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Abstract. In 2008, Allegri and Zhang published a study [Int. J. Fatigue. 2008, 30(6):967-977] in which 
they provided an exact analytical solution to the inverse scaling law for accelerated vibration tests of linear 
systems submitted to stationary Gaussian excitations By combining finite element analysis with multiaxial 
spectral methods defined in the frequency-domain, their solution generalised the simple inverse power law 
model suggested in some standards. The solution adopted the “equivalent von Mises stress” multiaxial 
criterion combined with the narrow-band damage expression. This work aims to propose a bandwidth 
correction to the original Allegri-Zhang solution to account for the actual spectral bandwidth of the local 
multiaxial stress. The corrected Allegri-Zhang solution is also extended to another multiaxial spectral 
method, namely the “Projection-by-Projection” criterion. A numerical example is finally discussed, in 
which the corrected solution is applied to an L-shaped beam submitted to random accelerations.

1 Introduction  
Mechanical systems are often exposed to vibrations, 
which induce randomly varying stresses that may be 
responsible for fatigue damage and even lead to failures.
To verify the component service life in the laboratory, it 
is customary to perform accelerated vibratory tests in 
which the excitation level is considerably higher than the 
actual one, which allows the testing time to be greatly 
shortened compared to the actual life of the system 
(which may be thousands of hours). Inverse power 
scaling laws are commonly used to correlate the time to 
failure in the accelerated laboratory test to the life
estimated under real excitations. The following simple 
power law model is commonly used [1-3]: 
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where Tr is the time to failure that a mechanical system 
is expected to survive in the actual operative 
environment, Ts is the time to failure in the laboratory 
test, rg and sg are the root mean square (RMS) values 
of acceleration in the actual and laboratory 
environments, respectively. In the original derivation of 
Eq. (1), the exponent α represents the inverse slope of 
the S-N fatigue curve. In practical applications, however, 
α is often treated as an empirical factor (ranging from 5 
to 8) that summarises all the uncertainties and 
approximations in Eq. (1) and its value is often adjusted
based on previous experience [3]. 
Due to its simplicity, the scaling law (1) has been largely 
used in industry, especially at the design stage, and it is 

currently included in MIL Standard 810 [1]. Such a
simple law, however, only provide a rough 
approximation of the complex stresses really 
experienced by a structure under a random input. For 
example, Eq. (1) neglects the actual shape of the 
acceleration PSD, which is only synthesised by its RMS 
value. It also ignores the structure dynamic behaviour, 
which may directly affect the output stress. 
In 2008, Allegri and Zhang published a research study 
[3] in which they contextualized the scaling law (1) in a 
more general theory based on finite element analysis and 
multiaxial spectral methods defined in the frequency-
domain through a Power Spectral Density (PSD) matrix
− their theory adopted the “equivalent von Mises stress” 
(EVMS) criterion. The Allegri-Zhang’s study derived an 
exact solution of a general scaling law model, of which 
the empirical relationship (1) is only a simplified case.
Despite its novelty, their solution seems not to have 
received so much attention, nor was it further applied in 
practical case studies. In Allegri-Zhang (A-Z) approach, 
though, some issues are worth to be investigated, as for 
example the spectral bandwidth of the multiaxial stress 
state, the accuracy of the EVMS criterion, or the 
possibility to implement other multiaxial criteria. With 
these premises, this work will investigate the A-Z 
solution with the aim to: 
i) propose a modified solution that includes the spectral 

bandwidth of the local stress state, which was 
ignored in the original approach;

ii) discuss the role of S-N parameters in EVMS criterion 
and, accordingly, to suggest possible corrections;

iii) extend the A-Z solution to the “Projection-by-
Projection” multiaxial criterion. 

MATEC Web of Conferences 165, 07006 (2018)	 https://doi.org/10.1051/matecconf/201816507006
FATIGUE 2018

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution  
License 4.0 (http://creativecommons.org/licenses/by/4.0/).



