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We consider critical Higgs inflation, namely, Higgs inflation with a rising inflection point at smaller field
values than those of the plateau induced by the nonminimal coupling to gravity. It has been proposed that
such a configuration is compatible with the present CMB observational constraints on inflation and also
with primordial black hole production, accounting for the totality or a fraction of the observed dark matter.
We study the model while taking into account the next-to-next-to-leading order (NNLO) corrections to the
Higgs effective potential: such corrections are extremely important to reduce the theoretical error associated
to the calculation. We find that, in the 3σ window for the relevant low energy parameters, which are the
strong coupling and the Higgs mass (the top mass follows by requiring an inflection point), the potential at
the inflection point is so large (and so is the Hubble constant during inflation) that the present bound on the
tensor-to-scalar ratio is violated. The model is viable only when allowing the strong coupling to take its
upper 3–4σ value. In our opinion, this tension shows that the model of critical Higgs inflation is likely to be
not viable: neither inflation nor black holes as dark matter can be originated in this version of the model.
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I. INTRODUCTION

Critical Higgs inflation [1–3] is a particular case of Higgs
inflation [4,5], in which the Higgs potential displays a rising
inflection point at field values just below the plateau induced
by the nonminimal coupling to gravity, ξ. It was introduced
with the peculiarity of accounting for the quite large,
potentially observable, tensor-to-scalar ratio of cosmological
perturbations, r, with respect to the standard scenario of
Higgs inflation with a large nonminimal coupling ξ, where r
is predicted to be approximately 0.003, together with a scalar
tilt of curvature perturbation ns ≈ 0.97 [4]. Previous analysis
of critical Higgs inflation [1–3] exploited some approxi-
mated form for the effective potential, without discussing in
detail the theoretical error associated to such approximation:
their aim was primarily to show that r could have been large
enough to explain the preliminary (and later retired) results of
theBICEPCollaboration,whichwere pointing to r ≈ 0.2 [6].
In critical Higgs inflation, ξ is small enough so that

problems related to the violation of unitarity (see, e.g., [7])
might be evaded, even though higher-dimensional oper-
ators might play an important role [8]. Recently, it has also

been shown that this scenario is safe from the fine tuning
associated to the initial conditions [9].
It has been recently proposed that critical Higgs inflation

is a viable mechanism to produce primordial black holes
constituting a fraction or a significant part of the dark
matter observed today [10]. This applies in general to
potentials with an inflection point [11,12] or a local
minimum [13], followed, at higher field values, by a
plateau. The results of Ref. [10] were questioned in [8],
where it was suggested that [10] introduces a too large
running of the nonminimal coupling, which could not
follow from the Standard Model (SM) nonminimally
coupled to gravity.1

Now that the tensor-to-scalar ratio is better constrained,
r < 0.12 at 95% C.L. [14,15], and in view of its possible
applications in the phenomenology of primordial black
holes, it is interesting to have a more robust understanding
of the critical Higgs inflation scenario. The aim of this work
is precisely to improve the robustness of the predictions of
the cosmological observables (like r and ns), linking them
to the present experimental range of the low energy
parameters which control the shape of the Higgs effective
potential—the strong coupling constant αs, the top quark
massmt, and the Higgs boson massmH—and assessing the
size of the theoretical error associated to the calculation.
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1This large running might appear in some SM extensions or
maybe through some nonperturbative physics, but those are
scenarios that differ from the original Higgs inflation idea [8].
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There is general agreement (see [16] and references
therein) on the fact that the stability of the SM potential—
and so the inflection point configuration—displays a
tension with the low energy parameters at about 2σ.
More precisely, assuming the theoretical error associated
to the next-to-next-to-leading order (NNLO) calculation to
go in the “right direction,” stability requires, for instance,
that αs,mt, andmH take, respectively, their upper 2σ, lower
1σ, and central values [16].
In the case of critical Higgs inflation, also the observa-

tional constraints on r andns have to be fulfilled. Thevalue of
the SM Higgs potential at the inflection point, Vi, is
particularly important for the prediction of r. Once the
low energy parameters are fixed, such a value is subject to
the theoretical errors associated to the various steps of
the calculation: matching, running, and effective potential
expansion. These errors have been carefully studied in [16].
For instance, it was shown that, even using the RGE-
improved tree-level potential at NNLO, a large theoretical
error plagues the value of Vi, so that one must consider at
least the one-loop effective potential to obtain a reliable result
[16]. The latterwork focused on the case of a rising inflection
point in the SM,without any coupling to gravity (namely, the
possibility of a shallow false vacuum and its applications to
cosmology [17–20]). Here we extend the calculation by
including the effect of the nonminimal coupling to gravity.
We find that the value of the Higgs potential at the

inflection point is higher than what was considered in
previous analyses [1–3,8,9], and in particular it is much
higher than the range required in [10] for the issue of black
holes. Fixing the amplitude of scalar perturbations at its
observed value, it turns out that the prediction for r is then
accordingly higher. We will show that, even taking into
account the NNLO theoretical error, the present upper
bound on r can be accommodated only at the price of
assuming that αs takes its upper 3–4σ value.2

The model of critical Higgs inflation is thus in serious
trouble per se, and it is quite unrealistic that it might
account for a significant fraction of the dark matter seen
today under the form of primordial black holes.
The paper is organized as follows. In Sec. II, following

[16], we review how to determine the Higgs potential in the
SM according to the present state of the art, and discuss in
particular the inflection point configuration. Section III is
devoted to the model of Higgs inflation, while Sec. IV
discusses the phenomenology of the inflection point
configuration in the case of critical Higgs inflation. We
draw our conclusions in Sec. V.

