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Abstract

The Nociceptin/Orphanin FQ (N/OFQ) peptide NOP receptor is coupled to pertussis toxin

(PTX)-sensitive G proteins (Gi/o) whose activation leads to the inhibition of both cAMP pro-

duction and calcium channel activity, and to the stimulation of potassium currents. The label

free dynamic mass redistribution (DMR) approach has been demonstrated useful for investi-

gating the pharmacological profile of G protein-coupled receptors. Herein, we employ DMR

technology to systematically characterize the pharmacology of a large panel of NOP recep-

tor ligands. These are of peptide and non-peptide nature and display varying degrees of

receptor efficacy, ranging from full agonism to pure antagonism. Using Chinese hamster

ovary (CHO) cells expressing the human NOP receptor we provide rank orders of potency

for full and partial agonists as well as apparent affinities for selective antagonists. We find

the pharmacological profile of NOP receptor ligands to be similar but not identical to values

reported in the literature using canonical assays for Gi/o-coupled receptors. Our data dem-

onstrate that holistic label-free DMR detection can be successfully used to investigate the

pharmacology of the NOP receptor and to characterize the cellular effects of novel NOP

receptor ligands.

Introduction

Nociceptin/Orphanin FQ (N/OFQ) is a 17 amino-acid (FGGFTGARKSARKLANQ) neuro-

peptide that binds with high affinity to the N/OFQ peptide (NOP) receptor [1, 2]. The NOP

receptor mainly couples to pertussis toxin (PTX)-sensitive G proteins (Gi/o) whose activation

leads to lowering of cAMP levels and inhibition of calcium channels, but also to the stimula-

tion of potassium currents [3]. Its pharmacology has been classically studied in vitro with bio-

assays such as the electrically stimulated mouse vas deferens, and biochemical assays based on

[35S]GTPγS binding and inhibition of forskolin-stimulated cAMP production. More recently,

bioluminescence resonance energy transfer (BRET) based assays allowed the investigation of

NOP/G protein and NOP/β-arrestin interactions demonstrating that several synthetic agonists
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are biased toward activation of G protein signaling over β-arrestin recruitment [4, 5]. More-

over, our knowledge about the binding pocket of the NOP receptor has been broadened sub-

stantially by the availability of the crystal structure of the NOP receptor in complex with

different antagonists [6, 7]. The identification of several NOP receptor selective ligands [3, 8,

9] made it possible to test the in vivo consequences of selective stimulation or blockage of the

NOP receptor. Complementary information has been collected using genetically modified ani-

mals such as mice [10] and rats [11] deficient in expression of the NOP receptor or the N/OFQ

peptide precursor [12], and mice expressing a NOP-eGFP fusion protein from the native NOP

receptor locus [13]. Pharmacological and genetic studies demonstrated the involvement of the

N/OFQ-NOP receptor system in the control of different biological functions including pain,

mood and anxiety, food intake, learning and memory, locomotion, drug abuse, cough and

micturition reflexes, cardiovascular homeostasis, intestinal motility and immune responses [3,

14, 15].

NOP is a G protein-coupled receptor (GPCR), GPCRs are macromolecules belonging to

the largest family of membrane proteins in the human genome. They are involved in the con-

trol of virtually all physiological processes and represent one of the main targets for prescribed

medicines, in fact about 36% of all therapeutics mediate their effects through GPCRs [16]. The

development of GPCR research in physiology and pharmacology led to a significant expansion

of both available knowledge and methods for investigating these receptors [17–20]. The con-

tinuous acceleration in knowledge acquisition on GPCR conformational complexity (e.g. X-

ray and CryoEM near atomic resolution structures) and how different ligands perturbate

receptor signaling cascades (i.e. biased agonism), might increase the challenge in translating

the effects elicited by receptor ligands from the medicinal chemistry to the biological level [21].

For this reason, the use of phenotypic biosensor technology platforms capable to measure

whole cell integrated responses might provide a new angle towards detection and differentia-

tion of promising GPCR ligands.

Such methods, rather than focusing at single readout assays (e.g. GTP/GDP exchange, sec-

ond messengers’ levels modulation, protein-protein interaction, protein phosphorylation, etc.)

make it possible to obtain a more global view of receptor-dependent cellular perturbations.

