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Abstract: Fault diagnosis of wind turbine systems is a challenging process, especially for1

offshore plants, and the search for solutions motivates the research discussed in this paper. In2

fact, these systems must have a high degree of reliability and availability to remain functional3

in specified operating conditions without needing expensive maintenance works. Especially4

for offshore plants, a clear conflict exists between ensuring a high degree of availability and5

reducing costly maintenance. Therefore, this paper presents viable fault detection and isolation6

techniques applied to a wind turbine system. The design of the so-called fault indicator relies7

on an estimate of the fault using data-driven methods and effective tools for managing partial8

knowledge of system dynamics, as well as noise and disturbance effects. In particular, the9

suggested data-driven strategies exploit fuzzy systems and neural networks that are used to10

determine nonlinear links between measurements and faults. The selected architectures are based on11

nonlinear autoregressive with exogenous input prototypes, which approximate dynamic relations12

with arbitrary accuracy. The designed fault diagnosis schemes were verified and validated using a13

high-fidelity simulator that describes normal and faulty behavior of a realistic offshore wind turbine14

plant. Finally, by accounting for the uncertainty and disturbance in the wind turbine simulator, a15

hardware-in-the-loop test rig was used to assess the proposed methods for robustness and reliability.16

These aspects are fundamental when the developed fault diagnosis methods are applied to real17

offshore wind turbines.18

Keywords: Fault diagnosis; analytical redundancy; fuzzy prototypes; neural networks; diagnostic19

residuals; fault reconstruction; offshore wind turbine simulator.20

1. Introduction21

Wind-generated energy is increasingly being used as a power source worldwide, and this has22

resulted in the need for enhanced reliability and so-called ’sustainability’ of wind turbines. Wind23

turbine systems must continuously generate the required amount of electrical power, depending on24

the available wind speed, grid demand, and possible malfunctions [1].25

Therefore, potential faults affecting the process must be properly detected and managed before26

causing the deterioration of the nominal working conditions of the plant or becoming critical issues.27

Wind turbines with large rotors (i.e., of megawatt size) are very expensive systems; they should28

be highly available and reliable in order to maximize the generated energy (at a reduced cost) and29
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minimize Operation and Maintenance (O&M) services. In fact, most of the cost of the produced30

energy is from the installation cost of the wind turbine, but unplanned O&M costs could increase it31

by about 30%, particularly when offshore wind turbines are considered [2].32

To this end, many wind turbine systems include conservative technologies that protect against33

faults which normally lead to a plant shutdown while awaiting O&M services. Hence, more34

effective solutions for managing faults are required to improve wind turbine features, particularly35

in faulty situations. Such features would prevent critical failures that may affect other wind turbine36

components, thus avoiding the unplanned replacement of functional parts and increased O&M costs.37

It is beneficial to keep maintenance costs as low as possible, decrease downtime, and38

consequently increase the amount of captured power and improve reliability despite the presence39

of faults [3]. Fault Detection and Isolation (FDI) techniques are powerful methods for this purpose.40

The fault information captured by FDI units can be used to optimize maintenance procedures via41

remote diagnosis [4]. The use of FDI renders the equipment robust to the considered faults and, as a42

result, maintains the performance of the wind turbine at the desired level, even with the occurrence43

of faults. So, maintenance requirements and downtime will decrease, and the reliability of power44

generation will improve. Therefore, the final cost is kept as low as possible [5,6].45

FDI designs for wind turbines have been significantly developed over the last decade. Most46

of the works in this field have been motivated by competitions conducted by kk-electronic a/c and47

MathWorks from 2009 to 2016 [4,7]. Accordingly, the number of studies and consequent publications48

has increased considerably, and the subject is intensively researched worldwide [8]. However, there49

are only a few available review papers in this field [7,9].50

Hardware redundancy involves equipping components, such as sensors and actuators, with51

physically identical counterparts to generate so-called residual signatures which contain information52

on the possible fault. This approach increases the weight, occupied space, data acquisition complexity,53

and, therefore, the final design cost. These issues are very problematic for offshore wind turbines.54

In contrast, software redundancy or computer-based FDI techniques have been developed for wind55

turbines throughout the last decade to overcome the aforementioned problems [1]. A mathematical56

model of a wind turbine is used to generate redundant signals and, accordingly, residuals.57

The most challenging issue, which should be considered in wind turbine FDI schemes, is that58

wind speed is poorly measured by anemometers due to the spatial/temporal effective wind speed59

distribution over the blade plane, turbulence, wind shear, and tower shadow effects. So, wind speed60

is considered an unknown disturbance, as is the consequent aerodynamic torque. Also, FDI schemes61

should be robust to the considerable noise present in sensor measurements [4,7].62

