
Università degli Studi di Ferrara

DOTTORATO DI RICERCA IN

MATEMATICA E INFORMATICA

CICLO XVIII

COORDINATORE Prof. Massimiliano Mella

Adaptive Scheduling Applied to

Non-Deterministic Networks of

Heterogeneous Tasks for Peak Throughput

in Concurrent Gaudi

Settore Scientifico Disciplinare INF/01

Dottorando Tutore

Dott. Illya Shapoval Dr. Luca Tomassetti

Cotutore al CERN

Dr. Marco Clemencic

Anni 2013/2015

To my family

Contents

Abbreviations ix

List of Deliverables xi

Introduction 1

1 The Gaudi Framework: overview 5

1.1 Sequential Gaudi . 5

1.1.1 Architecture . 5

1.1.2 Data processing model 6

1.2 Concurrent Gaudi (a.k.a. Gaudi Hive) 8

1.2.1 Architecture . 8

1.2.2 Data processing model 10

2 Concurrency Control in Gaudi Hive 13

2.1 Problem formulation . 13

2.2 Requirements . 15

2.3 Catalog-based decision making 15

2.3.1 Metadata organisation 15

2.3.2 Processing of metadata 17

2.4 Graph-based decision making 19

2.4.1 Metadata organisation 19

2.4.2 Processing of metadata 23

2.5 Comparison of graph-based and catalog-based decision making 25

2.5.1 Primary implications on global performance 25

v

vi Contents

2.5.2 Secondary implications on global performance 26

2.5.3 Algorithmic complexity of decision making 26

2.5.4 Decision making time and scalability 27

2.5.5 Auxiliary considerations 30

3 Scheduling of non-deterministic task networks in Gaudi Hive 31

3.1 Limitations of reactive scheduling 31

3.1.1 Performance limits . 32

3.1.2 Intra-event concurrency dynamics 36

3.1.3 Degrees of freedom in concurrency control 38

3.2 Predictive task scheduling for throughput maximization 39

3.2.1 Local task-to-task asymmetry 40

3.2.2 Global task-to-task asymmetry 43

3.2.3 Critical path method 45

4 Scheduling of heterogeneous tasks in Gaudi Hive 53

4.1 Problem formulation . 53

4.2 Tolerating task heterogeneity 55

4.3 Throughput maximization: CPU oversubscription 57

4.3.1 Oversubscribing CPU with TBB 57

4.3.2 Composite scheduling 61

4.3.3 Framework throughput and offload computations . . . 63

Conclusion 67

List of Figures 71

List of Tables 81

A Testbed for benchmarking: 2S-48T 83

B Testbed for benchmarking: 1S-XT 85

C Workflow scenario 87

C.1 Intra-event task precedence rules 87

C.2 Tasks . 88

Contents vii

C.3 Task execution time mapping 89

C.3.1 Uniform mapping . 89

C.3.2 Non-uniform mapping 89

Bibliography 91

Acknowledgments 95

viii Contents

Abbreviations

CCS concurrency control system. 23–30, 39, 40, 42, 67, 73, 75

CERN European Laboratory for Particle Physics. 1–3, 87

CF control flow. 13–19, 21–24, 27, 28, 30, 41, 42, 44, 71, 72, 75, 78, 87, 88

CFS Completely Fair Scheduler. 55, 56

CPM critical path method. 45, 47, 48, 76

CPU central processing unit. 3, 36, 55–57, 59, 60, 63, 64, 83, 85, 88, 89

CR Control Ready. 10, 17, 24, 41, 42, 75

CS context switching. 56, 60

DF data flow. 13–15, 17, 19–24, 27, 30, 40, 41, 44, 47, 71, 72, 74, 78, 87, 88

DM decision making. xi, 19, 26, 27

DR Data Ready. 10, 17, 24, 37, 38, 40–42, 74, 75

EX Executed. 11

F Failed. 10

FSM finite-state machine. 17, 24, 71, 72

GPGPU general-purpose graphics processing units. 54

HEP high energy physics. 1, 2, 5, 31, 36, 37, 45, 53, 54, 56, 63, 71

ix

x Abbreviations

I Initial. 10, 17, 24, 41, 42, 75

I/O input/output. 3, 36, 54

LHC Large Hadron Collider. 2, 36, 87

OS operating system. 55

RAM random-access memory. 3, 36, 54

SCH Scheduled. 10, 37

TBB Intelr Threading Building Blocks. 8, 9, 55–57, 60–64, 78

List of Deliverables

2.1 Observation (Dynamics of decision making (DM) cycles) . . 19

2.1 Deliverable (Graph-based DM) 19

2.2 Deliverable (Distributed Transient Event Store) 21

2.3 Deliverable (Graph-based concurrency control) 23

2.4 Deliverable (Vicinity graph traversing strategy) 23

2.1 Measurements (DM algorithmic complexity) 26

2.2 Measurements (DM time and scalability) 27

3.1 Measurements (Throughput scalability) 32

3.1 Observation (Inter-event throughput scalability) 33

3.2 Observation (Inter-event throughput scalability) 34

3.3 Observation (Throughput and inter-event concurrency) . . 35

3.2 Measurements (Reactive intra-event dynamics) 36

3.4 Observation (FSM transition imbalance) 37

3.1 Deliverable (Predictive scheduling) 40

3.3 Measurements (Predictive scheduling) 40

3.5 Observation (Critical path and task eccentricities) 46

4.1 Measurements (Oversubscription) 57

4.2 Measurements (TBB-based oversubscription) 57

4.1 Observation (Blocking extent of tasks ensemble) 58

4.2 Observation (Blocking extent of a task) 59

4.1 Deliverable (Composite scheduler) 61

4.3 Observation (Composite scheduler) 63

4.2 Deliverable (Offload substitution) 64

xi

xii List of Deliverables

4.4 Observation (Offload latency oblivious framework) 65

Introduction

As much the e-Science revolutionizes the scientific method in its empirical

research and scientific theory, as it does pose the ever growing challenge

of accelerating data deluge. Among such data intensive fields of science

as genomics, connectomics, astrophysics, environmental research and many

others is the field of modern high energy physics (HEP). The immense data

sets, generated in collisions of beams at particle accelerators, require scalable

high-throughput software that is able to cope with associated computational

challenges.

Historically, a lot of elaborate HEP software were designed being inher-

ently sequential. As in many other fields, this was a result of so called serial

illusion, being cultivated by the serial semantics of computer design despite

the parallel nature of the very hardware. For decades, this illusion has been

successfully maintained by computer architects until the rapid growth of in-

ternal processors parallelism started. By this time, though, serialization wove

into the very fabric of models, languages, practices and tools the program-

mers use [1].

One such striking example is represented by Gaudi [2] – a software frame-

work for building HEP data processing applications, developed at the Euro-

pean Laboratory for Particle Physics (CERN). The principles of composabil-

ity and reusability the framework was built upon were the key factors of its

success. The following HEP experiments settled on the track of Gaudi:

• HARP – Hadron Production experiment @CERN (2000–2002);

• FGST – Fermi Gamma-ray Space Telescope, formerly known as GLAST

(2008–);

1

2 Introduction

• MINERνA – Main Injector experiment for ν-A @Fermilab (2010–);

• DayaBay – Daya Bay Reactor Neutrino experiment (2011–);

• ATLAS – A Toroidal LHC ApparatuS experiment @CERN (2009–);

• LHCb – Large Hadron Collider beauty experiment @CERN (2009–);

• LZ – LUX-ZEPLIN dark matter experiment @SURF/LBNL (under

construction).

The LHCb [3] and ATLAS experiments (see figure 1) are the two of four

major experiments at the Large Hadron Collider (LHC) at CERN. The LZ

– a next generation dark matter experiment – has become a new customer

of Gaudi recently [4].

Figure 1: Some of the HEP experiments, using the Gaudi framework for
event data processing.

In the late 90’s, Gaudi was designed as a sequential framework. How-

ever, in order to address the challenges, posed by the current and future

HEP experiments, Gaudi must evolve through a paradigm shift towards a

concurrent architecture.

In 2010, the first Gaudi parallelization project was started at CERN

by Mato and Smith [5], applying the multiprocessing (MP) paradigm to the

Introduction 3

framework. The approach has been shown to be efficient if used on a multi-

core central processing unit (CPU). However, the extensive levels of modern

hardware parallelism, as well as the heterogeneity of computing units in

general, make the application of this paradigm to Gaudi limited. This man-

ifests itself in weak throughput scaling on the many-core systems, where the

random-access memory (RAM) and the disk input/output (I/O) constraints

become significant. Furthermore, the paradigm has been known to be not

latency tolerant, thus lacking support for efficient handling of I/O-bound

operations and computations offloading.

To leverage the full extent of hardware parallelism suggested by the in-

dustry, the Concurrent Framework Project [6] has been launched at CERN.

The context of the project encompassed evaluation of the multithreading

paradigm – the second major paradigm for high-throughput and many-task

computing. It was believed to be capable of solving some, or all, of the

problems of the multiprocessing paradigm.

A minimal Gaudi Hive prototype was developed in 2012 [7], demon-

strating the basic principles of concurrent Gaudi of a new generation.

In the thesis, I consider a complex of non-intrusive task scheduling solu-

tions for throughput maximization. After a short introduction to the archi-

tecture of the Gaudi framework in chapter 1, I present the new concurrency

control system in chapter 2 where I compare its graph-based decision mak-

ing to the previously adopted catalog-based one. I then devote chapter 3 to

demonstrate the potential of predictive task scheduling approach. In chap-

ter 4, I introduce the latency oblivious task scheduling for Gaudi Hive

and prove a significant throughput maximization potential of this scheduling

technique.

4 Introduction

Chapter 1

The Gaudi Framework:

overview

Definition 1.1

In the context of HEP, an event is a high energy interaction of ele-

mentary particles and the interaction aftermath, occurring in a well-

localized region of space and time.

1.1 Sequential Gaudi

1.1.1 Architecture

Gaudi [8, 2, 9] is an object-oriented software framework, implemented in

C++ and Python, that provides a common infrastructure and environment

for building HEP event data processing applications. Such applications cover

the full range of HEP computing tasks, for instance: event and detector

simulation, event triggering, reconstruction and analysis, detector alignment

and calibration, event display, etc.

Gaudi is designed on the principles of composability, providing a way

to construct applications of any complexity by combining general-purpose

and specialized components. The main components of the Gaudi software

architecture can be seen in the object diagram shown in figure 1.1.

All applications, based on Gaudi, are written in the form of special-

5

6 Chapter 1. The Gaudi Framework: overview

Figure 1.1: Gaudi framework object diagram [10]. It represents a hypothet-
ical snapshot of the state of the system, showing various components of the
framework, as well as their relationships in terms of ownership and usage.

izations of standard framework components, complying to the well-defined

abstract interfaces. Strict interfacing rules of the Gaudi components were a

key to a highly flexible framework and foreordained its success.

1.1.2 Data processing model

An important underlying principle of Gaudi is the separation of the concepts

of data and procedures used for its processing [10]. Broadly speaking, event

reconstruction and physics analysis consist of manipulation of mathematical

or physical quantities (such as points, vectors, matrices, hits, momenta, etc.)

by algorithms which are generally implemented in terms of equations and

natural language. In the context of the framework, such procedures are

realized as Gaudi Algorithms (see figure 1.1).

The Gaudi architecture foresees either explicit unconditional invocation

of algorithms by the framework, or by other algorithms. This latter

possibility is very important as it allows to address a common use case of

a physics application to execute different algorithms depending on the

physics signature of each event, which might be determined at run time as a

result of some reconstruction. This capability is supported in Gaudi through

1.1. Sequential Gaudi 7

sequences, branches and filters. A sequence is a list of Algorithms. Each

Algorithm may make a filter decision, based on some characteristics of

the event, which can either allow or bypass processing of the downstream

Algorithms in the sequence. The filter decision may also cause a branch

whereby a different downstream sequence of Algorithms will be executed

for events that pass the filter decision relative to those that fail it [10].

Historically, Gaudi was designed as a sequential framework. It means

that it is only able to processes events sequentially. Furthermore, it means

that the sequence hierarchies, as well as all Algorithms within a sequence,

are also executed sequentially for each event (see figure 1.2).

Figure 1.2: An example of conjunctive control flow inside a Gaudi sequence.

Lastly, all Gaudi components including Algorithms were designed and

implemented for single-threaded execution only.

8 Chapter 1. The Gaudi Framework: overview

1.2 Concurrent Gaudi (a.k.a. Gaudi Hive)

To leverage the full extent of hardware parallelism suggested by the industry,

a minimal Gaudi Hive prototype was developed [7]. The prototype was

called to demonstrate, in the context of Gaudi, the basic principles of the

multithreading paradigm – the second major paradigm for high-throughput

and many-task computing. It was believed to be capable of solving some, or

all, of the problems of the multiprocessing paradigm.

1.2.1 Architecture

An important novelty the Gaudi Hive prototype employed together with

the multithreading paradigm is the model of task-based programming. In the

context of Gaudi, a task can be defined as follows:

Definition 1.2

Task – a Gaudi Algorithm, a part of it or any other unit of compu-

tation packaged according to logical, efficiency or other suitable con-

siderations.

The main advantage of formulating computations in terms of tasks, not

threads, is that they favour a well-organized work partitioning. Other ad-

vantages include efficiency considerations [11]:

• faster task startup and shutdown,

• improved load balancing,

• matching parallelism to available resources.