The mostly used, are based on special biosensors (electron-conducting or light-diffracting

plates) that allow translation of the receptor-dependent holistic cellular response to physical

parameters such as variations in impedance or modulations of wavelength shift of an incident

light in real time [22]. These assays are used in laboratories from both industry and academia

and may be advantageous for identifying novel molecular entities with favorable in vitro pro-

files before translation to in vivo investigations. This is in part due to the possibility to test

drug candidates non-invasively in several types of cellular backgrounds, including primary cell

cultures.

The dynamic mass redistribution (DMR) assay is based on an optical biosensor technology,

and was recently developed to monitor receptor signaling responses including those mediated

by GPCRs (for details on the method see [23, 24]). It has already been applied to study the

pharmacological properties of new ligands acting at various GPCRs such as the urotensin-II

[25], β2 adrenergic [26, 27], muscarinic M3 [28], purinergic P2Y [29], formyl peptide [30], and

protease activated [31, 32] receptors. Classical opioid receptors, the mu [33], kappa and delta

receptors [34], were also evaluated with DMR. No data are yet available for the NOP receptor.

Thus, in the present study we performed a systematic pharmacological characterization of the

NOP receptor using a label-free optical DMR-based biosensor, cells expressing the human

NOP receptor, and a large panel of NOP ligands with a wide spectrum of pharmacological

activities.

NOP receptor pharmacological profile - A DMR study
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Materials and methods

Drugs and reagents

The peptides N/OFQ, N/OFQ(1–13)-NH2, UFP-112, UFP-101, [F/G]N/OFQ(1–13)-NH2,

[Nphe1]N/OFQ(1–13)-NH2, [Arg14,Lys15]N/OFQ, Ac-RYYRIK-NH2, and PWT2-N/OFQ

were synthesized in house following previously described procedures [35, 36]. The non-pep-

tide molecules Ro 65–6570, C-24, and J-113397 were synthesized in our laboratories. SB-

612111 and naloxone were from Tocris bioscience (Bristol, UK). AT-090 and AT-127 were

provided by N Zaveri (Astraea Therapeutics, Mountain View, USA). Pertussis toxin was from

Sigma (Taufkirchen, DE). Hanks balanced salt solution (HBSS) was from Invitrogen (Darm-

stadt, DE), HEPES was from Applichem (Darmstadt, DE). All tissue culture media and supple-

ments were from Invitrogen (Darmstadt, DE) and were of the highest purity available.

Concentrated solutions of ligands were made in ultrapure water or dimethyl sulfoxide and

kept at—20˚C until use.

Cells

Chinese Hamster Ovary (CHO) cells stably expressing the human NOP receptor (CHONOP)

were kindly provided by D.G. Lambert (University of Leicester, UK). CHOdelta were supplied

by E Varga (The University of Arizona, USA), CHOmu and CHOkappa were both provided by L

Toll (Torrey Pines Institute for Molecular Studies, Port St. Lucie, USA), CHO cells were used

as control. Cells were cultured in Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12

(DMEM/F12) supplemented with 10% (v/v) Fetal Calf Serum (FCS), 100 U/ml penicillin,

100 μg/ml streptomycin, 2 mM L-glutamine, 15 mM HEPES. The medium was supplemented

with 400 μg/ml G418 to maintain expression.

Experimental protocol

For DMR measurements the label-free EnSight Multimode Plate Reader (Perkin Elmer, MA,

US) was used. Cells were seeded at 12,000 cells/well onto fibronectin-coated 384 well DMR

microplates and cultured for 20 h to obtain confluent monolayers. Cells were starved in assay

buffer (Hank’s Balanced Salt Solution (HBSS) with 20 mM HEPES, 0.01% Bovine Serum Albu-

min (BSA) fraction V) for 1 hr prior the addition of compounds. Serial dilutions were made in

the assay buffer. After reading baseline, compounds were added using a semiautomatic liquid

handler Selma (Analytik Jena AG, Jena, DE). Online additions of 10 μL compounds were car-

ried out in a volume of 30 μl/well. Antagonists were incubated 30 min before agonist injection,

then DMR changes were recorded for 3000 sec. Agonists responses represented in traces were

described as picometer (pm) shifts over time (sec) following baseline normalization. Maxi-

mum picometers (pm) modification (Peak) and area under the curve (AUC) were used to gen-

erate concentration response curves. All the experiments were carried out at 37˚C. For a

detailed description of the methods see [24] and [37]