II. HIGGS POTENTIAL IN THE SM AT NNLO

Before introducing the model with the nonminimal
coupling to gravity, we review the findings of Ref. [16]

about the rising inflection point configuration of the SM
Higgs effective potential, as they will turn out to be relevant
also in the case of the nonminimal coupling.
According to our conventions, the potential for the

Higgs field ϕ contained in the Higgs doublet H ¼
ð0; ðϕþ vÞ= ffiffiffi

2
p ÞT is given, at tree level, by

VðϕÞ ¼ λ

6

�
jHj2 − v2

2

�
2

≈
λ

24
ϕ4; ð1Þ

where λ is the Higgs quartic coupling, v ¼ 1=ð ffiffiffi
2

p
GμÞ1=2 ¼

246.221 GeV, Gμ is the Fermi constant from muon
decay [21], and the right-hand side of Eq. (1) holds when
considering large field values. Within our normalization,
the mass of the Higgs boson and the mass of the fermion f
are given by the tree-level relations

m2
H ¼ λv2

3
; mf ¼

hfvffiffiffi
2

p ; ð2Þ

where hf denotes the associated Yukawa coupling.
In order to extrapolate the behavior of the Higgs

potential at very high energies, we adopt the MS scheme
and consider the matching and RGE evolution of the
relevant couplings which, in addition to the Higgs quartic
coupling λ, are the three gauge couplings g, g0, g3; the top
Yukawa coupling ht; and the anomalous dimension of
the Higgs field γ. We then compute the RGE-improved
Higgs effective potential at the NNLO, that is, at the two-
loop level.
Before discussing the procedure associated to matching,

running, and effective potential expansion, we review the
basic ideas of the RGE: in applications where the effective
potential VeffðϕÞ at large ϕ is needed, as is the case for our
analysis, potentially large logarithms appear, of the type
logðϕ=μÞ, where μ is the renormalization scale, which may
spoil the applicability of perturbation theory. The standard
way to treat such logarithms is by means of the RGE.
The fact that, for fixed values of the bare parameters, the
effective potential must be independent of the renormali-
zation scale μ, means that [22]

�
μ
∂
∂μþ βi

∂
∂λi − γ

∂
∂ϕ

�
Veff ¼ 0; ð3Þ

where

βi ¼ μ
dλi
dμ

; γ ¼ −
μ

ϕ

dϕ
dμ

ð4Þ

are the β-functions corresponding to each of the SM
couplings λi and the anomalous dimension of the back-
ground field, respectively.
The formal solution of the RGE is

Veffðμ; λi;ϕÞ ¼ VeffðμðtÞ; λiðtÞ;ϕðtÞÞ; ð5Þ
2Notice that the Higgs false vacuum model was ruled out for

precisely the same reason [16].
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where

μðtÞ ¼ etμ; ϕðtÞ ¼ eΓðtÞϕ;

ΓðtÞ ¼ −
Z

t

0

γðλðt0ÞÞdt0; ð6Þ

and λiðtÞ are the SM running couplings, determined by the
equation

dλiðtÞ
dt

¼ βiðλiðtÞÞ ð7Þ

and subject to the boundary conditions λið0Þ ¼ λi. The
usefulness of the RGE is that t can be chosen in such a way
that the convergence of perturbation theory is improved,
which is the case, for instance, when ϕðtÞ=μðtÞ ¼ Oð1Þ.
In our calculation the boundary conditions are given at the
top quark mass, mt; we will then take μ ¼ mt in Eq. (6)
from now on.

A. Matching and running

In order to derive the values of the relevant parameters
(g, g0, g3, ht, λ) at the top pole mass, mt, we exploit the
results of a detailed analysis about the matching procedure,
performed by Bednyakov et al. [23]. We refer the interested
reader to [16,23] for more details; here we just mention our
reference values:

(i) For the strong coupling constant at mZ, α
ð5Þ
s , we take

the present [24] world average experimental value of

the strong coupling constant atmZ, α
ð5;expÞ
s ¼ 0.1181,

and its associated 1σ error, Δαð5;expÞs ¼ 0.0013;
(ii) For the Higgs mass, mH, we take the combined

ATLAS and CMS result (after Run1) at 1σ,
mexp

H ¼ 125.09 GeV, and Δmexp
H ¼ 0.24 GeV [25];

(iii) For the top pole mass, mt, we take the present
combined Tevatron and LHC value of the MC top
mass, mMC

t ¼ ð173.34� 0.76Þ GeV [26]; the un-
certainty in the identification between the pole and
MC top mass is currently estimated to be of the order
of 200 MeV [27,28] (or even 1 GeV for the most
conservative groups [29]).

The β-functions can be organized as a sum of contri-
butions with an increasing number of loops:

d
dt

λiðtÞ ¼ κβð1Þλi
þ κ2βð2Þλi

þ κ3βð3Þλi
þ � � � ; ð8Þ

where κ ¼ 1=ð16π2Þ and the apex on the β-functions
represents the loop order. Here, we are interested
in the RGE dependence of the couplings (g, g0, g3, ht, λ, γ).
The one-loop and two-loop expressions for the β-functions
in the SM are well known and can be found, e.g., in Ford
et al. [30]. The complete three-loop β-functions for the SM
have been computed more recently in Refs. [31–38]. The

dominant four-loop contribution to the running of the
strong gauge coupling has been also computed recently;
see Refs. [39,40]. In the present analysis we include all
these contributions, as already done in Ref. [16].

B. RGE-improved effective potential

Without sticking to any specific choice of scale, the
RGE-improved effective potential at high field values can
be rewritten as

Veffðϕ; tÞ ≈
λeffðϕ; tÞ

24
ϕ4; ð9Þ

where λeffðϕ; tÞ takes into account the wave-function
normalization and can be expanded as the sum of tree-
level plus increasing loop contributions:

λeffðϕ; tÞ¼ e4ΓðtÞ½λðtÞþ λð1Þðϕ; tÞþ λð2Þðϕ; tÞþ �� ��: ð10Þ

In particular, the one-loop Coleman-Weinberg contribu-
tion [41] is

λð1Þðϕ; tÞ ¼ 6
1

ð4πÞ2
X
p

Npκ
2
pðtÞ

�
log

κpðtÞe2ΓðtÞϕ2

μðtÞ2 − Cp

�
;

ð11Þ

where, generically, p runs over the contributions of the top
quark t, the gauge bosonsW and Z, the Higgs boson ϕ, and
the Goldstone bosons χ. The coefficients Np, Cp, and κp
are listed in Table I for the Landau gauge (see, e.g., Table 2
of Ref. [42] for a general Rξ gauge).
The two-loop contribution λð2Þðϕ; tÞ was derived by Ford

et al. in Ref. [30] and, in the limit λ → 0, was cast in a more
compact form in Refs. [43,44]. We verified, consistently
with these works, that the error committed in this approxi-
mation is less than 10% and can thus be neglected.
It is clear that when λðtÞ becomes negative, the Higgs

and Goldstone contributions in Eq. (11) are small but
complex, and this represents a problem in the numerical
analysis of the stability of the electroweak vacuum. Indeed,
in Refs. [43,44] the potential was calculated at the two-loop
level, but setting to zero the Higgs and Goldstone con-
tributions in Eq. (11). Some authors [45,46] recently
showed that the procedure of Refs. [43,44] is actually
theoretically justified when λ is small (say, λ ∼ ℏ): in this

