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General introduction 

 

Global change in mountain ecosystems 

Mountain ecosystems are generally considered to be more vulnerable than other areas 

to global changes (Beniston 2003). The European Alps, the highest mountain system 

in Europe, is about 1000 km long, ranging from near the Mediterranean Sea on the 

border between France and Italy, to Slovenia, through northern Italy, Switzerland, 

southern Germany and Austria. The broadest section of the Alps is over 260 km wide. 

As many of the most important mountainous regions (e.g. Andes, Rocky Mountains, 

Himalayas; Rabatel et al. 2013, Rieman & Isaak, 2010; Tse-ring et al. 2010), the 

Alpine environment is heavily affected by global change, in terms of both climate 

change and land use (Cannone et al. 2008; Vanham et al. 2009; Keiler et al. 2010; 

Huggel et al. 2010). Temperatures in the Alps have increased in the last century twice 

that of the global average (Brunetti et al. 2009). This exceptional temperature change 

is leading to profound modifications of mountain ecosystems; for example, decreasing 

snow and glacier cover (IPCC 2007) and changing hydrological systems. In addition, 

projected scenarios of changing climatic conditions (frequency and intensity of 

precipitation, temperature, etc.) may even worsen the current scenario (EEA 2009). In 

the last few decades human activities have also modified the Alpine landscape by 

both increased exploitation of the natural environment and decreased practice of 

traditional agricultural activities (Chemini & Rizzoli 2003). For example, 

urbanization and tourism are threatening the last natural areas leading to habitat 

fragmentation and loss of biodiversity in many Alpine valleys and lowlands (WWF 

2013). On the other hand, abandonment of mountain fields and traditional activities, 

such as grazing and mowing, is resulting in forest expansion, causing changes in 

species biology and distribution (Chemini & Rizzoli 2003). Leonelli et al. (2011) 

observed a 115-metre upward shift of the tree-line during the last century, influencing 

the geomorphology of high-elevation habitats. Similarly, human impact (in term of 

change in land use) and modified climatic conditions have favored alien plant species 

invasions whose distribution may even increase in the near future under current global 

warming scenarios (Dainese et al. 2013). 

Climate change is also predicted to increase the duration and frequency of heat 

waves (Meehl & Tebaldi 2004). The effects of such record-breaking heat wave, like 
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that which occurred in Europe during the summer 2003, have been described as the 

cause of increased mortality (without sign of recovery after 4 years) of plant species 

living in peatlands (Bragazza 2008); and glaciers melted eight times the annual mean 

of the period 1960-2000 (Paul et al. 2005). It is expected that the ongoing increase in 

greenhouse gases in the atmosphere will cause more severe heat waves in the future 

(Meehl & Tebaldi 2004); consequently, wetlands (such as bogs, swamps, marsh) are 

considered among the most threatened habitats from climate change worldwide 

(Moore et al. 2002) and in particular in the Alps, where the warming effects are 

amplified (Hansen et al. 2006).  

 

The negative impact of global change on animal species in the Alps 

Undoubtedly, the effects of global warming and change in land use have also had an 

impact on animal life histories and distribution. For example, Tafani et al. (2013) 

showed a continuous decrease in litter size of the Alpine marmot (Tafani et al. 2013) 

in correlation with reduced snow cover over the last 20 years. Increasing temperatures 

have also facilitated species invasions in the Alps, such as that of the Tiger mosquito 

Aedes albopictus (Roiz et al. 2011) with future scenarios predicting a northwards 

spread for this species (Neterler et al. 2013). The presence and distribution of some 

avian species are affected by the expansion of shrubs and forests due to the 

abandonment of mountain fields and meadows: in fact, grassland species, such as the 

rock partridge Alectoris graeca, have decreased in numbers in the last few decades. 

Similarly, the capercaille Tetrao urogallus is now endangered in the Alpine chain 

because of overhunting and decrease in forest management. On the contrary, change 

in land use favors the increase in density and diffusion of disease vectors (such as the 

tick Ixodes ricinus) and their main hosts (such as rodents and deer; Chemini & Rizzoli 

2003). These trends can also have an impact on human health since it has been 

demonstrated that host (i.e. deer) abundance is among the most essential factors 

driving the spread of zoonoses, such as the potentially devastating tick borne 

encephalitis (TBE; Rizzoli et al. 2009).  

 

Preserving biodiversity: the role of genetic analyses 

The International Union for Conservation of Nature (IUCN) recognizes that 

biodiversity must be preserved at ecosystem, species and genetic levels. Wild species 

survival relies on the maintenance of all these levels and nowadays, not surprisingly, a 
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high number of species is considered “endangered” by the IUCN. Although extinction 

can be considered a natural phase of evolutionary processes, in this era of global 

change, the planet is facing an important loss of biodiversity due, directly or 

indirectly, to human activities. In fact, overexploitation of natural populations 

(hunting, fishing, etc.), habitat deterioration and fragmentation, pollution, introduction 

of alien species or pathogen outbreaks, interfere with populations survival, usually 

leading to reduction in population size. Small populations are prone to be affected by 

inbreeding and loss of genetic diversity, with negative consequences on the individual 

fitness and on the species or population evolutionary potential to adapt to a changing 

environment. In fact, the effects of genetic drift, which is the change in allele 

frequencies due to random sampling, are stronger in small populations. The 

integration of environmental and genetic factors that could lead to the shrinking of a 

natural population is described in the extinction vortex (Figure 1). In order to preserve 

global biodiversity, especially in regions were risks are higher, conservation 

biologists should therefore study the conservation status of wild species including 

always the analysis of genetic variation patterns within and between species.  

  

 
 

Figure 1. The extinction vortex 

 

 

An emerging discipline: conservation genetics 

Conservation genetics is the use of genetics to aid in the conservation of population or 

species (Frankham et al. 2002). More specifically, conservation genetics can also be 

described as the science that attempts to preserve, from human-mediated 

environmental modifications, the current genetic diversity produced by evolution 

during the history of life in 3.5 billion years on the Earth (Eisner et al. 1995). Several 
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scientific fields contributes to conservation genetics, the most relevant being 

evolution, ecology, population genetics, phylogenetics, molecular biology and 

mathematical modelling. And several issues are addressed by conservation genetics, 

such as the loss of genetic variation in small populations or the identification of 

genetically distinct groups within a species, but also resolving taxonomic 

uncertainties and using molecular tools to identify illegal hunting. Very importantly, 

conservation genetics helps biodiversity managers to define conservation priorities 

and management strategies, and can detect conservation threats (for example, gene 

flow barriers or low evolutionary potential in populations with large census size) 

earlier than traditional population biology and ecology methods (Hoban et al. 2013). 

 The approach of conservation geneticists starts from the study of genetic 

markers, taking advantage of standard molecular biology techniques (Polymerase 

Chain Reaction (PCR), sequencing, genotyping, etc.) or from recently developed Next 

Generation Sequencing (NGS) technologies. Genetic information can be obtained 

even from a few milligrams of biological samples by means of semi- or non-invasive 

sampling. For example, high DNA/RNA quality can be achieved from hair, faeces or 

feathers, from biological samples that can be obtained without handling the animals. 

Similarly, genetic typing is now feasible from ancient samples available in museum 

collections.  

 

Three major aims of a conservation genetics analysis, relevant for this thesis, are now 

briefly described.  

 

Identifying conservation units. Genetic analyses are very useful for detecting 

evolutionary distinct groups of animals within a species. These groups are usually 

identified as “Evolutionary Significant Units” (ESUs). Many proposed definitions of 

ESU exist, but an ESU can be operatively summarized as a population or a group of 

populations that deserve separate management or priority for conservation because of 

its high genetic and ecological distinctiveness. Only the integration of genetic and 

ecological data reinforces the reasons for ESU preservation.  

 

Estimating demographic dynamics. Genetic data are useful for estimating 

evolutionary parameters in natural populations. In particular, the pattern of genetic 

variation can be used to estimate the effective population size (Ne) and its dynamic in 
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time. Ne is a fundamental parameter that describes the number of individuals in an 

ideal population having the same amount of genetic drift as in the actual population. 

Many important processes in evolution and conservation, such as the reduction of 

fitness due to inbreeding and the capability to adapt to new environments, depend on 

the effective, and not the census, population size. And the effective population size 

can be reduced by several factors even when the census size is high, such as unequal 

sex ratio, non-random number of progeny and fluctuating population size. 

Conservation geneticists are concerned by changes in Ne and particularly by the 

reduction in effective population size, which is defined as a bottleneck. A bottleneck 

is a sharp decrease in the population size that can lead to reduction of genetic 

diversity and effective size, promoting the stochastic, and often negative, effects of 

genetic drift, and thus an additional reduction in population size. A bottleneck event 

can be viewed as the first step in the extinction vortex (Figure 1).  

 

Identifying genetic fragmentation. Genetic data are also useful for understanding the 

level of population fragmentation and estimate the divergence among demes. Habitat 

fragmentation, due to anthropogenic pressure and, consequently, population 

subdivision are risk factors contributing to extinction of natural populations. Genetic 

substructure is the result of the lack (or reduced amount) of gene flow, which can 

counteract the effects of genetic drift. In order to preserve biodiversity, conservation 

plans are needed for reducing the consequences of fragmentation on wild populations.  

 

 

 

In this thesis, I analyzed two vertebrate species living in the Italian Alps, whose 

distribution is strictly correlated with wetland habitats. The thesis is subdivided into 

four chapters, corresponding to four different studies. Before describing in detail the 

studies, I present here the two species, the study area, and provide a short summary of 

the specific aims of each study.  
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Studied species 
 

Bombina variegata 
 

Subphylum Vertebrata 

Class  Amphibia 

Order  Anura  

Family Bombinatoridae 

Genus  Bombina 

Species Bombina variegata 
 

The yellow-bellied toad, Bombina variegata is a small (3-6 cm in length) aquatic 

toad. Its name derives from its brightly coloured orange-yellow ventral surface with 

irregular dark markings; its dorsal surface has a wrinkled grey-brown skin. It is well 

known for the faint but melodic mating call of the males, which can be heard during 

the mating season (usually from April to August).  

B. variegata is found in central-southern Europe, including northern Italy 

(Figure 2). Its preferred habitats are ephemeral sites, such as small ponds, puddles, 

river loops and even wheel-ruts, where it reproduces several times a year, usually 

after heavy rainfalls that fill temporary basins. Egg deposition, which consists of a 

clutch of 45 to 100 eggs, peaks between the end of April and the end of June, 

depending on the altitudinal-latitudinal distribution of the population. Larval 

development is rapid, 

taking about 40 days. 

B. variegata can live 

for more than 10 years 

in the wild, but 

records of even 20 

years have been 

reported (Dino et al. 

2010). Adults use the 

venomous mucus 

produced by their skin 

and bright ventral 

colours as warning 

signals to predators.  

   Figure 2. Current distribution of Bombina variegata (in yellow, from IUCN 2013). 
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Zootoca vivipara 
 

Subphylum  Vertebrata 

Classe  Reptilia 

Ordine  Squamata 

Famiglia  Lacertidae 

Genere  Zootoca 

Specie   Zootoca vivipara 
 

The common lizard Zootoca vivipara (formerly Lacerta vivipara) has a squat body 

that reaches a length of 15-20 cm, including the tail. The dorsal surface is brown to 

grey, often with a darker streak running the entire length of the body. Small yellow-

white spots are often present on its sides. The ventral surface shows sexual 

dimorphism: males have bright coloration, from yellow and orange to vermillion with 

black spots, while females have yellowish-grey unspotted belly.  

 Zootoca vivipara has a wide distribution throughout Europe and Asia, 

reaching north of the Artic Circle. In the Mediterranean area it mainly occurs in 

mountainous regions (Alps, Balkans and Pyrenees, Figure 3). 

 

Figure 3. Current distribution of Zootoca vivipara (in yellow, from IUCN 2013). 

 

It is a grassland species and principally lives in herbaceous vegetation, favouring 

damp meadows, swamps and peat bogs. In particular, populations at low to medium 

altitudes are closely associated with wet environments. Depending on altitude-

latitude, Z. vivipara is active from March-May to September-October and mating 

occurs after emergence from hibernation. Most of Z. vivipara populations are 

viviparous, in fact its name derives from the ability to give birth to live offspring; 

however, in the southern part of the distributional range of the species, oviparous 

populations occur. 
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The study area 

 
 

This thesis is focused on the central-eastern part of Alpine chain in Italy where B. 

variegata is present, and Z. v. vivipara and Z. v. carniolica overlap their distributional 

range. Most of the field work was conducted in the Trentino-Alto Adige region. 

 In the following map, the representation of the study area and the details about 

each study are given. The fourth study includes samples obtained from the second 

study and samples from the whole European distribution of Z. vivipara.  
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Major aims of each study 

 

In this thesis, I used different types of genetic data and statistical methods for 

understanding the recent demographic dynamics and the conservation status of two 

vertebrate species across the Italian Alps.  

 

 In the first study, I investigated the genetic variability of the toad B. variegata 

populations to understand if the genetic pattern showed evidence of low effective size, 

demographic decline and fragmentation, as predicted by some field surveys.  

 

In the second study, I analyzed mitochondrial and nuclear DNA phylogenies 

in the common lizard Z. vivipara. I focused on two subspecies (the oviviviparous Z. v. 

carniolica and the viviparous Z. v. vivipara) adding new molecular data for testing the 

ESU hypothesis for the endangered Z. v. carniolica subspecies.  

 

 In the third study, I analyzed a rare syntopic area between Z. v. carniolica and 

Z. v. vivipara that was identified during my field work in the central Alps, focusing on 

the level of gene flow between ovoviviparous and viviparous populations. 

 

In the fourth study, I applied a Next Generation Sequencing approach (RAD-

tag sequencing) for investigating the divergence between Z. v. carniolica and Z. v. 

vivipara subspecies at the genomic level. I also used Z. vivipara as model organism 

for studying the evolutionary transition from oviparity to viviparity in squamate 

reptiles.   

 

 

    

  Zootoca vivipara    Bombina variegata 
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Funding of the project 

 

My PhD scolarship was funded by the Autonomous Province of Trento within the 

ACE-SAP project (Alpine ecosystems in a Changing Environment: biodiversity 

Sensitivity and Adaptive Potential; University and Scientific Research Service, 

regulation number 23, 12 June 2008, Trento). Work Package 1 (WP1) of ACE-SAP 

project was concerned with biological conservation and assessing the threat status of a 

group of species, including vertebrates, invertebrates and plants. Within WP1, I was 

co-responsible for the analyses of the toad B. variegata and the lizard Z. vivipara. The 

molecular analyses were performed at ‘Fondazione Edmund Mach’ in S. Michele 

all’Adige (Trento) in the laboratory of the Department of Biodiversity and Molecular 

Ecology. 
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First study: Small effective population size and fragmentation in Alpine 

populations of Bombina variegata: the combined effects of recent 

bottlenecks and postglacial recolonization  

 

Luca Cornetti, Andrea Benazzo, Heidi C. Hauffe, Cristiano Vernesi, Giorgio 

Bertorelle  

To be submitted to Molecular Ecology 

 

 

Abstract 

 

Amphibians are experiencing population declines in all continents caused by 

anthropogenic and natural factors. Evidences of reduction in population size and even 

local extinctions have been reported for Bombina variegata along all its distributional 

range. In this study, we examined 200 samples of B. variegata from Northern Italy 

and genetic variation within 9 populations using mtDNA cytochrome b and 11 

nuclear microsatellites. We investigated fine-scale population structure and tested for 

genetic traces of population decline using different methods. We estimated that 

analyzed populations showed low level of genetic diversity in comparison with other 

studies. Moreover, low estimates of effective population size were found for all 

populations. The demographic analyses support a scenario with population decline 

due to postglacial recolonization, but also suggest that recent anthropogenic 

modifications and climate changes likely shaped genetic variability of the species in 

this area and contributed to reduction in effective population size.   
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Introduction 

 

Amphibians are among the most threatened vertebrates. Many species from all 

continents are experiencing a demographic decline (Stuart et al. 2004), likely due to 

anthropogenic pressure and climate change (Allentoft & O’Brien 2010).  Human 

activities, in fact, have an important impact for example on land use, leading to 

habitat loss and fragmentation, on pollution levels and indirectly on the increase of 

UV-B irradiation (Weyrauch et al. 2006.). Also, climate change and especially global 

warming affect the distribution of amphibians, influencing breeding phenology or 

leading to pathogen outbreaks (Corn 2005, Rohr et al. 2008). Amphibians appear to 

be particularly sensitive to all these processes, making them good biological 

indicators of the environmental quality (Blaustein & Wake 1990).   

 The causes and the consequences of the amphibian decline, and the use of this 

taxon as a biological indicator, cannot be generalized at a global scale. Many factors 

interact, and their impact likely differs in different geographic areas and in different 

species (Beebee & Griffiths 2005, Tafani et al. 2013). Studies at regional scale, where 

the major factors of habitat disturbance can be identified, the demographic dynamic of 

a species and its genetic impact can be reconstructed, and the possible association 

between causes and consequences can be inferred, are therefore very useful and 

valuable. In this context, the Alpine environment is of particular interest.  

