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Abstract: The fault diagnosis of wind turbine systems has been proven to be a challenging
task and motivates the research activities carried out through this work. Therefore, this paper
deals with the fault diagnosis of wind turbines, and it proposes viable solutions to the problem
of earlier fault detection and isolation. The design of the fault indicator involves a data—driven
approach, as it represents an effective tool for coping with a poor analytical knowledge of the
system dynamics, together with noise and disturbances. In particular, the data—driven proposed
solution relies on neural networks that are used to describe the strongly nonlinear relationships
between measurement and faults. The chosen network architecture belongs to the nonlinear
autoregressive with exogenous input topology, as it can represent a dynamic evolution of the
system along time. The developed fault diagnosis scheme is tested by means of a high—fidelity
benchmark model, that simulates the normal and the faulty behaviour of a wind turbine. The
achieved performances are compared with those of other control strategies, coming from the
related literature. Moreover, a Monte Carlo analysis validates the robustness of the proposed
solutions against the typical parameter uncertainties and disturbances.
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1. INTRODUCTION

The worldwide increased level of wind generated energy
in power grids induces further requirements in terms of
reliability of wind turbines. Wind turbines should have
the capability to generated the desired value of electrical
power continuously, depending on the current wind speed
level and on the grid demand.

As a consequence, the possible faults affecting the system
have to be properly identified and treated, before they
endanger the correct functioning of the turbines or become
critical faults. Wind turbines in the megawatt size are
extremely expensive systems, therefore their availability
and reliability must be high, in order to assure the max-
imisation of the generated power while minimising the
Operation and Maintenance (O & M) services. Alongside
the fixed costs of the produced energy, mainly due to the
installation and the foundation of the wind turbine, the O
& M costs could increase the total energy cost up to about
the 30%, particularly considering the offshore installation
(Simani et al. (2017)).

These considerations motivate the introduction of fault
diagnosis system coupled with fault tolerant controllers.
Currently, most of the turbines feature a simply conserva-
tive approach against faults that consists in the shutdown
of the system to wait for maintenance service. Hence,
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effective strategies coping with faults have to be studied
and developed, for improving the turbine performance,
particularly in faulty working conditions. Their benefits
would concern the prevention of critical failures that jeop-
ardise wind turbine components, thus avoiding unplanned
replacement of functional parts, as well as the reduction of
the O & M costs and the increment of the energy produc-
tion. The advent of computerised control, communication
networks and information techniques brings interesting
challenges concerning the development of novel real-time
monitoring and fault tolerant control design strategies for
industrial processes.

Indeed, in the recent years, many contributions have been
proposed related to the topics of fault diagnosis of wind
turbines, see e.g. (Simani and Farsoni (2018)). Some of
them highlight the difficulties to achieve the diagnosis of
particular faults, e.g. those affecting the drive—train, at
wind turbine level. However these fault are better dealt
with at wind farm level, when the wind turbine is con-
sidered in comparison to other wind turbine of the wind
farm (Odgaard and Stoustrup (2015)). Moreover, fault
tolerant control of wind turbines has been investigated e.g.
in (Odgaard and Stoustrup (2015)) and international com-
petitions on these issues arose (Odgaard and Stoustrup
(2012)).

Hence, the fault diagnosis of wind turbine systems has
been proven to be a challenging task and motivates the
research activities carried out through this work (Simani
and Castaldi (2017)). In particular, this paper deals with
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the fault diagnosis of wind turbines, and it proposes viable
solutions to the problem of earlier fault detection and
isolation (Simani and Farsoni (2018)). The design of the
fault indicator involves a data—driven approach (Simani
et al. (2018)), as it represents an effective tool for coping
with a poor analytical knowledge of the system dynamics,
together with noise and disturbances. The data-driven
proposed solution relies on neural networks that are used
to describe the strongly nonlinear relationships between
measurement and faults (Simani and Castaldi (2018)). The
chosen network architecture belongs to the nonlinear au-
toregressive with exogenous input topology, as it can rep-
resent a dynamic evolution of the system along time. The
training of the neural network fault estimators exploits the
back—propagation Levenberg—-Marquardt algorithm, that
processes a set of acquired target data.

