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the previous bounds for any n � 24.
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0. Introduction

The multiplication of two matrices is one of the most important operations in mathematics and

applied sciences. To determine the complexity of matrix multiplication is a major open question in

algebraic complexity theory.

Recall that the matrix multiplication Mn,l,m is defined as the bilinear map

Mn,l,m : Matn×l(C) × Matl×m(C) → Matn×m(C)

(X, Y) �→ XY,
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whereMatn×l(C) is the vector space of n× l complexmatrices. Ameasure of the complexity of matrix

multiplication, and of tensors in general, is the rank. For the bilinear map Mn,l,m this is the smallest

natural number r such that there exist a1, . . . , ar ∈ Matn×l(C)∗, b1, . . . , br ∈ Matl×m(C)∗ and

c1, . . . , cr ∈ Matn×m(C) decomposing Mn,l,m(X, Y) as

Mn,l,m(X, Y) =
r∑

i=1

ai(X)bi(X)ci

for any X ∈ Matn×l(C) and Y ∈ Matl×m(C).
In the caseof squarematrices the standardalgorithmgives anexpressionof the formMn,n,n(X, Y) =∑n3

i=1 ai(X)bi(X)ci. However Strassen showed that such algorithm is not optimal [5]. In this paper we

are concerned with lower bounds on the rank of matrix multiplication. The first lower bound 3
2
n2 was

proved by Strassen [6] and then improved by Bläser [1], who found the lower bound 5
2
n2 − 3n.

Recently Landsberg [2], building on work with Ottaviani [4], found the new lower bound 3n2 −
4n

3
2 −n. The core of Landsberg’s argument is the proof of the Key Lemma [2, Lemma 4.3]. In this paper

we improve the Key Lemma and obtain new lower bounds for matrix multiplication.

Our main result is the following.

Theorem 0.1. Let p � n
2
be a natural number. Then

rk(Mn,n,m) �
(
1 + p

p + 1

)
nm + n2 − (2p + 3)n. (0.1)

For example, when
√

n
2

∈ Z, taking p =
√

n
2

− 1, we get

rk(Mn,n,m) � 2nm + n2 − 2
√

2nm
1
2 − n.

When n = mwe obtain

rk(Mn,n,n) �
(
3 − 1

p + 1

)
n2 − (2p + 3)n. (0.2)

This bound is maximized when p =
⌈√

n
2

− 1
⌉
or p =

⌊√
n
2

− 1
⌋
, hence when

√
n
2

∈ Z we have

rk(Mn,n,n) � 3n2 − 2
√

2n
3
2 − n.

In general we have the following bound

rk(Mn,n,n) � 3n2 − 2
√

2n
3
2 − 3n. (0.3)

The bound (0.3) improves Bläser’s one, 5
2
n2 −3n, for n � 32. Nevertheless, when p = 2, the bound

in (0.2) becomes 8
3
n2 −7n, which improves Bläser’s one for every n � 24. Comparedwith Landsberg’s

bound 3n2 − 4n
3
2 − n, our bound (0.3) is better for n � 3. More generally, our bound (0.2) improves

Landsberg’s one
(
3 − 1

p+1

)
n2 − (2p + 3)n, for every p � 1.

Our strategy is the following. We prove Lemma 3.2, which is the improved version of [2, Lemma

4.3], using the classical identities for determinants of Lemma 1.1 and Lemma 1.2, to lower the degree
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of the equations that give the lower bound for border rank for matrix multiplication. Then we exploit

this lower degree as Bläser and Landsberg did.

Thepaper isorganizedas follows. InSection1wegive thebasicdefinitionsandexplain thegeometric

meanings of the notions of rank and border rank in terms of secant varieties of Segre varieties. Section

2 is devoted to the Landsberg–Ottaviani equations [4]; we present them as rephrased in [2]. Finally in

Section 3 we improve the Key Lemma [2, Lemma 4.3] and prove Theorem 0.1.

