.e. a set of performance
optimizations that OSRy;;. could benefit from, spanning from simple to more aggressive
ones trading performance speedups (approaching latency insensitive reconfiguration)

with a higher implementation cost.

5.5.1 Local Reconfiguration

The main goal of this optimization is to restrict the reconfiguration procedure to only
the affected partition, for instance partition B in Figure 5.12(b). In a global reconfig-
uration, the state of the switches in the network is aligned to the same epoch, but if
I aim for local reconfiguration, such alignment is not guaranteed any more, and this
could cause malfunctions in the reconfiguration process itself: resources may appear to
be as already reconfigured or may block the token propagation.

To avoid this, I first of all changed the way tokens are coded during their inter-
switch propagation. In the original implementation, tokens were coded by a change
of the binary value of token signals. With our optimization, tokens are associated to
1 cycle pulses (epochout-in), which cause the digital value of associated state signals
(tokeny, o) to change. Also the arrival of a new set of LBDR bits for switch reconfig-
uration is denoted by a pulse on the LEBDR,, signal, which causes bit flipping on the
associated switeh epoch state signal.

With these assumptions, [can safely feed new LBDR bits only to the switches in
the partition to be reconfigured, and devise a control logic to limit token propagation
to only the partition area. For this purpose, the epoch,, pulse in Figure 5.13(b) is
filtered by an AND gate with CBITS signals that are part of the set of new LBDR

96

5.5 Optimization of reconfiguration mechanism

updated Keii
: token _in
i epoch==E - = Nout Eout Sout Wout
e T current RRen
- new CBITE
token_in — (E——SE—”lW) OR_reduce()
Nout = 1; Nout updated
else ——> switch_epoch’|1
updated infiout = 0; effective
switch epoch S itch h
1n SWILCh_epocC
current RRsn —
Z11 _ elsey new CBIT:
token in updated
S E switch_epoch
&(‘
(a) (b)

Figure 5.14: Logic behind synchronization between new LBDRbits and token propa-
gation,

routing bits. Originally, CBITS indicated that some switch ports are not instantiated
since belonging to the network boundary. [extend their meaning to treat similarly
those switches that are on a partition boundary. The OSR. mechanism inherently
guarantees that CBITS switch in advance with respect to the epoch,,; pulse (i.e., no
epoch transition needed if no new LBDR bits received). In Figure 5.13(a) I consider
the logic that controls epoch transition at the input of the switches on a partition
boundary. The key idea is to mask the tokein state signal whenever it is generated
by an epochin pulse coming from a switch located in a different partition. As usual,
masking is performed based on the new connectivity bits C'BITS. Overall, if a token
arrives and the input port is linked to another switch of the same partition (CBITS
= 1), the token takes its effect. If the switch belongs to another partition, the token
is in practice filtered off. In this latter case, the token is automatically triggered upon
receipt of the new routing bits (which is denoted by a change of switchepoch). It should
be observed that CBITS are not affected by a modification of the routing algorithm
of the partition, which only changes routing restriction bits. Our optimizations enable
more flexible scenarios, i.e. restriction and expansion of an existing partition, and also
merging of and splitting inte two partitions. In each case the logic is safe because
C'BITS always anticipate epoch,,: pulses or at least are set synchronously with token,
and switch epoch. The mechanism may generate critical races only in case multiple
outstanding reconfigurations are ongoing in the network. For the time being, I restrict
our analysis to a single reconfiguration at a time, and leave the more concurrent scenario

for future work.

5.5.2 Synchronized reconfiguration

To prevent the blocking of traffic injection at switch local ports because of the unsyn-
chronized arrival of new LBDR bits and of tokens at switch input ports, I implemented

the following optimization: the new routing bits are not notified to the switches right

97

Chapter b: Runtime reconfiguration of the NoC routing function

e
[]

]

]

]

]

[]
o

Epoch O i Epoch Q
North POrt s 1 R inpremeede Morth Port
: i= 9 Wg;fxfxw
Epoch 1 : 3’: :w o Epoch 0
East POrt se———pd 1 ddlBDR 7 ™ s East Port
i
QRN Rl
Epoch O} facwieog) o7 | Epocho
SoUth Port s 1 AL DE 1 R e S outh Port
Epoch Of [. Epoch 1
West Port se——gg 1 & ﬁw"’“ m— W e st Port
& g&ﬁ
#°
Epoch 1 Epoch O

Local Port s e | ocal Port

INPUT PORTS CUTPUT PORTS

Figure 5.15: Optimized switch with two routing alternatives (old and new) at each
input port.

away, but their notification is postponed till at least one output port meets all the
requirements for a transition to the new epoch, regardless of traflic within the switch.
This typically requires to wait for the arrival of tokens at those input ports that have
routing dependencies with the target cutput port. The corresponding logic is illus-
trated in Figure 511, Let us focus on the north output port (Figure 5. 14{a)). If switch
input ports either have a routing restriction {i.e., no traflic from that port can cross
the target output port) or belong to a different partition, they should be filtered off
by the logic. In particular, as soon as new routing bits are notified to the switch, a
token is automatically self-injected through these ports (see the switchepoch signal). In
contrast, the remaining ports should be monitored for token arrival. When this occurs,
the north output port is ready to migrate to the new epoch (Figure 5. 14(b)). Only
at this time, the new routing bits are actually notified to the switch and the epoch
evolution can take place. During the monitoring time, the local port is still in the old

epoch, and can safely keep injecting traflic bazsed on the old routing function.

5.5.3 Epoch-conversion: towards a fully transparent reconfig-

uration

So far, the proposed optimizations can still live with a single set of LBDER registers per
input pori, as in standard non-reconfigurable LBDR switches. Only the control logic
has been made more complex.

However, whenever a duplication of such registers iz affordable, more aggressive
optimizations can be devised. Indeed, I may rely on the fact that during reconfiguration
the old routing paths are still available and can be used by the packets. Thanks to
this, new LBDR bits can be notified to the switches right away, and new packets from

switch local ports requesting cutput ports that have not evolved to the new epoch vet

9%

5.5 Optimization of reconfiguration mechanism

RULES ouT CASE
R1: En=0 & Euut[044]=0 O.a Old msg — old path
R2: Eyu=0 & Eou[Oo1a]=2 - Impossible to happen
B Bo=1 & BonlOuse]=1 Opew | New msg — [new path
Rd: Bi=1 & BEow[Ons]=0 - Blocked msg

R4a: En=1 & Euut[Onew)=0 & Eout[Oca]=0 | Oqa | New msg converted to old
Rda: Eu=1 & E;ut[Onew]=0 & Euut[Oaa]=1 - Blocked msg

Table 5.1: Routing rules for the baseline OSR method and when epoch conversion is
enabled.

might be simply converted into old epoch packets. They would be using the old routing
function instead of the new one, hence not breaking the OSR assumption, while at the
same time crossing the token propagation barrier. This optimization is not restricted
to switch local ports, but can be in principle applied to all input ports, and provides a

latency-insensitive reconfiguration, as experimental results will prove.

With this optimization strategy, in each switch two sets of LBEDRbits per input
port are needed, one with the old routing bits (for the old routing function} and one
with the new routing bits (for the new routing function). This is mitigated by the fact
that [am actually duplicating few configuration registers and not entire routing tables
like in table-based routing. Figure 5.15 shows the potential output ports that can be
requested by the two versions of LBDR blocks in each input port. The example only
focuses on two input ports promoted to epoch 1. A brand new packet stored into the
local port, belonging to the new epoch, would request the south output port with the
new routing function. This port is however still in the old epoch, hence the packet
should be blocked. This packet can nonetheless take the output port computed by the
old routing function safely and will be handled in the network as an old packet. Indeed,
no tokens have been forwarded through the output port east yet, since the port is still
draining old packets. The same rule can be used across all input ports, such as for
packets from the east input port in Figure 5.15. In this case, both routing functions

return the same target output port, which is still in the cld epoch.

The applied optimizations are deadlock free by construction and can be summarized
changing the basic rules of packet routing provided by baseline OSRj;;. mechanism
(rules R1 to R4), in particular replacing B4 with two new rules Fja and R4b, as
shown in Table 5.1. Let us assume FEj;, is the epoch of an input port and E,,; is the
epoch of an output port. Also, when a packet is routed at a given input port, Oold is
the output port computed when using the old routing function (LBDRold) and Onew is
the output port computed when using the new routing function (LBDRnew). Applying
these routing rules at each switch port, referred to as OSRijte opt1, could introduce out-
of-order delivery. Indeed, a new and an old packet injected by the same switch normally
follow different paths. The old one can be blocked due to network congestion that might

not involve the path of the new packet. Thus the latter, converted into an old packet

99

Chapter 5: Runtime reconfiguration of the NoC routing function

on the fly, can potentially reach the end node before the first packet, since now both
packets are treated as old ones. Notice that out-of-order can be avoided if packets are
not allowed to convert to old packets during their routing path over the network, i.e.,
applying the optimization only at local input ports. This will be the second version
of the optimization and will be referred to as OSRpjteopto. Both optimizations can be
inferred in tandem with local reconfigurations, while they are mutually exclusive with
respect to the synchronized reconfigurations, which however have a milder impact on

the resource budget.

5.6 Experimental results

5.6.1 Assessing local reconfiguration

We consider the scenario shown in Figure 5.12(b) where there is a running partition A,
in which a generic master M@ is injecting a stream of packets to the generic slave 53, and
I want to reconfigure partition B, launching a new OSR;:. reconfiguration process. As
result of an RTL-equivalent SystemC simulation of the network shown in Figure 5.16,
our optimized approach supporting local reconfiguration gives many benefits. Indeed,
a global reconfiguration significantly affects partition A, impacting on the arrival time
of its running packets (about 46nsec for the monitored M0 to S§2 stream, considering
Insec = 1 clock cycle), because switches involved in the reconfiguration process have
to wait for the token. Instead local reconfiguration does not impact at all partition
A, since token propagation is limited to switches of partition B. A further benefit of
our optimization emerges considering a new scenario, i.e., when the routing function
of partition A itself needs to be reconfigured. If | set a global reconfiguration process,
traffic blocking is correlated with the reconfiguration of the whole network, while a local
partition implies token propagation only within the partition under reconfiguration. In

particular, traffic at switch 0 is stalled for about 12nsec during local reconfiguration, as

140 | e
. local reconfiguration of partition B

=
[
o

=
o
o

E global reconfiguration e
80—

60
40

20 |

ARRIVAL TIME TO SLAVE,
OF PACKETS FROM MASTER, {(nsec)

PACKETS N°
5'16'17'18'19'20'21'22 23'24 25

Figure 5.16: Experimental results and benefits of local reconfiguration.

100

5.6 Experimental results

[synchronized_OSR ;. _qo “A%
[baseline_OSR,,,

79% _79%-b /-0l

BLOCKING TIME OF INJECTORS
DURING RECONFIGURATION (nsec)

ol B , 0%
Mo M1 M2 0 M3 M4 MS 0 MS | M7 MB | M3 MID 2 "3 m1a | mis

“IRAFFIC INJECTOR

Figure 5.17: Blocking time of all traffic injectors: baseline OSRpi. (red) vs optimized
version (blue).

opposed to 46nsec during global reconfiguration, pointing out a significant improvement
of about 72%.

5.6.2 Assessing synchronized reconfiguration

We consider a global reconfiguration involving the whole 4x4 NoC of Figure 5.12(b) ,
and also traffic generators connected with every input local ports of each switch, in-
jecting traflic with a uniform probability distribution. Assuming 1 clock cycle equal to
Insec, I compute the cycles during which traflic injectors are stalled by the reconfig-
uration process (not by the congestion of traffic in the network). We assume that all
switches can be reached by the new LBDR bits almost simultaneously, an assumption
that I experimentally verified by implementing the dual NoC as an H-tree-like topol-
ogy (not reported for lack of space). A sub-optimal topology like a ring would add up
a further source of reconfiguration time penalty. Hence, | am optimizing an already
aggressive design point.

Qur optimization significantly reduces blocking time (Figure 5.17). It totally elim-
inates it if traffic is injected towards an output port that matches the scroll-up token
propagation direction, or reduces it if traffic is injected towards the output ports that
will transition to the new epoch during the scroll-down phase. Figure 5.17 shows
position-dependent speedups, since injectors that are furthest away from the token
spreading point (hence receiving tokens later than others) benefit the most from this
technique. In contrast, injector M15 clearly has no improvement (0%) because the

token spreads from it and its output ports evolve immediately to the new epoch.

5.6.3 Assessing epoch-conversion reconfiguration

We compare three different schemes of the OSRi;e mechanism: the baseline version
and two optimized ones, OSRpieopt1 and OSRijieopt2, tined to exploit the availability

of two sets of LBDR. registers. By synthesizing a 5x5 xpipesLite switch [126] on a

101

Chapter 5: Runtime reconfiguration of the NoC routing function

45nm industrial technology library, I derived an area overhead of roughly 8% when
implementing two sets of registers per port instead of one, with no impact on the critical
path. This overhead is quite reasonable, however in case triple modular redundancy
were applied for the sake of fault-tolerance, the impact would be significantly larger.
An 8x8 2D-mesh is used with wormhole switching (although the proposed methods also
work for virtual cut-through switching) to evaluate the performance of the mechanisms
under test. Flit size is set to 4 bytes and messages are 5-flit long. [have performed
different simulations varying the injection rate, assuming constant packet generation
rate for all end nodes. Figure 5.18(a) shows the number of cycles involved in the token
propagation of the different OSRp;. schemes, and taking into account the different
injection rates. Each bar depicts the mean of 30 simulations varying the seed and shows
the error bars, which represent the 95% confidence interval. Propagation times for the
optimizations (both OSRiyite opt1 and OSRijte optz) are 17% to 12% more than OSRys.
when medium injection rate is considered, since new messages now are not blocked, but
rather converted to old ones, ultimately causing more network congestion which slows
down token propagation. Figure 5.18(b) shows the number of cycles that the messages
are blocked for across all reconfiguration schemes. [observe that OSRpjte ope1 15 able
to reduce the blocked messages up to almost 0 and, therefore, the reconfiguration
process is totally transparent from the network performance point of view. On the
other hand, the OSRipite opt2 scheme still blocks some messages but despite this, it has
the potential to diminish the blocked cycles by 5 times approximately with respect
to the baseline scheme. Figure 5.18(c) represents the maximum network latency for
the different reconfiguration schemes under uniform traffic with medium injection rate,
where the reconfiguration process is invoked after 100K cycles. For all the schemes,
the range for each reconfiguration period is shown, and the start and end times for
reconfiguration are indicated with vertical lines. Notice that the x-axis just shows the
execution time interval (from 149800 to 150900 cycles) where the three reconfiguration
processes are carried out. The most important observation based on the figure is
that the optimizations considerably reduce the need to block new messages at the
switches during the reconfiguration transient. In addition, for the original OSEj;.
scheme and once the reconfiguration is finished, the messages continue experiencing
high latencies until the network is stabilized. In contrast, the OSRyiteoptz is capable
of reducing as much as possible this negative effect while ensuring in-order-delivery of
messages. ['inally, a better performance is achieved when the OSRpjte apt1 scheme is
enabled, obtaining a transparent reconfiguration process with no impact on the network
performance. However, in this case the designer should come up with provisions (e.g.,

reorder buffers) to counter the risk of out-of-order delivery.

102

5.6 Experimental results

70007

B osR-Lite

6000 QSR-Lite-optl]
[l OSR-Lite-opt2

5000

4000

3000

2000

1000 . :

0

Low (0.25) Medium (0.50) High (0.75)
TRAFFIC (flits/cycles/switch)
(a) Token Propagation Time

OF CYCLES THE MESSAGES

ARE BLOCKED

350
A B osR-Lite

QSR-Lite-optl

. OSR-Lite-opt2
150
100
50

Low (0.25) Medium (0.50) High (0.75)

TRAFFIC (flits/cycles/switch)
(b) Message blocking

(9%]
o]
o]

A"]
U'I

PROPAGATION T IME (cycle

600
276 cycles| | B osR-Lite

s esrind , OSR-lite-optl
el T I OSR-Lite-opt2

-~
-
-y

227 cycles 5

400

300

200

100

r'v' v,“ %) § 2 1) h" -l ll

149800 150000 150900
EXECUTION TIME (cycles)

(c) Maximum message latency with medium injection rate

MAXIMUM LATENCY (cycles)

Figure 5.18: Taking advantage of 2 sets of LBDR, registers per port.

103

Chapter 5: Runtime reconfiguration of the NoC routing function

5.7 Summary

In this chapter I have optimized the OSRy;. reconfiguration mechanism to make it
suitable for highly dynamic and shared execution environments, based on the principle
of flexible network partitioning. Reconfigurations do not require to drain the network
from ongoing traffic, and are local to affected partitions. We have proposed different
optimization strategies for network injectors to match increasing resource budgets.
To the limit, I prove that fully transparent network reconfiguration is feasible. The
work in this chapter paves the way for the frequent and fast partition reconfigurations
that future applications will require to handle workload adaptivity, fault-tolerance and
quality-of-service. While as a future work, I am investigating fast setup and tear-down
of QoS circuits or evaluating the impacts of reshaping partitions with ongoing trafhic via
the fast reconfiguration mechanisms delivered by this work, as issue this chapter leaves
still open the problem of signaling required to communicate with the global manager,
in order to deliver the new (re-)configuration bits: the optimized OSR proposed is still
a centralized mechanism. This represents an inefficient feature especially in scenarios
where testing and, in case of faults, the prompt triggering of the reconfiguration of the
resources is needed: in this cases the presence of the central manager is much than an

overhead.

104

Chapter 6

Ultra-low latency, scalable and

distributed reconfiguration

The work presented in this chapter exploits the existence of multiple physical networks
in industry-relevant many-core processors in a synergistic way, for the sake of fast and
scalable distributed reconfiguration of the routing function at runtime, thus enabling
runtime testing.

Indeed, extending the principle of partially good die allowance to many-core pro-
cessors, and testing them over time to detect the onset of permanent faults, are only
feasible through proper support in the on-chip interconnection network. This implies
the ability to reconfigure the routing algorithm at runtime to reflect changes in net-
work topologies as fast as possible. Current literature cannot avoid a large hardware
and/or software overhead when tackling this challenge, so here we want to address this

problem deeply optimizing the mechanism of reconfiguration proposed in Chapter 5.

Key novelty: new design point for runtime, fast, scalable and distributed recon-
figuration of the routing function in NoCs with a minimal impact on the background
traffic.

6.1 Motivation and related works

While most network-on-chip (NoC) research contributions have focused on the archi-
tecture design principles or on the physical design flow so far, concerns associated with
the low reliability of the silicon substrate at upcoming technology nodes are calling
for new design methods for runtime management of the system interconnect. On one
hand, sustaining manufacturing yield and device lifetime imply that a failure of a NoC
component cannot cause the entire chip to be considered as defective. This goes beyond

fault-tolerant routing algorithms [47] or flexible routing mechanisms as developed in

105

Chapter 6: Ultra-low latency, scalable and distributed reconfiguration

Chapter 5, since the above techniques fail to capture the transition from one network
configuration to the next one, which is potentially deadlock-prone and penalizing for in-
stantaneous performance of network traflic. On the other hand, testing complex many-
core chips cannot be only a post-manufacturing course of action, but needs to make
inroads into the lifetime of the device. One clear trend is toward fault detection and
reconfiguration frameworks [84, 56|, where network resources are tested aggressively
to detect early signs of an upcoming fault through a built-in self-testing infrastruc-
ture. The key novelty of the testing challenge lies in the fact that NoC links should be
taken offline during runtime testing, while at the same time guaranteeing uninterrupted
availability of the NoC. In order to maintain maximum flexibility in link deactivation,
the routing algorithm must be able to change dynamically in reply to changes in sys-
tem state, while preserving deadlock freedom. Current approaches to runtime network
configuration suffer from large hardware/software overhead and/or lack of scalability.
In general, centralized approaches have the disadvantage that some reconfiguration
tasks (e.g., the computation of the new routing function) are performed in software.
In contrast, distributed reconfiguration suffers from sub-optimality of emergency rout-
ing solutions and overly high implementation cost and complexity. This work moves
from a different perspective: the synergistic exploitation of routing rescurces that are
already there in many NoC implementations. In a sense, there is an overhead which
is increasingly accepted in NoC design, and which is justified by other design goals,
which consists of the use of multiple physical networks instead of logic ones. Although
this seems to run contrary to much previous work [142, 57|, it is actually motivated
by how the relative costs of network design change for implementation on a single die
[140]. First, wiring resources are abundantly available on chip, for realistic tile sizes.
Second, logic networks do not cut down on the amount of used buffering resources.
Third, building multiple physical networks via replication simplifies the design and
provides more inter-tile communication bandwidth. This is the reason why up to b
physical networks can be found in industrial designs. Each one can even be customized
for the needs of the specific traflic class it accommodates. Given this, this work pro-
poses to exploit the existing multiple physical networks to spatially separate resource
allocations that may close dependency cycles. The most straightforward way of accom-
plishing deadlock-free spatial separation is to double the number of resources used by a
routing algorithm to escape from deadlock and to allow dependencies from new-epoch
traffic to old traffic, but not vice versa. Whenever a switch port processing old tratfic
has a routing dependency with a port already migrated to the new epoch, an escape
path is set up into another network plane. This way, deadlock cannot take place. The
only requirement the escape network should fulfill consists of its compatibility with the
network under reconfiguration from the message-dependent deadlock viewpeint, unless
a specific course of action is set up to tackle this concern differently. This work devel-

ops a reconfiguration methodology around the above basic ideas and demonstrates a

106

6.1 Motivation and related works

substantial improvement over state-of-the-art in terms of reconfiguration latency, area
overhead, impact over the performance of running traffic, and scalability to large net-
works.

An overview of existing fault-tolerant routing techniques has been reported by [139)].
On one hand, routing tables and logic can be updated upon each fault occurrence
4, 40, 116, 139, 112]. On the other hand, bypass rules can be exploited to reroute

around faults using local connectivity information [43, 143].

Runtime reconfiguration of the routing function has been first investigated in high-
performance local area networks, spurred by the need to deliver incremental expansion
capabilities. Static reconfiguration (SREC) has long been the dominant solution. With
SREC, no packets can be routed according to the new routing function while there are
still packets in the network routed according to the old one [132]. Dynamic recon-
figuration (DREC) techniques overcome this limitation [24, 8, 2|. However, they are
applicable only to a limited set of routing functions, or rely on dropping packets to
avoid deadlocks, or appear to be more complex than the straightforward static ap-
proach, or have requirements on the minimal set of hardware resources implemented.
For instance, the double scheme proposed in [107] proposes the spatial and /or temporal
separation of the routing resources used by each routing function into two sets, and
allows dependencies to exist from one set of resources to the other but not from both at
any given time. Unfortunately, it requires the network to implement two sets of data
virtual channels. Other approaches strike a trade-off between SREC and DREC. For
instance, the work in [89] describes how the various phases of SREC can be overlapped

in order to increase parallelism.

When it comes to on-chip networks, a few main approaches stand out. ARIADNE
4] is fully distributed, however it undergoes subtle effects: its latency badly scales with
network size, and it does not guarantee a transparent transition between configurations.
MD [43] routes packets adaptively through the shortest paths in the presence of a
faulty link, as long as a path exists. The local visibility of this mechanism causes
the network to become rapidly disconnected as the number of faults increases. OSRijte
1128] has been proposed as an embodiment of native OSR. into an on-chip environment.
1133 improves [128] with an algorithm that extends coverage of fault patterns. The
main issue with OSRj;;. is its centralized nature, which causes overhead for manager
notifications, and puts software computation of the global manager on the critical
path for the reconfiguration process. This latter disadvantage is also shared by the
work in [139]. Recently, BLINC has significantly raised the bar for fast, deadlock-
free, distributed and localized routing reconfiguration [84]. BLINC uses precomputed
routing metadata to quickly evaluate localized detours upon each fault manifestation.
Unfortunately, the complexity of this scheme is significant (more than 500 bits per
router in an 8x8 mesh, with poor scalability as the network size increases). However,

since [84] has demonstrated superior reconfiguration latency and fault tolerance with

107

Chapter 6: Ultra-low latency, scalable and distributed reconfiguration

0
(=)

F3

™
i

;

H

i

=3 :ﬁg
B!
£

|

S R (2R

B
o
'% ;
G 3

AT o s S X
RS . P
§ i ; : F17 F18 F19 F20
4 £ |3
| S o
3 £ . o
(a) (b)

Figure 6.1: 4x4 21) mesh: (a)Segments and scroll-up token propagation, (b} faults ids.

respect to the main competing schemes in literature, 1 consider BLINC ag the reference
solution for comparison.

This work aims at a distributed routing reconfiguration method at run-
time for NoCs. It borrows the same deadlock-avoidance principle from OSR/OSRyte,
that is, separation of old and new packets with a token. However, the scheme is then
augmented to become fully distributed, which was possible due to the same spatial
separation concept for deadlock freedom proposed by the double scheme 107]. How-
ever, the difference with the original schemes is significant. Differently than OSR, I
do not have a centralized control function, since our reconfiguration process is fully
distributed. Differently than the double scheme, [do not envision a dedicated physical
network only for reconfiguration, bui [exploit existing ones, therefore I need to meet
the additional constraint of minimum performance perturbation of the background
traffic in the escape network through a smart escape strategy. The outcome is a
new design point for runtime and distributed reconfiguration of the routing

function in NoCs,

6.2 Main issues with OSR

The work relies on segment-based routing (SR). SR is topology-agnostic in nature,
and works by partitioning a topology into segments (an example is in Figure 5.1).
This allows to place bidirectional turn restrictions locally and independently within a
segment, thus making the network deadlock-free.

Without lack of generality, I assume the uLBDR (Universal Logic-Based Distributed
Routing) routing mechanism as proposed in Rodrigo et al. paper [116]. It has several
routing configuration bits at each switch (26) that enable to take the proper routing

decision based on the destination coordinates of the packet at hand, and on the routing

105

6.3 Key idea: synergistic use of multiple networks

restrictions posed by SR. uLBDR supports non-minimal paths through the use of de-
routes.

This work moves from the OSRp;. runtime routing reconfiguration function, and
ultimately augments it to overcome its global and centralized nature. Before delving
into the proposed method, some OSRy. basics are recalled. In OSR, a global con-
troller is in charge of initiating reconfiguration, either because of a planned decision
{e.g., power management) or of an unexpected event {e.g., the likely onset of a per-
manent fault). In the latter case, the event needs to be notified to the manager. The
manager computes the configuration bits for the new routing function to activate, and
updates the corresponding registers in NoC switches through a dual NoC. However,
the transition from the old to new routing function occurs in a controlled way, so to
avoid deadlock. In practice, a separation token crosses the network in the order of
its channel dependency graph, starting from a root node. As the token is received at
switch input ports, the new routing function is activated as those ports are emptied
by old traflic. Similarly, cutput ports evolve to the new epoch as the input ports that
have no routing restrictions toward them have moved into the new epoch. In practice,
the network evolves to the new routing function progressively, by enabling concurrent
local and static reconfigurations at its switch ports.

Figure 6.1 shows the direction of token propagation across the network. Only the
scroll-up phase is shown. The scroll-down phase, which causes the remaining links to
receive the token, is omitted for lack of space. Figure 6.2{(a) also shows the scroll-up
token propagation tree. A switch with a given ID can fire a token in its output ports
only when all tokens from the input ports have been received, and have internally
propagated to the output ports through the stated rules.

The main issues with OSRLite are:

» the global manager is on the critical path of the reconfiguration process.
= the token propagation starts from a root node.

= a separate control network or virtual channel is needed for communication with

the global manager.

6.3 Key idea: synergistic use of multiple networks

We overcome the main limitations of OSRyjte in the direction of a fully distributed and
dynamic reconfiguration mechanism by relying on the following key intuitions:

First, considering results of Trivino et al. [56], we can identify a region around a
NoC fault that is affected by it. In practice, for each fault in the NoC, I don’t have
to update all the routing configuration bits of all switches in the NoC, but only of a
limited subset of them. This means that it is possible to border the region where the

routing function has to be changed.

109

Chapter 6: Ultra-low latency, scalable and distributed reconfiguration

Second, since each switch is involved only in a limited number of fault regions, the
modifications of the uLBDR configuration registers for those cases could be encoded in
a small table for each router. The size of the table would be 26 bits for each relevant
fault. This way, the routing function should not be computed by a global controller,
but would be encoded in distributed tables. The fault coverage of this approach will

be addressed in section 6.7 4.

Third, making OSRpj. & distributed mechanism implies that not only the root
node, but also every node in the network can trigger token propagation, as an effect
of a detected risk of malfunctioning in a link, or of a dedicated testing phase which is
about to start in the link under test. Consider for instance Figure 6.2(b), where the
indicated link needs immediate disconnection. Switch with ID 10 needs to avoid routing
traffic through the critical link. To do that, OSRii. would require tokens in the two
input ports from 9 and 14. Our scheme mimics the same behaviour by redirecting the
links of those input ports into an escape network. When this happens, and switch 10 is
drained by old traffic, no packets will cross the critical link any more, and a token will
appear at the south port of switch with ID 6. For the same reason, a regular token will
be concurrently triggered to the east. However, this way the token propagation would
stop, because for instance switch 11 needs also a token from south to fire. Similarly
for switches 4 and 5. Therefore, [need to open more tunnels. In the next section, this
mechanism will be further optimized to reduce inter-network tunneling and speed-up

the reconfiguration.

