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Device-free Counting via Wideband Signals
Stefania Bartoletti, Member, IEEE, Andrea Conti, Senior Member, IEEE, and Moe Z. Win, Fellow, IEEE

Abstract—Counting people and things (targets) in a monitored
area, also known as crowd-counting, enables several applica-
tions in diverse scenarios including smart building, intelligent
transportation, and public safety. In many scenarios, device-free
systems relying on the signal backscattering from targets are
preferred to device-based systems relying on the communication
with the targets via dedicated or personal devices. However,
the use of conventional radar techniques (e.g., for multi-target
detection) requires to associate a different set of measured
data with each detected target. Data association is a redundant
operation for counting and results in high complexity even with
few targets. The need of lower dimensionality and complexity
calls for signal features to associate the measured signals directly
with the number of targets. This paper proposes a mathematical
framework for the design of device-free counting systems. First,
a maximum a posteriori algorithm is developed for counting
via wideband signal backscattering by relying on model order
selection. Then, a method that relies on low-level features is
proposed to lower the computational complexity. The proposed
method is verified via sample-level simulations in realistic oper-
ating conditions and compared to current solutions.

Index Terms—Counting, sensor radar, device-free, multi-target
detection, multi-hypothesis testing, wideband signals.

I. INTRODUCTION

DEVICE-FREE COUNTING refers to the estimation of
the number of people and things (hereafter referred to as

targets) in a monitored area without relying on any dedicated
or personal device. Counting targets is crucial for several
crowdsensing and behaviour analysis applications, in diverse
scenarios including smart building, intelligent transportation,
and public safety [1]–[3].

Current counting systems are classified as image-based
and radio-based. In both cases, data collected from multiple
sensors are processed to infer the number of targets by
relying on statistical models or training sequences. In image-
based systems, the counting is performed by processing the
foreground image after removal of the background image
[4]–[6]. For example, the number of foreground pixels is
counted and the number of targets is then determined by
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considering the target size within the image, which changes
according to the geometry of the vision system. Image-based
systems are resource-intensive, suffer from obstructed line-of-
sight conditions and are sensitive to light and colors, and their
use is often denied for privacy. Therefore, in many scenarios,
radio-based systems replace or operate jointly with image-
based systems.

Radio-based systems can be further classified as device-
based and device-free. In device-based systems, the counting
is either performed by counting the number of targets equipped
with dedicated devices, such as radio frequency identification
(RFID) tags [7]–[9], or sniffed from personal devices, such
as from Wi-Fi access points [10]–[15]. In the former case,
the cost of providing each target with a dedicated device is
unaffordable for many applications. In the latter case, the
counting system needs access to the network of users, which
is not always possible (e.g., safety applications) and also leads
to major privacy issues, especially when the system exploits
personal devices. Alternatively, device-free systems have been
recently investigated. In such systems, target counting is
performed by sensing the wireless environment to infer the
number of targets from signal reflections and obstructions (e.g.
by employing sensor radar networks) [16]–[20]. The two main
advantages of device-free systems with respect to device-based
systems are: (i) lower implementation costs and (ii) higher
privacy preservation. In fact, they do not need to access any
user network, and they do not require dedicated devices to be
carried by targets.

Current algorithms for device-free counting rely on multi-
target detection via radar networks [19]–[22]. In multi-target
detection, a different set of measurements is associated with
each detected target, for example, by estimating its position
and trajectory, and the number of targets is then deduced.
This method is also known as individual-centric. However,
individual-centric methods have high complexity growing ex-
ponentially with the number of targets due to data association,
which is unnecessary when the system is interested in only
the number of targets and not their locations. For these
reasons, there is a growing interest in designing crowd-centric
methods for counting, i.e., methods that infer the number of
targets directly from the measured data without estimating
their locations [16]–[18].

Among device-free systems, sensor radars based on wide-
band and ultrawide-band (UWB) signals [23]–[25] are good
candidates for counting because the wide bandwidth provides
fine delay resolution, which mitigates multipath and allows
the detection of multiple targets that are close in space [26]–
[34]. In [16], a method is proposed to count targets moving
in and out of a monitored area by using a UWB radar at
the entrance of the area to estimate the time-of-arrival (TOA)
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of backscattered signals. This method requires the design
of threshold-crossing techniques for the direction estimation
based on TOA. In [17], a counting algorithm is proposed for
UWB radar, based on the local maximum of the power profile
of the received waveform. Iteratively, a local maximum is
searched and, in case it exceeds a threshold, a set of samples
(window) around the local maximum is deleted. The two afore-
mentioned methods do not provide any algorithm to design
the thresholds and window’s length, which are crucial for the
system performance [26]. In [18], the crowd-centric counting
is addressed by using support vector regression (SVR) to learn
the relation between the extracted features and the number of
targets. Such features belong to time and frequency domains,
and the learning phase relies on training sequences. All
the aforementioned studies lack theoretical models that relate
the data collected with the number of targets, preventing the
design of solid and accurate crowd-centric techniques.

The fundamental questions related to target counting are:
(i) how is the number of targets related to observed data?
(ii) is there any observable feature that can be described as
a function of the number of targets? The answers to these
questions enable the design of low-complexity crowd-centric
techniques for device-free target counting. The goal of this
paper is to develop a device-free counting method based on
information extracted from the wireless waveforms received
after target backscattering.