1. Preliminaries and notation

Let V,W be two complex vector spaces of dimension n and m. The contraction morphism

V∗ ⊗ W → Hom(V,W)

T = ∑
i,j fi ⊗ wj �→ LT

,

where LT (v) = ∑
i,j fi(v)wj , defines an isomorphism between V∗ ⊗ W and the space of linear maps

from V toW .

Then, given three vector spaces A, B, C of dimension a, b and c, we can identify A∗ ⊗ B with the

space of linear maps A → B, and A∗ ⊗ B∗ ⊗ C with the space of bilinear maps A × B → C. Let

T : A∗ × B∗ → C be a bilinear map. Then T induces a linear map A∗ ⊗ B∗ → C and may also be

interpreted as:

– an element of (A∗ ⊗ B∗)∗ ⊗ C = A ⊗ B ⊗ C,

– a linear map A∗ → B ⊗ C.

Segre varieties and their secant varieties. Let A, B and C be complex vector spaces. The three factor Segre

map is defined as

σ1,1,1 : P(A) × P(B) × P(C) → P(A ⊗ B ⊗ C)

([a], [b], [c]) �→ [a ⊗ b ⊗ c],
where [a] denotes the class in P(A) of the vector a ∈ A. The notation σ1,1,1 is justified by the fact that

the Segre map is induced by the line bundle O(1, 1, 1) on P(A) × P(B) × P(C). The two factor Segre

map

σ1,1 : P(B) × P(C) → P(B ⊗ C)

is defined in a similar way. The Segre varieties are defined as the images of the Segre maps: �1,1,1 =
σ1,1,1(P(A) × P(B) × P(C)), �1,1 = σ1,1(P(B) × P(C)). For each integer r � 0 we define the open

secant variety and the secant variety of �1,1,1 respectively as

Secr(�1,1,1)
o = ⋃

x1,...,xr+1∈ �1,1,1

〈x1, . . . , xr+1〉, Secr(�1,1,1) = Secr(�1,1,1)o.

In the above formulas 〈x1, . . . , xr+1〉 denotes the linear space generated by the points xi and Secr
(�1,1,1) is the closure of Secr(�1,1,1)

o with respect to the Zariski topology. Let us notice that with the

above definition Sec0(�1,1,1) = �1,1,1.

Rankandborder rankof a bilinearmap.The rank of abilinearmap T : A∗×B∗ → C is the smallest natural

number r := rk(T) ∈ N such that there exist a1, . . . , ar ∈ A, b1, . . . , br ∈ B and c1, . . . , cr ∈ C

decomposing T(α, β) as
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T(α, β) =
r∑

i=1

ai(α)bi(β)ci

for any α ∈ A∗ and β ∈ B∗. The number rk(T) has also two additional interpretations.

– Considering T as an element of A⊗ B ⊗ C the rank r is the smallest number of rank one tensors

in A ⊗ B ⊗ C needed to span a linear space containing the point T . Equivalently, rk(T) is the

smallest number of points t1, . . . , tr ∈ �1,1,1 such that [T] ∈ 〈t1, . . . , tr〉. In the language of

secant varieties this means that [T] ∈ Secr−1(�1,1,1)
o but [T] /∈ Secr−2(�1,1,1)

o.

– Similarly, if we consider T as a linearmap A∗ → B⊗C then rk(T) is the smallest number of rank

one tensors in B⊗ C need to span a linear space containing the linear space T(A∗). As before we

have a geometric counterpart. In fact rk(T) is the smallest number of points t1, . . . , tr ∈ �1,1

such that P(T(A∗)) ⊆ 〈t1, . . . , tr〉.
The border rank of a bilinear map T : A∗ × B∗ → C is the smallest natural number r := rk(T) such

that T is the limit of bilinear maps of rank r but is not a limit of tensors of rank s for any s < r. There

is a geometric interpretation also for this notion: T has border rank r if [T] ∈ Secr−1(�1,1,1) but

[T] /∈ Secr−2(�1,1,1). Clearly rk(T) � rk(T).