The proposed method has the key requirement of an escape network. For instance,
networks carrying intra-partition or inter-core traffic in a many-core processor could be
reconfigured on top of a global network (for [/O or memory controller communication).
Alternatively, a network carrying one message type could be reconfigured on top of a
network carrying a different message type, provided the two message types do not
form a dependency chain rising the risk of message-dependent deadlock. For instance,
memory requests messages cannot be tunneled into a response network, and vice versa.
Nonetheless, another case falls within reach of this work, that is, multiple networks
with multiple virtual channels each. For instance the memory request VC of physical
network O could be tunneled into a memory request VO of physical network 1. This is
message-dependent deadlock safe. Last but not least, the mechanism is complementary,
that is, the role of the network under reconfiguration and the escape one can be flipped

for the sake of exhaustive testing.

Finally, in order to enable the two coupled links during reconfiguration to have
different routing functions, escape paths are assumed to go through the local ports of
escape switches, hence ending up being multiplexed with the traffic from IP source

cores.

110

6.4 Baseline mechanism

14

15

(a) Scroll-up token propagation graph (b} Tunnel opening for triggering dis-
tributed reconfiguration

(c) Tunnel propagation (d) Hager token request

Figure 6.2: Token OSR.

6.4 Baseline mechanism

When putting together the three ideas from the previous section, I get the fellowing
reconfiguration methodology. A switch can enforce the fast disconnection of an at-
tached link by triggering the token propagation process. It will handshake the opening
of inter-network tunnels with nearby switches. Normal tokens are then fired by the
target switch, which will trigger the scroll-up phase of the token propagation. Once
completed, the scroll-up phase will trigger the scroll-down phase. Once the scroll-down
phase reaches the OSSRy root node, then the missing scroll-up phase (since the token
propagation started somewhere in the middle of the network) will be triggered, till the
tokens reach the tunnels and these latier are closed. This completes the reconfiguration

process.

Once reached by a token, the input port of a switch will behave like in vanilla OSR,
with the difference that a fault identifier needs to travel with tokens. Fault IDs will

111

Chapter 6: Ultra-low latency, scalable and distributed reconfiguration

be searched in a local CAM memory, indicating whether that fault 1D requires routing
bit modifications at the switch under test or not. For this reason, the token can be a
single-flit special packet carrying the fault ID in its body. There is a fault ID for every
bidirectional link in the network (say M), however the number of CAM entries in a

switch is limited, since not all faults affects its routing bits.

6.4.1 Identification of the region involved by a fault

The methodology does not need to affect the network as a whole. In fact, thanks to
the notion of fault region around a faulty link, only switches in the fault region should
be affected by the token propagation. Incoming links from boundary switches may be
assumed to already exhibit a token, since incoming traflic will be eventually derouted

inside the fault region.

6.5 Optimized mechanism

The three phases of the process (partial scroll-up, scroll-down, residual scroll-up) make

it overly long in time. This motivates our next optimizations.

6.5.1 Tunnel propagation

The switch directly attached to the link to disconnect requests tunnel opening to up-
stream switches with channel dependencies with the link under test. These latter open
such tunnels right after pending packets are completed. See for instance switches 9
and 14 in Figure 6.2(c). However, tunnels between 84, 9-5 and 15-11 are not opened,
thus avoiding the need for dedicated multi-hop signaling. The novelty is that these
switches then iterate the mechanism with their upstream switches in the screll-up to-
ken propagation graph. That is, they pretend that tunnels are fired tokens, and try to
fulfil the requirements to fire these tokens. For instance, switch 9 will handshake with
switches 8 and 13 the opening of tunnels on the connecting links. Once this is com-
pleted, and switch 9 has internally processed all pending old traffic, tunnels between
9-10 and 14-10 will be closed, since all the traffic routed across those links will belong
to the new routing function (that is, no traffic at all}. Overall, tunnels are propagated
backwards along the token propagation graph, till they reach the OS8Ry, root node.

This mechanism overlaps the token partial and residual scroll-up phases.

6.5.2 Eager tunnel request

When switch 11 in Figure 6.2{d) receives the token from switch 10, it temporarily

misses a token from south to fire. In order to avoid multi-hop dedicated signaling

112

6.6 Mechanism at work

between 10 and 15 to open a tunnel in that location, switch 11 directly asks switch 15
for the missing token through an eager token injection handshaking. Switch 15 opens
the tunnel, then in turn applies tunnel propagation with its upstream switches in the
token propagation graph. This mechanism is applied by all switches in the network
as they receive an incoming token, and speeds up the reconfiguration process signifi-
cantly. In particular, it is applied also by switch 6 at the opposite side of the link to
be put offline. In that case, the switch receives the token from the link under test, and
handshakes tunnel opening on those input links that have routing dependencies with
the target link. The relevant aspect here is that a few such input links will belong to
the scroll-down phase. In turn, switches opening tunnels will propagate them further
upstream, thus speeding up the partial scroll-up phase, and overlapping it with the
scroll-down phase. Eager tunnel request raises a new condition for stopping tunnel
propagation. This latter finishes not only when tunnels reach the OSRys. root node,
but also when tunnel backward propagation is requested for a link which has {or is fir-

ing) a token. In that case, the tunnel is closed. An example is illustrated in Section ©.6.

The ultimate effect of our optimizations can be understood as though several spots
were enlarging simultaneously on a white surface, thus coniributing to cover the whole
surface in the smallest possible time. Tunnels ave the borders of such spots. As the
tunnels propagate as a wave, the incident traffic is de-routed to the escape network,
since it is old traffic that is trying to enter a new domain. In ovder to limil the overall
mechanism to a faull region, I enforce that boundary switches of the fault-region do
not issue token injection requests for switches outside the region. For this, 4 region
connectivity bits per relevant fault 1D are needed for each switch. I computed 12 table

entries per switch for this purpose.

6.6 Mechanism at work

Let us consider a 4x4 mesh and the link between routers 8 and 9 becoming faulty
(although still operational) or under test. Figure 6.3 illustrates the mechanism at work.
The sequence of events is displayed under the assumption that token propagation inside
switches takes 3 cycles as from the RTL characterization in [128]. In contrast, tunnel
opening requests are processed in one cycle.

After detecting the fault event on the link (Figure 6.3(a)), the two switches, con-
nected to the link, trigger the reconfiguration process by sending token/tunnel acti-
vation requests to neighbor switches to open tunnels at some of their output ports
{those with dependencies with the link under test, see Figure 6.3(b). Once tunnels are
opened (Figure 6.3(c)), and after an emptying transient of in-transit traffic of at least 3
cycles, switches 8 and 9 guarantee tokens are triggered through the faulty link (Figure
6.3(e)). Indeed, all input dependencies of the output port connected to the faulty link

113

Chapter 6: Ultra-low latency, scalable and distributed reconfiguration

@@E}@@

8=

T 0 L1
- B - B - B

o

=

i i P £
lo=m—=m

7,

(a) Detection of a link fault (b) Token requests triggerad {c) Tunnel Creation
(2} @ ==
& gl Al L el oAl
[a}=5)

o)
A
. Wy

A
1o
ER

N

(d) I'oken request at boundaries (e) loken propagation on the (f) Tunnel propagation
link.

Figure 6.3; Tunneling Mechanism at Work.

are either inexistent or there is a tunnel at the input port. Thus, it is guaranteed that

no old traffic in any direction will arrive needing to cross the failed link.

Figure ¢ .2(c) shows the initial location of tunnels {at N output ports of routers
12 and 13, at 5 output port of router 5 and at W output port of router 10} and
their equivalence with tokens at upstream switches of tunneled ports. Once tunnels
are opened, they trigger new tunnels (Figure ©.3{c)). In particular, switch 12 and 13
request tunnel propagation to the east, since without a tunnel from there it is not
possible to close their tunnels on the north ports (see token propagation requirements
in Figure 5.1). However, switch 13 is on the boundary of the fault-region, therefore
its request is dropped (equivalent to an incoming token in Figure ©.2{d)). Similarly,
tunnel opening requests from switch 10 (affecting both scroll-up and scroll-down links)
will be dropped. Finally, only one request from 5 is served (Figure ©.3{d}). Always in
Figure ©.3(d), switch 4 is showed to be further propagating tunnels at its inputs.

PN

In Figure ©.4(e) the normal OSRj;. token propagation cccurs. In particular,
switches 8 and 9 have completed the processing latency of their input tokens and
can fire this token on the cutput ports. Interestingly, I can see that the tunnel request
from switch 4 iz not served because a token is concurrently fired by switch 8 on the
connecting link. After 3 cycles, the tunnel between 4 and 5 will be closed (it would be

logically in Figure ©.3(g), not shown}. It is exactly at the point in time illustrated by

114

6.7 Experimental evaluation

IO Y

o OSRLite | Global TUNNEL
Sa0 - E

[cye

RECONFIGURATION LATENCY

Figure 6.4: Reconfiguration Latency in a 4x4 mesh: baseline OSRpe(red), Global
TOSR (Blue) and optimized Local TOSR (vellow).

Figure ©.3(e} that the link under test is actually put offline.

Finally, in Figure ©.3(f) tokens coming out from switch output ports have closed
the associated funnels. Here, token propagation becomes apparent, since the initial
tunnels have disappeared by crossing the fault region boundary, and a derived tunnel
is gtill open awaiting to disappear in the same way.

In order for the reconfiguration process to complete, a few scroll-down links are left
{in black in figure), whose reconfiguration will be triggered by switch 5. This latter in
fact has all conditions to fire a token to the west, which will in turn cause the token

propagation across the remaining links,

6.7 Experimental evaluation

We evaluate our mechanism using an R L-equivalent SystemC model of the xpipeslite
NoC architecture 126 and considering 4x4 and 8«8 2D mesh topologies. | first analyze
the reconfiguration latency, then the mechanism overhead, and finally the coverage and

the performance impact.

6.7.1 Reconfiguration latency

We evaluate the reconfiguration latency in an unloaded 4+4 mesh network. [perform
the analysis for every 1-link failure and for three different mechanisms. The first one
represents the native OSKEp;. mechanism. The second and third ones represent our
mechanism {Tunneled OSSR, TOSR) with and without its limitation to the fault-region.

As Figure 5.4 shows, the baseline OSRpy. mechanism (in red) provides a uniform
reconfiguration delay, as O5RK invelves a global reconfiguration process, involving the
whole network and starting from the root node. I did not consider possible signaling
needs with the global controller, nor the new routing function computation of this

latter, but only the pure reconfiguration latency. In blue, [show TOSRK without the

115

Chapter 6: Ultra-low latency, scalable and distributed reconfiguration

s
o
o]
e
]

1200 A

[cycles]

1000 A

800 -

&00 -

400 -

200 -

a

OS5R Global Local TUNNEL BLINC ARIADNE
TUNNEL

RECONFIGURATION LATENCY AVG

Figure 6.5: Average reconfiguration Latency in an 8
fault-region optimization. As 1 see, reconfiguration latency is always better than the
baseline solution with OSRry.. This reduction iz achieved as the tunnel approach
speeds up the reconfiguration process during both the screll-up or scroll-down phase.
As T can chserve, TOSR. triggered at failures in the center of the mesh achieve lower
reconfiguration times as the scroll-up and scroll-down phases are balanced and take the
same time. Contrary to this, at the corner of the mesh (link F0) TOSR highly depends
on the scroll-down phase which is slower as it needs to wait for the token given by the
scroll-up phase to be created with tunnel mechanism.

Finally in vellow, the figure shows the TOSR reconfiguration when the fault-region
optimization is included. In our casze, the defined region includes from 5 up to 8 routers.
As T can see, Local TOSR achieves faster reconfiguration times ag the reconfiguration
domain is much smaller. The reconfiguration dynamics are also changed, since faults
in the middle of the NoC cause the largest fault-regions to be reconfigured.

Figure 4.5 shows the average reconfiguration latency for an 8«8 mesh network, We
add available results for BLINC and ARIADNE for this network size (extracted from
their publications). Only for {Local) TOSR, I consider the worst case latency. Clearly,
TSOR. achieves about 35% of speedup with respect to the closest competitor, that is
BLINC, under the same operating conditions. While BLINC's latency grows wealkly
with the network size {15% from 8x8 to 10x10), TSOR. worst case latency stays constant
because the maximum fault bounding region (8 switches) has already showed up in an

&x8 network. Therefore, our gap with BLINC widens.

6.7.2 Area overhead

We express area overhead in ferms of number of additional register bits that each
mechanism under test requires with respect to the baseline architecture not capable of
reconfiguration. Considering the worst case of TOSR, as shown in Table 0.7, it scales

better then other solutions proposed because of the fixed maximum dimension the re-

6.7 Experimental evaluation

MECHANISM | 88 2I) mesh | 16x16 2D mesh
TOSR 464 464
BLINC 648 2368

Table 6.1: Area overhead in terms of register bits.

gion to be reconfigured can reach. We have to consider that, as shown in [56], in the
worst cage a router can be involved in 16 faults, so it needs 26 LBDR, bits for each fault.
This creates an overhead of 416 bits per switch. Additionally, to support the TOSR
optimization with the token propagation localized in a region around the failure, I need
4 extra Connectivity bits to inform a router that it’s on the boundary of a reconfig-
uration region, so it has to absorb the token request during the propagation. Also in
this case [have to consider that a switch can be part of different region boundaries,
depending on the position of the fault that is occurring. In the worst case, I calculate
that a switch can be part of 12 boundaries, giving 48 additional bits. Already in an
8x8 mesh, this result outperforms BLINC’s one, essentially due to its preference list to
provide good-enough emergency paths.

As the table shows with a 16x16 mesh, while TOSR. stays constant, BLINC’s re-
quirements skyrocket, due to the longer children sets and preference list, clearly denot-

ing a lack of scalability of this latter scheme.

6.7.3 Impact on packets’ latency

BLINC is too conservative and does not exploit the routing capabilities of SR since mul-
tiple valid paths are possible from any pair of source-destination nodes. This negative
impact can be alleviated in BLINC by using the expensive preference list table. In con-
trast, with our mechanism, I manage to use minimal paths for every source-destination
pair even when the failure is present. This is achieved since I rely on already com-
puted entries for all the one-link failure cases. Non-minimal paths are taken only when
bypassing the failed link, thus being minimal for the topology with the failure. As a
result, our mechanism yields a steady state with better-performing routes. Figure 6 in
84| quantifies this penalizing gap for BLINC as an increase by 3% of the average hop
count with respect to optimal routes, the same optimal routes that this work provides.

Next, [then explore the impact of tunnel opening on the two coupled networks
during the reconfiguration transient. We consider two 4 x 4 mesh NoCs. The injectors
are synthetic testbenches set to generate uniform random traffic.

The first experiment is set considering a medium injecting rate on the network
under reconfiguration, with 0% injection rate on the escape network. A reconfiguration
is triggered after 45 cycles of the simulation, when the link between switches 8 and 9
needs to be put offline. Figure 6.6 shows instantaneous maximum packet latency over

time. Our approach gives improvements from 1% to 11% with respect to OSRpjie,

117

Chapter 6: Ultra-low latency, scalable and distributed reconfiguration

£
(4]
y

OSR-opt [[777] Local TUNNEL

W b
[Er B -]

B R
[Lr B~]

[
@ wm

o W

Ly
i 20 3¢ 40 50 &0 FO B0 S50 100 110 120 130 140 150 16D

EXECUTION TIME[cycles]

MAXIMUM LATENCY [cycles]

Figure 6.6: Impact on upper-network considering a medium injection rate.

5]
&

| ' NO RECONFIGURATION
Local TORS

e
B
=

[V B
[= IV

Pud
(¥l

od
[=]

[y
W
1

[
[= TR 1 I =]
1

MAXIMUM LATENCY [cycl

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

EXECUTION TIME][cycles]

b

Figure 6.7: Impact on escape network traffic considering a 5% injection rate.

and an average improvement of 6%, which means the escape network is providing
the expected improvements in performance predictability during reconfiguration. It
iz worth recalling that the OSRpj. variant used here is the one which vields quasi-
transparent reconfiguration from Chapter 5, hence it is not the native OSRys., which

a7

would have been trivially outperformed by 40%.

The counterpart of opening tunnels is a perturbation on the traflic in the escape
network. 1 test this effect considering two different setups: first considering 5% of the
traffic from the masters injected into the escape network, then 40% . In the former
cage, the effect of having tunnels opened causes less than 9% worst-case increase of
the maximum latency (Figure ©.7}, while in the latter case, due to a bigger amount of
traffic in the network, the latency is worsened by about 45% in the worst case (Figure
f.2). But being the reconfiguration mechanism very fast, this perturbation dies out

quickly {roughly 30 cycles).

6.8 Summary

R
(%]
1

[] NORECONFIGURATION
[] Local TORS

W b
LV L B =]
L L
]
|
1
]

N W
vl O
I !
|
|
]
|
]
|
|

[=Y
o wn
1 1

(=T |
1

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
EXECUTION TIME[cycles]

MAXIMUM LATENCY [cycles]

Figure 6.8: Impact on escape network traffic considering a 40% injection rate.

6.7.4 Coverage

Coverage for n-failures is defined as the percentage of n-link failure combinations in a
2D mesh that are supported by the BLINC states that is able to support any failure
combination whenever every link failure is localized on a different segment. This is a
property of the SR algorithm since it keeps connectivity and deadlock-free conditions
by constructions. Indeed, a failed link represents a turn restriction located inside the
segment. Therefore, BLINC achieves 100% coverage for 1-link failure cases. For link
failure combinations with two failed links in the same segment BLINC relies on an
external and conservative solution that will recompute the algorithm again. Therefore,
BLINC does not achieve (by its own) 100% coverage for 2-link failures and beyond. Our
mechanism achieves the same coverage of BLINC since it also relies on the segment-
based approach. That is, I achieve 100% 1-link failure coverage. For 2-link failures the
coverage 1s 98.8% for an 8x8 mesh, which grows to 99.3 for a 10x10 mesh. The proof
is in [56], since it relies on a similar table of encoded 1-link faults, but implemented in
software. As stated in that work, failure combinations are compatible in the sense that
the correct actions to perform in the network is the addition of each individual action
to handle each link failure. Coverage increases with network size since the number of
segments increases as the network size increases. For the remaining cases, like BLINC |
rely on an offline re-segmentation process. However, the application of the new routing

function is facilitated by the fact that OSRy. Is already in place.

6.8 Summary

In this chapter, I show that the synergistic exploitation of multiple physical
networks can lead to a fast, low-impact and scalable dynamic reconfigura-
tion of the routing function at runtime. We bound the area affected by a fault,

and devise a mechanism for the fast yet controlled switching of the routing function to

119

Chapter 6: Ultra-low latency, scalable and distributed reconfiguration

the new epoch in it. I rely on concurrent token and tunnel propagation, thus quickly
moving the boundaries between new-old traffic and old-new traflic respectively. We
show minimum perturbation of the escape NoC, and only for an overly short amount
of time with respect the reconfiguration latencies of competing approaches. The mech-
anism can finally scale to a large number of cores, since the bounding area of faults

stays the same.

120

Chapter 7

FPGA Prototyping

Today the converging trend toward multifunction integrated architectures is slowed
down by the lack of a proper runtime reconfiguration framework of the on-chip in-
terconnect. A runtime reconfiguration is needed whenever the occurrence of events
at runtime causes the need for a different resource allocation, such as in the cases
for graceful degradation of system performance, power management, thermal control,
etc. This thesis has been focused on developing design methods to introduce such a
dynamism into the on-chip network, to cope with the highly dynamic environments
modern systems need to face, enabling virtualization and space-division multiplexing
of the resources . This chapter reports on the prototyping of the design methods de-
veloped in previous chapters on a Xilinx Virtex-7 FPGA using Xilinx Vivado IDE and
[P Integrator to create the svstem. Boot-time configuration, runtime reconfiguration
of the routing function and dynamic virtualization of the interconnect fabric are es-
pecially validated on the FPGA prototype, where a 4x4 multi-core system has been
implemented and managed. The advanced form of platform control is achieved via

hardware/software co-design and co-optimization.

Key novelty: implementation and functional validation of the design methods on
a FPGA board, furthermore evaluating area overhead and critical path after synthesis

and Place & Route. First real use case: online selective testing.

7.1 Introduction

NoC design principles have recently reached a stage where they start to stabilize, in
correspondence to their industrial uptake. In fact, NoCs are an indisputable reality
since they implement the communication backbone of virtually all large-scale system-
on-chip {SoC) designs in 45nm and below.

On the other hand, the requirements on embedded system design are far from

stabilizing and an unmistakable trend toward enhanced reconfigurability is clearly un-

121

Chapter 7: FPGA Prototyping

derway. Reconfigurability of the HW /SW architecture would in fact enable several
key advantages, including on-demand functionality, on-demand acceleration, shorter
time-to-market, extended product life cycles and low design and maintenance costs.
Supporting different degrees of reconfigurability in the parallel hardware platform can-
not be however achieved with the incremental evolution of current design techniques,
but requires a disruptive and holistic approach, and a major increase in complexity. At
the same time, fault tolerance was previously an issue only for specific applications such
as aerospatial. Today, due to the increased variability of components and breadih of
operating environments, reliability becomes relevant to mainstream applications. Sim-
ilarly, new reliability challenges cannot be solved by using traditional fault tolerance
techniques alone: the reliability approach must be part of the overall reconfiguration

methodology.

In the highly parallel landscape of modern embedded computing platforms, the
system interconnect serves as the framework for platform integration and is therefore
kev to materializing the needed flexibility and reliability properties of the system as a
whole. Therefore, time has come for a major revision of current NoC architectures in

the direction of increased reconfigurability and reliability.

In addition, a key property that novel NoCs cannot miss is to guarantee a poten-
tially fast path to industry, since NoC deployment is today a reality. An important
requirement for this purpose is the efficient testability of candidate NoC architectures.
This property is very challenging due to the distributed nature of NoCs and to the dif-
ficult controllability and observability of its internal components. When I also consider
the pin count limitations of current chips, I derive that NoCs will be most probably

tested in the future via built-in self-testing (BIST) strategies.

Finally, there is an increasing need in embedded systems for implementing multiple
functionalities upon a single shared computing platform. The main motivation for
this are the constraints set for systems size, power consumption and/or weight. This
forces tasks of different criticality to share resources and interfere with each other.
Integration of multiple software functions on a single multi- and many-core processor
(multifunction integration) is the most efficient way of utilizing the available computing
power. For a mixed-criticality multifunction integration, the NoC should be augmented
to support partitioning and isolation, so that software functions can be protected from
unintended interferences coming from other software functions executing on the same
hardware platform. This feature is a key enabler for the virtualization of embedded

systems, that is, an effective and clean way of isolating applications from hardware.

This chapter reports on the prototyping of a Network-on-Chip capable of supporting
all of the advanced features described above. The presented prototype on the GP-
NaNoC switch the innovative design methods proposed in this thesis, raising the level
of abstraction of the network as whole, envisioning it to work as hardware support

for highly dynamic environments required by modern heterogeneous systems. Then

122

7.2 FPGA platform

LT ponna Taobg MednilFppes Liram Flesy
il fdimah LiP bl

Figure 7.1: VC707 bageline prototy ping board.

it validates the (re-) configuration capabilities that preserve safe network operation in
the presence of wanted {e.g., virtualization) and unwanted {e.g., manufacturing defects,
intermittent faults) effects, relying on the most optimized OSE mechanism developed
in thiz work with the synergistic uze of multiple networls, The prototyped svstem
implemented ingide the FFPGA iz a homogeneous multicore processzor, which resembles
programmable hardware accelerators of hierarchical, high-end embedded systems, or
bagic computation clusters of many-core proceszors.

The rest of the chapter iz organized ag follow . I deseribed the prototyping platform,
reprezented by the Xilinx Virtex-7 evaluation board named WVOCF07, then the readers
can find the high-level view of the platform, where I provide an overview of the dezign-
Aewr for platform implementation and present the bagic components adopted in the
demongtrator that iz composed of a NoC-bazed gystem and a supervizion syetem; finally
it deseribes the application and the reconficuration algerithm running respectively on
top of these latter syatems. Mext in thizs chapter I demonstrate runtime reconficuration
of the routing function upon transient failures, hichlichting the dynamic virtualization
of the interconnect fabric. Finally I present a posgible application of this desion that

ig runtime testing.

7.2 FPGA platform

The target system to prototype iz overly complex, hence calling for high-end FPG As
and development boards, not to incur integration capacity limits.

The Virtex-7 FPGA VZ707 Evaluation Kit was gelected for our tazk, It iz a full
faeatured, highly-flexible, high-zpeed gerial bage platform uging the Virtex-7 XOCFVXH
458T ZPPG 17810 and includes bagic components of hardware, desion tools, IF, and
pre-verified reference designs for system desions that demand high-performance, serial
connectivity and advanced memory interfacing., The included pre-verified reference
designs and industry-standard FPGA Mezzanine Connectors (FMC) allow sealing and

123

Chapter 7: FPGA Prototyping

customization with daughter cards. The XCTVX485T FPGA features 485760 logic

cells,

75900 CLB slices, 2800 DSP slices, 37080 kb of block RAM, 14 total 1/O banks

and 700 max. user 1/0O.

The key features of the evaluation board {see Figure 7.1} are as follows:

GA VC707 Evaluation Kit: ROHS compliant VC707 kit including the XC7TVX
485T 2FFG 1761 FPGA

Configuration: Onboard JTAG configuration circuitry to enable configuration
over USB, JTAG header provided for use with Xilinx download cables such as
the Platform Cable USB II, 128MB (1024Mb) Linear BPI Flash for PCle Con-
figuration, 16MB {128Mb) Quad SPI Flash

Memory: 1GB DDR3 SODIMM 800MHz / 1600Mbps, 128MB (1024Mb) Linear
BPI Flash for PCle Configuration, SD Card Slot, 8Kb

Communication and Networking: GigE Ethernet RGMII/GMII, SGMII,
SEP+ transceiver connector, GTX port (TX, RX) with four SMA connectors,
UART To USB Bridge, PCI Express x8 gen2 Edge Connector (lay out for Gen3).

Display: HDMI Video OUT, 2 x16 LCD display, 8X LEDs

Expansion Connectors: FMC1 - HPC (8 XCVR, 160 single ended or 80 dif-
ferential, user-defined pins), FMC2 - HPC (8 XCVR, 116 single ended or 58
differential user-defined pins), Vadj supports 1.8V, 11C.

Clocking: Fixed Oscillator with differential 200MHz output used as the system
clock for the FPGA, programmable oscillator with 156.250 MHz as the default
output, default frequency targeted for Ethernet applications but oscillator is pro-
grammable for many end uses, differential SMA clock input, differential SMA
GTX reference clock input, Jitter attenuated clock used to support CPRI/OB-
SAT applications that perform clock recovery from a user-supplied SFP/SFP+

module,

Control and 1/0: 5X Push Buttons, 8X DIP Switches, Rotary Encoder Switch
(3 1/0), AMS FAN Header (2 1/0).

Power12V wall adapter or ATX, Voltage and Current measurement capability.

Debug and Analog Input: 8 GPIO Header, 9 pin removable LCD, Analog-
Mixed Signal (AMS) Port.

7.3 Baseline System

An ambitious Virtex 7 FPGA-based platform was conceived for this research project.

The high-level view of the design can be found in Figure 7.2, Here [present the baseline

124

7.3 Baseline System

SN EEN I S EEN EEE EED SN SEN GEE EEN SN SN BN S Ay,

. i

Main NoC FPGA I
‘Supervisor M

MicroBlaze - — I

DRAM | g | |pg| DualneC)~ B ' I

Controller Receiver W,

il

o (18] . = EI

e oy,

s

Memary

Dual NoC |,
Driver

Interrupt
Controller

s

AXl Bus

Dual NoC |

. J

\————————————————

E:Xilinle D | .=NaNoCIP

Figure 7.2: FPGA platform overview.

system that is the starting point of my work and that I enhanced with new features
developed in this thesis.

The system comprises a large number of components within the FPGA. As can
be seen on the left side of the diagram, a relatively standard Xilinx subsystem is
instantiated first; this comprises an AXI interconnect linking together a MicroBlaze
{to run the supervision software), a small memory and an external DRAM controller,
and several peripheral controllers required to run software on the MicroBlaze and to
communicate with a laptop.

The right side of the diagram depicts the components that have been modified in
this thesis, including some that were specially developed for the FPGA prototype and
will be presented in this chapter. This part of the system, after my modifications is the
" Device Under Test” of the platform, whose functionality is to be verified. It comprises

mainly:

= The main NoC, built as a 4x4 mesh of the GP-NaNoC switch architecture pre-

sented previously.

s The dual NoC, built as a chain that follows the topology of the main NoC.
The dual NoC is in charge of configuring the main NoC and of collecting status

information (e.g. fault detections) from the main NoC.

