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Abstract

The paper describes a unified automatic procedure for the detection of roof
planes in gridded height data. The procedure exploits the Blake-Zisserman
(BZ) model for segmentation in both 2D and 1D, and aims to detect, to
model and to label roof planes.

The BZ model relies on the minimization of a functional that depends
on first- and second-order derivatives, free discontinuities and free gradient
discontinuities. During the minimization, the relative strength of each com-
petitor is controlled by a set of weight parameters. By finding the minimum
of the approximated BZ functional, one obtains: 1) an approximation of the
data that is smoothed solely within regions of homogeneous gradient, and 2)
an explicit detection of the discontinuities and gradient discontinuities of the
approximation.

Firstly, input data is segmented using the 2D BZ. The maps of data and
gradient discontinuities are used to isolate building candidates and planar
patches (i.e. regions with homogeneous gradient) that correspond to roof
planes. Connected regions that can not be considered as buildings are filtered
according to both patch dimension and distribution of the directions of the
normals to the boundary. The 1D BZ model is applied to the curvilinear
coordinates of boundary points of building candidates in order to reduce
the effect of data granularity when the normals are evaluated. In particular,
corners are preserved and can be detected by means of gradient discontinuity.

Lastly, a total least squares model is applied to estimate the parameters of
the plane that best fits the points of each planar patch (orthogonal regression
with planar model). Refinement of planar patches is performed by assigning
those points that are close to the boundaries to the planar patch for which a
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given proximity measure assumes the smallest value. The proximity measure
is defined to account for the variance of a fitting plane and a weighted distance
of a point from the plane.

The effectiveness of the proposed procedure is demonstrated by means
of its application to urban digital surface models characterized by different
spatial resolutions. Results are presented and discussed along with some
promising developments.
Keywords: Segmentation, Variational model, DSM processing, Edge and
crease detection, Filtering, Roof planes, Plane detection and modeling

1. Introduction

1.1. The detection roof planes
The identification of roof planes from the analysis of three dimensional

(3D) point clouds and Digital Surface Models (DSMs) is an active research
and application topic (Rottensteiner et al., 2014). The representation of
building volumes in 3D city models can be improved when roof planes are
properly included in the models. City models and DSMs of urban areas are
widely used in several applications, e.g. acoustic and energy studies (Jochem
et al., 2009), environmental and pollution modeling, visualization, cadastre
updating and building volume estimates, urban and land planning, cultural
heritages studies, telecommunication networks design and orthophoto gener-
ation in urban contexts (Habib and Kim, 2006; Barazzetti et al., 2010).

From a general point of view, the processing of elevation data of urban
areas based on the so-called data-driven approach involves data segmenta-
tion, enforcement of topological consistency if needed, object detection and
reconstruction. Many different strategies have been proposed to tackle the
mentioned tasks (Haala and Kada, 2010). The model-driven approach is an
alternative to the use of data-driven methods (Tarsha-Kurdi et al., 2007b).
For example, Huang et al. (2013) used a generative model based on a primi-
tive library for roof detection and reconstruction. Works mixing the bottom-
up and the top-down approaches have also been presented (e.g. Satari et al.,
2012) along with strategies involving the integrated processing of different
types of data, such as topographic maps or imagery data (Brenner, 2005;
Rottensteiner, 2010; Demir and Baltsavias, 2012; Awrangjeb et al., 2013).

In this work, a procedure for the detection of roof planes in gridded
data is presented. As suggested by Vitti (2012b), regions with homogeneous
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gradient (i.e. planar patches) and their boundaries (i.e. roof edges and
ridges) can be detected by exploiting the global variational model of the
second order proposed by Blake and Zisserman (1987). The application of
the model to DSMs was investigated in two preliminary works by Zanetti and
Vitti (2013) and Benciolini and Vitti (2015); recently Zanetti et al. (2016)
presented numerical results useful for practical purposes. This work presents
a complete procedure for accomplishing the specific goal of detecting and
labeling roof planes.

The paper is organized as follows. In the remainder of this section ref-
erences to know solutions which have some kind of relationship with the
propose procedure are provided and the main features justifying the proce-
dure based on variational segmentation are introduced. The BZ model and
its numerical implementation are presented in Section 2. A detailed step-by-
step description of the automatic roof-detection procedure is given in Section
3. Other models involved in the procedure are also presented therein. To
illustrate the procedure outputs a sample application to a DSM (1 m spa-
tial resolution) of an urban area of the city of Trento, Italy, is considered.
Section 4 presents a detailed application of the procedure to a DSM (25 cm
spatial resolution) of an urban area of the city of Vaihingen, Germany. Final
remarks and perspectives on further developments are given in the Section
5.

1.2. Known solutions
The segmentation of 3D point clouds and DSMs can be addressed apply-

ing different data-driven methods directly to height values, normals or other
features derived from height values. Strategies based on clustering, region
growing, edge and contour based methods have been proposed along with
others based on parametric or statistical models. In this context, interesting
examples are proposed in the following works. In (Ohtake et al., 2004) edge
detection on triangle meshes is performed by analyzing the principal curva-
ture and its derivatives. In (Rottensteiner, 2003) a region growing model
is applied to normal vectors for the generation of 3D building models. In
(Wang et al., 2013) normal vectors are treated as points on the unit sphere
and then clustered to detect planes and other regular surfaces. Filin and
Pfeifer (2006) proposed a feature-based approach to cluster Airborne Laser
Scanning (ALS) data, capable of detecting planar elements; in that work,
normal vectors were computed according to a slope adaptive neighborhood
mechanism. Biosca and Lerma (2008) used the fuzzy clustering method and
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the so called possibilistic c-means mode-seeking algorithm to detect planes
in point clouds. Sampath and Shan (2010) proposed a procedure for the seg-
mentation and reconstruction of polyhedral roofs based on the eigen-analysis
to filter planar and non-planar (set of) points and on a fuzzy k-means method
to cluster planar points.

Other works present conceptual or operational resemblances. For exam-
ple in (Lavoué and Dupont, 2009) a polygonal mesh is approximated by a
set of semi-sharp surfaces built after the detection of the main linear fea-
tures of the analyzed object; in the same work a global model based on
the Variational Shape Approximation by Cohen-Steiner et al. (2004) is used
to produce a piecewise smooth surface segmentation with sharp edges. In
(Goebbels and Pohle-Fröhlich, 2016) the reconstruction of complex roofs is
achieved starting from an ad-hoc interpolated height map and using image
processing techniques to avoid shortcomings of standard geometric meth-
ods for plane detection. Lin et al. (2014) applied the principal component
analysis to a weighted covariance matrix with a geometric median to com-
pute local geometric characteristics less sensitive to data noise and partial
sampling. Jochem et al. (2012) applied a 3D k-nearest neighbors based re-
gion growing model to normals for the segmentation of planes in large ALS
data set. Chen et al. (2012) applied a region growing algorithm based on
a plane-fitting technique to select building points in ALS data followed by
an adaptive implementation of the RANSAC algorithm (Fischler and Bolles,
1981) to segment building roof-tops. Plane detection can also be performed
by means of the Hough transform (Hough, 1962), (e.g. Tarsha-Kurdi et al.,
2007a; Borrmann et al., 2011). Kim and Shan (2011) based the modeling of
building roofs on the application of the level set method to the normals for
the segmentation of planes in ALS data. Recently, Yan et al. (2014) adopted
a global plane-fitting approach based on the works by Delong et al. (2012)
and Hossam and Boykov (2012) for roof segmentation in LiDAR point clouds.