Matrix multiplication.Now, let us consider a special tensor. Given three vector spaces L = C
l,M = C

m

and N = C
n we define A = N ⊗ L∗, B = L ⊗ M∗ and C = N∗ ⊗ M. We have a matrix multiplication

map

Mn,l,m : A∗ × B∗ → C

As a tensor Mn,l,m = IdN ⊗ IdM ⊗ IdL ∈ (N∗ ⊗ L) ⊗ (L ⊗ M∗) ⊗ (N∗ ⊗ M) = A ⊗ B ⊗ C, where

IdN ∈ N∗ ⊗ N is the identity map. If n = l the choice of a linear map α0 : N → L of maximal rank

allows us to identify N ∼= L. Then themultiplicationmapMn,n,m ∈ (N ⊗N∗)⊗ (N ⊗M∗)⊗ (N∗ ⊗M)
induces a linear map N∗ ⊗ N → (N∗ ⊗ M) ⊗ (N∗ ⊗ M)∗ which is an inclusion of Lie algebras

MA : gl(N) → gl(B),

where gl(N) ∼= N∗ ⊗ N is the algebra of linear endomorphisms of N. In particular, the rank of the

commutator [MA(α
1),MA(α

2)] of nm × nmmatrices is equal tom times the rank of the commutator

[α1, α2] of n × nmatrices. This equality reflects a general philosophy, that is to translate expressions

in commutators of gln2 into expressions in commutators in gln.

Matrix equalities. The following lemmas are classical in linear algebra. However, for completeness, we

give a proof.

Lemma 1.1. The determinant of a 2 × 2 block matrix is given by

det

⎛⎝X Y

Z W

⎞⎠ = det(X) det(W − ZX−1Y),

where X is an invertible n × n matrix, Y is a n × mmatrix, Z is a m × n matrix, and W is a m × mmatrix.

Proof. The statement follows from the equality⎛⎝X Y

Z W

⎞⎠ ⎛⎝−X−1Y Idn

Idm 0

⎞⎠ =
⎛⎝ 0 X

W − ZX−1Y Z

⎞⎠ . �
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Lemma 1.2. Let A be an n × n invertible matrix and U, V any n × mmatrices. Then

det
n×n

(A + UVt) = det
n×n

(A) det
m×m

(Id + VtA−1U),

where Vt is the transpose of V.

Proof. It follows from the equality⎛⎝ A 0

Vt Id

⎞⎠ ⎛⎝Id −A−1U

0 Id + VtA−1U

⎞⎠ ⎛⎝ Id 0

−Vt Id

⎞⎠ =
⎛⎝A + UVt −U

0 Id

⎞⎠ . �

2. Landsberg–Ottaviani equations

In [4] Landsberg and Ottaviani generalized Strassen’s equations as introduced by Strassen in [6]. We

follow the exposition of [2, Section 2].

Let T ∈ A ⊗ B ⊗ C be a tensor, and assume b = c. Let us consider T as a linear map A∗ → B ⊗ C,

and assume that there exists α ∈ A∗ such that T(α) : B∗ → C is of maximal rank b. Via T(α) we can

identify B ∼= C, and consider T(A∗) ⊆ B∗ ⊗ B as a subspace of the space of linear endomorphisms of

B.

In [6] Strassen considered the casea = 3. Letα0, α1, α2 beabasis ofA∗. Assume thatT(α0)hasmax-

imal rank and that T(α1), T(α2) are diagonalizable, commuting endomorphisms. Then T(α1), T(α2)
are simultaneously diagonalizable and it is not difficult to prove that in this case rk(T) = b. In

general, T(α1), T(α2) are not commuting. The idea of Strassen was to consider their commutator

[T(α1), T(α2)] to obtain results on the border rank of T . In fact, Strassen proved that, if T(α0) is ofmax-

imal rank, then rk(T) � b + rank[T(α1), T(α2)]/2 and rk(T) = b if and only if [T(α1), T(α2)] = 0.

Now let us consider the case a = 3, b = c. Fix a basis a0, a1, a2 of a A, and let a0, a1, a2 be

the dual basis of A∗. Choose bases of B and C, so that elements of B ⊗ C can be written as matrices.