The Alpine environment is heavily affected by global change, in term of both 

climate change and land use (Cannone et al. 2008; Vanham et al. 2009; Keiler et al. 

2010; Huggel et al. 2010). In particular, temperatures in the European Alps increased 

in the last century twice as much as the global average increase (Brunetti et al. 2009). 

In this area, the effects of climate warming, such a as the upwards shift of the tree-line 

(Leonelli et al. 2011), or the change in population genetic structure, have been already 

demonstrated or predicted in many plants species (Jay et al. 2012; Moradi et al. 

2012). However, few examples exist in animals (but see for example the decreasing 

litter size in the marmot, Tafani et al. 2013), especially in terms of genetic patterns. 

Here we analyzed the genetic variation pattern in an amphibian species, Bombina 

variegata, sampled at different sites in an Alpine Italian region.  The main objective 

of our study is to estimate the genetic impact, if any, of the demographic decline 

occurred in this species in the recent past.  
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The yellow-bellied toad, Bombina variegata, is mainly distributed across 

central western Europe, from Spain to the Carpathian Mountains, where it forms a 

stable hybrid zone with the sister species, B. bombina (Fijarczyk et al. 2011). 

Breeding sites are usually ephemeral, and include small puddles in meadows and river 

loops and occasionally farm ponds or water-filled wheel ruts (Gollnmann et al. 1999; 

Cabela et al. 2001; Di Cerbo & Ferri, 2001). Although the species is globally 

considered of Least Concern by the IUCN (IUCN, 2013), extinctions or demographic 

reductions have been reported in the last decades across the distributional range. In 

particular, severe declines are documented in Romania, the Netherlands, and Italy 

(Covaciu et al. 2010; Goverse et al. 2007; Barbieri et al. 2004). Only one population 

is now described in Luxembourg, and the species is probably extinct in Belgium and 

highly fragmented in France (Kuzmin et al. 2009). Urbanization and consequent loss 

of suitable habitat (e.g. abandonment of pastures, heavy use of unpaved forestry roads 

and drainage of natural breeding sites) are considered as the major factors reducing 

the population sizes and increasing the fragmentation in this species. As in many 

other amphibians in natural conditions, B. variegata has small effective population 

size (Funk et al. 1999; Beebee & Griffiths 2005) and low dispersal ability (Blaustein 

et al. 1994; Kraaijeveld et al. 2005), making the genetic and non genetic risks 

associated to small numbers of highly isolated individuals even higher.  

In Italy, B. variegata was common in the last century (De Betta 1857; 

Giacomelli 1887; Vandoni 1914), but it is significantly declining in many areas 

(Stagni et al. 2004). Anthropization of natural habitats, pollution and use of pesticides 

lead to a regular decline in the last decades (Barbieri et al. 2004), fragmentation and 

local extinction events (Di Cerbo & Ferri 2000). In a recent study, it has been 

estimated using simulations under various models of climate change, environmental 

alteration and solar irradiation, that the yellow-bellied toad in Italy will lose between 

13 and 75% of its suitable natural habitat in the next 50 years (D’Amen et al. 2011).  

Here we study the pattern of genetic variation at the mitochondrial cytochrome 

b gene and at 11 microsatellite markers in a restricted area in the Italian Alps, where 

local extinctions and population declines have been previously documented 

(Caldonazzi et al. 2002). We typed 200 individuals from 9 different populations to 

address the following two main questions: 1) Is the genetic pattern showing evidence 

of low effective population size, demographic decline and/or fragmentation? 2) Can 

we directly infer that recent human-related factors are responsible for the genetic 
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pattern? We will address these questions using a set of statistical methods suitable to 

estimate effective population sizes, times of population size changes, population 

structure, individual genomic compositions and isolation by distance, and to 

probabilistically compare alternative demographic models. We believe that our results 

have important implications for evaluating the conservation status in this species and 

developing conservation plans, and in general for the understanding of the genetic 

effects of recent and ancient demographic declines. 

 

 

Materials and Methods 

 

Samples collection and DNA extraction 

Two hundred samples of B. variegata were collected from nine different localities in 

the Province of Trento (Northern Italy) from 2009 to 2011. Sampling sites and their 

abbreviation used throughout this paper are reported in Figure 1. Different ecosystems 

were sampled: samples from Spiz (SPI) and Monte Baldo (MBA) came from isolated 

mountain areas (about 1500 m asl); samples from Zambana (ZAM) and 

Mezzolombardo (MEZ) were collected in the main valley of the Region (the Adige 

valley), close to areas devoted to agriculture (about 210 m asl); samples from Nago 

(NAG) and Loppio (LOP) came from sites close the touristic area of Garda Lake (160 

and 250 m asl, respectively); samples from Verla (VER), Pozzolago (POZ) and Prà 

(PRA) were collected from scarcely urbanized areas along the Avisio river  (from 450 

to 620 m asl), and in particular from agricultural ponds (VER) and river loops (POZ 

and PRA). Individual GPS coordinates of each sample were recorded. Toe clips were 

obtained and stored in 95% ethanol; about 20 mg of tissue were used to perform DNA 

extraction using the protocol of the DNeasy Tissue kit (QIAGEN Inc, Hilden, 

Germany). All sampling procedures were approved by the Italian Ministry of 

Environment and Wildlife Committee of the Autonomous Province of Trento 

(DPN/2D/2003/2267 and 4940-57/B-09-U265-LS-fd).  
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Figure 1.1 Map of the nine sampling sites (indicated by red dots) in the Alpine region of Trentino 

Alto-Adige. 

 

Genetic typing 

We initially sequenced a fragment of the mitochondrial DNA (mtDNA) cytochrome b 

gene to verify the haplotypic affiliation of the samples, with respect to the known 

maternal phylogeographic pattern in Europe. We used the primer pairs L14850 and H 

15410 according to Tanaka et al. (1994). PCR amplifications were conducted in 20 ul 

(containing 1ul of template DNA 2 ul of buffer, 1 ul of each pair of primers, 1 unit of 

Hot Master Taq polymerase and ultra pure water) under the following conditions: 10 

minutes at 94°C, 35 cycles of 30 seconds at 94°C, 45 sec at 52°C, 60 sec at 65°C, and 

a final extension step for 10 min at 65°C. Sequences were edited using Finch TV 

1.4.0 (an open source application developed by Geospiza Research Team), assembled 

with Sequencer v.4.7 and aligned using ClustalX (Thompson et al. 1997) using 

default parameters. 

 The genetic variation level and structure at the micro-geographic scale was 

then investigated typing 11 autosomal microsatellites. Nine of them were originally 

developed for the sister species B. bombina (Nurnberger et al. 2003; Hauswaldt et al. 

2007; Stuckas & Tiedemann 2006). PCR amplifications were conducted in four 
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different multiplex reactions in a final volume of 20 ul containing: 1ul of template 

DNA, 2 ul of buffer, 0,5 ul of each pair of primers, 1 unit of Hot Master Taq 

polymerase (Applied) and ultra-pure water. The amplification protocol consisted of an 

initial denaturation step at 94°C for 10 minutes, followed by 30 cycles of the series: 

94°C for 30 seconds, annealing temperature (Ta: 53°C for Bv11 and Bv32; Ta: 56°C 

for 1A, 10F and F22; Ta: 45°C for B13 and 8A; Ta: 52°C for 5F, 9H, 12F and B14) 

for 30 seconds, 65°C for 45 seconds; then, a final extension step at 65°C for 10 

minutes. PCR labeled products were run on a four capillary system ABI 3130 Genetic 

Analyzer (Applied Biosystem) and scored with an internal lane standard (LIZ) using 

GeneMapper software. 

 

Statistical analysis  

 

Mitochondrial DNA  

A phylogenetic tree was built using the maximum-likelihood algorithm implemented 

in MEGA5 (Tamura et al. 2011), using the Kimura two-parameter model (selected as 

the best model by JModelTest (Posada 2008)) and 1000 bootstrap replicates. This 

analysis included the haplotypes from our study, the sequences available in Genbank 

for B. variegata (EF212448-EF212809), and two sequences used as outgroups from 

B. bombina and B. orientalis (JF898352, EU531278).   

 

Microsatellites 

Microsatellites were tested for the presence of null alleles, allele drop-out and scoring 

errors using MicroChecker (Van Oosterhout et al. 2004). We used GENEPOP 3.4 

(Raymond & Rousset 1995) to test for deviations from Hardy–Weinberg equilibrium 

for each locus and globally. We also tested genotypic Linkage Disequilibrium (LD) 

for each pair of loci. To evaluate overall genetic variation, expected and observed 

heterozigosity (He and Ho) and number of alleles (Na) within each population were 

calculated using Arlequin v3.5 (Excoffier & Lischer 2010); FSTAT software (Goudet 

1995) was used to calculate allelic richness (Ar). In addition, pairwise Fst values 

between populations were computed with Arlequin v3.5 and the corresponding 

triangular matrix of distances was visualized using Principal Coordinates analysis 

(PCoA) implemented in GenAlex v6.5 (Peakall & Smouse 2012). 
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Bayesian clustering analyses  

STRUCTURE v2.3.4 (Pritchard et al. 2000; Hubisz et al. 2009) was used to detect the 

most plausible number K of genetically homogeneous groups and to estimate the 

genetic composition of each individual. We applied the LOCPRIOR with admixture 

model, which assumes that sampling locations are informative and allows for mixed 

ancestry of individuals. This model is more powerful in detecting weak genetic 

structure and reduces misassignments (Hubisz et al. 2009).  Each run of 

STRUCTURE consisted of 1000000 iterations after a burn-in period of 250000, and 

10 runs were analysed for all K values between 1 and 9. The most probable K was 

selected comparing the likelihood at different K values and using the approach of 

Evanno et al. (2005) based on the rate of change of the likelihood. 

 

Genetic vs. geographic distances 

The correlation between genetic similarity (or dissimilarity) and geographic distance 

was evaluated separately at the individual and at the population levels.  At the 

individual level, we estimated with the software SPAGeDi (Hardy & Vekemans 

2002) the kinship coefficient derived by Loiselle et al. (1995) for all pairs of 

individuals. These coefficients were then pooled in classes with similar number of 

comparisons, corresponding to different geographic distances. At the population level, 

we analysed the relationship between the linearized Fst based distance (Fst/(1-Fst)) and 

the logarithm of the linear geographic distance. The statistical significance of this 

relationship was evaluated using the Mantel’s test.  

 

Recent effective population size 

Two methods were used to estimate the recent effective population size (Ne) of each 

population: LDNe (Waples & DO 2008) and ONeSAMP (Tallmon et al. 2004). LDNe 

is based on the linkage disequilibrium among unlinked loci created by random drift, 

and the estimated Ne reflects the population size in the last few generations (Hare et 

al. 2011). As suggested by the authors (Waples & DO 2008), we excluded the alleles 

with frequencies smaller than 0.02 to avoid the bias related to rare alleles. ONeSAMP 

implements an Approximate Bayesian Computation analysis (Beaumont et al. 2002; 

Bertorelle et al. 2010). Eight summary statistics are used by ONeSAMP to compare 

observed and simulated data sets, but the inclusion of linkage disequilibrium among 

these statistics makes this method particularly sensitive to recent population sizes 
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(Skrbinsek et al. 2012). The lower and upper limits of the uniform prior distribution 

of Ne were set to 2 and 5000, respectively.  

 

Demographic dynamic  

We analysed the demographic dynamic of each population using four different 

methods: 1) the M-ratio test (Garza & Williamson 2001); 2) the heterozygosity excess 

test implemented in the software BOTTLENECK 1.2.02 (Piry et al. 1999), 3) a 

Bayesian analysis based on the coalescent framework and able to estimate the 

posterior distributions of the parameters of a contraction/expansion demographic 

model, as implemented in the software MSVAR v1.3 (Beaumont 1999, 2004); 4) a 

model comparison based on the Approximate Bayesian Computation approach 

(Beaumont et al. 2002; Bertorelle et al. 2010), as implemented in the software in 

DIYABC v 1.0.4.46b (Cornuet et al. 2008, 2010). These methods have different 

statistical properties, which differently depend on the number of markers, the specific 

feature of the bottleneck (like age, initial population size, intensity, presence or not of 

recovery) and the possible violations of the model they assume (e.g., migration events 

among populations). Therefore, no one can be considered better than the others in all 

conditions (e.g., Swatdipong et al. 2010; Chikhi et al. 2010; Peery et al. 2012; Hoban 

et al. 2013). We briefly describe here these methods, and we will come back on their 

properties in the discussion.  

 The M-ratio test is based on the frequency distribution of allelic sizes, which is 

expected to have gaps after a bottleneck due to stochastic loss of rare alleles. 

Statistical significance was established comparing the observed values with the 

empirical null distribution obtained simulating 10,000 times the genealogy expected 

under demographic stability with M_P_VAL (Garza & Williamson 2001). 

Simulations assume the two-phase mutation model, and require three parameters: the 

population- mutation parameter, θ = 4Ne, the mean size of multi-repeat mutations, 

g, and the proportion of multistep events, ps. Different values of θ were tested, i.e. 1, 

2, and 5 (corresponding to pre-bottleneck Ne of 500, 1000 and 2500 individuals, 

respectively, assuming a standard rate x10-4); g and ps were fixed to 3.1 and 

0.22 as estimated in a recent review by Peery et al. (2012).  

 The heterozygosity excess test is based on the comparison between 

heterozygosity and number of alleles, which is predicted to deviate from the 
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expectation after a bottleneck because the former decreases more slowly than the 

latter. Statistical significance (one tail) is computed using the Wilcoxon’s signed 

ranked test to compare observed and expected heterozygosities (Cornuet & Luikart 

1996), where expected values are computed by simulations assuming again a two 

phase mutation model, a variance among multiple steps equal to 12 (corresponding to 

g  = 3.1, see Peery et al. 2012) and ps = 0.22.  

 The method implemented in MSVAR assumes that an ancestral population 

with effective size N1, increased or decreased (linearly or exponentially) to its current 

size N0, starting T generations ago. The estimation algorithm is based on Markov 

Chain Monte Carlo simulations, and the simple Single-step Mutation Model (SMM) 

is assumed. Simulations were run for 4 x 108 iterations; convergence and posterior 

distributions of the parameters were evaluated with Tracer v1.5 (Rambaut & 

Drummond 2007), after discarding the first 10% of the chains (burn-in). For each 

population, three independent runs were performed assuming an exponential 

demographic change. The possible effect of this choice was tested assuming a linear 

change in an additional run of the program. Priors means for the ancestral and current 

population sizes were set equal to a log-10 transformed value of 3 (1000 individuals), 

with a standard deviation equal to 1. The prior distributions are log-normal, and this 

setting allows the testing of population sizes from few tens to hundred of thousand of 

individuals. Three different prior distributions of the time since the demographic 

change were tested, with means equal to 2, 3, and 4, respectively (corresponding to 

100, 1000, and 10000 years) and standard deviations equal to 1. All the other prior 

settings in the hierarchical model implemented in MSVAR are reported in Table S1.1 

and follow standard choices used in other studies (e.g., Storz et al. 2002). Time 

estimates are transformed in years assuming a generation time of 3 years (Szymura 

1998; Gollmann & Gollman 2002).  

 Finally, the demographic dynamic was also analysed comparing three 

alternative scenarios with the ABC (Approximate Bayesian Computation) approach as 

implemented in DIYABC (Cornuet et al. 2010): constant effective population size, 

ancient bottleneck, recent bottleneck. The models assuming ancient or recent 

reductions were simulated to mimic the demographic effects possibly related to the 

post-glacial founding of the Alps populations and the human-mediated processes 

affecting amphibians in the last century, respectively. Hereafter, we call these models 
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Const (constant population size), GlaD (post-glacial decline) and HumD (human-

related decline). Different settings and prior distributions were tested to check the 

robustness of the results (Table S1.2).  

 

Results 

 

Mitochondrial sequences 

Three polymorphic sites, and an average pairwise divergence of 0,043% among 

individuals, were found in the 420 bp alignment of the cytb gene. Four different 

haplotypes were detected, three of which had never been observed before in this 

species. The ML phylogenetic tree (Figure S1.1) indicates that the samples we 

analyzed belong to the previously described “Balkano-Western” clade of the nominal 

form, Bombina variegata variegata (Hoffman et al. 2007).   

 

Microsatellite markers 

All the 200 samples from 9 populations were successfully genotyped at all the 11 

amplified loci. MicroChecker results did not suggest any significant presence of null 

alleles, scoring errors or allelic drop-out. Systematic deviation form Hardy-Weinberg 

and linkage equilibrium can be excluded: only 5 out of 99 (11 loci x 9 populations) 

Hardy-Weinberg tests were significant with P<0.05, and only 2 out of 55 locus pairs 

showed significant genotypic linkage with P<0.05. All loci were polymorphic and the 

number of alleles per locus ranged from 2 for F22 to 11 for Bv32 (Table S1.3). 

