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1 Incremental constitutive equations and dynamic
Green’s functions

When plane strain conditions prevail, the constitutive equation of a hyperelastic
incompressible material can be expressed as

ṫij = Kijklvl,k + ṗδij, vi,i = 0, (1)

where indices range between 1 and 2, vi is the incremental displacement, ṫij is
the incremental unsymmetric Piola stress, ṗ the incremental, in-plane mean stress
and δij the Kronecker delta. The fourth-order tensor Kijkl of the instantaneous
moduli, possesses the major symmetry Kijkl = Kklij, and its non-null components
are defined as

K1111 = µ∗ −
σ

2
− p, K1122 = −µ∗, K1112 = K1121 = 0,

K2211 = −µ∗, K2222 = µ∗ +
σ

2
− p, K2212 = K2221 = 0,

K1212 = µ+
σ

2
, K1221 = K2112 = µ− p, K2121 = µ− σ

2
,

(2)

where µ and µ∗ are two incremental shear moduli, respectively parallel and in-
clined at 45◦ with respect to the x1−axis, and the prestress parameters σ and p
are the in-plane deviatoric and mean stresses, functions of the principal Cauchy
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stresses, respectively, defined as

σ = σ1 − σ2, p =
σ1 + σ2

2
. (3)

The equations of incremental motion can be written as

ṫij,i + ḟj = ρ
∂2vj
∂t2

, (4)

where ρ is the mass density, ḟj the incremental body force, and t denotes the
time. Considering a time-harmonic motion with circular frequency Ω, the incre-
mental displacement field vi(x) exp(−iΩt) can be derived from a stream function
ψ(x) exp(−iΩt), introduced as

v1 = ψ,2, v2 = −ψ,1. (5)

A substitution of equation (1) and (5) in equation (4) leads to the differential
equation

(1 + k)ψ,1111 + 2 (2ξ − 1)ψ,1122 + (1− k)ψ,2222 +
ḟ1,2

µ
− ḟ2,1

µ
+

+
ρ

µ
Ω2 (ψ,11 + ψ,22) = 0, (6)

where the parameters k and ξ are respectively the dimensionless deviatoric pre-
stress and the dimensionless parameter quantifying the amount of orthotropy

k =
σ

2µ
, ξ =

µ∗
µ
. (7)

The differential equation (6), defines the regime classification in terms of the
following coefficients

γ1

γ2

}
=

1− 2µ∗/µ±
√

(1− 2µ∗/µ)2 + k2 − 1

1 + k
. (8)

The coefficients (8) can assume two real and negative values (in the so-called
‘elliptic imaginary regime’ denoted by EI) or two complex-conjugate values (in
the so-called ‘elliptic complex regime’ denoted by EC), so that they can belong
only to elliptic range, to which the present study is restricted.

The elliptic regime is constrained by the Hill condition for a tensile prestress,
that excludes every incremental bifurcation [1, 8], and is expressed as (for µ > 0)

0 < p/µ < 2ξ,
k2 + (p/µ)2

2p/µ
< 1, (9)
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while for compressive prestress, a surface instability occurs when [1, 9]

4ξ − 2p/µ =
(p/µ)2 − 2p/µ+ k2

√
1− k2

. (10)

By solving equation (6), considering the body force as a Dirac delta function
ḟjδ(x), the incremental displacement ṽgi in the transformed domain of a plane-
wave expansion [2] can be found in the form

ṽgi (ω · x) =
(δ1iω2 − δ2iω1)(δ1gω2 − δ2gω1)

L(ω)
[Ci(η | ω · x |) cos (η ω · x)+

+Si(η ω · x) sin (η ω · x)− iπ
2

cos (η ω · x)],

(11)

where Ci and Si are the cosine integral and sine integral functions, respectively,
and

L(ω) = µ(1 + k)ω4
2

(
ω2

1

ω2
2

− γ1

)(
ω2

1

ω2
2

− γ2

)
> 0, (12)

with
η = Ω

√
ρ

L(ω)
. (13)

The infinite-body Green’s function can be expressed in a final form as

vgi (x) = − 1

4π2

∮
|ω=1|

ṽgi (ω · x)dω, (14)

and its gradient as

vgi,k(x) = − 1

4π2

∮
|ω|=1

ṽgi,k(ω · x)dω, (15)

where
ṽgi,k(ω · x) = ωk

δig − ωiωg

L(ω)