This paper develops a framework for the design of counting
systems. First, the counting problem is formalized by relying
on model order selection, which requires target localization.
The related individual-centric method based on Bayesian esti-
mation is derived. Then, a crowd-centric method that relies on
energy detection is proposed. The key idea is to consider the
geometrical relation between the target position and the energy
samples, at the output of the energy detection. Differently from
other papers in the literature, a tractable theoretical model is
provided for describing the relation between the number of
targets and the energy samples for wideband signals. The key
contributions of this paper can be summarized as follows:
• formalization of the counting problem through model

order selection;
• development of a framework that relates the target count-

ing problem to the energy detection output;
• proposal of low-level features for crowd-centric counting

and a tractable observation model for wideband signals;
• quantification of performance metrics in a use case and

comparison with existing methods.
The remaining sections are organized as follows. Sec. II

describes the system model. Sec. III devises the individual-
centric and crowd-centric counting systems. Sec. IV presents
the counting problem as a model order selection related to
target localization. Sec. V introduces the energy-based crowd-
counting and the corresponding tractable model for wideband
signals. Sec. VI describes a case study and numerical results.
Finally, in Sec. VII our conclusions are given.

Notation: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors
are denoted by bold lowercase letters. For example, a random
variable (RV) and its realization are denoted by x and x; a

TABLE I
MAIN SYMBOLS USED THROUGHOUT THE PAPER

Symbol Description

np number of transmitter-receiver pairs

Np index set of transmitter-receiver pairs

p
(i)
tx position of the ith transmitter

p
(i)
rx position of the ith receiver

s(t) transmitted signal

Nt index set of targets

nt number of targets

p
(k)
t position of the kth target

p
(k)
b position of the kth background object

r(i)(t) signal received at the ith receiver

r
(i)
b (t) component of r(i)(t) related to the background

r
(i)
t (t) component of r(i)(t) related to the targets

n(i)(t) noise component of r(i)(t)

M
(i)
k index set of multipath components for the kth cluster

α
(i)
k,m amplitude of the mth component for the kth cluster

t
(i)
k arrival time for the kth cluster in r(i)(t)

τ
(i)
k,m excess delay of the mth component for the kth

cluster

r̂
(i)
b (t) estimation of r(i)b (t)

r̃(i)(t) signal at the ith receveir after background removal

r̃ concatenation of vectors of received signal samples

pt concatenation of the target position vectors

nmax maximum number of targets

Hn hypothesis that the number of targets is nt = n

f (̃r|Hnt ) likelihood function for the nth hypothesis

f (̃r, pt) likelihood function for the position vector pt

Pn set of possible pt composed of n position vectors

n̂t estimated number of targets

f observable feature

h(·) extraction function

g(·) observation function

erms root-mean-square of the counting error

Pceo counting error outage

θ
(i) ith vector of target positions, amplitudes, and delays

f̃(r|pt) approximated likelihood function

Td dwell time of the energy detector

e
(i)
k kth energy bin for the ith signal

e(i) vector of energy bin for the ith signal

λ
(i)
k non-centrality parameter for e(i)k

E(i)k kth elliptical region defined by e
(i)
k

N
(i)
k number of targets in E(i)k

random vector and its realization are denoted by x and x.
Sets and random sets are denoted by upright sans serif and
calligraphic font, respectively. For example, a random set and
its realization are denoted by X and X , respectively. The ∅
denotes the empty set. The main symbols used throughout the
paper are reported in Table I.
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Fig. 1. A bistatic sensor radar. Red empty circles represent the transmitter
and receiver positions, blue circles represent the target scatterers, and black
circles represent the background scatterers. Black dashed lines indicate the
direct path between the transmitter and receiver as well as the first multipath
component related to the background scatterers. Blue solid lines indicate the
first multipath component related to the background scatterers.

II. SYSTEM MODEL

Consider a network of np transmitter-receiver pairs op-
erating as sensor radars (SRs), with index set Np =
{1, 2, . . . , np}.1 The transmitter of the ith pair is in position
p
(i)
tx and emits a signal s(t); the receiver is in position p

(i)
rx

and collects the received signal after backscattering by all
the objects in the operating environment, also referred to as
scatterers.

Consider a random set Nt of nt targets, where the kth target
is located in position p

(k)
t with k ∈ Nt, and a random set

Nb of nb background objects in position p
(k)
b with k ∈ Nb.2

In particular, the background objects are those present in
the environment even in the absence of targets (i.e., prior
knowledge on their positions is available). Fig. 1 shows an
example of bistatic SR (i.e., one transmitter and one receiver),
with two target scatterers and two background scatterers.

The emitted signal propagates according to the Saleh-
Valenzuela channel model [35] where the multipath clusters
are related to objects (named super scatterers) which are
randomly located in the operating environment [36]–[39].
In particular, multiple reflection points of the same super-
scatterer lead to different multipath components within the
corresponding cluster. The randomness of object positions and
of the reflecting point locations on the scatterers’ surface lead
to the double Poisson processes that describe the arrival time
of clusters and multipath components [36].