The developed fault diagnosis scheme is tested by means
of a high-fidelity benchmark model, that simulates the
normal and the faulty behaviour of a wind turbine. The
achieved performances are compared with those of other
control strategies, coming from the related literature.
Moreover, a Monte Carlo analysis validates the robustness
of the proposed solutions against the typical parameter
uncertainties and disturbances.

The work is organised as follows. Section 2 recalls the wind
turbine benchmark simulator. Section 3 describes the fault
diagnosis scheme relying on neural network structures. The
achieved results are reported in Section 4. Comparisons
with different Fault Detecton and Isolation (FDI) strate-
gies are also reported. Finally, Section 5 concludes the
paper by summarising the main achievements of the work,
and providing some suggestions for further research topics.

2. WIND TURBINE SIMULATOR

The single wind turbine benchmark model considered in
this study is described in detail in (Odgaaard and Shafiei
(2015)). It has been implemented in Matlab/Simulink en-
vironment and proposes a realistic simulator for a wind
turbine system, as well as some common fault scenarios.
It presents a specific three-blade horizontal-axis variable—
speed pitch—controlled wind turbine with a full converter
generator. The considered components have been reduced
in the benchmark model considered in this study. The
tower supports the nacelle, that contains the control sys-
tems and the equipment to convert energy from the rotat-
ing blades fixed in the hub to electrical energy for the grid.
On the nacelle an anemometer provides the measurements
of the current wind speed at the hub height. The inter-
nal components of the nacelle consist of a gear box that
connects the rotor main shaft to the generator, adapting
its torque and speed values; the generator, that converts
the energy into the electrical form; a converter and a
transformer that connect the turbine to the grid; finally
the controller adjusts the pitch angle and the generator
torque in order to follow the power reference.

The block diagram of Figure 1 shows how the main com-
ponents are connected each other and the input/output
variables which indicate the relationship among the blocks.

The wind turbine model of the benchmark considered in
this work consists of four submodels: the wind model,
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Fig. 1. Wind turbine simulator blocks.

the blade and pitch model, the drive-train model and
the generator model. The wind is considered a stochastic
process, with the additive contributions of the effects of
wind shear and tower shadows. A complete description of
the wind model and the wind turbine simulator is provided
in (Odgaaard and Shafiei (2015)).

The measurements available to the monitoring system
come directly from several sensors or, in one case, they are
obtained via estimation. In particular, for each of the three
blades, a redundant couple of sensors measures the current
pitch angle. Then, a couple of sensors measures the speed
of the rotor and another one the speed of the generator,
while a single sensor is available for the wind speed at hub
height and another one for the generator torque. The wind
torque measurements are estimated exploiting the hub
anemometer. Table 1 reports a summary of the measured
variables. The model of the measurements consists in the
sum of the actual value with a white Gaussian noise.

Table 1. Wind turbine simulator measure-

ments.

Wind Turbine Variable Measurement Description
B1,m1 Blade 1 pitch angle from sensor #1
B1,m2 Blade 1 pitch angle from sensor #2
B1,m1 Blade 2 pitch angle from sensor #1
B1,m2 Blade 2 pitch angle from sensor #2
B1,m1 Blade 3 pitch angle from sensor #1
B1,m2 Blade 3 pitch angle from sensor #2
Wr,m1 Rotor shaft speed from encoder #1
Wrym2 Rotor shaft speed from encoder #2
Wg,m1 Generator shaft speed from encoder #1
Wy, m2 Generator shaft speed from encoder #2
Tg,m Generator shaft torque measurement
Py m Generated power measurement
Vw,m Wind Speed measurement at hub height
Tr,m Aerodynamic rotor torque

In the benchmark model three kinds of actual faults can
be simulated: namely sensor, actuator and system faults.
They are modelled as additive or multiplicative faults and
they involve different degrees of severity, so that they can
yield to the turbine shutdown in case of serious fault, or
they can be accommodate by the controller if the risk for
the system safety is low.

Regarding the considered sensor faults, they affect the
measurements of the pitch angles and the measurements
of the rotor speed, in form of a fixed value or a scaling
error. They represent a common fault scenario of wind
turbines, but their severity is low and they should be easy
to identify and accommodate. In particular, an electrical
or mechanical faults in the pitch sensors, if not handled,
results in the generation of a wrong pitch reference system
by the controller with the consequence of a loss in the
generated power. The speed of the rotor is measured by
means of two redundant encoders, an offset faulty signal
can affect these measurements when the encoder does not
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detect the updated marker, while a gain factor faulty signal
represents the reading of excessive markers each loop, due
to dirt on the rotating part.