The most commonly adopted model-based FDI techniques for wind turbines are the parity63

relation method and observer design [10]. However, these approaches require accurate mathematical64

models to simulate the dynamic behaviors of the process under diagnosis [11]. These methods do65

not require high-resolution signals, so there is no need for data acquisition hardware or installation66

of additional sensors. However, it is quite challenging to design an effective model that mimics67

real-world applications. Therefore, data-driven approaches, such as Neural Networks (NN) and68

fuzzy inference systems, can be used for wind turbine FDI designs. In fact, these artificial intelligence69

systems provide the best tools to represent the nonlinear and partially known behavior of wind70

turbines [12]. The designed prototype is fed with actual/estimated inputs (i.e., those of the wind71

turbine) to generate redundant outputs. Some other works have proposed the use of this data-driven72

learning scheme for wind turbine FDI, and it has been considered and applied to different wind73

turbine components, e.g., gearboxes, generator faults, and pitch faults [10].74

As an alternative approach, fault information can be directly extracted/inferred using this75

method, which relies on the design of an accurate a priori knowledge-based network, e.g., Adaptive76

Neuro-Fuzzy Inference System (ANFIS) or Fuzzy Inference System (FIS). Accordingly, expert77

knowledge must be included in the design, whether for numerical rules or fuzzy if/then linguistic78

rules. One of the advantages of fuzzy logic and fuzzy membership representation is that the uncertain79
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measurement of the wind speed provided by the anemometer can be directly used [8]. Classification80

methods are also utilized for rotor imbalance/aerodynamic asymmetry fault diagnosis [13].81

Therefore, the main contribution of this work is the development of viable and reliable solutions82

for the fault diagnosis of an offshore wind turbine model. The design of fault-tolerant controllers83

is not considered in this paper, but it would likely rely on the same tools considered here. In fact,84

the fault diagnosis module provides information on the faulty conditions of the system so that the85

controller activity can compensate. In particular, the FDI task was accomplished here by using fault86

estimators, which were obtained via these data-driven approaches, as they also offer effective tools for87

managing limited knowledge of the process dynamics, together with noise and disturbance effects.88

The first data-driven solution addressed in this paper relies on fuzzy Takagi–Sugeno models89

[14], which are derived from a clustering algorithm, followed by an identification procedure [15].90

The second solution exploits NN to describe the nonlinear analytical links between measurement91

and fault signals. The chosen network architecture belongs to the Nonlinear AutoRegressive with92

eXogenous (NARX) input prototype, which can describe dynamic relationships over time. Training93

the neural fault estimators exploits a standard training algorithm that processes the acquired data94

[16].95

The developed fault diagnosis strategies were verified by means of a high-fidelity simulator that96

describes the normal and faulty behavior of a wind turbine plant. The achieved performances were97

verified in the presence of uncertainty and disturbance effects, thus validating the reliability and98

robustness features of the proposed schemes. Their effectiveness, which was further tested using a99

Hardware-In-the-Loop (HIL) test rig, suggests further investigation of more realistic applications of100

the proposed schemes.101

It is worth noting the rationale underlying the proposal of these tools for the fault diagnosis of102

wind turbines. When a mathematical description of a plant subject to diagnosis can be included in the103

FDI design phase, model-based techniques yield the best performances. However, when modeling104

errors and disturbances are present, the learning phase exploited by the considered data-driven105

solutions leads to results that are better than those from model-based schemes. In fact, NN and106

fuzzy models use the learning accumulated from data-driven offline simulations, even if the training107

stage can be computationally heavy.108

This work is organized as follows. Section 2 describes the offshore wind turbine simulator.109

Section 3 illustrates the fault diagnosis methodologies that rely on fuzzy and NN prototypes. The110

obtained results are summarized in Section 4, taking into account simulated and real-time conditions.111

Finally, Section 5 ends the paper by outlining the key achievements of the study and providing112

suggestions for future research issues.113

2. Wind Turbine Simulator and Fault Model114

The three-bladed horizontal-axis wind turbine model considered in this work follows the115

principle that wind power activates the wind turbine blades, which leads to the rotation of the116

low-speed rotor shaft. In order to increase its rotational speed to that which is generally required117

by the generator, a gearbox with a drivetrain is included in the system. A more detailed description118

of this benchmark is given in [7], and its schematic diagram is presented in Figure 1.119