As a result, the equivalent low-pass signal gathered by the
receiver of the ith pair after multipath propagation can be
expressed as

r(i)(t) = r
(i)
b (t) + r

(i)
t (t) + n(i)(t) (1)

1The following analysis holds either in the multistatic configuration, i.e.,
the transmitter and receiver of each pair are in different positions, and in the
monostatic configuration, i.e., the transmitter and receiver of each pair are
co-located.

2Note that scatterer positions are random vectors, the number of scatterers is
a random variable, whereas transmitter and receiver positions are deterministic
and known.

where the component related to the targets is given by

r
(i)
t (t) =

∑
k∈Nt,m∈M(i)

k

α
(i)
k,ms(t− t

(i)
k − τ

(i)
k,m) (2)

and that related to the background scatterers (in addition to
the transmitter-receiver path) is given by

r
(i)
b (t) =α

(i)
0 s(t− ‖p(i)

tx − p(i)
rx ‖/c)

+
∑
k∈Nb

∑
m∈Mk

α
(i)
k,ms(t− t

(i)
k − τ

(i)
k,m) , (3)

n(i)(t) denotes the zero-mean Gaussian distributed noise com-
ponent with variance σ2

n , M(i)
k is the index set of multipath

components in the kth cluster, with random cardinality m
(i)
k ,

t
(i)
k = ‖p(i)

tx − p
(k)
t ‖/c − ‖p

(k)
t − p

(i)
rx ‖/c, τ(i)k,m is the excess

arrival delay of the mth component in the kth cluster with
amplitude α(i)k,m.3 The expected value of α(i)k,m averaged over
small-scale fading is

α
(i)
k = E

{
α
(i)
k,m

}
= Q

(i)
k exp(t

(i)
k /γ(i)) (4)

where

Q
(i)
k =

10P
(i)
k /10∑nt

k=1 t
(i)
k /γ(i)

, (5)

γ(i) is the power decay constant, and P
(i)
k is the average

received signal strength (RSS) for a target at p(i)t with respect
to the ith pair, i.e., considering the path-loss and the radar
cross section (RCS) of the corresponding scatterer [21], [27],
[39].4

A temporal separation between two signal replicas is neces-
sary to ensure their resolvability, which results in a minimum
resolvable delay that depends on the transmitted signal and the
receiver bandwidth [21]. Therefore, for counting systems the
use of wideband and UWB signals is preferable to that of nar-
rowband signals thanks to the better path delay resolvability,
which is crucial to distinguish between different scatterers.

The background signal r
(i)
b (t) can be measured offline

in the absence of any target. Let r̂(i)b (t) be the estimated
background component which represents the prior knowledge
on the operating environment. The background estimate can
be removed from the received waveform leading to r̃(i)(t) =

r(i)(t)− r̂(i)b (t), which is the received signal after background
removal. The aim of the counting system is to process the
signal r̃(i)(t) for counting the number of target scatterers nt.

III. INDIVIDUAL-CENTRIC AND CROWD-CENTRIC
COUNTING METHODS

Consider the concatenation of vectors composed of the
received signal samples, after background removal, for each
transmitter-receiver pair

r̃ =
[
r̃(1), r̃(2), . . . , r̃(np)

]
. (6)

3Note that the first component of the sum in (3) is related to the direct path
between the transmitter and receiver, with amplitude α(i)0 .

4The RCS measures the power density that the object reflects with respect
to the incident power, in relation to scatterer orientation, material, and size
[22], [27], [40].
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Fig. 2. Illustration of the signal processing of the individual-centric and crowd-centric methods for target counting.

The number of samples in the vector r̃ is np ns, where ns is
the number of received signal samples in r̃(i), which depends
on the observation interval Tobs and the sampling time Ts, i.e.,
ns = bTobs/Tsc, where bxc is the largest integer less than or
equal to x. The vector

pt =
[
p
(1)
t ,p

(2)
t , . . . ,p

(nt)
t

]
(7)

represents the concatenation of the target position vectors.
Fig. 2 illustrates the block diagram for the individual-centric
and crowd-centric counting methods starting from the vector
of received signal samples r.

A. Individual-Centric Method

The individual-centric method relies on the data model that
relates r̃ and pt, and can be performed via classic multi-target
detection algorithms [21], [22]. First, the targets are localized
and then an estimate of the number of targets n̂t is determined
from the length of the estimated vector p̂t. This corresponds to
a model order selection problem: the estimation of an integer
value that is the dimension of the parameter vector of a data
model [41].

Let Hn denote the hypothesis that nt = n, and let nmax
denote a known upper bound for nt, i.e., nt ∈ N =
{1, 2, . . . , nmax}. The aim of the system is to estimate nt from
r̃ as the maximum likelihood (ML) estimate

n̂t = argmax
n∈N

f(r̃|Hn). (8)

Therefore, the hypothesisHn, i.e., nt = n, is true for any target
position pt with length dn, where p

(i)
t ∈ Rd ∀i = 1, 2, . . . , n.

A Bayesian approach is considered, where the density function
f(r̃,pt) is marginalized over the space Pn = {pt : nt = n},
i.e.5

f(r̃|Hn) =

∫
Pn

f(r̃,pt) dpt . (9)

5The following analysis can be extended to the case of dynamic targets by
considering Bayesian filtering over time, i.e., multi-target tracking [21], [22].