» At each node of the main NoC (see also Figure 7.4), a MicroBlaze and a memory
{by Xilinx) are connected to the switch by means of Network Interfaces. The
MicroBlaze NI has an AMBA AXI NI while the memory is given an AMBA AHB
NI.

125

Chapter 7. FPGA Prototyping

Platform
Instantiatien

ol In Xilinx Wivado IP

S Integrator

Generation
Manual
Toplevel
Editing

Mol RTL

i
y
Metlist
Generaticn

In Xiling Wivado IDE

Map, Place,
Route,
Bitstream Gen

Figure 7.3: Design flow for platform implementation.

s Two special blocks have been designed in this thesis to connect the dual NoC
to the supervision subsystem. These blocks allow the supervision MicroBlaze to

receive notifications by the dual NoC, and to reprogram it.

s A sniffer module monitors traftic along all links of the main NoC mesh, computing
link utilization. It is designed so that the supervision subsystem can probe it at

regular intervals and transfer its contents towards a user’s laptop.

s A fault injection module has been instantiated along a mesh link. This simple
module, connected to a physical button on the FPGA board, provides a method
to inject faults on that link to test the platform’s fault-tolerance and the NoC

reconfiguration capability..

To build this platform, I proceed in steps (Figure 7.3). First, | instantiate within
Xilinx Vivado IP integrator a complete design comprising all the supervision subsystem,
the 16 additional MicroBlazes, and the corresponding 16 memories. At this stage, no
NoC is instantiated yet. Using Vivado for this task allows us to efficiently connect
and configure all the Xilinx blocks, and facilitates the instantiation of the top-level
HDL files. Additionally, this makes it possible to subsequently load the applications
into all 17 MicroBlazes memories, and to debug those processor step-by-step, directly
through the Xilinx toolchain, which is Eclipse-based. After the first pass of synthesis,
however, we remove from the design the Xilinx AXI subsystem which is connecting
the 16 additional MicroBlazes and memories, and swap in the NoC (main and dual)
in its place. I then proceed to finish the implementation flow within Xilinx Vivado
by performing mapping, placement and routing, and generating the final bitstream.
We leverage some key features of the Virtex 7 board, apart from the FPGA chip.
The on-board DRAM is used to provide sufficient space for the software running on

the supervision MicroBlaze to work. Physical buttons and switches of the board are

126

7.3 Baseline System

connected to an on-chip GPIO controller to allow the user to interact with the platform.
Finally, a laptop can be connected to the board by means of two cables to monitor
the platform’s operation; one cable carries serial port signals (piggybacked onto a USB
port) and the other carries JTAG signals (also piggybacked onto a USB port). The
former is used to read the board’s outputs, while the latter allows for programming the
board and interactively debugging the on-FPGA MicroBlazes. An Ethernet cable had
initially been considered instead of the serial interface, in light of its higher throughput,
but the Ethernet PHY of the board was found to be defective.

Custom-written software runs in three locations of the system: on the supervision
MicroBlaze, on the 16 MicroBlazes connected to the main NoC, and on the external

laptop.

= The software on the supervision MicroBlaze is tasked with oversight of the main
NoC and data NoC, with regular polling of the Traffic Sniffers, and with inter-

facing with the external world through the serial interface.

» The 16 MicroBlazes connected to the mesh run micro-benchmarks developed in
this thesis. These micro-benchmarks have the main role of generating traffic
on the mesh, so that the various platform features can be tested. Real func-
tional behaviour was implemented: the nodes perform pipelined matrix multipli-
cations, exchanging data in producer-consumer fashion. More advanced applica-
tions could not be implemented due to the lack of I/O interfaces on these nodes

and due to lack of memory to instantiate a full C library.

s The user’s laptop is connected to the board through a JTAG-over-USB cable
and a serial-over-USB cable. The former can be leveraged mainly by the Xilinx
toolchain, allowing for board programming and debugging. The latter is moni-

tored to display in real-time the platform status and link utilization

7.3.1 DBasic components: the on-chip network

A 4x4 mesh with one core and one memory per switch has been chosen as target on-chip
network of the FPGA platform. In particular, Figure 7.4 represents the basic compo-
nents instantiated to realize the 4x4 mesh. A MicroBlaze and a memory are connected
to each switch through two Network Interfaces. Finally, a sniffer is placed on each bidi-
rectional network link to monitor the network traffic. The sniffers collect information
about the traffic crossing the switch-to-switch and NI-to-switch links and deliver such
information to the global manager (i.e., the supervision MicroBlaze). Both the Nls and
the switches have been designed ad-hoc to support the target on-chip network where
fault-tolerance, testing capability and reconfigurability features are guaranteed. Note
that the MicroBlaze also includes a directly-connected BRAM of 128 kB (not shown in

the figure) to store its application software; loading the binary image of the application

127

Chapter 7: FPGA Prototyping

WEST bx6 | | EAST

&
&
o

SOUTH
SW

Figure 7.4: Basic components of the on-chip network.

into the AHB memory would be unnecessarily problematic from the toolchain view-
point. However, [explicitly use the AHB memory as storage and for inter-processor

communication in the application.

Network Interface

We instantiate two types of NIs: an AXI initiator NI to interface with the MicroBlaze,
and an AHB target NI to interface with the memory. This choice was deliberate (e.g.,
both could have been AXI) to demonstrate interoperability among the two. NI used

=

in this implementation is reported in Figure 7.5

Due to the relatively simple needs of the MicroBlaze core, which does not support
multiple transaction IDs, I save area by instantiating a small AXI initiator NI with
support for only one such I1D. However, the NI is still supporting all AXI features. Both
AXI and AHB Nlg, and their interoperability, were extensively tested in RTL and on
the FPGA.

The Switch

The GP-NaNoC switch architecture adopted in this work is an extension of the GP-
NaNoC switch presented in the previous chapter. The switch implements logic-based
distributed routing (LBDR), relies on wormhole switching and implements both input
and output buffering. The crossing latency is thus 1 cycle in the link and 1 cycle inside
the switch. This section briefly summarizes the key features of the switch together

with the extensions introduced to meet the target FPGA platform requirements.

128

7.4 System Under Test with Xilinx Vivado

Initiator NI Target NI
ni_request ni_receive

Reuting
LuT

[

Buffer «ffww wm e | Buffer

Payload Reg | Header Reg
Payload Reg | Header Reg

FSM

I
1
|

Master

!

Pending | npi_response ni_resend Pending
Trans Reg Trans Reg

Reuting

Slave

an an
3 3
= =
5 q_I_ LT Jy—— Z
© I ©
3 3
oo o
Buffer ‘Illl' Burffer
P .J_ | | =
3 3
= =
k= k=
@ @
42l 4zl
& FSM FSM &
-8 - -8

Figure 7.5: Network Inteface blocks diagram.

Routing Logic extensions

In principle, the LBDR selection logic computes the destination output port by reading
the destination address information contained in the header flit of each packet. In
particular, the LBDR. logic performs a comparison between the destination address
{Dest ID) and the local switch ID (Local ID). When the local switch ID matches
the destination address, the packet is forwarded to the local port (i.e., to the core).
However, the FPGA platform is enhanced with two nodes per switch thus each switch
integrates two local ports. As a result, further information must be added to the
incoming destination address of the header flit and the LBDR logic must be extended
to determine whether the packet should be routed to the first or the second local port.
The destination address information has been extended by 1 bit (Core Flag). The
additional bit is exploited to determine the target core at the destination switch. If
Dest ID matches Local ID, the Core Flag bit is used to distinguish between the two

local ports.

7.4 System Under Test with Xilinx Vivado

The system described in previous section was realized before this thesis in Xilinx ISE
and Xilinx Platform Studio. Being 7-series boards moved to Xilinx Vivado, a new tool
provided by Xilinx, part of the work for this chapter consist of porting the original
platform code to let it work in Vivado Design Suite. This step is fundamental because,
as shown in Figure 7.6, the new tool guarantees a better optimization of the resources
utilization of the FPGA, enabling to implement the escape network that is at basis
of the optimization of the reconfiguration mechanism, and also cuts-off the synthesis,

place & route and bitstream generation times.

129

Chapter 7: FPGA Prototyping

Resources Utilization

22%
W ISE
m Vivado

Figure 7.6: Different resources utilization in terms of Look-Up Table: ISE vs. Vivado

7.4.1 The physical platform implementation

After the porting steps, modifying the needed blocks, I finally implemented in Verilog
and VHDL code the enhanced routing reconfiguration mechanism, enriching the routers
of new features and implementing also the logic to support and control the tunnels-
tokens propagation, as reported in Figure 7.7.

Again, it is necessary to point-out that, doubling the networks and adding new
logic, finally having the opportunity to test the system is feasible thanks to Vivado
that runs optimized synthesis (up to 250MHz for this system) and Place & Route

algorithms: in [SE in fact the total utilization of resources required by the new system

Figure 7.7: Escape network and tunnels mechanism implementation.

130

7.4 System Under Test with Xilinx Vivado

I D IR

Figure 7.8: Layout of the full FPGA design.

was not supported because it exceeded from the total memory of the FPGA.

sSome steps of the implementation flow described in Figure 7.3 can be parallelized;
for example, the initial platform description involves several blocks which can be in-
dependently synthesized in parallel. Ewven after joining all the pieces together, the
mapping stage can be run on two threads in the Xilinx toolchain, and the placement
and routing in four. Despite this, I measure end-to-end flow runtimes of about 5 hours
on a dual-chip Opteron 6378 (16 threads/core) server with 128 GB of RAM. [observe
peak memory utilization close to 10 GB during implementation. The layout of the
platform implementation can be seen in the screenshot of Figure 7.5, The occupation
of the FPGA resources is around 98%.

The very high resource utilization features impose a significant timing overhead as
routing necessarily becomes more convoluted and less efficient. I record a maximum

operating frequency of 100 MHz.

131

Chapter 7: FPGA Prototyping

Figure 7.9: Path followed throughout the network by testing token, to sequentially test
all the links.

7.5 New mechanism’s application: Lifetime Testing

The baseline mechanizm has a testing infrastructure that enables, at boot time, to test
at the same time all the links of the network, freezing the application and let it starg
after the end of the test phase. This does not match with runtime festing requirements.

So to cope with the latter ones, in this section, I describe the modifications needed

to enable runtime testing, relving on these main ideas:

w | implement a testing token propagation mechanism (based on different tokens,
not the reconfiguration mechanism ones. This token, reaching the switch, enables
the testing of the links of the router, that keeps the token uniil the end of the

-

testing. The token propagation is through dedicated links and follows the path

gshown in Figure 7.9, moving between adjacent switches.

s When a switch receives the token, it checks for the links that are not vet tested
{the testing procedure in fact involves the bidirectional links, so during the loop
propagation of the token some of them could he already tested and it is not
necessary to re-test them, and differently from the original testing phase, it tests
sequentially the remaining links, properly triggering the reconfiguration proce-

dure and keeping the possibility to rouie the traffic.

Thiz way, at the end of the testing token propagation, each link of the network
iz tested without making unavailable all the network: in the regions that are not
under test, indsed, the applications can run normally. As Figure 7.0 shows, I add a
timer to the design to let this testing be repeated after a pre-selected amount of time,

gunaranteeing to find faults, if present in the network, with a good responsiveness,

132

7.5 New mechanism’s application: Lifetime Testing

7.5.1 Mechanism at work

Being the testing on bidirectional links another modification is needed: in fact the
switch with the testing token needs to communicate to its adjacent switch that it must
test the logic connected to the link under test. To make this feasible, I add commu-
nication signaling between the two switches, to let them organizing the bidirectional
testing phase and control tokens and tunnels. When tokens from both the parts of the
link I want to test are produced by the logic inside the routers the real test of the link
can finally started, relying on BIST infrastructure, as seen before already part of the
baseline router.

In Figure 7.10 are reported the main steps of the complete testing mechanism,

better explained as follows:

» 1- Switch IDO (SWO) is the first that receives the testing token (triggered by the
reset, or boot, of the system once, then timed) and starts the test of its East link.
To dismiss the link, and this way avoid traflic to be injected through it, SW0O
send a tunnel request to switch 1D4 (SW4) because South port is the only one
having dependencies toward the east port of SWO0, so this latter needs to have no

traffic coming from that input port.

s 2-3- SW4 receives the request from SWO and, after the tail of the current packet
routed towards SWO has been processed, it can finally open the tunnel. All the
packets from SW4 to SWO are now tunneled in the escape network. A signal,
the same that triggers the opening of the tunnel, reaches also the input port of
SWO, mimic a real OSR token coming from South, thus hacking the original OSR
mechanism and let the local port to migrate its epoch to the new one, that takes

into account the unavailability of the east link.

s 4- SW0O ha now the routing function reconfigured and so can send a token to
East, informing switch ID1 (SW1) that SWO0 wants to trigger the thes of the
biderctional link. This way, an internal local manager allows SW1 to prepar to
test its West link for the testing phase.

s 5- Following the same steps of SW0, SW1 sends a tunnel request towards SW5
North port and SW2 West port, thus triggering the opening of the tunnels.

s G- As point 3, after waiting for the tail of the packet, SW2 and SW5 open the tun-
nels towards SW1, mimicing real tokens for OSR and triggering reconfiguration
of the routing function of SW1

» 7- Having received all the tokens from input ports that have dependencies with
the West port, thus ensuring that traffic cannot longer be routed on it until the

end of the testing phase, SW1 gends a token-out signal on its West link.

133

Chapter 7: FPGA Prototyping

Figure 7.10: Main steps of the testing mechanizm: lightblue arrows indicate the paths
towards the escape network.

e 5- Now, the logic at the basis of the mechanism ensures that no trafic can be
routed on the bidirectional link, so the effective testing, relying on BIST, can

finally starts to check if faults occurred.

When the testing phase of the link ended, the testing token is passed to SW1 that

will continue the selective and sequential test of its links.

7.6 Experimental results

7.6.1 Area overhead

Now [am presenting the results obtained after synthesis and Place & Route procedures

5

by Xilinx Vivado tool. Figure 7 11 shows the overhead at switch-level at 30%, mainly
due to look-up tables needed to encode a fault 113 and the necessary routing bits
that, being the mechanism not managed by a software hypervisor but distributed, are
necessary to understand and select the actions to trigger when a fault occurs. T'his can
be significant, but it represents a quite good trade-off considering the features that the
router now has.

The situation becomes better considering the whole system. In fact, as depicied in
IFigure 7.1 2, the routers represent a relative part of it and this let the total area overhead
decrease at 13%, that is acceptable. This result relies on the fact that the secondary
network is already present on-chip, but the mechanism introduces additional logic to
exploit it also for the reconfiguration procedure. The overhead considered in this case,
apart the relative contribution of the routers, iz due to multiplexers, demultiplexers,

signals and internal logic to manage the events and create the tunnels towards the

134

7.6 Experimental results

1 e)

Switch Baseline Switch Modificato

Figure 7.11: Area overhead: bageline switch vs. enriched switch enabling runtime
testing.

secondary network.

7.6.2 Critical path

There are no variations on critical path, because on both systems compared in this
thesis, it is due to a path that is not modified. This results is very promising because
it means that the additional logic does not burden the critical path of the system, thus

avoiding issues for the new svstem to correctly work on the FPGA board.

o

7.6.3 Reconfiguration time
o]

Now 1 move on taking into account the latency of the reconfiguration transient. To get
the results | consider a 4 x4 2D mesh withoui ongoing traffic and reported in Figure

o
[

350000
300000
250000
200000
150000
100000
BOG00
o
pdditional Logic g FEOL
B interfaces LIRTS 1TEIS
Brseape NoT LR Grasz
Hain Mol 109588 138478
W Host ZARED 2ARB0
WlualNol 245G 3456
yserohlazes 20528 n3ze

=

Figure 7.12: Area overhead: baseline system vs. system enabling runtime testing.

135

Chapter 7: FPGA Prototyping

F3 F4 F5 F6

4. E7 5 B8 1 6 F9 ‘.7

' 8 F14 g F15 .10 F1l6 it

V4

F20

|F17 F18

/ .ﬁlm’" /

12 [132 14 [) 15

Figure 7.13: Fault IDs for a 4 x4 2D mesh.

[OSR] TUNNEL [] TUNNEL-OPT

2 = B

4

]

n
=}

Axd Mesh: Reconfiguration Latency[cycles]
=

=
=]

Fo F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23
FAULT ID

[=]

Figure 7.14: Reconfiguration transient latency of different mechanisms: in red the
baseline OS8R, in blue a first optimization of the tunneled version and finally, in yellow,
the best optimization of the tunneled OSR.

As Figure 7.14 shows, consgidering different fault IDS, results are the same of Chap-
ter 6, thus proving that the SystemC cycle-accurate RTL simulator used is very good

to model real hardware, although the simulation times are very long.

[t is clear, observing the figure, that the optimized T-ORS provides to the system
enormous speedups, from the 40% of the worst case up to 65% in the best case. The
graph also depicts the distributed nature of the mechanism: reconfiguration transients
duration depends on the position on the network of the faults, while in the baseline

OSR, that is a global mechanism, that presents the same value for each fault position.

136

7.6 Experimental results

7.6.4 Impact on main network traffic

Finally [complete the system inserting test-pattern generators, i.e. traflic injectors, to
inject in the system pseudo-random and uniform traflic, to evaluate the impact on the
main network of the implemented mechanism.

Figures 7.15, 7.16, 7.17 show the latency of the packets to reach the destination,
consgidering testing windows of 500 cycles for each link, and specified for each link.
On the x-axis there is also information about the switches testing order, given by the
testing token propagation path shown before.

In Figure 7.15 I consider an injection rate of 40% on the secondary network (thus

the 60% of the traffic in injected in the main network). I can notice that:

s The minimum latency is constant for both the 2 systems, because there is always

a communication between a master and a slave on the same node.

» Variations of the maximum latency can be positive or negative (+ or - 10%)
due respectevely to uLBDR routing, that in presence of some faults routes the
packets on sub-optimal and longer paths, and to the de-congestion of some paths,
that means having less traffic because it is tunneled on the escape network con-

sequently speeding up the ”journey” to the destination of some lucky packets.

» The average latency is more or less the same (4 or - 3%) for the system with or
without runtime testing. This effects is due to the phenomenons depicted in the
prevoius points: de-congestion of some paths and longer available paths usually

mediate hetween each other.

» Trends are position-dependent due to LBDR algorithm that has an intrinsic pri-
ority of the output to be chosen when a packet needs to move to a particular

quadrant.

=

To complete this type of study Figures 7.16 and 7.17 present results considering
both 100% and 40% injection rate on the main network. The former presents always a
worst latency of the packets because the network is congested and the brief benefits of
opening tunnels are covered by having longer routing paths. The latter instead present
a little improvement of latency because in the secondary network there is not a lot of
traffic, so the de-congestion effect of the main network is less negligible.

If I consider the testing of the all links in the whole network (around 12000 cycles
being the amount of links to be tested 24), instead, as shown in Figures 7.18 and 7.19,
the effect that triumphs is de de-congestion of the network (relying on the fact that
the secondary network is not congested): in this case the total speedups reach 33%
of improvement, considering the best case and an injection rate of 100% on the main

networl.

137

Chapter 7: FPGA Prototyping

12000 cycles

LINK UNDER TEST
6000 cycles

OAVG

F6 F13 F9 F12 F8 F11 F7 F15 F18 F14 F16 F19 F20 F23 F22 F21 F17 F10 F3

OMIN B MAX
: [[
- F2 F5

I

FO

0 cycles

I \ q

| | | |

T T

o o o

=1 I
-

|
=} o o
=] LA 1=}
® ~ N

J1VdIONIdd 3134 V1134 LLLIHDDYd 13 VZNILY

o
—

350

Figure 7.15: Minimum, average and maximum rrival latency of packets to destination
considering an injection rate on the main network of 60% specified for links under test.
Horizontal lines are the references (min is green, max is red and avg is blue) concerning
the system without the runtime testing mechanism, without faulty or unconnected
links. On x-axis the simulation time is reported.

7.7 Summary

In this chapter I focused on prototyping the mechanism developed in Chapter 6 on
an FPGA board. First of all, [presented the baseline system on top of which I built
the augmented one enhanced by new features that enable the optimized mechanism of
distributed reconfiguration of the NoC routing function. I explained the fundamental
steps to port the old system code in Vivade environment tool, that provides a better
place & route and synthesis algorithm, and enables me to gain enough space on the

FPGA to implement the whole system. I evaluated this latter in terms of area overhead

138

7.7 Summary

L%
T 2

12000 cycles

LINK UNDER TEST
6000 cycles

J

F6 F13 F9 F12 F8 Fl11 F7 F15 F18 F14 F16 F19 F20 F23 F22 F21 F17 F10 F3

F5

F2

F4

O MIN INAX O AVC

FO
0 cycles

700
600

F1VdIDINIYd 3134 Y1130 11LLIHIIV 130 YZNIIYT

Figure 7.16: Minimum, average and maximum rrival latency of packets to destination
considering an injection rate on the main network of 100% specified for links under test.
Horizontal lines are the references (min is green, max is red and avg is blue) concerning
the system without the runtime testing mechanism, without faulty or unconnected
links. On x-axis the simulation time is reported.

{acceptable considering the whole system) and critical path (that does not change).
Finally I provided a real use case for the technology developed, paving the way for
real-time testing of many-core architectures. In conclusion, I asserted that everything
works fine on the board, focusing in particular on the transient of the reconfiguration
latency and on the impact over ongoing traffic in the main network, which is positive
especially with less traffic on the secondary network, since the main network is de-

congested.

139

Chapter 7: FPGA Prototyping

1
1
12000 cycles

F6 F13 F9 F12 F8 F11 F7 F15 F18 F14 Fl6 F19 F20 F23 F22 F21 F17 F10 F3

ol (-
| | \ | | a1 3
[| [\ [=
i
| | \ \ \ S |5
o | @
| | | | o
Z
-
|I | | \lH
| | \ \ \
| \ | |
|I | ﬁ
[a=0 | | | | |
;ll | ﬁ
T | | | | |
|:||| ! \ ! \lH
| | | |
>
< | \ \ \ -
= s
m | | \ | N
| | | | |
Z#%E
[| ! ! ! iy "
= & 2
| o
O | o g
| | \ | A8
: .
[=] [=] [=] [=] [=]) [=] [=]
~d [=] ca o =t (2]
— —

F1VdIINIYd 3134 Y1730 IL1IHIOVd 130 ¥ZN3LY1

Figure 7.17: Minimum, average and maximum rrival latency of packets to destination
considering an injection rate on the main network of 40% specified for links under test.
Horizontal lines are the references (min is green, max is red and avg is blue) concerning
the system without the runtime testing mechanism, without faulty or unconnected
links. On x-axis the simulation time is reported.

140

7.7 Summary

600
B Baseline System e By e
E00 i R
B Optimized System-BEST 33%
0
400 B ptimized Systerm-E RE T s
300
200
100 : .
27% 13% |
O L .

LatencyAVG LatencyMAX

Figure 7.18: Focus on the avg and max latency of arrival of the packets in the main

network considering an injection rate of 100% on it.

600
B Baseline System 00 9000 0000 9009000
500 TR ERTTed Setem BEST 69 e
400 B optimized System WORST Bumfonoinfooon g
300
200
D P SN S IR U OSSR i S I—

LatencyAVG LatencyMAX

Figure 7.19: Focus on the avg and max latency of arrival of the packets in the main
network considering an injection rate of 40% on it.

Chapter 7: FPGA Prototyping

142

Chapter 8

Optically-Enabled GPPA

In this chapter I focused on emerging technologies for the on-chip network. First of
all, I introduced a study that wants to prove that evolutionary technologies (e.g., asyn-
chronous GALS systems) or revolutionary ones {optical links and networks) can replace
the baseline synchronous electrical wires in the future, thus solving the issue about de-
livering the communication performance required by modern SoCs, within tight power
budgets. Then, focusing on the silicon photonic technology, I present a validation of
the potentials of Optical NoCs (ONoCs), by presenting the first hybrid GPPA aug-
mented with photonic interconnects. Finally, [bring this new platform within reach of
the SDM resource sharing paradigm (the core of this thesis) by proposing a strategy
to mitigate the laser power overhead. THe basic idea consists of switching off unused
laser sources, and to reuse activated sources as much as possible across computation
partitions. Last but not least, as as proof of concept, I envision a whole heterogeneous
parallel system, including the programmable manycore accelerator but also the host

and main memory, interconnected by a photonic interconnection fabric.

Key novelty: first GPPA augmented with photonic interconnects, and wvalidation
of te abatement of NUMA effects. SDM on top of photonically-integrated many-core

accelerators.

8.1 Optical NoCs: do they make sense?

Networks-on-chip (NoCs) are today at the core of multi- and many-core systems, act-
ing as the system-level integration framework. In order to support scaling to future
device generations, NoCs will struggle to deliver the required communication perfor-
mance within tight power budgets. In this respect, evelutionary as well ag revolution-
ary interconnect technologies are currently being considered. On one hand, clock-less
handshaking materializes GALS systems that completely remove the system clock while

reducing idle power to only the leakage power. On the other hand, the technology plat-

143

Chapter 8: Optically-Enabled GPPA

form could be changed, by replacing electrical wires with optical links and networks.
This work provides a comprehensive power analysis of the two technologies under test
on a path-by-path basis, by comparing them with each other and with a baseline syn-
chronous NoC. The outcome of this work can support the selection of interconnect
solutions for future many-core systems where power is the primary concern, as well
as the runtime selection policy of routing paths in the context of hybrid interconnect

fabrics.

8.1.1 Introduction

Multi- and many-core processing architectures typically comprise a number of identical
tiles, each one having computational capabilities, private and shared/distributed cache
resources [117, 95]. Tiles are tied up with an on-chip interconnection network (NoC)
that provides the communication and synchronization backbone for parallel applica-
tion threads [101, 86]. This implies a central role of NoCs as the system integration
framework. In particular, as the system size scales up and communication bandwidth
requirements force the system interconnect to operate in the multi-GHz domain, NoCs
will need significant research investment to overcome their limits in providing the ex-
pected performance within a reasonable power envelope [72].

This concern is paired with another challenge: chip-wide distribution of a global
clock is becoming a major design bottleneck, if at all feasible. While NoCs suffer from
the same concern, they also have to deal with the connectivity issue of multiple voltage
and frequency islands (VFIs)[103]. At this point the question arises: which interconnect
technology will be able to cope with both the power and the synchronization challenges
in future multi-core systems? Currently, two options can be envisioned as long-term
solutions.

On one hand, clockless handshaking is at the core of asynchronous NoCs, which
build up the communication infrastructure of globally asynchroncus and locally syn-
chronous (GALS)[25, 123] systems. This technology is on the evolution path of elec-
tronic interconnect fabrics, and has recently become more appealing as bundled-data
asynchronous NoCs [124, 55] are proving capable of relieving the area and power over-
head of traditional Quasi-Delay Insensitive (QDI) implementations, at the cost of ex-
posing a few timing constraints to the synthesis flow. However, practical viability of
asynchronous interconnect technology is still jeopardized by a long-lasting and still
unsolved issue: the lack of mature CAD-tools supporting design automation. This
is not only an issue of design productivity and flexibility, but also of suitable design
optimization.

On the other hand, I can take a more revoluticnary approach by changing the tech-
nology substrate, and opting for silicon nanophotonic links and networks [77]. On-chip
photonics holds promise for low-latency, bitrate-transparent, weakly distance-sensitive

and bandwidth-rich communication [137, 12]. This has a number of architectural impli-

144

8.1 Optical NoCs: do they make sense?

cations as well, such as the abatement of NUMA effects. However, translating the raw
features of optical networks into actual system-level performance and power benefits
is non-trivial, since they revolve around heterogeneous technology integration. First,
they are highly sensitive to static power (i,e., due to laser sources and thermal tun-
ing). Second, the electronic-photonic interface is a main source of overhead not only
at the circuit level for domain conversion, but also at the architecture level. Third,
feasibility of this emerging interconnect technology depends not only on the maturity
of optical components, but essentially on the possibility to amortize the large step in
manufacturing cost throughout large volumes.

Some decision variables on the most suitable interconnect for future multi-core
systems go beyond the visibility researchers can have right now, such as proper CAD
tool availability for clockless electronic design, maturity of silicon photonic devices and
cost per bit for optical links. Essentially, addressing most of these issues depends on
whether the proper effort will be allocated to solve them, depending on a pricri choice
on which direction to pursue with highest priority. Therefore, research should help to
drive the investment of effort and resources toward the most appealing solution, given
the requirements of the connectivity problem at hand. This is the challenge this work
takes on.

We aim to compare and provide an evaluation of three different on-chip interconnect

technologies for future power-efficient multi/many-core systems:

» current (electronic synchronous NoCs),
» evolutionary (electronic asynchronous NoCs),

« revolutionary (optical NoCs).