The considered actuator faults are modelled either as a
fixed value or a changed dynamics of the transfer function.
They affect the converter torque actuator as well as the
pitch actuator. In the former case, the fault is located in
the electronics of the converter, while in the latter case
the fault is on the hydraulic system: it models the pressure
drop in the hydraulic supply system (e.g. due to a leakage
in hose or a blocked pump) or the excessive air content
in the oil that causes the variation of the compressibility
factor. The severity of these fault is of medium /high level.

Finally, the considered system fault concerns the drive—
train, in form of a slow variation of the friction coefficient
in time due to wear and tear (months or year, but for
benchmarking reason in the model it has been accelerated
up to some seconds). It results in a combined faulty signal
affecting the rotor speed and the generator speed. It can
be listed as an high severe fault, as it can yield to the
breakdown of the drive-train, but in a long time. Tables
2 and 3 describe the considered faults and their types,
corresponding to the affected measurements.

Table 2. Fault case description.

Fault nr. Fault Description
1 Fixed value of the blade 1 pitch sensor 1
2 Scaling error of the blade 2 pitch sensor 2
3 Fixed value of the blade 1 pitch sensor 1
4 Fixed value of the rotor speed sensor 1
5 Combined scaling error of the rotor speed sensor 2
and the generator speed sensor 2
6 Pitch system changed response for the pitch actuator
of the blade 2 due to air content in oil
7 Pitch system changed response for the pitch actuator 3
due to low pressure
8 Fixed value of the converter torque control signal
9 Changed dynamics of the drive—train

Table 3. Fault typology.

Fault nr. Fault Type

—

Sensor fault
Sensor fault
Sensor fault
Sensor fault
Sensor fault
Actuator fault
Actuator fault
Actuator fault
System fault

© 00 O Uk WN

2.1 Wind Turbine Overall Model

With these assumptions, the complete model of the system
under analysis (Odgaard and Stoustrup (2015)) can be
represented by means of a non-linear continuous-time
function f,;, that describes the evolution of the turbine
state vector x,,; excited by the input vector u:

{ Zwe(t) = Fur (Rwe, u(t)y (8) = xwi(t) (1)

where the state of the system is considered equal to
the monitored system output i.e. the rotor speed, the
generator speed and the generated power: x,,:(t) = y(t) =
[Wg,m1, Wg,m2s Wrm1, Wrm2, Pg.m]. On the other hand, the

input vector u(t) = [B1,m1, Br,m2, B2m1y B2.m2, B3mis
B3,m2, Tg,m] contains the measurements of the pitch angles

from the three sensor couples as well as the measured
torque. These vectors are sampled for obtaining a number
of N input-output data ulk], y[k] with £k = 1,..., N,
in order to implement the data—driven estimators at the
sampling time T'.

3. FAULT DIAGNOSIS VIA NEURAL NETWORKS

This work proposes a data—driven approach that is based
on neural networks and is used to implement the fault di-
agnosis block. In this section, after a brief introduction on
the general structure and the architecture of a Nonlinear
AutoRegressive with eXogenous input (NARX) network is
reported, as it represents, in combination with the back—
propagation Levenberg—Marquardt training algorithm, the
exploited solution for the implementation of the neural
network fault estimators.

3.1 Neural Network Structure

In this work, a set of neural network estimators is designed
and trained in order to reproduce the behaviour of the
systems under investigation, thus accomplishing the mod-
elling and identification task. The structure of the i—th
single neuron is also called perceptron. It features a MISO
system where the output y; is computed as a function
f of the weighted sum wv; of all the n; neuron inputs
Ui1,- .-, Uin,, With the associated weights w; 1, ..
The function f, denominated activation function, repre-
sents the engine of the neuron.

-y Win, -

A structural categorisation of neural networks concerns the
way in which their elements are connected each others. In
a feed-forward network, also called multilayer perceptron,
neurons are grouped into unidirectional layers. The first
of them, namely the input layer, is fed directly by the
network inputs, then each successive hidden layer takes
the inputs from the neurons of the previous layer and
transmits the output to the neurons of the next layer,
up to the last output layer, in which the final network
outputs are produced. Therefore, neurons are connected
from one layer to the next, but not within the same
layer. The only constraint is the number of neurons in
the output layer, that has to be equal to the number
of actual network outputs. On the other hand, recurrent
networks are multilayer networks in which the output of
some neurons is fed back to neurons belonging to previous
layers, thus the information flow in forward as well as in
backward directions allowing a dynamic memory inside the
network.