Genetic variation is relatively low in all populations. Heterozygosity values are 

around 0.50, with very low values in in SPI (He = 0.41) and NAG (He = 0.34). The 

allelic richness per locus is between 3 and 4 for most populations, again with SPI and 

NAG showing the lowest values (2.5 and 2.4, respectively).  
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Population Label N Na Ar Ho He Ne (LDNe) Ne (OneSamp) 

Zambana ZAM 29 4.2 3.7 0.58 0.54 51.9 (23.9-552.1) 26.17 (20.32-49.93) 

Mezzolombardo MEZ 10 3.4 3.4 0.52 0.49 31.1 (6.9-inf) 12.24 (9.41-19.44) 

Nago NAG 23 2.5 2.4 0.36 0.34 6.5 (2.0-25.7) 17.85 (13.45-29.99) 

Monte Baldo MBA 25 3.5 3.2 0.47 0.51 61.5 (22.7-inf) 23.15 (17.12-39.64) 

Prà PRA 17 3.6 3.2 0.49 0.48 10.0 (3.2-32.3) 17.58(14.07-27.75) 

Pozzolago POZ 25 4.0 3.5 0.53 0.51 55.7 (17.1-inf) 25.47 (19.69-41.21) 

Verla VER 24 3.9 3.3 0.54 0.48 50.8 (17.4-inf) 19.10 (15.29-27.59) 

Loppio LOP 32 3.6 3.1 0.50 0.50 166.6 (29.1-inf) 26.62 (20.55-41.09) 

Spiz SPI 15 2.5 2.5 0.42 0.41 65.8 (12.7-inf) 13.08 (10.86-18.59) 

Mean 
  

3.5 3.1 0.49 0.47 
 

          

Table 1.1.  Genetic diversity and effective population size estimates of 9 populations of B. variegata.  

Sampling localities, including the corresponding acronym, number of samples collected (N), number of 

alleles (Na), allelic richness (Ar), observed (Ho) and expected (He) heterozygosity, and estimates of 

effective population size by linkage-disequilibrium method (Ne (LDNe)) and by Bayesian method (Ne 

(OneSamp)). Intervals in brackets are 95% confidence intervals (LDNe) and 95% credible limits for 

the posterior distribution (OneSamp). 

 

Population differentiation 

Significant genetic differentiation (after following the Benjamini & Hochberg (1995) 

approach for multiple testing) was found in 34 out 36 pairwise Fst comparisons. The 

only exceptions are the comparisons between two pairs of geographically adjacent 

populations (ZAM vs. MEZ and PRA vs. POZ).  Fst values (see Table S1.4) ranged 

between 5% and 15% in most cases, with higher values (up to 32%) when the NAG 

site was involved. The matrix of distances is graphically visualized in Figure 1.2 

using the Principal Coordinate Analysis (PCoA). 

 

Bayesian clustering analyses 

The inspection of the likelihood plot for different K values (Figure S1.2a), and the 

plot based on the rate of change of the likelihoods (Figure S1.2b), clearly suggests 

that the most relevant partition of the data are those with 2 and with 5 inferred groups. 

We present therefore these results.  

 For K=2, the inferred groups are predominant in central/northern and southern 

locations (Figure S1.3), respectively. All the individuals in 4 populations can be 

entirely or almost entirely assigned to the central/northern (PRA, POZ and SPI) or the 
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southern (NAG) groups. Individuals in the other 5 populations show admixed 

composition with very similar fractions of the two inferred groups within the same 

locality, suggesting shared ancestry rather than recent admixture (e.g., Jarvis et al. 

2012) 

 For K=5, the groups inferred by STRUCTURE roughly correspond to the 

groups graphically identified by the PCoA analysis (Figure 1.2). In the southern area, 

NAG is genetically distinct form MBA and LOP, but with a clear portion of shared 

ancestry with these neighboring localities. Some individuals in NAG also appears as 

recent hybrids, with ancestors both in NAG and in MBA or LOP. In the 

central/northern group, PRA and SPI are well differentiated, POZ is very similar to 

the adjacent PRA, and all VER individuals have a majority of their genetic 

composition shared with the adjacent PRA and POZ, but also a similar and relatively 

large affinity with the southern localities of MBA and LOP.  

 

Genetic vs. geographic distances  

The relationship between linearized Fst and the logarithm of geographic distance is 

positive, weak (R2 = 0,07, Figure S4), and statistically significant (Mantel test, P= 

0.04). Estimated kinship coefficients are relatively high (as among first cousins) only 

when individuals from localities separated by 5 kilometers or less are compared, and 

very low otherwise (Figure S1.5).  
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Figure 1.2. Principal Coordinate Analysis of pairwise Fst distances among populations and plots of 

proportion of ancestry of each sampled individual for five genetic clusters inferred using 

STRUCTURE. 

 

 

Recent effective population sizes 

Point estimates of recent effective population sizes are low or very low (Table 1.1). 

The maximum value is around 170 individuals for the Loppio population using the 

LDNe method, but for the same population the estimated size is less than 30 when the 

OneSamp method is applied. All the other values range approximately between 10 

and 50, with LDNe producing in most cases larger estimates than OneSamp. The 

confidence intervals have large upper limits in most LDNe estimates, but the posterior 

distributions of Ne produced by OneSamp have very small probabilities for Ne>50.  

 

Demographic dynamic 

All the populations have M-ratio values (see Table 1.2) below the 0.68 threshold 

usually taken as evidence for a bottleneck (Garza & Williamson 2001). When M-

ratios are formally tested controlling for false positives (Benjamini & Hochberg 

1995), significant support of the bottleneck (P<0.05) is found in all populations, the 

only exception being ZAM and MEZ when the largest values of θ = 5 is assumed. The 

SPI MEZZAM MBA LOPVERPRA POZ NAG

ZAM

MEZ

SPI

POZ

VER

PRA

NAG

MBA

LOP

Coordinate 1 (43%)

C
o

o
rd

in
a

te
 2

 (
2
5

%
)



 26 

heterozygosity excess test indicates that heterozygosities are higher than predicted 

from the number of alleles, as expected after a bottleneck, but this difference is 

significant only for SPI. 

 The posterior distributions of ancestral and current population sizes, as 

estimated by MSVAR, are shifted from their equal prior distributions, clearly 

suggesting a demographic decline in all populations (Figure 1.3). The distributions in 

different populations are largely overlapped, but considering the point estimates we 

note that the ratio between ancestral and current median sizes varies approximately 

between 7 and 70. NAG, MBA, LOP, and SPI show the most extreme reduction (>25 

fold), and a less extreme decline is estimated for the other populations (<15 fold). 

Ancient sizes distributions have peaks at around 2000-4000 individuals, and current 

sizes estimates vary between 70 to 300 animals in different populations. The most 

supported age of the decline varies in different populations between 500 and 3000 

years BP (see Figure 4a). Given the evident overlap between prior and posterior 

distributions, we checked the influence of the former on the latter. The posterior 

distributions support a decline age between few hundred and few thousand years also 

when the prior mean was decreased or increased by a factor of 10 (see Figure 4b and 

4c). These general results of MSVAR are consistent across runs, assuming either an 

exponential or linear decline, and pooling samples from pairs of populations not 

genetically differentiated (see all the point estimates and 95% credible intervals in 

Table S5). 
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Figure 1.3. Posterior distribution of the effective population sizes (in log 10 units) for each population 

obtained with MSVAR (assuming the exponential demographic change). Dashed lines represent 

current Ne, while dotted lines represent pre-bottleneck Ne. The solid line is the prior distribution for 

both current and ancient population sizes.  

 

 

 The ABC analysis confirms that the genetic variation pattern is compatible 

with a demographic decline (Table 1.2). In particular, the model GlaD (post-glacial 

decline) obtains in all population a posterior probability at least double than Const 

(constant size) or HumD (human-related decline). When different prior distributions 

are tested, these general results are confirmed, though in some specific setting and 

only for NAG, MBA, LOP and SPI, the posterior probability of HumD becomes 

similar to the posterior probability of GlaD (Table 1.2 and Figure S1.6).  
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          P value (M-ratio) 
H excess 

(p-value) 

Scenario 

1 

Scenario 

2 

Scenario 

3 

Population Label N 

M-

ratio 

θ=1 

 

θ=2 

 

θ=5 

  
Const HumD GlaD 

Zambana ZAM 29 0.63 0.010 0.029 0.062 0.052 0.04 0.06 0.89 

Mezzolombardo MEZ 10 0.60 0.003 0.011 0.072 0.216 0.06 0.07 0.87 

Nago NAG 23 0.48 0.001 0.001 0.001 0.326 0.31 0.07 0.62 

Monte Baldo MBA 25 0.51 0.001 0.001 0.001 0.042 0.10 0.13 0.76 

Prà PRA 17 0.53 0.001 0.001 0.001 0.080 0.07 0.02 0.90 

Pozzolago POZ 25 0.61 0.002 0.003 0.008 0.350 0.07 0.01 0.92 

Verla VER 24 0.61 0.001 0.003 0.010 0.382 0.36 0.02 0.62 

Loppio LOP 32 0.53 0.001 0.001 0.001 0.042 0.11 0.08 0.81 

Spiz SPI 15 0.60 0.005 0.016 0.008 0.002 0.06 0.21 0.73 

 

Table 1.2. Tests of demographic bottleneck. The heterozygosity excess is tested using the Wilcoxon 

approach implemented in the software BOTTLENECK. Significant P values (=0.05) for the M-ratio 

and the heterozygosity excess tests, after controlling (separately for each test) for multiple testing, are 

underlined. The last three columns report the posterior probabilities of three different demographic 

scenarios tested with the ABC approach. Const = constant population size; HumD = recent, human 

related, decline; GlaD = ancient decline associated to the post-glacial colonization of the Alps. Prior 

distributions for all the model parameters are reported in Table S1.2 (in italics). The posterior 

probabilities of each model in each population are only slightly affected by the choice of prior 

distributions (see details of all the analyses with different priors in Table S1.2).  

 

Discussion 

 

Phylogeography and genetic diversity 

The mitochondrial phylogenetic analysis showed that all samples included in this 

study fall into Balkan-Western clade (Figure S1.1). The level of variation at this 

marker was very low, with 89% of the individuals sharing the same mtDNA 

sequence, and only 4 haplotypes in total. This result is compatible with the hypothesis 

by Hofman et al. (2007) and Fijarczyk et al. (2011), who suggested that the 

populations characterized by this clade originated in a Balkan refugium and expanded 

northwestward after the last glaciation, losing genetic variation during the 

colonization process. Additional analyses at this marker in the Alpine populations 

here considered are prevented by the very low level of polymorphism.  

 The microsatellite markers allowed a more detailed genetic analysis even in a 

geographically restricted area in the Italian Alps, a biodiversity hot-spot where 

declines and local extinctions of B. variegata have been previously documented. First 

of all, the populations of yellow-bellied toad in the Alps show low to moderate level 
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of genetic variation when compared to other populations of this species or the sister 

species B. bombina sampled in Northern Europe (where the drift effect associated to 

the post-glacial colonization is expected to be higher). In particular, when samples 

sizes are adjusted by resampling, and only overlapping loci are considered, the 

average number of alleles was about 27% and 40% lower in the Alps than in a B. 

variegata and B. bombina population in Northern Germany, respectively (Hauswaldt 

et al. 2007). The number of alleles and the heterozygosities observed in the Italian 

Alps are similar to the values found in endangered frog or toad species (Wang 2012; 

Igawa et al. 2013, Morgan et al. 2008; Beauclerc et al. 2010).  

When the microsatellite variation pattern was used to estimate the 

contemporary effective population size, most populations showed values smaller than 

50 individuals, and some of them values smaller than 20. These values are lower than 

those estimated in other ranid species (Wilkinson et al. 2007; Phillipsen et al. 2011), 

and similar to the estimates obtained in endangered anuran species (Ficetola et al. 

2010; Wang 2012).  

Considering the environmental modifications predicted in the future, and that 

small populations showing low genetic variation have reduced capacity to adapt to 

global changes (Willi et al. 2006), we should take the levels of microsatellite variation 

within the populations and the estimated contemporary effective population sizes as 

an early warning of genetic risks and a motivation for implementing specific 

conservation measures in this species.  

 

Habitat fragmentation 

Gene flow, which could counteract the negative consequences of genetic drift and 

inbreeding, is unlikely to occur in a fragmented landscape and especially in species 

with reduced movement capabilities such as frogs (e.g., Dolgener et al. 2012; Igawa 

et al. 2013). This expectation was met in our study: despite the fine geographic scale, 

a clear evidence of genetic substructure was found, and most populations were 

genetically differentiated from the others. Five major genetic groups were identified, 

with two of them corresponding to two single and highly divergent populations, and 

the others associated to geographically homogenous areas. Genetic data also showed 

that kinship levels are high only at very short distances, supporting very small local 

population sizes and previous mark-recapture field studies that indicated travel 
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distances of single adult individuals rarely exceed 500 meters (Smith & Green 2005 

and Hartel 2008).  

The population of NAG showed the highest values of Fst against all the other 

(from 0.15 to 0.32). In this case, although the population of LOP is very close, gene 

flow is probably prevented because of habitat discontinuity due to urbanization in the 

touristic area of Garda Lake. Interestingly, NAG is also the only population where 

clear signals of recent hybridization with the neighboring populations were found in 

some individuals. Future investigations should be performed to test the hypothesis of 

human-mediated translocation events.  

All in all, the high level of genetic structure among populations indicates that 

gene flow is very limited, and rapidly declines as the geographic distance increases. In 

terms of conservation, this result suggests that, as in other species with limited 

mobility (Walker et al. 2008), the risk of inbreeding due to low population sizes will 

be enhanced.  

 

Bottleneck inferences 

Are the low contemporary population sizes we estimated related to the population 

declines recently documented in B. variegata populations in Northern Italy 

(Caldonazzi et al. 2002)? Here, we applied several statistical methods to address this 

question. More specifically, we aimed at detecting if the genetic variation data 

support the bottleneck hypothesis and, if so, for estimating the properties of this 

decline.  

Clear genetic traces of extreme bottleneck events emerged according to all the 

statistical approaches in most of the populations. Declines from some thousand to few 

hundred of individuals, or less, were estimated by the full-likelihood Bayesian method 

MSVAR, and the starting date of the decline estimated by MSVAR and the ABC 

approach was mostly compatible with a postglacial (model GlaD) rather than a recent 

human-related (model HumD) decline. However, the four populations showing the 

most extreme (>25fold) decline, NAG, MBA, LOP, and SPI, also showed an 

equivalent support for the GlaD and the HumD models under the ABC approach. In 

addition, MBA, LOP, and SPI were the only populations where a significant or 

marginally significant support was found by the Wilcoxon test, which is a statistical 

test that detects the transitory excess of heterozygosity over a very short period of 

time (Luikart & Cornuet 1998). Considering only these last three populations, we note 
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that a genetic impact due to recent human-related processes appears likely. In 1956 

the Loppio Lake, where we collected samples for LOP population, was totally drained 

because of construction of a tunnel under the lake, leading to drastic changes of the 

habitat and dangerous consequences for the species living there. On the other hand, 

MBA and SPI are the most elevated populations in our study (and also higher than the 

mean altitudinal distribution of the species), and the negative effects due to global 

warming are expected to be high at these altitudes. The timing of seasonal activities, 

including hibernation and breeding, are in fact tightly related to climatic conditions. 

Blaustein et al. (2001), for example, showed a trend of earlier breeding activity for 9 

amphibian species in response to increasing temperature, but the occurrence of late 

frosts, increased by climate change, can have fatal consequences on spawn especially 

for early breeding species (Henle et al. 2008). Moreover, the decreasing in depth of 

winter snow cover (IPPC 2007) may have an impact on amphibian survival during 

hibernation, making them more vulnerable to cold waves. This pattern, amplified for 

populations with low Ne, such as MBA and SPI, could have led to population 

decrease and genetic depletion. 

In summary, therefore, we suggest that at least one demographic decline 

occurred and left a genetic signature in all populations, but it is difficult to safely 

discriminate whether the bottleneck occurred during the post-glacial colonization of 

the Alps, in the last century, or in both time intervals. This uncertainty is due to the 

relatively small number of markers we analyzed, but also to the not well-known 

statistical properties of some of methods we applied. For example, it is not clear if, in 

case of two successive bottlenecks, the single decline model implemented in the 

method MSVAR would identify the earliest, the latest, or would rather estimate a 

decline age of intermediate age. We can however conclude that current effective sizes 

are much smaller than in the past, that some demographic process occurring in B. 

variegata and likely related to the colonization of the Alps reduced the genetic 

variation, and that, at least in some areas, recent anthropogenic modifications and 

climate changes are likely to have contributed to the reduction in effective population 

size.  