To our knowledge, literature works contrast synchronous vs. optical NoCs [9] and
synchronous vs. asynchronous interconnect fabrics [141], but a comprehensive overlook
like the one targeted by this work is currently missing.

More specifically, this work investigates whether a generic core-level communication
flow, currently mapped onto a synchronous link in an electronic 2D mesh topology,
can be more efficiently mapped onto an asynchronous link of a clockless NoC or onto
an optical path of a wavelength-routed optical NoC topology. As a result, [deliver
break-even points as a function of static power, inter-core distance, and bandwidth

requirement of the communication flow at hand.

8.1.2 Target architecture

Our target architecture relies on a multi-core programmable accelerator composed by 16
processing Tiles. Each of them operates as both initiator and target for communications
over the system interconnect. Tiles are disposed over the die area following a grid

structure, and are assumed to be 2mmx2mm.

145

Chapter 8: Optically-Enabled GPPA

We consider that at a given point in time the task graph of an application needs to
be mapped onto the system, targeting the accelerator as a whole, or a spatial partition
derived in it by the runtime manager. The graph is annotated with communication
bandwidth requirements for each inter-task communication flow. The research question
is: which interconnect technology can accommodate a specific communication flow so
to minimize communication total power? The answer depends on parameters such
as distance of the cores where end tasks are mapped, and communication bandwidth

requirements, in addition to the different nature of the interconnect fabrics under test.

We thus assume three alternative variants of the system interconnect. The Elec-
tronic solutions consist of synchronous and asynchronous variants of the same NoC
switch architecture. They are both laid out as 2D-mesh topologies, using an industrial
low-power 40nm technology library. When it comes to the optical switching fabric,
[assume a 16x16 A-router [102, 119] (see Figure.8.1), which is a wavelength-routed
topology delivering contention-free all-to-all connectivity. This optical network is laid
out manually based on the guidelines from [82]. Special emphasis was given to model-
ing waveguide crossings arising when the interconnection network itself is overlapped
with the Power-Distribution Network (PDN). The latter one is in fact needed to
bring the multiplexed optical carriers from off-chip continuous-wave lager sources to
the optical modulators contained in the optical network interfaces, which follow the
baseline grid-based positioning. The optical NoC is assumed to be vertically stacked

on top of the processing layer.

Our analysis takes a path-oriented approach, that is, I investigate power efficiency
of routing paths allocated in the different networks under test to host a given commu-
nication flow. I rely on the assumption that all components of all interconnect fabrics
are power-gated by default. Therefore, there is no consumed power without network
activity. When a communication flow needs to be mapped, I assume the activation of
only the components that are on the selected routing path. For the electronic NoCs, ac-
tivating a routing path implies the activation of the network interfaces of the end cores,
and of the switches along the routing path, assuming that power gating granularity is
that of the NoC switch. Similarly, for the optical NoC I activate the electronic as well
as the optical components that build up the transmission side, the wavelength-routed
optical path, and the receiver side. Clearly, upon activation of a routing path, an in-
frastructure cost arises in all networks that can be amortized for other communication
flows. That is, activated switches can be used to map other communication flows on
unused ports, thus minimizing the number of activated switches to map new flows.
Similarly, once a laser source is turn on to feed a specific routing path, the mapping
engine should consider that other optical paths are available in the topology that are
powered by the same laser source. Our experimental results will quantify the benefit

of this rescurce sharing approach in all kinds of networks.

Last but not least, links in all interconnect technologies have matched bandwidths of

146

8.1 Optical NoCs: do they make sense?

16x16 Lambda Router

2
'
i
s
E (&
-‘E' 5
| |
e
-

i
N
H
S
>
B

A6

5

H
N

*
i)

z]
i

=]
"o
Syt
| |

| =

]
i
®

A3

A6

=]
z

A3 A5

Y
et
-
w

Al
A5 A7 A9 A13

ot

4
]
=
-]
H
z
=
,‘
A
=
1]
>
’L
2] [&]
[}
',
H

aae

5
N
H
S
H
(=)}
o
E
>
=
=
El
=
]
=

3EEEREEEEE6E EEEEE)
=]
i
t:“
e

Physical view of 2x2 Switching Elements @

Figure 8.1: 16x16 Lambda router logic scheme.

roughly 30 Gbit/sec. As a side effect, the aggregated topology bandwidths are different,
since contrarily to the electronic networks, the optical one uses wavelength-routing to
deliver contention-free communication. This means that whenever the decision will be
taken to map a communication flow to the optical medium, its performance will be
higher by construction. Therefore, this work can focus on power efficiency of allocated
communication paths in revolutionary interconnect solutions without expecting any
subtle performance trade-off. Clearly, this choice is a worst case for the optical medium,

since it incurs a higher infrastructure cost to support wavelength-routing.

8.1.3 Baseline synchronous design

The switch architecture is inspired by the xpipesLite architecture, which represents an
ultra-low complexity design point in the space of electronic NoCs [126]. Our instance
implements XY algorithmic routing, wormhole switching and a 32-bit flit width. The
input buffer is set to the minimum dimension {two slots for flow control requirements),
while the output buffer dimension is set to six slots. In this design, one clock cycle
is taken to traverse the switch and one clock cycle to traverse the link connecting
two switches. Design convergence was achieved at 950 MHz. In order to preserve the
generality of the design and support cores with different operating frequencies that

access a fixed-frequency NoC, dual-clock FIFOs are included at the network interfaces.

ENEHENCIENENEPENEVIENENIEDIEVEHEDEY

147

Chapter 8: Optically-Enabled GPPA

8.1.4 Asynchronous design

Among the existing asynchronous design styles, QDI solutions are robust and reliable,
however show limited benefits in terms of area and power. On the other hand, asyn-
chronous bundled-data designs offer better performance, area and power at the cost of
additional engineering efforts: in fact, relative timing constraints must be enforced in
order to avoid timing hazards and ensure a correct circuit operation. Since low-power
communication is our primary concern, I revert to the most power-efficient design style
by considering a 2-phase bundled-data switch design [55]. This latter is the exact
asynchronous counterpart of the synchronous xpipesLite switch [126], that ensuring
architectural homogeneity. Similarly to the synchronous architecture, the input buffer
is minimal (a single asynchronous pipeline stage) while the output buffer dimension
is set to sir slots as in synchronous switch. XY-routing and wormhole switching are
also considered. On average, payload flits are switched in and out at 950-to-1GHz
equivalent operation speed, depending on the input-to-output port connection. The
key difference with respect to the synch. switch consists of the interface components,
which in this case consist of synchronous-to-2-phase bundled-data converters (inspired

by [123]) and of their dual converters at the receiver side.

8.1.5 Optical design

The proposed micro-architecture of the optical link is shown in Fig. 82. As can
be seen, our design does not only include Electro-Optical {(E/O) and Opto/Electrical
(O/E) conversion circuits, (i.e., driver and ring modulator at the transmission side,
optical receivers at the opposite side) but also incorporates serializers (SERs) and
deserializers (DESERSs), source synchronizing circuits, flow control blocks,
as well ag dual-clock FIFOs. For this reason, after flits are forwarded to the ap-
propriate path depending on their destination, they need to be converted into a 10
Gbit/sec optical bitstream for modulation. The number of serializers is defined based
on the optical bit parallelism. For the sake of link bandwidth matching with electronic
interconnect solutions, 3 serializers of 11 bits (working in parallel) are necessary to se-
rialize the 32 bits of a given fit, and to guarantee a matched communication bandwidth
of roughly 30 Gbps. The reception side is symmetric.

Another key issue to be addressed in the micro-architecture is the re-synchronization
of received optical pulses with the clock signal of the electronic receiver. This work
assumes source-synchronous communication, which implies that each point-to-
point communication requires a strobe signal to be transmitted along with the data on
a different wavelength, and utilized to correctly sample data in the receiver domain.
Such strobe signal is generated starting from the electrical clock of the transmitter,
and removes the need for phase-locked loops (PLLs) or delay-locked loops (DLLs) at

the receiver. We assume that clock gating is implemented on the source-synchronizing

148

8.1 Optical NoCs: do they make sense?

COMMUNICATION PATH OF DATA

TRAMSMISSION SIDE

COMMUNICATION PATH OF CREDITS

TRANSWMIZSION SIDE

CASCADING OF 2ZX2 SWITCHING ELEMENTS"

TRANSMISSION SIDE

Figure 8.2 Proposed micro-architectural view of the optical link.

gignal, therefore when no data is transmitted, the optical clock signal is gated.
Another typically overlooked issue consists of the backpressure mechanism. We
consider credit-based flow control, because credit fokens can reuse the existing

communication paths for data, and exploit the low dynamic power of optical networks.

As depicted on fop of Fig. .7, the communication link must be bidirectional. In fact,
in addition to sending data to any other Hub, the receiver Hub must fransmit credits

to its assceiated transmitter.

8.1.6 Energy and power modeling

This section presents the energy and power modeling on which cur work is based.
For both synchroncus and asmmhronous NoCs, a small subsyvstem consisting of two 5-
ported switches and their inter-switch link is synthesized, placed and routed by using a
Low-Power 40nm industrial technelogy library. Given the regularity of a 21D mesh, the
energy to go across mudti-hop rouiing paths was extrapolated from the synthesized sub-
system. Also, the contribution of network interface components at the communicating
peers was included, except for the {de-)packetizers, which are common to all intercon-
nect solutions. For the asynchronous NoC [used our own asynchronous synthesis flow:
design is first manually constrained for max-delay, and then min-delays are enforced in
case of possible timing violation using an iterative procedure (for more details please
refer to [55]}). Power metrics are calculated by back-annotating the switching activ-
ity of block internal nets, under the assumption of uniform continuous traffic, and in
turn importing waveforms in the Synopsys PrimeTime Tool. In synchronous designs,

clock gating iz applied for the sake of realistic measurement of static power, whereas

144

Chapter 8: Optically-Enabled GPPA

x10 712

T
I Optical B
1.8 H [Asynchronous |
[ISynchronous

J/bit
T
]
I

0.8 - - -
0.6 =
04 b

02 H .
0 I\ :

Optics Hops=1 Hops=2 Hops=3 Hops=4 Hops=5 Hops=6

Figure 8.3: Contrasting Energy-per-bit: Optical vs. Synchronous vs. Asynchronous
designs.

the energy-per-bit is obtained by removing the static power from the total power on a
component-basis.

The power modeling of a point-to-point optical connection is given by the static power
values consumed by: laser sources, thermal tuners, transmitters (i.e., the driver-ring
modulator couple), receivers (i.e., photodetectors, trans-impedance amplifiers, and
comparators), and the source-synchronous clock. The number of thermal tuners de-
pends on the number of 2x2 switching elements that are involved along a specific optical
path (in the 16x16 A-router I may have overall 32 Ring Resonators (MRRs): 30 in the
interconnection network, one for modulation and another one as a filter to eject the op-
tical signal before entering the photodetector.) While the number of these components
must be replicated as many times as the level of bit parallelism (supposed to be 3 in
our study), the clock contribution is instead composed of one laser source, one trans-
mitter, one receiver, and two thermal tuners as well. Besides, the power dissipation of
Optical NIs is added. It consists of the power consumption of the sequence: Demulti-
plexer, Multiplexer, SERs, at the transmission side, followed by DESERs, DC-FIFO,
Multiplexer as well as synchronizers and a credit counter at the receiver side. Static
power and dynamic energy parameters, as well as their relative ratio, are consistently
selected from the same literature source [12|. Finally, [104] report the energy/power

values that I assumed for all basic blocks of cur architecture,

8.1.7 Energy-per-bit analysis

Energy-per-bit is reported in Fig.5.3. Since it is rather insensitive to the propagation
distance, the optical interconnect fabric turns out to be the most energy efficient so-

lution when moving a bit across a complete optical path. The gap with respect to

150

8.1 Optical NoCs: do they make sense?

the electronic solutions widens when these latter have to switch information across a
multi-hop routing path. The total energy-per-bit of the optical point-to-point commu-
nication is given by 3 important contributions: one due to data propagation Fdata,
one due to flow control signaling £ fe, and ancther one due to the clock domain syn-
chronization Felk. Data bits should cross multiplexers, serializers, optical transmitters
and receivers, deserializers, demultiplexers, and a dual-clock FIFO for an end-to-end
transmission. A similar path is taken by credit flits on the way back from the receiver
to the sender, including a mesochronous synchronizer for clock consistency in the net-
work interface. Clearly, a data flit is always associated with a corresponding credit flit
propagating backwards. Finally, I consider that a transition of the source-synchronous
clock is incurred every three data bits transmitted. As opposed to the optical com-
munication, the electronic synchronous and asynchronous paths consume more energy
due to the inherently increased number of hops in Mesh topologies (i.e., because there
are many switches to traverse for reaching the desired destination). Synchronous solu-
tions consume more energy compared with the asynchronous counterpart because they
need an additional buffer stage at the switch input port, while the asynchronous switch
uses a single MOUSETRAP pipeline stage when minimum buffering is required. With
1-hop communications in electronics, the optical link consumes x2.5 less energy than
the asynchronous counterpart. At 6 hops the asynchronous communication consumes
x9.3 more energy with respect to its optical counterpart. Synchronous communication
consumes on average 30% more energy with respect to asynchronous technology.

As opposed to the optical communication, the electronic synchronous and asyn-
chronous paths consume more energy due to the inherently increased number of hops
in Mesh topologies (i.e., because there are many switches to traverse for reaching the
desired destination). Synchronous solutions consume more energy compared with the
asynchronous counterpart because they need an additional buffer stage at the switch
input port, while the asynchronous switch uses a single MOUSETRAP pipeline stage
when minimum buffering is required. With 1-hop communications in electronics, the
optical link consumes x2.5 less energy than the asynchronous counterpart. At 6 hops
the asynchronous communication consumes x9.3 more energy with respect to its opti-
cal counterpart. Synchronous communication consumes on average 30% more energy

with respect to asynchronous technology.

8.1.8 Static power assessment

Fig.8.4 shows the static power (including its breakdown) incurred by each design to
sustain a single communication flow. The flow is assumed to be mapped to 1-hop
routing paths in electronic NoCs (2 network interfaces plus 2 switches plus 1 link). For
the optical link, the distance does not really matter. What determines the static power
is mainly the laser power used to feed a specific optical routing path. In fact, [measured

the worst-case lagser power requirements for each laser source in the topolegy, which in

151

Chapter 8: Optically-Enabled GPPA

0.025 T T T T T T T T T T T T T T T T T T
I N optical devices power cost [l Clock-synchronous power cost 00 Thermal tuning
I NI electronic devices power cost [l Laser power cost (Clock) [Switches power
I Flow control power cost [Laser power cost (Data) Links power
‘ — IFs power
0.02 - B
0.015 _
[2]
=
=
=
0.01 i
0.005 - h

LO1 L02 LO3 LO4 LOS LO6 LO7 LO8 LO9 L10 L11 L12 L13 L14 L15 L16 Syn Asy

Figure 8.4: Static power breakdown to sustain single communication flows, mapped
1-hop away in electronics.

turn depends on the worst-case insertion loss across all optical paths (which is quite
sensitive to the crossings waveguides caused by the overlapping of the interconnect
with the PDN). Since laser power is tuned on the worst-case for each wavelength, what
makes the difference is the strength of the laser source that powers the optical path
on top of which a specific communication flow gets mapped. Fig.8.4 then illustrates
all possible static power values, depending on the target wavelength associated with
the communication flow under test. The Asynchronous design represents the most
power efficient solution because there is no clock distribution network. Asynchronous
switches practically exploit an ideal scenario where ideal clock gating is applied: the
circuit consumes only leakage power in idle state and it is automatically woken up

whenever a data must be computed.

The breakdown in Fig.8.1 shows that the asynchronous static power is dominated by
the contribution of Syne-to-Asyne/ Asyne-to-Syne interfaces, because applying clock
gating to such an hybrid interface is not trivial, therefore the interface power consump-
tion is in some way tainted by the clock even in idle state.

In synchronous designs, interfaces consumes less power since clock gating is success-
fully applied. However also the switch internal circuitry must be gated, resulting in a
much complex clock distribution network and a higher static power contribution. As
opposed to the dynamic energy, the non-trivial fixed power overhead of nanophotonic
devices cannot be as effectively amortized. As can be seen in Fig.8.4, the static power
cost of the optical link is dominated by the laser power. Most of this contribution is
tightly dependent on the support of the adopted hit parallelism and on the need for

clock synchronization.

152

8.1 Optical NoCs: do they make sense?

0. lambda1
lambda2
0.09 lambda3
lambdad
lambdas
0.08 lambdas
lambda7?
lambda®
0.07 lambda$
lambda10
0.06 lambdail
-lambdal2
W lambda1a
E 0.05 larmbdal4
; lambda1s
lambda1s
0.04 1 Hop asyne
—a— 2 Hops asyne
©—3 Hops async
0.03 4 Hops async
—&— 5 Hops asyne
0.02 & —&— 6 Hops asyne
——1 Hop syne
—— 2 Haps syna
0.01 ——3 Haops syne

—»— 4 Hops syne
—— 5 Hops syne
—— & Hops syne

Transmission Bandwidth (bit/'second) x10'°

Figure 8.5: Break-even bandwidth for power efficiency with no laser source reuse.

Ultimately, the optical technology is strongly static-power dominated, consuming
about x2 more than synchronous paths, whereas x42 more than the asynchronous
counterpart. Clearly, this gap should be bridged by a significant reduction of dynamic
power and by the tentative mapping of multiple communication flows to the same laser
source,

In fact, this latter powers different source-to-destination connections in a wavelength-
routed topology (16 in this case, out of the 256 possible connections the topology

delivers).

8.1.9 Power vs. communication-bandwidth requirements

The above sections show that electronic networks have a lower static power (Ps) cost
but a higher dynamic energy per bit (Ed) when compared to the optical intercon-
nection. Giving these parameters the designer should choose the most appropriate

communication architecture, considering the total power consumption:

Ptotal = Ps + Ed ~ Bandwidth

It is well known from the literature that optical communications work better over
long distance and higher transmission bandwidths, while asynchronous fabrics take
advantage of idleness. The exact trade-off for on-chip networks is hereafter quantified.
In general, it exists a bandwidth requirement B on an electronic path which generates
a switching activity high enough to match the power consumption of the optical path,
effectively counterbalancing its static power overhead: In the following plots, I will be

searching for such break-even bandwidths for power efficiency.

153

Chapter 8: Optically-Enabled GPPA

Fig. &5 shows the total power contrasting: Optical vs. Asynchcronous vs. Syn-
chronous communication paths with an increasing transmission bandwidth. All possi-
ble mapping options of a communication flow to the reference topologies are reflected
by the parametric curves in the plot. In optics, communication may go across any
of the 16 available paths for each wavelength channel. In electronics, total power is
referred to the target number of hops in the 2D mesh. Since optical technology is static
power dominated, its corresponding design points (i.e., the 16 wavelengths shown in
the figure) show a smooth slope because of the lower energy-per-bit (dynamic energy
is also constant among wavelength paths). The picture is completely different when
considering synchronous and asynchronous technologies. Their total power in fact in-
creases more rapidly with the hop count, hence resulting in higher slopes in the figure.
The plot in Fig. #.5 can drive the designer to choose where to map a communication
flow: to an available n-way electronic path vs. to an available wavelength channel in

the optical medium.

Interestingly, 1-hop communications in synchronous NoCs are almost always more
power efficient than with any optical mapping. The contrary holds for 2-hop electronic
paths. Beginning from 3 hops up, any optical path in the A-router turns out to be

more power efficient.

Asynchronous paths exploit their low initial y-axys coordinate, thus they are always
more power efficient than their clocked counterparts. With respect to optics, I see inter-
esting break-even points. With low transmission bandwidths (lower than 17Gbps)
the aynchronous path turns out to be the most power efficient solution, whereas for
higher transmission bandwidths the optical technology results competitive at least for
communications that would be mapped more than 3 hops away in electronics. Finally,
the clear indication is that moving away from synchronous NoCs is always desirable to

meet tight power budgets.

A possible way to amortize the lager power cost of optical paths would be to reuse
the same set of laser sources for multiple and parallel communication flows mapped to
disjoint paths. This is a common scenario in manycore systems, since they are supposed
to serve multiple communication flows at the same time. Next, I present a case study
where 8 paralle] communication flows are running at the same time. For the optical
technology, this means that I can reuse the same laser source as much as possible at
the price of an increased infrastructure cost for the multiple network interfaces that are
active at the same time (i.e, more SERs, DSERs, etc ...). For the asynchronous network,
this means that 8 parallel communications are happening concurrently between eight
pair of cores (from now, synchronous design points are not considered anymore because
they are suboptimal). Whether such communications reuse or not the same switches
or every time activate new switches does not really matter, since the static power cost

of the asynchronous network is in any case negligible.

Fig. 5.6 shows the total power in the above case study, contrasting Optical and

154

a.1 Optical NoCs: do they make gense?

0.35 T T T]
larnbwlal

larnbdas

larnblad

0.3 lambdad

larnbilab -~
lambdal

lambda? _,_,..-“"f
0.25 - —— lambda# = 1
larnbdad el

lambda1d -

jambidat MAXIMUM i

0z F larmbdal 2 BANDWIDTH AT &-HOP e - |

larribdal 3 " \ LT | ATHE oo
oot (THERE ARE OMNLY FOUR PATHS) -~

L
=4 -
[—— larbidal 5 .,./- T i
= 015 | — lambdats P
1 Hep - - - e

3 Heps - _.a-"f i e

3 Hops e e e
01k 4 Heps ___.-fr._,_..-"” i L e =)

—— 5 Heps j_.-‘ L e _.--"""'F"
—— 5 Hey e T e
S AR ,,.--"_:_,,-' i - . i

.05

1 1]
1 1.5 2 2.5
Transmission Bandwidth (bit'second) 10"

Ficure 8.6; Erealk-even bandwidth for power efficiency with lager zource reuge,

Asvnchronous desipnzs, We reprezented in abgcizsa the curmulative transmission band-
width achieved by the eight parallel commmunication flows (i.e., sharing factor of 8), We
derived curves alzo for intermediate sharing factors, which were not showed for lack of
space.

Curves ghould be read az follows: é & more power efficient to map & concurrent
flows to n-way electronde hops (with n rangéing from I to 8) or to § optical paths powered
by the same loser sowree ol o given wavelength?

With respect to the previous case (ig, sharing faction=1), I can obzerve that for
curmulative transmizsion bandwidths larger than 63 Ghbps even 8 3-hop paths could
be more effectively realized optically. In contrast, for 8 L-hop flows, the break-even
tranzsmizzion bandwidth should be az laree az 168 Ghps or more. Given the chogen zize
of the 2D mesh electronic topology and the chosen routing algorithmm, only 4 paths are

& hopa long, therefore the maximum curmilative bandwidth peaks at 120 Ghpa.

Summary

In thiz work I performed & wide-gcope power-oriented analysiz betweean evolutionary
(synchronous asynchronous) electronic interconnect technologies and revolutionary op-
tical gignaling. By reading both Fig, 3.5 and Pig. 5.6, an interesting conzideration
arizes, Since the static power overhead of an asynchronous NoC iz negligible, this
gounds like an ideal condition to materialize an hybrid interconnect fabric, combin-
ing clock-less handshaking with optical ewitching, When the break-even bandwidth
iz exceaded, the optical path could be preferred, zince the static power cost iz offzet,

Clearly, the runtime zelection procesz of the routing path on one technology va the

155

Chapter 8: Optically-Enabled GPPA

other should take into account that mapping a flow to the asynchronous fabric causes
local communications, while in optics the selection of a wavelength channel does not
necessarily lead to the selection to communicating peers that are spatially close to
each other. However, these considerations on the mapping policy go beyond the scope
of this work, which provides the quantitative numbers on top of which a mapping
decision could be taken. Interestingly, it does not exist any transmission bandwidth
which makes the synchronous path an acceptable solution with respect to both its

evolutionary and revolutionary counterparts.

8.2 Validation of the potentials of the concept in-

side a system

8.2.1 Introduction

There is today consensus on the fact that optical interconnects can relieve bandwidth
density concerns at integrated circuit boundaries. However, when it comes to the ex-
tension of this emerging interconnect technclogy to on-chip communication as well,
such consensus seems to fall apart. The main reason consists of a fundamental lack
of compelling cases proving the superior performance and/or energy properties yielded
by devices of practical interest, when re-architected around a photonically-integrated
communication fabric. This work takes its steps from the consideration that many-
core computing platforms are gaining momentum in the high-end embedded computing
domain in the form of general-purpose programmable accelerators. Hence, the perfor-
mance and energy implications when augmenting these devices with optical intercon-
nect technology are derived by means of an accurate benchmarking framework against
an aggressively optimized electrical counterpart.

Optical interconnect technology has yielded a rich design space for on-chip com-
munication architectures |78, 10, 106, 136, 28, 80/, including the re-architecting of the
DRAM memory sub-system [12|, the revision of the processor-memory interface [130],
or the development of new coherence protocols custom-tailored for the optical transport
medium [80]. This significant amount of work has finally contributed to the foundation
of cross-layer design methodologies for designing new optical networks [11].

Unfortunately, the above experimental evidence has not translated into a stabiliza-
tion of roadmaps for industrial uptake of this on-chip communication technology yet.
This consideration is further exacerbated by the high cost targets for introducing it, and
by the far-from-consolidating maturity of basic optical compenents. Fundamentally,
the main challenge to revert this trend consists of showing a compelling advantage
(if any) for on-chip nanophotonic interconnection networks (ONoCs) with accurate
modeling assumptions, and while meeting the requirements and operating conditions of

real-life user devices and workloads.

156

8.2 Validation of the potentials of the concept inside a system

A milestone contribution in this direction comes from [61], which aims at tackling
the bandwidth and latency bottlenecks in on-chip interconnect and off-chip memory
access in graphics processing units (GPUs) by means of optical links and 3D-stacked
technology. This work follows the same track, and aims at extending the feasibility
analysis of optical interconnect technology when integrated into industry-relevant ob-
jects. In particular, the focus is on the high-end embedded computing domain, where
photonic networks have already been proven to be promising for DRAM memory ac-
cess [65]. In this work, a key component to sustain the performance-per-watt metric
of embedded computing plaiforms is investigated as a candidate for photonic integra-
tion, namely a general-purpose manycore programmable accelerator. In fact, driven
by flexibility, performance and cost constraints of demanding modern applications,
heterogeneous Systems-on-Chip (SoCs) are the dominant design paradigm in the em-
bedded computing domain. SoC architecture and heterogeneity clearly provide a wider
power/performance scaling, combining host CPUs along with massively parallel gen-
eral purpose programmable accelerator {GPPA) fabrics. These latter hold potential
of bridging the gap between the energy efficiency (GOPS/W) of hardwired hardware
accelerators and the computational power delivered by throughput computing. In con-
trast to graphics processing units, applicability of optical interconnect technology to
GPPAs is faced with a more balanced trade-off between latency and throughput re-
quirements, and by a different usage model of the manycore device. The distinctive

contributions of this work are as follows:

1) I re-architect the communication infrastructure and the processor-to-interconnect
interface in a GPPA architecture ingpired by real devices, driven by the requirements
of the system at hand. To our knowledge, this is the first time insights and guidelines
are given to exploit optical technology in emerging GPPAs.

2) Aware of the difficulty in making the case for purely optical interconnect fabrics, I
congervatively and realistically come up with a hybrid architecture where specific kinds
of transactions are selected for switching on the optical transport medium.

3) I carry out a performance characterization of system operations with the hybrid
interconnect fabric, and benchmark it against a competitive electrical baseline. Our
focus is not just on the performance of NoC read and write transactions, but rather
on their aggregation into higher-order operations relevant for the system at hand (e.g.,
computation offload, instruction cache refills, explicit data memory management). As
a side effect, performance of such operations is not just determined by the system
interconnect, but rather by the cooperation of several components (e.g., the DRAM
subsystem, DMA architecture, memory hierarchy). This work captures such interde-
pendency.

4) The ONoC architecture is designed by following a cross-layer design methodology,

where the quality metrics of the selected design point include awareness of the degra-

157

Chapter 8: Optically-Enabled GPPA

General-Purpose (\
Programmble H H '
MAST MAST MRS
PO‘RI' PD:W PQFT |
- : -

LOW-LATENCY INTERCONNECT

Host System

SHARED 11 TCOM

Shared-memory CLUSTy

Top-Level INTERCONNECT]4::)[System DMA

(3

mem CTRL
DDR2

Figure 8.7: Heterogeneous (many-core accelerator-based) MPSoC architecture.

dation effect of place&route constraints over insertion loss, and the overhead of the
upper layers of the optical network interface beyond the domain conversion circuits
(e.g., buffering, flow control, virtual channels, synchronization).

5) Energy efficiency figures are provided by accounting for the execution time of real-life
workloads, for a parametric set of quality metrics for the fast-evolving optical devices,
and for the energy of electrical components on a 40nm low-power industrial technology

library (which makes the electrical counterpart extremely competitive).