A simple numerical example will be finally discussed, in 
which the obtained scaling-law solutions are applied to 
an L-shaped beam submitted to random accelerations
imitating the real and accelerated laboratory 
environments. A comparison with the simple scaling law 
(1) will be investigated by analysing the results for 
different acceleration PSD shapes.

2 Spectral description of uniaxial and 
multiaxial random stresses
Let x(t) be a uniaxial zero-mean stationary and Gaussian 
random stress with two-sided auto-PSD S(f), which is 
characterised by the set of spectral moments [4]: 
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The variance is λ0=Var(x(t)) and the root mean square 
(RMS) value is 0λ=x  [4]. The frequency of mean up-
crossings and the peaks rate are, respectively [4]: 

24p020 ; λλνλλν ==   (3) 

The following bandwidth parameters will be considered: 
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where 0≤αm≤1 and α1≥α2. Note that α2=ν0/νp (“regularity 
index”). Two limiting cases exist: a narrow-band PSD 
that has α1→1, α2→1, a wide-band PSD that has α1<1, 
α2<1 (e.g., a white noise spectrum has α2≅0.745). If 
α2<<1, the signal has many small oscillations between 
two successive zero up-crossings (ν0<<νp).
The previous frequency-domain description can be 
extended to a multiaxial stationary random stress. For 
the sake of simplicity, equations will be presented only 
for a biaxial stress, although the same formalism applies 
to a three-dimensional stress. Let x(t)=(σxx(t),σyy(t),τxy(t))
be a biaxial stress (σ is normal stress, τ shear stress), 
characterised by the Hermitian PSD matrix: 
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in which the diagonal terms are auto-PSDs and the out-
of-diagonal terms are cross-PSDs (complex functions). 

3 Spectral methods and fatigue life
For a narrow-band uniaxial stress of time duration T, the 
fatigue damage is [5,6]: 
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where C, b are the parameters of the S-N curve sbN=C.
The coefficient A

b
A NsC = relates to the reference stress 

amplitude sA at NA=2×106 cycles.
The time to failure follows by settling DNB=Dcr (where 
Dcr is a critical damage value):  
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In the narrow-band case Eq. (7) is exact, while in the 
wide-band case it is largely conservative and needs to be 
corrected by accounting for the actual PSD bandwidth
[5,6]. A very simple approach is to introduce a 
correction factor ρ≤1 in Eq. (7), so that for a wide-band 
stress: 
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Factor ρ depends on the PSD shape and it is a function of 
spectral moments and bandwidth parameters. In the 
narrow-band case ρ→1, while in the wide-band case 
ρ→0 (factor ρ then gives an indirect measure of the 
spectral width of a PSD). Several methods adopt such a 
correction factor approach, as the “TB method” [5,6]: 
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where q=q(α1,α2) is a coefficient depending on α1,α2 (its 
analytical expression can be found in [5,6]).
Other methods also exist (e.g. Dirlik) which replace the 
single factor ρ with more elaborated expressions [6].
However, to keep things simple and without any loss of 
generality, it will be assumed that bandwidth effects are 
summarised by factor ρ and that the time to failure Tf for 
a wide-band uniaxial stress is estimated by Eq. (8). 
With a multiaxial stress, a suitable criterion needs to be 
introduced for estimating the time to failure. A criterion 
largely used is that based on the “Equivalent Von Mises 
Stress” (EVMS) σeq(t), which is a zero-mean Gaussian 
uniaxial stress, described by the following PSD: 
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In matrix form (“Tr” is the trace operator):
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The RMS value of σeq(t) is eq0,eq λσ = , where λ0eq is 

the zero-order moment of Seq(f). Note that in general 
Seq(f) is wide-band, which then requires that Eq. (8) is 
applied to estimate the fatigue life. 
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Fig. 1. Analysis steps (for both “real” and “lab” environment): finite element model, spectral analysis to compute the stress PSDs at 
each element, multiaxial spectral method to estimate the time to failure.