Then we can write T = a0 ⊗ X0 − a1 ⊗ X1 + a2 ⊗ X2, where the Xi are b × b matrices. Consider

T ⊗ IdA ∈ A ⊗ B ⊗ C ⊗ A∗ ⊗ A = A∗ ⊗ B ⊗ A ⊗ A ⊗ C,

T ⊗ IdA = (a0 ⊗ X0 − a1 ⊗ X1 + a2 ⊗ X2) ⊗ (a0 ⊗ a0 + a1 ⊗ a1 + a2 ⊗ a2)

and its skew-symmetrization in the A factor T1
A ∈ A∗ ⊗ B ⊗ ∧2 A ⊗ C, given by

T1
A = a1X0(a0 ∧ a1) + a2X0(a0 ∧ a2) − a0X1(a1 ∧ a0) − a2X1(a1 ∧ a2)

+ a0X2(a2 ∧ a0) + a1X2(a2 ∧ a1)

where aiXj(aj ∧ ai) := ai ⊗ Xj ⊗ (aj ∧ ai). It can also be considered as a linear map

T1
A : A ⊗ B∗ →

2∧
A ⊗ C.

In the basis a0, a1, a2 of A and a0 ∧ a1, a0 ∧ a2, a1 ∧ a2 of
∧2 A the matrix of T1

A is the following

Mat(T1
A ) =

⎛⎜⎜⎜⎝
X1 −X2 0

X0 0 −X2

0 X0 −X1

⎞⎟⎟⎟⎠
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Assume X0 is invertible and change bases such that it is the identity matrix. By Lemma 1.1, on the

matrix obtained by reversing the order of the rows of Mat(T1
A ), with

X =
⎛⎝ 0 X0

X0 0

⎞⎠ , Y =
⎛⎝−X1

−X2

⎞⎠ , Z =
(
X1 −X2

)
, W = 0

we get

det(Mat(T1
A )) = det(X1X2 − X2X1) = det([X1, X2]).

Now we want to generalize this construction as done in [4]. We consider the case a = 2p + 1,

T ⊗ Id∧p A ∈ A⊗B⊗C⊗∧p A∗ ⊗∧p A = (
∧p A∗ ⊗B)⊗ (

∧p+1 A⊗C), and its skew-symmetrization

T
p
A :

p∧
A ⊗ B∗ →

p+1∧
A ⊗ C.

Note that dim(
∧p A⊗ B∗) = dim(

∧p+1 A⊗ C) =
(
2p+1

p

)
b. After choosing a basis a0, . . . , a2p of Awe

can write T = ∑2p
i=0(−1)iai ⊗ Xi. The matrix of T

p
A with respect the basis a0 ∧ · · · ∧ ap−1, . . . , ap+1 ∧

· · · ∧ a2p of
∧p A, and a0 ∧ · · · ∧ ap, . . . , ap ∧ · · · ∧ a2p of

∧p+1 A is of the form

Mat(T
p
A) =

⎛⎝Q 0

R Q

⎞⎠ (2.1)

where the matrix is blocked (
(

2p

p+1

)
b,

(
2p

p

)
b) × (

(
2p

p+1

)
b,

(
2p

p

)
b), the lower left block is given by

R =

⎛⎜⎜⎜⎜⎝
X0 . . . 0

...
. . .

...

0 . . . X0

⎞⎟⎟⎟⎟⎠
and Q is a matrix having blocks X1, . . . , X2p and zero, while Q is the block transpose of Q except that

if an index is even, the block is multiplied by −1. We derive below the expression (2.1) in the case

p = 2; the general case can be developed similarly, see [2, Section 3].