TABLE I. Coefficients for Eq. (11) in the Landau gauge.

p t W Z ϕ χ

Np −12 6 3 1 3
Cp 3=2 5=6 5=6 3=2 3=2
κp h2=2 g2=4 ðg2 þ g02Þ=4 3λ λ
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case, the sum over p does not have to include the Higgs and
Goldstone contributions, which rather have to be accounted
for in the two-loop effective potential, which practically
coincides with the expression derived in Refs. [43,44]. For
the rising inflection point configuration that we are inter-
ested in, λ is indeed small; as already done in Ref. [16], we
thus adopt the procedure outlined in [46]. Here, however,
we prefer to work with the wave-function renormalized
field, ϕðtÞ, instead of the classical one, ϕ. Explicitly,

Veff ¼ Vð0Þ þ Vð1Þ þ Vð2Þ þ � � � ; ð12Þ

where

Vð0Þ ¼ λðtÞ
24

ϕðtÞ4; ð13Þ

Vð1Þ ¼ 1

24

6

ð4πÞ2
�
6

�
gðtÞ2
4

�
2
�
log

gðtÞ2
4

ϕðtÞ2
μðtÞ2 −

5

6

�

þ 3

�
gðtÞ2 þ g0ðtÞ2

4

�
2
�
log

gðtÞ2þg0ðtÞ2
4

ϕðtÞ2
μðtÞ2 −

5

6

�

− 12

�
hðtÞ2
2

�
2
�
log

hðtÞ2
2

ϕðtÞ2
μðtÞ2 −

3

2

��
ϕðtÞ4; ð14Þ

and Vð2Þ can be found in [43,44].
A relevant aspect of the present calculation is represented

by the well-known fact that the RGE-improved effective
potential is gauge dependent. After choosing the renorm-
alization scale t, the RGE-improved effective potential,
Veffðϕ; ξÞ, is a function of ϕ; the gauge-fixing parameters
are collectively denoted by ξ; and the other input param-

eters are denoted as mt, mH, αð5Þs . Due to the explicit
presence of ξ in the vacuum stability and/or inflection point
conditions, it is not obvious a priori which are the physical
(gauge-independent) observables entering the vacuum sta-
bility and/or inflection point analysis. The basic tool, in
order to capture the gauge-invariant content of the effective
potential, is given by the Nielsen identity [47]

�
ξ
∂
∂ξþ Cðϕ; ξÞ ∂

∂ϕ
�
Veffðϕ; ξÞ ¼ 0; ð15Þ

where Cðϕ; ξÞ is a correlator whose explicit expression will
not be needed for our argument. The equation means
that Veffðϕ; ξÞ is constant along the characteristics of the
equation, which are the curves in the ðϕ; ξÞ plane for which
dξ ¼ ξ=Cðϕ; ξÞdϕ. In particular, the identity says that the
effective potential is gauge independent where it is sta-
tionary, as happens for two degenerate vacua and for the
inflection point configuration. One can also show [16] that
the peculiar values of the low energy input parameters [as,

for instance,mt, the Higgs mass, and αð5Þs ] ensure stationary
configurations are gauge independent.

Working in the Landau gauge is thus perfectly consistent
in order to calculate the value of the effective potential at a
stationary point, call it Vs, or the value of the input
parameters providing it. Nevertheless, one has to be aware
that the truncation of the effective potential loop expansion
at some loop order introduces an unavoidable theoretical
error both in Vs and in the input parameters. For this sake, it
is useful to define the parameter α via

μðtÞ ¼ αϕðtÞ ð16Þ

and study the dependence of Vs and the input parameters
on α. The higher the order of the loop expansion to be
considered is, the less the dependence on α. This was
shown explicitly in [16], where we studied the case of two
degenerate vacua and the case of a rising inflection point,
respectively.3 In the following we summarize and elaborate
on the main results, as they will be useful also for the
analysis of critical Higgs inflation.

C. Two degenerate vacua

As discussed in the previous section, once mH and αð5Þs

have been fixed, the value of the top mass for which the SM
displays two degenerate vacua, mc

t , is a gauge invariant
quantity. This value is however plagued by experimental
and theoretical errors. The result of the NNLO calculation
is [16]

mc
t ¼ ð171.08� 0.37αs � 0.12mH

� 0.32thÞ GeV; ð17Þ

where the first two errors are the 1σ variations of αð5Þs and
mH. Our results for the value of mc

t update and improve
but, modulo the doubling of the experimental error

in αð5Þs , are essentially consistent with those of the literature
[23,43,44,48–50].
In Fig. 1,mc

t is displayed as a function ofmH for selected

values of αð5Þs ; in particular, the solid line refers to its central
value, while the dotted, short-, and long-dashed lines refer
to the 1σ, 2σ, and 3σ deviations, respectively. In the region
below (above) the line, the potential is stable (metastable).
The theoretical uncertainty on mc

t due to the NNLO
matching turns out to be about �0.32 GeV; the position
of the straight lines in Fig. 1 can be shifted up or down, as

represented by the (red) arrow for the central value of αð5Þs .
The value �0.32 GeV is obtained by combining in quad-
rature the error on mc

t associated to the matching of λ,
�0.19 GeV for �Δλ, and the one associated to the

3Actually, in [16] we defined α in a slightly different way than
we do here, namely, in terms of the classical field ϕ, rather than
the wave-function renormalized one, ϕðtÞ. There is no conceptual
difference in doing so, and the numerical difference in α is
marginal.
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matching of the top Yukawa coupling, ∓0.25 GeV for
�Δyt.
The present combined Tevatron and LHC value of the

MC top mass ismMC
t ¼ ð173.34� 0.76Þ GeV [26]. Taking

into account the theoretical error, we see that the stability

line for the central (upper 2σ) value of αð5Þs touches the
mMC

t −mexp
H covariance ellipse corresponding to a 95.5%

(68.2%) probability. This calculation of the experimental
and theoretical uncertainties on mc

t , in addition to the
uncertainty in the identification of the MC and pole top

masses, leads us to conclude that stability is at present still
compatible with the experimental data at about 2σ [16].