Finally, we note that the interaction between low genetic variation and effects 

of climate change has been considered one of the main cause for the outbreak of the 

fungus Batrachochytrium dendrobatidis, which is driving the worldwide declines and 

extinctions of amphibians (Allentoft & O’Brien 2010 and references therein).  
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Infections of this fungus were largely recorded in the endangered Apennine yellow-

bellied toad B. pachypus (Canestrelli et al. 2013). In the light of the genetic results 

obtained here and the predicted effects of climate change, northern Italian populations 

of B. variegata might be also at risk of chytridiomycosis. 
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Figure 4. Posterior distributions in different populations (dashed lines) of the time since the change in effective population size estimated by MSVAR assuming the 

exponential change. Three different means of the prior distribution (solid lines) were tested: a) 100 years (log10 transformed value = 2); b) 1,000 years (log10 transformed 

value = 3); c) 10,000 years (log10 transformed value = 4). 
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Supplementary materials 
 

 

 

Figure S1.1. ML phylogenetic tree from partial cytb (mtDNA) haplotypes obtained in this study and 

deposited sequences of B. variegata. B. bombina and B. orientalis were used as outgroups. All the 

haplotypes from this study belong to the clade indicated by asterisk. 
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Figure S1.2. Estimates of best (K) number of genetically homogeneous groups according to the 

methods by (a) Pritchard et al., (2000) and by (b) Evanno et al., (2005). 

 

Figure S1.3. STRUCTURE plot describing the population structure using K=2 as most probable 

number of genetic groups. Each bar represents an individual and its proportional membership to one of 

the two clusters. Individuals are ordered by sampling locations, numbered as follow: 1: ZAM, 2: MEZ, 

3: NAG, 4: MBA, 5: PRA, 6: POZ, 7: VER, 8: LOP, 9: SPI.  

 

 

 

Figure S4. Isolation by distance analysis. Pairwise genetic (Fst/(1-Fst)) vs geographic (log) distances 

between the nine populations of B. variegata analysed. 
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Figure S1.5.  Spatial autocorrelation of genetic similarity (kinship) and geographic distance (km) 

within distance classes with similar numbers of individual pairwise comparisons. Error bars indicate 

standard errors. 

 

 

 

Figure S1.6. Simple representation of the posterior probability (Y axis) of three demographic models 

computed using the ABC approach in different analysis and different populations (X axis, see Table S2 

for the analysis number). The grey bands refer to the analyses in NAG, MBA, LOP, and SPI, 

respectively



 41 

Table S1.1. Parameters setting for the prior distributions used in MSVAR.  All values are log-10 transformed, and the age is in years. Three values were tested for the mean 

of the time since the population change. 

     

Current size 3 1 0 0.05 

Ancestral size 3 1 0 0.05 

Age of the population change 2 or 3 or 4 1 0 0.05 

Mutation rate  -3.3 0.25 0 1 

 

 

 

 

 

Table S1.2. Posterior probability of different demographic models (last three columns) tested with DIYABC under different priors settings. Ages are in years.  Population 

sizes are in individuals. Nanc = ancient population size. Ncurr = current population size. In all these analyses, the prior distributions were uniform.   The lower and upper 

limits of the prior distribution of the mutation rate were 0.001 and 0.00001 per locus per generation, respectively, and the parameter P refers to the geometric distribution of 

the increase or decrease of the number of repeated units when a mutation occurs at a microsatellite locus. The lower and upper limits of the prior distribution of the 

population size in the constant population size model (Const) were 10 and 5000, respectively. Ages are in years.  Population sizes are in individuals. Nanc = ancient 

population size. Ncurr = current population size. HumD = demographic model that assumes a recent, human related decline. GlaD = demographic model that assumes an 

ancient model associated to the post-glacial colonization of the Alps.  

Analysis Sample 

Prior limits 

of the 

parameter P 

Prior limits of the age of the 

population decline age in the 

HumD model 

Prior limits of the age of the 

population decline age in the 

GlaD model 

Prior limits of the 

current population 

size 

Prior limits of the 

ancient population 

size 

Constrains in the 

parameters setting 

Probability of the models 

 

Const    HumD    GlaD 

        

   1 ZAM 0.1 - 0.9 1-200 4000-15000 10-5000 5001-50000 - 0.04 0.06 0.89 

2 

 

0.1 - 0.3 1-200 4000-15000 10-5000 5001-50000 - 0.00 0.13 0.87 

3 

 

0.1 - 0.3 1-600 601-15000 10-5000 5001-50000 - 0.00 0.28 0.72 

4 

 

0.1 - 0.3 1-200 4000-15000 10-50000 10-50000 Nanc>Ncurr 0.01 0.09 0.90 

5 

 

0.1 - 0.3 1-600 601-15000 10-50000 10-50000 Nanc>Ncurr 0.00 0.22 0.78 
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6 MEZ 0.1 - 0.9 1-200 4000-15000 10-5000 5001-50000 - 0.06 0.07 0.87 

7 

 

0.1 - 0.3 1-200 4000-15000 10-5000 5001-50000 - 0.00 0.18 0.82 

8 

 

0.1 - 0.3 1-600 601-15000 10-5000 5001-50000 - 0.00 0.28 0.72 

9 

 

0.1 - 0.3 1-200 4000-15000 10-50000 10-50000 Nanc>Ncurr 0.02 0.12 0.85 

10 

 

0.1 - 0.3 1-600 601-15000 10-50000 10-50000 Nanc>Ncurr 0.00 0.31 0.69 

11 NAG 0.1 - 0.9 1-200 4000-15000 10-5000 5001-50000 - 0.31 0.07 0.62 

12 

 

0.1 - 0.3 1-200 4000-15000 10-5000 5001-50000 - 0.05 0.23 0.72 

13 

 

0.1 - 0.3 1-600 601-15000 10-5000 5001-50000 - 0.02 0.50 0.48 

14 

 

0.1 - 0.3 1-200 4000-15000 10-50000 10-50000 Nanc>Ncurr 0.10 0.15 0.75 

15 

 

0.1 - 0.3 1-600 601-15000 10-50000 10-50000 Nanc>Ncurr 0.01 0.44 0.55 

16 MBA 0.1 - 0.9 1-200 4000-15000 10-5000 5001-50000 - 0.10 0.13 0.76 

17 

 

0.1 - 0.3 1-200 4000-15000 10-5000 5001-50000 - 0.00 0.43 0.57 

18 

 

0.1 - 0.3 1-600 601-15000 10-5000 5001-50000 - 0.00 0.50 0.50 

19 

 

0.1 - 0.3 1-200 4000-15000 10-50000 10-50000 Nanc>Ncurr 0.04 0.15 0.81 

20 

 

0.1 - 0.3 1-600 601-15000 10-50000 10-50000 Nanc>Ncurr 0.00 0.42 0.57 

21 PRA 0.1 - 0.9 1-200 4000-15000 10-5000 5001-50000 - 0.07 0.02 0.90 

22 

 

0.1 - 0.3 1-200 4000-15000 10-5000 5001-50000 - 0.01 0.05 0.95 

23 

 

0.1 - 0.3 1-600 601-15000 10-5000 5001-50000 - 0.00 0.17 0.83 

24 

 

0.1 - 0.3 1-200 4000-15000 10-50000 10-50000 Nanc>Ncurr 0.02 0.06 0.92 

25 

 

0.1 - 0.3 1-600 601-15000 10-50000 10-50000 Nanc>Ncurr 0.01 0.14 0.85 

26 POZ 0.1 - 0.9 1-200 4000-15000 10-5000 5001-50000 - 0.07 0.01 0.92 

27 

 

0.1 - 0.3 1-200 4000-15000 10-5000 5001-50000 - 0.01 0.03 0.97 

28 

 

0.1 - 0.3 1-600 601-15000 10-5000 5001-50000 - 0.01 0.10 0.89 

29 

 

0.1 - 0.3 1-200 4000-15000 10-50000 10-50000 Nanc>Ncurr 0.01 0.04 0.95 

30 

 

0.1 - 0.3 1-600 601-15000 10-50000 10-50000 Nanc>Ncurr 0.00 0.12 0.88 

31 VER 0.1 - 0.9 1-200 4000-15000 10-5000 5001-50000 - 0.36 0.02 0.62 
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32 

 

0.1 - 0.3 1-200 4000-15000 10-5000 5001-50000 - 0.05 0.01 0.95 

33 

 

0.1 - 0.3 1-600 601-15000 10-5000 5001-50000 - 0.04 0.03 0.93 

34 

 

0.1 - 0.3 1-200 4000-15000 10-50000 10-50000 Nanc>Ncurr 0.15 0.05 0.80 

35 

 

0.1 - 0.3 1-600 601-15000 10-50000 10-50000 Nanc>Ncurr 0.03 0.08 0.89 

36 LOP 0.1 - 0.9 1-200 4000-15000 10-5000 5001-50000 - 0.11 0.08 0.81 

37 

 

0.1 - 0.3 1-200 4000-15000 10-5000 5001-50000 - 0.01 0.16 0.84 

38 

 

0.1 - 0.3 1-600 601-15000 10-5000 5001-50000 - 0.01 0.32 0.67 

39 

 

0.1 - 0.3 1-200 4000-15000 10-50000 10-50000 Nanc>Ncurr 0.05 0.13 0.82 

40 

 

0.1 - 0.3 1-600 601-15000 10-50000 10-50000 Nanc>Ncurr 0.00 0.36 0.62 

41 SPI 0.1 - 0.9 1-200 4000-15000 10-5000 5001-50000 - 0.06 0.21 0.73 

42 

 

0.1 - 0.3 1-200 4000-15000 10-5000 5001-50000 - 0.01 0.35 0.64 

43 

 

0.1 - 0.3 1-600 601-15000 10-5000 5001-50000 - 0.00 0.49 0.51 

44 

 

0.1 - 0.3 1-200 4000-15000 10-50000 10-50000 Nanc>Ncurr 0.03 0.12 0.85 

45 

 

0.1 - 0.3 1-600 601-15000 10-50000 10-50000 Nanc>Ncurr 0.00 0.41 0.59 

           

Additional analyses of the prior impact on two populations 
 

46 ZAM As in analysis 1, but with gamma distributed mutation rates (shape parameter: 3.2, prior limits:  0,00001-0,001) 0.02 0.03 0.94 

47 ZAM As in analysis 1, but with prior limits of the population size in the Const model set to 1-50000 0.00 0.03 0.96 

48 ZAM As in analysis 1, but including both changes introduced in 46 and 47 0.00 0.03 0.97 

59 LOP As in analysis 1, but with gamma distributed mutation rates (shape parameter: 3.2, prior limits:  0,00001-0,001) 0.09 0.11 0.80 

50 LOP As in analysis 1, but with prior limits of the population size in the Const model set to 1-50000 0.01 0.10 0.89 

51 LOP As in analysis 1, but including both changes introduced in 46 and 47 0.01 0.12 0.87 
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Table S1.3. Characterization of 11 microsatellite loci used in this study. Repeat motifs, size range (bp), number of alleles (Na) and source. 

 

Locus Repeat motif Range Na Source 

1A (GATA)12 322-326 2 Hauswaldt et al., 2007 

10F (GATA)12 206-230 7 Hauswaldt et al., 2007 

8A (AGAT)7AAAGAGAT(GATA)9 291-331 6 Hauswaldt et al., 2007 

5F (GACA)13GGCA(GACA)7(GATA)14 116-148 3 Hauswaldt et al., 2007 

9H (GATA)9TAAA(GATA)2GAAA(GATA)6 156-176 6 Hauswaldt et al., 2007 

12F (GATA)9 219-247 8 Hauswaldt et al., 2007 

F22 (GA)30 142-148 2 Stuckas & Tiedmann, 2006 

B13 (GA)22 114-134 3 Stuckas & Tiedmann, 2006 

B14 (TC)4T(TC)7T(TC)9GC(TC)7 164-172 5 Stuckas & Tiedmann, 2006 

Bv11.7 (GT)18 99-199 11 Nurnberger et al., 2003 

Bv32.7 (TA)22 168-210 10 Nurnberger et al., 2003 
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Table S1.4. Pairwise Fst genetic divergence among populations of B. variegata. Statistically significant values are in bold  

 

 ZAM MEZ NAG MBA PRA POZ VER LOP SPI 

ZAM 0.00000 

        MEZ -0.01226 0.00000 

       NAG 0.21152 0.21485 0.00000 

      MBA 0.05290 0.04952 0.17688 0.00000 

     PRA 0.10480 0.11676 0.25113 0.10543 0.00000 

    POZ 0.07589 0.07701 0.22011 0.07576 0.01261 0.00000 

   VER 0.08673 0.09419 0.22921 0.06763 0.04192 0.02886 0.00000 

  LOP 0.05145 0.05813 0.15643 0.02976 0.10300 0.06687 0.05959 0.00000 

 SPI 0.09433 0.09831 0.32426 0.14995 0.13690 0.09070 0.14243 0.13770 0.00000 
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Table S1.5.  Estimated demographic parameters for each population (median, lower and upper 95% credible interval) obtained with MSVAR. Three independent analyses 

were replicated with the exponential demographic change model and one run with the linear model. Current and ancestral population sizes are expressed in thousands of 

individuals and the time of the reduction in thousand of year. The prior mean of the time since the demographic change in these analysis is equal to 1,000 (3 in log10 units) 

years. The last eight analyses refer to two datasets obtained by pooling two pair of samples that are geographically close and genetically very similar (non-significant Fst).  

 

Sample Msvar  Demographic Current Ne (x103) Ancestral Ne (x103) Time (kya) 

 Run Change CI lower Median CI upper CI lower Median CI upper CI lower Median CI upper 

ZAM 1 exponential 0.02 0.22 1.29 0.53 2.11 8.52 0.03 0.46 8.79 

 2 exponential 0.02 0.25 1.68 0.52 2.22 9.25 0.02 0.51 12.43 

 3 exponential 0.03 0.26 1.58 0.50 2.01 7.90 0.03 0.53 11.90 

 4 linear 0.01 0.20 1.57 0.50 2.12 8.77 0.06 0.92 17.75 

MEZ 1 exponential 0.02 0.21 1.94 0.63 2.64 11.07 0.04 0.73 12.48 

 2 exponential 0.01 0.20 1.72 0.64 2.69 11.45 0.03 0.69 15.56 

 3 exponential 0.02 0.21 2.23 0.60 2.65 11.42 0.03 0.69 14.51 

 4 linear 0.01 0.13 1.43 0.64 2.56 10.53 0.10 1.33 18.34 

NAG 1 exponential 0.01 0.08 0.40 0.85 3.59 15.96 0.10 1.03 6.01 

 2 exponential 0.01 0.08 0.42 0.86 3.62 16.02 0.12 1.06 6.71 

 3 exponential 0.01 0.07 0.40 0.85 3.63 16.14 0.09 0.89 5.84 

 4 linear 0.00 0.05 0.32 0.77 3.20 14.51 0.52 3.14 21.67 

MBA 1 exponential 0.02 0.11 0.56 0.53 3.85 14.84 0.03 0.75 5.17 

 2 exponential 0.02 0.10 0.56 0.52 4.03 15.76 0.02 0.74 5.03 

 3 exponential 0.03 0.11 0.58 0.50 3.94 15.40 0.03 0.78 5.46 

 4 linear 0.01 0.07 0.47 0.50 3.59 13.96 0.06 2.26 12.74 

PRA 1 exponential 0.05 0.27 1.14 0.66 3.10 18.24 0.20 2.50 17.89 

 2 exponential 0.04 0.25 1.09 0.66 3.08 17.17 0.16 2.44 16.85 

 3 exponential 0.06 0.27 1.14 0.64 3.45 25.79 0.27 3.00 19.88 

 4 linear 0.04 0.22 0.99 0.67 3.00 18.20 0.43 5.05 56.17 

POZ 1 exponential 0.02 0.23 1.06 0.65 2.58 11.99 0.07 1.24 12.80 

 2 exponential 0.02 0.19 0.97 0.64 2.60 10.99 0.07 0.99 10.00 

 3 exponential 0.03 0.24 1.13 0.63 2.54 11.60 0.08 1.29 11.93 

 4 linear 0.01 0.14 0.80 0.63 2.52 11.07 0.20 1.74 19.47 

VER 1 exponential 0.03 0.23 1.08 0.58 2.47 11.69 0.09 1.40 13.81 
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 2 exponential 0.03 0.23 1.02 0.61 2.53 11.15 0.10 1.44 12.37 

 3 exponential 0.04 0.26 1.13 0.60 2.50 11.75 0.11 1.69 15.43 

 4 linear 0.01 0.16 0.83 0.60 2.32 9.71 0.21 2.13 20.57 

LOP 1 exponential 0.01 0.15 0.70 1.06 4.09 16.25 0.08 1.26 8.04 

 2 exponential 0.01 0.13 0.64 1.09 4.21 16.86 0.09 1.06 7.00 

 3 exponential 0.01 0.15 0.71 1.01 3.88 16.18 0.09 1.23 7.81 

 4 linear 0.00 0.10 0.58 0.94 3.60 14.34 0.45 2.76 19.55 

SPI 1 exponential 0.01 0.10 0.66 0.81 3.70 20.22 0.08 0.89 11.45 

 2 exponential 0.01 0.10 0.60 0.81 3.55 18.79 0.08 0.86 9.77 

 3 exponential 0.01 0.09 0.62 0.83 3.57 17.65 0.07 0.79 9.19 

 4 linear 0.00 0.06 0.51 0.77 3.47 19.47 0.38 2.78 36.11 

PRA+POZ 1 exponential 0.04 0.27 1.09 0.69 2.83 14.00 0.08 1.63 12.52 

 2 exponential 0.05 0.29 1.25 0.69 2.90 13.68 0.15 1.93 14.64 

 3 exponential 0.05 0.31 1.26 0.68 2.81 12.94 0.16 1.87 13.81 

 4 linear 0.03 0.22 1.04 0.64 2.64 11.67 0.28 2.58 25.85 

ZAM+MEZ 1 exponential 0.03 0.32 1.84 0.57 2.38 9.71 0.03 0.71 14.03 

 2 exponential 0.02 0.27 1.55 0.65 2.53 9.83 0.02 0.54 8.40 

 3 exponential 0.04 0.32 1.76 0.63 2.55 10.31 0.04 0.79 11.74 

 4 linear 0.02 0.31 1.91 0.59 2.40 10.96 0.06 1.32 30.12 
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Table S1.6. Parameter estimation under the ABC approach implemented in DIYABC. The demographic model assumed a demographic decline occurring between 1 and 

15000 years ago (uniform prior). Current (Ncurr) and ancient (Nanc) population sizes had uniform priors between 10 and 50000 individuals, with Nanc always larger than 

Ncurr. The prior distribution of the mutation rate was a gamma distribution with shape parameter = 3.2, and constrained between 0,00001 and 0,001 per locus per generation. 