Example 2.1. Consider the case p = 2. The matrix of T2
A is

Mat(T2
A ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X2 −X3 X4 0 0 0 0 0 0 0

X1 0 0 −X3 X4 0 0 0 0 0

0 X1 0 −X2 0 X4 0 0 0 0

0 0 X1 0 −X2 X3 0 0 0 0

X0 0 0 0 0 0 −X3 X4 0 0

0 X0 0 0 0 0 −X2 0 X4 0

0 0 X0 0 0 0 0 −X2 X3 0

0 0 0 X0 0 0 −X1 0 0 X4

0 0 0 0 X0 0 0 −X1 0 X3

0 0 0 0 0 X0 0 0 −X1 X2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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If X0 is the identity by Lemma 1.1 on R = Id,Q and Q the determinant of Mat(T
p
A) is equal to the

determinant of⎛⎜⎜⎜⎜⎜⎜⎝
0 [X1, X2] [X1, X3] [X1, X4]

−[X1, X2] 0 [X2, X3] [X2, X4]
−[X1, X3] −[X2, X3] 0 [X3, X4]
−[X1, X4] −[X2, X4] −[X3, X4] 0

⎞⎟⎟⎟⎟⎟⎟⎠
In general the determinant of Mat(T

p
A) is equal to the determinant of the 2pb × 2pb matrix of

commutators⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 X1,2 X1,3 X1,4 . . . X1,2p−1 X1,2p

−X1,2 0 X2,3 X2,4 . . . X2,2p−1 X2,2p

−X1,3 −X2,3 0 X3,4 . . . X3,2p−1 X3,2p

−X1,4 −X2,4 −X3,4 0 . . . X4,2p−1 X4,2p

...
...

...
...

. . .
...

...

−X1,2p−1 −X2,2p−1 −X3,2p−1 −X4,2p−1 . . . 0 X2p−1,2p

−X1,2p −X2,2p −X3,2p −X4,2p . . . −X2p−1,2p 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where Xi,j denotes the commutator matrix [Xi, Xj] = XiXj − XjXi.

3. Key Lemma

We use the same notation of [2] throughout the text.

Lemma 3.1 [3, Lemma 11.5.0.2]. Let V be a n-dimensional vector space and let P ∈ SdV∗ \ {0} be a

polynomial of degree d � n − 1 on V. For any basis {v1, . . . , vn} of V there exists a subset {vi1 , . . . , vis}
of cardinality s � d such that P|〈vi1 ,...,vis〉 is not identically zero.

Lemma 3.1 says, for instance, that a quadric surface in P
3 can not contain six lines whose pairwise

intersections spanP
3. Note that as stated Lemma 3.1 is sharp in the sense that under the same hypoth-

esis the bound s � d can not be improved. For example the polynomial P(x, y, z,w) = xy vanishes

on the four points [1 : 0 : 0 : 0], . . . , [0 : 0 : 0 : 1] ∈ P
3.

Lemma3.2. LetA = N∗⊗L,where l = n.Givenanybasis ofA, there exists a subset of at least n2−(2p+3)n
basis vectors, and elements α0, α1, . . . , α2p of A∗, such that

– α0 is of maximal rank, and thus may be used to identify L 
 N and A as a space of endomorphisms.

(I.e. in bases α0 is the identity matrix.)

– Choosing a basis of L, so the αj become n × n matrices, the size 2pn block matrix whose (i, j)-th
block is [αi, αj] has non-zero determinant.

– The subset of n2 − (2p + 3)n basis vectors annihilate α0, α1, . . . , α2p.

Proof. Let B be a basis of A, and consider the polynomial P0 = detn. By Lemma 3.1 we get a subset S0
of at most n elements of B and α0 ∈ S0 with detn(α

0) �= 0. Now, via the isomorphism α0 : L → N we

are allowed to identify A = gl(L) as an algebra with identity element α0. So, from now on, we work

with sl(L) = gl(L)/
〈
α0

〉
instead of gl(L).
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Following the proof of [2, Lemma 4.3], let v1,0, . . . , v2p,0 ∈ sl(L) be linearly independent and not

equal to any of the given basis vectors, and let us work locally on an affine open neighbourhood V ⊂
G(2p, sl(L)) of E0 = 〈

v1,0, . . . , v2p,0
〉
. We extend v1,0, . . . , v2p,0 to a basis v1,0, . . . , v2p,0,w1, . . . ,

wn2−2p−1 of sl(L), and take local coordinates (f
μ
s ) with 1 � s � 2p, 1 � μ � n2 − 2p − 1, on V , so

that vs = vs,0 + ∑n2−2p−1
μ=1 f

μ
s wμ.