The task-based approach also allows concentrating on dependencies be-

tween tasks, leaving load-balancing issues to a back-end scheduler. Within

the Gaudi Hive project, the Intelr Threading Building Blocks (TBB) li-

brary was chosen as such back-end.

1.2. Concurrent Gaudi (a.k.a. Gaudi Hive) 9

Support for multidimensional concurrent data processing in Gaudi re-

quired substantial revision of the framework. However, the principle of com-

posability Gaudi was designed on made it possible to avoid any fundamental

architectural change in the framework. Instead, the components necessary

for the first minimalistic prototype of the multithreaded Gaudi were devel-

oped and used to augment the framework via its standard interfaces in a

pluggable fashion [7].

The architectural peculiarities of the Gaudi Hive prototype are out-

lined in figure 1.3. The event loop manager feeds events to the scheduler,

which requests Algorithms’ instances from the Algorithm Pool, wraps

them into tasks and submits them further to the TBB runtime. The Gaudi

WhiteBoard is the component responsible to hold the event data stores

for all the events being treated concurrently [12].

Figure 1.3: A diagram of architectural changes brought by the Gaudi Hive
prototype. The components marked as new were added to support the inter-
and intra-event levels of concurrency [12].

10 Chapter 1. The Gaudi Framework: overview

1.2.2 Data processing model

The multithreaded task-based approach enables three levels of concurrency

in data processing:

• inter-event (concurrent processing of multiple events);

• intra-event (concurrent processing of tasks on an event);

• intra-task (concurrency, internal to a task).

The second concurrency level required an introduction of a finite-state

automaton (see figure 1.4) for the Gaudi Algorithm.

Initstart CR DR SCH

EX

Fα−

α+

β−

β+

γ+

γ+

δ−

δ+

Figure 1.4: Decision-driven finite-state automaton for a Gaudi Hive Algo-
rithm. The evolution of the Algorithm state is handled by either positive
or negative decisions. The decisions are produced by various components of
the framework.

In particular, the following states need to be tracked within the Gaudi

Hive framework:

• Initial (I)

• Control Ready (CR) – required by concurrency control;

• Data Ready (DR) – required by concurrency control;

• Scheduled (SCH) – required to track the fact of scheduling;

• Failed (F) – occurs if an Algorithm failed to process an event;

1.2. Concurrent Gaudi (a.k.a. Gaudi Hive) 11

• Executed (EX) – occurs upon successfull completion of event process-

ing.

The states required for concurrency control are discussed in more detail

in section 2.1.

12 Chapter 1. The Gaudi Framework: overview

Chapter 2

Gaudi Hive Concurrency

Control System

2.1 Problem formulation

The Gaudi framework is responsible for event data processing by means

of task ensembles, which either transform the event data, produce filter de-

cisions upon its processing, or do both. The tasks cannot be executed in

arbitrary order since they always exhibit dynamic precedence constraints,

arising from user-specified precedence rules of two categories:

• Control flow (CF) rules,

• Data flow (DF) rules.

The CF rules describe which tasks in a given ensemble must be executed

for each event. This is controlled by filter decisions, produced by preceding

tasks. The DF rules describe which data entities each task was designed to

process, and if these data entities are mandatory or optional for execution of

a task.

Let me define a task schedule as follows:

Definition 2.1

Task schedule - a concrete task precedence pattern.

13

14 Chapter 2. Concurrency Control in Gaudi Hive

Building a valid task schedule constitutes a serialization problem, and

requires resolution of precedence rules for each task in a given ensemble.

There is no single schedule pattern, though, which is valid across all types of

events, since filter decisions depend on event type. Moreover, the event type,

in general, is not known prior to its processing. Thus, the task schedules can

only be built at run time.

The case of sequential data processing significantly simplifies the run

time building of task schedules. This is a consequence, on one hand, of

linear resolution of CF rules at run time, and, on the other, of implicit linear

resolution of DF rules, accomplished at configuration time by tasks ordering.

For the case of concurrent data processing, such simplifications do not

hold any more. The complexity of the serialization problem drastically in-

creases due to loss of linearity in precedence rules resolution (see Table 2.1).

Table 2.1: Resolution conditions of task precedence rules

Sequential Gaudi Concurrent Gaudi

Rules CF DF CF DF

Resolution @run time @configuration time @run time @run time
Complexity Low None High High
Mechanism Trivial None Required Required

The loss of linearity follows from the fact that subsets of concurrently

executing tasks complete, in general, in non-predictable order, or, possibly,

even worse – at the same time. This leads, on one hand, to increased com-

plexity of CF rules resolution, and, on the other, to displacement of DF rules

resolution from configuration time to run time. Sequential Gaudi does not

have any means to perform decision making of such type, because within the

sequential paradigm it is unnecessary. Not even has it a knowledge base,

such decisions can be made over.

Thus, concurrent Gaudi required a new component, which would solve

the problem of concurrency control.

2.2. Requirements 15

2.2 Requirements

The first and the most significant requirement for any concurrency control

system is, by definition, to guarantee correctness of ordering of concurrent

operations.

Secondly, the system has to ensure decisions on concurrency control are

made as quickly as possible. This constitutes a soft real-time requirement

[13] for the system, since the usefulness of decisions on concurrency control

degrades with time. In section 2.5.2 I will show how delaying decisions can

affect framework’s performance.

Furthermore, multiple valid decisions on concurrency control are possi-

ble in a concurrent environment. Thus, a third requirement of choosing,

according to given criteria, the best decisions might be optionally set.

Finally, all previous requirements have to be fulfilled without sacrificing

scalability of the concurrency control system.

2.3 Catalog-based decision making

In this section I will describe the approach, which was used for concurrency

control in the first prototype of Gaudi Hive.

2.3.1 Metadata organisation

The catalog-based approach relies on disjoint representations of CF and DF

rules, and thus - disjoint resolution of corresponding precedence rules.

The DF rules are expressed in the form of a catalog of tasks with a set of

corresponding data entities each task requires as input. At any moment of

time the framework contains a dynamic set of available data entities, tracked

in a separate catalog.

The CF rules, are represented as a hierarchical rooted tree. There are

two types of nodes within the hierarchy: tasks and decision hubs.

Every task node represents a Gaudi task. It has at least one parent node

of decision hub type, and can not be itself a parent to any other node.

16 Chapter 2. Concurrency Control in Gaudi Hive

The decision hub node represents a Gaudi Sequence. It can be parental

to both task and decision hub nodes.

Each decision hub node implements the CF logic, according to which its

direct child nodes are coordinated. It also serves as an aggregation point for

filter decisions, flowing up the tree from all subordinate nodes. The hierarchy

is said to be completely resolved when the most superior, i.e. root, decision

hub forms its filter decision.

An example of such tree is shown in figure 2.1 for the case of typical

LHCb event reconstruction workflow.

root hub

Figure 2.1: A rooted tree, representing the control flow rules in a typical
workflow of physics data reconstruction in the LHCb experiment. Black
nodes represent tasks (280 nodes), while red ones - decision hubs (110 nodes).

Despite the fact the CF rules were represented as a graph, its inefficient

processing (see the next subsection) used little of its natural properties.

2.3. Catalog-based decision making 17

2.3.2 Processing of metadata

A schematic design of the catalog-based system is shown in Figure 2.2.

Initstart CR DR SCH

EX

Fα−

α+

β−

β+

γ+

γ+

δ−

δ+

CF Manager

α

DF Manager
Requirements

...

⊂op.

Inputs

...

β

Figure 2.2: A schematic design of the catalog-based concurrency control
along with the decision-driven finite-state machine (FSM) for a Gaudi Al-

gorithm being executed in a task. In each decision making cycle, the evo-
lution of the Algorithm state is handled by either positive, or negative,
concurrency control decisions. The decisions are produced independently by
the CF and DF managers.

It is a bipartite system, consisting of isolated components for resolution

of CF and DF rules. Each component is designed to yield a single decision in

one decision making cycle, governing a corresponding FSM transition for a

task. Thus, a minimum of two decision making cycles are needed to perform

a I → CR → DR transition for a task in its FSM.

The DF component is responsible for resolution of DF rules by means of

matching data input requirements of a task with data entities, declared as

currently available in the Gaudi Whiteboard. This is achieved by means

of regular index searching and matching operations.

18 Chapter 2. Concurrency Control in Gaudi Hive

The CF component resolves the relevant rules by performing global traver-

sals of the tree, accomplished in a top-down manner – starting at the root

CF hub down to all task nodes of the tree.

The use of the top-down type of tree query in the CF component has an

important consequence. It allows two modes of decision making – aggressive

and conditional. The former implies enqueuing a decision making cycle every

time a task is executed. The latter utilizes a more optimized process by

cancelling a decision making cycle, in case the decision making queue contains

another cycle, launched by a different task earlier. The conditional mode

of operation is possible due to the fact that CF traversal is global in this

approach, and always revises the entire state of filter decisions in the system.

Figure 2.3: Count of decision making cycles per event. Configuration: LHCb
Reconstruction @ Machine-2S48T.

Conditional mode of decision making demonstrates an interesting and

useful characteristic, when considered in the context of scalability. The num-

ber of decision making cycles, completed per event, has been measured versus

the number of threads, used by the framework.

Figure 2.3 reveals the following observation:

2.4. Graph-based decision making 19

Observation 2.1 (Dynamics of DM cycles)

The number of decision making cycles, completed per event in the

catalog-based approach, quickly decreases as the number of threads,

used by the framework, grows.

This downtrend effect is caused by accompanying uptrend behaviour of the

task completion rate as the number of threads increases.

2.4 Graph-based decision making

The concept of a graph has been around since the late 19th century, however,

only in recent decades has there been a strong resurgence in the development

of both graph theories and applications. In contrast to the index-intensive,

set-theoretic operations of the catalog-based approach, the graph-based ap-

proach make use of index-free traversals.

2.4.1 Metadata organisation

Deliverable 2.1 (Graph-based DM)

An alternative concurrency control system, based on graph-based de-

cision making, was suggested for Gaudi Hive [14].

The approach is based on two main pillars. First, a unified knowledge

space for both CF and DF precedence rules. Second, a representation of the

knowledge space in the form of a graph.

At first glance, explicit representation of DF rules as a graph does not

require any auxiliary concepts, and can be done by establishing direct re-

lationships between task nodes. From such simplistic viewpoint, the graph

of data dependencies for LHCb event reconstruction would take the form,

shown in figure 2.4).

However, in addition to basic data flow operations, tasks in sequential

Gaudi can:

• generate output data items conditionally ;

20 Chapter 2. Concurrency Control in Gaudi Hive

Figure 2.4: Graph of data flow between tasks in a typical workflow of physics
data reconstruction in the LHCb experiment. Black nodes represent tasks,
while curved edges – the data flow. The curve indicates direction of data
flow: read an edge clockwise from a source node to a target node. The task
node, highlighted in green, is virtual and represents the framework, which
loads data from disk for subsequent processing.

• require alternative input data items.

To support this functionality in concurrent Gaudi greater flexibility is re-

quired in representation of DF rules. To achieve this, I augmented the repre-

sentation with additional type of node to express the notion of a data item.

Each such node has to have relationships with all possible actors it can origi-

nate from, as well as with the actors it may be consumed by. As a result, the

data flow realm, shown in figure 2.4, extends to realm, presented in figure 2.5.

As a side note, the idea of explicit embedding data items into the con-

currency control knowledge space can potentially have wider applications.

2.4. Graph-based decision making 21

Figure 2.5: Augmented graph of data flow. In addition to figure 2.4, contains
nodes, representing data entities. Each data entity node has a producer, and
at least one consumer. Black nodes represent tasks, while blue ones denote
data items. The task node, highlighted in green, is virtual and represents
the framework, which loads data from disk for subsequent processing.

Such network of data items, enriched with knowledge of its flow patterns

and placed in immediate vicinity to consumers, can serve for reduction of

data access time as:

Deliverable 2.2 (Distributed Transient Event Store)

A short circuit, distributed variant of the Gaudi Transient Event

Store.

As both CF and DF realms have common entities – tasks – it becomes

natural to unify them in a common knowledge space. Such unification of CF

and DF precedence rules is demonstrated in figure 2.6 for the case of LHCb

event reconstruction workflow.

Such approach has several important properties, among which:

Property 2.1. Self-contained knowledge space;

Property 2.2. Perfect information partitioning;

Property 2.3. Global scope of precedence constraints.

22 Chapter 2. Concurrency Control in Gaudi Hive

Figure 2.6: Graph of control and data flow rules between tasks in a typical
data reconstruction of the LHCb experiment. Black nodes represent tasks
(263 nodes), while blue ones (85 nodes) denote data items, produced or
consumed by the tasks. The red nodes (105 nodes) represent the CF decision
hubs.

These properties lead to several important implications on a concurrency

control mechanism. For instance, property 2.1 has a consequence in archi-

tecture design. In particular, it allows to have:

Corollary 2.1. A single component for resolution of both CF and DF

rules.

Property 2.2 provides ideal information partitioning, which means that

to reason about a given task one needs to process only those entities that are

directly related to it, and nothing else. Non-relevant information is naturally

isolated. This leads to the following corollary:

Corollary 2.2. Good algorithmic complexity of the decision making

system.

The latter is discussed in detail in section 2.5.3. Likewise, corollaries 2.1

and 2.2 result in better response time:

2.4. Graph-based decision making 23

Corollary 2.3. Low latency response from the decision making sys-

tem.