The wind turbine simulator has 2 controlled outputs, i.e., the generator rotational speed ωg(t)120

and its generated power Pg(t). The wind turbine model is controlled by means of two actuated inputs,121

i.e., the generator torque τg(t) and the blade pitch angle β(t). The latter signal controls the actuators122

of the blades, which are implemented by hydraulic drives [7].123

Several other measurements are acquired from the wind turbine benchmark: the signal ωr(t)124

represents the rotor speed, and τr(t) is the reference torque. Moreover, the aerodynamic torque signal125

τaero(t) is computed from the wind speed v(t), which is usually available with limited accuracy. In126

fact, the wind field is not uniform around the wind turbine rotor plane, especially for large rotor127

systems. Moreover, anemometers measuring this variable are mounted behind the rotor on the128
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Figure 1. Scheme of the offshore wind turbine simulator.

nacelle. Therefore, the wind speed measurement vw(t) is affected by the interference between the129

blades and the nacelle, as well as the turbulence around the rotor plane. The alteration of the wind130

speed measurement vw(t) with respect to its nominal value around the rotor plane represents an131

uncertainty in the wind turbine model and a disturbance term in the control design [7].132

Finally, as sketched in Figure 1, the signals generated by the wind turbine system are assumed133

to be acquired through the measurement block, whose objective is to simulate the real behavior of134

the sensors and actuators. Therefore, the measured signals are modeled as the sum of their actual135

values and white Gaussian process terms. Moreover, the wind turbine simulator includes a baseline136

controller, represented by standard PID regulators that regulate the generated power on the basis of137

the actual wind speed, as shown in [4,7].138

The wind turbine simulator also includes the generation of three different typical fault cases:139

sensor, actuator, and system faults [4,7]. The sensor faults are generated as additive signals on the140

affected measurements. As an example, the faulty sensor of the pitch angle βm provides the wrong141

measurement of the blade orientation, and if not handled, the controller cannot fully track the power142

reference signal. On the other hand, actuator faults lead to the alteration of the input and output143

descriptions of the pitch angle and the generator torque models by modifying their dynamics. In this144

way, a pressure drop in the hydraulic circuit of the pitch actuator and an electronic breakdown in145

the converter device are simulated, respectively. Finally, a system fault affects the drivetrain of the146

turbine, which is described as a slow variation in the friction coefficient over time. This can be caused147

by wear and tear of the mechanical parts over time.148

This scenario is summarized in Table 1, which also reports the measured signals that are affected149

by these 9 faults.150

Table 1. Fault scenario of the wind turbine simulator.

Fault case Fault Type Affected Measurement
1 Sensor β1,m1
2 Sensor β2,m2
3 Sensor β3,m1
4 Sensor ωr,m1
5 Sensor ωr,m2 and ωg,m2
6 Actuator Pitch system of Blade #2
7 Actuator Pitch system of Blade #3
8 Actuator τg,m
9 System Drivetrain
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The overall model of the wind turbine process is represented as a nonlinear continuous-time
function fwt that describes the evolution of the turbine state vector xwt excited by the input vector u:{

ẋwt(t) = fwt (xwt, u(t))
y(t) = xwt(t)

(1)

where, in this case, the state of the system is considered equal to the outputs of the wind turbine
system, i.e., the rotor speed, the generator speed, and the generated power:

xwt(t) = y(t) =
[
ωg,m1, ωg,m2, ωr,m1, ωr,m2, Pg,m

]
On the other hand, the input vector,

u(t) =
[
β1,m1, β1,m2, β2,m1, β2,m2, β3,m1, β3,m2, τg,m

]
consists of the measurements of the three pitch angles from the three redundant sensors, as well as151

the measured torque. These signals are sampled with a sample time T in order to acquire a total of152

N measurements u(k), y(k) with k = 1, . . . , N, in order to implement the data-driven fault diagnosis153

solutions proposed in this paper.154

It is worth noting that, as highlighted in Section 3, the effect of the faults considered in Table155

1 is assumed to be generated by equivalent signals added to the input and output measurements.156

This approach was formerly proposed by the authors of [17]. Moreover, this assumption is also157

known as Errors-In-Variables (EIV) modeling, which is exploited in the dynamic system identification158

framework [18].159

3. Fault Diagnosis Techniques: Fuzzy Systems and Neural Networks160

In order to solve the fault diagnosis problem, this work assumes that the wind turbine system is
affected by equivalent additive faults on the input and output measurements, as well as measurement
errors, as described by the relations in Eq. (2):{

u(k) = u∗(k) + ũ(k) + fu(k)
y(k) = y∗(k) + ỹ(k) + fy(k)