1.3. A novel approach based on 2nd order variational segmentation
The rationale of the proposed approach can be understood by considering

that roof planes are basically planar surfaces and that buildings have regular
shapes, e.g. polygonal footprints. In fact, a complex roof can be thought of
as a piecewise smooth surface with edges and creases, i.e. surface disconti-
nuities and surface gradient discontinuities respectively (see Figure 1(a) and
1(b)). The projection of the roof boundary on the ground is the building
footprint and it can be identified as an area surrounded by a closed curve

4



made up of edge points (see Figure 1(c)). Within a building footprint, edge
and crease (edge&crease) discontinuities allow for the representation of the
closed boundary of each planar patch that comprises the complex roof (see
Figure 1(d)). In real cases, noisy data and discrete sampling affect the qual-
ity of LiDAR point clouds and gridded DSMs. The noise affecting data
should be reduced without altering edge and crease structures that would
help the detection of planar patches. Due to the spatial granularity of the
data, the detection of regular shapes is difficult and modeling a boundary
with a smooth approximation with sharp corners would be very useful in
this case. An example of a convenient piecewise linear approximation of the
gridded points representing a building boundary is given in Figure 2.

(a) (b) (c) (d)

Figure 1: A complex roof with one garret: (a) 3D view; (b) top view; (c) edge points of
the roof surface; (d) edge&crease points of the roof surface.

(a) (b) (c)

Figure 2: Building footprint approximation: (a) real footprint; (b) gridded sampling; (c)
piecewise smooth recovery of the boundary.

The proposed approach to building and roof plane detection exploits an
elliptic approximation of a variational model by Blake and Zisserman (1987).
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The model is applied in 2D to approximate a DSM by piecewise nearly-
linear surfaces and in 1D to approximate footprint boundaries by piecewise
nearly-linear curves.

The 2D BZ applied to an input DSM returns a piecewise nearly-linear
approximation of data and the graphs of two auxiliary functions mapping
the discontinuity of the smooth approximation and of its gradient (edges
and creases). Such outputs provide the ideal starting point for a further
process that implements the concepts given above. The discontinuity map is
first processed to isolate building footprint candidates. The candidates are
then filtered according to their area and the direction of the normals to the
boundary. The DSM sampling-interpolation noise can significantly affect the
distribution of the normals, therefore the 1D BZ is applied to each building
footprint candidate in order to model its boundary by means of a piecewise
nearly-linear approximation with sharp corners (see Benciolini and Vitti,
2015). The rejection of a candidate is performed on the assumption that
buildings have, in general, polygonal footprints with right angles. Both the
use of discrete differential operators and the smoothing of building boundaries
produce ambiguity in assigning pixels on the borders to the adjacent regions
(planar patches). Such ambiguity is resolved by exploiting height values of
the piecewise nearly-linear approximation and the Total Least Squares (TLS)
model for fitting roof plane points. According to the values of a specific
proximity measure that depends on the variance of the fitting plane and the
(weighted) orthogonal distance of a point from a plane, planar patches are
refined to properly include boundary points.

As described, roof detection would strongly benefit from a proper analysis
of data and gradient discontinuities of a smooth approximation of the input
DSM. However, basic thresholding methods on the discrete gradient and Hes-
sian images for identifying discontinuities are very unstable and sensitive to
noise Yazid and Arof (2013); Harris and Stephens (1988); Lindeberg (1998).
The application of these methods always requires a-priori information and
their outcome is not sufficiently complete to perform the analysis proposed
in this work.

The overall procedure based on the outcome of the BZ segmentations
presents several nice features which can be appreciated also by referring to
properties of different known approaches.

With reference to procedures based on the analysis of elevation data, such
as region growing, RANSAC and eigen-analysis methods, in the propose
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procedure specific selections of neighborhood points are not necessary; a-
priori information about the total number of planes to be detected or seed
initialization are also non necessary.
The proposed approach implicitly avoids the smoothing of sharp features, it
is rather robust to outliers and less sensitive to noise with respect to methods
relying on principal component analysis.
With respect to procedures based on the analysis in feature domains, such
as those based on clustering methods and the Hough transform, in the pro-
posed procedure spatially separated coplanar and parallel patches are de-
tected without the need of specific modeling or prior assumptions. Moreover,
all the planar patches are detected in a single step.
Topological consistency of roof planes is obtained without the need of spe-
cific processing. Complex roofs can be detected by exploiting second order
information and a detailed descriptions of their structure can be obtained
exploiting the discontinuity maps (see for instance the garret in Figure 1)
instead of limited libraries of geometric primitives or object definitions.
Parental relationship of roof planes and building footprints is obtained very
naturally by the analysis of the discontinuity maps without the need of a-
priori information, such as building footprints. A Digital Terrain Model
(DTM) is not necessary to separate ground and non-ground regions.

As shown in (Zanetti and Vitti, 2013), the BZ model can be used alone as
an up to the second-order edge-preserving noise-removal model. The output
of the BZ model could however be used also in analyses where pre-processing
is required to help the top-down reconstruction modeling, e.g. in (Huang
et al., 2013).

2. The Blake-Zisserman 2nd-order variational model

Essential information about the BZ model and its numerical implemen-
tation are provided in this section. The BZ model comes from the literature
of Visual Reconstruction and it allows for the approximation of an input
signal by a piecewise smooth function with discontinuities. Although the
variational model can be formulated in any dimension n, it finds its natural
application with n = 1, 2, i.e. when the input data is either a signal or an
image, respectively.
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To better explain the features of the BZ model, an overview of the first-
order variational model by Mumford-Shah is given along with basic concepts
of variational segmentation. Then, the BZ model, which overcomes many
limitations imposed by the MS and generates a richer outcome, is described.

Mumford and Shah (1989) proposed a model for image segmentation
based on an energy functional depending on first-order derivatives and free
discontinuities. Let us consider a gray-scale image as a function g defined
on a two dimensional open set Ω ⊂ R2 (usually a rectangle). The aim is
to find u (a regularized version of g) and K (a compact one-dimensional set
K ⊂ Ω) such that u is close to g and as smooth as possible on Ω \K, there-
fore allowing discontinuities of u on K. Heuristically, this can be achieved
by minimizing the so-called Mumford-Shah (MS) functional

MS(u,K) := µ
∫

Ω
|u− g|2 dx+

∫
Ω\K
|∇u|2 dx+ αH1(K ∩ Ω) (1)

among all the functions differentiable outside K, i.e. u ∈ C1(Ω \K), where
K ⊂ Ω is compact. Here, H1 is the 1-dimensional Hausdorff measure, and
α, µ are positive parameters. During the minimization, the three terms pro-
vide different contributions to the properties of the final minimizer: the first
term keeps u close to the original datum g; the second term forces u to
be smooth outside K; the third term forces K to be a one-dimensional set
with finite length. The weight of each term in the minimization is controlled
by the parameters α, µ. The Mumford-Shah model involves both surface
and line energies whose support depends on an unknown discontinuity set.
This represents a typical example of a general class of problems that De
Giorgi (1991) characterized as free discontinuity problems. These models are
widely employed for signal approximation (one dimension), image segmen-
tation (two dimensions), and fracture analysis (three dimensions). Other
variational models of the first-order, such as Total Variation (Rudin et al.,
1992; Chan et al., 2006) and Anisotropic Diffusion (Perona and Malik, 1990),
exist and are widely used, along with the MS model, to segment various types
of data in different application fields.

