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*e monitoring of rolling element bearings through vibration-based condition indicators plays a crucial role in the modern
machinery. *e kurtosis is a very efficient indicator being sensitive to impulsive components within the vibration signature
that often are symptomatic of localized faults. In order to improve the diagnostic performance of the kurtosis, blind
deconvolution algorithms can be exploited in order to detect bearing faults and, most importantly, their position. In this
scenario, this paper focuses on the development of a novel condition indicator specifically designed for the damage as-
sessment in rolling element bearings. *e proposed indicator allows to track the bearing degradation process taking into
account three different possible positions: outer race, inner race, and rolling element. *is indicator fits real-time
monitoring procedures allowing for the automatic detection and identification of the bearing fault. *e validation of
the proposed indicator has been carried out by means of both simulated signal and a run-to-failure experiment. *e results
highlight that the proposed indicator is able to detect more efficiently the fault occurrence and, most importantly, quicker
than other established techniques.

1. Introduction

One of the most frequent failures in rotating machines is
represented by bearing faults. *e early detection and
identification of bearing faults through vibration analysis is a
powerful strategy in order to avoid or prevent catastrophic
failures. However, the bearing fault identification can be very
challenging since the impulsive pattern generated by peri-
odic impacts due to localized faults is oftenmasked by strong
background noise, the dynamic response of the structure,
and other mechanical interferences.

Over the years, several strategies have been proposed
for the detection and identification of bearing faults. *e
most popular signal processing technique for bearing fault
identification is the envelope analysis [1], but many other
signal processing techniques have been proposed such as
second-order cyclostationary analysis that involves for
instance the cyclic modulation spectrum [2] and the
spectral correlation [3], the spectral kurtosis [4], blind

deconvolution (BD) algorithms [5], and other advanced
methods [6, 7].

Frequently, the final goal of condition monitoring is to
condense a huge amount of information into a scalar
number, also called condition indicator. *e kurtosis,
i.e., the fourth standardized moment, is probably the most
used condition indicator for bearing diagnosis [8]. *e
success of kurtosis does not lie only in its effectiveness and
computation simplicity but also in its relationship with
the envelope analysis [9]. However, the kurtosis often fails
because of strong interfering components [10–12], espe-
cially if such masking contributions have impulsive na-
ture. In this scenario, the BD methods can be used to
reduce the stationary background noise and, in certain
cases, to reduce the effect of masking contributions as
well.

From a general standpoint, the goal of BD is to extract a
source exhibiting a specific statistical property only from a
noisy observation (response), under the hypothesis of a
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linear time-invariant system. *e term “only” refers to the
fact that the system is assumed as unknown.

*e first BD algorithm was introduced by Wiggins [13]
in the field of seismic. Its methodology, called minimum
entropy deconvolution (MED), blindly estimates an inverse
filter which maximizes the kurtosis of the source. It should
be noted that even if the name recalls the minimization of
the entropy, MED is actually based on the maximization of
the kurtosis. In other words, the MED extracts the source
having the highest kurtosis. *e main limit of this method in
rotatingmachine diagnosis is that it tends to extract themost
impulsive source rather than a pattern of periodic impulses;
that is how the local faults of rotating machines appear in
vibration signals.

*e performances of MED in rotatingmachine diagnosis
have been recently improved by means of two novel BD
methods: maximum correlated kurtosis deconvolution
(MCKD) [11] and multipoint optimal minimum entropy
deconvolution (MOMEDA) [12]. Both methods are rooted
on improved versions of the kurtosis criterion. *e former
has been proposed byMcDonald et al. [11], and it is based on
an improved version of kurtosis called correlated kurtosis
(CK). *e CK combines the maximization of the impul-
siveness related with a certain repetition rate rather than
only the maximum impulsiveness. *e latter methodology
has been proposed by McDonald and Zhao [12] and is based
on a criterion called multipoint kurtosis (MK) which is a
modified version of the kurtosis weighted by a Dirac comb
which represents an ideal train of impulses generated by the
expected fault. Both the BD methods proved to be effective
for the fault identification in rotating machines, with par-
ticular reference to gears and bearings.

