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Abstract—Counting targets (people or things) within a moni-
tored area is an important task in emerging wireless applications
for smart environments, safety, and security. Counting via passive
radars rely on signals of opportunity (i.e., signal already on air
for other purposes) to detect and count device-free targets, which
is preferable, in terms of privacy and implementation costs, to
active radars that rely on dedicated or personal devices. However,
conventional radar techniques for multi-target detection require
to associate measurements sets to detected targets. Such data
association may lead to high dimensionality and complexity even
with few targets, despite it is a redundant operation for counting.
The need of low dimensionality and complexity calls for the
definition of signal features and the development of techniques
for their extraction, which enable the association of measured
signals directly with the number of targets (namely, crowd-centric
algorithms). This paper develops a framework for the design
and analysis of crowd-centric algorithms for device-free counting
via OFDM signals of opportunity. Preliminary results in simple
use cases show the effectiveness of the proposed techniques with
respect to individual-centric algorithms.

Index Terms—Counting, signals of opportunity, crowd sensing,
OFDM, passive radar.

I. INTRODUCTION

Counting targets, such as people or things, in a mon-
itored area enables new important applications for smart
environments [1], logistics [2], crowd sensing [3], public
safety [4], and environmental monitoring [S]-[7]. Depending
on the application and the operating environment, different
approaches are considered, including image-based, device-
based, and device-free. In all of them, data are collected from
multiple sensors and processed to infer the number of targets
in a monitored area.

In image-based approaches, the target counting is performed
by processing the foreground images collected by one or
multiple cameras, after the removal of the background im-
ages [8]-[11]. In device-based approaches, the counting is
performed by relying on personal or dedicated devices, such as
personal smartphone or radio-frequency identification (RFID)
tags [12]-[14]. Recently, device-free approaches have been
investigated, where the counting is performed by sensing the
wireless environment and inferring the number of targets from
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reflected signals [5], [14], [15]. Such device-free approaches
preserve the privacy of the targets (no data related to the
target identity) as well as they reduce the implementation
cost with respect to device-based solutions. The capability of
detecting and tracking people and things without relying on
active devices and through the exploitation of wireless sources
already covering the environment would tremendously extend
the range of applications and reduce the implementation cost
with maximal privacy preservation.

Device-free systems can be classified between active sensor
radars (SRs) and passive SRs. Active SRs rely on a network of
transmitter-receiver pairs in monostatic or multistatic config-
uration [16]-[19]. The signals collected at different receiving
nodes are processed to detect multiple targets. Passive SRs
rely on illuminators of opportunity and have been employed
in the literature for stealth and low-cost tracking. In such a
configuration, a network of receiving-only radars receives both
the direct signal from an illuminator of opportunity and the
signal backscattered by the target.

Previous works on passive radars consider VHF/UHF sta-
tions and Wi-Fi base stations as illuminators of opportunity
[20]-[22]. Recently, the orthogonal frequency division mul-
tiplexing (OFDM) signals gained interest since they can be
efficiently used to detect and locate targets based on Fourier
analysis across subsequent blocks, which significantly reduce
the computational complexity with respect to processing of
other digital signals [23]-[26]. Several signal processing tech-
niques have been proposed in the literature to detect the
presence and estimate the position of a target based on the
received waveforms. For example, time difference-of-arrival
(TDOA), frequency difference-of-arrival (FDOA) and angle-
of-arrival (AOA) measurements are often adopted in this
scenarios where synchronization is not guaranteed between
receivers and transmitters [27]-[29].

Current solutions for multi-target detection and tracking
systems rely on likelihood calculation and data association for
each detected target [17], [18], [30], [31]. Data association is
a computationally complex operation (growing exponentially
with the number of targets) required for tracking while not
necessary for counting systems that aim at estimating only the
number of targets disregarding their position. Therefore, there
is a growing interest in conceiving methods to count targets
from the measured data without estimating the location of each
single target (namely, crowd-centric methods) [15], [32], [33].
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Fig. 1. Example of a portion of operating environment with one transmitter
of opportunity (green triangle), one receiver (red circle) and two targets (blue
circles).