The graph-based decision making has even wider implications beyond the

problem space of concurrency control. In particular, property 2.3 provides a

convenient medium for:

Corollary 2.4. Topological analysis of precedence rules.

This topological analysis has at least two areas of application. First, it un-

leashes efficient implementation of configuration-time mechanisms for verifi-

cation of workflow correctness, discussed in section 2.5.5. Second, being more

sophisticated, it enables evaluation of potential intra-event concurrency dy-

namics and its degrees of freedom. This knowledge can then be used as

foundation for various techniques of throughput maximization, not available

before to the framework. Such techniques are investigated in Chapter 3.

2.4.2 Processing of metadata

Deliverable 2.3 (Graph-based concurrency control)

An alternative concurrency control system, operating on the principles

of graph-based decision making, was developed [15] for Gaudi Hive.

A schematic design of the graph-based system is shown in figure 2.7.

As implied by property 2.1 and corollary 2.1, the new approach provides

a single component concurrency control system (CCS).

Meta data processing has changed in two essential aspects.

Firstly, as the entire space of precedence rules in this approach is rep-

resented as a graph, a new decision making cycle comprises a pure graph

traversal, including the DF realm.

Secondly, I changed the graph traversing algorithm in the part of CF

processing:

Deliverable 2.4 (Vicinity graph traversing strategy)

An alternative, bottom-up CF graph traversing strategy was suggested

and implemented.

24 Chapter 2. Concurrency Control in Gaudi Hive

Initstart CR DR SCH

EX

Fα−

α+

β−

β+

γ+

γ+

δ−

δ+

CF and DF Manager

(α, β)

Figure 2.7: A schematic design of the graph-based concurrency control along
with the decision-driven FSM for a Gaudi Algorithm being executed in
a task. The FSM mechanism remains the same as in the catalog-based ap-
proach. Contrary to the catalog-based decision making, the graph-based one
yields a pair of concurrency control decisions in a single, intrinsically efficient
traversal of the graph of unified CF and DF rules.

It allows to reduce the scope of a graph traversal. In contrast to making

graph-wide traversals, the new strategy reduces the traversal scope to only

a neighborhood of a task. The DF part of decision making features the

same – localized – graph traversing behavior. The aforementioned change of

traversing style means that a decision making cycle must be triggered every

time a task is executed.

Unlike the catalog-based CCS, the graph-based system is designed to

yield a sequence of two decisions for both I → CR and CR → DR FSM

transitions upon a single query. This became possible because a single graph

traversal covers both CF and DF realms of a task.

Another peculiarity is that the graph-based CCS can only operate in

2.5. Comparison of graph-based and catalog-based decision making 25

aggressive mode of decision making (see section 2.3.2). This characteristic

might potentially lead to additional pressure in terms of decision making

time and its scalability. However, as I will show in section 2.5.4, this effect

is not significant due to the intrinsic efficiency of the graph-based approach.

2.5 Comparison of graph-based and catalog-

based decision making

2.5.1 Primary implications on global performance

The deepest difference between the catalog-based and graph-based CCS is in

the gamut of objectives the systems are able to pursue.

The base, and the only, objective the catalog-based system is designed to

successfully attain is searching for all tasks that are permitted to execution

in a given context of precedence rules. Following this objective guarantees

the fact of completion of event processing. Note that no other guarantees

are provided. This represents reactive concurrency control.

The graph-based system, though, is capable of proactive behavior. The

latter involves acting in advance of a future situation, rather than just react-

ing. In addition to the objective of reactive concurrency control, the system

is able to pursue the objective of minimizing the event processing time by

taking control of decision consequences and by adjusting its decisions to profit

from these consequences in the best possible way. Implementing such behav-

ioral features requires deeper scope for analysis of precedence consequences.

This is provided by the distinctive properties of the graph-based approach,

described in section 2.4.

Chapter 3 covers in significant detail the framework performance limita-

tions, that originate from reactive concurrency control. This is then followed

by detailed investigation of several concrete proactive scheduling techniques.

26 Chapter 2. Concurrency Control in Gaudi Hive

2.5.2 Secondary implications on global performance

In concurrent environment, the problem of concurrency control is one of those

that creates a new item in the account of overhead. In Gaudi, as explained

in section 2.1, this overhead is exhibited at run time.

In order for the Gustafson-Barsis’ [16] observation to hold, it is critical to

ensure that all forms of overhead, including the one of concurrency control,

grow as slow as it is possible with respect to the growth of parallel work,

supplied to the framework. In other terms, the overhead has to be scalable.

If no attention is paid to this strategically important aspect, the framework-

wide performance will most definitely loose its scalability as well.

There is also another, more subtle, interplay between concurrency control

and framework as a whole. It occurs irrespective of whether or not the

concurrency control system is scalable, and originates from the fact that

the CCS response is never instantaneous. This latency reduces the average

number of tasks being concurrently executed by the framework, which results,

according to Little’s formula [17], in degradation of task and, hence, event

throughput of the framework.

In sections 2.5.3 and 2.5.4, I will scrutinize various dimensions of the

overhead, accompanying each type of decision making.

2.5.3 Algorithmic complexity of decision making

In assessment of efficiency of various approaches to the problem of concur-

rency control, it is of uttermost importance to quantify the corresponding

amount of resources required. An important, machine model independent

aspect of efficiency is the algorithmic time complexity of a decision making

cycle.

Measurements 2.1 (DM algorithmic complexity)

The per-task algorithmic complexities of the catalog-based and graph-

based decision making were estimated.

In the context of concurrency control in Gaudi, the time complexity is a

function of the number of elementary operations, performed on the entities

2.5. Comparison of graph-based and catalog-based decision making 27

of concurrency control – tasks and decision hubs. I denote their respective

numbers, engaged in a given ensemble, as na and nd.

As one can see from table 2.2, the differences in approaches, discussed in

sections 2.3 and 2.4, lead to diverse characteristics.

Table 2.2: Comparison of time complexities of one decision making cycle in
catalog-based and graph-based approaches to concurrency control

Average Worst

Approach CF DF CF DF

Catalog-based O(na + nd) O(1) O(na + nd) O(na)
Graph-based O(1) O(1) O(na) O(1)

With the graph-based approach, the average complexity improves from

being linear to constant. As already mentioned in corollary 2.2, this result

builds on property 2.2, and also on the localized, bottom-up, form of the

graph traversal. Therefore, as the graph grows in size, the cost of traversal

of a node neighborhood remains the same.

Even though only amortized time complexity is of practical importance

for us, it is worth mentioning that the worst complexity also improves when

the graph-based technique is used. It follows from the fact that a localized

graph traversal engages only limited number of decision hubs, located in close

proximity to a task node.

2.5.4 Decision making time and scalability

Another, more influential, dimension in assessment of computational char-

acteristics of a CCS is evaluation of its response time. In the context of

concurrent computing, as pointed out in section 2.5.2, this aspect can affect

framework-wide performance.

Measurements 2.2 (DM time and scalability)

A series of benchmarks were carried out to evaluate the per-task and

per-event decision making time and its scalability, maintained by the

catalog-based and graph-based CCS.

28 Chapter 2. Concurrency Control in Gaudi Hive

Figure 2.8: CCS response time, spent for each task in an ensemble, as a
function of natural execution order of tasks. The response time for each task
is averaged over 100 events. Two pair of curves are presented, each describing
the impact of a chosen approach to concurrency control for 1- and 7-threaded
operation of the Gaudi framework. Configuration: LHCb Reconstruction @
Machine-1S8T.

Figure 2.8 demonstrates the evolution of per-task response time within an

event, examined for the cases of the two approaches described in the previous

sections.

The first thing to note is the pair of curves, measured for the case of

sequential execution, i.e., for one thread only. From the figure it becomes

evident that the graph-based technique of concurrency control has a clear

supremacy. It is also worth mentioning that the graph-based approach yields

stable response time at all stages of event processing, whereas the catalog-

based approach improves its response time all way through to the end of

event processing. This can be explained by the fact that with time, as tasks

yield filter decisions, the CF graph becomes more and more resolved, thus

shortening the top-down graph traversal with every next decision making

cycle. By the end of event processing the improvement in response time

brings about 35%, staying, nevertheless, around 1.4 times slower than the

corresponding graph-based decision making.

Furthermore, it is very important whether the response time is scalable

across the number of threads granted to the concurrent framework. However,

unlike the scalability across the number of entities engaged in the problem

2.5. Comparison of graph-based and catalog-based decision making 29

of concurrency control, the scalability across the number of threads can be

adequately estimated only empirically. Figure 2.8 provides the response time

profiles for the case of seven threads. As one can see, the response time is

systematically lower with both approaches to concurrency control, if more

threads are used.

Figure 2.9: Cumulative decision making time, spent per processed event, as a
function of number of CPU threads, used by the Gaudi framework. Graph-
based and catalog-based implementations of CCS are compared. Configura-
tion: LHCb Reconstruction @ Machine-2S48T.

The latter observation generates further interest in a more detailed profile

of scalability of decision making time across the number of threads. Con-

sidering now the cumulative time of decision making, spent on concurrency

control in processing of one event, figure 2.9 reveals that the downtrend of

response time is persistent in the range of up to eleven threads for both con-

currency control techniques (except for the case of aggressive catalog-based

mode, see section 2.3.2). In the region above that value, though, this ten-

dency turns to uptrend. From figure 2.9 it also becomes apparent, that the

catalog-based approach, that operates in aggressive mode, not only yields

the highest response time, but also shows no scalability across the number

of workers, granted to the framework.

Finally, it is useful to measure the ratio of total decision making time,

spent per event, to event processing time. Figure 2.10 reformulates the re-

sults, presented in figure 2.9, to this perspective. In all three cases, the ratio

30 Chapter 2. Concurrency Control in Gaudi Hive

is growing rapidly in the low range of threads. This is caused by the fact

that in this very region the event processing exhibits almost linear speedup.

Figure 2.10: Ratio of total decision making time, spent on one event, to the
event processing time. The upper limit of event processing speedup amounts
to 4x with the chosen configuration. Configuration: LHCb Reconstruction
@ Machine-2S48T.

2.5.5 Auxiliary considerations

The graph-based approach to concurrency control enables efficient implemen-

tation of several auxiliary mechanisms.

In sequential Gaudi, the resolution of the DF rules is accomplished im-

plicitly, at configuration time, by ordering tasks. The absence of a dedicated

mechanism for resolution of these rules was making their verification incon-

venient. The graph-based CCS, though, makes such verification straightfor-

ward, as the system has the whole data flow realm assembled as a graph.

A similar search for inconsistencies becomes possible for the CF realm.

Another application area concerns the intra-event concurrency constraints

analysis. A unified space of precedence rules makes it possible to determine

the asymptotic speedup limits of a given data processing workflow.

Chapter 3

Scheduling of non-deterministic

task networks in Gaudi Hive

In the pursuit of throughput, the independent nature of HEP events enables

the possibility of saturating available hardware resources by using inter-event

concurrency. This property of a problem domain is sometimes referred to as

pleasingly parallel.

In this chapter I will show how a blind belief in the possibility mentioned

above can lead to significant flaws in framework-wide performance. I will

also show what alternatives are available to secure against those risks, and

what performance effects do they bring in the context of non-deterministic

task networks.

3.1 Limitations of reactive scheduling

This section covers my investigation of Gaudi performance limits, when

its task scheduling is based on reactive concurrency control. I also point

out and investigate the factors those limits originate from, providing thus a

foundation for systematic techniques of workflow independent performance

improvement.

31

32 Chapter 3. Scheduling of task networks in Gaudi Hive

3.1.1 Performance limits

As described in section 1.2, Gaudi Hive profits from both the intra- and

inter-event concurrency.

Measurements 3.1 (Throughput scalability)

A series of benchmarks were carried out to evaluate the scalability of

throughput, maintained by Gaudi Hive under reactive concurrency

control in the intra- and inter-event operation modes [18].

The curve in figure 3.1 reveals the extent of scalability of the intra-event

speedup of Gaudi Hive, that operates under reactive concurrency control.

As one can see, despite the ample hardware resources, the framework is

significantly limited in its ability to scale up in this mode. The speedup

starts to degrade at around 7 threads and shows its developing downtrend

up until 38 threads, where after a 5.5% saltus it finally saturates and hits a

plateau at around 18.3.

Figure 3.1: Speedup in processing of a single event under reactive concurrency
control (hence, uncontrolled decisions) as a function of the number of threads
granted to the framework. The intra-event speedup starts to degrade at
around 7 threads, and saturates and hits a plateau above 18 at 40 threads.
Configuration: LHCb Reconstruction[U–10ms] @ Machine-2S48T. 1k events
processed.

The degradation of speedup scalability, shown in figure 3.1, is driven

3.1. Limitations of reactive scheduling 33

by the intra-event concurrency constraints, imposed by the task precedence

rules, used in the LHCb Reconstruction[U–10ms].

In order to achieve better scalability, Gaudi Hive can leverage on the

inter-event dimension of concurrency. Figure 3.2 demonstrates the scalability

of speedup in the inter-event mode, depending on the number of events being

processed at the same time. It is notable, that as the number of events in

flight grows, the utility of associated boost in speedup rapidly degrades. The

observation can be rephrased in the following way:

Observation 3.1 (Inter-event throughput scalability)

In the LHCb Reconstruction[U–10ms], the framework is weakly scal-

able across the number of concurrently processed events.