4 Accelerated tests and scaling law

4.1 Allegri-Zhang (A-Z) original solution

Assume that a mechanical system is subjected to a 
random base acceleration. The finite element method can 
profitably be exploited to evaluate the structure dynamic 
response and the stress PSD matrix )((e)

σ fS in each 
element (e) of the model (Fig. 1). For a plane stress state, 

)((e)
σ fS is a 3×3 matrix, see Eq. (5).

In the A-Z approach [3], the exact scaling law was 
derived by considering two main assumptions. The first 
one was to use the EVMS criterion, Eq. (11), to 
transform )((e)

σ fS of a multiaxial stress into )((e)
eq fS for 

the equivalent stress σeq(t). 
The second assumption was the choice of the statistical 
parameter of σeq(t) to construct a stress-life relationship. 
The stress level was quantified by eqσ , i.e. the RMS 
value of σeq(t). The number of cycles to failure, instead,
was measured by the number of zero up-crossings N0
observed in σeq(t). For a stationary stress N0=ν0eq·Tf,
where Tf is the fatigue life (in seconds) and ν0eq the rate 
of zero up-crossings for σeq(t). An S-N type equation 

CN =0
b
eqσ was then introduced and the fatigue life 

estimated as: 

b
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Although b, C virtually represent the parameters of the 
constant amplitude S-N curve, their value may change 
under a random stress, as also pointed out in [3] (this 
issue will be further discussed in Section 6).
To derive a scaling law, Eq. (12) has to be applied twice: 
first for estimating the fatigue life Tf,r of the mechanical 
system exposed to the “real” environment (actual 
excitation), secondly for assessing the fatigue life Tf,s in 
the laboratory accelerated test. The following ratio of 
time durations then results:
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where ν0eq,r, r0eq,req, λσ = are the spectral parameters of 

the equivalent von Mises stress in the “real” 
environment, while ν0eq,s, s0eq,seq, λσ = are those for 

the laboratory experiment. Being a scaling law, Eq. (13)
only depends on the slope b, but not on the coefficient C. 
Expanding Eq. (13) in terms of spectral moments yields: 
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Note that Eq. (14) only depends on two spectral 
moments λ0eq and λ2eq of )((e)

eq fS . By writing explicitly 
the definition of such spectral moments, see Eq. (2), the 
previous expression returns the final equation in [3]: 
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The superscript (e) is reintroduced to remind that the 
quantities in Eq. (15) refer to element (e) in the finite 
element model. Also the slope b(e) depends on the 
material which the element is made of.
Equation (15) is the original A-Z solution and it 
represents the exact scaling law for linear systems 
undergoing Gaussian random accelerations. 
Allegri and Zhang also demonstrated that Eq. (15)
returns exactly the scaling law (1) in the special case in 
which the acceleration PSD for the “lab” environment is 
simply scaled with respect to that characterising the 
“real” environment [3]. 
It has to be emphasised that the scaling law (15) is based 
on the hypothesis to take N0 as a measure of the number 
of rainflow cycles, which is exact only for a narrow-band 
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stress (where ν0≅νp). In a wide-band stress, it is N0<Np,
where Np is the number of peaks, which in turn is 
coincident with the number of rainflow cycles (in 
rainflow counting, a cycle is attached to each peak). In a 
wide-band stress, N0 would then underestimate the actual 
number of rainflow cycles.
This conclusion is also confirmed by noting that the 
relationship (14) only involves two spectral moments λ0
and λ2, which implies that it does not accounts for the 
actual spectral bandwidth of σeq(t), i.e. it provides the 
same result for any type of narrow-band and wide-band 
processes sharing the same values of λ0 and λ2. For 
example, one may construct an infinite set of wide-band 
spectra )((e)

eq fS that have common values of λ0 and λ2,
but have different values of other spectral moments (e.g.
λ1 and λ4). Such spectra would have identical values of 
ν0eq, eqσ , and also the same value of Tf from Eq. (12).  
These arguments motivate the attempt to introduce a
bandwidth correction to the A-Z solution, as explained in 
the next section.