Despite the given model being very convincing, the existence of a mini-
mizer that makes sense for real applications is not yet ensured. Nonetheless,
classical methods of Calculus of Variations can not be applied to prove the
existence of a minimum. To overcome this problem De Giorgi et al. (1989)
proposed the use a functional dependent sole on u and to recover the set of
contours K via the discontinuity set of u. De Giorgi proposed a weak formu-
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lation of the problem in the space of Special Functions of Bounded Variation
SBV (Ω):

E(u) :=
∫

Ω

{
µ |u− g|2+|∇u|2

}
dx+ αH1(Su ∩ Ω), (2)

where u ∈ SBV (Ω), and Su is discontinuity set of u. Using compactness in
SBV (Ω) and lower semi-continuity theorems, Ambrosio et al. (2000) showed
that under mild conditions, there exists a solution such that H1(Su) < ∞.
Moreover, by regularity results one has that the couple (u, Su) can be iden-
tified with a minimizer of the strong formulation De Giorgi et al. (1989).

The numerical computation of a function u that achieves a minimum of
the energy (2) can not be addressed by differentiation because of the one-
dimensional measure term H1(Su ∩ Ω). Ambrosio and Tortorelli (1992), by
taking advantage of a result by Modica and Mortola (1977), proposed a way
to approximate the discontinuity set by adding an auxiliary function s (that
plays the role of indicator function) to the model. The convergence of their
approximated (relaxed) model to (2) is formalized via Γ-convergence, which
is a notion of convergence suitable for functionals (De Giorgi and Franzoni,
1975; Braides, 2002). A description of the long procedure that leads to
the practical use of the MS model can be found in (Vitti, 2012b). Details
concerning a similar procedure necessary for the application of the BZ model
follows in this Section.

The MS model suffers some side effects precisely because of its first-order
nature. Because of the one-dimensional geometric term, the discontinuity
set of the solution is the union of C1 arcs. The minimization of the length
of the discontinuity set forces triple-junctions to meet always at 2/3π wide
angles, thus the real geometry of boundaries may be lost. Moreover, because
of the minimization of the gradient norm, the solution can only be a piece-
wise near-constant approximation of the data. Actually, in regions where
the data presents a steep gradient the functional minimization gives rise to
a sort of staircase-like approximation. This phenomenon is well-known as
over-segmentation of steep gradients, and if triggered, it causes the failure of
segmentation as it introduces many fictitious discontinuities. Since only the
gradient norm of the MS approximation is controlled, features such as dis-
continuities of the first derivative of the approximation can not be detected.
Clearly, this kind of features are of great interest in the context of analysis
of urban hight data. These facts led to the consideration of a more gen-
eral variational model which was introduced by Blake and Zisserman (1987)
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to overcome the limitations of the MS model. In the BZ formulation, the
squared norm of the Hessian matrix is considered instead of the gradient com-
ponent. The minimization of this 2nd order term allows to find a solution
that is basically a piecewise nearly-linear approximation of the data.

In this context, the image denoising model based on the concept of total
generalized variation (TGV) is a different variational formalization of a high
order segmentation model that leads to a piecewise smooth restoration not
affected by the spurious staircasing effect (Bredies et al., 2010). By means of
automatic balancing of the first to the kth derivatives of the recovering func-
tion u, the TGV model can be seen as a generalization of the well-know total
variation (TV) approach based on the bounded variation seminorm (Rudin
et al., 1992). With respect to TGV, in the BZ model the discontinuity sets
of the recovering function u are explicitly handled and are, in fact, a distinc-
tive feature of the BZ solution. In this work the set of the discontinuities
of s, z are indeed widely exploited along with the regularized solution u. A
similar argument holds for the TV and the MS models; in the MS model the
presence of the geometric term permits to produce segmentations that differ
from those produced by the TV model. The possibility to control the mea-
sure of the discontinuity set, for example, can permit to control the number
of spurious jumps introduced because of the staircasing effect.

The Blake-Zisserman functional formulation is given as minimization of

BZ(u,K0, K1) := µ
∫

Ω
|u− g|2 dx+

∫
Ω\(K0∪K1)

|∇2u|2 dx+

+ αH1(K0 ∩ Ω) + βH1((K1 \K0) ∩ Ω), (3)

among all u ∈ C2(Ω \ (K0 ∪ K1)) ∩ C0(Ω \ K0) and compact sets K0, K1
such that K0 ∪ K1 is closed in Ω. µ, α, β are positive parameters. The
solution is required to be twice differentiable outside K0 ∪ K1 and at least
differentiable outside K0. Therefore, discontinuities are allowed both on K0
and K1, whereas discontinuities of the gradient are allowed only on K1. The
set K1 \K0 is the set of crease points of u; α and β are contrast parameters
regulating the total length of the discontinuity sets.

Existence theory for this formulation have been stated by Carriero et al.
(1997). The authors have considered the weaker problem of minimizing the
functional

F(u) :=
∫

Ω

{
µ |u− g|2+|∇2u|2

}
dx+ αH1(Su) + βH1(S∇u \ Su), (4)
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among any u ∈ GSBV 2(Ω), a proper subspace of the class of Generalized
Special Functions of Bounded Variation. The choice of GSBV 2(Ω) is nec-
essary for having a proper definition of ∇2u and S∇u, the discontinuity set
of ∇u. A minimizer of (4) exists and it can be identified with a minimizing
couple of the strong formulation provided β ≤ α ≤ 2β. It is worth noting
that now in (4) there is only the unknown u.

Similarly to the MS case, a direct differentiation of F is not possible
because of the one-dimensional measure terms. Ambrosio et al. (2001), by
properly adapting the work by Ambrosio and Tortorelli (1992), introduced
two auxiliary functions s, z : Ω → [0, 1] to the model and proposed a Γ-
convergence approximation of F via the family of elliptic functionals

Fε(u, s, z) := µ
∫

Ω
|u− g|2 dx+

∫
Ω
z2|∇2u|2 dx+

+ ξε

∫
Ω

(s2 + oε)|∇u|2 dx+

+ (α− β)
∫

Ω

[
ε|∇s|2+ 1

4ε(s− 1)2
]
dx+

+ β
∫

Ω

[
ε|∇z|2+ 1

4ε(z − 1)2
]
dx, (5)

defined on proper Sobolev spaces. Here, ε is the Γ-convergence parameter
and the convergence is intended for ε → 0; ξε, oε are infinitesimals of higher
order than ε. The parameters µ, α, β are all positive and they control the rela-
tive strength of the functional components. The functional (5) approximates
(4) in the sense of Γ-convergence: for any ε > 0 the functional Fε always
admits a minimizing triplet, namely (uε, sε, zε), and by sending ε→ 0, the Γ-
convergence ensures that the sequence {(uε, sε, zε)}ε>0 converges to a triplet
(u∗, s∗, z∗), where u∗ is a minimizer of the limit functional F and s∗, z∗ ≡ 1
almost everywhere on Ω. In the variational approximation Fε only integral
terms defined over the entire domain Ω are involved. The last two new in-
tegrals in (5) that involve the functions s and z are convex and, as ε → 0,
proved to Γ-converge to the last two terms of F , where such latter terms
measure the size of the discontinuity sets of u and ∇u respectively. The ap-
proximation of the length of a curve by means of a surface integral involving
an auxiliary function defined over a domain Ω was proposed by Modica and
Mortola (1977) who proved a conjecture proposed by De Giorgi and Franzoni
(1975) (see Modica and Mortola, 1977, and references therein). The advan-
tage of formulation (5) is that the functional can be numerically addressed
as detailed in Section 2.2.
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2.1. Geometrical behavior of a minimizer
By analyzing the role of each term in the minimization of (5) it is pos-

sible to predict, at least in a qualitative way, the geometrical behavior of a
minimizing triplet (uε, sε, zε), when ε approaches 0. This understanding is
fundamental in order to properly exploit the potential of the BZ model for
solving the roof-detection problem. Indeed, the outcome of the minimization
provides all the elements needed to apply the reasoning given in Section 1.3.