Data analysis

All the data were elaborated using Graph Pad Prism 6.0 (La Jolla, CA, US). Concentration

response curves were fitted by log logistic four parameter equation. Data are expressed as

mean + or ± sem of n experiments and were analyzed statistically using one-way analysis of

variance followed by Dunnett’s test for multiple comparisons. Agonist potencies are given as

pEC50 i.e. the negative logarithm to base ten of the molar concentration of an agonist that pro-

duces half of the maximal effect. Agonist maximal effect, i.e. the maximal effect that an agonist

can elicit in a given preparation under particular experimental conditions, has been also

NOP receptor pharmacological profile - A DMR study
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expressed as intrinsic activity (α) by dividing the Emax of the agonist under study by that elic-

ited by the reference full agonist (N/OFQ) in parallel experiments. Antagonists were assayed at

single concentrations against the concentration-response curve to the agonist and their poten-

cies expressed as pKB according to the following equation: pKB = log(CR-1)-log[A], where CR

is the ratio between agonist potency (expressed as EC50) in the presence and absence of antago-

nist and [A] is the molar concentration of antagonist. KB refers to the equilibrium dissociation

constant of a ligand determined by means of a functional assay [38]. In a separate series of

experiments SB-612111 was tested using the classical Schild protocol.

Results

Cellular effects of the endogenous peptide N/OFQ were measured over time at increasing con-

centrations applying the DMR technology; at 1 μM the signal-to-noise ratio calculated was in

the range 4–4.5. N/OFQ effects were thereafter computed in sigmoidal curves as peaks and

areas under the curve (AUC); similar values of potency were obtained by fitting the two

parameters (pEC50 8.33 and 8.73, respectively) (Fig 1A and 1B). For simplicity concentration

response curves to NOP agonists are later presented as DMR peaks. To confirm the prevalent

Gi/o nature of the N/OFQ-stimulated DMR responses, N/OFQ effects were measured after 20

h pretreatment with 200 ng/mL PTX. The Gi/o selective ADP-ribosylator largely diminished

the N/OFQ DMR signal confirming the signaling preferences of the NOP receptor (Fig 1C and

1D). Importantly, N/OFQ was completely inactive when tested in wild type CHO cells

(Table 1).

DMR effects of NOP full and partial agonists

The rank order of potency of selective agonists was determined in the DMR assay by studying

a panel of NOP ligands encompassing full and partial agonist activity together with the endog-

enous peptide N/OFQ (Fig 2A). N/OFQ(1–13)-NH2, a peptide constituted by the minimal

sequence maintaining the same activity as N/OFQ, mimicked the stimulatory effects of the

endogenous peptide with similar potency (pEC50 8.80) and efficacy (Emax 267) (Fig 2C). The

N/OFQ derivatives [Arg14,Lys15]N/OFQ and UFP-112 also displayed similar effects as N/OFQ

showing comparable high potency (pEC50 8.63 and 8.66) and maximal effects (Emax 271 and

248) (Fig 2B and 2D). The effects of the recently developed N/OFQ tetrabranched peptide

PWT2-N/OFQ were tested up to 0.1 μM since at 1 μM this compound was active in wild type

CHO cells (Table 1) and potency and maximal effects estimated were similar to that of N/OFQ

(pEC50 ~ 8, Emax 198) (Fig 2E). The effects of the tetrabranched peptide appeared, in 3 out of

6 experiments, longer lasting than those elicited by N/OFQ. Of note, the Emax of PWT2-N/

OFQ calculated as AUC were not significantly, yet higher than those of N/OFQ (Fig 3B). Ro

65–6570, one of the most commonly used non-peptide NOP agonists, produced a concentra-

tion-dependent increase in the DMR signal without reaching the stimulation plateau; the

application of higher concentrations of compound was not possible since Ro 65–6570 exhib-

ited a DMR response in wild type CHO cells when tested at 10 μM. The concentration

response curve for Ro 65–6570 was constrained to the estimated maximal effects and a value of

potency of ~ 7.3 was calculated (Fig 2F).

In Fig 4 DMR traces of NOP partial agonists are displayed and computed as concentration

response curves in comparison with N/OFQ (Fig 4A). The peptide [Nphe1]N/OFQ(1–13)-

NH2 stimulated the NOP receptor mimicking the effects of N/OFQ but with lower potency

(~30-fold) and maximal effects (Emax 180) (Fig 4B). The first N/OFQ related peptide showing

reduced efficacy, [F/G]N/OFQ(1–13)-NH2, concentration dependently stimulated DMR

effects with comparable potency (pEC50 8.06) as the endogenous peptide (Fig 3C). The

NOP receptor pharmacological profile - A DMR study
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hexapeptide Ac-RYYRIK-NH2 evoked a concentration dependent stimulation of the NOP

receptor with estimated potency approximately 10-fold higher than N/OFQ and similar maxi-

mal effects (Emax 182) (Fig 4D). The recently characterized non-peptide agonists AT-090 and

AT-127 showed high potency (pEC50 8.40 and 7.97) and maximal effects (Emax 252 and 191)

(Fig 4E and 4F).