Returning to the application of indicators for machine
diagnosis, the final values of BD criteria can be exploited for
assessing the bearing condition. In this direction, Sawalhi
et al. [14] used the kurtosis values after performing MED in
order to improve the sensitivity of kurtosis to the bearing
faults. Analogously, McDonald et al. [11] exploited CK after
performingMCKD together with a threshold for monitoring
the condition of a multistage gearbox. Despite these
promising applications [11, 14], the use of BD methods for
monitoring the progressive damage of the system has not yet
been exhaustively studied. Moreover, the use of the kurtosis
and the MK involves some drawbacks. For instance, the
kurtosis is not sensitive to the bearing fault position or the
indicator variance can make their interpretation difficult.

*e proposed research work focuses on the development
of condition indicators for the bearing monitoring based on
the framework of blind deconvolution methods. Such
condition indicators can be synthesized in an online
monitoring procedure which allows for automatically
detecting and identifying the bearing faults through non-
parametric thresholds. *e core of this methodology is
rooted on two novel indicators, called cumulative correlated
kurtosis (CCK) and cumulative multipoint kurtosis (CMK)
that are derived from CK and MK, respectively. *ese in-
dicators overcome the kurtosis limitations since they allow
for identifying the bearing fault being dependent on the
characteristic fault frequency, and they are also robust to

impulse noise contributions. Moreover, the CCK and the
CMK have two valuable properties for diagnostic purposes:
as the sample size increases, their variance decreases, and
they can keep track of the progressive damage of the bearing.
*is methodology is then particularly fit for industrial ap-
plications which require clear data interpretation and early
fault detection capability.

*e proposed procedure is validated by using a simu-
lated signal and a run-to-failure test provided by the Center
of Intelligent Maintenance System (IMS) of the University of
Cincinnati [15].*e results show that the CCK and the CMK
overcome the performance of the raw values of CK and MK
in terms of early fault detection and identification as well as
bearing damage assessment. *e results are presented and
discussed in order to enlighten the improvements in-
troduced by the proposed method.

Section 2 reviews the application of BD algorithms for
bearing fault identification, with a specific focus on MCKD
and MOMEDA. Section 3 addresses the new diagnostic
method for the detection and identification of rolling ele-
ments bearing faults through the definition of a novel
condition indicator. Section 3 includes also a verification
through a signal model. Section 4 concerns the experimental
validation by using the IMS dataset. Finally, Section 5
summarizes the final remarks.

2. Bearing Fault Identification through Blind
Deconvolution Algorithms

In general, the response due to a localized bearing fault
occurring in a rotating machine can be modeled as a train of
impulses convolved with an impulse response function (IRF)
that characterizes the vibration transfer path between source
and excitation. A scheme about how BD works on a sim-
plified signal model is depicted in Figure 1.

*e term “simplified” refers to the fact that the bearing
fault signatures actually consist of a blend of random
(cyclostationary) and periodic contributions [16], but, for
the sake of simplicity, this formulation considers only the
contribution of the transfer path and the background
Gaussian noise. More details about how to model bearing
fault signatures can be found in [17]. Figure 1 is a single-
input-single-output (SISO) model that considers response x
as a convolutive mixture of two contributions: (i) a repetitive
train of impulses s0 which refers to the excitation due to the
local fault and (ii) a Gaussian background noise n. Note that
all these quantities are a function of time. Both are convolved
with their respective IRFs depending on the system prop-
erties (transmission path, natural frequencies, and damp-
ing). *e schematic in Figure 1 can be then formalized as
follows:

x � s0 ∗gs + n∗gn, (1)

where gs and gn are the IRFs related to s0 and n, respectively,
and ∗ is the convolution operator. Frequently, gs and gn are
unknown, and the goal of BD methods is to estimate the
inverse filter h, assumed to be a FIR filter that enables the
extraction of s0 just through a noisy observation x.
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*e estimation of the source of interest, s0, can be
achieved considering an arbitrary criterion based on a prior
assumption, e.g., assuming that a certain statistical property
is strictly related to the target source.*erefore, the BD finds
h such that

s � x∗ h ≈ s0, (2)

where s is the estimation of s0 by means of h. It is important
to underline that the approximation symbol refers to the fact
that BD cannot recover the actual IRF but recovers the
source, which exhibits the maximum value of the criterion.