Such a density function can be asympthotically approximated
with respect to n, leading to different information criteria
[41].6 The most adopted asymptotic approximation for (8) is
based on the ML estimation

n̂t = argmax
n∈N

f(r̃|Hn)

= argmax
n∈N

max
pt∈Pn

f(r̃,pt) . (10)

The derivation of f(r̃,pt) for wideband signals is presented in
Sec. IV.

B. Crowd-Centric Method

The crowd-centric method relies on a vector of observable
features f . For example, features can be related to the envelope
of the received signal and the shape of its energy samples.
The vector f is obtained from r̃ through a feature extraction
function h, i.e.,

f = h(̃r) (11)

and is related to nt through an observation model7

nt = g(f) + w (12)

where g is the observation function and w is the measurement
noise. The choice of features f is crucial for the counting per-
formance, despite g(f) and the distribution of the measurement
noise w are unknown in general. A new energy-based feature
and its observation model are introduced for wideband systems
in Sec. V.

6An alternative to the Bayesian approach is to obtain n̂t by minimizing the
Kullback-Leibler divergence between the true probability distribution function
(PDF) of the observed data and the one of the model. If the PDF of the model
is not available in closed form, different approximation can be considered,
leading to the Akaike and generalized information criteria [41].

7The following analysis can be extended to the case of dynamic targets by
deriving a transition function that relates the number of targets at time t with
the number of targets at time t+ δt [21], [22].
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C. Counting Complexity

We now consider the counting complexity for the individual-
centric and crowd-centric methods. The complexity of the
individual-centric method is equal to that of the multi-target
detection problem, which is NP-hard and depends on the max-
imum number of hypotheses nmax [21], [22], [42]. In general,
(9) and (10) require to compare f(r̃,pt) for every value of
pt ∈ Pn and every n ∈ N . For a grid-based algorithm with
ng possible positions (i.e., P1 is a finite set with cardinality
|P1| = ng) the number of comparisons is

∑nmax
i=0

(
ng
i

)
. For

example, if ng = nmax, the number of comparisons is 2nmax .
The complexity of the crowd-centric method depends on the

feature extraction function h and on the observation function
g, while it is independent of the number of targets. For the
case study presented in Sec. VI, the running time TIC of the
individual-centric algorithm was TIC = 13.5TCC for nmax = 5,
and TIC = 406TCC for nmax = 10, where TCC was the running
time for the crowd-centric algorithm proposed in this paper.8

Remark 1: The crowd-centric method significantly reduces
the computational complexity with respect to that of the
individual-centric. In addition, the complexity of the crowd-
centric method does not depend on the number of targets.

IV. INDIVIDUAL-CENTRIC COUNTING
VIA WIDEBAND SIGNALS

The individual-centric method requires the derivation of
f(r̃,pt) to calculate f(r̃|Hn).

A. Likelihood Function

From (1), (2), and (3), if the background is perfectly
removed,9 i.e., r̂(i)b (t) = r

(i)
b (t), then r̃(i) is the realization

of a random vector r̃(i) that depends on a parameter vector
θ
(i) = [pt, τ

(i),α(i)], where10

τ
(i) = [τ

(i)
1,1, τ

(i)
1,2, . . . , τ

(i)

1,m
(i)
1

, . . . , τ
(i)
k,1, . . . , τ

(i)

nt,m
(i)
nt

]

α
(i) = [α

(i)
1,1,α

(i)
1,2, . . . ,α

(i)

1,m
(i)
1

, . . . ,α
(i)
k,1, . . . ,α

(i)

nt,m
(i)
nt

] . (13)

The parameters in τ(i) and α(i) (i.e., the excess delays and
amplitudes of the multipath components within each cluster)
are RVs that depend on the channel instantiation.11

Since the received waveforms from different transmitter-
receiver pairs are independent, the likelihood function is

f(r̃,pt) ∝
∏
i∈Np

f(r̃(i)|pt) . (14)

The PDF f(r̃(i)|pt) can be obtained as marginal distribution

f(r̃(i)|pt) = E
α(i),τ(i)

{
f(r̃(i)|θ(i))

}
(15)

8Simulations were conducted in Matlab R2016b 64-bit floating point
precision.

9In the case of imperfect background removal, our derivations hold by
considering the positions of the unknown background objects as RVs in the
likelihood function.

10We consider zero-mean gaussian distributed noise samples n
(i)
j =

n(i)(tj) ∼ N (0, σ2
n ) and the variance σ2

n is considered known to simplify
the notation.

11Note that the cluster arrival time is a function of by pt, in the following
considered uniformly distributed in Pnt .

where the marginalization has been made with respect to α(i)

and τ(i). Specifically,

f(r̃(i)|θ(i)) ∝ exp
{

2

∫ Tobs

0

r̃(i)(t)
∑

k∈Nt,m∈M(i)
k

α
(i)
k,ms(t− t

(i)
k −τ

(i)
k,m)dt

−
∫ Tobs

0

[ ∑
k∈Nt,m∈M(i)

k

α
(i)
k,ms(t− t

(i)
k − τ

(i)
k,m)

]2
dt
}

(16)

is the PDF for a given channel instantiation.
The excess delays τ(i)k,m of multipath components depend

on the environment, the specific target, and the orientation, all
of which are unknown. Therefore, the marginalization with
respect to the channel parameter may be impossible or lead to
intractable problems. This calls for approximations to obtain
tractable models [26].