Further increase in the number of events, processed concurrently, does not

improve the throughput. Thus, for the taken configuration and concurrency

control technique, the curve corresponding to 4 events describes a saturated

mode of framework operation.

Figure 3.2: Speedup in processing of multiple events in flight under reactive
concurrency control as a function of the number of threads granted to the
framework. With all hardware threads being allotted to the framework,
the speedup gets saturated with 4 events in flight. The saturated speedup
starts to degrade at around 15 threads, still exhibiting linear growth up
to the maximum hardware capacity of the machine. Configuration: LHCb
Reconstruction[U–10ms] @ Machine-2S48T. 1k events processed.

34 Chapter 3. Scheduling of task networks in Gaudi Hive

Developing the previous observation, I suggest another set of benchmark

results in figure 3.3. Its corresponding benchmark setup – the LHCb Re-

construction[N] @ Machine-2S48T – differs from the one used in figure 3.2

in only the utilized task time mapping. The set of presented curves indi-

cates an even more rapid fall of speedup boost gained with every new event

being added to the stack of concurrently proccessed ones. This strengthens

observation 3.1 to the following observation:

Observation 3.2 (Inter-event throughput scalability)

Weak scalability across the number of concurrently processed events

persists across varying mappings of task execution times in general, and

across varying length of a critical path in a task network in particular,

with other conditions being equal.

Figure 3.3: Speedup in processing of multiple events in flight as a function of
the number of threads granted to the framework. With all hardware threads
being allotted to the framework, the speedup gets saturated with 20 events
in flight. The saturated speedup starts to degrade at around 25 threads,
still exhibiting linear growth up to the maximum hardware capacity of the
machine. Configuration: LHCb Reconstruction[N] @ Machine-2S48T. 1k
events processed.

Figure 3.3 makes it also evident that the used non-uniform task time

mapping (see C.3) yields significantly lower levels of available intra-event con-

currency, thus greatly affecting the intra-event speedup. This provokes the

3.1. Limitations of reactive scheduling 35

higher demand in the number of events, required to saturate the throughput.

The net result is that, in the LHCb Reconstruction[N] @ Machine-2S48T,

throughput saturates at only 20 events, giving it many-event nature.

Figure 3.4: A comparison of saturated throughputs, achieved with distinct
numbers of events, required for this saturation. The comparison is a function
of the number of threads granted to the framework. Configuration: LHCb
Reconstruction[N] @ Machine-2S48T is compared against the LHCb Recon-
struction[U-10ms] @ Machine-2S48T. 1k events processed.

The many-event case allows to reveal another fundamental limitation, ac-

centuated in figure 3.4. The latter provides an explicit comparison of the sat-

urated regimes, showed separately in figures 3.2 and 3.3, and conventionally

referred to as multi-event and many-event cases. One can observe a notable

degradation of the many-event speedup: it drops by 14.2% at the maximum

hardware capacity of the machine. The observation can be summarized in

the following conclusion:

Observation 3.3 (Throughput and inter-event concurrency)

The peak achievable throughput degrades as the number of events

required to saturate the throughput grows.

A possible reason for that is the increase of the overhead pressure, origi-

nating from the inter-event concurrency management.

One can anticipate at least two other harmful factors that increase their

contribution as the number of events being processed concurrently increases.

36 Chapter 3. Scheduling of task networks in Gaudi Hive

First, the increase of the requirements on RAM and the increase of the load

on the CPU data cache hierarchy. Second, the increase of disk I/O rates.

However, realistic evaluation of associated performance degradation will only

be possible when all Gaudi components are refactored for the use in the

multithreaded environment.

The transition from multi- to many-event nature of concurrent data pro-

cessing will intesify with the continuing growth of the hardware parallelism,

suggested by the industry. Thus, systematic solutions are needed to address

the limiting factors outlined in this section.

3.1.2 Intra-event concurrency dynamics

A standard approach to the problem of interplay between scalability and

overhead of concurrency management is to mitigate the latter. Indeed, being

an important aspect in any parallelization problem, this can facilitate some

improvement in throughput scalability. However, in the context of HEP, as

well as in any other field with the similar layout of concurrency dimensions,

the problem of the overhead is rather a symptom, than a prime cause.

The root of the problem that obliges to use the many-event policy resides

in low-level intra-event concurrency. This is corroborated by the results of

measurements, presented in figure 3.3.

In this section I present my investigation of the factors that limit the

intra-event concurrency.

Measurements 3.2 (Reactive intra-event dynamics)

The intra-event concurrency dynamics was measured under reactive

concurrency control for the case of task precedence rules of the LHCb

Reconstruction, used in sequential event reconstruction of LHCb dur-

ing Run-1 and Run-2 phases of LHC.

Figure 3.5 exposes the task concurrency dynamics yielded by an event,

being processed on 8 threads. It occurs that in this case the concurrency

is disclosed quickly enough, inducing a regular load on available computing

resources. The profile contains only a couple of discontinuities at the middle

3.1. Limitations of reactive scheduling 37

Init CR DR SCH

EX

F

Figure 3.5: Intra-event concurrency dynamics as a function of reactive deci-
sion making cycle in natural execution order. 8 threads are granted to the
framework. The DR task queue length varies from 0 to 31, with the average
approaching 15. Configuration: LHCb Reconstruction @ Machine-2S48T.
Single event profile.

and at the end of the processing range. Such concurrency pattern yields

a speedup of 7.45 per event, missing only 7% of the theoretical maximum,

which is lost due to the discovered irregularities.

A similar profile, in figure 3.6, considers the dynamics achieved with 20

threads. In this case the dynamics of concurrency disclosure do not keep

anymore the available computing resources busy. In this case the observed

speedup amounts to 14.4, lacking more than 28% of theoretical speedup.

In the view of presented results, it becomes conclusive that:

Observation 3.4 (FSM transition imbalance)

The intra-event concurrency dynamics, being extracted in the LHCb

Reconstruction under reactive concurrency control, exhibits a develop-

ing imbalance in the DR → SCH transition phase as the number of

threads, granted to the framework, grows.

In the LHCb Reconstruction, as well as in any other similar data process-

ing scenarios of a HEP experiment, the organisation of tasks and associated

precedence rules are constrained by the physics requirements. In pursuit

of better layout of the intra-event concurrency, a scenario reorganisation is

38 Chapter 3. Scheduling of task networks in Gaudi Hive

Init CR DR SCH

EX

F

Figure 3.6: Intra-event concurrency dynamics as a function of reactive deci-
sion making cycle in natural execution order. 20 threads are granted to the
framework. The DR task queue length varies from 0 to 31, with the aver-
age approaching 6. Configuration: LHCb Reconstruction @ Machine-2S48T.
Single event profile.

sometimes feasible. In a settled experiment, however, the practical possibil-

ities for that are rather limited.

Therefore, in the rest of the study I will always assume that the prece-

dence rules can not be revised and will focus on examining other systematic

concurrency leveling techniques that could be applied to and be useful in the

context of Gaudi.

3.1.3 Degrees of freedom in concurrency control

The number of new tasks, qualified in a given decision making cycle as eli-

gible for concurrent execution, depends on the concrete context the decision

making is focused on. The context includes an executed task, the cycle was

caused by, together with the precedence rules that task explicitly participates

in.

The LHCb Reconstruction is characterized by significant heterogeneity of

its precedence rules. This results in strong asymmetries across the number

of tasks produced in each decision making cycle. That can be clearly seen

in figures 3.5 and 3.6, where the number of tasks, released in a cycle, varies

3.2. Predictive task scheduling for throughput maximization 39

from 0 to 40. When during a sufficiently long period of time no new tasks

are emitted by the CCS, an intra-event task starvation period occurs.

It is not rare, however, that more tasks are emitted by a cycle than avail-

able computing resources can absorb. When this happens, the rejected part

of the task emission is amortized in a queue for later execution, creating what

I define as situational task excess. Nonetheless, the scenario under consider-

ation shows that even for the moderate case of 8 threads, such task excess, in

itself, does not always keep up in compensating the task shortcomings (see

figures 3.5 and 3.6).

The situational task excess, however, can give new quality to task schedul-

ing in Gaudi. When such excess occurs, it gives rise to vast degrees of

freedom in controlling the future task excess rates. In particular, it becomes

possible to induce more massive, chain task excess by initiating the avalanche

task emissions, which can potentially be more efficient in leveling the intra-

event task starvation periods. If successful, this will maximize the average

intra-event task occupancy.

In the next section, I discuss various techniques for initiating the avalanche

task emissions.

3.2 Predictive task scheduling for through-

put maximization

In the context of concurrent Gaudi, an ability to maximize the intra-event

occupancy allows to minimize the necessity in inter-event concurrency. As I

demonstrated in section 3.1.1, this can help reducing pressure from concur-

rency management overhead, and result in higher data processing throughput

in saturated regimes of data processing.

In order to provoke the avalanche task emissions, mentioned in section 3.1.3,

two main mechanisms were required.

First, a task ranking mechanism was needed that could be able to auto-

matically estimate the consequences the task can yield upon its execution.

The first Gaudi Hive prototype [12] used the catalog-based CCS, capable of

40 Chapter 3. Scheduling of task networks in Gaudi Hive

only reactive decision making. The new – graph-based – CCS, as described

in sections 2.4 and 2.5.1, enables proactive decision making and can be used

for predictive scheduling. The graph-based CCS can estimate a task rank at

either configuration, run time, or both.

Second, a mechanism for run time task reordering was needed to schedule

the tasks with the highest rank first. The reordering is non-intrusive from

the view point of task precedence rules and operates only within the queues

of the DR tasks.

Deliverable 3.1 (Predictive scheduling)

A predictive scheduler, built on graph-based CCS and its proactive

concurrency control, was developed.

Measurements 3.3 (Predictive scheduling)

A series of benchmarks were carried out to evaluate the scalability of

throughput, maintained by Gaudi Hive under proactive concurrency

control in the intra- and inter-event operation modes.

In the next sections I investigate several ranking strategies that can be

applied in the context of Gaudi to arbitrary data processing scenarios and

that can potentially influence the intra-event task emission dynamics.

3.2.1 Local task-to-task asymmetry

The simplest reasonable type of ranking involves 1-level task-to-task relation-

ships, established through their common data entities in the DF realm. The

rank of a task is calculated as the total number of tasks that directly consume

at least one of its data products. Since the precedence rules in general, and

the DF ones in particular, are fixed across all types of events, the ranking of

tasks can be completed at framework’s configuration time.

Figure 3.7 demonstrates schematically one of the typical patterns that

can occur within the DF realm of precedence rules. In this example, if both

T1 and T3 happen to reside in the DR queue, it might be more profitable

3.2. Predictive task scheduling for throughput maximization 41

T1

rank: 1
D1 T2

T3

rank: 3
D2

T4

T5

T6

Figure 3.7: A schematic example of local task-to-task asymmetry in the DF
precedence realm. Tasks T1 and T3 have distinct extent of consumption of
the data products (D1 and D2) they produce. Thus, if both T1 and T3 reside
in the DR queue, it might be more profitable to prioritize the execution of
T3.

to give T3 a higher priority. The real asymmetries, exhibited by the data

products from the viewpoint of their consumers can be seen in figure 3.8.

It should be stressed, however, that with such a limited decision scope it

is not guaranteed that such prioritization is always profitable. This follows

from the fact that any, or all, of T4−6 tasks might happen to be bound

by other DF dependencies that will forbid their immediate scheduling for a

period of time. Similarly, they might occur to be bound by the CF rules,

preventing them from the I → CR state transition. The latter situation is

clearly illustrated in figure 3.9.

In figure 3.10 I compare the data processing speedup, achieved with re-

active and predicitive types of scheduling. One can observe that the 1-level

task-to-task ranking technique allows to improve the speedup up to 30%,

occurring at 19 threads.

It is notable that the area of ideal speedup has been tripled, when mov-

ing from reactive to predictive scheduling of 1-level type. An obvious conse-

quenece is that, for this particular data processing scenario, there is no need

to engage the inter-event concurrency at all for machines having less than 19

threads allotted to the framework.

42 Chapter 3. Scheduling of task networks in Gaudi Hive

Figure 3.8: Task precedence rules of the LHCb Reconstruction (see figures 2.6
and C.1), with all, but data nodes, faded out. Color intensity of a data node
represents the number of its direct task consumers.

Figure 3.9: A topological feature, present in the LHCb Reconstruction (a
zoom of an area from figure 2.6). One can see that for the CCS it is topologi-
cally profitable to prioritize production of the highlighted data item, because
it enables the CR → DR transition for a whole cluster of tasks located on
its right. On the other hand, it might well be that the decision hub that
performs the CF handling of the cluster is still preventing all, or a subset,
of its tasks from the I → CR transition, thus suppressing the rapid task
emission the CCS aims to provoke.

3.2. Predictive task scheduling for throughput maximization 43

Figure 3.10: A comparison of intra-event speedups, achieved with reactive
scheduling (thus uncontrolled task emissions) and predictive scheduling. The
latter is based on 1-level task-to-task (1-level TtT) ranking. The compar-
ison is a function of the number of threads granted to the framework. Across
the range, the improvement in speedup goes up to 30%. Configuration:
LHCb Reconstruction[U-10ms] @ Machine-2S48T. 1k events processed.

3.2.2 Global task-to-task asymmetry

The ranking, based on global task-to-task asymmetry, is a generalization

of the case outlined in the previous section. Contrary to 1-level ranking, it

cumulatively engages all levels of task precedence rules, including the deepest

ones. Thereby, the rank of a given task is calculated as the total number of

the tasks that either directly, or indirectly (up to arbitrary level), consume

at least one of its data products (see figure 3.11).