4.2 Bandwidth correction of A-Z solution

The hypothesis in A-Z solution that σeq(t) is considered 
to be always narrow-band is confirmed by noting that 
Eq. (13) can also be obtained more directly by applying 
the narrow-band expression (7) to the “real” and “lab” 
environments. 
To account for the actual bandwidth of σeq(t), the wide-
band solution (8) has to be used in place of Eq. (7). In 
the “real” environment, the time to failure is:

( ) 





 +

=

2
12

b
req,0r,eq0req,

cr
rf, bΓ

DCT
λνr

 (16) 

where subscript r stands for “real”. As before, symbols 
ν0eq,r, r0eq,req, λσ = identify the zero up-crossings and 

RMS value of σeq(t), whereas ρeq,r is the bandwidth 
correction factor (9) according to the TB method. For the 
“simulation” (“lab”) environment, the time to failure Tf,s
is given by an expression identical to Eq. (16), in which 
symbols ν0eq,s, s0eq,seq, λσ = , ρeq,s are used: 
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The scaling law is constructed as the ratio:
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which generalises the original A-Z solution (13) by 
introducing a spectral bandwidth correction factor ρ for 
the PSD of the equivalent stress. Note that, in general, 
ρeq,r≠ρeq,s. In fact, if the same structure is excited by 
“real” and “lab” acceleration PSDs with different shapes,

it may be expected that different stress PSDs will also be 
obtained. For example, if the “real” acceleration is
narrow-band, the output stress is close to narrow-band. 
Instead, if the “lab” acceleration is wide-band, it is more 
likely that at some node the stress PSD is more wide-
band. The condition ρeq,r=ρeq,s occurs only if the “real” 
and “lab” acceleration PSDs are exactly scaled. 
Similarly to the A-Z solution (15), the ratio of time 
durations can be further manipulated to obtain:
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in which superscript (e) reminds that quantities refer to 
element (e) in the finite element model.
Equation (19) is the bandwidth correction of the original 
A-Z solution (15). Compared to Eq. (15), the two factors 
ρeq,r, ρeq,s appear. If in each element (e) the equivalent 
stress σeq(t) is always narrow-band, ρeq,r=ρeq,s=1 and Eq. 
(19) converges to the original A-Z scaling law (15). 

5 Numerical example 
The purpose of this numerical example is to show the
practical application of the analytical scaling laws 
discussed in the previous sections. The example 
considers an L-shaped beam excited by a base random 
acceleration. The beam geometry imitates that one 
already proposed in [7], although some dimensions have 
been slightly changed to enhance the stress concentration 
effect at the hole and two lateral notches.

Fig. 2. Beam dimensions (in mm). Thickness is 0.5 mm.

The specimen is clamped at both ends, where a random 
acceleration is imposed along the direction normal to the 
specimen plane. The input accelerations applied at the 
two clamped ends are assumed to be fully correlated 
(their cross-PSD is different from zero).
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The beam is made of steel; its tension S-N curve has 
parameters (taken from [7]) b=9.82, C=4.0641×1088 (the 
reference strength amplitude is sA=241 MPa).
A ‘shell’ finite element model is used to discretise the 
beam (elements have an average size of 5 mm, resulting 
in 641 elements and 735 nodes), see Fig. 3.

Fig. 3. Finite element model (shell elements).

In the finite element simulation (Fig. 1), a frequency-
domain spectrum analysis is carried out to determine the 
natural frequencies and the stress PSDs at each node.
Stress spectra are next processed to determine the time to 
failure used in the inverse scaling laws discussed in the 
previous sections. The whole numerical analysis is 
performed by software ANSYS with APDL language, 
which is also used to implement the scaling laws. 
A modal analysis returns the following first natural 
frequencies: f1=15.9 Hz, f2=67.1 Hz, f3=81.9 Hz, 
f4=175.1 Hz, f5=178.9 Hz. A harmonic analysis is also 
carried out to determine the frequency response function 
and the contribution of each mode, see Fig. 4. The figure 
clearly shows the peaks at each resonant frequency (two 
of them are less pronounced).

Fig. 4. Frequency response function of the L-beam. The 
acceleration PSDs (Case 1 to 4) are also shown (qualitatively).