(2)

where u∗(k) and y∗(k) represent the actual process variables; u(k) and y(k) are the measurements161

acquired by the sensors; and ũ(k) and ỹ(k) describe the measurement errors. Note that, according162

to the relations in Eq. (2), it is assumed that the fault signals fu(k) and fy(k) have equivalent additive163

effects. These functions are different from zero only in the presence of faults. In general, the vector164

u(k) has r components, i.e., the number of process inputs, while y(k) has m elements, i.e., the number165

of process outputs.166

This work suggests exploiting fuzzy system and NN structures in order to provide an online
estimation f̂(k) of the fault signals fu(k) and fy(k). Hence, as shown in Figure 2, the diagnostic
residuals r(k) are equal to the estimated fault signals, f̂(k), as in Eq. (3):

r(k) = f̂(k) (3)

The variable f̂(k) is the fault vector, i.e., f̂(k) =
{

f̂1(k), . . . , f̂r+m(k)
}

. Therefore, the general fault167

estimate f̂i(k) is equal to the ith component of the fault vectors fu(k) or fy(k) in Eqs. (2), with i =168

1, . . . , r + m. This residual generation scheme is represented in Figure 2.169
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Figure 2 shows that, in general, the residual generators are fed by the input and output
measurements u(k) and y(k). The occurrence of the ith fault can be simply detected using the
threshold logic of Eq. (4) applied to the ith residual ri(k) [11]:{

r̄i − δσri ≤ ri ≤ r̄i + δσi fault–free case

ri < r̄i − δσri or ri > r̄i + δσri faulty case
(4)

with ri(k) representing the ith component of the vector r(k). Its mean r̄i and variance σ2
ri

values are
computed in a fault-free condition from N samples according to the relations in Eq. (5):{

r̄i = 1
N ∑N

k=1 ri(k)
σ2

ri
= 1

N ∑N
k=1 (ri(k)− r̄i)

2 (5)

Note that the parameter δ represents a variable that has to be properly tuned in order to effectively170

separate the fault-free from the faulty conditions, as shown in Section 4. Once the fault detection171

phase is complete, the fault isolation task is directly obtained by means of the bank of estimators172

depicted in Figure 3.173

According to the scheme depicted in Figure 3, the number of estimators in the bank is equal to174

the number of faults that have to be diagnosed, i.e., r + m. In general, the ith estimator is driven by175

the input and output signals u(k) and y(k). However, its inputs uj(k) and output yl(k) are selected176

in order to be selectively sensitive to the particular fault fi(t). To this end, the design of these fault177

estimators is enhanced by the fault sensitivity analysis procedure reported in Section 3.1.178

The first method proposed in this paper for designing fault estimators relies on Takagi–Sugeno
(TS) models [19]. This approach was formerly addressed in [14] for the approximation of nonlinear
Multi-Input Single-Output (MISO) dynamic systems with arbitrary accuracy. The general fault
estimator f̂ has the form of Eq. (6):

f̂ =
∑nC

i=1 λi(x)
(
aT

i x + bi
)

∑nC
i=1 λi(x)

(6)

The TS fuzzy model results are described as discrete-time linear AutoRegressive models with
eXogenous input (ARX) of order o, in which the regressor vector has the form of Eq. (7):

x(k) =
[
. . . , yl(k− 1), . . . , yl(k− o), . . . uj(k), . . . , uj(k− o), . . .

]T (7)

where ul(·) and yj(·) are the components of the actual system input and output vectors u(k) and y(k)
that are selected using the fault sensitivity analysis proposed in Section 3.1. The variable k represents



Version February 4, 2019 submitted to Appl. Sci. 7 of 16

Dynamic
process

… …

u (k)… …

u (k)

u (k)

1

2

r

y (k)

y (k)

y (k)

1

2

m

…
…

Fault
estimator

Fault
estimator

Fault
estimator

Fault
estimator

1

2

i

r+m

Bus
Bus

Selector

Selector

Selector

Selector

Selector

Selector

Selector

Selector

u (k)j

y (k)
l

r (k) = f (k)

r (k) = f (k)

r (k) = f (k)

r (k) = f (k)

1 1

2 2

ii

r+m r+m

Figure 3. The estimator scheme for the reconstruction of the equivalent input or output faults fi(t).

the time step, with k = 1, 2, . . . , N. The parameters of the TS fuzzy model in Eq. (6) are collected into
the vector:

ai =
[
α
(i)
1 , . . . , α

(i)
o , δ

(i)
1 , . . . , δ

(i)
o

]T
(8)

where the α
(i)
j coefficients refer to the output samples, while the δ

(i)
j coefficients are associated with179

the input ones.180

This work proposes to solve the derivation of the TS models as a system identification problem181

from the noisy data of Eq. (2). In particular, the design of the bank of fault estimators in Figure 3182

requires the estimation of the consequent parameters ai and bi of Eq. (8).183

Note that the design method proposed in this work exploits the direct identification of the TS184

fuzzy models of Eq. (6). In particular, the fuzzy model structure, i.e., the number of rules nC, the185

antecedents, and the fuzzy membership functions λi(x) in Eq. (6), are derived by means of the Fuzzy186