B. Tractable Likelihood Function

Consider a single-bounce channel, where each scatterer
introduces one resolvable multipath component at the receiver,
with arrival time and amplitude determined by the target
position [36]. In particular, the amplitude is averaged over
small-scale fading as in (4). The single-bounce model is
realistic in the presence of bandwidth limitations, which are
intrinsic to hardware and signal processing, because multiple
reflection from the same target cannot be resolved at the
receiver. Following the single-bounce mode, the likelihood
function is found to be

f(r̃(i)|θ(i)) ' f̃(r̃(i)|pt)

∝ exp
{

2

∫ Tobs

0

r̃(i)(t)
∑
k∈Nt

α
(i)
k,1s(t− t

(i)
k )dt

−
∫ Tobs

0

[ ∑
k∈Nt

α
(i)
k,1s(t− t

(i)
k )
]2}

. (17)

Fig. 3(a) shows an example of likelihood function for the
case Nt = {1, 2} as a function of p

(2)
t when p

(1)
t = p

(1)
t

and the channel instantiation is known (ideal case). It can
be noticed that the contour plot of the likelihood function
approximately forms an elliptical ring, having foci at the
transmitter and receiver location, passing through the real
position of p

(2)
t .12 The size of the ring is related to the

uncertainty of the position due to the noise variance. Fig. 3(b)
shows the approximated version of the likelihood when a
single-bounce model is used for the likelihood function. It can
be observed that the uncertainty increases with respect to the
ideal case and the shape is more irregular, but the elliptical ring
maintains the same foci and the maximum value that includes
the true position of p(2)t .

12It is known from radar theory that the likelihood function defines isorange
contours that are circumferences or ellipses in the monostatic and bistatic case,
respectively [21].
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(a) f(r̃(1), p
(2)
t |p

(1)
t = p

(1)
t ,α) (b) f̃(r̃(1), p

(2)
t |p

(1)
t = p

(1)
t ,α)

Fig. 3. Contour plot of f(r̃(1), p
(2)
t |p

(1)
t = p(1),α) and its single-bounce approximation f̃(r̃(1), p

(2)
t |p

(1)
t = p

(1)
t ,α) for a given realization r̃(1) = r̃(1)

varying p
(2)
t , plotted for 0 < ‖ptx − p

(2)
t ‖+ ‖p

(2)
t − prx‖ ≤ 8m. The color indicates the likelihood value from lighter (low values) to darker (high values).

By applying the single-bounce model to (9), the model order
selection problem can be expressed as

n̂t = argmax
n∈N

f(r̃|Hn)

' argmax
n∈N

∫
Pn

f̃(r|pt) dpt (18)

where Hn is considered true for any pt ∈ Pn and pt is
uniformly distributed in Pn.

V. CROWD-CENTRIC COUNTING VIA WIDEBAND SIGNALS

We now propose a crowd-centric method based on energy
detection by providing the extraction and observation func-
tions.

A. Energy Detection

Energy detection is widely adopted for ranging [43]–[46],
spectrum sensing [47]–[49], and carrier sensing [50]–[52].
Fig. 4(a) illustrates the energy detection scheme, which takes
as input the received signal after background removal, r̃(i)(t),
and calculates a vector of energy bins e(i) that is processed
for counting. The signal is sampled by an analog to digital
converter (A/D) with sampling time Ts. The observation time
interval (0, Tobs] is divided into time intervals (bins) of dura-
tion Td (dwell time),13 leading to a total of nbin = bTobs/Tdc
bins. The kth bin spans the signal samples r̃(i)(tj) with
tj ∈ Tk = ((k − 1)Td, kTd]. The energy sample associated
with the kth bin is a RV obtained through a quadrature
integration and dump (QID) as

e
(i)
k =

∑
tj∈Tk

r̃2(tj) (19)

13The dwell time Td represents the time resolution at the output of the
energy detector.

where tj = tj−1 + Ts in which j = 1, 2, . . . , nsb, and nsb
is the number of samples per bin. Therefore, the number
of samples contained in a time bin is nsb = bTd/Tsc.
The output of the energy detector is the energy bin vector
e(i) = [e

(i)
1 , e

(i)
2 , . . . , e

(i)
nbin ].

The geometrical interpretation of the energy bin vector is
described by defining nbin regions E(i)k ⊂ Rd with k =
1, 2, . . . , nbin for the ith transmitter-receiver pair as

E(i)k =
{
p ∈ Rd s.t. (‖p− p

(i)
tx ‖+ ‖p− p(i)

rx ‖)/c ∈ Tk
}
.

(20)

The region E(i)k is the locus of points p ∈ Rd such that the
signal emitted by the ith transmitter and backscattered by a
target at p arrives at the ith receiver with a TOA τ that falls
into the kth bin (i.e., (k−1)Td < τ ≤ kTd). In particular, E(i)k

is an elliptical ring when d = 2 with foci at the ith transmitter
and receiver positions (see Fig. 4(b)).