This paper presents a method to count device-free targets
with passive SRs without data association relying only on
crowd-centric information. We propose low-complexity count-
ing algorithms for OFDM illuminators of opportunity and
based on fast Fourier transform (FFT) and OFDM channel
estimation.

The remainder of the paper is organized as follows: Sec. II
describes the system model; Sec. III introduces the signal
processing techniques; and Sec. IV presents a case study and
numerical results. Finally, in Sec. V our final remarks are
given.

II. SYSTEM MODEL

Consider a network of receiving-only radars with index set
R, with the hth radar in position rj (h € R), monitoring an
area illuminated by an OFDM transmitter at py. Fig. 1 shows
an example of the operating environment with one transmitter
of opportunity, one receiver, two target scatterers and two
clutter scatterers. The OFDM transmitter emits a broadcast
signal at center frequency f. with equivalent low-pass version
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in which a;[n] is the ith data symbol on the nth subcarrier,
Ay is the frequency spacing between two adjacent subcarriers,
T" = T+1T,, and T, is the cyclic prefix time. The transmitted
signal s(t) is decoded and reconstructed as $(t), for example
based on the signal collected at a reference receiver (i.e., a
reference signal).

Each radar receives the signal after backscattering by all
the objects that are present in the operating environment, also
referred to as scatterers. The dynamic scatterers (velocity and
Doppler shift different than zero) are targets to be counted; the
static scatterers (velocity and Doppler shift equal to zero) are
present also in the absence of the targets, namely the clutter.

Therefore, the signal collected by the hth radar after multipath
propagation is [17]

(M () = k™ (1) + i () + 0™ (1) 3)
where: réh) (t) is the signal component related to the back-
ground environment due to clutter and direct signal (the same
component would be received in the absence of targets, when
the area is empty); r[(h) (t) is the signal component related
to backscattering from the targets; and n(t) is the noise
component.!. An estimate of the background component can
be removed from the received waveform leading to

H0 (1) = M (8) — " (2) @)
which is the received signal after background removal.

The residual of the background component after background
removal depends on the clutter mitigation algorithm, whose
analysis is beyond the scope of this paper. Experimental results
show that the use of techniques that mitigate the effect of the
direct signal and clutter, such as null steering, can attenuate the
static background component significantly (even up to 100 dB)
and reduce the receiver dynamic range [23], [34]. After ideal
clutter removal, the hth received signal becomes

i) = 3 ale i st — M) 40 (1) (5)
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where: K(") is the index set of multipath components due to

all the targets; a,(ch) is the amplitude and T,Eh is the arrival
(h) _

time for the Ath path component. In particular, 7, = (||px —
P + ™ — rull)/c is the arrival time of the component
backscattered by the kth target at pt(k) that propagates over
the transmitter-kth target link and the kth target-hth receiver
link.> For the target scatterers, ,gh) = 27761(;1) fct where

](gh) = f,gh)/(vfc) = (coswyy + coswr ) /c where f,gh) is
the Doppler shift, which is considered constant over a block of
duration T”, wy , is the angle describing the relative direction
between the transmitter and the target, and wj is the angle
describing the relative direction between the target and the kth
receiver.’

The aim of a counting system is to estimate the number of

target scatterers 1, = |ICth)| by processing the received signals
#")(t)Vh € R. The vector

F= [ D (6)

. . . h
I'The noise samples are zero-mean Gaussian random variable (RV) ng. ) =

n(M)(t;) ~ N(0,02) at time ¢; and the variance o2 is considered known to
simplify the notation

2The symbol ¢ denotes the speed-of-light and ||-|| denotes the Euclidean
distance.