We denote vi,j = [vi, vj] and let us define

Ai,i+1 =
⎛⎝ 0 vi,i+1

−vi,i+1 0

⎞⎠
for i = 1, . . . , 2p and let A be the following diagonal block matrix

A = diag(A1,2, A3,4, . . . , A2p−3,2p−2, Id2n×2n)

which is a squared matrix of order 4pn. Consider the 4pn × 4pnmatrix

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 v1,2 v1,3 v1,4 . . . v1,2p−1 v1,2p

−v1,2 0 v2,3 v2,4 . . . v2,2p−1 v2,2p

−v1,3 −v2,3 0 v3,4 . . . v3,2p−1 v3,2p

−v1,4 −v2,4 −v3,4 0 . . . v4,2p−1 v4,2p
...

...
...

...
. . .

...
...

−v1,2p−1 −v2,2p−1 −v3,2p−1 −v4,2p−1 . . . 0 v2p−1,2p

−v1,2p −v2,2p −v3,2p −v4,2p . . . −v2p−1,2p 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The polynomial det4pn×4pn(M) is not identically zero on G(2p, sl(L)), so it is not identically zero on V.

Furthermore we can write M = A + UId4pn×4pn, where

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 v1,3 v1,4 . . . v1,2p−1 v1,2p

0 0 v2,3 v2,4 . . . v2,2p−1 v2,2p

−v1,3 −v2,3 0 0 . . . v3,2p−1 v3,2p

−v1,4 −v2,4 0 0 . . . v4,2p−1 v4,2p
...

...
...

...
. . .

...
...

−v1,2p−1 −v2,2p−1 −v3,2p−1 −v4,2p−1 . . . −Idn×n v2p−1,2p

−v1,2p −v2,2p −v3,2p −v4,2p . . . −v2p−1,2p −Idn×n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
By Lemma 1.2 we have

det(M) = det(A) det(Id + A−1U) = det([v1, v2])2 . . . det([v2p−3, v2p−2])2 det(Id + A−1U).

The entries of the n×nmatrices [vk, vk+1] are quadratic in the f
μ
s ’s, so the polynomials det([vk, vk+1])

have degree 2n, and

P1 = det([v1, v2])2 . . . det([v2p−3, v2p−2])2 = (det([v1, v2]) . . . det([v2p−3, v2p−2]))2
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is a polynomial of degree 4n(p − 1). Since P1 is a square, we can consider the polynomial P̃1 =
det([v1, v2]) . . . det([v2p−3, v2p−2]) which has degree 2n(p− 1). Applying Lemma 3.1 to P̃1 we find a

subset S1 of at most 2n(p − 1) elements of our basis such that P̃1, and hence P1, is not identically zero

on 〈S1〉.
Now, let us fix some particular value of the coordinates f

μ
s such that on the correspondingmatrices

v1, . . . , v2p−2 the matrix A is invertible. For these values the expression det(Id+ A−1U)makes sense.

Let us consider the matrix

Id + A−1U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Id 0 −v
−1
1,2v2,3 −v

−1
1,2v2,4 . . . −v

−1
1,2v2,2p−1 −v

−1
1,2v2,2p

0 Id v
−1
1,2v1,3 v

−1
1,2v1,4 . . . v

−1
1,2v1,2p−1 v

−1
1,2v1,2p

v
−1
3,4v1,4 v

−1
3,4v2,4 Id 0 . . . −v

−1
3,4v4,2p−1 −v

−1
3,4v4,2p

−v
−1
3,4v1,3 −v

−1
3,4v2,3 0 Id . . . v

−1
3,4v3,2p−1 v

−1
3,4v3,2p

...
...

...
...

. . .
...

...