Modeling and Identification (FMID) toolbox implemented in the Matlab environment [14]. Moreover,187

the computation of the TS model parameters in Eq. (8) was solved by the authors in [20] as an EIV188

estimation problem, as highlighted by the relations in Eq. (2). On the other hand, the FMID toolbox189

uses the Gustafson–Kessel (GK) clustering method [14] to perform a partition of input–output data190

into a proper number nC of regions (clusters), where the ith model of Eq. (6) is valid. This model191

is thus obtained after the selection of the model order o and the number of clusters nC. The FMID192

toolbox also determines the antecedent degrees of fulfillment λi(x) in Eq. (6), which are derived with193

a curve fitting method [14].194

This paper proposes a different data-driven approach that is based on NN, which is exploited195

to implement the scheme shown in Figure 3. According to this scheme, a bank of NN is used to196

reconstruct the faults affecting the system under diagnosis using a proper set of input and output197

measurements. The structure proposed in this work consists of a feedforward multilayer perceptron198

NN with three layers [21]. Moreover, this study suggests the use of a quasi-static NN, as it represents199

a suitable tool to predict dynamic relationships between the input–output measurements and the200

considered fault function fi(k) with arbitrary accuracy [21].201

Therefore, the ith neural fault estimator in Figure 3 is described by the relation in Eq. (9):

f̂i(k) = F
(
. . . , uj(k), . . . , uj(k− du), . . . yl(k− 1), . . . , yl(k− dy), . . .

)
(9)
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where uj(·) and yl(·) are the general jth and lth components of the measured inputs and outputs u202

and y, respectively, that are selected via the fault sensitivity analysis tool. du and dy represent the203

number of delays of the input and the output samples. F(·) is the function realized by the static NN,204

which depends on the number of neurons and their weights.205

The NN exploited in this study uses sigmoidal activation functions for the neurons in both the206

input and the hidden layers, while a linear one is used in the output layer. The number of neurons207

and delays (du and dy) is selected to obtain suitable fault estimation errors after the NN training from208

the data acquired from the system under diagnosis. In particular, the NN training is performed by209

generating a proper number of data, N, which are partitioned into the training, validation, and test210

sets, as required by the Levenberg–Marquardt back–propagation algorithm [21].211

3.1. Fault Sensitivity Analysis212

The design of the fault diagnosis schemes proposed in this paper and represented in Figure 3 is213

enhanced by the tool presented here. It consists of a fault sensitivity analysis that is performed on214

the measurements acquired from the wind turbine simulator. The procedure aims to define the most215

sensitive measurements uj(k) and yl(k) with respect to the general fault fi(k) considered in Section 2.216

According to the assumption of Eq. (2), the considered fault signals fi(k) have been injected into217

the wind turbine simulator, and only single faults may occur. Then, the Relative-Mean-Square Errors218

(RMSEs) between the fault-free and faulty signals acquired from the simulator are computed. In this219

way, the most sensitive signals uj(k) and yl(k) are selected for each fault i. The achieved results are220

summarized in Table 2.221

Table 2. The most sensitive measurements uj(k) and yl(k) and their RMSE values with respect to the
fault fi(k).

Fault fi 1 2 3 4 5 6 7 8 9
Measurements uj, yl β1,m1 β2,m2 β3,m1 ωr,m1 ωr,m1 β2,m1 β3,m2 τg,m ωg,m1

RMSE 11.29 0.98 2.48 1.44 1.45 0.80 0.73 0.84 0.77

In particular, the fault sensitivity analysis follows the selection algorithm, which relies on the
normalized sensitivity function Nx of Eq. (10),

Nx =
Sx

S∗x
(10)

with

Sx =

∥∥∥x f (k)− xn(k)
∥∥∥

2
‖xn(k)‖2

(11)

and

S∗x = max

∥∥∥x f (k)− xn(k)
∥∥∥

2
‖xn(k)‖2

(12)

In fact, Nx represents the effect of the considered fault case with respect to the measured signal222

x(k), with k = 1, 2, . . . , N. The subscripts ‘f’ and ‘n’ indicate the faulty and the fault-free cases,223

respectively. Therefore, the measurement that is most affected by the considered fault is the value of224