D. Rising inflection point

Such a configuration is relevant for the class of models
of primordial inflation based on a shallow false minimum
[17–20], which was studied in [16], and those based on the
nonminimal coupling, which we study in the present work.
The value of the top mass giving the inflection point

configuration, mi
t, is smaller but so close to the one giving

two degenerate vacua that Eq. (17) applies also in this case.
We denote the value of the Higgs effective potential at

the inflection point by Vi. Experimental uncertainties on Vi

can be estimated as follows: we let αð5Þs vary in its 3σ
experimental range and, for fixed values of mH, we
determine mi

t and the two-loop effective potential Vi; the
result is displayed in the left panel of Fig. 2 (taken from

[16]). One can see that increasing αð5Þs from its lower to its
upper 3σ range, V1=4

i decreases from 2 × 1017 GeV up to
2 × 1016 GeV; the dependence on mH is less dramatic.
Theoretical errors can be divided into three categories:

those associated to (i) the matching, (ii) the running, and
(iii) the effective potential expansion.

(i) Theoretical errors associated to the NNLO matching
of λ are displayed via the (red) lines in the left panel

of Fig. 2; the line associated the central value of αð5Þs

could be shifted by about �0.08 when the quartic
coupling changes by �Δλ. This theoretical error is
thus slightly smaller than the experimental error

due to the 1σ variation of αð5Þs . The theoretical error
in the matching of the top Yukawa coupling has a
negligible effect on Vi.

(ii) The order of magnitude of the theoretical errors
associated to the β-functions at NNLO can be
estimated by studying the impact of the subsequent

FIG. 1. Lines for which the Higgs potential develops a second
degenerate minimum at high energy. The solid line corresponds to

the central value of αð5Þs ; the dashed lines are obtained by varying

αð5Þs in its experimental range, up to 3σ. The (red) arrow represents
the theoretical error in the position of the lines. The (green) shaded
regions are the covariance ellipses obtained by combining mMC

t ¼
173.34� 0.76 GeV and mexp

H ¼ 125.09� 0.24 GeV; the proba-
bility of finding mMC

t and mH inside the inner (central, outer)
ellipse is equal to 68.2% (95.5%, 99.7%). The plot is taken from
Ref. [16].

FIG. 2. Left: Dependence of V1=4
i on mH for fixed values of αð5Þs . The (red) arrow and solid lines show the theoretical error due to the

matching of λ. The right vertical axis displays the associated value of the tensor-to-scalar ratio r, according to Eq. (19). The plot is taken

from Ref. [16]. Right: Dependence of V1=4
i on α at the tree, one-loop, and two-loop levels. For definiteness, αð5Þs and mH are assigned to

their central values.
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correction; it turns out that such an error is neg-
ligible.

(iii) The theoretical uncertainty associated to the fact that
we truncate the effective potential at some loop level
can be estimated by studying the dependence of Vi

on the parameter α defined via Eq. (16). We fix αð5Þs

andmH at their central values and display in the right
panel of Fig. 2 the resulting value of V1=4

i at the tree,
one-loop, and two-loop levels by means of the long-
dashed, dashed, and solid lines, respectively. The
dependence of V1=4

i on α at the tree level is implicit,
Veff ∝ λðlnðαϕðtÞ=mtÞÞ, but significant: it is uncer-
tain by one order of magnitude when α is varied in
the interval 0.1–1. The one-loop corrections flatten
the dependence on α so that, in the interval 0.1–1,
the uncertainty on V1=4

i gets reduced down to about
5%, much smaller than the theoretical one due to the
matching; the two-loop correction further flattens
the dependence on α and allows us to estimate V1=4

i
with a 1% precision.

In summary, the result of the NNLO calculation is [16]

log10ðV1=4
i =GeVÞ ¼ 16.77� 0.11αs � 0.05mH

� 0.08th;

ð18Þ
where the first two errors refer to the 1σ variations of αð5Þs

and mH, respectively, while the theoretical error is domi-
nated by the one in the matching of λ.

1. Impact on models of inflation with a rising
inflection point

A precise determination of Vi is important for models
of inflation based on the idea of a shallow false
minimum [17–20] as, in these models, Vi and the ratio
of the scalar-to-tensor modes of primordial perturbations, r,
are linked via

Vi ¼
3π2

2
rAs; ð19Þ

where As ¼ 2.2 × 10−9 [51] is the amplitude of scalar
perturbations. This relation follows from the fact that about
62 e-folds before the end of inflation, the Higgs field
(playing the role of a curvaton) is at the inflection point,
so that

As ¼
H2

8π2ϵ

����
N¼62

; ð20Þ

where H2 ≈ Vi=3 is the Hubble parameter (dominated by
the SM potential), and the inflaton is in a slow-roll phase,
so that r ¼ 16ϵ.
In view of such an application, the right axis of the plot in

the left panel of Fig. 2 reports the corresponding value of r.

The dependence of r on αð5Þs is strong: when the latter is
varied in its 3σ range, r spans about three orders of
magnitude, from 0.3 to 300. The dependence on mH is
milder. The theoretical error in the matching of λ implies an
uncertainty on r by a factor of about 2.
According to the 2015 analysis of the Planck

Collaboration, the present upper bound on r at the pivot
scale k� ¼ 0.002 Mpc−1 is r < 0.12 at 95% C.L. [14], as
also confirmed by the recent joint analysis with the BICEP2
Collaboration [15]. Due to Eq. (19), this would translate
into the 95% C.L. bound

log10ðV1=4
i =GeVÞ < 16.28; ð21Þ

which implies a tension with Eq. (18) at about 4σ with

respect to αð5Þs . This tension might be reduced at about 3σ
assuming the theoretical error on the matching of λ to go in
the “right” direction of lowering Vi (this would correspond
to þΔλ, which however goes in the “wrong” direction for
the sake of mc

t ). This can be graphically seen in Fig. 3,

where the contour levels of r in the plane ðmH; α
ð5Þ
s Þ are

shown. Even invoking the uncertainty due to the matching
(lower red dashed lines), a value for r as small as 0.12 (red

solid line) could be obtained only with αð5Þs to take its upper
3σ value andmH for its lower 1σ one; the value ofmt could
stay around its lower 1.5σ value, as can be seen from Fig. 1.
These considerations will be useful also for the model of

critical Higgs inflation, which however requires a specific
study. In the next section we review this model, paying
attention to work at least at one loop in the expansion of
the effective potential.