Because of the minimization, the closeness term |uε− g|2 forces the func-
tion uε to fit the original datum g. The smoothness constraint |∇2uε|2 guar-
antees the approximating function uε to be piecewise nearly-linear (null Hes-
sian), see Figure 3 (upper graph). Discontinuities of first and second order
are allowed only along 1-dimensional sets with finite length and they are
properly detected by means of the functions sε and zε, respectively:

• In order to keep the term (sε−1)2/4ε bounded, sε must be 1 almost ev-
erywhere over Ω. This condition is violated only at those points where
it is energetically more convenient to suppress the s2

ε |∇uε|2 component
(the only other competitor containing sε), by letting sε = 0. It is im-
portant to note that the difference α − β controls the ratio at which
this mechanism takes place. Keeping the term ε|∇sε|2 bounded avoids
large oscillations of the function sε, hence the transition of sε between
0 and 1 turns out to be smooth, see Figure 3 (central graph). As a
result, sε is approximately 0 in a tubular neighborhood of the 1-variety
Su (the discontinuity set of u). The radius of the tubular neighborhood
shrinks as ε→ 0.

• A similar argument can be stated for zε. Because of the competition
between the terms (zε − 1)2/4ε and z2

ε |∇2uε|2, it is expected that zε is
approximately 0 in a tubular neighborhood of the 1-variety S∇u ∪ Su,
the joint discontinuity set of u and ∇u, see Figure 3 (bottom graph).

From the discussion above it follows that, for small values of ε, a minimizer
uε of Fε is an approximation (in the Γ-convergence sense) of a minimizer u
of F , whereas sε, zε are smooth approximations of the indicator functions of
the discontinuity sets Su and S∇u ∪ Su, respectively. The points where the
two auxiliary functions are nearly 0 represent the (first and second order)
discontinuity points of u.
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Figure 3: Geometrical behavior of a minimizer on a typical urban shape. A slice of the
minimizing functions uε, sε, zε is represented. In the upper graph the (noisy) input data g
and its smooth approximation uε. In the middle graph the edge-detector function sε, and
in the lower graph the edge&crease detector function zε.

2.2. Numerical implementation of the 2D Blake-Zisserman model
In view of the discussion given above, a strategy for numerically comput-

ing a minimizer of the functional Fε, for fixed ε > 0 is needed. In this work
the strategy proposed by Zanetti et al. (2016) is adopted given its efficiency.
In the following an overview of the strategy is given.

The cross terms z2|∇2u|2 and (s2 + oε)|∇u|2 do not allow for the def-
inition of a single gradient descent direction. However, a partial descent
minimization is possible because of nice properties of the functional. Let
us discretize the rectangular data domain Ω ⊂ R2 by a lattice of points
Λ = {(itx, jty) : ∀i = 1, . . . , N, ∀j = 1, . . . ,M}, where tx and ty are the step
sizes on the x and y directions. The known values of the data g on the
grid points (i, j) are denoted gij. Similarly, the values of the functions
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u, s, z on the points of the grid are denoted uij, sij, zij. For any function
v ∈ {g, u, s, z}, let v be the column vector of size N ·M obtained from vij
by a column-wise vectorization. Given any pair of indices (i, j), the function
w(i, j) := (j − 1)N + i returns the position index of the quantity vij in the
vector v. Shortly, [v]w(i,j) = vij. The differential operators ∇v, ∇2v can be
implemented in a discrete way using difference-schemes. Using the tensor
product the matrix operators Dx, Dy, Dxx, Dyy, Dxy are defined in such a
way that:

vi+1,j − vi,j
tx

= [Dxv]w(i,j)

vi,j+1 − vi,j
ty

= [Dyv]w(i,j)

vi+1,j − 2vi,j + vi−1,j

t2x
= [Dxxv]w(i,j)

vi,j+1 − 2vi,j + vi,j−1

t2y
= [Dyyv]w(i,j)

vi+1,j+1 − vi,j+1

txty
− vi+1,j − vi,j

txty
= [Dxyv]w(i,j)

(6)

with homogeneous Neumann boundary conditions.
Let v2 be the vector whose entries are the squared elements of the vector v.
The Euclidean norm of a vector x = Av can be computed as |x|2= xTx =
(Av)T (Av) =

(
vTAT

)
(Av). Let Mv denote the diagonal matrix whose

diagonal entries are the elements of the vector v and the off-diagonal entries
are zero. Let us denote e = (1, 1, . . . , 1)T the vector of size N ·M with all
entries equal to 1. The discretization of the functional (5) can be written as:

Fε(u, s, z) = µ(u− g)T (u− g) +
+
{

(Dxxu)TMz2(Dxxu) + (Dyyu)TMz2(Dyyu) +

+2(Dxyu)TMz2(Dxyu)
}

+

+ξε
{

(Dxu)TMs2(Dxu) + (Dyu)TMs2(Dyu)
}

+

+(α−β)
{
ε
[
(Dxs)T (Dxs)+(Dys)T (Dys)

]
+ 1

4ε(s−e)T (s−e)
}

+

+β
{
ε
[
(Dxz)T (Dxz) + (Dyz)T (Dyz)

]
+ 1

4ε(z− e)T (z− e)
}
.

(7)
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The functional Fε is quadratic in any of the variables u, s, z, when the others
are kept fixed. Therefore, gradient equations with respect to these three
variables are linear equations and they can be written as:

∇uFε(u, s, z) = Au u− bu
∇sFε(u, s, z) = As s− bs
∇zFε(u, s, z) = Az z− bz,

(8)

where the matrices Au = Au(s, z), As = As(u) and Az = Az(u) are positive
definite. Details about A-type matrices and b-type vectors and their expres-
sions are given in (Zanetti et al., 2016). It follows that the minimization of
Fε can be addressed via an inexact Gauss-Seidel block scheme or by means of
a faster block-coordinate descent algorithm (Zanetti et al., 2016). By setting
the gradient equations to zero, the three linear systems can be written:

Au u = bu
As s = bs
Az z = bz.

(9)

From a practical point of view, the stationary point of the objective functional
can be found by solving the three linear systems in sequence repeatedly,
until small variations of the functional are achieved. More precisely, the
method is stopped when the relative difference between the evaluation of Fε
on two consecutive iterates (uk, sk, zk) and (uk+1, zk+1,uk+1) falls below a
given threshold. An energetically convenient initialization of the iterative
method is to assign as starting values the values u0 = g, s0 = e and z0 = e.

2.3. The parameters of the functional
The choice of the functional parameters impacts the properties of the

segmentation. The parameters µ, α, β rule the competition between the terms
of the functional Fε that takes place during the minimization. Because the
parameters remain fixed in the minimization, they can be considered global
parameters. The understanding of their impact in very simple cases, such as
data containing just one edge or one crease, can help the choice of their values
when dealing with more complex datasets presenting similar features. In the
following, a local analysis of the expected behavior of a minimizer is given by
considering to vary separately each single parameter of the functional. The
final characteristics of the solution are the result of the competition between
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all terms which reached a stage of minimal impact on the overall functional
energy for a given set of parameter values.

The parameter µ is related to noise removal. The inverse of µ represents
the scale at which variations in the input data are considered as noise. By
increasing the value of µ, the squared distance from g is penalized, thus
the solution u tends to be very close to g. In practice, only variations at
the 1/µ scale are smoothed. This is not a desirable effect in noise-removal
applications for which low values of µ should be used. On the other hand,
in processing synthetic or low-noised images, high values of µ allow for a
high-fidelity description of data features.