Nx, which, in this case, is equal to 1. Otherwise, smaller values of Nx indicate that x(k) is not affected225

by that fault.226

The complete results of the fault sensitivity analysis are summarized in Table 3.227

This method represents a key feature of the proposed approach to fault diagnosis. In fact, the228

fault estimators of the bank of Figure 3 are designed by exploiting a reduced number of input signals229

uj(k) and yl(k). It also leads to a noteworthy simplification of the complexity and the computational230

cost of the identification and training phases of the fuzzy and NN models, respectively.231



Version February 4, 2019 submitted to Appl. Sci. 9 of 16

Table 3. The most sensitive measurements with respect to the considered fault scenario.

Fault case fi Most Sensitive Inputs uj Most Sensitive Outputs yl
1 β1,m1, β1,m2 ωg,m2
2 β1,m2, β2,m2 ωg,m2
3 β1,m2, β3,m1 ωg,m2
4 β1,m2 ωg,m2, ωr,m1
5 β1,m2 ωg,m2, ωr,m2
6 β1,m2, β2,m1 ωg,m2
7 β1,m2, β3,m2 ωg,m2
8 β1,m2, τg,m ωg,m2
9 β1,m2 ωg,m1, ωg,m2

Note finally that the fault sensitivity analysis was performed by considering one fault at a time.232

The case of multiple faults was not considered here, as the wind turbine benchmark simulates the233

occurrence of single faults only, as described in [4,7]. However, the case of multiple faults occurring234

at the same time could be considered, even if a different fault sensitivity analysis has to be executed.235

4. Performance and Robustness Analysis236

This section addresses the evaluation of the performances of the fault diagnosis strategies237

described in Section 3. In particular, Section 4.1 considers the simulations from the wind turbine238

benchmark of Section 2. On the other hand, in order to assess the effectiveness of the considered239

solutions in a more realistic framework, Section 4.2 considers HIL experiments obtained by means of240

an industrial computer interacting with onboard electronics.241

4.1. Simulation Results242

With reference to the wind turbine benchmark in Section 2, all simulations were driven by the243

same wind sequence vw(t). It represents a real measurement of wind speed, from 5 to 20m/s, with244

a few spikes at 25m/s. Moreover, the rated power of the wind turbine is Pr = 4.8MW, and the245

nominal generator speed is ωnom = 162.5rad/s [7]. The simulations lasted for 4400s with single fault246

occurrences. The measurements were acquired with a sampling frequency of 100Hz, so N = 440000247

samples were generated for each run. Table 4 summarizes the wind turbine fault modes, as described248

in Section 2.249

Table 4. Fault modes of the wind turbine simulator.

Fault case Fault type Fault shape Occurrence (s)
1 actuator step 2000− 2100
2 actuator step 2300− 2400
3 actuator step 2600− 2700
4 actuator step 1500− 1600
5 actuator step 1000− 1100
6 sensor step 2900− 3000
7 sensor trapezoidal 3500− 3600
8 sensor step 3800− 3900
9 sensor step 4100− 4300

Note that fault case 7 reported in Table 4 is modeled with a trapezoidal function, which is directly250

added to the corresponding output measurement according to the model in Eq. (2). On the other251

hand, fault case 9 is generated as a step change of the parameters of the transfer function describing252

the drivetrain model. However, the effect of this fault on the output measurements is different from253

a step function. More details regarding the wind turbine fault scenario can be found in [4,7].254
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As an example, in order to show different fault effects on process measurements, Figure 4255

compares the results of the fault sensitivity test in terms of fault-free and faulty signals. In particular,256

faults 1, 2, 3, and 8 are considered.257

Fault 1 Fault 2

�
(deg)

1, m1
�
(deg)

2, m2

Time (s)Time (s)

Fault 3 Fault 8

�
(deg)

3, m2

Time (s) Time (s)

P
(W)

g,m

Figure 4. The fault-free (gray line) signals with respect to the faulty ones (black line).

When the FMID tool was applied to the data of the wind turbine simulator, nC = 4 clusters258

and o = 3 delays to input and output regressors of the TS fuzzy models were determined. This259

tool also provided the membership function points, which were fitted through Gaussian membership260

functions [14]. The optimal values of nC and o were determined in order to minimize the fuzzy model261

estimation errors. After data clustering, the regressands α
(i)
j and δ

(i)
j in Eq. (8) were identified. The262

TS models in Eq. (6) were thus implemented, and 9 fault estimators were organized with the bank263

structure of Figure 3. Note that, according to Table 3, each fuzzy fault estimator in Eq. (6) has 3 inputs.264

Therefore, each TS fuzzy model has a number of parameters equal to (3 + 1)× n = 12.265

The capabilities of the TS fuzzy estimators were assessed in terms of Root-Mean-Square Error266

(RMSE), which is computed as the difference between the predicted f̂i(k) and the actual fault fi(k),267

with i = 1, . . . , 9. Table 5 summarizes the achieved performance of the 9 TS fuzzy fault estimators.268

Table 5. Fault estimator performance in terms of RMSE.