8.2.2 GPPA motivations

In the latest heterogeneous Systems-on-Chip (SoC), and even more in future ones,
the quest for processing specialization to deliver ultra-high performance acceleration
at reduced energy cost does not necessarily imply hundreds of dedicated hardware
accelerators [88]. There are at least a couple of reasons against that approach. On
one hand, the performance of a specialized processing engine may in many cases be
equally achieved by the parallel computation of programmable processing units [45].
Execution efficiency can thus be achieved without sacrificing programmability. On
the other hand, the trend towards simplifying the microarchitecture design of system
building blocks is becoming increasingly strong. Only a replication-driven approach
ultimately pays off in terms of design productivity.

There are two main architecture families that might in principle suit the need for
many-core programmable accelerators: the former one consists of GP-GPUs [105] and is
optimized for the single instruction multiple data/thread execution model (SIMD /SIMT),
while the latter one relies on the multiple instruction multiple data (MIMD) model (al-

158

8.2 Validation of the potentials of the concept inside a system

though not limited to it).

MIMD programmable accelerators do not implement GPU-like data-parallel cores,
with common fetch/decode phases which imply performance loss when parallel cores
execute out of lock-step mode. They are rather independent RISC cores, well suited to
execute both SIMD and MIMD types of parallelism. When coupled with a hierarchical
organization into clusters like [110, 95], such accelerators lend themselves to powerful
programming abstractions such as nested parallelism [93].

One reason for the growing interest in many-core accelerators in the embedded com-
puting domain is that there is a rapidly growing demand for a new type of interactions
between the user and the device, based on understanding of the environment sensed
in multiple manner (image, motion, sound, etc.) striving to create more friendly user
interfaces (augmented reality, virtual reality, haptics, etc.). Despite the good degree
of data parallelism, parallel threads in this class of applications usually expose a be-
havior which is heavily dependent on the local data content, resulting inte many truly
independent parallel computations [95]. In such a situation, GP-GPUs lose efficiency
due to large divergence between threads.

The above motivations are at the core of this work’s decision to investigate the
potentials of optical interconnect technology in the context of flexible MIMD/SIMD
General-Purpose Programmable Accelerators for the high-end embedded computing

domain.

8.2.3 Target architecture

A common embodiment of architectural heterogeneity is a template where a powerful
general-purpose processor (usually called the host), is coupled to a general-purpose
programmable many-core accelerator (GPPA) composed of several tens of simple pro-
cessors, where critical computation kernels of an application can be ofloaded to improve

overall performance /watt [95, 70, 69, 7T1]. Figure 8.7 shows a block diagram of such
a system. The focus of this work is on GPPA many-core design, which I describe in

details in the following subsections.

Cluster and memory architecture

The GPPA is a cluster-based many-core computing system. Clusters are the central
building block of several recent many-cores [75] [110] [95]. These processors consider a
hierarchical design, where simple processing units (PU) are grouped into small-medium
sized subsystems (the clusters) sharing high-performance local interconnect and L1
data memory. Scaling to larger system sizes is enabled by replicating clusters and
interconnecting them with a scalable medium like a network-on-chip (NoC). The sim-
plified block diagram of the target cluster is shown in the rightmost part of Figure
8.7. It contains several simple RISC32 processor cores (typically up to 16), each fea-

turing a private instruction cache. Processors communicate through a multi-banked,

159

Chapter 8: Optically-Enabled GPPA

AnaanannnnenuuEnn iR R GE ARG

E
E
fii
fii
f
o
o
E
E
fii
fi
f
f
f
f
f
o
me
-
f
p
o
iy
E
b
b
b
p

Figure 8.8: GPPA Architecture.

multi-ported Tightly-Coupled Data Memory (TCDM). This shared L1 TCDM is im-
plemented as explicitly managed SRAM banks (i.e., scratchpad memory), to which
processors are interconnected through a low-latency, high-bandwidth data intercon-
nect. This is a very common design choice for constrained embedded many-cores, as
the area and power overheads of hardware-managed caches (as compared to scratch-
pads) is very significant, and coherency protocols encounter severe scalability issues

when interconnecting a large number of nodes.

Figure =4 depicts the global GPPA architecture. It consists of a configurable
number of computing clusters (up to 12 in our setup), interconnected by a 2-D mesh
network-on-chip. The topology of the NoC is a simple n x n mesh. Each of the first
12 nodes includes a computing cluster and a L2 bank. Another node hosts the “Fabric
Controller”, a special cluster instance with a single processor acting as a main controller
for the whole many-core platform. This node interacts directly with the host system,
and is in charge of the boot sequence of other clusters and their operation control. It has
the fundamental role of managing NoC routing reconfiguration, setting up partitions
and starting applications. Among the remaining three nodes, one switch is reserved to
communications with an 1\O interface (GPPA reading and writing ports), while the
other two are temporarily left unused, and are available for future extension of the

computation power.

160

8.2 Validation of the potentials of the concept inside a system

Every full-cluster block is linked to a switch of the on-chip network with two network
interfaces (NIs), a master and a slave one, supporting OCP (Open Core Protocol). The
master NI is dedicated to the core transactions, while the slave NI is used for accessing
the internal cluster memory. Accesses to the L2 banks are feasible thanks to dedicated
slave Nls.

Bach cluster has an internal memory organized as private, per-core L1 instruction
caches plus local L1 scratchpad data memory shared among all cores. The L2 memory
is architected as a distributed shared memory, where each NoC router hosts a L2 bank.
To minimize the probability of conflicts on a single L2 bank, the NoC implements
address interleaving among L2 banks at the granularity of an instruction cache
line. Overall, the memory system is organized as a partitioned global address space
(PGAS). Each processor in the system can explicitly address every memory segment:
local TCDM, remote TCDMs, L2, and L.3 memory. Clearly, transactions that traverse
the boundaries of a cluster are subject to NUMA effects: higher latency and lower
bandwidth.

When the GPPA has to perform a new computation, the code binary is copied
via global direct memory access (DMA) into the L2. Data is stored in the L3 (main)
memory, where it is originally allocated by host programs. Permanently hosting entire
data structures in the L1 TCDMs is not feasible, due to a limited size of 256 KB. The
software must thus explicitly orchestrate data transfers from L3 to L1 or L2, to ensure
that the most frequently referenced data are kept close to the processors. To enable
performance and energy-efficient transfers, each cluster is equipped with a local DMA

engine.

Baseline ENoC architecture

In the baseline architecture, the electronic on-chip network (ENoC) is built on top
of the xpipesLite NoC architecture [126|, and customized to fit the GPPA system-level
requirements.

Figure 8.9 shows the compound switch developed for such GPPA ENoC. It is a 7x7
switch with 4 bidirectional ports for the geographical destinations and 3 to support all
the network interfaces (1 master and 2 slaves) to connect the cores, the internal cluster
memoery and the L2 memory bank. The compound switch can be broken down into

two different physical networks:

« A Local Network serves local traffic within GPPA partitions and guarantees
traffic isolations across partitions [116]. Without lack of generality, I adapt from
[51] proper synchronization mechanisms between communicating peers, so that
it becomes possible to perform inter-cluster communication only through write
transactions. Should this not be the case, then 2 VCs would be needed in the local
network. This network implements overlapped static reconfigurations {(OSR) as

a runtime reconfiguration mechanism for the routing function, thus enabling the

161

Chapter & Optically-Enabled GPPA

dynamic management of partitions (setup, teardown, shape redefinition) in the

optimized version proposed in Chapter 5.

» A Global Network supports global network-wide and [/0 communication traffic
while avoiding interference with intra-partition local traffic. This network is phys-
ically disjoint from the local one in crder to infer the highest degree of isolation.
Communication flows on this network are made up of both write transactions

{code offload to the GPPA, data transfer from L3 into the GPPA local memory)

and request /reply transactions {on an L1 instruction cache misg). Therefore, the

global NoC includes 2 virtual channels (VCz) in order to avoid message-dependent

deadlock. Following the design philosophy in |57|, they are implemented by repli-

cating the single VC-less switch twice. The replicated switches do not need any

reconfiguration support because their routing functions are hardwired.

OMNa(and Network Interface

This section presents the optical NoC and the specialized network interface. The optical
network replaces the global electronic network of the many-core accelerator, while the

local electronic network stays the same (hybrid approach].

Topology and routing method selection

Wavelength-routed optical NoCs (WRONoCs) rely on the principle of wavelength-
selective routing. This mechanism yields contention-free global connectivity, and saves

the time spent in routing and arbitration by hardwiring these tasks to wavelength

LY
sTaL outd L kY
i TR samen 5 STALL
ve bl a1y
i jve_ID
i
Y e —
GLOBALJ e ee—
i ol oonal GLOBAL LNK
g - TEfewion i
i i
8 Hean Hesponse
STALLEOUT ; ATALL N
1 S
i I
I I
i i
! LocAL LINK LOCAL LINK >
i
‘ H T
T i
£ Y
#
o
Fp——

Figure 8.9: Compound switch of the electronic on-chip network.

f—y
)]
G

8.2 Validation of the potentials of the concept inside a system

selection [102, 131|. An alternative would be to use Space-Routed ONoC topologies
(SPONoCs) [26]. SPONoCs use the wavelength-division multiplexing degree of free-
dom to enhance the bit parallelism of each communication flow, while WRONoCs use
it to deliver contention freedom. Moreover, SPONoCs incur an unpredictable path
setup latency. In contrast, WRONoCs heavily suffer from the serialization penalty
on each communication flow, and from the poor scalability with network size, which
rapidly leads to the proliferation of laser sources. I find the latency-throughput trade-
off spanned by WRONoCs more suitable for the GPPA context, while SPONoCs are
more suitable for scenarios featuring long-lasting connections. Among the possible
WRONoC topologies, we selected an optical ring inspired by [83|, which has been
proven in [114] to minimize the design predictability gap between logic scheme and

physical implementation.

Network Interface architecture

This section describes the network interface (NI) architecture for the optical network
as depicted in Figure 5.10. The reader is referred to [104] for the basic NI design
principles, while only the customizations for a GPPA setting are hereafter discussed.
Clearly, WRONoCs move most of their control logic to the Nls, since the switching
fabric is in itself a non-blocking crossbar. The upper layers of NI architectures, beyond
basic domain conversion circuitry, should therefore not be oversimplified with overly
abstract models.

To avoid message-dependent deadlock, every network interface needs separate buffering
resources (virtual channels, VCs) for each message class. The requirement is instead
met by construction in the optical switching fabric, since the lack of optical storage
and the contention freedom automatically deliver the consumption assumption needed
for deadlock freedom [63].

The final buffering architecture stems from considering another requirement of wave-
length routing: each initiator needs an output port for each possible target, and each
target needs an input port for each possible source. Overall, each target comes with 2
FIFOs (the 2 VCs) for each potential initiator.

At the transmission side, one optimization is feasible: the same 2 FIFOs are shared for
all destinations and flits are sent to different optical paths afterwards. For each one
of those paths, there is an arbiter that grants access to the ONoC and keeps a credit
count of the empty slots at the reception buffers. Therefore, by only replicating buffers
at the target while sharing those at the initiator it is still possible to associate flow
control credits between every initiator-target pair.

All the FIFOs at both the transmission and the reception side must be dual-clock to
move data between the processor frequency domain (we assume T00MHz) and the one
used inside the NI. As hereafter explained, the latter depends on the optical bit paral-
lelism. 1 used the de-FIFO architecture presented by [129] with a size that guarantees

163

Chapter 8: Optically-Enabled GPPA

maximum throughput (5 slots at the transmission side). However, at the reception
side, I must consider the round-trip latency in order to allow uninterrupted communi-
cations, ending up with 15-slot dc-FIFOs.

After flits are sent to the appropriate path depending on their destination, they need to
be translated inte a 10 GHz bit stream in order to be transmitted through the optical
NoC. In fact, I assume 10 Gbit/sec modulation on each wavelength. This serialization
process is parallelized to some extent to increase bandwidth and reduce latency. 3-bit
parallelism means that 3 serializers of 11 bits each work in parallel to serialize the 32
bits of a flit, resulting on a bandwidth of 30 Gbps. The bit-parallelism determines the
frequency inside the optical NI: 1.1 ns {0.1*number of bits) are needed to serialize a
flit with 3-bit parallelism, but only 0.8 ns are needed with 4-bit parallelism. In turn,
this also impacts the size of the reception de-FIFOs based on round-trip latency, which
increases from 15 to 17 slots when moving from 3 to 4-bit parallelism.

Anocther key issue to be considered in Nls is the resynchronization of received optical
pulses with the clock signal of the electronic receiver. In this work I assume source-
synchronous communication, which implies that each point-to-point communication
requires a strobe signal to be transmitted along with the data on a separate wavelength.
With current technology, this seems to be the most realistic solution, especially con-
sidering the promising research effort that is currently being devoted to transmitting
clock signals across an optical medium [85]. The received source-synchronous clock
at the reception side of the NI is then used to drive the de-serializers and, after a
clock divider, the front-end of the de-FIFOs. I assume that a form of clock gating is
implemented, therefore when no data is transmitted, the optical clock signal is gated.
Similarly, I assume clock gating for all electronic components, both in the baseline and
in the hybrid interconnect solution.

When it comes to back-pressure management, I opt for credit-based flow control be-

cause credit tokens can reuse the existing communication paths.

The top-level NoC

In order to model the interconnection of the GPPA with host processor, L3 memory
and system DMA at the top-level of the hierarchy, I use another xpipesLite switch

connecting the above blocks together.

8.2.4 Usage model

This section describes all kinds of communication scenarios investigated in this work.

Offloading scenario

When a host application wants to offload some computational kernels to the GPPA, it

needs to collect code (the kernel executable) and data (e.g., pointers to data in L3) into

164

8.2 Validation of the potentials of the concept inside a system

ELECTRONIC OPTICAL
TRANSMISSION : SIDE
SIDE : RING

i MODULATOR

DC_FIFO 5slots

TSV & OAH

DC FIFO 5slots

MUX 3x1
>
flrt
N

i ELECTRONIC H A

i CLOCK SOURCE i Lelk
credit flit i : YYVY
B B e A T
BRUTE MESOCHRONOUS INOC

: CREDIT » FORCE SYNCHRONIZER Iovwvy

COUNTER SYNC 7 '[:
{{(ARBITERS compleTIA i[roK) Ascik

H] s i A
i . 11 BITDESEPHCOMPM
i :‘—|1 DC_FIFO 15slots]e = B IE. o
frgaster | = ol 11 BlTDESEPOAlz
i @ |H1 i
igeve | @ [*={DC FIFO T5shotshe———— 1 BlTDESER|<—|c0MPOA13
i 5 :
o = i
— = ELECTRONIC i
- 6 RECEPTION
\516 SIDE
s EEEIEsEEESESEREEEEEEEEE T e e e § o omTTnmmmmmRmnmmmamaamane -
700 MHz (1.43 ns/cycle) y 0.9 GHz (1.1 ns/cycle) 1 10 GHz (0.1 ns/cycle)
- : : »>
1

Figure 8.10: Optical Network Interface Architecture with 3-bit parallelism.

metadata structures that are forwarded to the fabric controller (FC). This is done on
the host processors, which initiates a copy of the kernel executable through the system
DMA into the GPPA 1.2 memory, from which the cores inside the cluster can fetch
instructions. It has to be underlined that the cost of offloading computation to the
GPPA should be kept as small as possible, otherwise it may completely hide all the
benefits introduced by code acceleration. Since a relevant portion of the offload cost is
in the executable copy, it is important that the sustainable bandwidth to accomplish

this operation is high.

Partitioning scenario

The heterogenecus MPSoC system described in previous section features a powerful,
virtualization-ready host processor. The host is capable of running multiple guest
operating systems (or virtual machines, VM), each of which can potentially require the
GPPA to accelerate parts of the applications it is executing. To maximize the usage
of the many-core accelerator I consider a scenario where multiple VMs are allowed to
concurrently offload computation to the GPPA by creating isolated cluster partitions.

The NoC disallows communication between clusters belonging to different partitions.

Runtime scenario

Once the offload and reconfiguration (partitioning) sequences are complete, the kernel

executable is launched on the selected clusters. Upon program start all the involved

165

Chapter 8: Optically-Enabled GPPA

eNoC s oNoC 2bit// == oNoC 4bit// ==
oNoC 1bit// = oNoC 3bit// ===

1.2 g
1 [] .
08 - =
06
0.4 -3 o
Page_length 256KB 16B 4B
burst burst burst burst

Figure 8.11: Normalized offload bandwidth as a function of DMA burst size.

cores experience cold instruction cache effects, which implies massive cache refill traffic.
This is both a latency-sensitive and bandwidth-sensitive operation (the first word of a
burst read is sensitive to latency, while the rest of the burst is sensitive to bandwidthj.
Regarding data traffic to/from the L2, the partitioning mechanism does not divide L2
memory in a partition topology-aware manner. In other words, all the cluster partitions
have access to the whole L2 memory, with no affinity between clusters and their local
L2 banks. While this is prone to NUMA effects, it allows better usage of L2 memory

space, as no a-priori logic partitioning is done, which would lead to memory waste.

8.2.5 Experimental results

Next, bagic system operations that enable the above usage model are characterized
from a performance viewpoint, when running on top of the hybrid interconnect vs. the
ENoC counterpart. The compound ENoC is overclocked {1 GHz) with respect to the
clock speed of the processor cores (700 MHz). [t thus requires the use of decoupling
dual-clock FIFOs between clusters and switching fabric, which are placed after the
network interfaces. Such FIFOs also serve as a key enabler for the implementation of
dynamic voltage and frequency scaling. The hybrid interconnect uses an overclocked
1 GHz underlying single-layer ENoC for intra-partition traffic too. Up to 4-bit paral-
lelism has been explored for the ONoC layer vertically stacked on top of it. The whole
GPPA system with the NoC variants has been modeled and simulated with cycle ac-
curacy in RTL-equivalent SystemC by augmenting the baseline VirtualSoC simulation

environment [20].

Code offload

The system DMA reads from L3 the code to offload by means of burst transactions of
parametric length (from 4 bytes to the DRAM page size), and then writes it into the
GPPA L2 banks, where the code is interleaved by line address. This system operation

stresses the bandwidth properties of interconnects under test.

166

8.2 Validation of the potentials of the concept inside a system

100

90

80

70

60

50
==ENoC 700MHz

40
30 ~~ENoC 1GHz

Refill Latency (nsec)

20 —==0NoC
10

o 1 2 3 4 5
no. of ENoC hops

Figure 8.12: Instruction cache refill latency as a function of the number of hops to the
target L2.

Code offload bandwidth is reported in Figure 8.11, normalized to that of the com-
pound ENoC with max. burst size. For small 4-byte bursts, there is fundamentally no
difference in performance between the NoCs under test. This is due to the fact that
the transfer of code chunks is slowed down to an impressive extent by the latency to
reach and access the off-chip L3 DRAM, which makes all other contributors negligible.
As the burst size for L3 access is increased, this overhead is amortized over multiple
code words, and NoC differentiation takes place. For the largest possible burst size,
a 3-bit ONoC outperforms the baseline ENoC by roughly 13% in terms of improved
offload bandwidth. However, with only 1-bit parallelism, 18% is the amount of perfor-
mance degradation with respect to the ENoC. Finally, with 4-bit optical paths, ONoC

performance turns out to be saturated.

Instruction cache refills

During program execution, each processor core incurs instruction cache misses that
trigger refill operations from L2 banks. [considered a 10 cycle access latency for them.
The effect of conflicting L2 accesses is here neglected due to the implementation of
address interleaving, and is only considered in the final experiment in section &8.2.6.
We measured the latency for the complete cache line refill operation, and reported it
in Fig.8.12. Such latency depends on the distance (number of network hops) to the
target L2 bank, which is plotted on the x-axys. Times are then referred to a processor
core in the top-left cluster of the GPPA.

Two major results are apparent here. First, refill performance on top of the ONoC is

167

Chapter 8: Optically-Enabled GPPA

1.8 HENoC OONoC GLOBAL DMA

=

LOCAL DMA
1.4 l

normalized data fetch time
o © 0o
o= [=)] [+ k=2

| i |

o
]

o
L

6 5 4 3 2 1 6 5 4 3 2 1
no. of ENoC hops

Figure 8.13: Fetching time for 16B data chunks.

position-independent, which ends up smoothing the NUMA effects in this architecture.
At the same time, | find that only for accesses to the L2 bank of the same switch
performance with the ENoC is slightly better. In all other cases, the multi-hop nature
of the ENoC causes a widening performance gap with respect to the ONoC.

This result is a bit counterintuitive because ENoCs are believed to be far bhetter
on short distances. This is actually true for 1-bit parallelism, however the latency
overhead of the ONoC is rapidly absorbed by increasing bit-parallelism. In fact, this
enables a shorter length of the optical packet, and a higher ejection (injection) rate
from (into) input {output) de-FIFOs. From a latency viewpoint, with 3-bit parallelism
the ONoC degrades FIFO-to-FIFO latency of flits by only 0,05% with respect to the
ENoC. Such degradation grows to 2,8x with 1-bit parallelism. The power implications
are addressed in section 8.2.5.

We then experimentally verified that only taking away the dual-clock FIFOs in the
ENoC shifts the break-even point to a larger number of hops (2), as showed in the
figure. However, this prevents application of dynamic voltage and frequency scaling

policies that decouple processor speed from network speed.

Data Fetching from L3

There are two options for explicitily-managed data fetching at runtime. First, the
within-cluster local DMA can be programmed to perform a read transaction from L3.
Second, the system DMA can be instructed to do the same thing. However, data is
then written (not read) into the GPPA (either in L2 or in L1).

Figure 8.13 reports normalized data fetch time for small data sets (16 bytes per
fetch) when the local DMA is used as opposed to the global DMA, as a function of the
number of hops to the GPPA 1/0 interface. DMA programming time is included in

168

8.2 Validation of the potentials of the concept inside a system

14 || LOCAL DMA HENoC EONoC
1

1.2 -

=
|

2
o
|
|

GLOBAL DMA
1

=]
o

normalized data fetch time

o
'S

no. of ENoC hops

Figure 8.14: Fetching time for 5kB data chunks.

the reported results. Clearly, the system DMA is not effective for this case since the
programming time of the DMA cannot be amortized over a large data transfer time,
except for short range communications, where the performance difference is not signif-
icant. Interestingly, the ONoC can preserve this condition and make it independent of
fetching core position in the network. As a result, the choice of the local vs. global
DMA is almost irrelevant in the presence of an ONoC as global transport medium.

In contrast, when the fetched data set is significant (5k bytes, see Figure 8.14), the
system DMA is clearly the right choice for a twofold reason. First, the programming
time can be more easily amortized. Second, the DMA is closer to the .3, hence pre-
venting read requests for L3 from going through the GPPA interconnect. Consequently,
only read responses are forward by the system DMA to the GPPA in the form of write

transactions to cluster .1 (or [.2).

Power analysis

All of the electronic components (both in the ENoC and in the hybrid NoC) have been
synthesized, placed and routed on a low-power 40nm industrial technology library in
order to provide realistic power measurements. Clock gating was applied. Packetizers
and depacketizers have not been considered since they are the same in both intercon-
nects under test.

The static power of the hybrid NoC is derived from the composition of the power
consumption of all its subblocks such as local ENoC plus ONoC NI components (fre-
quency converters, muxes and demuxes, SKRs and DESERs as well as all blocks re-
quired for flow control). The static power contribution of all optical devices is then

given by: laser sources (assumed to be off-chip, yet included in the power budget),

169

Chapter 8: Optically-Enabled GPPA

Global NoC{ Network Interfaces) B Global NoC{ Network) B Local ENoC

1.20E+00 Watts

1.00E+00
8.00E-01

6.00E-01

0,383

4.00E-01

2.00E-01

0.00E+D0
"™ ENoC Hyb. Hyb. Hyb. Hyb. Hyb. Hyb. Hyb. Hyb
lbit 2bit 3bit 4bit 1bit 2bit 3bit 4bit

CoNns. Ccons. Cons. Cons. aggr. aggr. aggr. aggr.

Figure 8.15: Static power for the compound ENoC vs. hybrid ONoC variants.

1600 -fi/bit
E1HOoP
1400 i 2 HOPs
1200 3 HOPs
@4 HOPs
1000 I 5 HOPs
200 6 HOPs
@ Conservative Optical Technology
600 B Aggressive Optical Technology
400
200 S —
0

Local ENoC Global ENoCHyb. 1-bit // Hyb. 2bit // Hyb. 3-bit //Hyb. 4-bit //

Figure 8.16: Dynamic power for the NoCs under test. The compound ENoC is broken
down into its local and global networks, and so is the hybrid NoC.

thermal tuning, transmitters, receivers, and optical clock support.

In order to deliver contention-free full connectivity across 256 optical paths, 13
lagser sources, 256 transmitters and receivers as well as 768 MRRs are needed. This
hardware cost should be replicated for each bit of parallelism, except for the optical
clock support, which is shared among the bit-parallel streams.

Figure # 15 compares the total static power of ENoC vs. hybrid NoC assuming two
distinct sets of parameter values for the basic optical components, namely conservative
and aggressive technologies (we use the same physical parameter values reported in
[115]). They reflect state-of-the-art silicon photonics as opposed to optimistic predic-
tions for future device evolution, and are based on the projections in [12].

With a conservative optical technology, the ENoC is clearly more power efficient

than ONoC regardless the bit parallelism. This is mainly due to the higher static power

170

8.2 Validation of the potentials of the concept inside a system

- N B F 3 BN e
12 i o8
1 — =
e A N N B el _H B |
0.8 B
2 N &
Z 06 S 0.4
&
= 0.4
0.2
0z o | % H B B B BEEEE B
n—— 0------------
1 2 3 4 5 & 7 8 9 1 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Heluster 1D #cluster ID
HBoat EOifload COMPRutime ECSC+THR+MOM Kernel MSynch EADD Kernel HBoot HOfoad DOWMP Rutime ECSC+THR+MOM Kernel M Synch O ADD Kernel
{(a) ENoC. (b) Hybrid NoC.

Figure 8.17: Color Tracking execution distribution among clusters.

3 — 3
25 T =R T — 2.5 — eSS
2 z {7
Zi1s] 1.5
- F
: 5
1 =1
0.5 0.5
D;;;;;;;_;EEEE_ DEEEEEEEEEEEE
1 4 3 4 5 & 7 8 9 10 11 12 1 k4 3 4 5 & 7 8 9 0 11 12
#eluster ID #cluster ID
H Boot EOffload COMPKernel O FAST Kernel W Beoot M Offload COMPRuntime O FAST Kernel
{(a) ENoC. (b) Hybrid NoC.

Figure 8.18: FAST execution distribution among clusters.

overhead consumed by all of optical devices in the network, especially by laser sources.
In constrast, such an overhead is mitigated when an aggressive optical technolegy is
considered. More precisely, the ONoC differs from only 4% up to 35% with respect to
the ENoC counterpart depending on the bit parallelism.

We then computed energy-per-bit required for transmitting data over the alterna-
tive switching fabrics. For the ENoC, it amounts to 209 fJ/bit/switch. Figure &.16
shows the energy-per-bit comparison between the ENoC and the hybrid NoC for each
bit parallelism (1,2,3 and 4). As can be seen, the hybrid NoC has position-independent
results and turns out to be more energy efficient than ENoC (up to an order of magni-
tude) regardless the specific optical technology, thus confirming that, at least in terms

of enegy-per-bit, the ONoC is definitely out-of-reach.

8.2.6 Application benchmarking

We compare execution time between ENoC- vs. hybrid NoC-based GPPA platforms
for real workloads. Our benchmarks are two common computer vision applications:

color tracking, implemented from the open source computer vision library (OpenCV)

171

Chapter 8: Optically-Enabled GPPA

for single color tracking, and FAST [118], which is a corner detection for image features
extraction.

Color tracking consists mainly of four kernels: color space conversion (CSC), thresh-
old (THR), moments computation (MOM), and finally a pixel-wise addition {ADD)
on the input image of the tracking segments.

Without lack of generality, both applications are mapped on the GPPA as a whole,
thus emulating a 12-cluster partition that cooperatively process the computational
task. 2 cores are active in each cluster. The same program is executed on each cluster,
but fed by different image portions. The benchmarks should be monitored with respect
to different features. In color tracking the execution is independent of the processing
data, hence NUMA effects are in principle more visible. In FAST, although clusters
process the same amount of pixels, the execution flow depends on the actual pixel
content, hence potentially leading to divergence between clusters. The plots in Figure
5.17 compare the execution time on each cluster, expressed in Mcycles, to perform the
color tracking on a single QVGA 24-bit input frame on the two platforms under test.
The hybrid NoC improves the execution time by 18.1% with respect to the baseline
ENoC. The hybrid NoC execution benefits alse from an improvement of alignment due
the abatement of NUMA effects. This is more evident on the ADD kernel, which is
memory dominated. Please note that the OMP contribution consists of the overhead for
the OpenMP runtime environment (OMP) [94], and that the offload time is considered
as well. Figure 515 shows the same analysis on FAST. The application consists of
a single kernel which works using a stencil pattern of accesses. Even in this case,
the image is splitted into independent stripes, so that the computation is distributed
among the clusters. Also the runtime (OMP) overhead is still there. The bottom chart
shows the execution time in Mecycles on each cluster of the hybrid NoC platform on a
QVGA 24-bit image. At the top, the same application is using the ENoC platform. In
this case, the hybrid NoC improves the execution time by 16.5%.