In order to imitate the application of the inverse scaling 
laws, the PSD of the input acceleration has to be defined 
for both the “real” and “laboratory” environments. 

Since the purpose of this example is only to demonstrate 
the practical application of scaling laws (without any 
claim to provide results of direct practical use), the 
acceleration PSD is idealised as a band-limited 
rectangular spectrum.
For the “real” environment, a rectangular PSD from 1 to 
200 Hz is chosen; its RMS value gg 8833.2r =  (g=9.81 
m/s2 is the gravity acceleration) is so adjusted in order 
that, in numerical simulations, the beam has a “real” 
time duration Tr=10 years (3.1536·108 seconds) in the 
most stressed point. 

Fig. 5. PSDs of stress components in point A.

Fig. 5 displays the auto- and cross-PSD of the biaxial 
stress calculated at point A, for the “real” case. The 
figure highlights how the rectangular PSD of input 
acceleration is filtered out, resulting in stress PSDs 
peaked at resonance frequencies. The figure also plots 
the power spectrum Seq(f) of the equivalent stress, which 
is not exactly narrow-band, as it has spectral parameters 
α1=0.924, α2=0.447. 
For the “lab” environment, a target time duration of 
Ts,0=1 day (86400 seconds) is taken as the period to be 
achieved in an hypothetical accelerated testing. The 
resulting scaling ratio is (Ts,0/Tr)=0.274·10-3. 
Also the “lab” acceleration PSD is idealised as a 
rectangular (band-limited) spectrum. Four different cases 
are distinguished (see Table 1), based on the following 
frequency ranges:
• Case 1: rectangular PSD from 1 to 200 Hz (same 

shape as the “real” spectrum);
• Case 2: rectangular PSD from 1 to 100 Hz;
• Case 3: rectangular PSD from 1 to 30 Hz;
• Case 4: rectangular PSD from 70 to 90 Hz.

All the previous PSDs share the same value 
gg 6473.6s = of acceleration RMS, which is determined 

through Eq. (1) by targeting the laboratory time duration 
Ts,0=1 day and assigning the specifications Tr=10 years, 

gg 8833.2r = for the “real” environment (the exponent 
in Eq. (1) is taken equal to the S-N slope α=b=9.82).
Fig. 4 compares (qualitatively) the four PSD types to the 
frequency response function. Being the RMS value the 
same for all spectra, the height of each rectangle changes 
depending on the frequency range of each spectrum.
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Simulation results of several test cases are summarised 
from Fig. 6 to Fig. 9. For the Case 1 acceleration PSD, 
Fig. 6 displays the RMS value of the equivalent 
stress, while Fig. 7 shows the corresponding distribution 
of the logarithm log(Ts) of the time duration Ts computed
in each finite element by Eq. (17).

Fig. 6. Distribution of RMS of eq. stress σeq (Case 1).

The highest RMS value (110 MPa) occurs at point A, 
where also the shortest time duration Ts=86400 seconds
is obtained. This time duration exactly matches the target 
value Ts,0  predicted by Eq. (1). This result confirms that 
if “lab” and “real” PSDs of the input acceleration have 
the same shape and are simply scaled, both scaling laws 
(1) and (19) return the same result. This also holds true 
for the ratio (Ts/Tr) in each node of the model, which is
always equal to the ratio (Ts,0/Tr)=0.274·10-3. 

Fig. 7. Distribution of log(Ts) (Case 1).

For the Case 2, the distribution of log(Ts) is shown in 
Fig. 8. The shortest fatigue life Ts,A=2890 seconds still 
occurs at point A, where the highest RMS value (156 
MPa) is also identified. 
Surprisingly, now the value Ts,A returned by Eq. (17)
through numerical analysis is much shorter than the 
target Ts,0 estimated by Eq. (1). Differently from Case 1, 
in this Case 2 in which “lab” and “real” acceleration 
PSDs are not simply scaled, a disagreement is observed 
in the time scaling estimated from Eq. (1) and Eq. (19).