FIG. 3. Contour levels of r in the plane ðmH; α
ð5Þ
s Þ. The

theoretical uncertainty corresponding to r ¼ 0.12 is shown by
means of the (red) dashed lines. The shaded regions are the
covariance ellipses, indicating that the probability of finding

the experimental values of mH and αð5Þs inside the ellipses are,
respectively, 68.2%, 95.4%, 99.7%. The plot is taken from
Ref. [16].
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III. HIGGS INFLATION: THE MODEL

We introduce a nonminimal gravitational coupling ξ
between the SM Higgs doublet H and the Ricci scalar
R [4]. The classical action for Higgs inflation is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
LSM −

M2
P

2
R − ξjHj2R

�
; ð22Þ

where LSM is the Standard Model Lagrangian, MP ¼
1=ð8πGNÞ1=2 ≃ 2.43 × 1018 GeV is the reduced Planck
mass, and g is the determinant of the Friedmann-
Lemâitre-Robertson-Walker metric. The relevant part of
the action (22) from a cosmological point of view is

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
j∂Hj2 −M2

P

2
R − ξjHj2R − V

�
; ð23Þ

where V is the SM potential of Eq. (1), j∂Hj2 ¼ ð∂μHÞ†
ð∂μHÞ, and the subscript J means that the action is
evaluated in the Jordan frame (where physical distances
are measured and the inflationary model is defined). In
order to remove the nonminimal coupling, we introduce a
conformal (or Weyl) transformation:

g̃μν ¼ Ω2gμν; Ω2 ≡ 1þ 2ξ
jHj2
M2

P
: ð24Þ

If we further consider the unitary gauge, in which the
only scalar field is the radial mode ϕ ¼

ffiffiffiffiffiffiffiffiffiffiffi
2jHj2

p
, we

obtain the Einstein frame action where gravity is canoni-
cally normalized:

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−
M2

P

2
R̃þ K

ð∂ϕÞ2
2

−
V
Ω4

�
;

K ¼
Ω2 þ 3

2
ð dΩ2

dðϕ=MPÞÞ
2

Ω4
: ð25Þ

From now on, the bar over a quantity will indicate that it
is given in (reduced) Planck units. The kinetic term for the
classical Higgs field ϕ in (25) can be made canonical by the
redefinition ϕ̄ ¼ ϕ̄ðχ̄Þ:

dχ̄

dϕ̄
¼

ffiffiffiffi
K

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξϕ̄2 þ 6ð1

2
dξ
dϕ̄
ϕ̄þ ξÞ2ϕ̄2

q
1þ ξϕ̄2

;

χ̄ðϕ̄ ¼ 0Þ ¼ 0: ð26Þ
The final expression for the Einstein frame action is

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−
M2

P

2
R̃þ ð∂χÞ2

2
−U

�
; ð27Þ

where the potential U felt by χ is

U ¼ V
Ω4

: ð28Þ

Hence, at tree level,

U ¼ λ

24

ðϕðχÞ2 − v2Þ2
ð1þ ξϕ̄ðχÞ2Þ2 ≃

λ

24

ϕðχÞ4
ð1þ ξϕ̄ðχÞ2Þ2 : ð29Þ

The potential is flat for large field values, ϕ̄ > 1=
ffiffiffi
ξ

p
, and

can in principle provide a slow-roll inflationary phase.

A. Radiative corrections

We turn to consider the inclusion of radiative corrections:
the running of the couplings, now including also the running
of the nonminimal coupling ξ, and the loop corrections to
the effective potential.
The expressions for the β-functions of the relevant

SM couplings, including ξðtÞ, can be found, e.g., in
Refs. [52,53]. The running of ξðtÞ is not dramatic: going
from t ¼ 0 (low energies) to tP ¼ lnðMP=mtÞ (Planck
scales), it increases by about 15%. The nonminimal
coupling affects the running through the appearance of a
factor s that suppresses the contribution of the physical
Higgs to the RGEs [52,54]:

sðϕðtÞÞ ¼ 1þ ξðtÞϕ̄ðtÞ2
1þ ð1þ 6ξðtÞÞξðtÞϕ̄ðtÞ2 ; ð30Þ

where ϕðtÞ ¼ eΓðtÞϕ is the wave-function renormalized
field. For small field values ϕ̄ðtÞ ≪ 1=

ffiffiffiffiffiffiffiffi
ξðtÞp

, s ≃ 1,
recovering the SM case; in the inflationary regime ϕ̄ðtÞ ≫
1=

ffiffiffiffiffiffiffiffi
ξðtÞp

, the RG equations differ from those of the SM as
quantum loops involving the Higgs field are suppressed
by s ≃ 1=ð1þ 6ξðtÞÞ.
The total RGE-improved effective potential is given by

Ueff ¼ Uð0Þ þUð1Þ þ Uð2Þ þ � � � ; ð31Þ

with the running of all the couplings involved, evaluated at
some renormalization scale μðtÞ, conveniently chosen in
order to minimize the effect of the logarithms. There exist
two options for the quantization of the classical theory—
see, e.g., [52,55] for recent reviews. One can compute
quantum corrections to the potential after the transforma-
tion (24), in the Einstein frame (prescription I) [4] or before,
directly in the Jordan frame (prescription II) [56].
According to prescription I, the tree-level RGE-improved

potential is first rewritten in the Einstein frame, giving

Uð0Þ ¼ λðtÞ
24

ϕðtÞ4
ΩðtÞ4 ; ΩðtÞ2 ¼ 1þ ξðtÞϕ̄ðtÞ2: ð32Þ

The one-loop corrections take the form of (14), but the
particle masses are computed from the tree-level potential
above; this means that the quantity κp of Table I displays a
suppression factorΩðtÞ2 for theW, Z, t contributions [while
the Higgs and Goldstone contribution belong to Uð2Þ]:

RULING OUT CRITICAL HIGGS INFLATION? PHYS. REV. D 98, 043536 (2018)