Summary

The work proposes the first assessment of optical interconnect technology in the context
of GPPA devices for the high-end embedded computing domain. The system is re-
architected around an optical interconnect fabric, under a realistic hybrid integration
strategy. When put at work with realistic workloads, the photonically-integrated GPPA
turns out to be extremely effective in speeding up application execution by at least
15%. This translates into a static power overhead of 2.5x, which is however expected
to go down to 1.3x with future silicon photonic technology. In contrast, the ONoC
results more energy efficient than the ENoC counterpart (up to an order of magnitude)
regardless the specific optical technology, thus confirming that in terms of energy-per-
bit, the ONoC ig definitely hard to beat. Owverall, the above quality metrics paint a

promising picture for augmenting GPPAs with optical devices, while clearly pointing

172

8.3 SDM on top of a photonically-enabled GPPA

-

A2

sy

A3

Figure 8.19: The wavelength routing concept.

to the most important candidate for optimization: static energy reduction through

technology evolution as well as gating techniques.

8.3 SDM on top of a photonically-enabled GPPA

Many researchers are currently at work to assess the congruent multiples in performance
and energy efficiency that should be expected by the photonic integration of multi- and
many-core processors. However, such processors and their interconnection networks are
typically viewed as monolithic resources, which fails to capture the most recent trends in
the usage model of these computation-rich devices. In fact, partitioning of computation
and communication resources is gaining momentum as a way of enabling application
concurrency, and of consclidating software functions with heterogeneous requirements
onto the same platform. Optical NoCs have never been embodied in this context. This
work bridges this gap and proposes a partitioning technology for wavelength-routed
ONoCs, including an algorithm for online allocation of wavelengths, that aims at their
maximum reuse across partitions. This way, laser sources that are not in use at a given
point in time can be powered-off, thus mitigating the most significant contribution to

static power dissipation in optical NoCs.

8.3.1 Selection of photonic NoCs

The implementation of an electronic NoC capable of partitioning and isolation has
already been addressed in previous literature. However, there is currently no such
technology for optical NoCs, and the approach cannot be a simple transposition of
previous solutions due to the different nature of the interconnection medium. With
a photonic interconnect, the ultimate objective while partitioning should be to reuse
wavelengths as much as possible. In this direction, I consider WRONoCs due to the
potentially significant reduction that the proposed approach may vield on their static
power dissipation. At the same time, [enjoy their benefits in terms of contention-

freedom and performance-guaranteed communication.

173

Chapter 8: Optically-Enabled GPPA

In fact, wavelength-routed optical NoCs rely on the principle of wavelength-selective
routing, which enables every initiator to communicate with every target at the same
time by using different wavelengths. For example, initiator I1 can use Al, A2, A3, and
Ad to reach targets T1, T2, T3 and T4 respectively. Similarly, other initiators will
reach the same targets with non-conflicting wavelengths (e.g. wavelength A2 for T1),
as illustrated in Figure 5.19. The topology connectivity pattern is chosen to ensure
that wavelengths will never interfere with each other on the network optical paths.
WRONoCs support contention-free all-to-all communication with a typical modulation
speed of 10 Gbps/wavelength. The optical network is implemented on an optical layer
vertically stacked on top of the baseline electronic layer, and with off-chip laser sources.

In the target architecture, that is the same of previous section in this chapter, I con-
sider wavelength routing for the partition-capable network, although this requires some
customization to work around the global connectivity it delivers. Instead, communica-
tion with the off-chip memory ports is possible from every node by using four separate
and cost-effective photonic buses with a different communication protocol: two buses
for the requests from nodes to the two memory controllers using the multiple-writer-
singlereader protocol, and two buses for the replies using the single-reader-multiple-
writer protocol. In this case, it is not cost-effective to use a laser-greedy WRONoC, as
the alternative choice allows to implement all the required communication paths with
only 2 wavelenghts. The arbitration of the wavelengths for off-chip DRAM access is
justified by the fact that accesses are bursty and sporadic, since they are aimed at up-
loading or downloading processing data onto/from the GPPA. If more wavelengths are
required in order to increase memory access bandwidth, this can be easily delivered by
space-division-multiplexing (i.e., by increasing the number or waveguides) rather than
by increasing the number of wavelengths. In any case, should I need more wavelengths
for memory access, not overloading optical power waveguides with too many splitters.
Therefore, it is reasonable to conceive dedicated laser sources for the off-chip memory
network and dedicated sources for the partition capable network. The latter are the
explicit target of our optimization.

In this work, I test several well-known WRONoC topologies for inter-node commu-
nications in the partition-capable photonic NoC: the A-router, the GWOR . and several
ring variants. However, I take a radically different perspective to their comparative
analysis: their suitability for laser source reuse in the context of a partition-enabled

multicore architecture.

8.3.2 Dynamic partitioning

WRONoC topologies are designed with enough wavelengths to guarantee all-to-all com-
munication. However, the GPPA must allocate isolated partitions to service several
requests concurrently. This means that, at any given moment, many of the communi-

cation paths that are implemented in the chip will not be used. If I choose the nodes

174

&35 8DM on top of 2 photonically-enakled GFFA

& Oy i o £y £k g {k
In - i i1 Az i1 An i :
I iy - Al i & i A3 A
Iy A1 i1 - A1 i A7 a4 is
P i) v 5 - 7 A3 i3 iy
b) ke | A4 | A)k | -) A | A |
L A4 43 43 Az A5 - Ay A3
1 A i3 A3 n 45 Ab i
J" .-;T .':E .‘.4 .-;ﬁ .':I_ -;_: .-;_'
| Background Partition = [10,17]
;o0 | lefte Lses waveisnnith Mamboo 71
no. af active igser sources = 1

Candidate New Partition = [12,15]
FOLUSOS Wovmizhgth [lomano 7
ni Al octive nser sourmes =
Candidate Wew Partition = [11,12]
wses waveiznaths fambdal, lamboad!
no. of gomee foser sources - 3

1707

Fimwe & 20: Truth table of the & cwor and basic excarnple to set up partitions with
and without warvelensth reuss.

that compose each partition so that intre- partition comrmmic ations reuss wavelengths
a3 much 2z possible, | will have several umized wavelengths and will be able to power
them off.

Dur watelengbh-reuse methodolory iz based on 2 distinetive property of optical
NoCs, experimentally werified with real workloads: an optical transport medium is
capable of amoothing eut nen-uniform mermory access (MUMA) effects. That iz, access
latencies to distributed L2 mermery banks are almeost position-independent on o 2D
mwesh of processing elements. The practical implication i= that, while with an electronio
Mo C partitions should group cores that are physically located closs to each other, with
OloCa the notion of locality does not make sense. Henee, efficient partitions may be
st up by grouping cores that are physically placed far apart from each other. This
iz a relevant degree of freedom that our methodoloey exploits to come with partition
eonfiurations that eptimize the degree of wareleneth-reuse.

Bazic Idea

Let vz comsider Figue & 20, where the truth table of an 8:& gwor topology iz dlus
trated. This topology does not deliver s=lf commrminication, which iz then ss=umed to
be implemented via an electronic shortout. The topology delivers conmectivity to o
S0k array fabrie of eomputation clusters, where one core serves az the fabric controller,
henece cannot take part to any partition. Let us assume that o backgound partition is
instantiated, including clusters A0 and AT, which uss A7 a5 their cormrmunication wate-
length (fremm AO to AT and vice versa). At this point in time, AT is the only powered-on
laser source. Let us then sssume that o new partition has to be activated, consist-

175

Chapter 8: Optically-Enabled GPPA

ing of two computation clusters. Figure 5.20 illustrates two options. In the first one,
clusters A2 and A5 are activated based on a smart selection policy where they keep
making use of the same A7 for their inter-cluster communication. Instead, should the
runtime manager select clusters 1 and 2, then laser sources Al and 6 would need to be
activated to deliver intra-partition communication. In this sub-optimal case, 3 laser
sources would be on at the same time after the second partition is set up. Clearly, it is
possible to come up with a partition allocation algorithm that can meet connectivity

requirements while making a conscious use of laser sources.

Greedy algorithm

We propose a greedy algorithm to allocate partitions of any number of nodes in real
time. Before executing the algorithm to service a new request, I have a set of already
allocated nodes and wavelengths for the existing partitions. The set of already allocated
wavelengths always includes the two that are used for communication with the memory

controllers. The greedy algorithm follows several steps to generate the new partition:
« Randomly choose a free node to start the partition.

« Until I have the desired number of nodes in the new partition, I keep adding

nodes following these steps:

» 11y to reuse the allocated wavelengths to add a new node to the partition.

w First, [find the free nodes | can reach from the nodes in our partition

using already allocated wavelengths.

= Out of those free nodes, I select only the ones that require minimum

number of extra wavelengths for full connectivity inside the partition.

w If there are several free nodes that are equally good, I choose randomly

among them.

» [f there are no nodes reachable from the partition with the allocated wave-
lengths and I still have just one node in the new partition, I try to find
one that satisfies the symmetric property: the same wavelength is used to

communicate the two nodes in the two directions.

» If the previous points failed, | simply choose a free node randomly. Af-
ter choosing the next node, I add to the allocated wavelength list all the

wavelengths needed for full connectivity in the new partition.

The algorithm takes a locally optimal decision at each step, and never backtracks.
The complexity of the algorithm is O(n?), which makes it perfectly within reach of
online execution. The actual execution time depends on the chosen processor and
its internal parallelism. [will only chose to apply the algorithm if its overhead is

compensated by the execution time of the request. In cour experimental setup, we

176

8.3 SDM on top of a photonically-enabled GPPA

consider the time to run the algorithm negligible, and demonstrate that its application
would be cost-effective up to a 45% overhead with respect to the request execution

time.

Exhaustive algorithm

As a high performance alternative, I also introduce an exhaustive search algorithm
that finds the best possible partition for every new request. This algorithm always
finds a partition that minimizes the number of allocated wavelengths. Its use on a real
system is infeasible due to the high complexity and execution time, but [include it as a
comparison point. The algorithm checks all the possible combinations of free nodes to
build the requested partition, and then chooses the one that results on a system with
minimal number of wavelengths. If there are several options that are equally good,
it randomly chooses one of them. So far, the two algorithms do their best to service
the current request. However, the decision for the current partition may affect future
partitions. In the exhaustive search, I include two optimizations to choose the best
option among all the ones with equal number of wavelengths and improve long-term

results:

s Maximize wavelength reuse. [prioritize wavelengths that are already being used
in several partitions. This way, we will still have large wavelength-reuse values

after we remove a partition.

s Minimize wasted wavelengths, I characterize a wasted wavelength as an allocated
wavelength that is used to communicate nodes inside a partition with nodes
outside the partition. These communication paths will never be used, reducing

the opportunities to reuse this wavelength in new isolated partitions.

Note that these optimizations cannot be applied to our greedy algorithm, where
nodes are added one by one. If I applied it when adding a node, I would reduce the

reusing opportunities to add the next ones.

8.3.3 Static partitioning

In the previcus section, I started from a fully connected optical network and dynami-
cally set partitions on top of it. We now explore a different option: partitions statically
built on the chip at fabrication time. This option lacks the flexibility of the dynamic
partitioning to accommodate requests of any size, but gives us the opportunity to de-
sign very power efficient partitions that reuse a minimum number of wavelengths. In
practice, it means having several smaller and independent ONoCs instead of a single
big one. I must carefully decide the number of partitions to build and their size, be-
cauge it will not be possible to modify them later on. I analyze the request trace and

extract the most common partition size and the most useful partition mix. [decide

177

Chapter 8: Optically-Enabled GPPA

to test two different static configurations: one with homogeneous static partitioning (4
partitions of 4 nodes each, 4 being the weighted average partition size), and one with
a mix of static partitions (4 partitions of 2, 4, 4, and 6 nodes, respectively, because
this is the mix that would best fit all the partition mixes we observe over time). All
the small networks are built with optical rings, and the same wavelengths are reused
as much as possible across them. This radical design choice is fully compatible with
modern programming models. In fact, the notion of cluster-based many-core accelera-
tors is now central in two very representative examples: OpenCL and OpenMP. Both
of them ensure portability among different accelerator targets by allowing the runtime
system to map the user request to a smaller number of physical resources. With the
latest version, OpenMP 4.0 is going further in the direction of integrating the notion
of computation clusters in the programming interface, and guarantees that a smaller
number of available clusters than those possibly requested at the application level does

not constitute a problem.

8.3.4 Methodology

We set up a simulation platform that processes request traces and generates execution
time and wavelength-usage results for all the configurations. The first step, common for
the dynamic and static partitioning schemes, is to randomly generate several request
traces {each one from a different host computer) that will all simultaneously target the
GPPA. This traces store the number of nodes {randemly chosen between 2 and the total
number of nodes divided 2) and the execution time required to process each request,
as well as the computation time in the host until the next request. In the dynamic
partitioning configurations, each request in the traces will be processed following several

steps:

w If there are enough free nodes to accommodate the new partition, I run the

algorithm to choose the nodes that minimize the number of allocated wavelengths.

w If there are not enough free nodes (but there are at least 2), | assign them all
to service the request and extend the execution time. I distribute the aggregate

execution time for all the nodes and apply a 10% penalty for each missing node

w [f there are no free nodes (or there is just one free node), we deny the request. The
computation will be run at the host computer, again extending the execution time
and penalizing for the lack of parallelism. Extending the execution time (both in

this and in the previous case) will delay the whole trace from that host computer.

In the static partitioning configurations, the trace processing will be slightly differ-

ent:

» [f there is a free static partition that fits the request, it is assigned.

178

8.3 SDM on top of a photonically-enabled GPPA

» If there is not, I look for a bigger partition, in which some of the nodes will be

left unused.

s If both options failed, I lock for a smaller partition and extend the execution

time applying the penalization.
u If there are no free partitions, [deny the request.

As | can see, the static partitioning configurations are less flexible and will result

in longer execution times.

8.3.5 Results

This section presents the results for wavelength usage and laser power savings, pointing

out the trade-offs between the dynamic and the static partitioning strategies.

Characterization of the algorithm

We first focus on the dynamic partitioning strategies, and determine how good our
greedy algorithm is at reusing wavelengths in comparison with the exhaustive search
algorithm, which is much more complex. [analyse the number of extra allocated wave-
lengths to create a single new partition in the A-router, gwor, several ring designs with
varying number of wavelengths and waveguides, and several random communication
matrixes that do not correspond to real topologies (but are anyway useful to test the
algorithm). To obtain meaningful results, | analyse the allocation of a new partition
from 20 different initial scenarios. To create each of the initial scenarios, I set a small
random trace and run it on every topology with the greedy algorithm.

That way, I get an equivalent starting point for every topology. Figure 8.21 shows
the number of allocated wavelengths for our greedy algorithm over the exhaustive search
algorithm, for new partitions of 4 and 8 nodes. I notice that when there are already
many allocated nodes, and, therefore, many allocated wavelengths (towards the right-
hand side of the graphs), it is easier for the greedy algorithm to find a partition that
needs as few extra wavelengths as the exhaustive search. This is specially true when I
create a bigger partition, because there are less degrees of freedom, so our algorithm is
more likely to find an optimum set of nodes. To create the 4-node partitions, the greedy
algorithm needs to add an average of 2.7 wavelengths across all scenarios, compared to
2.2 for the exhaustive search. For the 8-node partitions, the average number of added
wavelengths is 7.9 and 7.6, for the greedy and exhaustive algorithms, respectively. Our
greedy algorithm never needs to add more than 3 extra wavelengths over the exhaustive
search algorithm, and rarely more than 2, which is an cutstanding result for such a low

complexity algorithm.

179

Chapter 8: Optically-Enabled GPPA

B lambda_router = gwor ® ring_1w120l ring_2w35l
W ring_3w27I ® ring_4w18| W ring_5w15| W ring_6w12|
mring 7wiil m ring_8w9l W ring 9wal mring_10w7I
B ring_12wél ® ring_14w5l| ring_18w4l ring_23w3l|
Ering_35w2l ® ring_69wil H random0 B random1
Erandom?2 ® random3 u random4

£ 2,0 -

extra wavelenghs

op 0,0
01234567 8 910111213141516171819
Scenarios

(a) New partition of 4 nodes

extra wavelengths
greedy - exhaustive

012 3 4567 8 9101112
Scenarios

Figure 8.21: Number of allocated wavelengths for our greedy algorithm over the exhaus-
tive search algorithm for all the considered topologies in 20 random initial scenarios.
The scenarios are ordered from the highest number of free nodes (scenario 0, 16 free
nodes) to the lowest (scenario 19, 4 free nodes).

Partitioning comparison of different topologies

Following the same initial-scenario methodology as in the previous section, I now per-
form pairwise comparisons to demonstrate that the greedy algorithm does not favour
a topology over another, but rather it is the inherent characteristics of each topology
that make it behave better or worse in each scenario. I compare two topologies with
the greedy and the exhaustive search algorithms, and prove that, at each testing point,
the same topology performs better than the other regardless of the algorithm.
Figure 5.22 shows the results of the comparison of the A-router with the 15-wavelength

ring. The positive values correspond to the cases where the A-router needs more ex-

tra wavelenths, and a larger absolute value means a larger difference between the two

180

8.3 SDM on top of a photonically-enabled GPPA

exhaustive algorithm e greedy algorithm ==

3
)
-:.E 2 i
e
2
= 1
o = : .
3% i‘ HI ‘ l i‘l ‘ ﬂ ‘
0 L = - - = -
To | T | T T o I
N
'8_(8 o]
Bt
<Ec_u‘2
-3
0 T A A T R
o O O O O e L L L O O DO T T o i T O O O L L] OO0
OOOOOOOOTOOOOOOO OO T OO OO
DOLDOLDOoOLDoOLOOLOOLOOLOOOLoOLOLO0OLOOLOLOLOLDOLOLDOLDOOOOL0L0L00
LR TR R P R P R e R R e WP e WP e R P R D P R D R R P R P P e P e P e P e R P R e P P D D P P P P P R ea P e P e R R e P

Figure 8.22: Comparison of the A-router with the ring in 20 random initial scenarios
and new partitions of 2, 4, and 6 nodes. The bars represent the number of allocated
wavelengths in the A-router over the ones allocated in the ring to set partitions of
different sizes in the 20 scenarios, with the greedy and the exhaustive algorithms.
Note that a larger value for the exhaustive algorithm does not mean that it allocates
more wavelengths, it simply means there is a larger difference between the topologies.
The absolute number of allocated wavelengths is always smaller for the exhaustive
algorithm.

topologies. We notice that in every case, the greedy and exhaustive bars have the same
polarity. We also the A-router with the gwor and the randomly generated truth tables
for all-to-all communication with 16 wavelengths, seeing that this was true in 99.7% of
the scenarios. This points out that in each scenario one topology is more difficult to

handle than the other due to its features, not to the algorithm.

Logical-level wavelength-on time

We now run the complete traces as explained in previous section and calculate the
aggregated wavelength-on time, that is, the sum of the number of cycles each wave-
length is used, considering that when a wavelength is not used in any partition, the
corresponding laser source can be switched off. I must remember that two wavelengths
are always kept on in order to guarantee communication with the memory controllers.
For the dynamic partitioning configurations we have tried to match the number of
wavelengths across all topologies: 16 for the A-router and 15 for the gwor and ring.
This way, I can fairly compare how each topology reacts to partitioning requests at a
logical level. In this case, we introduce also the two statically partitioned configura-
tions, as explained before. The inflexibility of the static configurations leads to a longer
execution time compared with the dynamic partitioning ones, in particular, 19% extra
cycles for the homogeneous partitioning and 14% extra for the mix.

Figure 5.23 depicts the aggregated wavelength-on time for the different topologies
and partitioning strategies. For the dynamic partitioning I notice that our algorithm
is able to cut the wavelength-on time almost in half from the always-on baseline,

and is only slightly worse than the exhaustive search. Out of the three topologies,

181

Chapter 8: Optically-Enabled GPPA

T

£ 350

= always on
g 300 r greedy algorithm ==
i exhaustive ===
%’g250 N
22 static o
% 3200 I

5 - | . .

= é 150

TE1o0 - R

o

T 50 -

3

< 0

lambda_router gwor ring static_homog static_mix

Figure 8.23: Aggregated wavelength-on time for different topologies and partitioning
strategies.

the A-router is the one that achieves the best results, even though it starts with one
wavelength more than the others. The static partitioning configurations result on a
much better wavelength-reuse, and the extended execution time does not reflect on
longer usage time for the laser sources. In this case, switching off the unused lasers
does not result in a large improvement, but the implementation of several small static
partitions that reuse the same wavelengths is already an optimized starting point. Out
of the two static configurations, the one with homogeneous partitions obtains the best

results, as it only needs two wavelengths.

Energy analysis

To realistically calculate the laser power for the topologies, we take into account the
place&route constraints of the 3D architecture. I assume an 8mmx8mm die size and
consider the best optical parameters. I compute the maximum insertion loss of the
optical network and calculate the minimum power required to reliably detect the optical
message at the destination side. I set the GPPA frequency at 1GHz. The I physical
design of the optical ring is manually generated, while the A-router is automatically
generated. The gwor 13 left out of the comparison due to the complexity of its physical
design and the clear supremacy of the ring over filtered-based topologies. [assume
that the laser stabilization time is included in the partition set-up time, along with the
execution time of the greedy algorithm.

Figure &.24 shows the energy spent by the laser sources to run the traces on the
A-router, the ring, and the static configurations. [clearly see that the A-router can-
not compete with the ring, even though it was the topology that achieved the best
wavelength-reuse in the previous section. Again, the exhaustive search gives only
slightly better results than the greedy algorithm. The static partitioning consumes
much less laser power, and the best choice among all the configurations is the stati-
cally partitioned ONoC with homogeneous partitions. In that case, the 2 implemented

wavelengths must be always on in order to support the communication with the mem-

182

8.3 SDM on top of a photonically-enabled GPPA

10 188 100 87
' always on =
greedy algorithm ==
0.8 exhaustive mmmm
=5 ,
E06 static .
-y —
=2
2 04 -
Ll
0.2
8 . Y e e
lambda_router rng static homog static mix

Figure 8.24: Laser source energy for different topologies and partitioning strategies.

14 K B 2 400
e UOA 1 3)(‘2
g12 350 v
T o] A S 300
[e}]

€ g i B s - S
c g e i
@ B prosssmesmsmmmgte S /
= . o ==
g 4 // """"" 100 1
A B [e e e O R i S
0
16 36 64 100 144 16 36 64 100 144
Setting a partition of 2 nodes Setting a partition of 8 nodes

Figure 8.25: Execution time of the greedy algorithm to allocate a new partition of 2
and 8 nodes with increasing number of nodes in a ring topology. As a reference, 1 also
plot a quadratic curve in each graph.

ory controllers. [must remember, however, that this benefit comes at the cost of a
rigid chip architecture that involves worse performance. In our experiments, I consider
that the time to set up the partitions is negligible. This allows us to compare the
greedy and exhaustive search algorithms under the same trace, which would otherwise
be impossible. The outstanding energy savings I achieve give us a large margin for the
execution time of the algorithm before its use stops being cost-effective. For example,
with the ring [can afford an overhead of 45% over the execution time of each request
before I lose the energy savings. This can certainly accommodate the greedy algorithm,

but not the inefficient exhaustive search.

Scalability of the algorithm

In this section I demonstrate that the execution time of the greedy algorithm scales
quadratically with the number of nodes in the system, confirming the complexity of
O(n?).

Figure 5.25 shows the execution time to build a partition of 2 and 8 nodes with an

increasing number of nodes in a ring topology, on top of an ARMvVT processor simulated

183

Chapter & Optically-Enabled GPPA

Arbiter

i
i

Serializer

y el Single Writer
Mulitiple Reader
Photanic Bus,
which is actually a
— Virtuol Multiple

Writersingle

Stall/go

H g ‘ .
P Reader Photanic
o v — Bus
: 3 memctrll |
S s To
Memory Transaction Aggregator no.l memctrl2
ST D
I/ P i 3
/) 45 ‘ Aggré“g?toﬂ i Framdpdesarar vok
i Agg;\éga’coré
e : il E ROE TS digital damips
Agaipaatan |
: ! : Desarializars
E J
i
| ;
i Lid
Fram Top-Level Electronic NoC
{e.g., from host CPU) L /“‘
POt
Tap-levelamanisontrallas pa
\\ /
. S

Figure 8.26: Envisioning a request network for the whole hybrid sysiem.

on gemb. The cbgerved trend correborates the polynomial complexity and confirms the
suitability of the algorithm for its integration on larger systems. The exhaustive search
algorithm was also fested under the same scenarios, resuliing in exorbitant execution

fimes.

8.4 What’s next?

Considering all the work in this chapter we can envision for future works the
Photonic Integration of the Heterogeneous Parallel Computer Architectures
as a whole, that means imaging a whole system, including the accelerator with its on-
chip interconnect but also the host and main memory with the off-chip inferconnection,
interconnected by a photonical interconnection fabric {on-chip and one at top-level],
with hybrid network interfaces based on asynchronous and optical technologies, thus
paving the way for the emerging technologies affirmation, outclassing the synchronous
technology,

Figure & 26 depicts is a first attempt to provide an idea about the interconnec-
tions of the system, in particular the request network, for proof of concept. IHere I

am considering four memory aggregators ingide the GPPA and two platform-level (not

154

8.5 Summary

GPPA-level) memory controllers/DRAM channels. For example, consider that at a
given point in time, the active wavelength channels are: A2, A5, A13. In this case, each
memory transaction aggregator randomly selects a single wavelength for transmission
from that memory aggregator. Potentially, all memory aggregators could use the same
wavelength channel and this is not a problem, since every aggregator modulates wave-
lengths on a different waveguide on which all memory controllers are listening. It
is important to point out that packets stored in each aggregator may be potentially
heading to any of the memory controllers (i.e., DRAM channels). At the same time
we design also the response network and we are integrating this new features in our
simulators.

This is just the starting point to come to design a system photonically-augmented

as whole, but this challenge will be address in future works.

8.5 Summary

This section of Chapter 8§ explored the implications of embodying the optical inter-
connect technology in an environment where computation and memory rescurces are
partitioned and isolated. This reflects a usage model that is gaining momentum in
the field of multi- and many-core processors, as a way to consolidate mixed-criticality
applications onto the same platform, and to enable the concurrent execution of many
programs at the same time. I demonstrate that this environment is of significant bene-
fit for wavelength-routed ONoCs, which tend to the proliferation of laser sources as the
core count increases. Partitioning actually yields laser power savings, and [present two
approaches with different trade-off points to extract this benefits. On one hand, wave-
lengths are reused across partitions by using an online greedy algorithm for wavelength
allocation and partition configuration. On the other hand, I present statically par-
titioned ONoCs and demonstrate their superior physical properties, which ultimately
lead to hard-to-beat total energy figures. This approach is compatible with the flexibil-
ity of modern programming models, which can adapt to the parallelism the hardware
platform exposes even if it is not the optimal cne for the application at hand. However,
if I am not ready to accept the drawback of building such a rigid chip architecture,
[can opt for the first option and still achieve significant power savings. Finally, I
envision a whole new heterogeneous parallel computing system that relies on photonic
interconnection networks to connect the host, main memory, the accelerator and other

devices of the system together.

185

Chapter 8: Optically-Enabled GPPA

186

Conclusions and Future Works

Complexities of scaling single-threaded performance have pushed processor designers in
the direction of chip-level integration of multiple cores. Indeed, today microelectronic
system design, as never before, is evolving under the effect of its two main drivers, the
broadening complexity of applications and the opportunities along with the uncertain-
ties of nanoscale technologies. On one hand, while technology is providing unprece-
dented levels of system integration, it is also bringing new severe concerns (overheating,
tight power budgets, permanent and transient faults). On the other hand, the complex-
ity of applications calls for large-scale SoCs and support for an increasing number of
functionalities that must be supported by advanced interconnect fabrics providing high
communication bandwidth together with an enhanced degree of dynamism and flex-
ibility. NoCs, as mainstream industrial interconnect solutions, are generally believed
to be the answer to such challenges. However relevant parameters such as supported
topologies, switching technique, flit size, buffering styles, supported routing algorithms,
etc. cannot longer represent the key differentiation between network-on-chip architec-
tures. On the contrary, we are at the stage where the features of the on-chip network
must match with the new complex requirements driven by application and technology
scaling constraints that are out-of-reach for current NoC realizations. The constraints
introduced by technology scaling require design methods able to provide fault-tolerance
and testability to tackle the uncertainties of aggressive technology nodes and design
methods able to support locally synchronous, globally asynchronous frequency domains
to meet the power budget restrictions and the overheating concerns. Finally, in the era
of multi- and many- core architectures as potential source of hardware acceleration in
the embedded computing domain, NoCs must be envisioned to support combinations
of applications that can run in several modes and that can be executed concurrently in
a system changing over time, with heterogeneous and time-varying performance /relia-
bility /power requirements. Such requirements call for design methods able to support
system virtualization, partitioning and isolation capabilities of system resources. On
the other hand, to exploit the real potential in terms of Gops/Watt of the hardware,
there is the need also to support concurrent execution of different and parallelized ap-
plications at software layer, through efficient programming abstractions (programming

models, compilers, runtime systems).