This type of ranking can also be completed at configuration time of the

framework.

By definition, the cumulative task-to-task ranking provides a more com-

prehensive assessment of task importance. It was thus possible to anticipate

that a supplementary improvement in speedup is feasible.

This, however, has not occured to be true. Figure 3.12 reveals the scalabil-

ity of speedup in predictive mode based on cumulative task-to-task ranking.

The measured speedup is clearly inferior to the one based on 1-level rank-

ing. More so, it even goes below the one of reactive scheduling in the region

44 Chapter 3. Scheduling of task networks in Gaudi Hive

T1

rank: 2
D1 T2 D3 T7

T3

rank: >6
D2 T4 ... TN

T5 ... TM

D4 T8

T9

Figure 3.11: A schematic example of the cumulative task-to-task asymmetry.
A generalization of the case, outlined in 3.7, up to the boundaries of the entire
task ensemble.

between 10 and 15 threads, then raising the improvement to up to +9.8% at

30 threads.

A possible reason for such speedup degradation is related to the nature of

cumulative task ranking. It is correct to assume that the task prioritizations,

driven by this ranking strategy, selects the execution paths of greater task

emission potential. However, it is wrong to assume that the potential is not

deferred either by the CF rules, or by the topology of the DF path itself.

There is no guarantee that a prioritized execution path will necessarily emit

its related tasks immediately, or, at least, quickly enough to arrange the task

emission avalanches the predictive scheduler is trying to provoke.

We can conclude that the cumulative task ranking, performed in the

DF realm of precedence rules, has a limited application in the problem of

throughput maximization.

3.2. Predictive task scheduling for throughput maximization 45

Figure 3.12: A comparison of intra-event speedups, achieved with reactive
scheduling (thus uncontrolled task emissions) and predictive scheduling. For
the latter, the case of the cumulative task-to-task (TtT) ranking is in-
cluded with respect to figure 3.10. The comparison is a function of the
number of threads granted to the framework. Across the range, the improve-
ment in speedup of the new measurement shows an improvement of up to
9.8% with respect to reactive scheduling. Configuration: LHCb Reconstruc-
tion[U-10ms] @ Machine-2S48T. 1k events processed.

3.2.3 Critical path method

In this section I will apply the ideas of the critical path method (CPM), devel-

oped by Kelley and Walker [19], to the context of the intra-event concurrency

in Gaudi.

In order to prioritize the execution of tasks along the critical path of

task precedence patterns, a dedicated task ranking technique is required.

In the context of Gaudi, the per-event precedence pattern is dynamic and

unpredictable. Thus, the ranking has to combine the topological constraints

of the task precedence rules and the task execution times.

Unfortunately, the very nature of the HEP domain makes it impossible

to come up with a static task execution time map. The reason is that the

task execution time depends on particular physics of an event. Moreover,

the events are processed, in general, in unpredictable order. Another level

of complication arises from the wide variations in hardware performance and

computing environments being involved in the data processing. Hence, spe-

46 Chapter 3. Scheduling of task networks in Gaudi Hive

cial mechanisms are required to discover the execution times of tasks during

data processing. This would allow to dynamically detect and follow the crit-

ical and sub-critical task precedence paths, reducing in this way the event

processing times.

In this section I investigate a special case of the critical path method and

estimate its potential in the context of the LHCb Reconstruction. Let me

point out the following observation:

Observation 3.5 (Critical path and task eccentricities)

A task precedence scenario, in which the task ensemble has a uniform

time distribution, makes the problem of critical path detection inde-

pendent of task execution times. The task node eccentricity becomes

the only key parameter.

Figure 3.13: An example of the critical and sub-critical task paths, estimated
using task nodes eccentricities in a task precedence pattern, materialized from
the precedence rules of the LHCb Reconstruction of a concrete event. Color
intensity represents eccentricity-based rank of a task. Configuration: LHCb
Reconstruction.

An immediate consequence of observation 3.5 is:

3.2. Predictive task scheduling for throughput maximization 47

Corollary 3.1. The main critical path of an equitime task precedence

graph coincides with its diameter.

Figure 3.13 shows an example of the critical and sub-critical task paths,

estimated using the DF realm eccentricities of the task nodes for the case

of the equitime LHCb Reconstruction. For the precedence topology under

consideration, the diameter, and thus its critical path, has the length of 17

task nodes.

An interesting topological feature is that the critical path experiences a

triple split, taking place in the upper right corner of the graph. This makes it

important to direct the task execution flow in this region to all three splitting

paths, if it is possible. This equally refers to all sub-critical paths, present

in the graph. If this prescription is intentionally ignored or is not holding

for another reason, the event processing will take longer than the time of the

critical path.

Figure 3.14: A comparison of intra-event speedups, achieved with reactive
scheduling (thus uncontrolled task emissions) and predictive scheduling. For
the latter, the case of the critical path method (CPM) is included with
respect to figure 3.12. The comparison is a function of the number of threads
granted to the framework. Across the range, the new measurement demon-
strates the best throughput when compared to all other scheduling tech-
niques. Configuration: LHCb Reconstruction[U-10ms] @ Machine-2S48T.
1k events processed.

If compared to reactive task scheduling (figure 3.14), the CPM one gives

48 Chapter 3. Scheduling of task networks in Gaudi Hive

an improvement of up to 34% when 21 threads are alloted to the framework.

It also outperforms the 1-level task-to-task regime in the rest of the range.

Such significant improvement has been achieved due to successful ar-

rangement of the the avalanche task emissions, mentioned in section 3.1.3.

Figures 3.16 and 3.17 demonstrate how the intra-event concurrency dynamics

evolves when the CPM-based predictive task scheduling is used.

Having demonstrated the supremacy of the CPM-based scheduling in the

intra-event mode and being driven by the aim of maximizing the peak global

throughput, let me point out the implications of the CPM-based scheduling

on the framework speedup in many-event and saturated operation modes.

Figure 3.15: The speedups of multi-event and saturated data processing
modes, operating on reactive scheduling, and predictive – CPM-based –
scheduling. The comparison is a function of the number of threads, allotted to
the framework. A one-to-one comparison of multi-event and saturated modes
shows the total domination of the CPM method. Configuration: LHCb Re-
construction[U–10ms] @ Machine-2S48T. 1k events processed.

Firstly, a one-to-one comparison of multi-event modes (figure 3.15) shows

the total domination of the CPM-based scheduling over reactive one across

the entire range of threads. Secondly, the CPM-based mode of saturated

operation outperforms the one, achieved in reactive mode, by almost 2% at

the maximum hardware capacity of the machine. Thirdly, the new predictive

mode gets saturated with 3 instead of 4 events being processed at the same

time. Fourthly, it is notable that the area of ideal speedup in the CPM-based

3.2. Predictive task scheduling for throughput maximization 49

saturated mode has extended from 15 threads by 66%, starting to degrade

only at around 25 threads.

50 Chapter 3. Scheduling of task networks in Gaudi Hive

Init CR DR SCH

EX

F

Init CR DR SCH

EX

F

Figure 3.16: Comparison of intra-event concurrency dynamics for reactive
(top) and predictive (CPM) (bottom) types of scheduling as a function of
decision making cycle. 8 threads are granted to the framework. Extensive
task emissions of almost tripled amplitude, arranged by predictive scheduling,
mitigate the task starvation periods. Configuration: LHCb Reconstruction
@ Machine-2S48T. Single event profile.

3.2. Predictive task scheduling for throughput maximization 51

Init CR DR SCH

EX

F

Init CR DR SCH

EX

F

Figure 3.17: Comparison of intra-event concurrency dynamics for reactive
(top) and predictive (CPM) (bottom) types of scheduling as a function of
decision making cycle. 20 threads are granted to the framework. Task emis-
sion dynamics, improved by 40% in predictive scheduling, mitigate the task
starvation periods, raising speedup from 72 to 95% of theoretical maximum.
Configuration: LHCb Reconstruction @ Machine-2S48T. Single event profile.

52 Chapter 3. Scheduling of task networks in Gaudi Hive

Chapter 4

Scheduling of heterogeneous

tasks in Gaudi Hive

In chapter 3, I investigated the topological factors of throughput limita-

tions in Gaudi Hive, as well as suggested various scheduling techniques

to mitigate them. These factors arise from the intra-event task precedence

constraints and influence the balance between the inter- and intra-event con-

currency dimensions. The precedence constraints are independent of the

nature of computations performed by the tasks.

In this chapter I will focus on another aspect of throughput maximization

that concerns the heterogeneous nature of tasks commonly used in HEP

experiments. I will outline the limitations of task nature agnostic scheduling

employed in the previous versions of the Gaudi Hive prototype. This will be

followed by a quantitative evaluation of an alternative – task nature aware –

scheduling approach, allowing to further increase the framework throughput.

4.1 Problem formulation

I define a heterogeneous set of tasks as follows:

53

54 Chapter 4. Scheduling of heterogeneous tasks in Gaudi Hive

Definition 4.1

A set of tasks is called heterogeneous if its tasks perform any of the

following operations:

1. disk I/O operations
2. network I/O operations

3. synchronization mechanisms (locks, condition variables, etc.)

4. offload computations

In the context of a HEP experiment, the I/O-bound operations are a

commonplace. For instance, in order to be processed an event has to be

first loaded from persistent storage into RAM. Likewise, it must be written

back to the storage when the processing is completed. Moreover, depending

on event specifics, the framework may decide to acquire various auxiliary

metadata in order to proceed with event processing. An example of this

is loading the experiment’s detector conditions associated to a given event

time.

In multithreaded environment, the tasks are often based on synchroniza-

tion mechanisms.

However, the category of tasks employing the offload computation are not

common in the modern HEP data processing. At the same time, they are of

a special interest for experiments [20, 21] from the viewpoint of the poten-

tial they have in massively parallel event processing (Single Task Multiple

Event). In this context, general-purpose graphics processing units (GPGPU)

currently get most of the focus among numerous R&D groups of the exper-

iments. Furthermore, coprocessor devices arouse a growing interest in the

HEP communities [22]. For instance, the Intelr Many Integrated Core Ar-

chitecture [23] demonstrates a significant general potential for the Multiple

Task Multiple Events strategy due to its support of both the offload and na-

tive execution modes, a more generic multithreading model and the ability

to run on standard programming tools and methods [23].

4.2. Tolerating task heterogeneity 55

A characteristic that makes all the heterogeneous operations common is

that they rely on a system call that is either blocking (because it must precede

the following steps), or that cannot gain much from being asynchronous

(because the backlog of out-of-order steps allowed to concur it within the

task is too low to hide the blocking latency). It is a consequence of that a

Gaudi task has, typically, a very narrow specialization.

As described in section 1.2, Gaudi Hive uses TBB for thread and task

management. The library was designed for CPU-bound computations and

thus employs non-preemptive task scheduling policy. This allows it to be very

efficient with compute intensive tasks by avoiding costly context switches that

occur in preemptive scheduling policy.

The non-preemptive scheduling policy, however, has a downside if used

with heterogeneous tasks. Every blocking, non-preempted task wastes the

logic thread it was scheduled to for the whole period of blocking [24], which

results in CPU being starved of tasks. This results in suboptimal perfor-

mance.

Since the aim of throughput maximization is so important, and the cat-

egory of blocking operations is so wide, there was a clear necessity of a new

mechanism for Gaudi Hive that would allow to get control on and, possibly,

even profit from the above described effect.

4.2 Tolerating task heterogeneity

A well-known, systematic technique to mitigate the effect of blocking oper-

ations relies on the mechanism of blocked thread handling, employed in the

Linux process scheduler.

Since Linux 2.6.23, the operating system (OS) kernel uses the Completely

Fair Scheduler (CFS) [25] – the first implementation of a weighted fair queu-

ing process scheduler that is broadly used in a general-purpose OS [26].

In CFS, as soon as a thread is blocked and becomes waiting for control to

return, it is removed from the red-black process tree – the run time allocation

structure of CFS – so that no CPU time is allocated to it. When the thread

is awoken by the system interrupt it is waiting for it is re-inserted to the red-

56 Chapter 4. Scheduling of heterogeneous tasks in Gaudi Hive

black tree and allocated its CPU share according to general fair share rules.

The latter also include the concept of sleeper fairness [27], which considers

the awakening threads equivalent to those on the process tree. This means

that when a sleeper thread eventually returns, it is immediately prioritized

and the CPU share it gets is proportional to its waiting time and, hence, fair.

To use this mechanism, a blocking task has to be scheduled to a full-blown

thread [24], bypassing the TBB scheduler. This leaves a TBB thread, that

would be blocked otherwise, for a CPU-intensive task, thus increasing the

overall throughput. The blocking thread is delegated to the CFS and, being

effectively hidden, does not affect any other thread.

By the latter, it is tacitly assumed that in order to gain in throughput such

scheduling of blocking threads has to be made by oversubscribing a CPU. It

is interesting to note, that, due to the nature of blocked threads and the

efficient mechanism of its handling in the CFS, the depth of oversubscription

is loosely constrained and can reach the values significantly exceeding the

actual number of physical threads alloted to the framework.