−v1,2p−1 −v2,2p−1 −v3,2p−1 −v4,2p−1 . . . 0 v2p−1,2p

−v1,2p −v2,2p −v3,2p −v4,2p . . . −v2p−1,2p 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
By Lemma 1.1 on Id + A−1U with

X =
⎛⎝Id 0

0 Id

⎞⎠ , Y =
⎛⎝−v

−1
1,2v2,3 −v

−1
1,2v2,4 . . . −v

−1
1,2v2,2p−1 −v

−1
1,2v2,2p

v
−1
1,2v1,3 v

−1
1,2v1,4 . . . v

−1
1,2v1,2p−1 v

−1
1,2v1,2p

⎞⎠ ,

Z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v
−1
3,4v1,4 v

−1
3,4v2,4

−v
−1
3,4v1,3 −v

−1
3,4v2,3

...
...

−v1,2p−1 −v2,2p−1

−v1,2p −v2,2p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Id 0 . . . −v
−1
3,4v4,2p−1 −v

−1
3,4v4,2p

0 Id . . . v
−1
3,4v3,2p−1 v

−1
3,4v3,2p

...
...

. . .
...

...

−v3,2p−1 −v4,2p−1 . . . 0 v2p−1,2p

−v3,2p −v4,2p . . . −v2p−1,2p 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
we get det(Id + A−1U) = det(W − ZY). Note that the coordinates f

μ
s appear in the terms indexed

by 2p − 1 and 2p, while all the other terms are constant once we fixed v1, . . . , v2p−2. Then P2 =
det(W − ZY) is a polynomial of degree 4n. By Lemma 3.1 we find a subset S2 of at most 4n elements

of the basis B such that P2 is not identically zero on 〈S2〉.
Summing up we found a subset S of at most n + 2n(p − 1) + 4n = (2p + 3)n elements of B such

that det(M) is not identically zero on 〈S〉. �

Remark 3.3. In [2, Lemma 4.3] the author proved the analogous statement for n2 − (4p + 1)n.

Proof of Theorem 0.1. The proof of the bound (0.1) is the same of [2, Theorem1.2]; the only difference

is that one uses Lemma 3.2 instead of [2, Lemma 4.3].

To prove the other assertions, let us consider the function f : R�0 → R defined by f (p) =
(3 − 1

p + 1
)n2 − (2p + 3)n. The first derivative is f ′(p) = 1

(p + 1)2
n2 − 2n, which vanishes in

p =
√

n
2

− 1. Moreover f ′′(p) = − 2

(p + 1)3
n2 < 0, hence p =

√
n
2

− 1 is the maximum of f .

Then the bound (0.2) is maximized for p =
⌈√

n
2

− 1
⌉
or p =

⌊√
n
2

− 1
⌋
, depending on the value

of n.
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If
(√

n
2

− 1
)
−

⌊√
n
2

− 1
⌋

� 1
2
wemay consider p =

⌈√
n
2

− 1
⌉
. In this case

√
n
2
−1 � p �

√
n
2
− 1

2
,

and we get f
( ⌈√

n
2

− 1
⌉ ) � �f �(n) := 3n2 − 2

√
2n

3
2 − 2n.

If
(√

n
2

− 1
)
−

⌊√
n
2

− 1
⌋

< 1
2
we consider p =

⌊√
n
2

− 1
⌋
. Then

√
n
2

− 3
2

� p �
√

n
2

− 1, and we

have f
( ⌊√

n
2

− 1
⌋ ) � �f �(n) := (3 − 2

√
2

2n−√
2
)n2 − √

2n
3
2 − n.

Finally to prove (0.3) it is enough to observe that both �f �(n) and �f �(n) are greater than 3n2 −
2
√

2n
3
2 − 3n. �
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Theorem 0.1. (See [4, Theorem 0.1].) Let p � n be a positive natural number. Then

rk(Mn,n,m) �
(

1 + p

p + 1

)
nm + n2 −

(
2
(

2p
p + 1

)
−

(
2p− 2
p− 1

)
+ 2

)
n. (0.1)

When n = m we obtain

rk(Mn,n,n) �
(

3 − 1
p + 1

)
n2 −

(
2
(

2p
p + 1

)
−

(
2p− 2
p− 1

)
+ 2

)
n. (0.2)

When p = 2 we can improve the bound to

rk(Mn,n,n) � 8
3n

2 − 7n, (0.3)

and when p = 3 to

rk(Mn,n,n) � 11
4 n2 − 17n. (0.4)

The bound 8
3n

2 − 7n improves all previous bounds for all n � 24 (for n � 84 the best
bound is in [1] and for n > 84 it is in [2]), while the bound 11

4 n2−17n improves 8
3n

2−7n
for every n � 120.