[
1

ω · x − ηΞ(ηω · x)

]
(16)

and
Ξ(α) = sin(α)Ci(|α|)− cos(α)Si(α)− iπ

2
sin(α). (17)

Finally the Green’s function for incremental nominal stresses can be derived from
the constitutive equations (1) as

ṫg11 = (2µ∗ − p) vg1,1 + π̇g, ṫg12 = (µ− p) vg1,2 + (µ+ µk) vg2,1,

ṫg21 = (µ− p) vg2,1 + (µ− µk) vg1,2, ṫg22 = − (2µ∗ − p) vg1,1 + π̇g.
(18)
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2 The J-2 deformation theory of plasticity
The J2–deformation theory of plasticity can be expressed in plane strain through
the constitutive equation [10]

σ1 − σ2 = K

(
2√
3

)N+1

|ε1|N−1ε1, (19)

where K is a stiffness parameter, N ∈ (0, 1] a hardening exponent and ε1 = −ε2

are the logarithmic strains, related to the principal stretches λ1 = 1/λ2 via ε1 =
log λ1 = −ε2 = − log λ2. The incremental moduli µ and µ∗, defining equation
(1), follow as

µ =
1

3
Es (ε1 − ε2) coth (ε1 − ε2), µ∗ =

1

9

Es

ε2
e

[
3(ε1 + ε2)2 +N(ε1 − ε2)2], (20)

where Es is the secant modulus to the effective-stress/effective-strain curve, given
by

Es = K

(
2√
3

)N−1

|ε1|N−1. (21)

The parameters (7) for a J2–deformation theory, can be written in the form

k =
1

coth(2ε1)
, ξ =

N

2ε1 coth(2ε1)
. (22)

3 The integral equation for a shear band
The shear band can be idealized with a discontinuity surface across which the
incremental quantities can suffer finite jumps. In particular, by introducing the
jump operator [[ ]] as

[[g]] = g+ − g−, (23)

[where g+ and g− denote the limits approached by the field g(x) at the discon-
tinuity surface], the boundary conditions holding along the shear band are the
following:

• Null incremental nominal shearing tractions:

t̂21(x̂1, 0
±) = 0, ∀|x̂1| < l. (24)

• Continuity of the incremental nominal traction orthogonal to the shear
band:

[[t̂22(x̂1, 0)]] = 0, ∀|x̂1| < l. (25)
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• Continuity of the incremental displacement component orthogonal to the
shear band:

[[v̂2(x̂1, 0)]] = 0, ∀|x̂1| < l, (26)

related to the reference systems x̂1 − x̂2 aligned parallel to the shear band. Note
that the above conditions do not correspond to a sliding surface [5].

The incremental displacement of a time-harmonic motion, with circular fre-
quency Ω, is described by an incident plane wave with phase velocity c in a
direction defined by the unit propagation vector p and assuming the form [11]

vinc = Adei
Ω
c

(x · p−ct), (27)

where A is the amplitude and d is the direction of motion. Since the wave (27)
propagates in an incompressible material, isochoricity implies

d · p = 0, (28)

so that the incident wave is transverse, with the motion orthogonal to the propa-
gation direction. A substitution of equation (27) into equation (6), written with
ḟ1,2 = ḟ2,1 = 0, and use of equation (28) yield the following expression for the
wave speed

c2 =
µ

ρ

[
(1 + k)p4

1 + 2 (2ξ − 1) p2
1p

2
2 + (1− k)p4

2

]
, (29)

which, setting p1 = cos β and p2 = sin β and

c1 =
√
µ(1 + k)/ρ, (30)

provides
c(β) = c1 sin2 β

√
(cot2 β − γ1) (cot2 β − γ2). (31)

A scattered incremental displacement field vsc(x)e−iΩt is generated by the inter-
action of the incident wave with the shear band such that the total incremental
displacement field v(x)e−iΩt is represented as the sum

v = vinc + vsc. (32)