It is of uttermost importance to realize that efficient oversubscription is

only possible if associated context switching (CS) is rare enough. This is

dictated by the fact that CS can be expensive, as it involves saving and

restoring of thread’s register state and cache. The requirement of rare con-

text switching is satisfied if the amount of compute-intensive operations in

a blocking task is significantly lower than that of blocking ones. Although

such isolation of blocking operations could be a good guideline for future task

developments, the reality is that most of the blocking tasks that are currently

used in data processing can have a comparable share of both operation types.

Therefore, an investigation was needed to evaluate the technique, sug-

gested in this section, under the conditions approximated to the ones of a

HEP experiment.

4.3. Throughput maximization: CPU oversubscription 57

4.3 Throughput maximization: CPU oversub-

scription

Measurements 4.1 (Oversubscription)

A series of benchmarks were carried out [28] to evaluate the scalabil-
ity of speedup that can be maintained by Gaudi Hive in processor

oversubscription conditions. Several heterogeneous workflow of LHCb

data processing were considered.

4.3.1 Oversubscribing CPU with TBB

As a fiducial point, I chose the current Gaudi Hive task scheduling back-end

as a mechanism for oversubscription studies.

Measurements 4.2 (TBB-based oversubscription)

The scalability of intra-event speedup, maintained by Gaudi Hive

in TBB-based oversubscription regime, was evaluated for non-blocking,

partially blocking and blocking data processing scenarios of the LHCb

experiment.

All measurements of this subsection were taken for the case in which

the scheduler makes no distinction between blocking and non-blocking tasks.

This means that a CPU was oversubscribed with tasks of both types. Ini-

tially, such measurements were primarily meant to be referential and indicate

the extent of speedup degradation the compute-intensive tasks can lead to in

oversubscription. The results of the tests, though, brought few unexpected

results.

Figure 4.1 shows intra-event speedup of data processing in the oversub-

scription domain. To simulate more realistic conditions, every blocking task

executes a mixture of compute-intensive and blocking operations at propor-

tion of 50%.

First of all, the non-blocking LHCb Reconstruction did not exhibit any

significant degradation in oversubscription phase. This is still more unex-

58 Chapter 4. Scheduling of heterogeneous tasks in Gaudi Hive

pected given that the special Gaudi Algorithm, used to simulate the close

to real load, was developed intentionally as compute-intensive and inefficient.

Consider the curve describing the speedup of the mixed LHCb Recon-

struction. This scenario represents a moderate case in which only 10% of the

tasks used in a given data processing workflow are blocking. The maximum

associated improvement for such case goes up to 9.7% at 17 threads.

Finally, the blocking LHCb Reconstruction, in which all tasks are consid-

ered as blocking, shows an improvement of 119% at 17 threads.

Figure 4.1: Intra-event speedup of data processing in oversubscription do-
main as a function of threads granted to the framework. The blocking
scenario has all its tasks blocking, the mixed scenario contains only 10% of
such tasks, while the non-blocking one has no blocking tasks at all. The
blocking tasks spend 50% of their total run time in intensive computations.
In the mixed scenario, the bloking tasks have a random distribution across
the graph of precedence rules, shown in figure 2.6. The blocking scenario
yields an improvement of up to 119% at 17 threads. Configuration: LHCb
Reconstruction[U-20ms] @ Machine-1S4T. 1k events processed.

The results of the benchmark lead to the following observation:

Observation 4.1 (Blocking extent of tasks ensemble)

The more blocking tasks a given data processing scenario has, the

higher intra-event speedup can Gaudi Hive maintain in oversubscrip-

tion regime.

4.3. Throughput maximization: CPU oversubscription 59

The measurements presented in figures 4.2 and 4.3 quantify another di-

mension of throughput maximization:

Observation 4.2 (Blocking extent of a task)

The more blocking operations a blocking task has, the higher intra-

event speedup can Gaudi Hive maintain in oversubscription regime.

Figure 4.2: Intra-event speedup of data processing in oversubscription do-
main as a function of threads granted to the framework. Three blocking
scenarios differ in the extent of blocking of the tasks. The latter spend 75%,
50% and 25% of their total run time in blocking operations, while the rest
is spent in intensive computations. Configuration: LHCb Reconstruction[U-
20ms] @ Machine-1S4T. 1k events processed.

Note that all benchmarks in this section were run on Machine-1S4T with

Intelr Hyper-Threading technology disabled. This was an intentional mea-

sure aiming at isolating the oversubscription effects from distortions asso-

ciated with simultaneous multithreading, which yields drastically distinct

speedup improvement for compute-intensive and blocking load.

Clearly, there is no guarantee the real-life tasks will repeat the perfor-

mance of the CPU Cruncher [29] in the oversubscription conditions. More-

over, there may be additional dimensions of performance degradation con-

cerned with the effect of so called mutual exclusion. In particular, the real-life

compute-intensive tasks can employ locks when dealing with various frame-

60 Chapter 4. Scheduling of heterogeneous tasks in Gaudi Hive

Figure 4.3: Intra-event speedup of data processing in oversubscription do-
main as a function of threads granted to the framework. The mixed scenario
contains only 10% of blocking tasks distributed randomly across the graph
of precedence rules, shown in figure 2.6. The presented scenarios differ in the
extent of blocking of the tasks. The latter spend 75%, 50% and 25% of their
total run time in blocking operations, while the rest is spent in intensive com-
putations. Configuration: LHCb Reconstruction[U-20ms] @ Machine-1S4T.
1k events processed.

work components. Every time a task, holding a lock, is suspended due to

CS, the other tasks holding the same lock are blocked.

It thus becomes clear that it would be a mistake to expect that the

observed effectiveness of CPU Crunchers in oversubscription domain will ex-

trapolate on real-life tasks. Hence, one must comply to the classic approach

of avoiding oversubscription for non-blocking compute-intensive tasks.

For that purpose, the relatively recent concept of TBB task arenas [30]

could be employed. In particular, two specialized arenas would be involved.

The first, only for non-blocking tasks only with its maximum level of con-

currency being fixed to the total number of available hardware threads (or,

alternatively, to any other lower number). The second for blocking tasks only.

However, it is clear that in order to run at peak data processing throughput

the maximum level of concurrency of the second task arena is not known in

advance and can only be learned at run time.

At the same time, the maximum level of concurrency of a TBB task

4.3. Throughput maximization: CPU oversubscription 61

arena is designed to be fixed at configuration time, and, as of TBB version

4.4, can not be adjusted later on [30]. To bypass the problem, workarounds

are possible, which require the task arena to be initialized with overflow

concurrency levels. The latter, though, is not efficient. Hence, the use of the

TBB-based oversubscription as a final solution for Gaudi Hive is currently

problematic.

4.3.2 Composite scheduling

The TBB library was not designed for high-througput computing in con-

ditions of heterogeneous load in general, and for oversubscription modes of

operation in particular [31].

However, it was augmented it for more efficient handling of heterogeneous

task sets in Gaudi Hive.

Deliverable 4.1 (Composite scheduler)

A composite oversubscribing scheduling mechanism was implemented

for Gaudi Hive. It is based on the collaboration of the TBB built-in

scheduler and a specialized asynchronous scheduler aimed at oversub-

scription.

In the mode of composite scheduling, the non-blocking tasks are handled

by the TBB built-in scheduler. The blocking tasks, in turn, are managed by

the specialized scheduler. It dynamically spawns a dedicated asynchronous

thread for each such task, entering the oversubsciption domain only when

needed.

In figure 4.4, I compare three scheduling regimes. First, the TBB in

standard mode, where no oversubscription is involved. Second, the TBB

scheduler, used with 15 logical threads oversubscribing 4 hardware threads

alloted to the framework. Finally, the composite scheduler.

The measurements demonstrate the following:

62 Chapter 4. Scheduling of heterogeneous tasks in Gaudi Hive

Figure 4.4: Intra-event data processing throughput of TBB (native mode),
as well as both TBB and a new composite mechanism in oversubscription
modes. Mixed scenario contains 10% of blocking tasks. The blocking tasks
spend 50% of their total run time in intensive computations and have a
random distribution across the graph of precedence rules, shown in figure 2.6.
For heterogeneous tasks, the composite scheduling approach demonstrates
an improvement of 6.3% in throughput relative to the non-oversubscription
regime, maintained by TBB. Configuration: LHCb Reconstruction[U-20ms]
@ Machine-1S4T. 1k events processed.

4.3. Throughput maximization: CPU oversubscription 63

Observation 4.3 (Composite scheduler)

For heterogeneous tasks, the composite scheduling approach shows

an improvement of 6.3% in throughput relative to the non-

oversubscription regime, maintained by TBB.

The scheduler efficiency can be further improved. In particular, since

starting and terminating a task in Linux is about 18 times faster when com-

pared to a thread [32], a more advanced thread life-span management could

reduce the scheduling overhead.

Note 4.1 (Alternative scheduling systems)

The mechanism for composite scheduling of heterogeneous tasks in

Gaudi Hive, and the technique behind it, are presented here as a

proof of concept. Further studies can involve other, more advanced,

scheduling systems that claim to have an efficient task latency hiding.

One of them is STE||AR High Performance ParalleX (HPX) runtime

scheduling system [33]. This option can potentially constitute a full-

fledged solution for heterogeneous task scheduling in Gaudi Hive, is

meant to replace the TBB scheduler and requires detailed investiga-

tions, planned for the near future.

4.3.3 Framework throughput and offload computations

In the HEP experiments, the nature of some specific types of CPU-based

tasks, used in various data processing scenarios, allows to reimplement these

tasks in such a way that part of their computations is offloaded to a copro-

cessor. Typically, it is argued, though, that such approach is not efficient in

most of the cases since the offload latency overrides the possible gains of the

computation being offloaded to the coprocessor.

The infrastructure, developed for scheduling of heterogeneous tasks in

Gaudi Hive (see section 4.3.2), can be used to simulate the impact of sub-

stitution of a subset of CPU-based tasks in a given data processing scenario

with their coprocessor-based equivalents.

In figure 4.4, I have indirectly demonstrated that:

64 Chapter 4. Scheduling of heterogeneous tasks in Gaudi Hive

Deliverable 4.2 (Offload substitution)

Refactoring of 10% of tasks, used in LHCb Reconstruction[U-20ms],

to offload 50% of their computations elsewhere, yields an improvement

of 6.3% in the overall throughput in the composite regime of task

scheduling.

In this simulation I assumed that 50% of computations, being offloaded

from a task, take the same amount of time when executed on a coprocessor

device.

In figure 4.5, I extend the throughput simulation described above. Specif-

ically, the first two values from the left being earlier presented in figure 4.4

are augmented with four other throughput estimations for the pessimistic

cases of offloaded computations being slowed down when compared to their

CPU based equivalents.

Figure 4.5: Intra-event data processing throughput in TBB- and composite-
based scheduling regimes. The mixed scenario is used, which contains 10%
of blocking tasks. Blocking tasks have a random distribution across the
graph of precedence rules, shown in figure 2.6. Throughput is given as a
function of duration of a blocking operation (e.g., of an offload computation).
Configuration: LHCb Reconstruction[U-20ms] @ Machine-1S4T. 1k events
processed.

Figure 4.5 proves the following observation:

4.3. Throughput maximization: CPU oversubscription 65

Observation 4.4 (Offload latency oblivious framework)

The framework, when used in the composite scheduling regime, is

oblivious of the latency of its offload computations.

66 Chapter 4. Scheduling of heterogeneous tasks in Gaudi Hive

Conclusion

This work marked a milestone in the evolution of the Gaudi framework

towards massively concurrent and adaptive data processing. I suggested,

implemented and benchmarked a number of qualitatively new techniques for

generic and non-intrusive throughput maximization in concurrent Gaudi.

Below, I summarize my major contributions to Gaudi Hive.

Aggregate 1 (Low latency, scalable concurrency control)

I suggested, implemented and benchmarked an alternative approach

for the concurrency control system (CCS) founded on the idea of graph-

based decision making.

The CCS is a key component of the Gaudi Hive task scheduler. It

is essential for reactive run-time task precedence resolution in conditions

of unpredictable data processing workflows. I demonstrated the following

advantages of the graph-based decision making approach:

1. Low response time (reduction by 2x when compared to the previous

approach);

2. Constant amortized step complexity by the number of entities of

the concurrency control problem;

3. Excellent scalability by the number of threads allotted to data pro-

cessing (tested in the many-core range);

4. Full-scale precedence graph analysis (e.g., topological consistency

of task precedence rules, asymptotic intra-event concurrency analysis);

67

68 Conclusion

5. Proactive concurrency control.

The proactive concurrency control is the most outstanding from the view-

point of throughput maximization, as it allowed to realize the new type of

task scheduling in Gaudi Hive:

Aggregate 2 (Predictive task scheduling)

I suggested and implemented the predictive task scheduling in Gaudi

Hive. Several look-ahead strategies were tested in a series of bench-

marks to evaluate the impact of the technique on framework’s through-

put and scalability.

In this context, application of the critical path look-ahead strategy to the

LHCb reconstruction workflow demonstrated the best results, increasing the

intra-event speedup by 34%.

The mechanisms for intra-event throughput maximization allowed to in-

vestigate the balance between the intra- and inter-event concurrency dimen-

sions from the viewpoint of overall throughput of the framework. An impor-

tant corollary from this study is:

Aggregate 3 (Intra- and inter-event concurrency balance)

With all other conditions being equal, higher peak throughput is

proved in regimes that minimize the use of inter-event concurrency

dimension by virtue of maximizing the intra-event one.

Hence, the dominant strategy for throughput maximization is to prioritize

the intra-event concurrency maximization. The predictive task scheduling

helps to realize this strategy in generic and non-intrusive manner.