*is research work focuses on two recent BD methods
specifically designed for the diagnosis of rotating machines:
the MCKD and the MOMEDA. Both criteria have been
proposed considering the fact that a criterion which de-
scribes the degree of impulsiveness of a vibration signal,
e.g., the kurtosis, is often inadequate to deal with mechanical
fault signatures. For instance, the vibration signature of a
developed bearing fault is typically described by an im-
pulsive contribution that is characterized by a series of
impulsive components repeated according to the rotational
frequency and the bearing kinematics.*us, these criteria do
not consider only the impulsive nature of bearing faults but
also takes into account the repetition rate of this impulsive
pattern. *us, these criteria are particularly fit to detect
bearing faults. A critical point shared by all the BD algo-
rithms is the selection of the filter length. At the moment, it
does not have any methodology or strategy for the filter
length selection, and generally this choice relies on expe-
rience and trial-and-error. However, it has been proved [5]
that short filters could be not effective while long filters
would lead to not acceptable computation times. From the
author’s experience, a filter length between 50 and 200
samples is generally enough for obtaining satisfactory
results.

2.1. Maximum Correlated Kurtosis Deconvolution. *e
MCKD is an iterative BD algorithm that aims to extract the
source having maximum CK. Unlike the kurtosis which
measures the tailedness of a probability distribution and

reaches its maximum with signals having a dominant peak,
the MCKD is sensitive to signal peakedness according to a
given periodicity. *e definition of CK is given in the
following:

CKM �
􏽐
N
n�1 􏽑

M
m�0sn−mT􏼐 􏼑

2

􏽐
N
n�1s

2
n􏼐 􏼑
M+1 , (3)

where T is the impulse period and M the number of shifts.
*e CK combines two features typical of the localized fault
signatures, i.e., high kurtosis and repetitive occurrence of the
fault. It should be noticed also that the CK is a cyclosta-
tionary criterion. Indeed, the numerator of equation (3) with
M � 1 is nothing but the autocorrelation function of the
instantaneous power of the signal. In this particular case, the
CK is a measure of the degree of autocorrelation referenced
to a given lag T. *erefore, CK withM � 1 quantifies if the
autocorrelation function exhibits periodicities at the fun-
damental cyclic frequency 1/T. For this reason, the CK can
be considered a cyclostationary criterion since a process
which exhibits periodicities in its autocorrelation function is
defined as a cyclostationary process.

It should be remarked that the CK [11] has been in-
troduced empirically without explicit mention of its
cyclostationary nature. By definition, the parameters of CK
(i.e., the FIR filter length L and the number of shiftsM) must
be properly set in order to achieve satisfying results. In
particular, M has to be carefully set if MCKD is applied to
mechanical vibration signals. In fact, low values of M may
not encourage enough the deconvolution of sequential
impulses while high values ofM, from experience more than
8, could lead to numerical precision issues since the CK can
assume very low values.

2.2. Multipoint Optimal Minimum Entropy Deconvolution
Adjusted. *eMOMEDA is a noniterative BD method, and
it is an improvement of the OMEDA. In brief, the
MOMEDA estimates a optimal inverse filter (in the least
square sense) for recovering a source that approximates a
target vector t, represented by a Dirac comb. *e definition
of the MOMEDA criterion is the following:

gn

gs

x h s

s0

+

+

n

Figure 1: General scheme of blind deconvolution.
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MK �
1
‖t‖

tTs

‖s‖
. (4)

Target vector t drives the deconvolution by imposing the
spacing and the weights of the impulses to be recovered.
Since t is defined as a train of equispaced impulses having
unit amplitude, this criterion can be considered as a periodic
one as opposed to the CK that is a cyclostationary criterion.

Since it is a periodic criterion, it naturally fits with the
diagnosis of gears or in any case of periodic fault signature.
Indeed, its first application regards the identification of a
chipped tooth in a 2-stage gearbox [12]. As said before,
bearing fault signatures exhibit second-order cyclo-
stationarity, and thus MCKD appears to be more suitable
than MOMEDA for the fault detection and identification.
However, a recent research [18] proved the effectiveness of
MOMEDA for extracting bearing fault signatures taking into
account the Case Western database.