For the ith target-receiver pair, the set

N
(i)
k = {j ∈ Nt s.t p(j)

t ∈ E(i)k } (21)

is the index set of target scatterers lying inside the region E(i)k .
As the bins, thus the region are non-overlapping and14

Nt =

nbin⋃
k=1

N
(i)
k ∀i = 1, 2, . . . , np. (22)

Each element e
(i)
k of the energy bin vector is distributed

according to a chi-square RV conditional on the channel
instantiation. In particular, given τ(i) and α(i), the e

(i)
k /σ2

n ∼
χnsb(λ

(i)
k ), i.e., a non-central chi-square RV with nsb degrees

14To simplify the notation, here we assume that every transmitter-receiver
pair detects all the targets.
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(a) Energy detection scheme for counting. (b) Example of elliptical regions for nbin=3, Nt = {1, 2}, N1 = {1},
N2 = {2}, and N3 = ∅.

Fig. 4. Illustration of the energy detection scheme and of the geometrical representations of the time intervals in elliptical regions.

of freedom and non-centrality parameter λ(i)k [26], [43], [53]–
[56]. The non-centrality parameter λ(i)k depends on θ(i) =
[pt, τ

(i),α(i)] and is given by

λ
(i)
k =

1

σ2
n

∑
tj∈Tk

r̃
(i)
t (tj)

2

=
1

σ2
n

∑
tj∈Tk

[ ∑
k∈Nt

∑
m∈M(i)

k

α
(i)
k,ms(tj − t

(i)
k − τ

(i)
k,m)

]2
.

(23)

B. Feature Extraction Function

By expanding the square of the double summation in (23)
we obtain

r̃
(i)
t (tj)

2 =
∑

l∈M(i)

(α̌
(i)
l )2s2(tj − τ̌(i)l )

+
∑

h∈M(i)

∑
u<h

α̌
(i)
h α̌

(i)
u s(tj − τ̌(i)h )s(tj − τ(i)u ) (24)

where M(i) = ∪nt
k=1M

(i)
k , α̌(i)l = α

(i)
k,m and τ̌(i)l = t

(i)
k + τ

(i)
k,m,

with l = m
(i)
k (k − 1) + l.

We noticed that the feature f
(i)
k = λ

(i)
k can be extracted

from e(i) and is related to nt through (23). In particular, since
E
{
e
(i)
k /σ2

n

}
= nsb + λ

(i)
k then the extraction function for the

ith pair in the kth time interval is

f
(i)
k = h(r̃(i)) =

e
(i)
k

σ2
n
− nsb . (25)

The ensemble of f
(i)
k forms the vector f =

[f
(1)
1 , f

(1)
2 , . . . , f

(1)
nbin , f

(2)
1 , . . . , f

(np)
nbin ] of length nbin np. The

observation model nt = g(f
(i)
k ) + w would be obtained by

inverting (23) with respect to nt. However, such an expression
is not invertible and depends on the channel instantiation and
the related unknown parameters. This calls for approximations
leading to a tractable observation function.

C. Tractable Observation Function

We propose a tractable observation model obtained by
considering:
(i) the single-bounce model as in (4), i.e., α(i) ' α̌(i) =

[α̌
(i)
1 , α̌

(i)
2 , . . . , α̌

(i)

m(i) ];
(ii) the amplitude of multipath components as constant within

each time bin, i.e., α(i)k ' Epj∈Ei

{
α̌
(i)
j |pj

}
for pk ∈ Ei;

(iii) the transmitted signal as an impulsive signal with respect
to the time bin, i.e., s(th)s(th−k) ' 0 ∀k 6= 0 and s(t−
τk) ' 0 with τk ∈ Ti ∀t 6∈ Ti .

Note that the accuracy of (i) and (ii) depends on Td and
on the signal bandwidth. In fact, the smaller Td, the less
the amplitude changes within a time interval and the more
accurate the approximation (i) is. The larger is the bandwidth,
the shorter is the signal’s duration, especially with respect
to the time interval, the more accurate is the approximation
(ii). Therefore, such approximations are suitable for wideband
ranging systems [26]. From (i) and (ii), the (23) becomes

λ
(i)
k '

1

σ2
n
αk

∑
n∈N(i)

k

s2(tj − τ̌(i)n )

= |N(i)
k |α

2
kS0 (26)

where S0 is the transmitted signal energy. In fact, based on
the tractable observation model, the non-centrality parameter
of the kth energy sample depends only on the targets located
inside E(i)k . Finally, we define the observation model as

nt = g(f) + w =
1

α
2
kS0np

np∑
i=1

nb∑
k=1

(e(i)k

σ2
n
− nsb

)
+ w (27)

where w is the measurement noise due to the difference
between f

(i)
k and its expected value E

{
f
(i)
k

}
= λ

(i)
k .15

Remark 2: The crowd-counting solution based on energy
detection leads to an intractable model for nt = g(f) that is
not invertible. Therefore, a tractable model is derived through
approximations that are found to be accurate for wideband
signals. In particular, the accuracy of the tractable model
depends on the dwell time and the observation window of
the energy detector. Such tractable model leads to (27), which
is a linear function of the extracted features.