Fig. 8. Distribution of log(Ts) (Case 2). 

This disagreement can be explained by considering that
the simple scaling law model (1) provides only a rough 
approximation of the relationship of the system response 
in the real and laboratory environments.
First, it takes the acceleration RMS value as the only one 
parameter synthesising the input acceleration spectrum 
(the actual spectrum shape and frequency range are not 
considered). Secondly, the scaling law model (1) also 
ignores the actual system dynamic response (especially 
the coupling between modes) and the resulting 
multiaxial state of stress in each part of the system. On 
the other hand, these aspects are correctly evaluated by 
the Allegri-Zhang model in its original as well as 
modified version. 
This behaviour can be explained by observing that the 
acceleration PSD in Case 2 (ranging in 1÷100 Hz) has 
double the height of Case 1 (which ranges in 1÷200 Hz) 
and it is more concentrated towards the first natural 
frequency. This makes the contribution of the first 
vibration mode enhance the RMS of the output stress.

Table 1. Comparison of simulation results for the “real” and “lab” environments. 

Type of 
PSD

Acceleration 
RMS Ts,0 from Eq. (1) RMS of eq. stress, (MPa) Ts from Eq. (19) -

numerical analysis
New 

exponent α
“real” 2.8833g ‒ 47.7 (in A) 315360013 s ‒

Case 1 6.6473g 1 day (86400 s) 110 (in A) 86400 s 9.82

Case 2 6.6473g 1 day (86400 s) 156 (in A) 2851 s 13.9

Case 3 6.6473g 1 day (86400 s) 287 (in A) 8.6 s 20.9

Case 4 6.6473g 1 day (86400 s) 43 (in B) 17419281 s 3.47
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Fig. 9. Distribution of Ts/Tr (Case 2).

This effect is further confirmed by considering the Case 
3, in which the input acceleration PSD is almost entirely 
centred on the first natural frequency. In this case, as can 
be seen in Table 1, the difference between Eq. (1) and 
(19) is largely increased.  
On the other hand, one may presume that the observed 
discrepancies between the scaling law models are caused 
from taking the exponent α in Eq. (1) equal to the 
material inverse slope, instead of an “empirical” value 
around 3-5, as suggested in [3]. This conclusion is, 
however, not confirmed by the results in the last column 
of Table 1, which lists the values of α which would make 
Eq. (1) fit the time duration Ts resulting from the A-Z 
model (19), as implemented in numerical modelling. 
These values of α are largely dependent on the type of 
input acceleration PSD and it would then rather difficult 
to determine in advance a proper value of α. 
To overcome the above limitations of the simplified 
scaling law (1), the use of the Allegri-Zhang model −
preferably in its bandwidth corrected form (19) − is thus 
recommended. An example of output (Ts/Tr) as given by 
Eq. (19) is shown in Fig. 9 for the Case 2.

6 The role of S-N parameters
According to the Palmgren-Miner rule, the fatigue 
parameters b, C in the expressions presented so far 
should be those from the constant amplitude S-N curve.
Experimental results, however, seem to highlight a 
change in fatigue parameters in random loading tests. In 
this case the S-N curve is generally located on the left of 
the corresponding S-N curve for constant amplitude 
loading, if the RMS value is used for comparison
(limitations in the use of RMS are discussed in [8]). A
higher b is also observed in the random loading case. 
The shape of the stress PSD seems to have a limited 
effect [3,9].
A more important aspect is the role of tension and 
torsion S-N parameters in scaling laws, and especially 
with regard to the EVMS criterion adopted by A-Z 
method. It has been recognised (see [10]) that the EVMS 
criterion neglects the S-N parameters for torsion loading
(in particular, it implicitly assumes that the torsion S-N
line is parallel to the tension one and exactly scaled by
√3). These assumptions mean, for example, that Eq. (15) 

and (19) would return the same ratio of time durations,
regardless of the torsion S-N curve parameters. Also 
note how the simple power law (1) does not even 
consider the torsion properties at all. Materials, on the 
other hand, are characterised by a wide range of torsion 
fatigue properties [10].  
To account for both tension and torsion S-N parameters
in the A-Z scaling law, other multiaxial spectral 
methods, among those currently available in the 
literature [11-13], should be used in place of the EVMS 
criterion.