The parameter P (that refers to the geometric distribution of the increase or decrease of the number of repeated units when a mutation occurs at a microsatellite locus) had a 

uniform prior distribution constrained between 0.1 and 0.3.  

 

 

Population Label Ncurr (x103) Nanc (x103) Age of the decline (kya) 

  CI lower Median CI upper CI lower Median CI upper CI lower Median CI upper 

Zambana ZAM 0.32 0.94 2.64 11.8 35.7 49.3 0.30 1.63 4.58 

Loppio LOP 0.29 0.87 2.52 8.00 32.4 49.0 2.52 1.48 4.64 
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Abstract 

 

The European common lizard Zootoca vivipara exhibits reproductive bimodality, with 

populations being either viviparous or oviparous. In the central-eastern Italian Alps 

oviparous populations (Z. v. carniolica) and viviparous populations (Z. v. vivipara) 

partly overlap geographically. Studying the evolutionary relationship between these 

taxa presents an interesting opportunity to gain insight into the evolution of this trait. 

We aim to: i) test whether Z. v. carniolica, which is endangered, constitutes an ESU 

(Evolutionary Significant Unity); ii) infer mtDNA divergence time between the Z. v. 

carniolica clade and all the other Z. vivipara subspecies with the aid of an external 

calibration point; iii) describe the phylogeographical and demographic scenarios in the 

area. To do so we sequenced about 200 individuals for mitochondrial variation; 64 of 

them were also analysed for three nuclear genes. Furthermore, we analysed the same 

nuclear markers in 17 individuals from the other oviparous subspecies Z. v. louislantzi 

and 11 individuals of Z. v. vivipara from widespread geographical origins. 

 The mtDNA and nDNA loci that we examined supported the monophyly of Z. v. 

carniolica. The mtDNA-based estimate of divergence time between Z. v. carniolica and 

all the other subspecies indicated a separation at 4.5 Mya (95 % CI 6.1-2.6), with about 

5% of sequence divergence. Considering that Z. v. carniolica harbours higher genetic 

diversity, while Z. v. vivipara from central-eastern Alps shows a signature of recent 

population and spatial expansion, we argue that Z. v. carniolica represents a distinct 

evolutionary unit, with a presumably long-term evolutionary history of separation. Z. v. 

carniolica populations, occurring at higher latitudes and altitudes than insofar supposed, 

live in peat bogs, a seriously threatened habitat: taking into account also its evolutionary 

distinctness, specific conservation measures should be considered. 
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Introduction 

 

The Eurasian common lizard, Zootoca vivipara (Jacquin, 1787), is among the few squamate 

reptiles displaying reproductive bimodality at the intraspecific level.  

 Viviparous (or better 'lecithotrophic viviparity', i.e. live-bearing with nutrition from the 

yolk, Blackburn 1994) populations, ascribed to the nominotypical subspecies Zootoca vivipara 

vivipara, are widely distributed from the British Isles and central France to Scandinavia and 

north-eastern Asia as far as Japan (Dely and Bohme 1984). Oviparous populations are restricted 

to the southern edges of the range, in two disjunct areas: southern France-northern Spain and 

northern Italy-southern Austria-Slovenia-Croatia. The French-Spanish oviparous populations 

have been recently attributed to the subspecies Z. v. louislantzi (Arribas 2009), whose range is 

clearly geographically separated from viviparous Z. v. vivipara populations (Arribas 2009, 

Brana and Bea 1987, Heulin 1988, Heulin 1993). All the other oviparous populations are 

included in the subspecies Z. v. carniolica (Surget-Groba et al. 2006): in this case, the range has 

been described as parapatric to Z. v. vivipara (Mayer et al. 2000, Heulin et al. 2000, Surget-

Groba et al. 2002, Figure 2.1). However, a contact zone between Z. v. vivipara and Z. v. 

carniolica has been recently found in Carinthia, Austria (Lindtke et al. 2010). 

 Using karyotype (Odierna et al. 2001) and mitochondrial DNA (mtDNA) sequence 

variation (Mayer et al. 2000, Surget-Groba et al. 2001, Surget-Groba et al. 2006), several 

studies have addressed the phylogenetic relationships between the different subspecies. The 

scenario can be summarised as follows: the two oviparous subspecies, Z. v. louislantzi and Z. v. 

carniolica are not reciprocally monophyletic. Considering the most comprehensive mtDNA 

survey (Surget-Groba et al. 2006), it appears that Z. v. carniolica is sister to all the other 

subspecies, namely Z. v. vivipara, Z. v. louislantzi and Z. v. pannonica (Lac & Kluch 1968: in 

this study the term used was still the former, Lacerta vivipara pannonica). Therefore, neither  

 

the oviparous (Z. v. carniolica and Z. v. louislantzi) nor viviparous subspecies (Z. v. vivipara 

and Z .v. pannonica) form monophyletic groups, making a single transition from oviparity to 

viviparity unlikely.  

 Z. v. carniolica has been considered as an Evolutionarily Significant Unit (ESU) sensu 

Moritz (1994). However, none of the aforementioned studies included nuclear DNA sequence 

variation. Proving the ESU status for this subspecies would significantly support the 

conclusions of earlier studies pointing out that Z. v. carniolica would deserve specific 

conservation measures (Surget-Groba et al. 2002). 
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Figure 2.1. Distribution of Zootoca subspecies. Highlighted rectangle represents the area of the study 
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Figure 2.2. Sampling sites of Zootoca vivipara sp. in Northern Italy. Label, site names and coordinates are listed in Table S2.1. Circles and triangles indicate locations where 

we found Z. v. vivipara and Z. v. carniolica, respectively, according to cytb results. The white line represents the Brenner line. Asterisks indicate locations for which at least 

one sample was analysed for nuclear genes.
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 Z. v. carniolica has been found from Piedmont via northern Italy and Austrian 

Carnian Alps to Slovenia and north-west Croatia, and its northern limit appears to 

correspond with the Italian Prealps, while the southern limit is represented by a few 

wetland areas in the Po Valley. The high degree of fragmentation of these low-mid-

altitude wetland areas, affected by both climate change and human activities, might pose 

a serious threat to Z. v. carniolica persistence, as highlighted by some local extinction 

documented in the Po Valley area (Giovine 1989, Mazzoni & Stagni 1993). 

 The main aim of this work was to test the ESU hypothesis for Z. v. carniolica by 

contrasting patterns of DNA sequence variation at nuclear and mitochondrial markers in 

92 and 230 individuals, respectively, of Z. vivipara spp. from different European 

regions. Moreover, we specifically focused on the evolutionary history of Z. v. 

carniolica at both macro- and micro-scale by: a) inferring mtDNA divergence time 

between the Z. v. carniolica clade and all the other Z. vivipara subspecies with the aid 

of an external calibration point; b) describing the phylogeographical and demographic 

scenarios in an area of partial distribution overlap - central-eastern Italian Alps- between 

the oviparous populations of Z. v. carniolica and the viviparous populations of Z. v. 

vivipara. 

 

 

Materials and methods 

 

Ethics statement 

All conducted experiments complied with the current laws of Italy. The Italian Ministry 

of Environment and the Environmental Unit of the Autonomous Province of Trento 

approved capture, handling, and tissue sampling (DPN/2D/2003/2267 and 4940-57/B-

09-U265-LS-fd). In this study we did not apply laboratory techniques on living animals, 

therefore authorization from the Italian Ministry of Health was not required. 

 

Sampling 

Approximately 1 cm of tail was collected from 191 specimens of Z. vivipara coming 

from 51 locations throughout the central eastern Alps and Prealps (Figure 2.2 and Table 

S2.1). All animals were released in their own habitat after pouring liquid sterilizer on 

the tail. Tissue samples were preserved in 95% ethanol and then stored at – 80 °C until 

molecular analyses were performed. To have a good representation of the whole 



54 

geographic distribution and of the known subspecies within the Zootoca genus, 39 

additional specimens were included in the nuclear marker analyses: their geographical 

origin and the subspecies they belong to is reported in Table S2.2 along with their 

mtDNA haplogroup (previously determined in Surget-Groba et al. 2006 and Heulin et 

al. 2011). 

 

DNA extraction, amplification and sequencing 

DNA was extracted with the commercial QIAGEN DNeasy Tissue Kit (QIAGEN Inc., 

Hilden, Germany) according to manufacturer’s protocol. A 385 base pair (bp) fragment 

of mtDNA cytb gene was amplified using MVZ04 and MVZ05 primers (Smith & 

Patton 1991). The PCR amplification was carried out in a 20 µl reaction mix containing: 

1 µl template DNA, HotMaster™ Taq Buffer 25 mM Mg2 (Eppendorf), 100 µM dNTPs, 

10 µM of each primer, 0.5 mg/ml BSA and 1 unit of HotMaster™ Taq. The 

thermocycling regime consisted of incubation at 94°C for 10 min, followed by 35 cycles 

of 94°C for 1 min, 59 °C for 45 s, and 65 °C for 1 min, with a final extension of 65 °C 

for 10 min. Moreover, three nuclear genes were investigated. A 572 bp fragment of 

oocyte maturation factor (C-mos) coding gene, a 447 bp fragment of acetylcholinergic 

receptor M4 (ACM4) gene and a portion of 579 bp of melanocortin receptor 1 (Mc1r) 

gene were amplified. All these nuclear sequences have been already used as 

phylogenetic markers in lacertid species (Mayer & Pavlicev 2007, Barata et al. 2012). 

The amplification protocol consisted of an initial denaturation step at 94°C for 10 min, 

followed by 35 cycles of the series: 94°C for 1 min, annealing temperature (57°C for 

Hcmos3 and L-1zmos (C-mos, Mayer & Pavlicev 2007); 59°C for MC1RF and MC1RR 

(Mc1r, Pinho et al. 2010); 59°C for tg-F and tg-R (ACM4, Gamble et al. 2008) for 45 s 

and 65°C for 1 min; then, a final extension step at 65°C for 10 min. For all 

amplifications, contamination was rigorously checked by means of blank samples in 

both extraction and PCR. Before sequencing, the excess primers and dNTPs were 

removed using ExoSAP-IT (USB Corporation, Cleveland, OH). Sequencing of double-

stranded DNA was performed in both directions using a Big Dye Terminator cycle 

sequencing kit (Applied Biosystems) following manufacturer’s instructions; the 

sequencing reaction products were run on an ABI Prism 310 Genetic Analyzer (Applied 

Biosystems). The resulting sequences were edited with FinchTV version 1.4.0 (open 

source application developed by Geospiza Research Team), sequence fragments were 

assembled using Sequencher version 4.7 (Gene Codes. Corporation, USA), aligned 
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using Clustal X (Thompson et al. 1997) and checked by eye. All sequences have been 

deposited in GenBank database under Accession No. KF886538-KF886566. 

 

Phylogenetic analysis and estimation of divergence time 

We inferred phylogenetic relationships and divergence-times using a relaxed Bayesian 

molecular clock with an Uncorrelated Lognormal model (BEAST version 1.6; 

Drummond & Rambault 2007) on a cytb dataset comprising 96 unique haplotypes (Z. 

vivipara of our study plus deposited sequences of Z. vivipara spp., Podarcis 

peloponnesiaca, Podarcis cretensis and Lacerta viridis as outgroup (GenBank 

accession numbers: Z. vivipara: AY714882-AY714929, Podarcis peloponnesiaca: 

AY896117-AY896123, Podarcis cretensis: AF486191-AF4861220 and Lacerta viridis: 

EU116514). JModelTest version 1.0.1 (Posada 2009) was used to select the appropriate 

model of evolution for cytb gene under the Akaike Information Criterion AIC (Posada 

& Buckley 2004). The GTR model of nucleotide substitution with gamma rate 

heterogeneity among sites and, as a prior, a Yule pure birth model of speciation to 

estimate the time of divergence between Z. v. carniolica and all the others Z. vivipara 

subspecies were used. The analysis was calibrated by setting an age prior on a single 

node: the divergence of Podarcis peloponnesiaca from Podarcis cretensis (Lymberakis 

et al. 2008). This divergence can be approximately posed during the Messinian 

geological events that occurred in Mediterranean Sea at around 5.2 +- 0.1 Mya, when 

Crete became isolated from Peloponnese (Beerli et al. 1996). We adopted the vicariant 

event as the most likely explanation for biogeography of Mediterranean Isles as outlined 

by a previous study (Runemark et al. 2012). Posterior distributions for each parameter 

were obtained using a Monte Carlo Markov Chain (MCMC), which was run for 100 

million generations, and sampled every 10000 generations. Inspection of the results 

using Tracer version 1.5 (Rambaut & Drummond 2007) confirmed that stationarity was 

achieved in all cases and that effective sample sizes (ESS) were adequate (all higher 

than 200). Trees were summarized as maximum clade credibility trees using the 

TreeAnnotator program which forms part of the BEAST package, and visualized using 

FigTree version 1.3.1 (http://tree.bio.ed.ac.uk/software/figtree). In each case, the first 

10% of samples was discarded to avoid sampling the burn-in phase. A Bayesian Skyline 

Plot was also constructed with the software BEAST version 1.6 (Drummond & 

Rambaut 2007) using the GTR + G evolutionary model, a log-normal relaxed molecular 

clock with a mean substitution rate of 7.8 x 10e-9 per site per year and visualized with 
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Tracer version 1.5 (Rambaut & Drummond 2007). The evolutionary rate was calculated 

on the basis of the P. peloponnesiaca and P. cretensis divergence time. This analysis 

was run multiple times to check for convergence with 50 million iterations and samples 

drawn every 5000 MCMC steps, after a discarded burn-in of 5 million steps. 

 To confirm BEAST results and to get Bayesian posterior probability values of 

the tree we also applied MrBayes version 3.1.2 (Ronquist & Huelsenbeck 2003). We 

ran the same dataset with 10 million generations (after this number of generations the 

standard deviation of split frequencies had reduced to less than 1%) with a sampling 

frequency of 1000, to be sure that a good sample of the posterior distribution had been 

obtained. The first 2500 sampled trees were discarded as ‘burn-in’ and posterior 

probabilities were calculated and reported on a 50% majority rule consensus tree of the 

remaining 7501 trees in the sample. The GTR + G evolutionary model was used. 

Moreover, a Maximum Likelihood analysis was performed with PAUP* version 4.0 

(Swofford 2003) using tree-bisection-reconnection (TBR) branch swapping with 1000 

rearrangements and 100 bootstrap replicates.  

 Additionally, we performed phylogenetic analyses based on three nuclear genes 

(C-mos, ACM4, Mc1r) on a subset of 92 samples of the entire dataset (64 samples from 

eastern Alps and 28 from the whole distributional range of the species), selected to 

include all the major cytb mtDNA clades. We performed phylogenetic tree 

reconstructions for each single nuclear gene and for a concatenated sequence of 1598 

bp. We first applied PartitionFinder version 1.1.1 (Lanfer et al. 2012) in order to test the 

best partition scheme for codon positions and different single gene models of molecular 

evolution using the Bayesian information criterion (BIC). Four partitions were 

identified in nuclear sequences: ACM4 and C-mos 1st position (GTR+I+G), C-mos 2nd 

position (JC), C-mos 3rd position and Mc1r 3rd position (GTR) and Mc1r 1st and 2nd 

positions (HKY+I). These partitions and models were applied for performing 

phylogenetic reconstruction for each single nuclear gene and for the concatenated 

sequence using MrBayes version 3.1.2 (Ronquist & Huelsenbeck 2003) for Bayesian 

analyses with the same settings as for mtDNA; for Maximum Likelihood analyses we 

used RAxML (version 7.4.2, Stamatakis 2006) and each partition was run under 

GTR+G model. For nuclear phylogenetic reconstructions, we used Atlantolacerta 

andreanskyi as outgroup (accession numbers: JX485363, JX462052, JX461870), being 

the phylogenetically closest lacertid lizard with all three nuclear genes available (Barata 

et al. 2012). We chosen not to concatenate mtDNA and nuclear genes, since we focused 
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cytb analysis on the estimation of divergence time between Z. v. carniolica and Z. v. 

vivipara taking advantage of a calibrated external node dated on the divergence time 

between P. peloponnesiaca and P. cretensis. The three nuclear genes we analysed were 

not available for the latter species, therefore we ran nuclear analyses separately.   