3The geometry-based single-bounce model is employed, where the number
of multipath components is equal to the number of scatterers. This is a widely
adopted assumption for two reasons: (1) the power related to a double or
multiple bounce path is proportional to the product of the radar cross section
of two or multiple targets, which is negligible; and (2) this is equivalent to
consider a lower spatial resolution, which is a common assumption due to
bandwidth limitations that are intrinsic to the hardware that is involved [35].



represents the concatenation of the vectors of received signal
samples for each receiver. The length of the vector is n, =
|R|ns, where ng is the number of received signal samples
M (nTy) with n = 0,1,...,n, — 1, which depends on the
sampling time 7; and the observation interval Tops = nsTs.
The vector

Pt = pt(l)vpt( )a"'apt(n() (7N
is the concatenation of the target position vectors. From (3) and
(5), when the background is perfectly removed, i.e. féh)(t) =
réh)( t), it follows that for a given channel instantiation, ¥ is
a random vector that depends on a deterministic and unknown
parameter vector (") = [p,, ™), (") v], where

v =[v1,02,...,0]
0 = [ )
a® =M oM, .. o] (8)

and on the noise component n("(t). The parameters o)

and 7(") i.e. the arrival time and amplitude of the multipath
components, depend on the channel instantiation.

ITI. SIGNAL PROCESSING FOR COUNTING

The proposed method relies on a matched filter receiver, i.e.
a bank of correlators tuned to the transmitted waveform given
a certain Doppler shift and delay. The number of correlators
drives the accuracy and complexity of the counting algorithm.
At the hth receiver, each correlator will produce for a delay
7 and Doppler shift ¢

Tobs X
2 (7, ¢) = / P (t)e 32 les (t — T)dt  (9)
0

where Ty is the observation time. By considering Ti,s as an
integer multiple of 7" and given the OFDM structure of the
signal, we have

T: /T’
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If the phase rotation can be approx1mated as constant within
one OFDM block (the product between the Doppler shift and
T’ is much smaller than unity), then [23]
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At each receiver, the correlation is calculated for a finite
number of tuples (7;,¢;) with j € M =1,2,...,ny,, which
represent potential target locations and velocities. In particular,
we define T as the temporal distance between any two pairs
of tentative delays Ty = 7; — 7; V7,5 = 1,2,...,ny and Fy
as the frequentcy distance between any two pairs of tentative
Doppler shifts Fy = (¢; — ¢;) Vi,j = 1,2, ..., nm. Therefore,
Ty and Fy represent the time and frequency resolution of the

receiver. The signal component backscattered from a target at
the tentative position p; such that 7; = (||px — P; | + [|P; —
rp||)/c with a Doppler shift ¢;, will contribute to the received
energy at the jth correlator output (") (7;, ¢;). The output of
all the correlators at the hth receiver is a vector e of ny,
energy samples corresponding to the tentative tuples of target
locations and velocity. The jth energy sample is given by

N
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which represents the energy collected for the jth tuple (75, ¢;).
Such an energy has maximum value when ¢; = vy, and
T —T,E ) for any k.

The estimated number of targets n ( ) is obtained at the hth
receiver from e(™ . The final estimate for the number of targets
is the mean value of the number estimated by the different
sensors

. 1 L (h)
Ny = — ne . (13)
To calculate ﬁt(h), we propose two possible algorithms, a
maximum bin search (MBS) and threshold crossing search
(TCS). For both the algorithms, a threshold for each energy
sample is defined by the vector £ = [£1,&2,...,&nN,]- The
estimated number of targets is initialized for each sensor
At(ﬁ) 0, and the energy vector is initialized as ey =
[e(lhg,eéhg, ey 7(1 )0] At the kth step, the number of targets
is estimated from €; and €; is updated through the path loss
law, which is known or learned through measurements.

In particular, given the path loss law, a value «; can be
associated to the tentative arrival time 7; as

= Q" exp(r;/7) (14)
where
o _ 10P("’/m
% ™ (15)
=1Tj /v

v is the power decay constant, and Pj(h) is the received signal

strength (RSS) for a target at p; with respect to the hth
receiver, i.e., considering the path-loss and the radar cross
section (RCS) of the corresponding scatterer [171.4

The value «; can be used to calculate the expected value
of e;-h) when a target is at p;. If one or multiple targets are
detected at p;, its energy contribution is removed from the

4The RCS measures the power density that the object reflects with respect
to the incident power, in relation to scatterer orientation, material, and size
(18], [36], [37].