043536-7



Uð1Þ ¼ 1

24

6

ð4πÞ2
�
6

�
gðtÞ2
4

�
2
�
log

gðtÞ2
4
ϕðtÞ2

μðtÞ2ΩðtÞ2−
5

6

�

þ3

�
gðtÞ2þg0ðtÞ2

4

�
2
�
log

gðtÞ2þg0ðtÞ2
4

ϕðtÞ2
μðtÞ2ΩðtÞ2 −

5

6

�

−12

�
hðtÞ2
2

�
2
�
log

hðtÞ2
2
ϕðtÞ2

μðtÞ2ΩðtÞ2−
3

2

��
ϕðtÞ4
ΩðtÞ4 : ð33Þ

The two-loop radiative corrections Uð2Þ can be found in the
same way, operating on the explicit form given in [43,44].
The appropriate scale for minimizing the effect of the
logarithms is given by ϕðtÞ=ΩðtÞ. Following the argument
illustrated in the previous section, we define the parameter
α via

μðtÞ ¼ α
ϕðtÞ
ΩðtÞ : ð34Þ

According to prescription II, the radiative corrections are
evaluated directly in the Jordan frame, before the conformal
transformation; they are thus given by Vð1Þ of Eq. (14).
After going in the Einstein frame, the tree-level potential is
thus the same as (32), while Uð1Þ ¼ Vð1Þ=ΩðtÞ4 becomes

Uð1Þ ¼ 1

24

6

ð4πÞ2
�
6

�
gðtÞ2
4

�
2
�
log

gðtÞ2
4
ϕðtÞ2

μðtÞ2 −
5

6

�

þ3

�
gðtÞ2þg0ðtÞ2

4

�
2
�
log

gðtÞ2þg0ðtÞ2
4

ϕðtÞ2
μðtÞ2 −

5

6

�

−12

�
hðtÞ2
2

�
2
�
log

hðtÞ2
2
ϕðtÞ2

μðtÞ2 −
3

2

��
ϕðtÞ4
ΩðtÞ4 : ð35Þ

Now it makes sense to define the parameter α precisely as
in Eq. (16), namely,

μðtÞ ¼ αϕðtÞ: ð36Þ
We can recognize that, due to the different choices of

μðtÞ, the two prescriptions are formally equivalent up to one
loop,4 as they both give

Uð0Þ þUð1Þ

¼ 1

24

�
λðtÞ þ 6

ð4πÞ2
�
6

�
gðtÞ2
4

�
2
�
log

gðtÞ2
4α2

−
5

6

�

þ 3

�
gðtÞ2 þ g0ðtÞ2

4

�
2
�
log

gðtÞ2 þ g0ðtÞ2
4α2

−
5

6

�

− 12

�
hðtÞ2
2

�
2
�
log

hðtÞ2
2α2

−
3

2

���
ϕðtÞ4

ð1þ ξðtÞϕ̄ðtÞ2Þ2 :

ð37Þ

So, in practice, the difference between the effective
potentials at one loop for the two renormalization prescrip-
tions is the relation between t (the argument of the running
couplings) and the wave-function renormalized field ϕðtÞ.
For small field values, ϕ̄ðtÞ ≪ 1=

ffiffiffiffiffiffiffiffi
ξðtÞp

, the relation is the
same for the two prescriptions, as in this case Ω ≈ 1. In the
inflationary region where ϕ̄ðtÞ≫1=

ffiffiffiffiffiffiffiffi
ξðtÞp

≈1=
ffiffiffiffiffiffiffiffiffiffi
ξðtPÞ

p
, the

situation changes: for prescription I, t approaches a nearly
constant value, approximately given by ln½α=ð ffiffiffiffiffiffiffiffiffiffi

ξðtPÞ
p

mtÞ�,
and hence so do the couplings gðtÞ, g0ðtÞ, etc.; for
prescription II, t ¼ ln½ðαϕðtÞÞ=mt� does not approach a
constant value. As a result, the effective potential for
prescription I approaches a constant value in the inflationary
region (even after including radiative corrections), while the
effective potential for prescription II, due to the continued
running of the couplings, does not.
This difference can have an impact on Higgs inflation

and its predictions. In the case of critical Higgs inflation,
however, there is no difference as far as we analyze the
potential at field values close to the one of the inflection
point, ϕðtiÞ, as in this case Ω ≈ 1. From now on, we will
follow prescription I for definiteness. Since we will be
working around the inflection point, to avoid recursion
problems in the numerical calculation we will take the
relation between t (the argument of the running couplings)
and ϕðtÞ in Eq. (37) to be given by

t ¼ ln

�
αϕ̄ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξðtiÞϕ̄ðtÞ2
p MP

mt

�
: ð38Þ

Before proceeding, it is important to understand the size
of the theoretical error associated to the truncation of the
effective potential at a certain loop order. This error can be
estimated by varying α, as done in the previous section.
However, now that we apply this method to the model with
the nonminimal coupling, we also have to take into account
the effect of ξ. As far as ξ is small, the plateau induced by it
starts at higher field values than those of the inflection
point, so that Ui ≈ Vi. We can thus recover the results of
Fig. 2 (right panel), where we see that the better choice to
reduce the logarithm is to take α in the range 0.1–1; the
tree-level potential displays a large variation with α, but the
one-loop effective potential is reliable enough, in particular
for the value α ¼ 0.3, where it coincides with the two-loop
effective potential.
To see this directly, in the upper panel of Fig. 4, we

display the tree-level potential Uð0Þ as a function of ϕ̄ðtÞ,
taking α ¼ 0.1, 0.3, 1, in the left, middle, and right panel,
respectively. From top (solid) to bottom (long-dashed), the
lines correspond to ξð0Þ ¼ 0, 0.1, 1, 10, 100. The central

values are taken for αð5Þs and mH. We can see that the
highness of the inflection point is uncertain by one order of
magnitude. The value of ϕðtÞ where the inflection point
occurs (a quantity that is not gauge invariant) is also quite