 Using the median-joining algorithm in the Network version 4.5.1.0 software 

(Bandelt et al. 1999) we inferred a cytb mtDNA haplotype network, combining our 

sequences with all those already deposited in public repositories. After phasing nuclear 

genes with PHASE version 2.1 (Stephens & Donnelly 2003), Network version 4.5.1.0 

(Bandelt et al. 1999) was also used to obtain haplotype networks of the three nuclear 

genes. Net nucleotide divergence (Da, Nei 1987), defined as distance between cytb 

clades, was calculated with MEGA version 4 (Kumar et al. 2008). Standard and 

molecular diversity indices, neutrality tests and mismatch distribution were calculated 

using ARLEQUIN version 3.11 (Excoffier et al. 2005). Specific analyses on C-mos 

sequences for estimating the ratio, ω, between the rate of non-synonymous, dN, and 

synonymous, dS, substitutions were performed with DNAsp version 5 (Librado & 

Rozas 2009). The gametic phase of nuclear markers was not considered in phylogenetic 

analyses. 

 

 

Results  

 

Cytb  

A 385 bp portion of the mtDNA cytb gene was examined in our 191 Italian samples. A 

total of 28 polymorphic sites, all of which were parsimony-informative, and 11 

haplotypes were identified. Five of these were new haplotypes, since no match was 

found with any previous published haplotype (Table S2.3). No deletions or insertions 

were observed in our dataset. Mean nucleotide percentage composition was T, 35.5; C, 

25.3; A, 26.7; G, 12.4; the estimated transition/transversion ratio was 8.36. We 

reconstructed a phylogenetic tree using Italian samples from this study and deposited 

sequences from different clades and origins. The phylogenetic tree obtained using 

BEAST, ML and Bayesian inference (Figure 2.3), with Lacerta viridis as the outgroup, 

was topologically similar to others reported in the literature (Surget-Groba et al. 2001, 

Surget-Groba et al. 2006). Indeed, analyses showed clear separation between the clade 

A, including only Z. v. carniolica haplotypes and the remaining clades B, C, D, E and F, 
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comprising all the other European Z. vivipara subspecies, which was well supported by 

bootstrap and posterior probability values. All Italian specimens clustered in two 

distinct clades: 42 were grouped in clade A, while 149 were placed in clade E, the 

western European viviparous clade in which only Z. v. vivipara individuals have been 

insofar included. 

 Estimation of the divergence time between the Z. v. carniolica clade A and the 

clades (B, C, D, E and F) comprising all the other subspecies, namely Z. v. vivipara, Z v. 

louislantzi, and Z. v. pannonica was obtained by adding a prior of 5.2 +- 0.1 Mya on the 

node separating P. cretensis from P. peloponnessiaca. Using this calibration, the 

divergence time between A and all the other clades was found to be 4.5 Mya with a 95 

% credibility interval between 6.1 and 2.6 Mya (Figure 2.3). 

 The median joining network (Figure 2.4) confirmed the clear separation in different 

clades. As before, 42 individuals of our data set were grouped into clade A, formed by Z. v. 

carniolica haplotypes from Slovenia, Italy and southern Austria (Surget-Groba et al. 2006), 

while the other 149 were included in clade E, consisting of haplotypes of Z. v. vivipara from 

northern and western Europe. This viviparous clade E showed a distinctive “star-shape” 

topology, suggesting that populations of this clade might have experienced a recent 

demographic expansion. Assuming neutrality, population expansion gives rise to an increase in 

the number of rarer haplotypes in the population under examination (star-shaped network), 

which also leads to a unimodal mismatch distribution. To further confirm this demographic 

scenario, we calculated the mismatch distribution (Figure 2.5) and the values of the D (Tajima 

1989) and Fs (Fu 1997) statistics, both of which were significantly negative: Tajima's D =-2.207 

and Fs = -24.700 (p <0.01). In the absence of selection, significantly negative values for both 

statistics are usually interpreted as a signature of population expansion events. Moreover, a 

confirmation of this demographic expansion was gained through the Bayesian coalescent-based 

skyline plot (Figure 2.5, inset a), showing a clear pattern of effective population size (Ne) 

increase in the last tens thousands years. In contrast to clade E, clade A (corresponding to 

subspecies Z. v. carniolica) did not present a star-shape topology (Figure 2.4) and both Tajima's 

D and Fu's Fs were not significantly different than 0 (data not shown), thus not showing any 

departure from neutrality. In addition, clade A showed a multimodal mismatch distribution 

(Figure 2.5) and no evidence of expansion through Bayesian skyline plot (Figure 2.5, inset c). 
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Figure 2.3. Maximum clade credibility tree from Bayesian analysis of mitochondrial cyt b with chronogram. Bar around the 4.5 Mya divergence time estimate of Z. vivipara 

sp. vs Z. v. carniolica shows the 95 % Credibility Interval. Bootstrap support values of Maximum Likelihood analysis > 70% are shown above the branches, while posterior 

probability values of Bayesian Inference > 0.7 are shown below the branches. Clade names as in Surget-Groba et al. (2002). 
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Figure 2.4. Median joining network of mtDNA cty b haplotypes. Circles represent haplotypes, area is proportional to frequency and colour indicates the subspecies (black, Z. 

v. vivipara; white, Z. v. carniolica; grey, other subspecies or European populations). 
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   Z. v. vivipara        Z. v. carniolica 

     

Figure 2.5. Z. v. vivipara (left, clade E) and Z. v. carniolica (right, clade A) cyt b mismatch distribution. The number of nucleotide site differences between pair of individuals 

and the frequency of observation, are reported on the x- and y-axis respectively. Dashed and thick lines represent observed and expected (under sudden expansion model) 

distribution, respectively. In the insets: a) and c) Bayesian skyline plot with median value and 95 % Credibility Interval for Z. v. vivipara and Z. v. carniolica, respectively; b) 

mismatch distribution under demographic and spatial expansion model as in Excoffier (2004).  

(c) 
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Finally, we estimated the average number of nucleotide differences between the 

two groups (clade A and clade E) in which all our Italian individuals were divided: it 

was equal to 20.801 +/- 3.974 (SD), hence 0.054 per site. The number of net nucleotide 

substitutions per site between groups, Da, was 0.049, indicating an average difference 

of about 5%. The two groups did not share any substitution. The results, reported in 

Table 2.1, indicate that despite the lower number of individuals analysed, there was 

much higher genetic variation within Z. v. carniolica clade than in Z. v. vivipara clade 

E. 

 

 

Table 2.1. Indices of genetic variability for the two subspecies at cyt b and nuclear markers. an, sample 

size , bk, number of haplotypes, cs, number of polymorphic sites, dπ, nucleotide diversity, eMPD, mean 

pairwise differences, fH, gene diversity 

 

 

Nuclear genes  

We successfully analysed 92 samples (30 individuals belonging to clade A, 17 to clade 

B, 4 to clade D, 39 to clade E and 2 to clade F) with three different nuclear genes: C-

mos, ACM4 and Mc1r.   

In some Lacertid species the presence of several functional and non-functional 

copies of the C-mos gene has been reported (Pavlicev & Mayer 2006). Before any 

phylogenetic analysis, it is therefore important to verify that only orthologous C-mos 

sequences are used for comparisons. None of our sequences presented deletion, 

insertion or internal stop codons. The ratio ω (dN/dS) was significantly higher than 1, 

thus rejecting the hypothesis of neutrally evolving sequences, as expected in case of 

non-functional copies. We concluded that all our C-mos sequences were functional 

copies of the C-mos gene, being therefore orthologous.  

    na kb sc n transitions n transvertions πd MPDe Hf 

mtDNA cyt b 
Z. v. vivipara 149 5 3 3 - 0.001 ± 0.001 0.533 ± 0.434 0.480 ± 0.029 

Z. v. carniolica 42 6 9 9 - 0.008 ± 0.005 3.120 ± 1.673 0.721 ± 0.044 

nuDNA C-mos 
Z. v. vivipara 33 1 - - - - - - 

Z. v. carniolica 31 5 4 2 2 0.002 ± 0.002 1.361 ± 0.860 0.569 ± 0.080 

nuDNA Mc1r 
Z. v. vivipara 33 6 6 5 1 0.003 ± 0.002 2.000 ± 1.240 0.889 ± 0.091 

Z. v. carniolica 31 5 4 4 - 0.002 ± 0.001 1.036 ± 0.745 0.709 ± 0.136 

nuDNA ACM4 
Z. v vivipara 33 3 2 1 1 0.003 ± 0.002 1.333 ± 0.910 0.667 ± 0.131 

Z. v. carniolica 31 2 1 1 - 0.001 ± 0.001 0.436 ± 0.421 0.436 ± 0.133 
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The median joining network of the phased alleles of C-mos and Mc1r, showed 

that individuals belonging to mtDNA clade A (Z. v. carniolica) do not share any allele 

with individuals from other clades (Figure 2.6). In contrast, two out of five ACM4 

alleles (ACM4_4 and ACM4_6) are shared among individuals of Z. v. carniolica and 

individuals of clades B (Z. v. louislantzi), D (Z. v. vivipara), E (Z. v. vivipara) and F (Z. 

v. vivipara). Similarly, phylogenetic trees obtained from each single nuclear gene 

suggested a highly supported (bootstrap and Bayesian posterior probability higher than 

97% and 0.97, respectively) monophyly of Z. v. carniolica in C-mos and Mc1r (Figure 

2.7), but not in ACM4. Phased alleles along with their accession numbers were listed in 

Table S2.3. 
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Figure 2.6. Median joining network of three nuclear genes. Circles 

represent phased alleles, area is proportional to frequency and 

colour indicates the mtDNA clade (see legend).  

Figure 2.7. Maximum clade credibility trees of Bayesian analyses of three 

nuclear genes. Bootstrap support values of Maximum Likelihood analysis > 

70% are shown above the branches, while posterior probability values of 

Bayesian Inference > 0.7 are shown below the branches. Atlantolacerta 

andreanskyi was used as outgroup. 
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After concatenating the three genes, we obtained a 1598 bp sequence. Thirty-two 

variants out of the 92 sequences were identified. The tree topology obtained with 

different methods was concordant so that only the Maximum Clade Credibility Tree is 

presented in Figure 2.8. The tree showed two well supported clades. The first composed 

only of individuals belonging to mtDNA clade A, that is the Z. v. carniolica clade (90 % 

and 0.84, bootstrap and Bayesian posterior probability, respectively), whilst the second 

consisted of individuals with mtDNA belonging to all the other clades, namely B (Z. v. 

louislantzi), D (Z. v. vivipara), E (Z. v. vivipara) and F (Z. v. vivipara). We did not get 

any reliable nuclear sequences from the only two individuals of clade C (Z. v. 

pannonica) at our disposal. Analysis of these nuclear markers, thus, confirmed the 

monophyly of Z. v. carniolica. At the same time, it confirmed that the other oviparous 

subspecies, Z. v. louislantzi, is much more closely related to the viviparous subspecies. 

Nuclear markers, therefore, indicated a likely reversal from viviparity to oviparity, as 

originally hypothesised by mtDNA results (Surget-Groba et al. 2006).  

 

 

Figure 2.8. Maximum clade credibility tree of Bayesian analysis of three concatenated nuclear genes 

variants (C-mos, ACM4 and Mc1r). Bootstrap support values of Maximum Likelihood analysis > 70% 

are shown above the branches, while posterior probability values of Bayesian Inference > 0.7 are shown 

below the branches. Atlantolacerta andreanskyi was used as outgroup. 
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Discussion 

 

ESU status 

Considering not only the reproductive mode but also mtDNA and karyological features, 

Surget-Groba et al. (2002) proposed to consider Z. v. carniolica populations from 

Slovenia and northwestern/northeastern Italy as an Evolutionarily Significant Unit 

(ESU) following Moritz (1994). According to this definition, ESU status is evaluated by 

taking into account both mtDNA and nuclear loci: two populations would be considered 

ESUs if reciprocally monophyletic at mtDNA alleles and showing significant 

divergence of allele frequencies at nuclear loci. Although Moritz's ESU definition has 

been debated (e.g. Crandall et al. 2000), it is nonetheless widely used in the 

conservation field. In particular, contrasting the patterns of mtDNA and nuclear 

variation is routine for testing the distinctiveness of natural populations (see Frankham 

et al. 2002). Due to differences in effective population size and mutation rate, nuclear 

DNA loci attain monophyly at a considerably slower pace than mtDNA haplotypes. 

Instances of concomitant monophyly at mtDNA and nuclear loci imply, therefore, a 

long-term history of evolutionary separation. While it is arguable whether such a 

separation is sufficient for the recognition of different taxonomic units (e.g., under the 

genealogical species concept, Baum & Shaw, 1995), its importance from an 

evolutionary and conservation perspective cannot be neglected.  

 In this survey we considered all the subspecies of the Zootoca genus: the results 

showed that Z. v. carniolica monophyly is strongly supported by both mtDNA (cytb; 

Fig. 2) and nuclear markers (C-mos, ACM4 and Mc1r; Figure 5) trees. In the 

concatenated nuclear markers tree, the other known oviparous subspecies, Z. v. 

louislantzi (mtDNA clade B), clustered within the same clade as Z. v. vivipara, (mtDNA 

clades D, E and F) from different origins within its distribution range. We could not 

incorporate any individual from the Z. v. pannonica subspecies (mtDNA clade C) due to 

poor DNA quality. However, if we consider the concordance between the 

mitochondrial- and nuclear-based phylogeny and the previously demonstrated inclusion 

of Z. v. pannonica in the same mtDNA clade as Z. v. vivipara and Z. v. louislantzi 

(Surget-Groba et al. 2006), this omission would not be expected to alter the overall 

scenario. To the best of our knowledge, this is the first phylogenetic inference based on 

nuclear DNA in Zootoca genus. The nuclear and mitochondrial DNA tree topologies 
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support Z. v. carniolica monophyly, which is also essentially confirmed by the extent of 

nuclear allele sharing. Z. v. carniolica individuals do not share any allele with 

individuals from other subspecies at C-mos and Mc1r genes; just two out of the five 

alleles of ACM4, on the other hand, are shared among individuals of Z. v. carniolica, Z 

v. louislantzi and Z. v. vivipara, most likely due to the retention of ancestral 

polymorphism. Finally, the concordance between mitochondrial and nuclear markers 

confirms the reliability of mtDNA-based discrimination of the different subspecies. This 

can help to assess the geographic occurrence of Z. vivipara subspecies that, otherwise, 

might be problematic if based only on morphology. 

 

Evolutionary, demographic and phylogeographical scenarios 

Adopting the mtDNA clades definition of Surget-Groba et al. (2006), our investigation 

has been concentrated on clade A (eastern oviparous) and clade E (western viviparous) 

in a specific area (central-eastern Italian Alps) where distributions partially overlap.  

 The results of mtDNA and C-mos, in particular, showed much greater genetic 

variability in populations of Z. v. carniolica than in those of Z. v. vivipara (see Table 

2.1), even though a far lower number of individuals of the latter have been analysed. 

Gene diversity was significantly higher in carniolica than in vivipara (z-test, p <0.05), 

in both the cytb and the C-mos. Greater genetic diversity can be related to a longer 

evolutionary history (see Hartl & Clark 2006). In this case, the molecular data would 

confirm the phenotypic data with respect to reproductive mode, with oviparity being the 

ancestral condition. The reduced genetic variation of clade E (Z. v. vivipara) compared 

with clade A (Z. v. carniolica) could be associated to a small effective population size 

during the divergence from an oviparous form, followed by a more recent demographic 

expansion (see below) after the retreat of the ice from western central Europe.  

 From the phylogenetic tree (Figure 2.3) it emerges that oviparous clade A and 

viviparous clade E are not sister clades. It is, however, worth noting that the overall cytb 

phylogeny of the different oviparous (A and B) and viviparous (C, D, E and F) clades 

clearly shows that clade A is the sister clade to all the others. Our inference places the 

divergence of clade A at approximately 4.5 Mya (95% CI 6.1-2.6 Mya) that is during 

the Pliocene. This estimation should not be over-emphasized or, even worse, taken at 

face value. We obtained this estimated divergence time after setting, as geological 

calibration on the node separating P. cretensis from P. peloponnesiaca, the date the 

island of Crete presumably separated from the Peloponnese, according to geological 
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evidence (Beerli et al. 1996), that is 5.2 Mya before the present day. While having a 

more refined calibration would improve our estimate of the divergence time (see Yang 

and Yoder, 2003), it nonetheless can be said that the sister oviparous clade A had a long 

evolutionary history since the original split from all the other clades of the species. 