A noteworthy intermediate solution is provided by the
multilayer perceptron with a tapped delay line, which is a
feed—forward network whose inputs come from a delay line.
This kind of network represents a suitable tool to model, or
predict, the evolution of a dynamic system. In particular
the open loop Nonlinear AutoRegressive with eXogenous
inputs (NARX) network belongs to this latter category as
its inputs are delayed samples of the system inputs and
outputs. Indeed, if properly trained, a NARX network can
estimate the current (or the next) system output on the
basis of the acquired past measurements of system inputs
and outputs.
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In general, by considering a MIMO system, the elabora-
tions of the open—loop NARX network follow the law:

f(k) = fnet (u(k)a ceey u(k - du)a y(k - 1)7 L) y(k - dy))@)

where f(k) is the estimation of the process faults, u and
y are the measured system inputs and outputs, k is the
time step, d, and d, are the number of delay of inputs
and outputs, respectively. fne+(-) is the function realized
by the network, that depends on the layer architecture,
the number of neurons, their weights and their activation
functions. Therefore, as highlighted by Eq. (2), the neural
network is used as fault estimator.

The parameters on which the designer can act concerns
the overall architecture (number of neurons, connections
between layers), while the value of the weights inside each
neuron are derived from the network training.

8.2 Fault Diagnosis System

In the following the monitored systems, i.e. the wind
turbine under diagnosis, is assumed to be affected by
additive faults on the input (actuator) and output (sensor)
measurements, as represented in Fig. 2, in the form of Eqgs.
3:

y(k) = y*(k) + £, (k)

where u*(k),y* (k) are the actual unmeasurable variables,
u(k) and y(k) represent the sensor acquisitions, affected
by both the measurement noise and the faults. £, (k), f, (k)
are additive signals, that assume values different from zero
only in presence of faults.

Input Measurements Output Measurements

u(k) v*(k)
u*(k) . . y(k)
(A Monitored N »

System + T +

G
Output Faults

AL

Actuator Faults

Fig. 2. Fault model.

Figure 2 shows the general scheme with the faults affect-
ing the system under diagnosis, i.e. the wind turbine,
as additive signals on the input (actuator) and output
measurements.

Among the different approaches to generate the residual
signals, summarised in Section 1 the solution adopted in
this work exploits neural network models, which provide
an on-line estimation of the faulty signals. Hence, as shown
in Fig. 3 residuals r are generated by means of the neural
networks used as fault estimators:

r(k) = () (4)

Figure 3 highlights the residual generation scheme, achieved
by using the neural network structures, which are thus
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Fig. 3. Residual generation scheme based on the fault
estimator.

exploited as fault estimators. The fault diagnosis pro-
cess involves, as first step, the fault detection task. It
is performed here by using a proper thresholding logic
operating on the residuals after their elaboration into a
proper evaluation function:

re(k) = F(r(k)) (5)

where the proposed function F' can be the moving average
or variance, in case of neural networks, as explained in
Section 4. Then, the occurrence of the i—th fault can be
detected according to:

{ fei - 50’7‘@ S Te; S fei + 50’7'@-

fault—free (6)
Te, < Te; — 00y, O T'e, > Te, + 00y,

faulty

where the i-th item 7., of the residual vector r. is
considered a random variable, whose unknown mean 7,
and variance U?i can be estimated in fault—free condition,
after the acquisition of N samples, as follows:

B (7)

The tolerance parameter § > 2 has to be properly tuned in
order to separate the fault-free from the faulty condition.
The ¢ value determines the trade—off between the false
alarm rate and the fault detection probability. A common
choice of § relies on the three—sigma rule, otherwise exten-
sive simulations can be performed to optimise the § value.