The Hessian term is weighted by a unitary coefficient. Intrinsically, the
squared norm of the Hessian matrix is a measure of the curvature of the
surface. When the relative weight of the Hessian term is high with respect
to the other terms (weighted by µ, α, β), the solution is forced to have a
quasi-null Hessian. Because of the coupling between the Hessian norm and
the function z2, the points where this linear tendency is not energetically
convenient are automatically excluded by letting the function z equals zero.
Thus, the function u is expected to be piecewise nearly-linear.

The integral terms associated to (α − β) and β converge in measure to
the lengths of the sets Su and Su ∪ S∇u, respectively. Thus, the parameters
α and β control the length of the detected discontinuity sets. In particular,
high values of (α − β) or β penalize their length, so they can be seen as
contrast parameters. Notice that, because of the constraint β ≤ α ≤ 2β
(that ensures the validity of the Γ-convergence approximation of (5) to the
relaxed functional (4)) the choice of the values (α−β) and β is not symmetric.
In fact, for α = β the weight on the length of Su is α−β = 0 and the weight
on the length of Su ∪ S∇u is β. Whereas, if α = 2β the weights are in both
cases β. It follows that the length of Su ∪ S∇u is penalized at least as much
as twice the length of Su.

2.4. The Γ-convergence parameter ε
Theoretically, the discontinuity sets Su and Su∪S∇u are numerically unde-

tectable as they have null H2-measure. By minimizing the elliptic functional
Fε, it is possible to keep track of the discontinuity sets via their tubular
neighborhoods. The auxiliary functions sε, zε move from 1 to 0 smoothly in
a neighborhood of the discontinuity sets and they approach 0 at a rate that
depends on the geometrical properties of the input image g. The width of the
tubular neighborhoods of the discontinuity sets shrinks as the Γ-convergence
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parameter ε tends to 0. It follows that in a discrete setting the underlying
grid must be fine enough to resolve the geometry of the functions sε, zε (ap-
proximated by the discrete functions s, z, respectively). Conversely, given a
fixed grid size (determined by the parameters tx, ty), the parameter ε must be
chosen in such a way that the resulting grid can detect the neighborhood of
the discontinuity sets. Given the nature of the discrete differential operators
used in (6) for approximating ∇(·) and ∇2(·) (forward differences for first
partial derivative and central differences for second partial derivative), an
optimal detection of the discontinuity sets corresponds to a choice of ε such
that edges are detected along 1 pixel wide curves and edges and creases are
detected along 2 pixel wide curves.

2.5. The 1D Blake-Zisserman model on closed curves
Following Benciolini and Vitti (2015), the one-dimensional BZ model is

presented and applied for recovering polygonal shapes by means of closed
curve fitting of noisy observations. Theoretical results and a first implemen-
tation of the Blake-Zisserman model in one dimension have been given by
Bellettini and Coscia (1994a,b), whereas some applications of the 1D BZ
model have been presented in (Vitti, 2012a; Borghi et al., 2012). In this pa-
per, the approach that exploits the numerical formulation given in (Zanetti
and Bruzzone, 2017) is adopted for the 1D case and periodic conditions are
considered.

Let Φ = (ϕ1(t), ϕ2(t)) ⊂ Ω ⊂ R2 be a planar curve dependent on the
parameter t ∈ R. The curve is assumed to be closed and piecewise linear (a
polygonal shape), thus the parametric functions ϕh, h = 1, 2 are piecewise
linear and periodic. Let us assume that the original structure of the curve
Φ is lost during the discretization of the domain Ω and the only trace of the
curve is a set of points pi = (xi, yi), i = 1, . . . ,m lying on a regular grid
(cfr. Figure 2). The functions ϕh can be reconstructed using the discrete
observations pi and exploiting the 1D BZ model with boundary periodic
conditions. The choice of periodic conditions avoids the need to handle start
and end points in a special manner. The corners of the polygonal shape
defined by Φ can be identified in correspondence to the values t where the
gradients of ϕ1 and ϕ2 are discontinuous. Since the functions ϕh are never
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discontinuous a reduced version of the BZ functional is considered

Fε(u, z) := µ
∫
I
|u− g|2 dt+

∫
I
z2|u′′|2 dt+

+ β
∫
I

[
ε|∇z|2+ 1

4ε(z − 1)2
]
dt, (10)

where I ∈ R and g : I → R is the input curve. In a discrete setting, the input
curve is represented by the coordinates of the points pi. Thus, the discrete
functional is implemented as

Fε,h(u, z) = µ(u− gh)T (u− gh) +

+(Dttu)TMz2(Dttu) + β
{
ε(Dtz)T (Dtz) + 1

4ε(z− e)T (z− e)
}
.

(11)

where g1 = (x1, . . . , xm)T , when solving for ϕ1, and g2 = (y1, . . . , ym)T , when
solving for ϕ2. The discrete operators for first and second order derivatives
are defined taking into account periodic conditions by setting:

Dt :=



−1 1
−1 1

. . . . . .
−1 1

1 −1

 , Dtt :=



−2 1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 1 −2

 .

Similarly to the case of the 2D implementation (cfr. Section 2.2) the func-
tional (11) is quadratic with respect to u and z. Therefore, an iterative
method based on gradient equations is used to address the minimization.
Similar considerations can also be made for the selection of the functional
parameters and the initialization of the method, as previously done.

Given a minimizing couple (uε, zε) of the functional (11), the function uε
turns out to be the reconstruction of the parametric function ϕi, and zε is
the indicator function of its gradient-discontinuity points.

2.6. Remarks about the use of the BZ model in the problem at hand
After describing the mathematical models of MS and BZ, it can now be

seen that the BZ functional is a very well suited mathematical tool for the
detection of roof planes and building footprints. The general advantages of
BZ over MS has already been mentioned; here the fact that the BZ model
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is suited for our purpose is further addressed. In fact, roof planes can have
a significant slope, with a variation of elevation that can be comparable to
the planimetric size of the planar patch itself. As a consequence a smoothing
term based on the gradient, as the one in the MS functional, would be totally
inappropriate. On the other hand the smoothing term based on the Hessian,
as the one in the BZ functional, allows to meet the requirement on the
planarity of roof elements under investigation. The separation between roof
planes is marked by the different orientation of the elements, therefore it
results in a discontinuity of the gradient of the elevation. Eave lines, and
hence building boundaries, correspond to a localized variation (discontinuity)
of the value of the elevation. This means that the three unknown functions of
the BZ model involved in the proposed procedure are the natural candidates
for detection of roof planes and building footprints. Moreover, the same
model is equally suitable for the detection of corners in plane curves and for
fitting points on the plane by means of a piecewise smooth curve.

Point clouds and regular grids are both discrete data because of the sur-
vey and processing techniques involved in their production. Both of them
are used as representations of real objects. A precise definition of edges and
corners can be made only on the continuous setup. Despite the discrete
character of data, it is possible to distinguish variations between data values
at close points that are low enough to be modeled by means of continuous
functions from variations that can be considered (i.e. modeled) as disconti-
nuities. In this work, from the analytical point of view, edges and corners
are the sets of those points where in the minimization of the BZ model it
is less costly to introduce a discontinuity in the approximating function u
than to smooth the same sets of points. From the practical point of view,
edges and corners are the sets of those grid points where the values of the
discrete approximations of the discontinuity functions s and z are close to
zero. The sets of those points are considered the representation of features
of real objects that, according to the task of this work, are buildings, roof
planes and polygons. It is clear that the extraction of the various features
mentioned requires some kind of filtering.