Fault Estimator i 1 2 3 4 5 6 7 8 9
RMSE 0.016 0.023 0.021 0.020 0.019 0.021 0.017 0.021 0.019

In order to perform the fault detection task, the diagnostic residuals ri(k) = f̂i(k) were compared269

according to the threshold logic of Eq. (4). The parameter δ has to be selected in order to optimize the270

fault diagnosis performance: for example, in terms of missed faults and false alarm rates [22]. Table 6271

summarizes the values of this parameter for each fault estimator i.272

Table 6. Optimal value of the parameter δ.

Residual ri(k) 1 2 3 4 5 6 7 8 9
δ 3.8 4.3 4.2 4.5 3.7 4.4 4.3 3.5 3.9

In the following, the simulation results are reported, particularly for fault cases 1, 4, 8, and 9.273

The estimated faults f̂i depicted in Figure 5 demonstrate that the fault detection task was achieved, as274

they exceed the threshold levels only when the corresponding fault is active, as reported in Table 4.275
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Fault 1 Residual Fault 4 Residual
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Figure 5. The estimated faults f̂i for cases 1, 4, 8, and 9.

Figure 5 depicts the reconstructed fault functions f̂i(k) generated by the fuzzy estimators in276

faulty conditions (black continuous line) with respect to the fault-free residuals (gray line). The fixed277

thresholds of Eq. (4) are depicted by dotted lines. It is worth noting that in fault-free conditions, the278

estimated fault functions f̂i(k) are not zero due to the model–reality mismatch and the measurement279

error. The results also highlight the robustness and reliability characteristics of the developed fault280

diagnosis technique, which relies on the proposed fuzzy tool.281

For the fuzzy systems, 9 NARX NN models were designed according to the scheme in Figure 3.282

The NN structure selected in this study consists of 3 layers, with 3 neurons in the input layer, 8 in the283

hidden one, and 1 neuron in the output layer. Also, in this case, a trial and error procedure was used284

to determine the optimal number of delays du and dy, as well as the number of neurons, that lead to285

the minimization of the fault estimation error. In particular, du = dy = 4 delays were selected in the286

relation of Eq. (9). According to Table 3 and Figure 3, the NN models have 3 inputs.287

The prediction capabilities of the neural fault estimators are summarized in Table 7, which288

reports the values of the RMSEs obtained by comparing the estimated faults with the simulated ones.289

Table 7. NN performance in terms of RMSE.

Fault Estimator i 1 2 3 4 5 6 7 8 9
RMSE 0.009 0.009 0.009 0.012 0.011 0.011 0.009 0.009 0.014

Also, in this case, the fault detection task was achieved by comparing the residuals ri = f̂i(k)290

from the neural fault estimators with the optimized thresholds of Eq. (4). The values of the parameter291

δ are reported in Table 8.292

Table 8. δ values for the threshold logic.

Residual ri(k) 1 2 3 4 5 6 7 8 9
δ 4.2 4.9 4.7 5.1 4.2 4.6 4.8 4.1 4.3

As an example, with reference to fault cases 1, 2, 3, and 4, Figure 6 depicts the residuals f̂i(k)293

generated in faulty conditions by the NN estimators (continuous line) compared with the fixed294

thresholds (dashed line).295
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Figure 6. Estimated signals (continuous line) f̂i(k) and fixed thresholds (dashed line) for faults 1, 2, 3,
and 4.

Also, in this case, the achieved results show the effectiveness of the proposed fault diagnosis296

solutions with respect to disturbance and uncertainty effects simulated by the wind turbine297

benchmark, thus highlighting their potential application to real wind turbine systems.298

4.2. Hardware-In-The-Loop Experiments299

The HIL test rig was implemented in order to validate the proposed fault diagnosis schemes in300

real-time conditions. This tool was formerly considered in [23] but for fault-tolerant control design301

purposes.302

The experimental setup in Figure 7 consists of three interconnected components:303

• Simulator: The offshore wind turbine system summarized in Section 2 was implemented in the304

LabVIEWr environment. This software tool runs on an industrial CPU, which allows real-time305

monitoring of the simulated system parameters.306

• Onboard electronics: The fault diagnosis schemes were implemented in the AWC 500 system,307

which features standard wind turbine specifications. This element acquires the signals from the308

wind turbine simulator and processes the fault diagnosis solutions proposed in this study.309

• Interface circuits: These facilitate communication between the simulator and the onboard310

electronics.311

The achieved performances were evaluated on the basis of the following computed indices,312

which were formerly proposed in [24]:313

• False Alarm Rate (FAR): the ratio between the number of wrongly detected faults and the314

number of simulated faults;315

• Missed Fault Rate (MFR): the ratio between the total number of missed faults and the number316

of simulated faults;317
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Figure 7. The block diagram of the HIL test rig.