4This is due to the fact that for λ small, the contribution of the
Higgs and would be Goldstone bosons have to be included in the
two-loop contribution.
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undetermined: the same value of ξ [e.g., ξð0Þ ¼ 10] gives
rise to a potential with an inflection point before the plateau
for α ¼ 1, while for α ¼ 0.1 the plateau starts before the
inflection point. This simply means that the tree-level
potential, even improved with matching and running at
NNLO, is not reliable.
In the lower panel of Fig. 4 we display the effective

potential Ueff at one loop as a function of ϕ̄ðtÞ, taking
α ¼ 0.1, 0.3, 1. We can see that these plots are essentially
undistinguishable. This means that the one-loop effective
potential is trustable for the sake of the present analysis. In
the following, we will thus consider the effective potential
expansion at one loop and Eq. (38) taking α ¼ 0.3 (for
which the result of the two-loop effective potential expan-
sion is reproduced); in this way, the theoretical error
associated to the truncation of the effective potential is
smaller than the theoretical error associated to the matching
of λ.
As a last step, we have to generalize the relation between

ϕ and the canonical field χ to the case of running couplings.
As discussed in Refs. [55,57], the kinetic term for the
wave-function renormalized Higgs field, ϕðtÞ, can be made
canonical by defining the field χ as

dχ̄

dϕ̄ðtÞ ¼
ffiffiffiffiffiffiffiffiffi
KðtÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þξðtÞϕ̄ðtÞ2þ6ð1

2

dξðtÞ
dϕ̄ðtÞϕ̄ðtÞþξðtÞÞ2ϕ̄ðtÞ2

q
1þξðtÞϕ̄ðtÞ2 ;

χ̄ðϕ̄ðtÞ ¼ 0Þ ¼ 0: ð39Þ

We numerically integrate the equation above, substituting
the argument t of the running couplings as indicated in
Eq. (38). In this way, we take into account the implicit
dependence of ξðtÞ upon ϕ̄ðtÞ [55,57]. Note that we include
also the term proportional to dξðtÞ=dϕ̄ðtÞ as suggested
in Ref. [10]; the inclusion of such a term is, however,
numerically negligible. Actually, we also verified that the
approximation of taking ξðtÞ in Eq. (39) as constant and
equal to the value it has at the inflection point, ξðtiÞ, is
a very good approximation; the plots of the following
section would not change.

IV. THE INFLECTION POINT OF CRITICAL
HIGGS INFLATION

We are now in the position to study in detail the potential
corresponding to a critical configuration, first in terms of
ϕðtÞ and then expressing the potential as a function of the
canonical field χ, which is necessary to study the dynamics
of inflation.
The critical configuration is achieved when there is an

inflection point at some field value ϕi ≡ ϕðtiÞ, and the
plateau induced by the nonminimal coupling ξ starts at
a higher field value. The value of ϕi is fixed by the

experimental window of the input parameters, namely, αð5Þs

and mH (mt is chosen accordingly). The plateau instead
starts when ϕ̄ðtÞ ≈ 1=

ffiffiffiffiffiffiffiffi
ξðtÞp

; denoting by tξ the renormal-
ization scale where this happens, we define ϕξ ≡ ϕðtξÞ.

FIG. 4. The RGE-improved potential U is shown as a function of ϕðtÞ for α ¼ 0.1, 0.3, 1, in the left, middle, and right panel,

respectively. From top (solid) to bottom (long-dashed), the lines correspond to ξð0Þ ¼ 0, 0.1, 1, 10, 100. Central values are taken for αð5Þs

and mH . Upper panel: Tree-level calculation. Lower panel: One-loop calculation.
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The bottom central panel of Fig. 4 shows that, taking αð5Þs

and mH at their central values, ϕ̄i ≈ 1 and Ū1=4
i ≈ 10−1.6

(namely, U1=4
i ≈ 6 × 1016 GeV). The value of ϕi is not

gauge invariant, but the highness of the potential at the
infection point, Ūi, is (see the discussion in the previous
chapter). Only with ξ≲ 1 can one have a critical configu-
ration; with larger values the plateau destroys the inflection
point.
Notice that, in a critical configuration, as far as we

consider field values close to ϕi, we have Ω ≈ 1. This has
two implications. Firstly, Ui ≈ Vi and we can apply here
too the entire discussion in Sec. II D. Secondly, the relation
between the renormalization parameter t and ϕðtÞ is the
same for the two prescriptions [see Eqs. (34) and (36)]:
the value of Ui is thus not plagued by the issue of the
prescription (the behavior at the plateau actually is, but
this will turn out to be not relevant for the sake of our
discussion).
The presence of higher-dimensional operators close to

the Planck scale might affect the critical configuration [8].
The small value of ξ required for critical inflation is anyway
particularly interesting, as it is related to one of the most
significant drawbacks of Higgs inflation: the violation of
perturbative unitarity at the scale ϕ̄U ≈ 1=ξ. For ξ < 1 this
scale is pushed at higher values than the inflationary scale
ϕ̄ξ and the assumptions of nonrenormalizable operators or
new strong dynamics entering to restore unitarity are no
longer required (see, e.g., [52] and references therein).
We now turn to the field χ, which allows us to better

inspect the dynamics of inflation. In the left panel of Fig. 5
we reproduce the same configuration shown in the bottom

central panel of Fig. 4, obtained taking αð5Þs and mH at their
central values and mt ¼ 171.08 GeV. Clearly, the value of
the effective potential at the inflection point does not
change upon this substitution, as the relation between

ϕðtÞ and χ is a monotonically increasing one. We see
again that criticality, namely, χ̄ξ > χ̄i, requires ξ≲ 1.
Once the shape of UðχÞ is known, it is possible to

calculate the inflationary observables. Introducing the
cosmological time t, the equation of motion of the field
χðtÞ is

χðtÞ00 þ 3HðtÞχðtÞ ¼ −
dU
dχ

ðχðtÞÞ;

HðtÞ2 ¼ 1

3

�
UðχðtÞÞ þ 1

2
χðtÞ2

�
; ð40Þ

where the initial conditions are χðt0Þ ¼ χ0, χ0ðt0Þ ¼ χ00, and
t0 is some initial time. The time duration of the inflationary
phase is represented by the number of e-folds,