3. The proposed procedure for roof planes detection

In order to achieve the detection of roof planes in gridded height data
a specific procedure has been defined. The procedure involves a sequential
application of the BZ model (in 2D and 1D) and can be divided into four
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tasks that are outlined in Figure 4. Task 1 is concerned with the application
of the 2D BZ segmentation on an input DSM. The outputs of this block are
fundamental for further processing. In Task 2 the edge map is processed and
building footprints are extracted and labeled. Filtering is based on both the
distribution of the normals to the boundary and the size of the footprints.
Normals are calculated over an approximation of the boundary given by the
1D BZ. In Task 3 roof planes related to each building footprint are detected
via the edge&crease map and the planar model of each patch is computed
using the TLS method on the piecewise smooth approximation of the input
data. Lastly, in Task 4 each roof plane is refined by adding points close to
the boundary by exploiting the TLS planes and a point-test procedure based
on a proximity measure. The outline of the procedure is given in Figure 4.
The other figures of this section have been produced applying the procedure
to a 1 m spatial resolution DSM provided by the Provincia Autonoma di
Trento 1 (Italy).

1http://www.territorio.provincia.tn.it
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Figure 4: Block scheme of the proposed procedure.
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Task 1 — 2D variational segmentation
The key point in the proposed procedure is that the 2D BZ model is able

to produce a piecewise nearly-linear approximation u of g (being g the input
DSM), and the edge and edge&crease maps, s and z respectively. An example
of the BZ outputs is shown in Figure 5. Details about the implementation of
the segmentation algorithm are given in Section 2.2. As discussed in Section
2.4, the discontinuity functions s and z are smooth functions taking the value
1 almost everywhere on the domain Ω and the value 0 where discontinuities
are detected. However, the transition between 0 and 1 is not sharp but
smooth, so it may happen that the grid resolution is fine enough to let the
discrete functions s and z to assume values between 0 and 1 in proximity of
detected discontinuities. Thus, a simple thresholding of the functions is used
to make s and z binary images with only 0 and 1 values.

Task 2 — Building detection via 1D variational segmentation
Following the ideas presented in Section 1.3, building footprints can be

extracted as connected regions with a closed boundary made of edge points,
i.e. grid points (i, j) such that s(i, j) = 0.

Identification of building candidates. Firstly, a 4-connectivity connected
components detection algorithm is applied to the binary image s to detect
connected regions. The outcome of the algorithm is thus the set of all building
footprint candidates. Let us denote by Cj, j = 1, . . . ,m, the detected regions.
Boundary points of each connected region are denoted by ∂Cj.
Small candidates are not likely to be buildings. A size filtering step is based
on the elimination of small objects. This can be done by considering only
those Cj with an area greater than a given threshold amin. A similar approach
is used to filter out the ground.

Boundary normals filtering. In order to distinguish between candidates
with a polygonal footprint (likely to be buildings) and those with an irreg-
ular boundary (objects not representing a building), the distribution of the
directions of the normals of the candidate boundaries are studied. Since the
data domain is discrete, the values of the normal directions computed on the
points of a boundary are affected by the grid structure, see Figure 6 (also
cfr. Figure 2 in Section 1.3). To overcome this issue, the 1D BZ is applied to
approximate the boundary points of a given building candidate (see details of
implementation in Section 2.5). The normal directions are hence computed
for a smooth boundary with well preserved corners. The modulo operation is
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(a) (b)

(c) (d)

Figure 5: An example of the outcome of Task 1: (a) Input DSM; (b) the piecewise nearly-
linear approximation u of g; (c) the edge map s; (d) the edge&crease map z.

then applied to compute the reminder of the division of the angular direction
of the boundary normals by π/2. By observing that the output values are
very little scattered in case of polygonal shapes built of linear arcs forming
just right angles, buildings are selected by filtering the returns of the modulo
operator.

After area and boundary normals filtering, the initial set of connected
regions is reduced to a subset that for notation convenience is denoted by
Bk, k = 1, . . . , n. The family Bk is the set of detected building footprints
and ∂Bk are their boundaries.

23



(a) (b)

(c)

Figure 6: An example of building shape regularization with BZ-1D: (a) detected bound-
ary with normals; (b) regularized boundary with normals; (c) circular histograms of the
normals in both cases, but with different radius scales.

Task 3 — Roof planes detection and modeling
Again, following the discussion in Section 1.3, in correspondence to any

building footprint Bk it is now possible to exploit the edge&crease function
z to detect roof plane boundaries related to the building.

Hierarchical detection of roof planes. By running a connected components
detection algorithm on the binary function z for every single Bk, a set of nk
components Rkl, l = 1, . . . , nk is obtained. The elements Rkl correspond to
the roof planes of the building Bk. Similarly to the case of building footprints
the boundaries of the region Rkl are denoted by ∂Rkl. Notice that Rkl ⊂ Bk

for all l = 1, . . . , nk, but boundary points are not assigned to any roof plane,
thus such Rkl are referred to as reduced roof planes. In Figure 7, images (1)
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and (2) show an example of candidate buildings and of hierarchical reduced
roof planes.

Roof plane modeling via TLS. Each Rkl is thus a set of points locating a
quasi-planar patch of the function u. A TLS approximation of this patch can
be computed by studying the empirical covariance matrix Mkl of the point
coordinates. Let λkl := min{λ : λ eigenvalue of Mkl} and nkl its correspond-
ing unit eigenvector. Then, nkl is the unit vector normal to the plane of best
least squares approximation; with the equation of the plane being

nkl · x− bkl = 0, (12)

where bkl = nkl · xkl and xkl is the mean of the 3D points x, and λkl is also
the variance of the distances of the 3D points with respect to the TLS plane
given by (12). The term bkl is the displacement of such plane with respect
to the origin of the coordinate system. The parameters of the fitting planes
are supposed to be estimated from a uniformly large number of points.

Task 4 — Roof planes refinement
So far, the points belonging to ∂Bk or ∂Rkl have not yet been assigned

to any roof patch. When proper values of the functional parameters are
selected, edges will be located along 1 pixel wide curves (because the gra-
dient operator is approximated by using forward differences), whereas the
edge&crease points will be located along 2 pixel wide curves (as the Hes-
sian operator is approximated using 2nd order central differences). Wider
traces are also possible, essentially because of the interaction between the
Γ-convergence parameter ε and the grid size, see (Vitti, 2012b) and (Zanetti
et al., 2016). However, given a discontinuity point, the decision of which
adjacent roof patch the point belongs to can not be done in an automatic
way unless the discontinuity line lies right along the x or the y direction.

Boundary points test. The planar models corresponding to the compo-
nents Rkl can be further refined by testing all points that are close to their
boundaries. In order to do this, firstly each component Rkl is enlarged using
morphological dilation with a disk structuring element of radius 2. Note that
using radius 1 the dilation of Rkl coincides with the union of Rkl and ∂Rkl.
The choice of radius 2 ensures that all neighboring points of the patch are
considered along with uncertain edge pixels. Moreover, within each build-
ing footprint the dilated components can be mutually intersected in order to
determine their adjacency. Let us denote Rkl the dilated component. The
refinement procedure consists of two steps:
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1. any grid point pi ∈ Rkl \ Rkl is discarded if xi is not admissible to the
plane model given by (12); that is when

|nkl · xi − bkl|> 3σkl,

where σkl = λ
1/2
kl ;

2. any grid point pi ∈ Rkl is tested against all the patches of the same
building j that are close to the current patch k; the set of the patches
that may be refined by the inclusion of the point pi are named R<kl>;
the point pi ∈ Rkl ∩R<kl> is hence removed from Rkl when

|nkl · xi − bkl|
σkl

>
|n<kl> · xi − b<kl>|

σ<kl>
.