VI. CASE STUDY

We now present the performance metrics, operating environ-
ment, signal processing, and numerical results for a case of
study. The proposed crowd-centric method is compared with
two other existing algorithms.

15The expected value is taken with respect to the additive white Gaussian
noise (AWGN) noise.
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A. Performance Metrics

As performance metrics, we consider the counting error,
its root-mean-square (RMS), and the counting error outage
(CEO). For an estimate n̂t of nt, the counting error in absolute
value is |n̂t − nt|. The counting RMSE is

erms =
√
E {|n̂t − nt|2} . (28)

The CEO is the probability that the counting error is above a
certain value n?, and is defined as16

Pceo(n?) = P{|n̂t − nt| > n?} . (29)

B. Operating Environment

Consider a system composed of a transmitter at pT =
(3 m, 5 m) and a receiver in pR = (7 m, 5 m). The transmitter
emits pulses with rectangular frequency spectrum with lower
frequency fL = 3.1 GHz and upper frequency fU = 4.8 GHz,
which is in agreement with the European lower band for
UWB signals. The number of target scatterers nt varies from
0 to nmax = 30 and they are randomly located in a squared
environment with origin in {(0 m, 0 m)} and side length of
10 m. The effect of spatial density is studied by varying the
parameter ρ, i.e., the number of targets per squared meter in
the environment.

The multipath amplitude from the different scatterers is
modelled according to the IEEE 802.15.4 a standard for UWB
systems, in particular by considering the indoor channel
model. The signal-to-noise ratio (SNR) at 1 m from the trans-
mitter is γ0 = 25 dB unless otherwise stated.

C. Signal Processing

As for the individual-centric method, the ML estimation is
considered as in (10) with f(r̃,pt) = f̃(r̃,pt) as in (17). Note
that the performance obtained with ML estimation is used as
a benchmark only, as its complexity has been found to be 400
times greater than the crowd-centric method for nmax = 10,
growing exponentially with nmax, as described in Sec. II.

As for the crowd-centric method, four algorithms are
considered, namely: (1) energy detector (ED); (2) window-
threshold (WT); (3) active samples (AE); and (4) active
duration (AD). The algorithms ED and WT do not require
any learning phase and therefore are compared with the ML.
The algorithm ED is the energy-based algorithm proposed in
this paper. In particular, the energy detector at the receiver is
set with an observation window of duration Tobs = 100 ns.
The estimation n̂t is obtained from (27) as n̂t = g(f). The
average amplitude for the ith bin αi is chosen by considering
the approximation (ii) in Sec. (V-C). The duration of each bin
is Td = 4 ns unless otherwise stated.

The algorithm WT [17] is based on the power profile
of the received signal r̃(i)(t). Iteratively, a maximum search
is performed on the power profile. If the maximum value
overcomes a threshold, a target is detected and a set of samples
(window) around the maximum is deleted. The maximum

16This performance metric is close to the bit error outage used for
communication systems [57]–[59].

Fig. 5. Counting RMSE error for nmax = 10 for γ0 = 20 dB. The results
obtained with ML, ED, and WT are compared for different values of target
spatial density ρ.

number of iterations is nmax. In this paper, we consider the
best case scenario (genie-aided) for this algorithm from the
literature, where the threshold that minimizes the root-mean-
square error (RMSE) is considered. Unless otherwise stated,
the window length is set equal to the duration of a transmitted
pulse. However, results are shown for different values of
window length.

The algorithms AE and AD are proposed in [18] and are
based on the active samples, i.e., the number of samples
above a given threshold. An activity event happens when a
sequence of contiguous samples is greater than the threshold.
The algorithm AE considers as feature the number of activity
events. The algorithm AD considers as feature the sum of the
durations of the activity events (total number of active samples
from all the events). In the absence of an observation model,
the function nt = g(f) is learned through linear regression. In
particular, we consider a training sequence for f obtained from
1000 random positions pt for each value of n = 1, 2, . . . , nmax
in the operating environment.

D. Numerical Results

Fig. 5 shows the counting RMSE erms for three different
values of spatial density ρ = 0.1, 0.5, and 1.5 m−2, nmax = 10,
and γ0 = 20 dB for the ML, ED, and WT algorithms. It can
be observed that the RMSE for the ML algorithm does not
increase with the spatial density, for example erms = 1 for
ρ = 0.1 m−2 and erms = 0.86 for ρ = 1.5 m−2. Differently,
the RMSE for the proposed ED algorithm is erms = 2 for
ρ = 0.1 m−2 and erms = 2.25 for ρ = 1.5 m−2. However, the
WT algorithm is the most sensitive to the spatial density, with
erms = 2.72 for ρ = 0.1 m−2 and erms = 4.92 for ρ = 1.5 m−2.
This can be attributed to the fact that when ρ increases it is
more likely to have overlapping signal replicas due to targets
that are closer in space. If an energy bin includes the energy
of different signal replicas, the corresponding non-centrality
parameter (and therefore f) has higher variance, resulting in
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Fig. 6. CEO for nmax = 10 as a function of n?. The results obtained with ML,
ED, and WT are compared for γ0 = 20 dB (full markers) and γ0 = 25 dB
(empty markers).

the increased error for the proposed ED algorithm. As for the
WT algorithm, if the local maximum at one iteration is above
the threshold, a single target is detected even if the maximum
value is due to different targets leading to overlapping signal
replicas. Therefore, the WT is more sensitive to the spatial
density as it considers only the arrival time disregarding the
signal amplitude.