 Another indication of the deep evolutionary distance between clade A and E 

stems from the number of differences in the cytb fragment. The average number of 

nucleotide differences between the two clades was 20.801 +/- 3.974 (hence 0.05403 per 

site), with a net nucleotide divergence of approximately 5% (Da = 0.049), which, for the 

mitochondrial cytb gene, indicates a rather large divergence. These figures are similar to 

observations between two distinct species belonging to a genus “close” to Zootoca: P. 

peloponnesiaca and P. cretensis. They showed an average number of nucleotide 

differences of 17.589 +/- 3.292 and Da of 0.047 for the same cytb marker (Slatkin & 

Hudson 1991). 

 The haplotype cytb network (Figure 2.4) shows another striking difference 

between the two subspecies: all our Z. v. vivipara individuals harbour haplotypes 

clustering in clade E, that is, according to its original definition (Surget-Groba et al. 

2001), the western viviparous group. This clade is characterized by a “star-shape” 

topology, suggesting recent population expansion (Rogers & Harpending 1992). In 

contrast, all our Z. v. carniolica individuals have haplotypes belonging to clade A 

(Surget-Groba et al. 2001), and whose network does not present any particular 

topology. The indication of a demographic expansion in clade E can be further 

evaluated through the mismatch distribution graph (Figure 2.5). This graph shows a 

unimodal trend, which is again considered a signature of a recent demographic 

expansion (Excoffier 2004). Our distribution is not in contradiction with the theoretical 

model of Excoffier (2004), describing an instantaneous range expansion in a two-

dimensional stepping-stone model, with large migration rates and recent expansion 

(Figure 2.5, inset b). A plausible scenario would thus imply that, with the retreat of the 

ice in the post-Pleistocene era, populations of Z. v. vivipara belonging to clade E were 

able to spread into northwestern Europe (see Heulin et al. 1993), leading to a 

simultaneous population and spatial expansion. The signature of this demographic 

expansion appears robust as it is also supported by the results of the neutrality tests 

(both Tajima’s D and Fu’s Fs, statistically significant and negative) and of the 

coalescent-based skyline plot that shows a pattern of a relatively recent increase of Ne 

within clade E (Figure 2.5, inset a).  
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All the aforementioned demographic inferences are based on the assumption of 

neutrality for mtDNA cytb. Although the mitochondrial cytb marker was considered 

neutral in most of the previous studies on the phylogeography of Z. vivipara (Surget-

Groba et al. 2001, 2002, 2006), a recent paper, focussed on a contact zone of two 

mtDNA Z. v. louislantzi lineages (Heulin et al. 2011), questioned this assumption. The 

authors hypothesised a kind of thermal-related selection for explaining the differential 

survival of two subadults' cytb haplogroups living in syntopy, in a secondary contact 

zone. It appears at least advisable to wait for new evidence (comparison of survivorship 

over a longer period) supporting this hypothesis. Moreover, we think that even if there 

is selection acting locally on mtDNA at a contact zone, it does not mean that we cannot 

recover a historical pattern (e.g. expansion) from other wider regions and for other 

lineages with allopatric distributions. Thus, we think that cytb can still be used for 

general demographic and phylogeographical inferences, especially if they are confirmed 

by other markers, like in our study. 

 

Biogeographical distribution 

According to our results, 149 out of 191 individuals of our Italian samples were 

assigned to the subspecies Z. v. vivipara and 42 to the subspecies Z. v. carniolica. This 

allowed clarification of the situation surrounding the distribution of the two subspecies 

in the 51 sites sampled. In 15 sites only the subspecies Z. v. carniolica was found, while 

in 36 sites only the subspecies Z. v. vivipara was present (Figure 2.2). 

 According to our study, in the central-eastern Italian Alps Z. v. vivipara, on 

average, tends to live at higher altitudes (mean 1701 m) than Z. v. carniolica (mean 

1210 m). Z. v. carniolica populations can be found at higher altitudes than initially 

thought: at sites above 1400 m in Trentino (Tremalzo 1545 m, Lago Nero 1625 m, Palù 

Longa 1435 m), in Veneto (Monte Grappa 1700 m), and in Lombardy (Branzi 1800 m, 

Ardesio 1600 m, Roncobello 1880 m). A high altitude (1900 m) population of Z. v. 

carniolica was also identified in Piedmont (northwestern Italy) by Ghielmi et al. (2001, 

2006). Z .v. carniolica and Z. v. vivipara exhibit an indisputable overlap of their 

altitudinal distributions in the Italian Alps, similarly to other areas such as Carinthia, 

Austria, where the two subspecies have even been found in syntopy in a site at 1575 m 

(Lindtke et al. 2010).  

 The geographical distribution of the different haplotypes (Figure 2.4) 

corresponds to a biogeographical limit called the 'Brenner line' (i.e. a longitudinal line 
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from the Adige Valley up to the Brenner Pass, Figure 2.2). This line has been 

recognized as delimiting eastern and western distributions of many plant species since 

the 19th century (Kerner 1870 and see other examples below). All populations of Z. v. 

vivipara on the east of this line have VB11 (or derived haplotypes), while all population 

on the west have VB1 (or derived haplotypes). The only exception is one sample in 

population 12, which is on the west but shows VB11. The same pattern of east-west 

division by the Brenner line seems to hold for our Z. v. carniolica haplotypes of clade 

A. In this case, haplotypes OS8 and OT_11 belong only to individuals from sites east of 

this line. These two haplotypes cluster together with OS9, a haplotype described by 

Surget-Groba et al. (2006) and found in individuals from the Italian province of Udine 

that is located far east of the Brenner line.  

 The nuclear marker phylogenetic tree does not present the same biogeographical 

pattern: it is likely that the slow mutation rate of these markers limits their 

phylogeographical informativeness. 

Further research with markers better suited for fine-scale population genetics analyses, 

such as microsatellites, could confirm this preliminary indication of a possible east-west 

differentiation along the Brenner line. This pattern would be in line with what have been 

already found in the high-altitude butterfly, Erebia euryale (Haubrich & Smith 2007), in 

an Alpine form of rampion, Phyteuma globulariifolium, in the alpine speedwell, 

Veronica alpina, (Schonswetter et al. 2002, Albach et al. 2006) and in many other plant 

species (Thiel-Egenter et al. 2009). 

 

Implications for conservation 

Considering the evidence from karyotype to cytb variation, and the results of our study, 

the distinction between Z. v. vivipara and Z. v. carniolica can be regarded as 

evolutionarily substantial. While it is arguable whether such distinction deserves a 

taxonomical revision, we think that nonetheless it has some important consequences for 

conservation. In our view, proposing specific conservation action for Z. v. carniolica is 

further strengthened by a number of important aspects.  

 The low and medium altitude peatland habitats that Z. v. carniolica prefers are 

already thought to be at high risk of extinction (Moore 2002). Indeed, the European 

Habitats Directive 43/92/CEE has classified active raised bogs (Natura Code 2000: 

7110), transition and quaking bogs (7140), and alkaline fens (7230) as either threatened 

(7140, 7230) or even seriously threatened (7110). In particular, peatlands across the 
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Alps are suffering from a reduction in both the surface area of individual peatlands and 

their total number.  

 Moreover, a study on the peat bogs of Italian Alps (Bragazza 2008) revealed that 

heat waves, like that of 2003, affected the survival of organisms such as peat mosses 

(genus Sphagnum), which play a crucial role in maintaining bog functionality (i.e. 

carbon storage). Such a drastic change in mountain peat bogs due to just a single 

summer of higher temperatures and reduced rainfall represents a major concern with 

respect to the conservation status of this habitat. Exceptionally hot European summers, 

like that of 2003, may occur more frequently given recent climatic changes, bringing 

perilous consequences for mountain peatlands and their associated flora and fauna like 

Z. v. carniolica.  

 

Conclusions 

 

The main conclusion of our study is that the reciprocal monophyly between the 

oviparous subspecies Z. v. carniolica and all the other Z. vivipara subspecies has been 

proved for the first time using nuclear DNA markers. This now makes it possible to 

properly consider Z. v. carniolica as an ESU. The macro- and micro-scale analysis of 

the evolutionary history of Z. v. carniolica allowed us to reach the following 

conclusions: i) according to an external fossil calibration, the divergence time between 

Z. v. carniolica and all the other subspecies took place at least 2.6 millions years before 

the present day, thus corresponding to a relatively long time of evolutionary separation; 

ii) also in terms of demographic history, there is a remarkable difference: Z. v. 

carniolica does not show any signature of expansion as it occurs in the most widespread 

Z. v. vivipara clade (clade E of central-northern Europe); iii) the genetic evidence of this 

study, together with the vulnerability of Z. v. carniolica most suitable habitats (i.e. low-

mid altitudes peat bog), suggests specific action tailored to this subspecies.  

 While future studies could better address the recent findings of sintopy and of 

possible hybridization between Z. v. carniolica and Z. v. vivipara (Lindke et al. 2010), a 

clear evolutionarily and demographic distinction has now been demonstrated, much 

likely prompting a taxonomical revision. 

 



72 

References 

 

Albach DC, Schönswetter P, Tribsch A (2006) Comparative phylogeography of the Veronica 

alpina complex in Europe and North America. Molecular Ecology, 15, 3269-3286.  

Arribas OJ (2009) Morphological variability of the Cantabro-Pyrenean populations of Zootoca 

vivipara (JACQUIN, 1787) with description of a new subspecies. Herpetozoa,  21, 123-146. 

Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific 

phylogenies. Molecular Biology and Evolution, 16, 37-48. 

Barata M, Carranza S, Harris DJ (2012) Extreme genetic diversity in the lizard Atlantolacerta 

andreanskyi (Werner, 1929): A montane cryptic species complex. BMC Evolutionary 

Biology, 12, 167. 

Baum DA, Shaw KL (1995) Genealogical perspective on the species problem. In: Hoch PC, 

Stephenson AG, eds. In: Experimental and molecular approaches to plant biosystematics. St. 

Louis (MO), Missouri Botanical Garden, pp. 289-303. 

Beerli P, Hotz H, Uzzell T (1996) Geologically dated sea barriers calibrate an average protein 

clock in water frogs of the Aegean region. Evolution, 50, 1676-1687. 

Blackburn DG (1994) Discrepant usage of the term "ovoviviparity" in the herpetological 

literature. Herpetological Journal, 4, 65-72. 

Bragazza L (2008) A climatic threshold triggers the die-off of peat mosses during an extreme 

heat wave. Global Change Biology, 14, 2688-2695.  

Braña F, Bea A (1987) Bimodalite de reproduction chez Zootoca vivipara. Bulletin de la Société 

Herpétologique de France, 44, 1-5. 

Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary 

processes in conservation biology. Trends in Ecology and Evolution, 17, 390-395. 

Dely O, Böhme W (1984) Lacerta vivipara Jacquin, 1787, Waldeidechse, In: Handbuch der 

Reptilien und Amphibien Europas, 2-1, Echsen II, (Ed. W. Böhme), 362-393.  

Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. 

BMC Evolutionary Biology, 7, 214.  

Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range 

expansion: lessons from the infinite-island model. Molecular Ecology, 12, 853-64. 

Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for 

population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50. 

Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation Genetics. Cambridge 

University Press, Cambridge, UK. 

Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking 

and background selection. Genetics, 147, 915-925.  

Gamble T, Bauer AM, Greenbaum E, Jackman TR (2008) Out of the blue: a novel, trans-

Atlantic clade of geckos (Gekkota, Squamata). Zoologica Scripta, 37, 355-366. 

Ghielmi S, Bergò PE, Andreone F (2006) Nuove segnalazioni di Zootoca vivipara, Jaquin e di 

Vipera berus Linnaeus, in Piemonte, Italia nord-occidentale. Acta Herpetologica, 1, 29-36.  

Ghielmi S, Heulin B, Surget-Groba Y, Guillaume CP (2001) Identification de populations 

ovipares de Lacerta (Zootoca vivipara) en Italie. Bulletin de la Societe Herpetologique de 

France, 98, 19-29. 

Giovine G (1989) Indagine preliminare su Lacerta (Zootoca) vivipara nelle Prealpi bergamasche 

e nelle aree limitrofe. Bollettino Gruppo R.A.N.A, 1, 59-67. 

Hartl DL, Clark AG (2006) Principles of Population Genetics. Sinauer Associates Inc, 

Sunderland, MA. 

Haubrich K, Schmitt T (2007) Cryptic differentiation in alpine-endemic, high-altitude 

butterflies reveals down-slope glacial refugia. Molecular Ecology, 16, 3643-3658.  

Heulin B (1988) Donnees nouvelles sur les populations ovipares de Lacerta vivipara. C.R Acad 

Sci Pans, 306, 63-68. 

Heulin B, Guillaume C, Bea A, Arrayago MJ (1993) Interprétation biogéographique de la 

bimodalité de reproduction du lézard Lacerta vivipara: un modèle pour l'étude de l'évolution 

de la viviparité. Biogeographica, 69, 1-11. 



73 

Heulin B, Guillaume CP, Vogrin N, Surget-Groba Y, Tadic Z (2000) Further evidence of the 

existence of oviparous populations of Lacerta (Zootoca) vivipara in the NW of the Balkan 

Peninsula. Comptes Rendus de l’ Academie des Science, 5, 461-468.  

Heulin B, Surget-Groba Y, Sinervo B, Miles D, Guiller A (2011) Dynamics of haplogroup 

frequencies and survival rates in a contact zone of two mtDNA lineages of the lizard Lacerta 

vivipara. Ecography, 34, 436-447. 

Kerner A (1870) Die natürlichen Floren im Gelände der Deutschen Alpen. Fromann, Jena. 

Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: A biologist-centric software for 

evolutionary analysis of DNA and protein sequences. Brief in Bioinformatics, 9, 299-306.  

Lác J, Kluch E (1968) Die Bergeidechse der Ostslowakischen Tiefebene als selbstandige 

Unterart Lacerta vivipara pannonica n. subsp. Zoologicke listy, 17, 157-173. 

Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: Combined Selection of 

Partitioning Schemes and Substitution Models for Phylogenetic Analyses. Molecular 

Biology and Evolution,  29, 1695–1701. 

Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA 

polymorphism data. Bioinformatics, 25, 1451-1452. 

Lindtke D, Mayer W, Böhme W (2010) Identification of a contact zone between oviparous and 

viviparous common lizards (Zootoca vivipara) in central Europe: reproductive strategies and 

natural hybridization. Salamandra, 46, 73-82. 

Lymberakis P, Poulakakis N, Kaliontzopoulou A, Valakos E, Mylonas M (2008) Two new 

species of Podarcis (Squamata; Lacertidae) from Greece. Syst Biodivers, 6, 307-318.  

Mayer W, Böhme W, Tiedemann F, Bischoff W (2000) On oviparous populations of Zootoca 

vivipara (Jacquin, 1787) in southeastern Central Europe and their phylogenetic relationship 

to neighbouring viviparous and Southwest European oviparous populations. Herpetozoa, 13, 

59- 69. 

Mayer W, Pavlicev M (2007) The phylogeny of the family Lacertidae (Reptilia) based on 

nuclear DNA sequences: convergent adaptations to arid habitats within the subfamily 

Eremiainae. Molecular Phylogenetics and Evolution, 44, 1155-1163. 

Mazzoni S, Stagni G (1993) Gli anfibi e i rettili dell'Emilia-Romagna (Amphibia, Reptilia). 

Quaderni del Museo Civico di Storia Naturale di Ferrara, 5, 1-148. 

Moore PD (2002) The future of cool temperate bogs. Environmental Conservation, 29, 3-20. 

Moritz C (1994) Defining ‘evolutionary significant units’ for conservation. Trends in Ecology 

and Evolution, 9, 373–375. 

Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York, NY. 

Odierna G, Heulin B, Guillaume CP, Vogrin N, Aprea G, et al. (2001) Evolutionary and 

biogeographical implications of the karyological variations in the oviparous and viviparous 

forms of Lacerta vivipara. Ecography, 24, 332-340. 

Pavlicev M, Mayer W (2006) Multiple copies of coding as well pseudogene c-mos sequence 

exist in three Lacertid species. Journal of Experimental Biology, 360B, 539-550. 

Pinho C, Rocha S, Carvalho BM, Lopes S, Mourao S, et al. (2010) New primers for the 

amplification and sequencing of nuclear loci in a taxonomically wide set of reptiles and 

amphibians. Conservation Genetics Resources, 2, 181-185. 

Posada D (2009) Selection of models of DNA evolution with JModelTest. Method in Molecular 

Biology, 537, 93-112. 

Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: 

Advantages of Akaike Information Criterion and Bayesian approaches over Likelihood Ratio 

Tests. Systematic Biology, 53, 793-808. 

Rambaut A, Drummond AJ (2007) Tracer v1.5 Available from http://beast.bio.ed.ac.uk/Tracer. 

Accessed 2013 Dec 11. 

Rogers AR, Harpending H (1992) Population growth make waves in the distribution of pairwise 

genetic differences. Molecular Biology and Evolution, 9, 552-569. 

Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under 

mixed models. Bioinformatics, 19, 1572-1574. 