Fig. 10. Distribution of log(Ts) (Case 1) by PbP criterion 
(material with parallel S-N lines).

A proposal is made here to reformulate the A-Z scaling 
law by using the so-called “Projection-by-Projection” 
(PbP) criterion, which is a stress invariant-based 
multiaxial criterion that can account for both torsion and 
tension S-N parameters (the main theoretical aspects are 
outside the goal of this work and they can be found 
elsewhere [14,15]). The PbP method computes the 
fatigue damage in time T as: 

 (20) 

where di is the damage intensity (damage/s) of the i-th 
stress projection in the deviatoric space, which can be 
estimated by uniaxial spectral methods, see Section 3.1. 
If the time to failure (i.e. the inverse of fatigue damage) 
for each stress projection is estimated by the TB method 
for wide-band stress (see Eq. (8)), the following scaling 
law is obtained:

  

(21) 
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in which λ0i, ν0i, ρi are the variance, zero up-crossing rate 
and bandwidth correction factor of the i-th stress 
projection. In Eq. (21), Cref and bref are the parameters of 
a reference S-N curve in a Modified Wöhler Diagram, 
defined in the deviatoric space. They are linearly 
interpolated from the tension and torsion S-N parameters 
(see [14,15]).

Fig. 11. Distribution of log(Ts) (Case 1) by PbP criterion 
(material with non-parallel S-N lines).

To appreciate the effect of S-N parameters, Fig. 10 and 
Fig. 11 compare the distribution of log(Ts) estimated by 
the PbP criterion, when considering two types of 
materials with: i) S-N curves parallel and scaled by √3
(Fig. 10), ii) none of the previous (Fig. 11). The figures 
refer to the Case 1 acceleration PSD. The comparison 
demonstrates that the PbP is sensitive to the torsion S-N
parameters and the time duration changes from material 
i) to material ii). The difference would be more 
pronounced if the input acceleration PSD were centred 
around a single vibration mode characterised by a 
torsional deformation. By contrast, no difference would 
be observed in the time duration for material i) and ii), if 
the EVMS were used in the A-Z solution, see Eq. (15) or 
(19). In both cases, the distribution of log(Ts) would be 
that shown in Fig. 7.

7 Conclusions
This work dealt with inverse scaling laws used to 
calibrate accelerated vibratory tests for linear systems 
undergoing stationary Gaussian excitations. A
comparison was made between a simple inverse power 
law model and the Allegri-Zhang (A-Z) solution, which 
was first reviewed and next modified by introducing a 
bandwidth correction factor to account for the actual 
shape of the frequency spectrum for the “equivalent von 
Mises stress” (EVMS).
A numerical example (L-beam submitted to random base 
accelerations) solved by the finite element method was 
used as a test case for the comparison. Several types of 
idealised rectangular acceleration PSDs for the 
laboratory environment were considered, to investigate 
the sensitivity of the scaling law to the type of input.

The results confirmed that both scaling laws agree only 
for “real” and “lab” acceleration PSDs which are exactly 
scaled. In the other cases, large differences occur and the 
power law model estimates a much longer time duration 
than the A-Z solution. This difference was explained in 
terms of the influence of the system dynamics on the 
time duration estimated by numerical analysis, which 
instead is ignored by the simple power law model.
Numerical results also showed that the values of the 
exponent α in the power law model largely dependent on 
the type of acceleration PSD; choosing a priori a
suitable value of α would then be rather difficult. 
An attempt was finally made to reformulate the A-Z 
scaling law in terms of the “Projection-by-Projection” 
multiaxial spectral method, in place of the EVMS 
criterion. This modification permitted the A-Z solution 
to be sensitive also to the torsion S-N properties.
In summary, the results presented in this work 
emphasised the limitations in the use of the simple 
power law model and they suggested that the A-Z 
solution should be preferred.  
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