In a separate series of experiments, the nature of the NOP-DMR signal elicited by full and

partial agonists was investigated by testing the ligands at the single concentration of 1 μM

(with the exception of PWT2-N/OFQ that was tested at 0.1 μM) in cells treated with PTX (Fig

5). The effects of all compounds were largely blunted by toxin pretreatment with residual

DMR signal ranging from 15 to 40% of the control response (Fig 5L).

Comparison of the effects of high concentrations of ligands in wild type CHO and CHONOP

cells is shown in Table 1.

Fig 1. Concentration response curve to N/OFQ (10 pM– 1 μM) in the absence (panels A and B) and presence of 200 ng/mL PTX (panels C and D). Baseline

corrected DMR representative tracings are shown in panels A and C and concentration response curves in panels B and D. Sigmoidal curves to N/OFQ computed as

peak and AUC are shown as mean + sem of at least 3 experiments performed in triplicate (panel B).

https://doi.org/10.1371/journal.pone.0203021.g001
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DMR effects of antagonists at the NOP and classical opioid receptors

Finally, the effects of the classical opioid receptor antagonist naloxone, and the NOP receptor

antagonists UFP-101, J-113397, SB-612111, C-35, and C-24 were tested (at fixed concentra-

tions of 1 μM) against the concentration response curve to N/OFQ. These compounds did not

produce any effect per se in CHONOP cells with the exception of UFP-101 which elicited a

stimulatory effect approximately corresponding to 20% of the maximal effects of N/OFQ (S1

Fig). All the compounds elicited a rightward shift of the concentration response curve to N/

OFQ (Fig 6) with estimated pKB values of 7.60, 7.65, 8.25, 8.07, and 8.30 for UFP-101, J-

113397, SB-612111, C-35, and C-24, respectively. The antagonists caused a slight depression of

the N/OFQ maximal effects at the concentrations tested. On the contrary naloxone did not

modify the concentration response curve to N/OFQ. The opioid antagonist was also tested in

cells expressing the classical opioid receptors against the standard agonists dermorphin (pEC50

8.59), DPDPE (pEC50 9.22), and dynorphin A (pEC50 9.39) for mu, delta, and kappa receptors,

respectively. Naloxone shifted to the right the concentration response curves to opioid agonists

without affecting their maximal effects with estimated pKB values of 8.37 at mu, 7.53, at delta,

and 7.35 at kappa opioid receptor (Fig 7).

The antagonist nature of SB-612111 was further characterized by the classical Schild proto-

col by challenging the concentration-response curve to N/OFQ with increasing concentrations

Table 1. DMR responses to high concentrations of ligands in CHO and CHONOP cells.

CHO CHONOP

(pm ± sem) (pm± sem)

N/OFQ 23±9 205±29�

N/OFQ(1–13)NH2 21±8 267±17�

[Arg14,Lys15]N/OFQ 40±20 271±16�

UFP-112 25±7 248±38�

PWT2-N/OFQ 0.1 μM 24±5 198±55�

PWT2-N/OFQ 1 μM 467±23� ~ 350�

[Nphe1]N/OFQ(1–13)NH2 20±6 180±21�

[F/G]N/OFQ(1–13)NH2 24±2 200±17�

UFP-101 25±6 ~ 40

Ac-RYYRIK-NH2 17±8 182±11�

Ro 65–6570 23±8 210±19�

AT-090 21±3 252±15�

AT-127 20±4 191±5�

SB-612111 26±3 -10±9

J-113397 17±8 5±16

C-35 16±4 -9±14

C-24 21±5 -13±15

Dermorphin 35±12 25±20

DPDPE 21±5 12±13

Dynorphin A 7±4 32±14

Naloxone 23±5 15±12

FSK -172±23� -164±15�

ATP 177±15� 185±12�

Buffer 18±10 12±22

PWT2-N/OFQ was tested at 0.1 and 1 μM, FSK and ATP at 100 μM, all the other compounds at 1 μM.