Consequently to the fault detection, the fault isolation
task is achieved by means of two observer schemes. Faults
are here subdivided into two main groups: the faults
concerning the inputs f, and the faults concerning the
output f,. Following the generalised observer scheme of
Fig. 4, in order to uniquely isolate one of the input faults,
under the assumption that no output faults occur in the
meanwhile, a bank of MISO estimators is used, whose
number is equal to the number of input faults to be isolate.
Then, the i-th fault estimator is driven by all but the i—
th input, so that, when the i—th fault occurs, its residual
signal is the only one that does not detect the fault.
In particular, when the i—th neural network estimator,
insensitive to the i—th fault has to be designed, all but
the i-th input, in addition to the output, are considered in
the training of the neural networks.
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Fig. 4. General observer scheme for FDI.

Figure 4 shows the general observer scheme where the fault
estimators are driven by all but one input, so that the
relative residual is insensitive only to the fault affecting
that input. It is worth noting that multiple faults occurring
at the same time cannot be correctly isolated, using this
configuration.

On the other hand, in order to isolate one or multiple
output faults, under the assumption of no input faults
occurring, another bank of estimator is used. In this case,
the i—th estimator provides directly the i—th residual as it
is driven by all the system inputs and only the i—th output.
This configuration is better known as dedicated observer
scheme.

u*(k) y*(k)
*,—» Process :
1 *
b
= Fault estimator, r— 1 .
(k 1 Output
u(k) * sensors
¥
= Fault estimator, —=
r

Fault estimator,, —

Fig. 5. Dedicated observer scheme for FDI.

Figure 5 shows the dedicated observer scheme where all
the fault estimators are driven by all inputs and each of
them generates the residual relative to only one output
faulty signal.

The isolation capabilities of the adopted observer banks
can be summarised by means of the so—called fault signa-
ture, depicted in Table 4, where each entry that is char-
acterised by a value equal to 1 means that the considered
residual is sensitive to the fault (zero otherwise), under the
hypothesis above mentioned.

A fault sensitivity analysis (Simani and Farsoni (2018)),
has to be executed before the design of the observers. This
procedure leads to the selection of the inputs—output con-

Table 4. Fault signatures.

Jup  Sug Jur Sy fuo Sym
Tuy | O 1 1 0 0 0
Tuy | 1 0 1 0 0 0
Fup | 1 1 0 0 0 0
Ty | O 0 0 1 0 0
Tys | O 0 0 0 1 0
Tym | O 0o ... 0 0 o ... 1

figuration for the fault estimator blocks. Then, the design
of the neural networks model can be performed. Finally,
the threshold test logic of Eq. 6 allows the achievement of
the fault diagnosis task.

4. SIMULATION RESULTS

This section summarises the simulations related to the
considered benchmark system, for which the proposed
solution for the fault diagnosis solutions are implemented.
The focus is placed on the single wind turbine benchmark,
where the neural network fault estimators are analysed
and validated by means of a Monte Carlo analysis. Then,
their performances are compared to those of other fault
diagnosis methods, commonly adopted in the related lit-
erature.

With reference to the wind turbine benchmark model of
Section 2, all the simulations are driven by the same
wind sequence. It represents a good coverage of typical
operating condition, as it ranges from 5 to 20 m/s, with
a few spikes at 25 m/s. The other wind speed compo-
nents are represented by uniform random variables. The
simulations last for 4400 s, during which only one fault
may occur. The discrete—time benchmark model runs at
a sampling frequency of 100 Hz (i.e. T = 0.01), so that
N = 440000 samples per simulation are acquired. With
reference to the different scenarios described in Section
2, Table 5 reports the shape and the time of the fault
signals affecting the system. They are modelled as input
(actuator) or output (sensor) additive fault, as described
in (Odgaard and Stoustrup (2015)).

Table 5. Fault characteristics.

Fault nr. Fault Shape Time (s)
1 step 2000 — 2100
2 step 2300 — 2400
3 step 2600 — 2700
4 step 1500 — 1600
5 step 1000 — 1100
6 step 2900 — 3000
7 trapezoidal 3500 — 3600
8 step 3800 — 3900
9 step 4100 — 4300

In order to highlight how faults affect the system, the
comparison between the faulty and the fault free signal is
represented in Fig. 6, regarding the most affected signals of
the fault sensitivity test. This sensitivity analysis aimed at
estimating the most sensitive measurements with respect
to the simulated fault conditions.