• True FDI Rate (TFR): the ratio between the number of correctly detected faults and the number318

of simulated faults;319

• Mean FDI Delay (MFD): the average time delay between fault occurrence and fault detection.320

A total of 1000 experiments were performed in order to compute these indices, as the efficacy321

of the developed fault diagnosis techniques depends on the model–reality mismatch and the actual322

measurements errors.323

Table 9 summarizes the results obtained by implementing fuzzy estimators using the real-time324

HIL setup.325

Table 9. Performance indices with fuzzy fault estimators.

Estimated fault f̂i(k) FAR MFR TFR MFD
1 0.005 0.005 0.995 0.077
2 0.004 0.004 0.996 0.490
3 0.004 0.004 0.996 0.080
4 0.005 0.005 0.995 0.070
5 0.003 0.004 0.997 0.060
6 0.004 0.005 0.996 0.760
7 0.005 0.004 0.995 0.640
8 0.005 0.004 0.995 0.060
9 0.004 0.005 0.996 0.180

On the other hand, Table 10 reports the values achieved with the NN fault estimators326

implemented using the same real-time HIL setup.327

Some further remarks can be made here. When an accurate mathematical description of the328

system under diagnosis can be included in the design phase, model-based fault diagnosis techniques329

may yield the best performances. However, when modeling errors and uncertainty are present, the330

optimization and learning exploited by the proposed data-driven solutions lead to very accurate331

results. In fact, the TS fuzzy models led to interesting fault diagnosis capabilities, as they used332

the adaptation accumulated from offline simulations. On the other hand, the NN structures use the333

training stage, which can be computationally heavy. It can thus be concluded that the proposed334

data-driven approaches seem to represent powerful techniques that are able to cope with uncertainty335

and disturbances, as well as variable working conditions.336

Finally, the results reported here confirm the effectiveness of the developed fault diagnosis337

schemes when applied to a real-time test rig. Moreover, the robustness features of the proposed338
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Table 10. Performance indices with NN fault estimators.

Estimated fault f̂i(k) FAR MFR TFR MFD
1 0.007 0.006 0.899 0.014
2 0.234 0.005 0.867 0.516
3 0.004 0.004 0.914 0.080
4 0.005 0.005 0.922 0.070
5 0.006 0.007 0.905 0.097
6 0.005 0.006 0.989 0.871
7 0.701 0.007 0.981 6.987
8 0.498 0.008 0.987 0.289
9 0.197 0.176 0.798 0.399

solutions support the viability of applying the proposed fault diagnosis techniques to real offshore339

wind turbine systems.340

5. Conclusion341

This paper presents the development and analysis of practical tools for performing fault342

diagnosis of a wind turbine system. The design of this indicator relies on the direct estimate of the343

fault itself and uses two data-driven schemes. These are proposed by the authors to be viable tools344

for coping with poor knowledge of the process dynamics in the presence of noise and disturbance345

effects. These data-driven schemes are based on fuzzy and neural network structures used to derive346

the nonlinear dynamic link between the input–output measurements and the considered fault signals.347

The selected prototypes belong to nonlinear autoregressive with exogenous input architectures, as348

they can describe any nonlinear dynamic relationship with an arbitrary degree of accuracy. The349

fault diagnosis strategies were tested via a high-fidelity simulator describing the normal and faulty350

behaviors of an offshore wind turbine plant. The achieved performances, in terms of reliability and351

robustness, were thus verified by considering the presence of uncertainty and disturbance effects352

simulated by the wind turbine benchmark. In order to assess the considered fault diagnosis solutions353

in a more realistic framework, hardware-in-the-loop experiments were also analyzed by means of354

an industrial computer interacting with onboard electronics. The achieved results highlight that355

data-driven approaches, such as fuzzy systems and neural networks, are able to lead to robust and356

reliable solutions, even if optimization and adaptation procedures are required. Further works will357

consider the application of these fault diagnosis schemes to real plants.358
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