�p < 0.05 vs buffer according to one-way ANOVA followed by the Dunnett’s test for multiple comparisons.

https://doi.org/10.1371/journal.pone.0203021.t001
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of the antagonist. SB-612111 rightward shifted the agonist curve without significantly affecting

its maximal effects; a pA2 of 7.84 and a slope value close to 1 were obtained from the relative

Schild plot (Fig 8).

In a separate series of experiments, the effects of increasing concentrations of N/OFQ and

Ac-RYYRIK-NH2 were studied in the absence and presence of SB-612111 (1 μM), The antago-

nist produced a similar dextral displacement of the concentration response curve to N/OFQ

and Ac-RYYRIK-NH2 and the calculated pKB values were 7.53 and 7.21, respectively (Fig 9).

Pharmacological parameters of the NOP ligands investigated in the present study have been

schematically summarized in Table 2.

Discussion

In the present study we have used the DMR technique that allows an integrated non-invasive

measurement of cellular function, to investigate the pharmacological profile of the human

NOP receptor in recombinant cells. A panel of peptide and non-peptide selective NOP ligands

Fig 2. Concentration response curve to N/OFQ (panel A), [Arg14,Lys15]N/OFQ (panel B), N/OFQ(1–13)-NH2 (panel C), UFP-112 (panel D), PWT2-N/OFQ

(panel E), and Ro 65–6570 (panel F). Representative raw DMR tracings are represented on the left of each panel and average sigmoidal curves on the right. Data are

mean + sem of at least 3 separate experiments performed in triplicate.

https://doi.org/10.1371/journal.pone.0203021.g002
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with a wide range of potency and efficacy, from full agonism to pure antagonism were studied.

PTX experiments revealed that NOP signaling in CHO cells is largely yet not exclusively due

to Gi/o coupling. The DMR pharmacological profile of the NOP receptor in terms of rank

order of potency of full and partial agonists and apparent affinity of selective antagonists is

similar although not identical to that reported in the literature using standard assays for Gi/o

coupled receptors.

N/OFQ stimulated the DMR response in CHONOP cells but not in CHO cells demonstrat-

ing that this signal exclusively derives from the interaction of N/OFQ with the NOP receptor

protein. The same is true for all the agonists evaluated since we selected their concentration

range based on lack of DMR signal in CHO cells. Regarding the transduction pathway

involved in the NOP dependent DMR signal, pretreating the cells with PTX largely inhibited

the DMR signal elicited by N/OFQ. Consistently, the DMR response to all NOP agonists were

depleted by toxin treatment, to a larger extent for partial than full agonists. This result demon-

strated that in CHO cells the DMR signal is mainly, albeit not completely, due to NOP cou-

pling with G proteins of the Gi/o family. PTX treatment is known to block most of the

inhibitory Gα proteins through ADP-ribosylation of a Cys351 residue [39]. Importantly, previ-

ous reports described that the NOP receptor is able to couple to PTX-insensitive G proteins

such as Gz and G16 [40], but also to G12 and G14 [41]. However the PTX resistant DMR signal

elicited by N/OFQ as well as NOP agonists in CHO cells is too small to investigate further. In

the future we will look for cells (possibly expressing the native NOP receptor) in which the Gi/o

independent component of the DMR signal in response to N/OFQ is large enough to be inves-

tigated in deconvolution studies. Moreover, despite mechanistic details of arrestin catalytic

Fig 3. Comparison of potencies (pEC50 + CL95%, panel A) and maximal effects (α+ SD, panel B) of NOP receptor agonists obtained by computing

maximal DMR peaks or areas under the curve (AUC).

https://doi.org/10.1371/journal.pone.0203021.g003
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activation are now being described [42], the lack of functional G proteins does not allow for

arrestin-mediated signaling. [43]. Therefore these deconvolution studies will be validated by

employing CRISPR/Cas9-edited cells lacking in turn G proteins or arrestins.

The DMR response to NOP activation by a series of NOP full agonists including the pep-

tides N/OFQ(1–13)-NH2 [36], [Arg14, Lys15]N/OFQ [44], and UFP-112 [45], the N/OFQ tetra-

branched derivative PWT2-N/OFQ [46], and the non-peptide molecule Ro 65–6570 [47] was

investigated in the first series of experiments. These compounds mimicked the stimulatory

effects of N/OFQ with similar maximal effects. Thus, in line with the original findings these

molecules behave as full agonists at the NOP receptor. As far as agonist potency is concerned

the following rank order has been measured:

N=OFQð1� 13Þ� NH2 � ½Arg14; Lys15�N=OFQ ¼ UFP� 112 > N=OFQ � PWT2� N=OFQ
> Ro 65� 6570:

Fig 4. Concentration response curve to N/OFQ (panel A), [Nphe1]N/OFQ (panel B), [F/G]N/OFQ(1–13)-NH2 (panel C), Ac-RYYRIK-NH2 (panel D), AT-090

(panel E), and AT-127 (panel F). Representative raw DMR tracings are represented on the left of each panel and average sigmoidal curves on the right. Data are mean +

sem of at least 3 separate experiments performed in triplicate.

https://doi.org/10.1371/journal.pone.0203021.g004
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Fig 5. Representative DMR traces for NOP receptor agonists (panels A-K) tested at 1 μM or at 0.1 μM (PWT2-N/OFQ, panel E), in

the absence and presence of 200 ng/mL PTX. The effects of the same compounds are reported as DMR peaks in the absence and in

the presence of 200 ng/mL PTX in panel L. Data in panel A-K are mean + sem of a single experiment performed in triplicate. Data

in panel L are mean + SD of 3 separate experiments performed in triplicate.

https://doi.org/10.1371/journal.pone.0203021.g005
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This is in general in line with literature reports (see Table 2 of [3] that summarizes the

action of these compounds in various assays/preparations at human recombinant and rodent

Fig 6. Concentration response curve to N/OFQ in the absence and presence of 1 μM UFP-101 (panel A), J-113397 (panel B), SB-612111 (panel C), C-35 (panel D),

C-24 (panel E), and naloxone (panel F). Data are mean + sem of at least 3 separate experiments performed in triplicate.

https://doi.org/10.1371/journal.pone.0203021.g006

Fig 7. Concentration response curve to dermorphin (panel A), DPDPE (panel B), and dynorphin A (panel C) in the absence and presence of 100 nM naloxone.

Data are mean + sem of 3 separate experiments performed in triplicate.

https://doi.org/10.1371/journal.pone.0203021.g007
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native NOP receptors). However, there are some aspects that deserve attention. PWT2-N/

OFQ has been reported to be more potent than N/OFQ in receptor binding, stimulated

GTPγS binding, bioassay experiments [46] and more recently in a BRET based assay measur-

ing NOP/G protein interaction [5]. In the present study the potency of PWT2-N/OFQ could

not be precisely estimated since the compound produced off target effects at micromolar con-

centrations. This observation implies a certain loss of selectivity due to application of the PWT

chemical modification to the N/OFQ peptide sequence and this is in line with bioassay studies

Fig 8. Concentration-response curves to N/OFQ in absence and presence of increasing concentrations (10 nM– 1 μM) of SB-612111 (panel A). The corresponding

Schild plot is shown in panel B. Data are mean + sem of 3 separate experiments performed in triplicate.

https://doi.org/10.1371/journal.pone.0203021.g008

Fig 9. Concentration response curve to N/OFQ (panel A) and Ac-RYYRIK-NH2 (panel B) in the absence and presence of 1 μM

SB-612111. Data are mean + sem of at least 3 separate experiments performed in triplicate.

https://doi.org/10.1371/journal.pone.0203021.g009
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in NOP knockout tissues where off target effects were observed with PWT2-N/OFQ but not

N/OFQ [46]. PWT2-N/OFQ behavior in cells expressing the NOP receptor is interesting. In

fact, in three out of six experiments, the tetrapeptide displayed a DMR response over time

more sustained than N/OFQ. This is reminiscent of the behavior of this ligand in bioassay

experiments where PWT2-N/OFQ elicited slow developing, long lasting and wash resistant

effects [35]. Similar findings were obtained with different PWT peptides [48]. This feature, i.e.

longer-lasting binding to the receptor, has been interpreted considering the mechanisms pro-

posed to explain the mode of action of multivalent ligands that include receptor clustering,

cooperative binding, rebinding and subsite binding [49]. This aspect of PWT2-N/OFQ action

can be important since long lasting receptor binding contributes to prolongation of the dura-

tion of action (and eventually an increase in effect) in vivo [50]. As a matter of fact, in vivo

PWT2-N/OFQ mimicked the spinal antinociceptive effects of the N/OFQ in models of noci-

ceptive and neuropathic pain in mice and in non-human primates displaying approximately

40-fold higher potency and a remarkably prolonged duration of action [51]. Moreover when

injected supraspinally in mice PWT2-N/OFQ stimulated food intake being 40 fold more

potent than N/OFQ and eliciting larger effects [35].