3. Proposed Indicator and Diagnostic Protocol

3.1.*eoretical Formulation. *e proposed method is based
on condition indicators, namely, CK and MK, capable to
both detect and identify bearing faults at their early stage.
Specifically, this research investigates how the final values of
the criteria of MCKD and MOMEDA can be exploited as
bearing condition indicators. Particular attention is devoted
to verify how these indicators can be used for the real-time
monitoring of bearings and for detecting trends related to
the progressive degradation of the bearings.

Let ψ[k] be the final value of the BD criterion evaluated
from a vibration signal in the time window k. Let us assume
that ψ[k] is constituted of three different contributions: a
constant (trend) part, a variable part, and a Gaussian noise.
*is model can be formalized as

ψ[k] � ψ[k] + 􏽢ψ[k] + n[k], (5)

where ψ is the constant part of ψ, 􏽢ψ is the variable part of ψ,
and n is the additive Gaussian noise.

Hypothesizing that the diagnostic information is
retained into 􏽢ψ, ψ and n de facto represent masking con-
tributions. Furthermore, variable part 􏽢ψ is not supposed to
be necessarily a monotonically increasing function. *is
latter property is particularly useful for the design of robust
indicators due to the fact that it allows for keeping trace of
the “degree of damage” taking into account the whole time
history of the component under investigation.

In order to reduce the effects of ψ and n, a possible
strategy is to consider the cumulative of ψ:

c[j] �
1
j

􏽘

j

k�1
(ψ[k] + 􏽢ψ[k] + n[k]), (6)

where index k refers to the kth signal segments while j refers
to the total number of signal segments available. To give a
real-life example of this kind of indexing, in an online
condition monitoring system, k is the current measurement
run while j is the overall number of measurements recorded.
*e selection of the number of segments to be considered is a

pivotal step for the proper estimation of the proposed in-
dicator. In fact, the segment number should be selected
carefully since a k too small would affect the consistency of
the statistical threshold but a k too large would invalidate the
hypothesis of healthy bearing in that time span. Generally,
rolling element bearings are designed to work for a large
number of cycles and therefore a time span of 1 day can be
considered a reasonable trade-off.

Equation (6) is nothing but the sum of the expected
values of all the contributions of ψ. After some simple
manipulations, it can be noted that (under the hypothesis of
large j) the estimated expected value of n converges to zero
while the estimated expected value of ψ converges to its true
(constant) value. *us, equation (6) can be rewritten as
follows:

c[j] � E[ψ] +
1
j

􏽘

j

k�1

􏽢ψ[k], (7)

where E[·] stands for the expected value of ·. From the
physical standpoint, the constant part of ψ, ψ, describes the
healthy condition of the system, and the variable one, 􏽢ψ,
reflects the occurrence of the bearing fault. At this point,
after reducing the Gaussian noise contribution through the
cumulative, the constant part ψ can be minimized as well by
subtracting the expected value of ψ which is called E[ψ]∗:

β[j] � c[j]−E[ψ]∗ �
1
j

􏽘

j

k�1

􏽢ψ[k], (8)

where E[ψ]∗ is the expected value of data referenced to the
healthy condition. E[ψ]∗ is theoretically unknown but a
reasonable estimation can be done by estimating the mean
value of ψ in the very first part of the acquisition when the
component is supposed to be healthy.

Indicator β describes the evolution of the bearing con-
dition and has two important properties: (i) it is mono-
tonically increasing, so it retains all the variations in its
whole time history, and (ii) it is consistent in the sense that
the random noise is reduced according to the considered
number of samples.*is indicator can be therefore exploited
for defining a diagnostic protocol in order to monitor
bearings. Specifically, when β is close to 0, it means that the
variable part of ψ is negligible and thus the system is healthy.
When β changes, it means that the bearing condition is
changing as well and an incipient bearing fault may be
occurring. For this purpose, a nonparametric statistical
threshold can be used, such as the thresholds evaluated
through Tukey’s method [19]: mild outlier threshold TH,1
can be used for establishing when the bearing degradation
process starts; outlier threshold TH,2 can be used for
establishing when the fault is manifest. Such thresholds are
also called Tukey fences and can be calculated by means of
the following formula:

TH � Q3 + p Q3 −Q1 􏼁, (9)

whereQ3 andQ1 are the lower and upper quartiles while p is
a constant that definesTH,1 if p � 1.5 andTH,2 if p � 3.*ese
thresholds are computed taking account the values of β

4 Shock and Vibration



referenced to the �rst day of test, under the hypothesis that
in this time span, the bearings are healthy. Note that a rule of
thumb for bearing diagnosis is to discard the �rst hours of
test since β may be a�ected by the contribution of running-
in phenomena and consequently the related thresholds can
be overestimated.