The latter test ensures that each 3D point is assigned to the closest planar
patch, where the metric used is the orthogonal distance weighted by the
standard deviation of the fitting plane.

With the completion of this last step, the dilated planar patches are
filtered and include only compatible boundary points. The family of these
patches is the final set of the hierarchically detected refined roof planes,
denoted by Pkl. In Figure 7, image (3) shows an example of detected final
roof planes.

(a) (b) (c)

Figure 7: An example of candidate buildings, hierarchical reduced and final roof planes:
(a) candidate buildings (with spurious object not yet filtered out); (b) reduced planar
patches; (c) final roof planar patches (after filtering).
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4. Detailed application and validation

The procedure presented was applied to one of the DSMs provided in the
context of the "ISPRS Test Project on Urban Classification and 3D Building
Reconstruction"2 (Cramer, 2010). In particular the DSM of Vaihingen Area
3, 0.25 m spatial resolution, was processed. In the following the procedure
is briefly recalled and accompanied by a set of figures. Several figures are
provided and commented to show intermediate and final results.

Figure 8 presents on the top the input DSM and the orthophoto of the
study area (in false colors); on the bottom the corresponding edge and
edge&crease maps, i.e. the outputs of Task 1. The edge map is plotted
using and equalized color table to sharpen the richness of information stored
in the edge map. It is possible to observe in black the loci where the functions
s and z reach the value 0. The regions of white and light-gray pixels, where
the functions present values close to 1, correspond to the DSM regions of
homogeneous heights. The Figure shows that the edge map presents features
that can be exploited for the detection of building footprints and that the
edge&crease map presents features that can be exploited for the detection of
roof planes. In fact, roof ridges are clearly distinguishable.

Figure 9(a) presents in black the values s ∈ [0, 0.8) corresponding to the
edge points; in a blue-scale palette the values s ∈ [0, 8, 0.99], corresponding
to mildly varying heights and in white the values s ∈ (0.99, 1] corresponding
to the highest homogeneous DSM regions. The image helps to visualize
which features of the edge map can be exploited for the detection of building
candidates.

Figure 9(b) illustrates the connected regions obtained from the edge map;
in the image a binary edge map obtained by applying a threshold of 0.8 to the
edge map is overlaid. Connected regions with values s ∈ [0, 0.8) are in black
and regions with values s ∈ (0.99, 1] are in white. The region representing
the ground was removed via area thresholding and it is shown in white.
Connected regions with values s ∈ [0.8, 0.99] are colored according to the
unique label assigned. It is possible to observe that some objects, mainly
gardens, have not been isolated from the ground. This is due to the fact that
somewhere in (the smooth approximation of the) DSM, height variations
were not large enough to force the discontinuity function s to assume values
lower than 0.8, thus the edges of these objects are not closed. Figure 9(c)

2http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html
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shows the building candidates that remain after the removal of candidates
with an area smaller than 30m2. In this latter image the binary edge map is
no longer displayed. At this stage the boundaries of the candidate buildings
are extracted and passed to the 1D BZ model to produce a piecewise nearly-
linear approximation of the boundary with preserved corners. Boundary
normals are then computed and analyzed to detect right-angle polygonal
shapes. igure 9(d) shows the map of the detected right-angle polygonal
buildings, i.e. the output of Task 2.

Figure 10(a) shows the hierarchical reduced roof planes colored according
to the value of the unique label assigned. The edge&crease map is overlaid to
the reduced roof planes map; by comparing Figure 10(a) with Figure 9(b) it
is possible to see the roof ridges splitting the building regions permitting the
hierarchical labeling of the reduced roof planes. At this stage, every plane is
then modeled via TLS and plane boundaries are extracted thus completing
Task 3.

Reduced roof planes are then processed according to the steps of Task 4.
Figure 11 shows an example of the refinement step. In this figure, gray dots
are points surrounding a given roof; circles in light color represent points
assigned to different reduced roof planes; bold dark dots represent the edge
points assigned to the closet plane according to the criteria defined in Task 4.
It is possible to distinguish gray dots lying on the small wall that separates
the two smaller planes; these dots have not been assigned to any plane, as
might have been expected. Figure 12 shows the detail of a single building:
the orthophoto and a 3D view of the points of the smoothed DSM are on
the top row. In the 3D view the roof planes are patches in uniform tint and
the points surrounding the roof are in gray. The reduced and the final roof
planes are shown in the two images on the bottom row of the figure. Final
roof planes are shown in Figure 17 for the entire study area.

To describe further the steps of Task 2 that serve to detect right-angle
polygonal shapes, two object are considered: a tree and a building. In Fig-
ure 13 a set of images are shown to help the description. On the top row,
the tree and the building shapes are side by side. Every shape is shown
twice: once with boundary normals computed from the piecewise linear curve
passing through the center of the boundary pixels and once with boundary
normals computed from the BZ approximation of the boundary. On the
second row, the polar histograms of the normal directions are shown. The
bins are 2◦ wide. In Figures 13(e) and 13(g) bins are correctly aligned along
only four directions, because of the limited number of possible arrangements

28



of three close pixels. On the third row, the returns of the modulo opera-
tor are shown, again using polar histograms for both normal types. On the
fourth row, the returns of the modulo operator are shown using standard his-
tograms, only for the normals computed from the BZ approximation of the
boundary (Figures 13(b) and 13(d)). It is possible to see how the returns of
the modulo operator are much more concentrated along one particular value
for the polygonal shape than for the tree shape. Figure 14 shows on the left
a building shape with its boundary normals (computed from the BZ approx-
imation of the boundary). The two images on the right show the output of
the BZ model, i.e. the discontinuity function s and the approximation u, for
the x and y components of the boundary coordinates respectively.

A special search for mixed building-tree objects could be carried out by se-
lecting rejected building candidates that present a high variance of the fitting
plane and a sparse distribution of the returns of the modulo operator. Once
detected, such kind of objects could be reprocessed with different parame-
ter values. The discontinuity functions s and z could be further exploited
as well. The absence of homogeneous areas in the discontinuity function z
should help in filtering out the tree part, e.g., see the trees on the upper-right
and lower-right corners of Figures 8(c) and 8(d).
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(a) (b)

(c) (d)

Figure 8: (a) input DSM); (b) orthophoto in false colors; (c) equalized edge map; (d)
edge&crease map. 30



(a) (b)

(c) (d)

Figure 9: (a) edge map - values s ∈ [0, 0.8) in black, values s ∈ [0, 8, 0.99] in light blue,
values s ∈ (0, 99, 1] in white; (b) labeled connected regions with binary edge map overlaid;
(c) building candidates; (d) detected buildings.
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(a) (b)

Figure 10: (a) hierarchical reduced roof planes with edge&crease map overlaid; (b) or-
thophoto in false colors.