Fig. 6 shows the CEO as a function of n? for the ML, ED,
and WT algorithms with γ0 = 20 dB and 25 dB. It can be
observed that the proposed ED algorithm outperforms the WT
algorithm for both the values of γ0. Also, the ED algorithm
is more sensitive to the SNR. In particular, the counting error
obtained with the ED algorithm is below n? = 2 in the 70%
of cases for γ0 = 20 dB and 93% of cases for γ0 = 25 dB,
which is close to the benchmark represented by the ML case.
The counting error obtained with the WT algorithm is below
n? = 2 in the 64% of cases for γ0 = 20 dB and 77% of
cases for γ0 = 25 dB. This can be attributed to the fact that
when γ0 increases the variance of the energy bins decreases
and therefore the energy-based estimation is more accurate.
Differently, as the WT algorithm considers only the arrival
time, this effect is less important.

Fig. 7 shows the counting RMSE for the ED and WT
algorithms as a function of Td, when both the dwell time
for the ED algorithm and the window length for the WT
algorithm are set to Td for γ0 = 20 dB (full markers) and
γ0 = 25 dB (empty markers). It can be observed that the WT
is more sensitive to the window length. For γ0 = 20, the
counting RMSE is erms = 4 for Td = 2 ns and erms = 10
for Td = 32 ns. The RMSE for the proposed ED algorithm
is 3.6 when γ0 = 25 dB and 7.5 when γ0 = 20. In fact,
higher values of the variance of the energy bins, and therefore
that of f , corresponds to lower values of SNR. This result
highlights that the window length is a crucial parameter for
the performance of the WT. Also, the proposed ED algorithm

Fig. 7. Counting RMSE vs. Td obtained with ED and WT, where both the ED
dwell time and the WT window length are set to Td, nmax = 10, γ0 = 20 dB
(full markers) and γ0 = 25 dB (empty markers).

is less sensitive to the value of the dwell time.
Fig. 8 shows an example of the estimate n̂t for the proposed

ED, together with WT, AE, and AD algorithms, as a function
of the true value nt that varies from 1 to 30. It can be
noticed that the proposed ED algorithm outperforms all the
other algorithms in terms of both mean value and confi-
dence interval. The 95% confidence interval of the counting
error for nt = 15 is (12.0, 18.4) with mean value 15.2
for the ED algorithm, (5.3, 11.5) with mean value 8.5 for
the TW algorithm; (9.5, 21.9) with mean value 15.7 for the
ED algorithm; (9.4, 22.2) with mean value 15.8 for the ED
algorithm. As expected, the WT algorithm has a greater error
for higher values of nt as the target spatial density increases
with nt. The regression-based algorithms AE and AD show
good performance in terms of expected value but their standard
deviation is higher than that of the ED algorithm.

Fig. 9 shows the correlation between the feature f and the
true number of targets as a function of the threshold-to-noise
ratio (TNR), which is the ratio between the threshold used
in the algorithms and the noise power. Such correlation is
based on the Pearson’s correlation coefficient, which indicates
whether a monotone relation between the two variables exists
[60]. It can be noticed that the maximum correlation is
obtained with the proposed ED algorithm and is 0.98, which
is constant because the ED does not involve a threshold
comparison, whereas it is 0.93 for the AE, 0.94 for the AD,
and 0.92 for the TW. This results confirm the importance of
the threshold design.

Fig. 10 shows the CEO as a function of n? for the
proposed ED, together with WT, AE, and AD algorithms,
with nmax = 30. It can be observed that the proposed ED
algorithm outperforms all the other algorithms, whereas the
worst performance are obtained with the WT algorithm. In
particular, the counting error is below 2 in the 88% of cases
for the ED, 65% of cases for the AE, 68% of cases for the
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(a) ED (b) TW

(c) AE (d) AD

Fig. 8. Example of estimated number of targets n̂t as a function of the true number of targets nt for the four algorithms ED, TW, AE, and AD. The red error
bars indicate the 95% confidence interval calculated over 100 random positions, the blue dot indicates the average value, and the cyan crosses indicates the
bisector (i.e., the ideal case n̂t = nt).

AD, and 33% of cases for the TW. This result confirms the
superior performance of our proposed method compared to the
existing crowd-centric algorithms.

VII. CONCLUSION

This paper presents a device-free counting system based
on sensor radars. Two different methods have been proposed:
the individual-centric, based on model order selection, and the
crowd-centric, based on energy-detection. A tractable model
for energy detection is developed for counting. Such a model
led to a simple expression for the value of energy samples
as a function of the number of targets. This function is par-
ticularly accurate when wideband and ultra-wideband signals
are employed. The individual-centric approach outperforms
the crowd-centric one in terms of performance, but leads to
a computational complexity that increases exponentially with
the maximum number of targets and to a running time of
two orders of magnitude greater than that of the crowd-centric
even for only ten targets. The crowd-centric approach has a
complexity that does not depend on the number of targets and
thus opens the way to a variety of device-free applications.
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