In practice, the monitored fault signals have been injected
into the benchmark simulators, assuming that only a single
fault may occur in the considered plant. Then, the Relative
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Mean Square Errors (RMSE) between the fault-free and
faulty measured signals are computed, so that, for each
fault, the most sensitive signal can be selected. The results
of this fault sensitivity analysis are shown in Table 6 for
the wind turbine benchmark.

Table 6. The most sensitive measurements with
respect to the faults.

Fault 1 2 3 4 5
Measurement | [1,m1 B2,m2 B3,m1 Wr m1 Wr,m1

RMSE 11,20 0,98 2,48 1,44 1,45

Fault 6 7 8 9
Measurement B2,m1 B3,m2 Tg,m Wy, m1

RMSE 0,80 0,73 0,84 0,77

As an example, the cases of faults 1, 2, 3, and 8 are
considered in Fig. 6.

Fault 1 Fault 2

e
—
o—

By (deg)

By (deg)

1960 2000 2020 2040 2060 2060 2100 2120 2140 2260 720 2300 220 240 2360 2300 2400 240
ime (s) Time (5)

Fault 3 T Fault 8
n 478
4 478
15
, ’\\HM | o b 4 ﬂ\ ' ' m '
£l i MR R o 4
2 2 ety 2
T, m M]. t g 47
& o
o 468
o 405
464
a6z
2?0 o0 %0 20 20 3760 300 20 040 360 B0 3900
Time (s) Time (s)

Fig. 6. The faulty signals (black line) compared with the

fault-free signals (grey line).

4.1 Fault Diagnosis

Nine open—loop NARX neural network described in Sec-
tion 3.1 have been designed to estimate the nonlinear
behaviour between the acquired measurements and the
proposed faults. The selected architecture of the networks
involves two layers, namely the hidden layer and the out-
put layer. The number of neurons in the hidden layer has
been fixed to nj, = 16. Finally, a number of d, = d, = 4
has been chosen for the input—output delays. The neural
networks modelling capabilities have been tested in terms
of Root Mean Square Error (RMSE) and the results are
reported in Table 7 in fault—free conditions.

The fault detection task is achieved by comparing the
residual with a fixed optimised threshold. However, the
residuals are filtered by an evaluation function ahead of
the threshold comparison. This evaluation function can be
either a Mobile Average (MA) or a Mobile Variance (MV),
with a properly tuned window size, as reported in Table
8.

Figure 7 shows some meaningful residual signal for actua-
tor faults, together with the relative thresholds, while Fig.

Table 7. Neural network performance in terms
of RMSE.

Fault Estimator nr. RMSE
0.009
0.009
0.009
0.012
0.011
0.011
0.009
0.009
0.014

—_

© 0NN U WN

Table 8. The residual filter functions for each
fault estimator.

Residual nr. Evaluation function Window samples
1 MV 20
2 MA 60
3 MV 20
4 MA/MV 45/55
5 MA 50
6 MV 60
7 MV 70
8 MA 50
9 MA 50

8 shows the residual regarding the sensor faults. Further
details on validation and comparative results are described
in the following.

Fault 1 Residuals

500 1000 1500 2000 2500 3000 3500 4000
Time (s)
Fault 2 Residuals
T T

(IERGTRRY S P -
st ikt Bl s

L L L L L L L L
500 1000 1500 2000 2500 3000 3500 4000
Time (s)
Fault 3 Residuals

500 1000 1500 2000 2500 3000 3500 4000
Time (5)

Fault 4 Residuals
| |

o

500 1000 1500 2000 2600 3000 3500 4000
Time ()

Fig. 7. Faulty residuals (continuous line) and fixed thresh-
olds (dashed line) for the actuator faults 1 - 4.

In particular, Figure 7 shows the residuals generated in
faulty conditions by neural network estimators (continuous
line) compared the fixed thresholds (dashed line). The
considered residuals concern the actuator faults 1 - 4.

On the other hand, Figure 8 shows the residuals generated
in faulty conditions by neural network estimators (continu-
ous line) compared the fixed thresholds (dashed line). The
considered residuals concerns the sensor fault cases 6 - 8.
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Fault 6 Residuals

n n
500 1000 1500 2000 2500 3000 3500 4000
Time (5)

Fault 7 Residuals

500 1000 1500 2000 2500 3000 3500 4000
Time ()

Fault 8 Residuals
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| \ . \ \ \ . ,
500 1000 1500 2000 2500 3000 3500 4000
Time (s)

Fig. 8. Faulty residuals (continuous line) and fixed thresh-
olds (dashed line) for the sensor faults 6 - 8.