N ¼
Z

te

tb

dtHðtÞ; ð41Þ

where te is the time of the end of inflation and tb > t0 is the
time when the inflationary CMB observables, like As, ns, r,
are measured. It is known that tb is such that N ≈ 62.
The critical configuration in the context of Higgs

inflation [1–3] has received interest in relation to the
generation of primordial black holes [8,10]. The general
idea [10–13] is that the inflaton field is slowly rolling on
top of a plateau about 62 e-folds before the end of
inflation; CMB observables are measured at that epoch.
About 20–30 e-folds before the end of inflation, the
inflaton crosses an inflection point where it slows con-
siderably; this would give rise to a peak in the power
spectrum of primordial curvature perturbations, which
would also result in a peculiar phenomenology for black
holes, enhancing those that could significantly contribute
to dark matter today. Critical Higgs inflation [1–3] is indeed

FIG. 5. The one-loop effective potential U is shown as a function of the canonical field χ (for α ¼ 0.3). From top (solid) to bottom

(long dashed) the lines correspond to ξð0Þ ¼ 0, 0.1, 1, 10, 100. Left: Central values taken for αð5Þs andmH ,mt ¼ 171.08 GeV. Right: αð5Þs

is at its 3σ upper value, mH at its lower 1σ, mt ¼ 172.08 GeV.
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a nice and phenomenologically motivated realization of such
a scenario. We now study numerically how it could work.
In a critical configuration of Higgs inflation, the Hubble

constant at the nonminimal plateau is higher than at the
inflection point. Similarly to the discussion in the previous
section, we can derive an upper bound on Ui from the
experimental upper bound on the tensor-to-scalar ratio r:

As ¼
H2

8π2ϵ

����
N¼62

≃
U

24π2ϵ

����
N¼62

≃
2UjN¼62

3π2r
≳ 2Ui

3π2r
; ð42Þ

where the last inequality holds because UjN¼62 ≳ Ui.
We thus have

r≳ 2

3π2
Ui

As
: ð43Þ

Since Ui ≈ Vi in a critical configuration, we can apply the
entire discussion in Sec. II D to the inflection point of
the SM.
So, without any further calculation, just looking at Fig. 3,

we can conclude that, assuming the correct amplitude of
scalar perturbations, for the present central values of αð5Þs

and mH, critical Higgs inflation would predict r≳ 10; the
dominant theoretical error in the calculation is the one
associated to the matching of λ and amounts to a factor of
about 2. Even assuming that the theoretical error goes in the
right direction of lowering r, in order to fulfill the present

upper bound r < 0.12 [14,15], αð5Þs should be set at its
upper 3σ value and mH at its lower 1σ one.
We can see this tension directly by looking at Fig. 5,

where the red horizontal segments show the values of r
according to the relation r ¼ 2Ui=ð3π2AsÞ. The plot in the

left panel shows that, for the central values of αð5Þs and mH,
the critical configuration predicts r≳ 10. The present
bound on r implies that Higgs inflation is allowed only
with ξ≳ 100, hence far from criticality.
In the right panel of Fig. 5, we take αð5Þs at its 3σ upper

value and mH at its lower 1σ value; now we see that critical
Higgs inflation would predict r≳ 0.3. It would be possible
to reduce the prediction down to r ∼ 0.12 by only invoking
the theoretical error and taking a suitable value for ξ.
If one does not, the present bound on r implies that Higgs
inflation is allowed only with ξ≳ 10, far from criticality.
Measuring r close to its present upper bound would thus

be compatible with Higgs inflation, but not in its critical
version. This would reasonably imply that the production
of black holes during inflation is insufficient to constitute a
significant fraction of the dark matter seen today.
For the sake of completeness, we now compare our

findings with those of Ref. [10]; we think that, in addition
to the large running of ξ [8], this work assumes a too small
value for the quartic coupling λ at the inflection point. The
last analysis works at tree level in the effective potential and
finds that large black hole production and CMB observables
require the value of λ at the inflection point to be in the

interval ð10−3–0.8Þ × 10−6 (the Higgs potential being nor-
malized asV ¼ 1=4λϕ4). This rangehas to be comparedwith

the one of our effective λ at one loop; taking αð5Þs to vary
between its central and upper 3σ value, our effective λ at
one loop (normalized as in [10]) rather spans the interval
ð3.07 − 2.94Þ × 10−6.

V. DISCUSSION AND CONCLUSIONS

We studied carefully the model of critical Higgs
inflation [1–3], calculating the Higgs effective potential
according to the present state of the art, that is, the NNLO.
We found that, in order to satisfy the present upper bound
on the tensor-to-scalar ratio, r < 0.12 [14,15], while
accounting for the correct amplitude of scalar perturbations,

one should take αð5Þs at its upper 4σ value, namely,

αð5Þs ¼ 0.1233. This tension can be alleviated at 3σ by
invoking the theoretical error (the dominant one is asso-
ciated to the matching of λ) to go in the right direction.

Is αð5Þs ¼ 0.1233 too large? The current 1σ world average,

αð5Þs ¼ 0.1181� 0.0013 [24], is the result of a fit of many
measurements: those pointing to small values are the ones
related to structure functions; lattice results also point
towards small values, especially because the precision should
be better than for othermeasurements; electroweak precision

fits provide a larger error, so that αð5Þs ¼ 0.1196� 0.0030.
Anyway, looking at Fig. 9.2 of the PDG review on quantum

chromodynamics [24], it seems quite unrealistic thatαð5Þs will
turn out to be at the level of 0.1233.
Assuming that the present 1σ world average of αð5Þs will

be confirmed in the future, one has to conclude that the
model of critical Higgs inflation is in serious trouble per se,
as it badly violates the present bound r < 0.12 [14,15].
A fortiori, it is quite unrealistic that it might account for a
significant fraction of the dark matter seen today under the
form of primordial black holes.
Unless αð5Þs will turn out to be significantly larger than

now estimated, two options are left:
(1) Higgs inflation [4,5] is indeed the right model of

primordial inflation, but it is realized in a noncritical
form. Primordial black holes might be generated, but
it is likely that they marginally contribute to the dark
matter seen today;

(2) The shape of the inflationary potential is indeed
similar to the one of critical Higgs inflation, but Vi is
significantly lowered because of the effects of new
physics. In principle, in this case primordial black
holes might contribute to the dark matter [11–13].
We checked that right-handed neutrinos would not
help (as they have the same effect of enhancing the
value of mt). Maybe it would be more promising to
introduce another scalar, but then the model would
no longer be of single field inflation, and the analysis
would be accordingly more complicated.
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