Finally, I explored the performance inefficiencies and architectural con-

straints that emerge in execution of heterogeneous task networks in Gaudi

and delivered a solution to mitigate those limitations:

Aggregate 4 (Infrastructure for latency oblivious task scheduling)

I suggested, implemented and benchmarked a generic and adap-

tive mechanism for scheduling heterogeneous task networks in Gaudi

Hive.

Conclusion 69

This advancement brought the capacity to maximize the framework through-

put by adapting to heterogeneous task networks of arbitrary topology in an

automatic and non-intrusive manner, thus enabling the heterogeneous com-

puting paradigm in the Gaudi framework.

70 Conclusion

List of Figures

1 Some of the HEP experiments, using the Gaudi framework

for event data processing. 2

1.1 Gaudi framework object diagram [10]. It represents a hypo-

thetical snapshot of the state of the system, showing various

components of the framework, as well as their relationships in

terms of ownership and usage. 6

1.2 An example of conjunctive control flow inside a Gaudi sequence. 7

1.3 A diagram of architectural changes brought by the Gaudi

Hive prototype. The components marked as new were added

to support the inter- and intra-event levels of concurrency [12]. 9

1.4 Decision-driven finite-state automaton for a Gaudi Hive Al-

gorithm. The evolution of the Algorithm state is handled

by either positive or negative decisions. The decisions are pro-

duced by various components of the framework. 10

2.1 A rooted tree, representing the control flow rules in a typical

workflow of physics data reconstruction in the LHCb experi-

ment. Black nodes represent tasks (280 nodes), while red ones

- decision hubs (110 nodes). 16

2.2 A schematic design of the catalog-based concurrency control

along with the decision-driven FSM for a Gaudi Algorithm

being executed in a task. In each decision making cycle, the

evolution of the Algorithm state is handled by either posi-

tive, or negative, concurrency control decisions. The decisions

are produced independently by the CF and DF managers. . . 17

71

72 List of Figures

2.3 Count of decision making cycles per event. Configuration:

LHCb Reconstruction @ Machine-2S48T. 18

2.4 Graph of data flow between tasks in a typical workflow of

physics data reconstruction in the LHCb experiment. Black

nodes represent tasks, while curved edges – the data flow.

The curve indicates direction of data flow: read an edge clock-

wise from a source node to a target node. The task node,

highlighted in green, is virtual and represents the framework,

which loads data from disk for subsequent processing. 20

2.5 Augmented graph of data flow. In addition to figure 2.4, con-

tains nodes, representing data entities. Each data entity node

has a producer, and at least one consumer. Black nodes repre-

sent tasks, while blue ones denote data items. The task node,

highlighted in green, is virtual and represents the framework,

which loads data from disk for subsequent processing. 21

2.6 Graph of control and data flow rules between tasks in a typical

data reconstruction of the LHCb experiment. Black nodes

represent tasks (263 nodes), while blue ones (85 nodes) denote

data items, produced or consumed by the tasks. The red nodes

(105 nodes) represent the CF decision hubs. 22

2.7 A schematic design of the graph-based concurrency control

along with the decision-driven FSM for a Gaudi Algorithm

being executed in a task. The FSM mechanism remains the

same as in the catalog-based approach. Contrary to the catalog-

based decision making, the graph-based one yields a pair of

concurrency control decisions in a single, intrinsically efficient

traversal of the graph of unified CF and DF rules. 24

List of Figures 73

2.8 CCS response time, spent for each task in an ensemble, as a

function of natural execution order of tasks. The response time

for each task is averaged over 100 events. Two pair of curves

are presented, each describing the impact of a chosen approach

to concurrency control for 1- and 7-threaded operation of the

Gaudi framework. Configuration: LHCb Reconstruction @

Machine-1S8T. 28

2.9 Cumulative decision making time, spent per processed event,

as a function of number of CPU threads, used by the Gaudi

framework. Graph-based and catalog-based implementations

of CCS are compared. Configuration: LHCb Reconstruction

@ Machine-2S48T. 29

2.10 Ratio of total decision making time, spent on one event, to

the event processing time. The upper limit of event processing

speedup amounts to 4x with the chosen configuration. Con-

figuration: LHCb Reconstruction @ Machine-2S48T. 30

3.1 Speedup in processing of a single event under reactive concur-

rency control (hence, uncontrolled decisions) as a function of

the number of threads granted to the framework. The intra-

event speedup starts to degrade at around 7 threads, and satu-

rates and hits a plateau above 18 at 40 threads. Configuration:

LHCb Reconstruction[U–10ms] @ Machine-2S48T. 1k events

processed. 32

3.2 Speedup in processing of multiple events in flight under reac-

tive concurrency control as a function of the number of threads

granted to the framework. With all hardware threads being

allotted to the framework, the speedup gets saturated with

4 events in flight. The saturated speedup starts to degrade

at around 15 threads, still exhibiting linear growth up to the

maximum hardware capacity of the machine. Configuration:

LHCb Reconstruction[U–10ms] @ Machine-2S48T. 1k events

processed. 33

74 List of Figures

3.3 Speedup in processing of multiple events in flight as a function

of the number of threads granted to the framework. With all

hardware threads being allotted to the framework, the speedup

gets saturated with 20 events in flight. The saturated speedup

starts to degrade at around 25 threads, still exhibiting linear

growth up to the maximum hardware capacity of the machine.

Configuration: LHCb Reconstruction[N] @ Machine-2S48T.

1k events processed. 34

3.4 A comparison of saturated throughputs, achieved with dis-

tinct numbers of events, required for this saturation. The

comparison is a function of the number of threads granted

to the framework. Configuration: LHCb Reconstruction[N]

@ Machine-2S48T is compared against the LHCb Reconstruc-

tion[U-10ms] @ Machine-2S48T. 1k events processed. 35

3.5 Intra-event concurrency dynamics as a function of reactive de-

cision making cycle in natural execution order. 8 threads are

granted to the framework. The DR task queue length varies

from 0 to 31, with the average approaching 15. Configuration:

LHCb Reconstruction @ Machine-2S48T. Single event profile. 37

3.6 Intra-event concurrency dynamics as a function of reactive de-

cision making cycle in natural execution order. 20 threads are

granted to the framework. The DR task queue length varies

from 0 to 31, with the average approaching 6. Configuration:

LHCb Reconstruction @ Machine-2S48T. Single event profile. 38

3.7 A schematic example of local task-to-task asymmetry in the

DF precedence realm. Tasks T1 and T3 have distinct extent of

consumption of the data products (D1 and D2) they produce.

Thus, if both T1 and T3 reside in the DR queue, it might be

more profitable to prioritize the execution of T3. 41

3.8 Task precedence rules of the LHCb Reconstruction (see fig-

ures 2.6 and C.1), with all, but data nodes, faded out. Color

intensity of a data node represents the number of its direct

task consumers. 42

List of Figures 75

3.9 A topological feature, present in the LHCb Reconstruction (a

zoom of an area from figure 2.6). One can see that for the

CCS it is topologically profitable to prioritize production of

the highlighted data item, because it enables the CR → DR

transition for a whole cluster of tasks located on its right. On

the other hand, it might well be that the decision hub that

performs the CF handling of the cluster is still preventing all,

or a subset, of its tasks from the I → CR transition, thus

suppressing the rapid task emission the CCS aims to provoke. 42

3.10 A comparison of intra-event speedups, achieved with reactive

scheduling (thus uncontrolled task emissions) and predictive

scheduling. The latter is based on 1-level task-to-task (1-

level TtT) ranking. The comparison is a function of the num-

ber of threads granted to the framework. Across the range,

the improvement in speedup goes up to 30%. Configuration:

LHCb Reconstruction[U-10ms] @ Machine-2S48T. 1k events

processed. 43

3.11 A schematic example of the cumulative task-to-task asymme-

try. A generalization of the case, outlined in 3.7, up to the

boundaries of the entire task ensemble. 44

3.12 A comparison of intra-event speedups, achieved with reactive

scheduling (thus uncontrolled task emissions) and predictive

scheduling. For the latter, the case of the cumulative task-

to-task (TtT) ranking is included with respect to figure 3.10.

The comparison is a function of the number of threads granted

to the framework. Across the range, the improvement in

speedup of the new measurement shows an improvement of up

to 9.8% with respect to reactive scheduling. Configuration:

LHCb Reconstruction[U-10ms] @ Machine-2S48T. 1k events

processed. 45

76 List of Figures

3.13 An example of the critical and sub-critical task paths, es-

timated using task nodes eccentricities in a task precedence

pattern, materialized from the precedence rules of the LHCb

Reconstruction of a concrete event. Color intensity represents

eccentricity-based rank of a task. Configuration: LHCb Re-

construction. 46

3.14 A comparison of intra-event speedups, achieved with reactive

scheduling (thus uncontrolled task emissions) and predictive

scheduling. For the latter, the case of the critical path

method (CPM) is included with respect to figure 3.12. The

comparison is a function of the number of threads granted

to the framework. Across the range, the new measurement

demonstrates the best throughput when compared to all other

scheduling techniques. Configuration: LHCb Reconstruction[U-

10ms] @ Machine-2S48T. 1k events processed. 47

3.15 The speedups of multi-event and saturated data processing

modes, operating on reactive scheduling, and predictive – CPM-

based –scheduling. The comparison is a function of the num-

ber of threads, allotted to the framework. A one-to-one com-

parison of multi-event and saturated modes shows the total

domination of the CPM method. Configuration: LHCb Re-

construction[U–10ms] @ Machine-2S48T. 1k events processed. 48

3.16 Comparison of intra-event concurrency dynamics for reactive

(top) and predictive (CPM) (bottom) types of scheduling as

a function of decision making cycle. 8 threads are granted to

the framework. Extensive task emissions of almost tripled am-

plitude, arranged by predictive scheduling, mitigate the task

starvation periods. Configuration: LHCb Reconstruction @

Machine-2S48T. Single event profile. 50

List of Figures 77

3.17 Comparison of intra-event concurrency dynamics for reactive

(top) and predictive (CPM) (bottom) types of scheduling as

a function of decision making cycle. 20 threads are granted

to the framework. Task emission dynamics, improved by 40%

in predictive scheduling, mitigate the task starvation periods,

raising speedup from 72 to 95% of theoretical maximum. Con-

figuration: LHCb Reconstruction @ Machine-2S48T. Single

event profile. 51

4.1 Intra-event speedup of data processing in oversubscription do-

main as a function of threads granted to the framework. The

blocking scenario has all its tasks blocking, the mixed sce-

nario contains only 10% of such tasks, while the non-blocking

one has no blocking tasks at all. The blocking tasks spend

50% of their total run time in intensive computations. In the

mixed scenario, the bloking tasks have a random distribu-

tion across the graph of precedence rules, shown in figure 2.6.

The blocking scenario yields an improvement of up to 119%

at 17 threads. Configuration: LHCb Reconstruction[U-20ms]

@ Machine-1S4T. 1k events processed. 58

4.2 Intra-event speedup of data processing in oversubscription do-

main as a function of threads granted to the framework. Three

blocking scenarios differ in the extent of blocking of the tasks.

The latter spend 75%, 50% and 25% of their total run time in

blocking operations, while the rest is spent in intensive com-

putations. Configuration: LHCb Reconstruction[U-20ms] @

Machine-1S4T. 1k events processed. 59

78 List of Figures

4.3 Intra-event speedup of data processing in oversubscription do-

main as a function of threads granted to the framework. The

mixed scenario contains only 10% of blocking tasks distributed

randomly across the graph of precedence rules, shown in fig-

ure 2.6. The presented scenarios differ in the extent of block-

ing of the tasks. The latter spend 75%, 50% and 25% of their

total run time in blocking operations, while the rest is spent

in intensive computations. Configuration: LHCb Reconstruc-

tion[U-20ms] @ Machine-1S4T. 1k events processed. 60

4.4 Intra-event data processing throughput of TBB (native mode),

as well as both TBB and a new composite mechanism in over-

subscription modes. Mixed scenario contains 10% of block-

ing tasks. The blocking tasks spend 50% of their total run

time in intensive computations and have a random distribu-

tion across the graph of precedence rules, shown in figure 2.6.

For heterogeneous tasks, the composite scheduling approach

demonstrates an improvement of 6.3% in throughput relative

to the non-oversubscription regime, maintained by TBB. Con-

figuration: LHCb Reconstruction[U-20ms] @ Machine-1S4T.