The mistake in [3] was the calculation of the matrix associated to T p
A. We find more

convenient to consider the operator (T p
A)∗, the transpose of T p

A. The matrix associated
to (T p

A)∗ with respect to the basis a0 ∧ · · · ∧ ap−1, . . . , ap+1 ∧ · · · ∧ a2p of
∧p

A, and
a0 ∧ · · · ∧ ap, . . . , ap ∧ · · · ∧ a2p of

∧p+1
A is of the form

Mat
((
T p
A

)∗) =
(
Q 0
R Q

)
(0.5)

where the matrix is blocked
(( 2p

p+1
)
b,
(2p
p

)
b
)
×
(( 2p

p+1
)
b,
(2p
p

)
b
)
, the lower left block is given

by

R =

⎛
⎜⎝

X0 . . . 0
...

. . .
...

0 . . . X0

⎞
⎟⎠

and Q is a matrix having blocks X1, . . . , X2p and zero.
The matrix is related to Q in the following way. Write Q = (Qi,j), where the Qi,j are

the n×n blocks of Q and let Q(k) = (Qk,1, . . . , Qk,
(2p
p

)) be the k-th block-row of Q. Then
Q is the matrix whose l-th block-column is Q(l) = (Q(2p

p

)
,
( 2p
p+1

)
−l+1, . . . , Q1,

( 2p
p+1

)
−l+1), with

the convention that if Qi,j = Xh, h odd, then the block is multiplied by −1. In general
the matrix Q is as follows. Let us consider the entry (i, j) of Q corresponding to the basis
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vectors ai1 ∧ · · · ∧ aip+1 of
∧p+1

A and aj1 ∧ · · · ∧ ajp of
∧p

A, and let I = {i1, . . . , ip+1},
J = {j1, . . . , jp}. Then

Qi,j =
{

(−1)i+jXk if I, J differ by just one element k,

0 otherwise.
(0.6)

Remark 0.2. It follows from (0.6) that QQ has either commutators or zeroes as entries
and a lower left block X1,2 = diag([X1, X2], . . . , [X1, X2]) with

(2p−2
p−1

)
blocks on the

diagonal. Furthermore on the diagonal of QQ if there is an entry [Xi, Xj ] then such
entry appears at least twice. Finally on the diagonal all indices except i = 1, 2p appear
if p � 3 and in the case p = 2 all indices appear.

The proof of Theorem 0.1 will follow from the following lemma which is the correct
version of [3, Lemma 3.2].

Lemma 0.3. (See [4, Lemma 3.2].) Let A = N∗ ⊗ L, where l = n. Given any basis of A,
there exists a subset of at least h = n2 −

(
n
(
2
( 2p
p+1

)
−

(2p−2
p−1

)
+ 2

))
basis vectors, and

elements α0, α1, . . . , α2p of A∗, such that

– α0 is of maximal rank, and thus may be used to identify L � N and A as a space of
endomorphisms. (I.e. in bases α0 is the identity matrix.)

– choosing a basis of L, so the αj become n × n matrices, the block matrix of (0.6)
whose blocks are the αi is such that QQ has non-zero determinant, and

– the subset of at least h basis vectors annihilate α0, α1, . . . , α2p.

Proof of Theorem 0.1. The proof of (0.1) and (0.2) are the same as in [3], provided
we use Lemma 0.3 instead of [3, Lemma 3.2]. The bound (0.3) can be proved using [3,
Lemma 3.2], which works only for p = 2. Finally the bound (0.4) is obtained by the
explicit calculation of the matrix QQ for p = 3. �
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