Table 2. Agonist potencies (pEC50) and intrinsic activity (α), and antagonist potencies (pKB) of the compounds

tested in the CHONOP cell DMR assay.

pEC50 α pKB

N/OFQ 8.33

(7.63–9.04)

1.00

N/OFQ(1–13)NH2 8.80

(8.07–9.53)

1.30

[Arg14,Lys15]N/OFQ 8.63

(7.48–9.77)

1.32

UFP-112 8.66

(7.47–9.84)

1.21

PWT2-N/OFQ ~8.00 0.97

[Nphe1]N/OFQ(1–13)NH2 6.88

(5.80–7.96)

0.88

[F/G]N/OFQ(1–13)NH2 8.06

(7.48–8.64)

0.98

Ac-RYYRIK-NH2 9.30

(8.49–10.12)

0.89

Ro 65–6570 ~7.30 1.02

AT-090 8.40

(7.46–9.34)

1.23

AT-127 7.97

(7.42–8.17)

0.93

UFP-101 crc incomplete 7.60

(7.44–7.76)

SB-612111 inactive 8.25

(7.98–8.53)

J-113397 inactive 7.65

(7.45–7.85)

C-35 inactive 8.07

(7.90–8.24)

C-24 inactive 8.30

(8.04–8.57)

Inactive means that up to 1 μM the compound did not promote any DMR response.

https://doi.org/10.1371/journal.pone.0203021.t002
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A more detailed comparison of the present data with the literature shows that highly potent

peptide agonists such as [Arg14, Lys15]N/OFQ and particularly UFP-112 were 10 to 30 fold

more potent than N/OFQ in stimulated GTPγS binding and NOP/G protein interaction exper-

iments while in the DMR assay this difference in potency is limited to 2 fold. Possibly differ-

ences in signal amplification, receptor desensitization and internalization between the assays

may account for these differences.

In the second set of experiments a series of compounds with known partial agonist activity

at the NOP receptor, the peptides [F/G]N/OFQ(1–13)-NH2 [52] and Ac-RYYRIK-NH2 [53]

and the non peptides AT-090 and AT-127 [54], were evaluated. In the DMR assay all these

compounds produced maximal effects that were not statistically different to those of N/OFQ.

Similar results were obtained in calcium mobilization studies performed in cells co-expressing

the NOP receptor and chimeric G proteins [54, 55]. On the contrary these same compounds

consistently displayed significantly lower efficacy than N/OFQ in GTPγS binding and NOP/G

protein interaction experiments [3, 5, 54]. As discussed in [56], this apparent discrepancy is

probably due to the fact that the estimated efficacy of partial agonists strongly depends on the

efficiency of the stimulus–response coupling which is different in the different assays. When

the signal amplification phenomena make the efficiency of the stimulus–response coupling

high, as in the case of DMR and calcium mobilization, ligand efficacy is overestimated. On the

other hand, when there is little or no amplification and the efficiency of the stimulus-response

coupling is low, as in the case of GTPγS binding and NOP/G protein interaction, ligand effi-

cacy is underestimated. This phenomenon has been investigated in detail using a NOP-induc-

ible expression system where the efficacy partial agonists could be manipulated to encompass

full and partial agonism along with pure antagonism by changing the number of membrane

receptors [57]. Importantly this does not happen only in recombinant systems but also when

the receptor is investigated in a physiologically relevant environment. In fact [F/G]N/OFQ(1–

13)-NH2 has been reported to act as a NOP antagonist in the electrically stimulated mouse vas

deferent [52] and as a NOP full agonist in the mouse colon [58]. Interestingly, in vivo the com-

pound acted as full agonist in the tail withdrawal assay [59], as partial agonist when measuring

locomotor activity [60] and as a pure antagonist in the cardiovascular system, blocking N/

OFQ-induced bradycardia and hypotension [61] in mice.

As far as potency of partial agonist is concerned the following rank order has been mea-

sured:

Ac� RYYRIK� NH2 > AT� 090 > ½F=G�N=OFQð1� 13Þ� NH2 ¼ AT� 127;

that perfectly matches previous results reported in the literature [3, 54].

In addition, evidence of negative DMR traces has been observed for some of the agonists

tested in some but not all of the experiments carried out, e.g. Ac-RYYRIK-NH2 displayed, in

some but not all of the experiments carried, a concentration dependent negative signal after

1000 sec with potency values determined at negative peaks being superimposable to those at

positive peaks. The reasons for this action of Ac-RYYRIK-NH2 are unknown.