This work is a timely answer to the above concerns. The thesis proposes a Space-

187

Conclusions and Future Works

Division Multiplexing approach as an innovative solution to share computing resources
in a many-core programmable accelerator. First of all, the thesis has identified the ba-
sic design requirements needed to augment accelerator architectures with an enhanced
degree of dynamism and flexibility, to enable effective virtualization of the resources
through partitioning and guaranteeing isolation. Such requirements, having as key-
enabler the capability of the NoC to support frequent and dynamic reconfiguration of
the routing function, have been thoroughly investigated throughout the thesis leading
to the novel design of reconfiguration techniques that have been integrated in a sin-
gle NoC architecture. The thesis validates this novel mechanism while at the same
time proves the co-existence and perfect support in the same switching fabric with
other modern requirements, as built-in self-test and diagnosis frameworks to address
post-production and lifetime permanent failures and reliable synchronization in a multi-
frequency environment. In essence, the thesis contributes to the evolution of the NoC
concept providing NoC-enabled architectures for the next-generation of many-core pro-
grammable accelerators where resource usage is optimized via an adaptive partitioning
and isclation concept, and where selective disconnection of components from the sys-
tem does not jeopardize system operation. Isolation and reconfiguration support in the

NoC turn out to be a vital hardware assistance to materialize such advanced use cases.

More in detail, to address the new usage and management requirements, in my
research activity I have optimized the OSRLite reconfiguration mechanism to make it
suitable for highly dynamic and shared execution environments, based on the principle
of flexible network partitioning. Reconfigurations do not require to drain the network
from ongoing traffic, and are local to affected partitions. I have proposed different
optimization strategies for network injectors to match increasing resource budgets. To
the limit, I prove that fully transparent network reconfiguration is feasible. Secondly,
I showed that the synergistic exploitation of multiple physical networks can lead to
a fast, low-impact and scalable dynamic reconfiguration of the routing function at
runtime. I bound the area affected by a reconfiguration and devised a mechanism for
the fast yet controlled switching of the routing function to the new epoch in it. I
rely on concurrent tcken and tunnel propagation mechanisms, and I proved minimum
perturbation of the escape NoC, and only for an overly short amount of time with
respect the reconfiguration latencies of competing approaches. The mechanism can
finally scale to a large number of cores, thus coping with the scalability requirements
of embedded systems. Furthermore the optimizations implemented in my research
work pave the way for the frequent and fast partition reconfigurations that future
applications will require to handle workload adaptivity, fault-tolerance and quality-of-
service. All the experimental results were collected and the proposed optimizations
were modeled and simulated with clock cycle accuracy in RTL-equivalent SystemC
by augmenting the baseline VirtualSoC simulation environment. A further validation

of the proposed enriched NoC has been performed by means of FPGA prototyping,

188

realizing a demonstrator of the optimized mechanism at work, using a leading-edge
Xilinx Virtex7 FPGA.

To prove the advantages of scheduling the execution of concurrent applications on
the accelerator following an SDM approach while overcoming the long simulation times
provided by VirtualSoC, I augmented another simulation environment capable of sim-
ulating a complete system including the host processor and a GPPA, leveraging on
the gembd simulator hand-customized for this purpese. Here, relying on an optimized
OpenMP runtime customized to support this dynamic scenario, I tested several Im-
age Processing applications, analyzing different configurations of the platform, several
memory settings and also different partition dimensions and shapes, finally compare
TDM vs SDM. The final cutcome is that resource sharing in a high contention and
dvnamic scenario is the best approach.

Finally I focused on emerging technologies, in particular on optical NoCs, augment-
ing the aforementioned many-core programmable accelerator with photenic intercon-
nect technology. To the best of my knowledge, this was the first assessment of optical
interconnect technology on this kind of devices, pointing out the benefits (i.e., abate-
ment of NUMA effects, better energy-per-bit ratio) and the disadvantages, in particular
concerning a complex network interface and a significant static power contribution. To
project the photonic technology in an embedded virtualized environment, I explore
partitioning strategies for wavelength-routed Optical NoCs, allowing to tear-down un-
used lasers and to keep them unused as much as possible, thus reaching the goal of
mitigating the static power consumption and bringing it within reach of the embedded
computing domain.

Asg a future work, I want to consistently develop the implications of such routing
reconfiguration capability to the upper layers of the design hierarchy. At first, the first
and foremost implication is on the concept of space partition, that is, on the grouping
of neighboring computation units in an homogeneous parallel computing fabric to ac-
commodate a single (parallel) application. Thanks to the reconfiguration property of
the interconnect fabric, I will be able to introduce the concept of flexible space partition
in shape and size, thus opening up unprecedented opportunities for resource utilization
and power efficiency. In turn, this poses requirements on the runtime manager of the
system, which should be able to support such flexibility by implementing some kind of
application versioning. Thus I can contribute to evolve programmable accelerators to-
wards unprecedented levels of runtime reconfiguration through a cross-layer approach

to design, optimization and programming,.

189

Conclusions and Future Works

190

BIBLIOGRAPHY

Bibliography

[1]
2]

[10]

Stmicroelectronics. http://www.st.com/, note = Accessed: 2016-02-08.

Juan Ramén Acosta and Dimiter R Avresky. Intelligent dynamic network re-
configuration. In Parallel and Distributed Processing Symposium, 2007. [IPDPS
2007. IEEE International, pages 1-9. IEEE, 2007.

Vikas Agarwal, MS Hrishikesh, Stephen W Keckler, and Doug Burger. Clock rate
versus [PC: The end of the road for conventional microarchitectures, volume 28.
ACM, 2000,

Konstantinos Aisopos, Andrew DeOrio, Li-Shiuan Peh, and Valeria Bertacco.
Ariadne: Agnostic reconfiguration in a disconnected network environment. In
Parallel Architectures and Compilation Techniques (PACT), 2011 International
Conference on, pages 298-309, IEEL, 2011.

Gene M Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, spring

joint computer conference, pages 483-485. ACM, 1967.

Apple. Apple, Inc. Grand Central Dispatch. https://developer.apple.com/
library/mac/#documentation/Performance/Reference/GCDibdispatchRef/
Reference/reference.html, note = Accessed: 2016-02-08.

R. Merritt (ARM). Group describes specs for x86, arm socs. http://www.
eetimes.com/document.asp?doc_1d=1319306, note = Accessed: 2016-02-08.

Dimiter Avresky and Natcho Natchev. Dynamic reconfiguration in computer
clusters with irregular topologies in the presence of multiple node and link fail-
ures. Computers, IEEE Transactions on, 54(5):603—-615, 2005.

Sandro Bartolini and Paolo Grani. Co-tuning of a hybrid electronic-optical net-

work for reducing energy consumption in embedded cmps. In Proceedings of

the First International Workshop on Many-core Embedded Systems, pages 9-16.
ACM, 2013.

Christopher Batten, Ajay Joshi, Jason Orcutt, Anatoly Khilo, Benjamin Moss,
Charles Holzwarth, Milos Popovié, Hanging Li, Henry Smith, Judy Hoyt, et al.

191

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

Building manycore processor-to-dram networks with monolithic silicon photonics.
In High Performance Interconnects, 2008. HOTT'08. 16th [EEE Symposium on,
pages 21-30. IEEE, 2008.

Christopher Batten, Ajay Joshi, Vladimir Stojanové, and Krste Asanovié.

Designing chip-level nanophotonic interconnection networks. Springer, 2013.

Scott Beamer, Chen Sun, Yong-Jin Kwon, Ajay Joshi, Christopher Batten,
Vladimir Stojanovié, and Krste Asanovié. Re-architecting dram memory systems
with monolithically integrated silicon photonics. ACM SIGARCH Computer

Architecture News, 38(3):129-140, 2010.

Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track, pages 41-46, 2005,

Luca Benini and Giovanni De Micheli. Networks on chips: a new soc paradigm.
Computer, 35(1):70-78, 2002.

Luca Benini et al. P2012: Building an ecosystem for a scalable, modular and high-

efficiency embedded computing accelerator. In Proceedings of the Conference on

Design, Automation and Test in Europe.

Steven Manning Betker, Timothy R Vitters, and Renae M Weber. Method and
system for dynamically assigning domain identification in a multi-module fibre
channel switch, June 12 2007. US Patent 7,230,929.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. The gem5 Simulator. ACM SIGARCH Computer Architecture
News, 39(2):1-7, 2011.

M. Bohr and K. Mistry. Intel’s revolutionary 22 nm transistor tech-
nology. http://download.intel.com/newsroom/kits/22nm/pdfs/
22nm-detailspresentation.pdf, note = Accessed: 2016-02-08.

Shekhar Borkar and Andrew A Chien. The future of microprocessors.
Communications of the ACM, 54(5):67-77, 2011.

Daniele Bortolotti, Claudio Pinto, Andrea Marongiu, Matteo Ruggiero, and Luca
Benini. Virtualsoc: A Full-System Simulation Environment for Massively Par-
allel Heterogeneous System-on-Chip. In Parallel and Distributed Processing
Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th International,
pages 2182-2187. IEEE, 2013.

David M Brooks, Pradip Bose, Stanley E Schuster, Hans Jacobson, Prabhakar N
Kudva, Alper Buyuktosunoglu, John-David Wellman, Victor Zyuban, Manish

192

BIBLIOGRAPHY

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29)

[30]

[31]

[32]

Gupta, and Peter W Cook. Power-aware microarchitecture: Design and modeling

challenges for next-generation microprocessors. Micro, IEEE, 20(6):26-44, 2000.

N. Brookwood. Amd fusion family of apus: Enabling a superior, immer-
sive pc experience. http://sites.amd.com/kr/Documents/48423B/fusion/
whitepaper/WEB.pdf, note = Accessed: 2016-02-08.

Paclo Burgio, Giuseppe Tagliavini, Andrea Marongiu, and Luca Benini. En-
abling fine-grained openmp tasking on tightly-coupled shared memory clusters.
In Design, Automation and Test in Europe Conference and Exhibition (DATE),
2013, pages 1504-1509. [EEE, 2013.

Ruben Casado, Aurelio Bermudez, Jose Duato, Francisco J Quiles, and José L
Sénchez. A protocol for deadlock-free dynamic reconfiguration in high-speed
local area networks. Parallel and Distributed Systems, IEEE Transactions on,
12(2):115-132, 2001.

Daniel M Chapiro. Globally-asynchronous locally-synchronous systems. Techni-
cal report, DTIC Document, 1984,

Sai Vineel Reddy Chittamuru, Srinivas Desal, and Sudeep Pasricha. Recon-
figurable silicon-photonic network with improved channel sharing for multicore

architectures. In Proceedings of the 25th edition on Great Lakes Symposium on
VLSI, pages 63-68. ACM, 2015,

Hongsuk Chung, Munsik Kang, and Hyun-Duk Cho. Heterogeneous multi-

processing solution of exynos 5 octa with arm(@®) big. little? technology.

Mark J Cianchetti, Joseph C Kerekes, and David H Albonesi. Phastlane: a
rapid transit optical routing network. In ACM SIGARCH Computer Architecture
News, volume 37, pages 441-450. ACM, 2009.

Intel Corp. Intel teraflops project: 80-cores polaris chip. http://www.intel.
com/pressroom/kits/teraflops, note = Accessed: 2016-02-08.

OAR Corporation. Real-time executive for multiprocessor systems. http://www.
rtems.org, note = Accessed: 2016-02-08.

TILERA Corporation. Tile-gx8072 processor, product brief. http:
//www.tilera.com/sites/default/files/images/products/TILE-Gx8072_
PB041-03_WEB.pdf, note = Accessed: 2016-02-08.

TILERA Corporation. Tilera processors. http://www.tilera.com/products/
processors, note = Accessed: 2016-02-08.

193

BIBLIOGRAPHY

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Leonardo Dagum and Rameshm Enon. Openmp: an industry standard api for

shared-memory programming. Computational Science and Engineering, IEEE,
5(1):46-55, 1998.

William J Dally, Larry R Dennison, David Harris, Kinhong Kan, and Thucydides
Xanthopoulos. The reliable router: A reliable and high-performance communi-

cation substrate for parallel computers. pages 241-255, 1994,

William J Dally and Brian Towles. Route packets, not wires: on-chip intercon-
nection networks. In Design Automation Conference, 2001. Proceedings, pages
684-689. [EEE, 2001.

William James Dally and Brian Patrick Towles. Principles and practices of

interconnection networks. Elsevier, 2004.

Giovanni De Micheli and Luca Benini. Networks on chips: technology and tools.
Academic Press, 2006.

Masood Dehyadgari, Mohsen Nickray, Ali Afzali-Kusha, and Zainalabein Navabi.
Evaluation of pseudo adaptive xy routing using an object oriented model for
noc. In Microelectronics, 2005. ICM 2005. The 17th International Conference
on, pages 5—pp. [EEE, 2005.

Robert H Dennard, VL Rideout, E Bassous, and AR LeBlanc. Design of ion-
implanted mosfet’s with very small physical dimensions. Solid-State Circuits,
IEEE Journal of, 9(5):256-268, 1974.

Andrew DeOrio, David Fick, Valeria Bertacco, Dennis Sylvester, David Blaauw,
Jin Hu, and Gregory Chen. A reliable routing architecture and algorithm for nocs.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 31(5):726-739, 2012.

Jose Duato, Olav Lysne, Ruoming Pang, and Timothy M Pinkston. A theory for
deadlock-free dynamic network reconfiguration. part i. Parallel and Distributed
Systems, IEEE Transactions on, 16(5):412-427, 2005,

Jose Duato, Sudhakar Yalamanchili, and Lionel M Ni. Interconnection networks:

an engineering approach. Morgan Kaufmann, 2003.

Mojtaba Ebrahimi, Masoud Daneshtalab, Juha Plosila, and Farhad Mehdipour.
Md: minimal path-based fault-tolerant routing in on-chip networks. In Design
Automation Conference (ASP-DAC), 2013 18th Asia and South Pacific, pages
35-40. IEEE, 2013.

Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam,

and Doug Burger. Dark silicon and the end of multicore scaling. In Computer

194

BIBLIOGRAPHY

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Architecture (ISCA), 2011 38th Annual International Symposium on, pages 365
376. IEEE, 2011.

Kevin Fan, Manjunath Kudlur, Ganesh Dasika, and Scott Mahlke. Bridging
the computation gap between programmable processors and hardwired acceler-
ators. In High Performance Computer Architecture, 2009. HPCA 2009. IEEE
15th International Symposium on, pages 313-322. IEEL, 2009,

Chaochao Feng, Zhonghai Lu, Axel Jantsch, Jinwen Li, and Minxuan Zhang. A
reconfigurable fault-tolerant deflection routing algorithm based on reinforcement
learning for network-on-chip. In Proceedings of the Third International Workshop
on Network on Chip Architectures, pages 11-16. ACM, 2010.

David Fick, Andrew DeOrio, Gregory Chen, Valeria Bertacco, Dennis Sylvester,
and David Blaauw. A highly resilient routing algorithm for fault-tolerant nocs.

In Proceedings of the Conference on Design, Automation and Test in Europe,

pages 21-26. European Design and Automation Association, 2009.

David Fick, Andrew DeOrio, Jin Hu, Valeria Bertacco, David Blaauw, and Dennis
Sylvester. Vicis: a reliable network for unreliable silicon. In Proceedings of the
46th Annual Design Automation Conference, pages 812-817. ACM, 2009.

Josze F'lich and Jose Duato. Logic-Based Distributed Routing for NoCs. Computer
Architecture Letters, 7(1):13-16, 2008.

Jose Flich, Andres Mejia, Pedro Lopez, and Jose Duato. Region-based rout-
ing: An efficient routing mechanism to tackle unreliable hardware in network on
chips. In Networks-on-Chip, 2007. NOCS 2007. First International Symposium
on, pages 183-194. [EEE, 2007.

Poletti Francesco, Poggiali Antonio, and Paul Marchal. Flexible hardware /soft-
ware support for message passing on a distributed shared memory architecture.
In Design, Automation and Test in Europe, 2005. Proceedings, pages 736-741.
IEEE, 2005.

Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-

line learning and an application to boosting. In Computational learning theory,

pages 23-37. Springer, 1995,

David Geer. Chip makers turn to multicore processors. Computer, 38(5):11-13,
2005.

David Gelernter. A dag-based algorithm for prevention of store-and-forward
deadlock in packet networks. Computers, IEEE Transactions on, 100(10):709-
715, 1981,

195

BIBLIOGRAPHY

[55]

[56]

[57]

58]

[59]

[60]

[61]

[62]

[63]

[64]

Alberto Ghiribaldi, Davide Bertozzi, and Steven M Nowick. A transition-
signaling bundled data noc switch architecture for cost-effective gals multicore
systems. In Proceedings of the Conference on Design, Automation and Test in
Europe, pages 332-337. EDA Consortium, 2013.

Alberto Ghiribaldi, Daniele Ludovici, Francisco Trivifio, Alessandro Strano,
José Flich, José LUIS Sdnchez, Francisco Alfaro, Michele Favalli, and Davide
Bertozzi. A complete self-testing and self-configuring noc infrastructure for cost-
effective mpsocs. ACM Transactions on Embedded Computing Systems (TECS),
12(4):106, 2013.

F' Gilabert, Maria Engracia Gémez, Simone Medardoni, and Davide Bertozzi.
Improved Utilization of NoC Channel Bandwidth by Switch Replication for
Cost-Effective Multi-Processor Systems-on-Chip. In Proceedings of the 2010
Fourth ACM/IEEE International Symposium on Networks-on-Chip, pages 165—
172. IEEE Computer Society, 2010.

Christopher J Glass and Lionel M Ni. Fault-tolerant wormhole routing in meshes
without virtual channels. IEEE transactions on parallel and distributed systems,
7(6):620-636, 1996.

Simcha Gochman, Avi Mendelson, Alon Naveh, and Efraim Rotem. Introduction

to intel core duo processor architecture. Intel Technology Journal, 10(2), 2006.

Maria E Gomez, Jose Duato, Jose Flich, Pedro Lopez, Antonio Robles, Nils Agne
Nordbotten, Olav Lysne, and Tor Skeie. An efficient fault-tolerant routing
methodology for meshes and tori. Computer Architecture Letters, 3(1):3-3, 2004.

Nilanjan Goswami, Zhongqi Li, Ajit Verma, Ramkumar Shankar, and Tao Li.

Integrating nancphotonics in gpu microarchitecture. In Proceedings of the 21st

international conference on Parallel architectures and compilation techniques,

pages 425-426. ACM, 2012.

Ed Grochowski and Murali Annavaram. Energy per instruction trends in intel

microprocessors. Technology@ Intel Magazine, 4(3):1-8, 2006.

Andreas Hansson, Kees Goossens, and Andrei Radulescu. Avoiding Message-
Dependent Deadlock in Network-Based Systems-on-Chip. VLSI design, 2007,
2007.

Alexander Heinecke, Karthikeyan Vaidyvanathan, Mikhail Smelyanskiy, Alexan-
der Kobotov, Roman Dubtsov, Greg Henry, Aniruddha G Shet, Grigorios
Chrysos, and Pradeep Dubey. Design and implementation of the linpack bench-

mark for single and multi-node systems based on intel®) xeon phi coprocessor.

196

BIBLIOGRAPHY

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

In Parallel and Distributed Processing (IPDPS), 2013 IEEE 27th International
Symposium on, pages 126-137. IEEE, 2013.

Gilbert Hendry, Eric Robinson, Vitaliv Gleyzer, Johnnie Chan, Luca P Car-
loni, Nadya Bliss, and Keren Bergman. Circuit-switched memory access in
photonic interconnection networks for high-performance embedded computing.
In High Performance Computing, Networking, Storage and Analysis (SC), 2010
International Conference for, pages 1-12. IEEE, 2010.

Robert Hilbrich and J Reinier Van Kampenhout. Partitioning and task
transfer on noc-based many-core processors in the avionics domain. Journal
Softwaretechnik-Trends, 30(3):6, 2011.

Ching-Tien Ho and Larry Stockmever. A new approach to fault-tolerant
wormhole routing for mesh-connected parallel computers. Computers, [EEE
Transactions on, 53(4):427-438, 2004.

John Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Finan, Gre-
gory Ruhl, Devon Jenkins, Howard Wilson, Nitin Borkar, Gerhard Schrom,

et al. A 48-core ia-32 message-passing processor with dvfs in 45nm cmos. In
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE

International, pages 108-109. IEEE, 2010.

Adapteva Inc. Parallela Reference Manual. http://www.parallella.org/docs/
parallella/manual .pdf. Accessed: 2016-02-08,

Texas Instruments Inc. Multicore DSP+ARM Keystone II System-on-Chip
(SoC). http://www.ti.com/lit/ds/symlink/66ak2h12.pdf. Accessed: 2016-
02-08.

Xilinx Inc. Zyng-7000 All Programmable SoC Overview. http://www.xilinx.
com/support/documentation/datasheets/ds190-Zyng-7000-0verview.pdf.
Accessed: 2016-02-08.

IRC. The international technology roadmap for semiconductors (ITRS). http:
//www.itrs2.net/itrs-reports.html, note = Accessed: 2016-02-08.

Robert D Blumofe Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiser-
son, Keith H Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime
system. In Proc. Fifth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, 1995,

James A Kahle, Michael N Day, H Peter Hofstee, Charles R Johns, et al. Intro-
duction to the cell multiprocessor. IBM journal of Research and Development,
49(4/5):589, 2005.

197

BIBLIOGRAPHY

[75]

[76]

[77]

78]

[79]

[80]

81

[82]

[83]

[84]

Inc. Kalray. Kalray mppa manycore. http://www.kalray.eu/products/
mppa-manycore, note = Accessed: 2016-02-08.

Parviz Kermani and Leonard Kleinrock. Virtual cut-through: A new computer
communication switching technique. Computer Networks {1976), 3(4):267-286,
1979,

Nevin Kirman, Meyrem Kirman, Rajeev K Dokania, Jose F' Martinez, Alyssa B
Apsel, Matthew A Watkins, and David H Albonesi. Leveraging optical tech-

nology in future bus-based chip multiprocessors. In Proceedings of the 39th

Annual IEEE/ACM International Symposium on Microarchitecture, pages 492—
503. IEEE Computer Society, 2006,

Nevin Kirman, Meyrem Kirman, Rajeev K Dokania, Jose F' Martinez, Alyssa B
Apsel, Matthew A Watkins, and David H Albonesi. Leveraging optical tech-

nology in future bus-based chip multiprocessors. In Proceedings of the 39th

Annual [EEE/ACM International Symposium on Microarchitecture, pages 492

503. IEEE Computer Society, 2006.

Sanjeev Kumar, Christopher J Hughes, and Anthony Nguyen. Carbon: archi-
tectural support for fine-grained parallelism on chip multiprocessors. In ACM
SIGARCH Computer Architecture News, volume 35, pages 162-173. ACM, 2007.

George Kurian, Jason E Miller, James Psota, Jonathan Eastep, Jifeng Liu, Jur-
gen Michel, Lionel C Kimerling, and Anant Agarwal. Atac: a 1000-core cache-

coherent processor with on-chip optical network. In Proceedings of the 19th

international conference on Parallel architectures and compilation techniques,

pages 477-488. ACM, 2010.

James Larus. Spending moore’s dividend. Communications of the ACM,
52(5):62-69, 2000,

Sébastien Le Beux, Hui Li, Gabriela Nicolescu, Jelena Trajkovic, and Ilan
O’Connor. Optical crossbars on chip, a comparative study based on worst-case
losses. Concurrency and Computation: Practice and Experience, 26{15):2492—-
2503, 2014.

Sébastien Le Beux, Jelena Trajkovic, Ian (’Connor, Gabriela Nicolescu, Guy
Bois, and Pierre Paulin. Optical ring network-on-chip (ornoc): Architecture and
design methodology. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2011, pages 1-6. IEEE, 2011.

Doowon Lee, Ritesh Parikh, and Valeria Bertacco. Brisk and limited-impact noc
routing reconfiguration. In Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2014, pages 1-6. [EEE, 2014.

198

BIBLIOGRAPHY

[85]

[86]

[87]

8]

[89)

[90]

[91]

[92]

[93]

[94]

Jonathan Leu and Vladimir Stojanovié. Injection-locked clock receiver for mono-
lithic optical link in 45nm soi. In Solid State Circuits Conference (A-SSCC), 2011
IEEE Asian, pages 149-152. IEEE, 2011.

Zheng Li, Jie Wu, Li Shang, Alan R Mickelson, Manish Vachharajani, Dejan Fil-
ipovic, Wounjhang Park, and Yihe Sun. A high-performance low-power nanopho-
tonic on-chip network. In Proceedings of the 20089 ACM/IEEE international
symposium on Low power electronics and design, pages 291-294, ACM, 2009,

ARM Ltd. biglittle processing with arm cortex-al5 and cortex- a7. http:
//www.arm.com/files/downloads/big/LITTLE/Final/Final.pdf, note = Ac-
cessed: 2016-02-08.

Michael J Lyons, Mark Hempstead, Gu-Yeon Wei, and David Brooks. The accel-
erator store: A shared memory framework for accelerator-based systems. ACM
Transactions on Architecture and Code Optimization (TACO), 8(4):48, 2012.

Olav Lysne, José Miguel Montan Ana, Jose Flich, Jose Duato, Timothy Mark
Pinkston, and Tor Skeie. An efficient and deadlock-free network reconfiguration
protocol. Computers, IEEE Transactions on, 57(6):762-779, 2008.

Olav Lysne and José Duato. Fast dynamic reconfiguration in irregular net-
works. In Parallel Processing, 2000, Proceedings. 2000 International Conference
on, pages 449-458. [EEE, 2000.

Olav Lysne, Timothy Mark Pinkston, and Jose Duato. A methodology for devel-
oping deadlock-free dynamic network reconfiguration processes. part ii. Parallel
and Distributed Systems, IEEE Transactions on, 16(5):428-443, 2005.

Abhinandan Majumdar, Srihari Cadambi, Michela Becchi, Srimat T Chakrad-
har, and Hans Peter Graf. A massively parallel, energy efficient programmable
accelerator for learning and classification. ACM Transactions on Architecture
and Code Optimization (TACO), 9(1):6, 2012.

Andrea Marongiu, Paolo Burgio, and Luca Benini. Fast and lightweight sup-
port for nested parallelism on cluster-based embedded many-cores. In Design,
Automation & Test in Europe Conference & Exhibition {(DATE), 2012, pages
105-110. IEEE, 2012.

Andrea Marongiu, Alessandro Capotondi, Giuseppe Tagliavini, and Luca Benini.
Improving the programmability of sthorm-based heterogeneous systems with
offload-enabled openmp. In Proceedings of the First International Workshop
on Many-core Embedded Systems, pages 1-8. ACM, 2013.

199

BIBLIOGRAPHY

[95]

[96]

[97]

(98]

[99]

100]

[101]

102]

[103]

[104]

[105]

Diego Melpignano, Luca Benini, Eric Flamand, Bruno Jego, Thierry Lepley, Ger-
main Haugou, Fabien Clermidy, and Denis Dutoit. Platform 2012, a Many-core
Computing Accelerator for Embedded SoCs: Performance Evaluation of Visual

Analytics Applications. In Proceedings of the 49th Annual Design Automation

Conference, pages 1137-1142. ACM, 2012.

C. Moore. Amd: frameworks for innovation. In Computer Architecture (ISCA),

2007 34th Annual International Symposium on. IEEE, 2007.

Gordon E Moore. Cramming more components onto integrated circuits, reprinted
from electronics, volume 38, number 8, april 19, 1965, pp. 114 ff. IEEE Solid-State
Circuits Newsletter, 3{20):33-35, 2006.

NodeOS. Node operating system. http://www.node-os.com, note = Accessed:
2016-02-08.

NVIDIA. Nvidia cuda programming guide. http://developer.download.
nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming Guide_1.0.pdf,
note = Accessed: 2016-02-08.

NVIDIA. Nvidia tegra 4 family cpu architecture, white paper. http://www.
nvidia.com/docs/I0/116757/NVIDIA_Quad_alb_whitepaper_ FINALv2.pdf,
note = Accessed: 2016-02-08.

[. O’Connor and F. Gafliot. On-chip optical interconnect for low-power. Springer,
2004,

[an O’Connor, Matthieu Briere, Emmanuel Drouard, Art Kazmierczak, Faress
Tissafi-Drissi, David Navarro, Fabien Mieveville, Joni Dambre, Dirk Stroobandt,

Jean-Marc Fedeli, et al. Towards reconfigurable optical networks on chip. In

ReCoSoC, pages 121-128. Citeseer, 2005,

Umit Y Ogras, Radu Marculescu, Puru Choudhary, and Diana Marculescu.
Voltage-frequency island partitioning for gals-based networks-on-chip. In
Proceedings of the 44th annual Design Automation Conference, pages 110-115.
ACM, 2007.