Figure 11: Example of the refinement step.
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(a) (b)

(c) (d)

Figure 12: A single building: (a) orthophoto in false colors; (b) 3D view of smoothed DSM
with roof planes; (c) reduced roof planes; (d) final roof planes.
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Figure 13: Boundary normals for the pixel-wise boundary (a, c) and for the output of
the 1D BZ model (b, d) for tree (a, b) and building (c, d) shapes. Polar histograms of
the normal directions (e, f, g, h) and of the returns of the modulo operator (i, j, k, l).
Histograms (m, n) of the returns of the modulo operator for the normals obtained from
the output of the 1D BZ model (b, d) for tree and building shapes respectively.
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Figure 14: (a) a building boundary with normals; (b) and (c) output of the 1D BZ model
for the x and y components of the boundary coordinates.
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4.1. Validation
The results of the application described in Section 4 are evaluated with re-

spect to reference data provided in the framework of the "ISPRS Test Project
on Urban Classification and 3D Building Reconstruction". In particular eval-
uations of thematic accuracy is done on the basis of metrics proposed in
(Rutzinger et al., 2009) and adopted in the ISPRS benchmark project (Rot-
tensteiner et al., 2012). Three indices are computed on the base of the count
of true positives (TP), false positives (FP) and false negatives (FN), namely:

completeness = #TP
#TP+#FN

correctenss = #TP
#TP+#FP

quality = #TP
#TP+#FN+#FP .

The indices are computed on a per-object level and on a per-pixel level. In
the first case a detected object (a building or a roof plane) is considered a
true positive if at least 50% of its area overlaps an object in the reference
data; the quantities FP and FN are evaluated in the same way. In the second
case the the number of pixels belonging to the mentioned quantities (TP, FP,
FN) is counted. In Figure 15(a) the reference data is shown. Only buildings
with an area greater or equal than 30m2 are considered to be consistent with
the threshold adopted in the procedure when the set of building candidates
is built. In Figure 15(b) the map of the evaluation of building detection is
shown. In the map, true positives are in white, false negatives in dark gray
and false positives in black. Values of the metric indices on a per-object level
and on a per-pixel level are given in Table 1.

Index per-object per-pixel
completeness 0.85 0.74
correctness 0.97 0.98
quality 0.83 0.73

Table 1: Per-object and per-pixel metrics.

According to the ISPRS benchmark (Rottensteiner et al., 2012, 2014), a
method is considered of practical relevance when the completeness index is
greater or equal than 0.70 and the correctness index is greater or equal than
0.85, on a per-object level.
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(a) (b)

Figure 15: (a) reference buildings; (b) detected buildings in white, false negative pixels in
black, reference buildings in dark gray.

In Figure 15(b) it is possible to see one false positive object. The object
is a flat green lawn with a right-angle polygonal shape, surrounded by high
shrub-edge objects with regular shape and buildings. False negatives objects,
such as objects numbered 3, 6, 15, 27 and 32 in 15(a), are very homogeneous
and flat and have been removed from the set of building candidates when the
values s ∈ [0, 8, 0.99] was selected, see Figures 9(a) and 9(b). In Figure 16(a)
the reference building boundaries are plotted as white lines on the top of the
DSM. In Figure 16(b) the detected buildings are also plotted in light gray.
The presence of false negative pixels around the borders of detected build-
ings is due to the presence in the DSM of relevant structures and artifacts
near the building walls, e.g. balconies and pixels belonging to the gridded
approximation of building walls.

In Figure 17(a) the detected roof planes and the reference map are shown.
In Figure 17(b) the map of the evaluation of roof plane detection is shown. In
the map, true positives are in yellow, false negatives in blue and false positives
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(a) (b)

Figure 16: (a) input DSM with reference building boundaries; (b) input DSM with refer-
ence building boundaries and detected building footprints.

in red. On a per-object level, completeness, correctness and quality are 0.81,
0.98 and 0.80 respectively. On a per-pixel level completeness, correctness and
quality are 0.74, 0.96 and 0.72 respectively. False positive and false negative
objects in Figure 17(b) are the same of Figure 15(b).

(a) (b)

Figure 17: (a) reference roof planes and detected roof planes; (b) detected roof planes in
yellow, false negative pixels in red, reference roof planes in blue.
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Effects of edge preserving data smoothing is illustrated by Figure 18 where
the hillshade and the slope maps computed for g and u can be compared. For
the set of detected planar patches (80 units), the averages of the standard
deviations of fitting planes computed from the data g and from the smooth
approximation u are 0.221 m and 0.139 m respectively. The average of the
relative improvement is greater than 40%.

(a) (b)

(c) (d)

Figure 18: Impact of edge preserving data smoothing: (a) hillshade map from g; (b)
hillshade map from u; (c) slope map from g; (d) slope map from u.
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5. Final remarks and perspectives

An original procedure for the detection of roof planes is presented. The
procedure exploits the BZ 2nd order variational model to obtain a piecewise
nearly-linear smooth approximation of the data. At the same time, discon-
tinuities of the approximation and of its gradient are directly detected and
intrinsically preserved. Two special functions introduced in the variational
approximation of the original functional permit the detection of edges and
creases. The BZ model is applied first in 2D and then in 1D to accom-
plish different goals. In 2D, the two discontinuity functions are exploited
for the detection of building candidates and roof planes; in the edge and
edge&crease maps roof edges and ridges are evident. In 1D, the BZ model
is used to smooth the boundary of connected regions without compromising
its corners. In the procedure, other specific solutions are adopted to solve
different problems, namely the detection of right-angle polygonal shapes and
the modeling and refinement of roof planes.

The main feature of the procedure can be summarized as follows; a) the
roof planes are labeled on a hierarchical basis, i.e. each roof plane is labeled
as a part of a specific building; b) the roof planes modeling is based on
the total least squares principle; c) the refinement of roof patches is based
on a specific measure involving only the coordinates of candidate refinement
points and the standard deviation of the TLS model fitting the patches. This
choice is of particular relevance since the points considered in the refinement
are edge or crease points which have very poor local properties.

The procedure is essentially global and the 2D BZ model can be applied
to a whole DSM. When dealing with large files tiling can be very convenient
or even necessary. In (Zanella et al., 2018) a parallel method is proposed
which converges to a stationary point of the objective energy.

A limit to the procedure derives from the fact that the values of the
weight parameters that appear in the object functional need to be empirically
chosen. However, for a given set of parameter values, different data can be
processed to detect edges and creases of the same amplitude and to smooth
the data of the same amount.

The application of the procedure to a DSM interpolated from the ALS
point cloud with a grid width of 25 cm, using only the points corresponding
to the last pulse, produced good results which fulfilled the objectives set out
for this work. The results demonstrate the usefulness of the BZ model, the
rationale of the procedure and the validity of its numerical implementation.

40



In this work gridded data have been considered just because of the adoption of
the finite difference method for the numerical approximation of the analytical
models involved in the procedure. A different approximation method would
permit the processing of sparse points; the procedure itself would remain the
very same.

The propose procedure could be further developed considering height data
at higher spatial resolution. As in (Grigillo and Kanjir, 2012), the applica-
tion of some boundary vectorialization technique is expected to improve the
performance of an extended procedure, in particular with respect to the val-
ues of the completeness and correctness indices on a per-pixel level and the
geometry accuracy of object boundaries. Geometry of building footprints
and roof planes could be further improved by defining special treatment of
false negative pixels appearing nearby the building walls and by applying
reconstruction-type algorithms.

Other extensions of the presented work can be identified. By the analysis
of the areas of the edge map where s < 0.8 it could be possible to derive
useful information for the detection and modeling of trees or other objects. In
(Carriero et al., 2012) an extension of the BZ model is presented to tackle the
problem of image inpainting. The extended model could be applied to DSM
data to test its capabilities of reducing the mask effect of trees on roof planes.
By changing the numerical approximation technique, from finite differences
to finite elements, it could be possible to process non-gridded height data,
see (Zanetti and Bruzzone, 2014). Moreover the BZ model could also be
exploited for the simplification of TIN models with preserved and identified
break-lines; as a starting reference see (Bourdin and Chambolle, 2000).
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