�e proposed diagnostic protocol is reported schemat-
ically in Figure 2 and can be summarized as follows:

(1) Training step: perform the BD algorithm on x[k],
take the �nal value of the BD criterion (ψ[k]),
compute the cumulative function c[j], and then
subtract the expected value in order to obtain β[j].
Repeat this step for the N time spans referenced to
the healthy condition in order to compute the
thresholds TH.

(2) Online processing step: perform the BD algorithm
on x[k], take ψ[k] and compute the cumulative
function reduced by the expected value β[j].

(3) Compare the cumulative function β obtained in step
2 and the thresholds TH calculated in step 1. If
β<TH, the bearing is healthy and the procedure
starts again from step 2. Otherwise, the bearing fault
is detected and identi�ed.

Note that in this paper, β will be called in two di�erent
ways: CCK and CMK.

3.2.Application toSimulatedData. Let us consider the signal
model described by equation (1). �e reader should bear in
mind that ψ can be any condition indicator estimated from a
certain signal segment. For instance, we may decide to track
the global vibration level of a component by monitoring ψ
(e.g., CK orMK) value estimated each 1 s of measurement. A
representation of this signal model having a total length of
20000 samples is reported in Figure 3 where Figure 3(a)
refers to ψ, Figure 3(b) refers to ψ̂, Figure 3(c) is the additive
noise, and Figure 3(d) refers to ψ.

�e constant contribution is de�ned as

ψ[k] � C, (10)

where C is constant and assumed as equal to unit while k is
the sample index and must be integer and nonzero. �e
variable contribution is assumed to be composed of a si-
nusoid with linear increasing mean:

n[k] �

0, k≥N∗,

ψ̂[k] � A sin
2πfk
L

( ) +mk, k≥N∗,




(11)

where the sine amplitude is A � 0.1, the sine frequency is
f/L � 2.5 · 10−4, and N∗ � 2 · 104, while m � 10−4 and
stands for the line slope. Finally, the background noise is
modeled as a Gaussian distribution:

n[k] �N(μ, σ), (12)

where the mean is μ � 0 while the standard deviation is
σ � 0.1. �e overall trend of Figure 3(d) shows a deviation

with respect to the previous constant trend after 10000
samples. However, the contribution that carries the di-
agnostic information (i.e., ψ̂ in Figure 3(b)) is strongly
masked due to the presence of the noise as is clearly shown in
Figure 3(d). �erefore, a trend close to the one shown in
Figure 3(b) (ψ̂) is desired for the assessment of the bearing
damage level due to its easy interpretation. Moreover, if ψ̂ is
a monotonic increasing function, then the information
provided would be even more valuable being actually a
measure of the global degradation of the bearing that must
be a quantity strictly increasing.

At this point, it is possible to compute β through
equation (8) from the raw values of ψ. �e results are
reported in Figure 4 where Figure 4(a) reports the values of
ψ while Figure 4(b) reports the values of the proposed
indicator β. �is numerical result shows that β actually
exhibits the desired properties. Indeed, the variance of ψ
has been signi�cantly reduced and β is strictly increasing, in
contrast with ψ that has an oscillatory behavior after 10000
samples. Moreover, β is also scaled with respect to a ref-
erence value computed taking into account the �rst
values of the time history. In machine diagnosis, this
scaling allows for a better interpretation of the indicator

Yes No

k = 1
 j = 1

x[k]

BD BD

Yes

No

Faulty

Healthyk = N ?

Yes

No

TH

x[k]

k ≤ N?

c[j]

ψ[k]

Training
step

Online
processing

step

k = k + 1
j = j + 1

c[N] c[N + j]

β[j]

β[j] ≤ TH ?

k = k + 1
 j = j + 1

ψ[k]

β[j]

Figure 2: Flow chart of the proposed diagnostic protocol.