Marta Ortin-Obdn, Luca Ramini, Herve Tatenguem Fankem, Victor Vinals,
and Davide Bertozzi. A complete electronic network interface architecture for
global contention-free communication over emerging optical networks-on-chip.
In Proceedings of the 24th edition of the great lakes symposium on VLSI, pages
267-272. ACM, 2014,

John DY Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Kriiger,

Aaron E Lefohn, and Timothy J Purcell. A survey of general-purpose compu-

200

BIBLIOGRAPHY

106]

107]

108]

109]

110]

[111]

112]

[113]

114]

[115]

tation on graphics hardware. In Computer graphics forum, volume 26, pages
&0-113. Wiley Online Library, 2007.

Yan Pan, Prabhat Kumar, John Kim, Gokhan Memik, Yu Zhang, and Alok
Choudhary. Firefly: illuminating future network-on-chip with nanophotonics. In
ACM SIGARCH Computer Architecture News, volume 37, pages 420-440. ACM,

2009.

Ruoming Pang, Timothy Mark Pinkston, and José Duato. The double scheme:

Deadlock-free dynamic reconfiguration of cut-through networks. In Parallel

Processing, 2000. Proceedings. 2000 International Conference on, pages 439-448.
IEEE, 2000.

Timothy Mark Pinkston, Ruoming Pang, and José Duato. Deadlock-free dy-
namic reconfiguration schemes for increased network dependability. Parallel and
Distributed Systems, IEEE Transactions on, 14(8):780-794, 2003.

Plurality. OpenMP Application Program interface. http://www.openmp.org/
mp-documents/OpenMP3.1.pdf, note = Accessed: 2016-02-08.

Plurality. Plurality: The HyperCore Processor. http://www.plurality.com/
hypercore.html, note = Accessed: 2016-02-08.

Fred J Pollack. New microarchitecture challenges in the coming generations of

cmos process technologies (keynote address). In Proceedings of the 32nd annual

ACM/IEEE international symposium on Microarchitecture, page 2. IEEE Com-

puter Society, 1999,

Valentin Puente, José A Gregorio, Fernando Vallejo, and Ramén Beivide. Im-
munet: A cheap and robust fault-tolerant packet routing mechanism. In ACM
SIGARCH Computer Architecture News, volume 32, page 198. IEEE Computer
Society, 2004,

Qualcomm. Qualcomm snapdragon 800 processors, prod-
uct brief. http://www.qualcomm. com/media/documents/files/
qualcomm-snapdragon-800-product-brief.pdf, note = Accessed: 2016-
02-08.

Luca Ramini and Davide Bertozzi. Power efficiency of wavelength-routed optical
noc topologies for global connectivity of 3d multi-core processors. In Proceedings
of the Fifth International Workshop on Network on Chip Architectures, pages
25-30. ACM, 2012.

Luca Ramini, Paclo Grani, Hervé Tatenguem Fankem, Alberto Ghiribaldi, San-

dro Bartolini, and Davide Bertozzi. Assessing the energy break-even point

201

BIBLIOGRAPHY

116]

117]

18]

119]

[120]

[121]

122]

[123]

[124]

[125]

between an optical noc architecture and an aggressive electronic baseline. In

Proceedings of the conference on Design, Automation & Test in Europe, page

308. European Design and Automation Association, 2014,

Samuel Rodrigo, Jose Flich, Antoni Roca, Simone Medardoni, Davide Bertozzi,
J Camacho, Federico Silla, and Jose Duato. Addressing manufacturing challenges
with cost-efficient fault tolerant routing. In Proceedings of the 2010 Fourth
ACM/IEEE International Symposium on Networks-on-Chip, pages 25-32. [EEE

Computer Society, 2010.

Alberto Ros, Manuel E Acacio, and José M Garcia. Scalable directory organiza-
tion for tiled cmp architectures. CDES, 8:112-118, 2008,

Edward Rosten, Reid Porter, and Tom Drummond. Faster and better: A machine
learning approach to corner detection. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 32(1):105-119, 2010.

Alberto Scandurra and Ian O’Connor. Scalable cmos-compatible photonic routing
topologies for versatile networks on chip. Network on Chip Architecture, pages
121-128, 2008.

Michael D Schroeder, Andrew D Birrell, Michael Burrows, Hal Murray, Roger M
Needham, Thomas [, Rodeheffer, Edwin H Satterthwaite, and Charles P Thacker.
Autonet: A high-speed, self-configuring local area network using point-to-point
links. Selected Areas in Communications, [EEE Journal on, 9(8):1318-1335,
1991.

Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,
Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin,
et al. Larrabee: a many-core x86 architecture for visual computing. In ACM
Transactions on Graphics {(TOG), volume 27, page 18. ACM, 2008.

Abbas Sheibanyrad and Alain Greiner. Two efficient synchronous asynchronous
converters well-suited for networks-on-chip in gals architectures. Integration, the
VLSI Journal, 41(1):17-26, 2008.

Abbas Sheibanyrad and Alain Greiner. Two efficient synchronous asynchronous
converters well-suited for networks-on-chip in gals architectures. Integration, the
VLSI Journal, 41(1):17-26, 2008.

Montek Singh and Steven M Nowick. Mousetrap: high-speed transition-signaling
asynchronous pipelines. Very Large Scale Integration (VLSI) Systems, |[EEE
Transactions on, 15(6):684-698, 2007.

Martonosi Sjdlander and Kaxiras. Power-effcient computer architectures: Recen-

tadvances. In Synthesis Lectures on Computer Architecture, pages 1-96, 2014,

202

BIBLIOGRAPHY

126]

[127]

128]

129]

130]

[131]

132]

133]

134]

[135]

Stergios Stergiou, Federico Angiolini, Salvatore Carta, Luigi Raffo, Davide
Bertozzi, and Giovanni De Micheli. x pipes lite: A Synthesis Oriented Design
Library for Networks on Chips. In Design, Automation and Test in Europe, 2005.

Proceedings, pages 1188-1193. IEEE, 2005.

John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel program-

ming standard for heterogenecus computing systems. Computing in science and

engineering, 12(1-3):66-73, 2010.

Alessandro Strano, Davide Bertozzi, Francisco Trivino, José 1. Sanchez, Fran-
cisco J Alfaro, and José Flich. Osr-lite: Fast and deadlock-free noc reconfigura-
tion framework. In Embedded Computer Systems (SAMOS), 2012 International
Conference on, pages 86-95. IEEE, 2012.

Alessandro Strano, Daniele Ludovici, and Davide Bertozzi. A library of dual-
clock fifos for cost-effective and flexible mpsoc design. In Embedded Computer
Systems (SAMOS), 2010 International Conference on, pages 20-27. IEEE, 2010.

Chen Sun, Yu-Hsin Chen, and Vladimir Stojanovié. Designing processor-memory

interfaces with monolithically integrated silicon-photonics. In Conference on

Lasers and Electro-Optics/Pacific Rim, page TuN4_3. Optical Society of America,

2013.

Xianfang Tan, Mei Yang, Lei Zhang, Yingtao Jiang, and Jianyi Yang. On a
scalable, non-blocking optical router for photonic networks-on-chip designs. In
Photonics and Optoelectronics (SOPO), 2011 Symposium on, pages 1-4. [EEE,

2011.

Dan Teodosiu, Joel Baxter, Kinshuk Govil, John Chapin, Mendel Rosenblum,
and Mark Horowitz. Hardware fault containment in scalable shared-memory
multiprocessors. ACM SIGARCH Computer Architecture News, 25(2):73-84,
1997.

Francisco Trivifio, Davide Bertozzi, and José Flich. A fast algorithm for runtime
reconfiguration to maximize the lifetime of nanoscale nocs. In Proceedings of the
2013 Interconnection Network Architecture: On-Chip, Multi-Chip, pages 1-4.

ACM, 2013,

CH Van Berkel. Multi-core for mobile phones. In Proceedings of the Conference

on Design, Automation and Test in Europe, pages 1260-1265. European Design

and Automation Association, 2009.

Sriram R Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe, Howard Wilson,

James Tschanz, David Finan, Arvind Singh, Tiju Jacob, Shailendra Jain, et al.

203

BIBLIOGRAPHY

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

An 80-tile sub-100-w teraflops processor in 65-nm cmos. Solid-State Circuits,
IEEE Journal of, 43(1):29-41, 2008.

Dana Vantrease, Nathan Binkert, Robert Schreiber, and Mikke H Lipasti.
Light speed arbitration and flow control for nanophotonic interconnects. In
Microarchitecture, 2009, MICRO-42, 42nd Annual IEEE/ACM International

Symposium on, pages 304-315. IEEE, 2009,

Dana Vantrease, Robert Schreiber, Matteo Monchiero, Moray Mcl.aren, Nor-
man P Jouppi, Marco Fiorentino, Al Davis, Nathan Binkert, Raymond G Beau-
soleil, and Jung Ho Ahn. Corona: System implications of emerging nanophotonic
technology. In ACM SIGARCH Computer Architecture News, volume 36, pages
153-164. IEEE Computer Society, 2008.

Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnine Garcia, Vla-
dyslav Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Tay-
lor. Conservation cores: reducing the energy of mature computations. In ACM

SIGARCH Computer Architecture News, volume 38, pages 205-218. ACM, 2010.

Eduardo Wachter, Augusto Erichsen, Alexandre Amory, and Fernando Moraes.

Topology-agnostic fault-tolerant noc routing method. In Proceedings of the

Conference on Design, Automation and Test in Europe, pages 1595-1600. EDA

Consortium, 2013.

David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards,
Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F Brown II1I, and Anant

Agarwal. On-chip interconnection architecture of the tile processor. IEEE micro,
(5):15-31, 2007,

Pooria M Yaghini, Ashkan Eghbal, SA Asghari, and H Pedram. Power compar-

ison of an asynchronous and synchronous network on chip router. In Computer

Conference, pages 242-246, 2000,

Young Jin Yoon, Nicola Concer, Michele Petracca, and Luca P Carloni. Vir-
tual channels and multiple physical networks: two alternatives to improve noc
performance. Computer-Aided Design of Integrated Circuits and Systems, [EEE
Transactions on, 32(12):1006-1919, 2013.

Zhen Zhang, Alain Greiner, and Sami Taktak. A reconfigurable routing algorithm
for a fault-tolerant 2d-mesh network-on-chip. In Proceedings of the 45th annual
Design Automation Conference, pages 441-446. ACM, 2008.

204

EU- or Italy-funded projects where

I was invoved

» Project: vlrtical, SW/HW extensions for virtualized heterogeneous multicore
platforms. o
Site: http://www.virtical.eu. WI m@@u
Funding body: Collaborative Project: FP7-ICT-2011-7.
Duration: 36 months (from 15 July 2011).

Specification: Objective ICT-2011.3.4 Computing Systems.

ssssssssssssss
MMMMMMMMM

Partners: University of Bologna (Italy); University of Ferrara (Italy); Virtual
Open Systems Sarl (France); STMicroelectronics Grenoble 2 Sas (France); Tech-
nological Educational Institute Of Crete (Greece); Sysgo Ag (Germany); Thales

Communications Sas (France); Arm Limited (UK).

s Project: PHIDIAS, Ultra-Low-Power Holistic Design for Smart Bio-Signals
Computing Platforms.
Site: http://www.phidiasproject.eu P I D I AS
Funding body: Collaborative Project: FP7 7
Duration: 36 months (from 1 October 2012) R
Partners: University of Bologna (Italy); European Research Services GmbH
(Germany); Ecole Polytechnique Federale de Lausanne (Switzerland); IMEC-NL
(Netherlands).

s Project: PHOTONICA, Photonic Interconnect Technology for Chip-Multiprocessor
Architectures.
Site: https://sites.google.com/site/photonicaproject/home
Funding body: FIRB 2008
Duration: 36 months (from 1 October 2012)
Specification: RBFROSLE6V
Partners: University of Ferrara (Italy); University of Siena (Italy); University
of Bari (Italy); University of Murcia (Spain).

205

BEU- or Italy-funded projects where I was invoved

206

Authors’s Publications List

Conference Proceedings

'[C1] M. Balboni, F. Trivifio, J. Flich, D. Bertozzi, ” Optimizing the Overhead
for Networks-on-Chip Routing Reconfiguration in Parallel Multi-Core

Platforms”, in Proceedings IEEE International Systems-on-Chip Symposium
2013, (SoCS13).

(C2] M. Balboni, M. Ortin Obon, A. Capotondi, L. Ramini, A. Marongiu, V. Vifials,
D. Bertozzi, ” Augmenting Manycore Programmable Accelerators with
Photonic Interconnect Technology for the High-End Embedded Com-

puting Domain”, in Proceedings IEEE International Networks-on-Chip Sym-
posium 2014, (NoCS14).

(C3] M. Balboni, M. Ortin Obon, L. Ramini, L. Zuclo, M. Nonato, V. Vifials, D.
Bertozzi, ” Partitioning Strategies of Wavelength-Routed Optical Networks-
on-Chip for Laser Power Minimization”, in Proceedings ACM II Workshop
on HExploiting Silicon Photonics for Energy-Efficient Heterogeneous Parallel Ar-
chitectures 2015, (SiPhotonics15).

(C4] M. Balboni, F. Trivifio, J. Flich, D. Bertozzi, ” Optimizing the Overhead
for Networks-on-Chip Routing Reconfiguration in Parallel Multi-Core

Platforms”, in [EEE Advanced Computer Architecture and Compilation for
High-Performance and Embedded Systems 2013, (ACACES13).

'(C5] M. Balboni, J. Flich, D. Bertozzi, ”Synergistic Use of Multiple On-Chip
Networks for Ultra-Low Latency and Scalable Distributed Routing
Reconfiguration”, in Proceedings IEEEACM Design Automation and Test in
Europe 2015, (DATELS).

(C6] M. Balboni, J. Flich, D. Bertozzi, ” NoC-Centric Partitioning and Recon-
figuration Technologies for the Efficient Sharing of General Purpose
Programmable Accelerators”, in Proceedings IEEEACM Design Automa-
tion and Test in Europe 2015, (DATE15).

207

Authors’s Publications List

'[C7] M. Balboni, D. Bertozzi, ” NoC-Centric Partitioning and Reconfiguration
Technologies for the Efficient Sharing of Multicore Programmable Ac-
celerators”, in Proceedings IEEEACM International Conference on High Per-
formance Computing and Simulation 2015, (HPCS15).

(C8] G. Miorandi, M. Tala, M. Balboni, L. Ramini, D. Bertozzi, ” Evolutionary vs.
Revolutionary Interconnect Technologies for Future Low- Power Multi-
Core Systems”, in Proceedings ACM 1st International Workshop on Advanced

Interconnect Sclutions and Technologies for Emerging Computing Systems 2016,

(AISTECS16).

(C9] M. Tala, M. Balboni, D. Bertozzi, 7 A Methodology to Populate the De-
sign Space of Wavelength-Routed Optical Network-on-chip Topologies
Leveraging the Add-Drop Primitive”, in Proceedings IEEE International
Networks-on-Chip Symposium 2016, (NoCS16).

Journal Papers

[J1] M. Balboni, A. Marongiu, D. Bertozzi, L. Benini, ” A Vertically Integrated
Approach to Share Many-Core Accelerators between Virtualized Guest
OSes in Heterogeneous MPSoCs, submitted to IEEE Transaction on Com-
puters, 2016,

Coauthored Project Deliverables

[D1] ”OpenMP programming model with multi-ISA compilation and QoS

support”
[D2] ”Hardware hooks for the programmable features of the system”

D3] ”vlrtical platform”

208

	PhDThesis-MarcoBalboni_Pagina_001
	PhDThesis-MarcoBalboni_Pagina_002
	PhDThesis-MarcoBalboni_Pagina_003
	PhDThesis-MarcoBalboni_Pagina_004
	PhDThesis-MarcoBalboni_Pagina_005
	PhDThesis-MarcoBalboni_Pagina_006
	PhDThesis-MarcoBalboni_Pagina_007
	PhDThesis-MarcoBalboni_Pagina_008
	PhDThesis-MarcoBalboni_Pagina_009
	PhDThesis-MarcoBalboni_Pagina_010
	PhDThesis-MarcoBalboni_Pagina_011
	PhDThesis-MarcoBalboni_Pagina_012
	PhDThesis-MarcoBalboni_Pagina_013
	PhDThesis-MarcoBalboni_Pagina_014
	PhDThesis-MarcoBalboni_Pagina_015
	PhDThesis-MarcoBalboni_Pagina_016
	PhDThesis-MarcoBalboni_Pagina_017
	PhDThesis-MarcoBalboni_Pagina_018
	PhDThesis-MarcoBalboni_Pagina_019
	PhDThesis-MarcoBalboni_Pagina_020
	PhDThesis-MarcoBalboni_Pagina_021
	PhDThesis-MarcoBalboni_Pagina_022
	PhDThesis-MarcoBalboni_Pagina_023
	PhDThesis-MarcoBalboni_Pagina_024
	PhDThesis-MarcoBalboni_Pagina_025
	PhDThesis-MarcoBalboni_Pagina_026
	PhDThesis-MarcoBalboni_Pagina_027
	PhDThesis-MarcoBalboni_Pagina_028
	PhDThesis-MarcoBalboni_Pagina_029
	PhDThesis-MarcoBalboni_Pagina_030
	PhDThesis-MarcoBalboni_Pagina_031
	PhDThesis-MarcoBalboni_Pagina_032
	PhDThesis-MarcoBalboni_Pagina_033
	PhDThesis-MarcoBalboni_Pagina_034
	PhDThesis-MarcoBalboni_Pagina_035
	PhDThesis-MarcoBalboni_Pagina_036
	PhDThesis-MarcoBalboni_Pagina_037
	PhDThesis-MarcoBalboni_Pagina_038
	PhDThesis-MarcoBalboni_Pagina_039
	PhDThesis-MarcoBalboni_Pagina_040
	PhDThesis-MarcoBalboni_Pagina_041
	PhDThesis-MarcoBalboni_Pagina_042
	PhDThesis-MarcoBalboni_Pagina_043
	PhDThesis-MarcoBalboni_Pagina_044
	PhDThesis-MarcoBalboni_Pagina_045
	PhDThesis-MarcoBalboni_Pagina_046
	PhDThesis-MarcoBalboni_Pagina_047
	PhDThesis-MarcoBalboni_Pagina_048
	PhDThesis-MarcoBalboni_Pagina_049
	PhDThesis-MarcoBalboni_Pagina_050
	PhDThesis-MarcoBalboni_Pagina_051
	PhDThesis-MarcoBalboni_Pagina_052
	PhDThesis-MarcoBalboni_Pagina_053
	PhDThesis-MarcoBalboni_Pagina_054
	PhDThesis-MarcoBalboni_Pagina_055
	PhDThesis-MarcoBalboni_Pagina_056
	PhDThesis-MarcoBalboni_Pagina_057
	PhDThesis-MarcoBalboni_Pagina_058
	PhDThesis-MarcoBalboni_Pagina_059
	PhDThesis-MarcoBalboni_Pagina_060
	PhDThesis-MarcoBalboni_Pagina_061
	PhDThesis-MarcoBalboni_Pagina_062
	PhDThesis-MarcoBalboni_Pagina_063
	PhDThesis-MarcoBalboni_Pagina_064
	PhDThesis-MarcoBalboni_Pagina_065
	PhDThesis-MarcoBalboni_Pagina_066
	PhDThesis-MarcoBalboni_Pagina_067
	PhDThesis-MarcoBalboni_Pagina_068
	PhDThesis-MarcoBalboni_Pagina_069
	PhDThesis-MarcoBalboni_Pagina_070
	PhDThesis-MarcoBalboni_Pagina_071
	PhDThesis-MarcoBalboni_Pagina_072
	PhDThesis-MarcoBalboni_Pagina_073
	PhDThesis-MarcoBalboni_Pagina_074
	PhDThesis-MarcoBalboni_Pagina_075
	PhDThesis-MarcoBalboni_Pagina_076
	PhDThesis-MarcoBalboni_Pagina_077
	PhDThesis-MarcoBalboni_Pagina_078
	PhDThesis-MarcoBalboni_Pagina_079
	PhDThesis-MarcoBalboni_Pagina_080
	PhDThesis-MarcoBalboni_Pagina_081
	PhDThesis-MarcoBalboni_Pagina_082
	PhDThesis-MarcoBalboni_Pagina_083
	PhDThesis-MarcoBalboni_Pagina_084
	PhDThesis-MarcoBalboni_Pagina_085
	PhDThesis-MarcoBalboni_Pagina_086
	PhDThesis-MarcoBalboni_Pagina_087
	PhDThesis-MarcoBalboni_Pagina_088
	PhDThesis-MarcoBalboni_Pagina_089
	PhDThesis-MarcoBalboni_Pagina_090
	PhDThesis-MarcoBalboni_Pagina_091
	PhDThesis-MarcoBalboni_Pagina_092
	PhDThesis-MarcoBalboni_Pagina_093
	PhDThesis-MarcoBalboni_Pagina_094
	PhDThesis-MarcoBalboni_Pagina_095
	PhDThesis-MarcoBalboni_Pagina_096
	PhDThesis-MarcoBalboni_Pagina_097
	PhDThesis-MarcoBalboni_Pagina_098
	PhDThesis-MarcoBalboni_Pagina_099
	PhDThesis-MarcoBalboni_Pagina_100
	PhDThesis-MarcoBalboni_Pagina_101
	PhDThesis-MarcoBalboni_Pagina_102
	PhDThesis-MarcoBalboni_Pagina_103
	PhDThesis-MarcoBalboni_Pagina_104
	PhDThesis-MarcoBalboni_Pagina_105
	PhDThesis-MarcoBalboni_Pagina_106
	PhDThesis-MarcoBalboni_Pagina_107
	PhDThesis-MarcoBalboni_Pagina_108
	PhDThesis-MarcoBalboni_Pagina_109
	PhDThesis-MarcoBalboni_Pagina_110
	PhDThesis-MarcoBalboni_Pagina_111
	PhDThesis-MarcoBalboni_Pagina_112
	PhDThesis-MarcoBalboni_Pagina_113
	PhDThesis-MarcoBalboni_Pagina_114
	PhDThesis-MarcoBalboni_Pagina_115
	PhDThesis-MarcoBalboni_Pagina_116
	PhDThesis-MarcoBalboni_Pagina_117
	PhDThesis-MarcoBalboni_Pagina_118
	PhDThesis-MarcoBalboni_Pagina_119
	PhDThesis-MarcoBalboni_Pagina_120
	PhDThesis-MarcoBalboni_Pagina_121
	PhDThesis-MarcoBalboni_Pagina_122
	PhDThesis-MarcoBalboni_Pagina_123
	PhDThesis-MarcoBalboni_Pagina_124
	PhDThesis-MarcoBalboni_Pagina_125
	PhDThesis-MarcoBalboni_Pagina_126
	PhDThesis-MarcoBalboni_Pagina_127
	PhDThesis-MarcoBalboni_Pagina_128
	PhDThesis-MarcoBalboni_Pagina_129
	PhDThesis-MarcoBalboni_Pagina_130
	PhDThesis-MarcoBalboni_Pagina_131
	PhDThesis-MarcoBalboni_Pagina_132
	PhDThesis-MarcoBalboni_Pagina_133
	PhDThesis-MarcoBalboni_Pagina_134
	PhDThesis-MarcoBalboni_Pagina_135
	PhDThesis-MarcoBalboni_Pagina_136
	PhDThesis-MarcoBalboni_Pagina_137
	PhDThesis-MarcoBalboni_Pagina_138
	PhDThesis-MarcoBalboni_Pagina_139
	PhDThesis-MarcoBalboni_Pagina_140
	PhDThesis-MarcoBalboni_Pagina_141
	PhDThesis-MarcoBalboni_Pagina_142
	PhDThesis-MarcoBalboni_Pagina_143
	PhDThesis-MarcoBalboni_Pagina_144
	PhDThesis-MarcoBalboni_Pagina_145
	PhDThesis-MarcoBalboni_Pagina_146
	PhDThesis-MarcoBalboni_Pagina_147
	PhDThesis-MarcoBalboni_Pagina_148
	PhDThesis-MarcoBalboni_Pagina_149
	PhDThesis-MarcoBalboni_Pagina_150
	PhDThesis-MarcoBalboni_Pagina_151
	PhDThesis-MarcoBalboni_Pagina_152
	PhDThesis-MarcoBalboni_Pagina_153
	PhDThesis-MarcoBalboni_Pagina_154
	PhDThesis-MarcoBalboni_Pagina_155
	PhDThesis-MarcoBalboni_Pagina_156
	PhDThesis-MarcoBalboni_Pagina_157
	PhDThesis-MarcoBalboni_Pagina_158
	PhDThesis-MarcoBalboni_Pagina_159
	PhDThesis-MarcoBalboni_Pagina_160
	PhDThesis-MarcoBalboni_Pagina_161
	PhDThesis-MarcoBalboni_Pagina_162
	PhDThesis-MarcoBalboni_Pagina_163
	PhDThesis-MarcoBalboni_Pagina_164
	PhDThesis-MarcoBalboni_Pagina_165
	PhDThesis-MarcoBalboni_Pagina_166
	PhDThesis-MarcoBalboni_Pagina_167
	PhDThesis-MarcoBalboni_Pagina_168
	PhDThesis-MarcoBalboni_Pagina_169
	PhDThesis-MarcoBalboni_Pagina_170
	PhDThesis-MarcoBalboni_Pagina_171
	PhDThesis-MarcoBalboni_Pagina_172
	PhDThesis-MarcoBalboni_Pagina_173
	PhDThesis-MarcoBalboni_Pagina_174
	PhDThesis-MarcoBalboni_Pagina_175
	PhDThesis-MarcoBalboni_Pagina_176
	PhDThesis-MarcoBalboni_Pagina_177
	PhDThesis-MarcoBalboni_Pagina_178
	PhDThesis-MarcoBalboni_Pagina_179
	PhDThesis-MarcoBalboni_Pagina_180
	PhDThesis-MarcoBalboni_Pagina_181
	PhDThesis-MarcoBalboni_Pagina_182
	PhDThesis-MarcoBalboni_Pagina_183
	PhDThesis-MarcoBalboni_Pagina_184
	PhDThesis-MarcoBalboni_Pagina_185
	PhDThesis-MarcoBalboni_Pagina_186
	PhDThesis-MarcoBalboni_Pagina_187
	PhDThesis-MarcoBalboni_Pagina_188
	PhDThesis-MarcoBalboni_Pagina_189
	PhDThesis-MarcoBalboni_Pagina_190
	PhDThesis-MarcoBalboni_Pagina_191
	PhDThesis-MarcoBalboni_Pagina_192
	PhDThesis-MarcoBalboni_Pagina_193
	PhDThesis-MarcoBalboni_Pagina_194
	PhDThesis-MarcoBalboni_Pagina_195
	PhDThesis-MarcoBalboni_Pagina_196
	PhDThesis-MarcoBalboni_Pagina_197
	PhDThesis-MarcoBalboni_Pagina_198
	PhDThesis-MarcoBalboni_Pagina_199
	PhDThesis-MarcoBalboni_Pagina_200
	PhDThesis-MarcoBalboni_Pagina_201
	PhDThesis-MarcoBalboni_Pagina_202
	PhDThesis-MarcoBalboni_Pagina_203
	PhDThesis-MarcoBalboni_Pagina_204
	PhDThesis-MarcoBalboni_Pagina_205
	PhDThesis-MarcoBalboni_Pagina_206
	PhDThesis-MarcoBalboni_Pagina_207
	PhDThesis-MarcoBalboni_Pagina_208
	PhDThesis-MarcoBalboni_Pagina_209
	PhDThesis-MarcoBalboni_Pagina_210
	PhDThesis-MarcoBalboni_Pagina_211
	PhDThesis-MarcoBalboni_Pagina_212
	PhDThesis-MarcoBalboni_Pagina_213
	PhDThesis-MarcoBalboni_Pagina_214
	PhDThesis-MarcoBalboni_Pagina_215
	PhDThesis-MarcoBalboni_Pagina_216
	PhDThesis-MarcoBalboni_Pagina_217
	PhDThesis-MarcoBalboni_Pagina_218
	PhDThesis-MarcoBalboni_Pagina_219
	PhDThesis-MarcoBalboni_Pagina_220
	PhDThesis-MarcoBalboni_Pagina_221
	PhDThesis-MarcoBalboni_Pagina_222
	PhDThesis-MarcoBalboni_Pagina_223
	PhDThesis-MarcoBalboni_Pagina_224
	PhDThesis-MarcoBalboni_Pagina_225
	PhDThesis-MarcoBalboni_Pagina_226
	PhDThesis-MarcoBalboni_Pagina_227
	PhDThesis-MarcoBalboni_Pagina_228
	PhDThesis-MarcoBalboni_Pagina_229
	PhDThesis-MarcoBalboni_Pagina_230