It is worthy of mention that previous photo-affinity labelling experiments demonstrated

that the NOP binding pocket for Ac-RYYRIK-NH2 [62] and for N/OFQ [63] are distinct

although overlapping, and this may favor the selection of different conformations and eventu-

ally coupling of the NOP receptor in response to these ligands. However, DMR responses to

N/OFQ and Ac-RYYRIK-NH2 were equally sensitive to PTX and to the NOP selective antago-

nist SB-612111. These results exclude, at least under the present conditions, major differences

in the way Ac-RYYRIK-NH2 activates the NOP receptor in comparison to the natural ligand

N/OFQ.
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Finally a panel of NOP antagonists including [Nphe1]N/OFQ(1–13)-NH2 [64], UFP-101

[65], J-113397 [66], SB-612111 [67], C-24 [68], and C-35 [69] were tested in DMR experiments

per se and against the stimulatory effects elicited by N/OFQ. All non-peptide compounds did

not modify per se the DMR baseline, while [Nphe1]N/OFQ(1–13)-NH2 and UFP-101 elicited

a stimulatory action with maximal effects of 0.88 and 0.20 (N/OFQ = 1.00). A substantial body

of evidence reviewed in [70] demonstrated the in vitro and in vivo NOP antagonist features of

[Nphe1]N/OFQ(1–13)-NH2 and UFP-101. However there are also some limited results that

suggest the elimination of ligand efficacy by the Phe1 / Nphe1 substitution might not be com-

plete. In fact, sodium and GTP concentrations affected the potency of [Nphe1]N/OFQ(1–13)-

NH2 in a manner similar to that of agonists (N/OFQ) but not of pure antagonists (J-113397).

In electrophysiological experiments, C-24 or Trap-101 behaved as pure antagonists in control

neurons and as inverse agonists in neurons microinjected with a NOP receptor coding plas-

mid. In contrast, UFP-101 acted as an antagonist in control cells while it displayed partial ago-

nist behavior in transfected neurons [71]. Finally, it has been recently reported that both

[Nphe1]N/OFQ(1–13)-NH2 and UFP-101 displayed some residual agonists activity (0.55 and

0.14, respectively) in a BRET NOP/G protein interaction assay [5]. The amount of agonist

activity of [Nphe1]N/OFQ(1–13)-NH2 did not allow antagonist experiments to be performed

with this compound while UFP-101, together with non peptide molecules, was further investi-

gated for its ability to counteract N/OFQ stimulated DMR responses. All compounds pro-

duced a dextral displacement of the concentration response curve to N/OFQ with the

following rank order of antagonist potency:

C� 24 � SB� 612111 � C� 35 > J� 113397 � UFP� 101

which is in agreement with data in the literature [3]. Importantly, in line with a large body of

evidence the action of N/OFQ at the NOP receptor was not antagonized by naloxone. The

antagonist nature of SB-612111 has also been investigated using the classical Schild analysis

confirming the competitive nature of this NOP receptor selective antagonist [5, 67, 72, 73].

Moreover, the same panel of NOP antagonists has been recently evaluated in parallel experi-

ments performed with a BRET NOP/G protein interaction assay obtaining superimposable

results. Interestingly, antagonist potency correlated with ability to induce receptor stability

and crystallogenesis. Using this screening strategy, two structures of NOP in complex with

candidate ligands SB-612111 and C-35 were solved [7] and compared to that previously

obtained using C-24 [6].

Collectively the results obtained in this study demonstrated that the DMR assay can be suc-

cessfully used to investigate the pharmacology of the NOP receptor, to characterize the effects

of novel NOP receptor ligands, and to explore their signaling profile. In general this study con-

firms and extends previous findings (see studies quoted in the introduction section) demon-

strating the usefulness of the DMR as an “integrative pharmacology” approach to be used to

complement reductionist signaling pathway based approaches [74]. The potential value of the

DMR assay goes far beyond its utility for basic pharmacology and drug screening investiga-

tions. In fact, the DMR assay can be used for investigating cell sensitivity to endogenous signals

and drugs in cell lines expressing the native receptor or in primary cultured cells obtained

from normal animals and models of pathology. In the longer-term, DMR studies can be per-

formed comparing cellular responses in primary culture cells from normal subjects and from

patients, from patients at different stages of disease and from patients treated with different

drugs. These kinds of studies will contribute to the translational of medicine knowledge thus

reducing the gap between discoveries in biomedical science and their safe and effective clinical

application.
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