4.2 Validation and Comparative Analysis

The evaluation of the performances of the considered fault
diagnosis strategies is based on the computation of the
following indices:

e False Alarm Rate (FAR): the ratio between the
number of wrongly detected faults and the number of
simulated faults;

e Missed Fault Rate (MFR): the ratio between the
total number of missed faults and the number of
simulated faults;

e True FDI Rate (TFR): the ratio between the
number of correctly detected faults and the number
of simulated faults (complementary to MFR);

e Mean FDI Delay (MFD): the delay time between
the fault occurrence and the fault detection.

A proper Monte Carlo analysis has been performed in
order to compute these indices and to test the robustness of
the considered FDI scheme. Indeed, the Monte Carlo tool
is useful at these stage, as the efficacy of the diagnosis
depends on both the model approximation capabilities
and the measurements errors. In particular, a set of 1000
Monte Carlo runs has been executed, during which realistic
wind turbine uncertainties have been considered by mod-
elling some meaningful variables as Gaussian stochastic
processes around the nominal values and with standard
deviations corresponding to the realistic minimal and max-
imal error values of Table 9.

Table 9. Monte—Carlo analysis parameter vari-

ations.
Parameter Nominal Value Min. Error Max. Error
P 1.225Kg/m? +0.1% +5%
J 7.794 x 106 Kg/m? +0.1% +25%
Cp Chpo +0.1% +35%

In addition to the proposed neural network fault esti-
mators, the performance indices of other fault diagnosis
schemes are analysed.

The first alternative approach considered here uses a Sup-
port Vector machine based on a Gaussian Kernel (GKSV)
(Odgaard and Stoustrup (2015)). The scheme defines a
vector of features for each fault, which contains relevant
signals obtained directly from measurements, filtered mea-
surements or their combinations. These vectors are subse-
quently projected onto the kernel of the Support Vector
Machine (SVM), which provides suitable residuals for all
of the defined faults. Data with and without faults were
used for learning the model for the FDI of the specific
faults.

The second scheme consists in an Estimation-Based (EB)
solution (Odgaard and Stoustrup (2015)). In particular, a
fault detection estimator is designed to detect a fault, and
an additional bank of estimators is derived to isolate them.
The method was designed on the basis of a system linear
model and used fixed thresholds. Each estimator for fault
isolation was computed on the basis of the particular fault
scenario under consideration.

The third method relies on Up-Down Counters (UDC)
(Odgaard and Stoustrup (2015)). These tools, are com-
monly used in the aerospace framework, and they provide
a different approach to the decision logic applied to the
FDI residuals. Indeed, the decision to declare the fault oc-
currence involves discrete-time dynamics and is not simply
a function of the current residual value.

The fourth approach Combines Observer and Kalman
filter (COK) methods (Odgaard and Stoustrup (2015)).
It relies on an observer used as a residual generator
for diagnosing the faults of the drivetrain, in which the
wind speed is considered a disturbance. This diagnosis
observer was designed to decouple the disturbance and
simultaneously achieve optimal residual generation in a
statistical sense. For the other two subsystems of the wind
turbine, a Kalman filter—based approach was applied. The
residual evaluation task used a generalised likelihood ratio
test, and cumulative variance indices were applied. For
fault isolation purpose, a bank of residual generators was
exploited. Sensor and system faults were thus isolated via
a decision table.

Finally, the fifth method is a General Fault Model (GFM)
scheme, which is a method of automatic design (Odgaard
and Stoustrup (2015)). The FDI strategy consists of three
main steps. In the first step, a large set of potential residual
generators was designed. In the second step, the most
suitable residual generators to be included in the final
FDI system were selected. In the third step, tests for the
selected set of residual generators were performed, which
were based on comparisons of the estimated probability
distributions of the residuals, evaluated with fault-free and
faulty data.

The comparative analysis results are reported in Table 10.
In particular, different approaches to the fault diagnosis of
the wind turbine benchmark model, i.e. the neural network
estimators, are shown.
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Table 10. Comparison of the FDI results.