Shock and Vibration 5



since (approximately) nil values refer to healthy conditions
and any deviation refers to anomalies in the system
condition.

4. Experimental Verification

4.1. Setup. *e data used in this experimental verification
have been provided by the Center of Intelligent Maintenance

System (IMS) of the University of Cincinnati [15]. *e test
rig is composed of four bearings type Rexnord ZA-115 tied
on the same shaft, as shown in Figure 5.

*is test has been performed at constant speed of
2000 rpm with a load of 27.7 kN applied on bearings 2 and
3. *e vibration signals have been collected by four ac-
celerometers type PCB 253B33 mounted in radial di-
rection. *e vibration signals have been recorded with a
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Figure 3: Simulated signal: (a) constant contribution ψ, (b) variable contribution 􏽢ψ, (c) background noise, and (d) overall simulated signal ψ.
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Figure 4: Comparison of the trends of (a) the raw indicator ψ and (b) the proposed indicator β in the case of simulated signal reported in
Figure 3.
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sampling frequency of 20.48 kHz with a rate of 1 s of ac-
quisition each 10 minutes. After 7 days, corresponding to
16.4 minutes of actual acquisition, the test has been stopped
and an outer race fault, occurred in bearing 1, has been
detected.

4.2.Results andDiscussion. *e experimental data have been
investigated by means of the BD algorithms described in
Section 2, specifically MCKD and MOMEDA. *e final
values of the BD criteria, respectively, CK and MK, have
been computed for signal segments of duration 1 s in order
to monitor the progressive damage of the bearings during
the endurance test. According to the technical report pro-
vided by the experimenters, an outer race fault has occurred
in bearing 1. Hence, only the accelerometer placed on
bearing 1 has been considered.

Figures 6 and 7 depict the application of the proposed
methodology on the IMS dataset, respectively, by using
the MCKD and MOMEDA analyses: Figures 6(a) and
7(a) represent the CK and MK values estimated for each
signal segments of the endurance test, Figures 6(b) and
7(b) show the smoothed values of the previous CK and
MK values, called for simplicity smoothed correlated
kurtosis (SCK) and smoothed multipoint kurtosis
(SMK), while Figures 6(c) and 7(c) report the values of
the proposed indicator, namely CCK and CMK. All these
figures include the nonparametric statistical thresholds,
calculated as described in Section 3, in order to compare
the time instant of the bearing fault appearance. Note
that the SCK and the SMK have been computed by using
the moving average technique and that these results are
referenced to the prior period related to the outer race
bearing fault.

Figures 6(a) and 7(a) clearly show that the trend of CK
and MK is substantially constant taking into account in
the first hundred hours of test. Reasonably, this behavior
means that the bearings can be considered healthy in this
time span. *en, the values change, according to the
model given in equation (5): the variable part 􏽢ψ is no
longer negligible with respect to the other contributions.
*erefore, it can be noticed a time-dependent deviation
with respect to the constant trend exhibited in the first

part of test. From the physical point of view, it can be
deduced that this variation is directly related to the ap-
pearance of a bearing fault. Moreover, the time-dependent
variation of the indicators are not monotonically in-
creasing but oscillatory. *is fluctuating trend reflects the
different stages of the bearing fault development and
propagation which can be briefly summarized as con-
secutive phases of damaging and healing until the com-
plete breakdown. *is mechanism of development and
propagation of the bearing fault is reported and discussed
in Reference [20].

In order to estimate the time instants associated to the
fault appearance, the indicators must be compared with the
thresholds calculated through Tukey’s method. Considering
Figures 6(a) and 7(a), one can immediately find two
drawbacks on the use of the raw BD criteria, hereafter called
ψ in general terms but referenced to CK and MK. *e first
one is related to the dispersion of the values of ψ: although
the major part of the values remains below the thresholds
during the early stage of the test, some values cross the
threshold although no fault has occurred. *e second one
regards the behavior of the variable part, 􏽢ψ, during the last
stage of test: this variable contribution does not appear as a
monotonically increasing function and thus the raw in-
dicator ψ is not a good candidate for describing the bearing
damage level since the bearing damage is conceptually
irreversible.