The scattered field vsc satisfies an extension of the Betti identity [2]

vscg (y) =

∫
∂B

(
ṫijniv

g
j (x,y)− ṫgij(x,y)nivj

)
dlx, (33)

where ∂B represents the boundary of the shear band, which is made up of the two
surfaces of the shear band with length 2l, and external unit normals of opposite
sign, so that equation (33) can be specialized for a shear band in the form

vscg (y) = −
∫ l

−l

(
[[ṫij]]niv

g
j (x̂1,y)− ṫgij(x̂1,y)ni[[vj]]

)
dx̂1. (34)
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Due to the boundary conditions (24)–(25), the integral equation reduces to

vscg (y) =

∫ l

−l
ṫgij(x̂1,y)ni[[vj]] dx̂1, (35)

which provides the incremental displacement at every point in the body as func-
tion of the jump of the incremental displacement [[vj]] across the shear band.

The gradient of the incremental displacement can be derived from the integral
equation (35) as

vscg,k(y) = −
∫ l

−l
ṫgij,k(x̂1,y)ni[[vj]] dx̂1, (36)

so that from the constitutive equations (1) the incremental stress can be written
as

ṫsclm(y) = −Klmkg

∫ l

−l
ṫgij,k(x̂1,y)ni[[vj]] dx̂1 + ṗ(y)δlm. (37)

In order to evaluate the unknown incremental displacement jump [[vj]], the
source point y is assumed to approach the shear band boundary. Denoting with
s the unit vector tangent to the shear band, the boundary condition at the shear
band become

n · ṫ(sc)s = −n · ṫ(inc)s, (38)
so that equation (35) can be rewritten as

t̂
(inc)
21 (y) = nlsmKlmkg

∫ l

−l
ṫgij,k(x̂1,y)ni[[vj]] dx̂1. (39)

Equation (39) represents the boundary integral formulation for the dynamics
of a shear band interacting with an impinging wave. The kernel of the integral
equation (39) is hypersingular of order r−2 as r → 0, being r the distance between
field point x and source point y, so it is specified in the finite-part Hadamard
sense.

The components of the vector of incremental displacements v in the reference
system x1–x2, can be expressed in the local inclined reference system x̂1–x̂2 as

v = Qv̂, [Q] =

[
cosϑ − sinϑ
sinϑ cosϑ

]
, (40)

so that, due to the boundary conditions (26)

[[vj]] = Qj1[[v̂1]] = sj[[v̂1]], (41)

equation (39) can be given the final form

t̂
(inc)
21 (y) = nlsmKlmkg

∫ l

−l
ṫgij,k(x̂1,y)nisj [[v̂1]] dx̂1, (42)

showing that the dynamics of a shear band is governed by a linear integral equa-
tion in the unknown jump of tangential incremental displacement across the shear
band faces, [[v̂1]].
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4 Collocation method
The integral equation (40) can be numerically solved by using a collocation tech-
nique with two different kinds of shape functions: quadratic for the elements
inside the shear band and quarter-point at the tips, Figure 1(a). The quarter-
point element is a quadratic element with the mid-node moved at the quarter of
the lenght of the element from the tip [13], so that the shape functions describe
the square root singularity present at the shear band tips, as is usual for the crack
tip problem [12, 14, 15]. The quadratic shape functions are

φ1 = 1− 3 ζ + 2 ζ2, (43)
φ2 = 4 ζ − 4 ζ2, (44)
φ3 = 2 ζ2 − ζ, (45)

while the shape functions for the quarter point element become

φ1 = 4
√
ζ − 4 ζ, (46)

φ2 = 2 ζ −
√
ζ. (47)

Hence, using a collocation method, a system of Q − 1 algebraic equations is
obtained which can be written in matrix form as follows{

t̂
(inc)
21

}
= [C] {[[v̂]]} . (48)

A validation of the numerical approach, is pursued through an analysis of a
shear band present in an isotropic material at null prestress, that can be com-
pared with a crack loaded in Mode II. Figure 1 (b) shows the results of the
normalized SIF function of the wavenumber, for three different inclinations of
the wave propagation vector (0, π/6, π/3). The solution obtained with quadratic
and quarter point elements (Q+QP, circle spots) is compared with an available
analytical solution [6] (solid lines), while another reported is based on linear and
square root shape functions [7] (L+SR, diamond spots). With a discretization
of 100 elements the errors related to the analytical solution is about 8% for the
mixed BEM with L + SR and about 0.2% for the collocation technique with
Q+QP employed in our study.
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