Fault Index GKSV EB UDC COK GFM Neural
1 FAR 0.001 0.001 0.001 0.001 0.001 0.001
MFR 0.002 0.003 0.002 0.003 0.002 0.001
TFR 0.978 0.977 0.987 0.977 0.982 0.999
MFED (s) 0.03 0.03 0.04 10.32 0.05 0.01
2 FAR 0.234 0.224 0.123 0.003 0.235 0.228
MFR 0.343 0.333 0.232 0.029 0.532 0.001
TFR 0.657 0.667 0.768 0.971 0.468 0.999
MFD (s) 47.24 44.65 69.03 19.32 13.74 0.08
3 FAR 0.004 0.141 0.123 0.056 0.135 0.001
MFR 0.006 0.132 0.241 0.128 0.232 0.001
TFR 0.974 0.868 0.769 0.872 0.768 0.999
MFED (s) 0.05 0.54 0.05 19.32 0.74 0.01
4 FAR 0.006 0.005 0.123 0.056 0.236 0.001
MFR 0.005 0.006 0.113 0.128 0.333 0.001
TFR 0.975 0.994 0.887 0.872 0.667 0.999
MFD (s) 0.15 0.33 0.04 19.32 17.64 0.69
5 FAR 0.178 0.004 0.234 0.256 0.236 -
MFR 0.223 0.005 0.254 0.329 0.242
TFR 0.777 0.995 0.746 0.671 0.758
MFD (s)  25.95 0.07  0.04 31.32  9.49 -
6 FAR 0.897 0.173 0.334 0.156 0.096 0.001
MFR 0.987 0.234 0.257 0.129 0.042 0.001
TFR 0.013 0.766 0.743 0.871 0.958 0.999
MFD (s) 95.95 11.37 12.94 34.02 9.49 0.01
7 FAR 0.899 0.044 0.134 0.134 0.123 0.676
MFR 0.899 0.035 0.121 0.101 0.098 0.001
TFR 0.101 0.965 0.879 0.899 0.902 0.999
MFED (s) 99.95 26.17 13.93 35.01 29.79 6.87
8 FAR 0.004 0.045 0.144 0.109 0.099 0.466
MFR 0.007 0.011 0.101 0.032 0.124 0.001
TFR 0.993 0.989 0.899 0.968 0.876 0.999
MFD (s) 0.07 0.08 0.09 0.06 8.94 0.20
9 FAR - - - - -
MFR
TFR
MFD (s)

The results show the efficacy of the proposed FDI solu-
tions. In more detail, the neural network estimators seem
to work better than other approaches, and they have a
noteworthy performance level considering the mean delay
time, which is significantly lower than 10 s for all the fault
cases. Also false alarm and missed fault rate are often
lower than those of other approaches, particularly neural
networks features an almost null missed fault rate for all
the considered faults. However, in the case of the neural
networks FDI design, optimisation stages are required,
for example for the selection of the optimal thresholds.
Furthermore, GKSV involves delays bigger than 25 s, with
false alarms and missed fault rate up to 35 %. EB has
comparable performance with respect to GKSV in terms
of false alarm, true detection and missed fault rate, but
with shorter detection delay. UDC often involves high
false alarm rates, bigger than 12% for all the detectable
faults. COK and GFM have similar performances, with
delay time higher than 10 s, false alarm and missed fault
bigger than 10 %. Fault 9 concerns the drive—train. This
fault is difficult to detect at wind turbine level, therefore
it is investigated also in the context of the wind farm
benchmark.

5. CONCLUSION

The paper proposed a solution to the problem of ear-
lier fault detection and isolation. The design of the fault
indicator involved a data—driven approach, as it repre-
sented an effective tool for coping with a poor analytical
knowledge of the system dynamics, together with noise
and disturbances. In particular, the data—driven proposed
solution was based on neural networks used to describe
the strongly nonlinear relationships between measurement
and faults. The chosen network architecture belongs to the

nonlinear autoregressive with exogenous input topology, as
it can represent a dynamic evolution of the system along
time. The developed fault diagnosis scheme was tested by
means of a high—fidelity benchmark model, that simulated
the normal and the faulty behaviour of a wind farm.
The achieved performances were compared with those of
other control strategies, coming from the related literature.
Moreover, a Monte Carlo analysis served to analyse the
robustness of the proposed solutions against the typical
parameter uncertainties and disturbances. Further studies
will consider the verification and the validation of the
proposed solutions by means of data acquired from real
installations, and for fault tolerant control applications.
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