*e first issue, i.e., the variance of ψ, can be mitigated by
using a smoothing technique, such as the moving average.
*is approach improves the results by reducing the dis-
persion of the indicators, as reported in Figures 6(b) and
7(b). Indeed, the indicators (SCK and SMK) lie below the
thresholds in the healthy stage but, during the faulty stage,
are not able to represent the evolution of the fault with a
strictly growing trend.

At this point, let us consider β defined in equation (8) as
the absolute error between the expected value E[ψ]∗ and the
current value of the cumulative indicator c. By definition, β
has two important properties: (i) its variance decreases when
the number of observation increases and (ii) it is a strictly
growing function in presence of nonnil values of 􏽢ψ.
Figures 6(c) and 7(c) show the values of CCK and CMK
estimated through the procedure depicted in Figure 2. As
expected, CCK and CMK return a smoother trend with
respect to the raw values of CK and MK (Figures 6(a) and
7(a)). At the same time, the dispersion is reduced further as
well with respect to the smoothed values of CK and MK
(Figures 6(b) and 7(b)). CCK and CMK show a strictly
growing trend that makes the monitoring of bearing con-
ditions and the fault detection easier, and it returns also
consistent information about the overall damage level of the
bearing. *erefore, this experimental verification demon-
strates that β has a lower dispersion with respect to the raw
indicator and that β is actually a monotonically growing
function. *ese properties open to different scenarios
concerning the industrial applications, in particular on the
use of β as an indicator for the overall damage level of the
bearing. Furthermore, the robustness of bearing fault de-
tection through the combination of condition indicators and

Motor

Bearing 1

Load

Belt Bearing 4Bearing 3Bearing 2

Load

Figure 5: Experimental setup.
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thresholds is strongly improved thanks to the reduction of
the data dispersion.

Figure 8 reports the time instants when the indicators
cross threshold TH,1 with reference to the results reported
in Figures 6 and 7. *e experimental data used to validate
the proposed diagnostics protocol do not provide the exact
time instant in which the fault occurs, thus it is not possible
to know exactly when the fault began. However, it should
be noticed from Figure 5 that the test bench has been
designed in order to permit the appearance of faults in the
early stage of the test, due to the high radial loads applied
on the bearings. Starting from this consideration, it is
reasonable to think that for this particular application the
indicator used for the analysis has to identify the ap-
pearance of the fault, i.e., has to cross the thresholds, as
early as possible. Considering the results related to the
MCKD (first and second column of Figure 8), both SMK
and CMK provide approximately the same time, specifi-
cally 108 and 106 hours, respectively. *is slight difference
can be explained since MCKD is based on a cyclostationary
criterion, and thus it is particularly suitable for the early
fault detection of bearings. Considering the results related
to the MOMEDA (third and fourth column of Figure 8),
SMK and CMK provide values that are significantly dif-
ferent, i.e., 116 and 105 hours, respectively. Comparing
the times related to the CK and the MK (first and third
column of Figure 8), it can be noticed a significant dif-
ference in favor of the CK, due to the fact that the CK is

a cyclostationary indicator while MK is a periodic in-
dicator. *is difference is reduced if we consider the times
referenced to the CCK and the CMK (second and fourth
column of Figure 8). *e reduction of the difference be-
tween the time obtained by the application of the two
different algorithms is strictly related to the earliest fault
detection given by the CMK with respect to the raw values
of MK. According to the previous consideration, this
demonstrates that the proposed method is able to improve
the effectiveness of theMK for the bearing fault detection in
addition to its desired properties for the definition of a
robust bearing damage indicator.

Until now, the analyses have been performed by using as
a prior period the one referenced to the outer race fault. A
further and necessary investigation is how the method be-
haves taking into account also the other possible prior fault
periods, i.e., the one related to the inner race fault and the
one related to the ball bearing. *e results of this other
analysis, in terms of CMK and CCK trend, is summarized
and shown in Figures 9 and 10.

According to what has been detected experimentally on
the physical system, the only fault occurred on the bearing
is the one on the outer race, thus the values obtained after
the application of both BD algorithms should remain below
the thresholds during all the test. It is possible to note in
Figures 9(a), 9(b), 10(a), and 10(b) that due to the dis-
persion of the values of BD criteria, some values cross the
thresholds although no fault has occurred. After the
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Figure 6: Application of the proposed method with MCKD: (a) CK values, (b) smoothed CK values (moving average), and (c) cumulative
CK values. *e considered prior period is referenced to the outer race bearing fault.