1k events processed. 62

4.5 Intra-event data processing throughput in TBB- and composite-

based scheduling regimes. The mixed scenario is used, which

contains 10% of blocking tasks. Blocking tasks have a random

distribution across the graph of precedence rules, shown in fig-

ure 2.6. Throughput is given as a function of duration of a

blocking operation (e.g., of an offload computation). Config-

uration: LHCb Reconstruction[U-20ms] @ Machine-1S4T. 1k

events processed. 64

C.1 Graph of CF and DF task precedence rules in reconstruction

of LHCb event data. Black nodes represent tasks, blue nodes

denote data items, while red ones indicate CF decision hubs. . 88

List of Figures 79

C.2 Log-lin distribution of non-uniform task execution times. Note

that the values represent the wall-clock time of sequentially

executed tasks, thus including the I/O part. This is intentional. 90

80 List of Figures

List of Tables

2.1 Resolution conditions of task precedence rules 14

2.2 Comparison of time complexities of one decision making cycle

in catalog-based and graph-based approaches to concurrency

control . 27

81

82 List of Tables

Appendix A

Testbed for benchmarking:

2S-48T

Machine-2S48T specifications:

• Intelr Xeonr CPU E5-2695 v2 @ 2.40GHz

• 2 sockets, 12 cores, Hyper-Threading: enabled

• L2 256KB, L3 30 MB

83

84 Appendix A. Testbed for benchmarking: 2S-48T

Appendix B

Testbed for benchmarking:

1S-XT

Machine-1S8T specifications:

• Intelr CoreTM i7-3770 CPU @ 3.40GHz

• 1 socket, 4 cores, Hyper-Threading: enabled

• L2 256KB, L3 8MB

Machine-1S4T specifications:

• Intelr CoreTM i7-3770 CPU @ 3.40GHz

• 1 socket, 4 cores, Hyper-Threading: disabled

• L2 256KB, L3 8MB

85

86 Appendix B. Testbed for benchmarking: 1S-XT

Appendix C

Workflow scenario

The LHCb Reconstruction scenario represents a modified version of the work-

flow used in sequential reconstruction of LHCb event data during Run-I phase

of the LHC project at CERN. It is also being used in the current Run-II

phase.

Where it matters, a reference to the scenario is followed by a time mapping

specification: [U–Xms] stands for the uniform time mapping of X millisec-

onds, while [N] – for non-uniform time mapping. Appendix C.3 contains

more details about the time mappings.

C.1 Intra-event task precedence rules

The topology of the CF and DF task precedence rules, shown in figure C.1, is

identical to the one, used in sequential event reconstruction, with one excep-

tion being that the indirect data dependencies between tasks were ignored.

The latter simplification was a compulsory measure driven by the lack in

sequential Gaudi of an explicit mechanisms for tracking data dependencies.

This led to noticable difficulties in tracking the direct data dependencies

(which were, nevertheless, taken into account), as well as the indirect ones.

87

88 Appendix C. Workflow scenario

Figure C.1: Graph of CF and DF task precedence rules in reconstruction
of LHCb event data. Black nodes represent tasks, blue nodes denote data
items, while red ones indicate CF decision hubs.

C.2 Tasks

The Gaudi Algorithms and other components, used in sequential data

processing, were designed for single-threaded execution. This makes their

use impossible in the context of multithreaded Gaudi.

However, an acceptable alternative was chosen for the purposes of task

scheduling studies and performance evaluation. In particular, in all bench-

marks, discussed in this thesis, a special Gaudi Algorithm – CPU Cruncher

[29] – was wrapped in a task. It was designed to perform inefficient and in-

tensive use of the CPU, as well as to have configurable precedence constraints.

It is interesting to note that, in the intra-event throughput tests, the use of

Gaudi Algorithms that are just sleeping in std::this thread::sleep for

did not reveal any significant differences when compared to Gaudi Algo-

rithms, performing heavy CPU crunching.

Nevertheless, in all benchmarks throughout the thesis I prefer to use the

crunching load, which is still more realistic, in order to avoid too optimistic

C.3. Task execution time mapping 89

benchmark results in situations, where the task load becomes of a greater

importance (e.g., in inter-event throughput tests in conditions of machine

saturation).

C.3 Task execution time mapping

Throughout the thesis, two types of time mappings are considered.

C.3.1 Uniform mapping

As the name states, the uniform mapping establishes an equal amount of

execution time for each task. In each specific case, and where it matters, the

actual time value is specified.

C.3.2 Non-uniform mapping

The non-uniform mapping assigns different time values for each task. In this

schema, the time each CPU cruncher takes to execute is close enough to the

actual execution time of its realistic task counterpart, used at the same slot

of precedence rules in sequential event reconstruction.

Figure C.2 shows the orders of magnitude of non-uniform time mapping.

90 Appendix C. Workflow scenario

Figure C.2: Log-lin distribution of non-uniform task execution times. Note
that the values represent the wall-clock time of sequentially executed tasks,
thus including the I/O part. This is intentional.

Bibliography

[1] M. McCool, J. Reinders, and A. Robison. Structured Parallel Program-

ming: Patterns for Efficient Computation. Morgan Kaufmann Publish-

ers Inc., San Francisco, CA, USA, 1st edition, 2012.

[2] G. Barrand et al. Gaudi - a software architecture and framework for

building HEP data processing applications. Comput. Phys. Commun.,

140:45–55, 2001.

[3] A. Augusto Alves, Jr. et al. The LHCb Detector at the LHC. JINST,

3:S08005, 2008.

[4] LZ Collaboration. LZ Conceptual Design Report, LBNL, 2015.

http://hep.ucsb.edu/LZ/CDR/, section:15-5.

[5] P. Mato and S. Smith. User-friendly parallelization of gaudi applications

with python. Journal of Physics: Conference Series, 219(4):042015,

2010.

[6] Concurrent Framework Project (CF4Hep). http://concurrency.web.

cern.ch/GaudiHive, 2012. [Online; accessed 24-Feb-2016].

[7] B. Hegner, P. Mato, and D. Piparo. Evolving LHC data process-

ing frameworks for efficient exploitation of new CPU architectures.

In IEEE Nuclear Science Symposium and Medical Imaging Conference

(NSS/MIC), pages 2003–2007, Oct 2012.

[8] P. Mato. Gaudi-Architecture Design Document, LHCb@CERN, De-

cember 1998. v9.

91

http://concurrency.web.cern.ch/GaudiHive
http://concurrency.web.cern.ch/GaudiHive

92 Bibliography

[9] M. Clemencic, H. Degaudenzi, P. Mato, S. Binet, W. Lavrijsen,

C. Leggett, and I. Belyaev. Recent developments in the LHCb soft-

ware framework textscGaudi. Journal of Physics: Conference Series,

219(4):042006, 2010.

[10] M. Cattaneo and P. Maley. Gaudi – LHCb Data Processing Applica-

tions Framework. Users Guide., CERN, December 2001. v9.

[11] Task-Based Programming. https://software.intel.com/en-us/

node/506100. [Online; accessed 26-Feb-2016].

[12] M. Clemencic, B. Hegner, P. Mato, and D. Piparo. Preparing hep

software for concurrency. Journal of Physics: Conference Series,

513(5):052028, 2014.

[13] A. Srinivasan and J.H. Anderson. Efficient scheduling of soft real-time

applications on multiprocessors. In 15th Euromicro Conference on Real-

Time Systems, pages 51–59, July 2003.

[14] I. Shapoval. Gaudi Hive: evolution of execution flow management.

Technical report, CERN, April 2014. Annual Concurrency Forum.

[15] I. Shapoval et al. Graph-based decision making for task scheduling

in concurrent gaudi. In IEEE Nuclear Science Symposium & Medical

Imagine Conference Record, November 2015.

[16] J. L. Gustafson. Reevaluating Amdahl’s Law. Communications of the

ACM, 31:532–533, 1988.

[17] J. D. C. Little. A proof for the queuing formula: l = λw. Operations

Research, 9(3):383–387, 1961.

[18] I. Shapoval and M. Clemencic. Graph-based scheduling in Gaudi Hive.

Technical report, CERN, February 2015. Forum on Concurrent Pro-

gramming Models and Frameworks.

[19] J. E. Kelley, Jr and M. R. Walker. Critical-path planning and schedul-

ing. In Papers Presented at the December 1-3, 1959, Eastern Joint

https://software.intel.com/en-us/node/506100
https://software.intel.com/en-us/node/506100

Bibliography 93

IRE-AIEE-ACM Computer Conference, IRE-AIEE-ACM ’59 (Eastern),

pages 160–173, New York, NY, USA, 1959. ACM.

[20] A. Badalov, D. Cámpora, N. Neufeld, and X. Vilaśıs-Cardona. LHCb

GPU acceleration project. Journal of Instrumentation, 11(01):P01001,

2016.

[21] D. Emeliyanov and J. Howard. GPU-Based Tracking Algorithms for

the ATLAS High-Level Trigger. Journal of Physics: Conference Series,

396(1):012018, 2012.

[22] A. Nowak, G. Bitzes, A. Dotti, A. Lazzaro, S. Jarp, P. Szostek, L. Val-

san, M. Botezatu, and J. Leduc. Does the Intel Xeon Phi processor fit

HEP workloads? Journal of Physics: Conference Series, 513(5):052024,

2014.

[23] Intelr Many Integrated Core architecture. http://www.intel.

com/content/www/us/en/processors/xeon/xeon-phi-detail.html,

2010. [Online; accessed 26-Feb-2016].

[24] J. Reinders. Intelr Threading Building Blocks. O’Reilly & Associates,

Inc., Sebastopol, CA, USA, 1st edition, 2007.

[25] I. Molnár. Completely Fair Scheduler. http://lwn.net/Articles/

230501/, 2007. [linux-kernel (Mailing list); Online; accessed 27-Feb-

2016].

[26] T. Li, D. Baumberger, and S. Hahn. Efficient and Scalable Multipro-

cessor Fair Scheduling Using Distributed Weighted Round-robin. SIG-

PLAN Not., 44(4):65–74, February 2009.

[27] T. Jones. Inside the Linux 2.6 Completely Fair Sched-

uler. http://www.ibm.com/developerworks/linux/library/

l-completely-fair-scheduler/, 2009. [IBM developerWorks;

Online; accessed 27-Feb-2016].

 http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
 http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://lwn.net/Articles/230501/
http://lwn.net/Articles/230501/
 http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/
 http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/

94 Bibliography

[28] I. Shapoval and M. Clemencic. Gaudi Hive on the landscape of hetero-

geneous computing. Technical report, CERN, September 2015. Forum

on Concurrent Programming Models and Frameworks.

[29] D. Piparo. A Gaudi algorithm for intense CPU crunching.

https://gitlab.cern.ch/gaudi/Gaudi/blob/master/GaudiHive/

src/CPUCruncher.cpp, 2012. [Online; accessed 14-Feb-2016].

[30] Intelr TBB Task Arenas. https://software.intel.com/en-us/

node/506359, 2014. [Online; accessed 28-Feb-2016].

[31] J. Reinders. Intelr Threading Building Blocks, chapter 9, pages 133–134.

O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1st edition, 2007.

[32] J. Reinders. Intelr Threading Building Blocks, chapter 9, page 135.

O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1st edition, 2007.

[33] STE||AR High Performance ParalleX. http://stellar.cct.lsu.edu/

projects/hpx/, 2011. [Online; accessed 29-Feb-2016].

 https://gitlab.cern.ch/gaudi/Gaudi/blob/master/GaudiHive/src/CPUCruncher.cpp
 https://gitlab.cern.ch/gaudi/Gaudi/blob/master/GaudiHive/src/CPUCruncher.cpp
https://software.intel.com/en-us/node/506359
https://software.intel.com/en-us/node/506359
http://stellar.cct.lsu.edu/projects/hpx/
http://stellar.cct.lsu.edu/projects/hpx/

Acknowledgments

First of all, I am thankful to my supervisors for the full-fledged support

they rendered in the course of my PhD. In particular, I thank Dr. Marco

Clemencic for the numerous discussions, which helped to proof my ideas and

results put forward in this work. I thank Dr. Luca Tomassetti for organizing

the best UNIFE setting I could think of for my PhD.

I am expressing my gratitude to the LHCb Management, especially to

Dr. Marco Cattaneo, for the most comprehensive support and for enabling

the rare opportunity to do a PhD at CERN. It was an honor for me to be

part of the LHCb Core Software team all these years.

I extend my appreciation to the leaders of the Ferrara team in LHCb –

Dr. Stefania Vecchi, Dr. Concezio Bozzi and Dr. Wander Baldini – for the

broad assistance in promoting the results of this work at several scientific

events of the highest profile.

I also thank my colleagues at KIPT – Prof. Iurii Raniuk and Prof. Anatolii

Dovbnya – for many valuable advices in the course of my PhD.

I dedicate this work to my family and address my special thanks to my

parents and grandfather for the inexhaustible encouragement and confidence

in me, and to my wife for standing side by side and being my Muse throughout

this time.

95

	Abbreviations
	List of Deliverables
	Introduction
	Gaudi
	Sequential Gaudi
	Architecture
	Data processing model

	Concurrent Gaudi (a.k.a. Gaudi Hive)
	Architecture
	Data processing model

	Concurrency Control
	Problem formulation
	Requirements
	Catalog-based decision making
	Metadata organisation
	Processing of metadata

	Graph-based decision making
	Metadata organisation
	Processing of metadata

	Comparison of graph-based and catalog-based decision making
	Primary implications on global performance
	Secondary implications on global performance
	Algorithmic complexity of decision making
	Decision making time and scalability
	Auxiliary considerations

	Predictive Scheduling
	Limitations of reactive scheduling
	Performance limits
	Intra-event concurrency dynamics
	Degrees of freedom in concurrency control

	Predictive task scheduling for throughput maximization
	Local task-to-task asymmetry
	Global task-to-task asymmetry
	Critical path method

	Heterogeneous Scheduling
	Problem formulation
	Tolerating task heterogeneity
	Throughput maximization: CPU oversubscription
	Oversubscribing CPU with TBB
	Composite scheduling
	Framework throughput and offload computations

	Conclusion
	List of Figures
	List of Tables
	Testbed for benchmarking: 2S-48T
	Testbed for benchmarking: 1S-XT
	Workflow scenario
	Intra-event task precedence rules
	Tasks
	Task execution time mapping
	Uniform mapping
	Non-uniform mapping

	Bibliography
	Acknowledgments