Algorithm 1 Maximum Bin Search
1: k<0
AR 0
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Algorithm 2 Threshold Crossing Search

1: k<0

2 Al 0

3: &, egh)Vi eM

4: i< min{i € M :&,; > &}

5: while n( ) and # () do

6: k + k +1

7oAl el

8: Update e, from (16)

9: R min{i eM: ékﬂ‘ > §z}

energy vector starting from «y; as
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The MBS is presented in Alg. 1. At each iteration, the MBS
algorithm first searches for the maximum value among all the
bins with index j € M. If such maximum value is above the
corresponding threshold, the number of targets is updated, the
energy vector is updated by considering the , and the search
is made again. The algorithms is terminated when the energy
bins are all below the threshold or a maximum number of
detected targets nmax is reached.

The TCS is presented in Alg. 2. At each iteration, the TCS
algorithm searches for the first value among all the bins with
index j € M that overcomes the corresponding threshold. If
such maximum value is above the corresponding threshold, the
number of targets is updated, the energy vector is updated, and
the search is made again. The algorithms is terminated when
the energy bins are all below the threshold or a maximum
number of detected targets np,y is reached.

IV. CASE STUDY

Consider a squared monitored environment of 10 m x 10 m
with one transmitter in the center px = [5,5]m and four
receivers at the corners, r; = [0,0], 72 = [0,10], r3 =
[10,10], and r4, = [10,0], with ny, = 4. The maximum
number of targets is nm,x = 10 and results are obtained
via Monte Carlo simulation by varying the number of targets
ny ={0,1,2,...,nmax} and considering the targets uniformly
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Fig. 3. Counting error outage for the MBS and TCS algorithms.

distributed in the monitored environment. The transmitted
signal is a Wi-Fi signal, with bandwidth B = 20MHz,
number of carriers N = 52, carrier spacing Arf = 312.5 KHz
according to the IEEE 802.11 standard. The symbols are
perfectly reconstructed and ideal clutter removal is considered.

Counting is performed with the MBS and TCS algorithms.
The performance is evaluated in terms of counting error outage
P.eo(n), ie. the percentage of times that the counting error
|fie — n| is above m and root-mean-square of the counting
error (RMSE). The resolution of the energy vector varies, with
Ty = 2,4,...,18ns, whereas the target velocity is assumed
as known. The threshold vector is chosen as the one the
minimizes the RMSE.

Fig. 2 shows the RMSE for different values of Ty. It can
be observed that the TCS outperforms the MBS for all the
values of Ty considered. For example, for the same value of
Ty = 6ns, the root-mean-square error (RMSE) is 2.05 with
MBS and 1.42 with TCS. Furthermore, the RMSE increases
with Ty for the MBS case, and goes from 2.05 with Ty = 2ns
to 2.50 with Ty = 18 ns, whereas, it has a minimum value 1.26



with Ty = 6 ns for the TCS case. Therefore, the time resolution
has a important impact on the counting performance and its
optimal value depends on the algorithm employed.

Fig. 3 shows the counting error outage Pee,(n) as a function
of n for the TCS and MBS algorithms. Results are obtained
with Ty = 2ns in the MBS case and with Ty = 6ns for
the MBS case, which represent the best cases in terms of
RMSE according to Fig. 2. It can be observed that the MBS
is outperformed by the TCS. In particular, the probability that
the counting error is above 2 is 0.19 for the MBS and 0.04
for the TCS.

V. FINAL REMARK

A device-free counting system that relies on OFDM signals
of opportunity is presented. The proposed counting system
does not require data association and is based on crowd
counting algorithms. The counting system performance is
evaluated in a simple case study with Wi-Fi signals varying
the number of targets and considering two different algorithms
based on maximum search and threshold crossing. Results
show the importance of the choice of time resolution for the
counting performance.
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