8 Shock and Vibration



application of the smoothing technique, the obtained
values lie below the thresholds during all the tests but their
trends are not monotonic, as shown in Figures 9(c), 9(d),
10(c), and 10(d). Now, let us consider the values obtained
after the application of the proposed diagnostic protocol,
shown in Figures 9(e), 9(f ), 10(e), and 10(f ). It is possible to
note that the trends of CMK and CCK for both prior
periods, after a �rst stage, are decreasing; thus, the new
condition indicators are able to describe the e�ective de-
gree of damage of the system, according to the experi-
mental observation. It is also worth noting that the CCK
estimated by using the inner race fault frequency as a

reference prior period (Figure 9(f )) actually crosses the
mild outlier threshold but just for a short time span and,
above all, never crosses the outlier threshold.

5. Final Remarks

�e kurtosis is widely recognized as a very e�cient con-
dition indicator being able to quantify the degree of
peakiness of the vibration signature which is often related
to fault occurrence. In this context, the kurtosis-based
blind deconvolution (BD) techniques proved to be e�ec-
tive for extracting the weak bearing fault signature from
observations frequently plentiful of masking contribu-
tions. In particular, the �nal values of the BD criterion can
represent a convenient strategy for the assessment of the
bearing condition. Despite some promising applications
[11, 14], the use of BD methods for monitoring the pro-
gressive damage of the system has not yet been exhaus-
tively studied.

In this context, the proposed research work focuses on
the development of a condition indicator rooted on BD
methods and speci�cally designed for the assessment of the
damage in rolling element bearings. �e proposed indicator
allows to track the bearing degradation process and to detect
the bearing fault at its initial stage by means of a non-
parametric statistical threshold. Speci�cally, the proposed
indicators, i.e., CCK and CMK that are derived from the CK
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Figure 8: Time associated to the appearance of the outer race
bearing fault.
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Figure 7: Application of the proposed method with MOMEDA: (a) MK values, (b) smoothed MK values (moving average), and (c)
cumulative MK values. �e considered prior period is referenced to the outer race bearing fault.
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and MK, are sensitive to the fault frequency and keep track
of the progressive damage of the bearing. Moreover, by
definition, as the sample size increases, their variance

decreases. *ese aspects represent an improvement with
respect to the other similar applications reported in Ref-
erences [11, 14].
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Figure 9: Application of the proposed method considering the inner race fault frequency starting from (a, c, e) MOMEDA and (b, d, f )
MCKD.
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*is methodology has been verified by means of a
simulated signal and the IMS run-to-failure test by com-
paring the diagnostic performance of the proposed indicator
with respect to the raw values of the BD criteria. *e results

show that the proposed methodology improves the effec-
tiveness of the criteria of MCKD and MOMEDA for the
bearing fault detection in terms of early fault diagnosis and
clarity of data interpretation.
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Figure 10: Application of the proposed method considering the rolling element fault frequency starting from (a, c, e) MOMEDA and
(b, d, f ) MCKD.
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Abbreviations and Symbols

BD: Blind deconvolution
CCK: Cumulative correlated kurtosis
CK: Correlated kurtosis
CMK: Cumulative multipoint kurtosis
IRF: Impulse response function
MCKD: Maximum correlated kurtosis deconvolution
MED: Minimum entropy deconvolution
MK: Multipoint kurtosis
MOMEDA: Multipoint optimal minimum entropy

deconvolution adjusted
SCK: Smoothed correlated kurtosis
SISO: Single-input-single-output
SMK: Smoothed multipoint kurtosis
β: Proposed indicator
ψ: Constant part of ψ
ψ: Final value of the BD criterion
􏽢ψ: Variable part of ψ
c: Cumulative of ψ
g: Impulse response function
h: Estimated inverse filter
M: Number of shifts
n: Background noise
Qi: ith quartile
s: Estimated source
s0: Source signal
T: Period of two consecutive impulses
t: Target vector
TH: Tukey’s threshold
x: Response signal.
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