Runemark A, Hey J, Hansson B, Svensson EI (2012) Vicariance divergence and gene flow 

among islet populations of an endemic lizard. Molecular Ecology, 21, 117-29. 



74 

Schönswetter P, Tribsch A, Barfuss M, Niklfeld H (2002) Several Pleistocene refugia detected 

in the high alpine plant Phyteuma globulariifolium Sternb. & Hoppe (Campanulaceaea) in 

the European Alps. Molecular Ecology, 11, 2637-2647.  

Slatkin M, Hudson RR (1991) Pairwise comparisons of DNA mitochondrial sequences in stable 

and exponentially growing populations. Genetics, 129, 555-562. 

Smith MF, Patton JL (1991) Variation in mitochondrial cytochrome b sequence in natural 

populations of South American akodontine rodents (Muridae: Sigmodontinae). Molecular 

Biology and Evolution, 8, 85-103. 

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with 

thousands of taxa and mixed models. Bioinformatics, 22, 2688-2690. 

Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype 

reconstruction from population genotype data. American Journal of Human Genetetics, 73, 

1162-1169. 

Surget-Groba Y, Heulin B, Ghielmi S, Guillaume CP, Vogrin N (2002) Phylogeography and 

conservation of the populations of Zootoca vivipara carniolica. Biological Conservation, 

106, 365-372. 

Surget-Groba Y, Heulin B, Guillaume CP, Puky M, Semenov D, et al. (2006) Multiple origins 

of viviparity, or reversal from viviparity to oviparity? The European common lizard 

(Zootoca vivipara, Lacertidae) and the evolution of parity. Biological Journal of Linnean 

Society, 87, 1-11. 

Surget-Groba Y, Heulin B, Guillaume CP, Thorpe RS, Kupriyanova L, et al. (2001) 

Intraspecific Phylogeography of Lacerta vivipara and the Evolution of Viviparity.  

Molecular Phylogenetics and Evolution, 18, 449-459. 

Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). 

Version 4. Sinauer Associates, Sunderland, Massachusetts. 

Tajima F (1989) Statistical methods to test for nucleotide mutation hypothesis by DNA 

polymorphism. Genetics, 123, 585-595. 

Thiel-Egenter C, Holderegger R, Brodbeck S, IntraBioDiv-Consortium, Gugerli F (2009) 

Concordant genetic breaks, identified by combining clustering tessellation methods, in two 

co-distributed alpine plant species. Molecular Ecology, 18, 4495-4507. 

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX 

windows interface: flexible strategies for multiple sequence alignment aided by quality 

analysis tools. Nucleic Acids Research, 24, 4876-4882. 

Yang Z, Yoder AD (2003) Comparison of Likelihood and Bayesian Methods for Estimating 

Divergence TimesUsing Multiple Gene Loci and Calibration Points, with Application to a 

Radiation of Cute-Looking Mouse Lemur Species. Systematic Biology, 52, 705-716. 

 

 

 

 

 

 

 

 

 

 

 

 

 



75 

Supplementary materials 

 
Sites N 

GPS coordinates Altitude 

(m asl) 

mtDNA 

clade 

cyt b haplotypes Cmos ACM4 Mc1r 

 
North East 

1 
P. Lavazè 

(Peat bog) 
11 46°20'25" 11°29'13" 1565 E VB11(11) C-mos_1(2) ACM4_4(2) Mc1r_9(2) 

2 
P. Lavazè 

(Lake) 
5 46°21'22" 11°29'33" 1805 E VB11(5) C-mos_1(2) ACM4_1(2) Mc1r_8(2) 

3 Costa 3 45°54'42" 11°11'38" 1250 A OS8(3) C-mos_4(2) ACM4_6(1), 

ACM4_4(1) Mc1r_11(2) 

4 
Passo 

Manghen 
21 46°10'39" 11°27'12" 2060 E 

VB11(2), VT_24(1), 

VB1(18) 
C-mos_1(8) ACM4_1(5), 

ACM4_4(3) 
Mc1r_1(4), 

Mc1r_2(4) 

5 
Lago d' 

Ampola 
13 45°52'19" 10°39'16" 735 A OS6(13) 

C-mos_6(4), C-

mos_5(2), C-

mos_4(14) 

ACM4_6(18), 

ACM4_4(2) 

Mc1r_12(1), 

Mc1r_11(15), 

Mc1r_13(4) 

6 
Passo San 

Pellegrino 
4 46°22'29" 11°45'32" 1795 E VB11(4) C-mos_1(4) ACM4_1(4) Mc1r_1(4) 

7 Palù Longa 12 46°17'41" 11°21'58" 1435 A OT_11(2), OS8(10) C-mos_4(20) ACM4_6,ACM4_4 Mc1r_11(20) 

8 Passo Tonale 10 46°15'31" 10°35'52" 1850 E VB1(9), VT_23(1) C-mos_1(12) ACM4_1(12) 
Mc1r_8(4), 

Mc1r_1(5), 

Mc1r_2(3) 

9 Masi Carretta 12 46°06'24" 11°37'51" 1305 E VB1(2), VB11(10) C-mos_1(2) ACM4_1(2) Mc1r_8(2) 

10 Passo Redebus 3 46°08'20" 11°19'04" 1435 E VB1(2), VB11(1) NA NA NA 

11 Palù Longia 6 46°28'20" 11°04'58" 1565 E VB1(6) C-mos_1(2) ACM4_1(2) Mc1r_5(2) 

12 Palù Tremole 14 46°28'44" 11°04'30" 1720 E VB1(13), VB11(1) C-mos_1(2) ACM4_1(2) Mc1r_8(2) 

13 Lago Calaita 7 46°12'21" 11°47'38" 1660 E VB1(6), VB11(1) NA NA NA 

14 
Biotopo "I 

Mughi" 
5 46°05'52" 11°36'38" 1220 E VB1(3),VT_24(2) NA NA NA 

15 Passo Brocon 1 46°07'13" 11°41'10" 1670 E VB11(1) NA NA NA 

16 
Malga Ces, 

Siror 
1 46°16'17" 11°46'19" 1680 E VB11(1) NA NA NA 

17 Passo Valles 1 46°20'22" 11°47'58" 2030 E VB11(1) NA NA NA 

18 Soraga 2 46°23'25" 11°40'00" 1205 E VB11(2) NA NA NA 

19 Inghiaie 1 45°59'51" 11°18'37" 450 A OS8(1) NA NA NA 

20 
Laghi di 

Colbricon 
3 46°16'59" 11°45'59" 1915 E VB11(3) C-mos_1(2) ACM4_1(2) Mc1r_2(2) 

21 
Campo Carlo 

Magno 
5 46°15'30" 10°50'50" 1650 E VB1(5) NA NA NA 

22 Lago Nero 1 46°16'53" 11°19'39" 1625 A OS8(1) NA NA NA 

23 
Laghetti di 

Lasteati 
6 46°10'04" 11°33'30" 2080 E VB1(4), VB11(2) NA NA NA 

24 Croda Rossa 2 46°13'01" 10°53'06" 2160 E VB1(2) NA NA NA 

25 Val de la Mare 2 46°23'32" 10°41'29" 1400 E VB1(2) NA NA NA 

26 Tremalzo 1 45°50'25" 10°40'56" 1545 A OS6(1) C-mos_4(2) ACM4_6(2) Mc1r_11(2) 
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27 
Valle 

Vernecolo 
2 46°02'36" 10°09'26" 1800 E VB1(2) C-mos_1(2) ACM4_1(2) Mc1r_8(2) 

28 Malga Lifretto 1 46°01'05" 10°12'58" 1400 E VB1(1) NA NA NA 

29 Campelli 1 46°00'45" 10°10'40" 1160 E VB1(1) C-mos_1(2) ACM4_1(2) Mc1r_8(2) 

30 Valle del Vò 2 46°02'57" 10°07'46" 1810 E VB1(2) C-mos_1(2) ACM4_1(2) Mc1r_8(2) 

31 Branzi 1 46°00'10" 9°47'06" 1800 A OS3(1) C-mos_5(2) ACM4_6(2) Mc1r_11(2) 

32 Mezzoldo 1 46°02'33" 9°37'03" 1800 E VB1(1) C-mos_1(2) ACM4_1(2) Mc1r_8(2) 

33 Averara 1 46°01'36" 9°37'43" 1415 A OS3(1) C-mos_3(2) ACM4_6(1), 

ACM4_4(1) 
Mc1r_11(1), 

Mc1r_13(1) 

34 Cusio 1 45°59'02" 9°36'06" 1125 A OS3(1) C-mos_5(2) ACM4_6(1), 

ACM4_4(1) 
Mc1r_11(1), 

Mc1r_13(1) 

35 Vilminore 5 46°00'35" 10°01'55" 1640 E VB1(5) C-mos_1(2) ACM4_1(2) Mc1r_8(2) 

36 Ornica 1 45°59'54" 9°33'39" 1330 A OS3(1) C-mos_5(2) ACM4_6(2) Mc1r_11(2) 

37 Valgoglio 2 45°57'58" 9°52'06" 1420 A OL_11(2) C-mos_5(2) ACM4_6(2) Mc1r_11(2) 

38 Ardesio 1 45°52'00" 9°50'57" 1600 A OL_11(1) C-mos_5(2) ACM4_6(2) Mc1r_11(2) 

39 Val Bondione 3 46°01'21" 10°00'39" 1290 E VB1(3) C-mos_1(4) ACM4_1(4) Mc1r_1(4) 

40 Oneta 1 45°51'49" 9°47'37" 1320 A OL_12(1) C-mos_4(2) ACM4_6(2) Mc1r_11(2) 

41 Valleve 1 46°03'06" 9°41'49" 1830 E VB1(1) C-mos_1(2) ACM4_1(2) Mc1r_11(2) 

42 Gandellino 4 46°00'18" 9°54'43" 1720 E VB1(4) C-mos_1(4) ACM4_1(4) Mc1r_8(2), 

Mc1r_1(2) 

43 Roncobello 1 45°57'55" 9°47'30" 1880 A OL_11(1) C-mos_3(2) ACM4_6(2) Mc1r_11(2) 

44 Ridanna 1 46°56'30" 11°15'00" 1715 E VB1(1) C-mos_1(2) ACM4_1(2) Mc1r_1(2) 

45 Vipiteno 1 46°56'50" 11°18'00" 1815 E VB1(1) C-mos_1(2) ACM4_1(2) Mc1r_1(2) 

46 Sesto 1 46°39'43" 12°21'07" 1470 E VB11(1) C-mos_1(2) ACM4_4(2) Mc1r_9(2) 

47 Campo Tures 1 46°58'47" 12°05'39" 1860 E VB11(1) C-mos_1(2) ACM4_4(1), 

ACM4_1(1) Mc1r_1(2) 

48 Redagno 2 46°20'41" 11°23'55" 1540 E VB11(2) NA NA NA 

49 Dobbiaco 1 46°42'10" 12°13'17" 1250 E VB11(1) C-mos_1(2) ACM4_4(2) Mc1r_1(2) 

50 Monte Grappa 2 45°52'20" 11°18'09" 1700 A OS8(2) NA NA NA 

51 Sappada 1 46°37'15" 12°42'49" 1830 E VB11(1) C-mos_1(2) ACM4_4(2) Mc1r_9(2) 

 
Total 191 

    
191 

   

 

 

Table S2.1. Sampling sites details across Italian Alps (see Figure 2.2). Number of samples collected for each site (N), 

GPS Coordinates, Altitude and mtDNA cyt b haplotype and alleles observed for each nuclear gene. Numbers in 

brackets refer to allele frequencies. 
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Sites N Country Subspecies 

mtDNA 

clade 

C-mos ACM4 Mc1r 

Pinet-Bélesta 1 France Z. v. louislantzi B* C-mos_2 (2) ACM4_4 (2) Mc1r_1 (2) 

Clamondé 1 France Z. v. louislantzi B* C-mos_2 (2) ACM4_2 (2) Mc1r_1 (2) 

Etang de Lers 1 France Z. v. louislantzi B* C-mos_2 (2) ACM4_4 (2) Mc1r_1 (2) 

Clarens 1 France Z. v. louislantzi B* C-mos_2 (2) 
ACM4_5 (1), 

ACM4_1 (1) 
Mc1r_5 (2) 

Louvie 2 France Z. v. louislantzi B* C-mos_2 (4) ACM4_5 (4) 
Mc1r_1 (2), 

Mc1r_5 (2) 

Pourtalet 2 Spain Z. v. louislantzi B* C-mos_2 (4) ACM4_5 (4) 
Mc1r_1, (2) 

Mc1r_3 (2) 

Iraty 1 France Z. v. louislantzi B* C-mos_2 (2) ACM4_4 (2) Mc1r_3 (2) 

La Rhune 1 France Z. v. louislantzi B* C-mos_2 (2) ACM4_5 (2) Mc1r_3 (2) 

Gabas 7 France Z. v. louislantzi B* C-mos_2 (14) 

ACM4_5 (10), 

ACM4_4 (1), 

ACM4_6 (2), 

ACM4_2 (1) 

Mc1r_4 (2), 

Mc1r_1 (10), 

Mc1r_3 (2) 

Szklarska Poreba 1 Poland Z. v. vivipara E§ C-mos_1 (2) ACM4_1 (2) Mc1r_1 (2) 

Ustrzyki Gorne  1 Poland Z. v. vivipara E§ C-mos_1 (2) ACM4_4 (2) Mc1r_9 (2) 

Paimpont  1 France Z. v. vivipara E§ C-mos_1 (2) ACM4_1 (2) Mc1r_8 (2) 

Tarpa 1 Hungary Z. v. vivipara E§ C-mos_1 (2) ACM4_4 (2) Mc1r_1 (2) 

Krutyn  1 Bulgaria Z. v. vivipara E§ C-mos_1 (2) ACM4_1 (2) Mc1r_8 (2) 

Turukchanskii 

Krai  
1 Russia Z. v. vivipara D§ C-mos_1 (2) ACM4_4 (2) 

Mc1r_7 (1), 

Mc1r_6 (1) 

Sakhaline  1 Russia Z. v. vivipara D§ C-mos_1 (2) ACM4_4 (2) Mc1r_7 (2) 

Grossevitchi 1 Russia Z. v. vivipara D§ C-mos_1 (2) ACM4_4 (2) Mc1r_7 (2) 

Kara-Khol 1 Russia Z. v. vivipara D§ C-mos_1 (2) ACM4_4 (2) Mc1r_7 (2) 

Godingberg 1 Austria Z. v. vivipara F§ C-mos_1 (2) 
ACM4_4 (1), 

ACM4_6 (1) 
Mc1r_9 (2) 

Emberger Alm 1 Austria Z. v. vivipara F§ C-mos_1 (2) 
ACM4_3 (1), 

ACM4_4 (1) 

Mc1r_9 (1), 

Mc1r_10 (1) 

 

 

Table S2.2. Sampling sites details across Europe. Number of samples for each site (N), Country, subspecies, mtDNA 

clade and alleles observed for each nuclear gene. Numbers in brackets refer to haplotypes (mtDNA) and allele 

frequencies (nuclear genes). * Heulin et al. (2011) § Surget-Groba et al. (2006).  
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Sequence Accession number 

 

 

 

 

 

 

 

Phased 

nuclear 

alleles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MtDNA 

haplotypes 

C-mos_1 EF632292 

C-mos_2 KF886547 

C-mos_3 KF886546 

C-mos_4 KF886545 

C-mos_5 KF886543 

C-mos_6 KF886544 

ACM4_1 KF886565 

ACM4_2 KF886564 

ACM4_3 KF886566 

ACM4_4 KF886563 

ACM4_5 KF886562 

ACM4_6 KF886561 

Mc1r_1 KF886555 

Mc1r_2 KF886556 

Mc1r_3 KF886557 

Mc1r_4 KF886558 

Mc1r_5 KF886552 

Mc1r_6 KF886554 

Mc1r_7 KF886553 

Mc1r_8 KF886559 

Mc1r_9 KF886550 

Mc1r_10 KF886551 

Mc1r_11 KF886548 

Mc1r_12 KF886549 

Mc1r_13 KF886560 

VB11 AY714892 

VB1 AY714882 

VT_23 KF886538 

VT_24 KF886539 

OS3 AY714923 

OS6 AF444041 

OS8 AY714927 

OT_11 KF886540 

OL_11 KF886541 

OL_12 KF886542 
 

 

 

Table S2.3. MtDNA haplotypes and phased nuclear sequences found in this study and their relative database accession number. 
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Third study: Reproductive isolation is complete between oviparous and 

viviparous lineages of Zootoca vivipara in a contact zone. 

 

Luca Cornetti, Francesco Belluardo, Samuele Ghielmi, Giovanni Giovine, G. 

Francesco Ficetola, Giorgio Bertorelle, Cristiano Vernesi and Heidi C. Hauffe. 

Manuscript submitted to the Journal of Evolutionary Biology 

 

Abstract   

 

Species including both viviparous and oviparous lineages are excellent models for 

understanding relationships between speciation and changes in breeding parity mode. 

However, scarcity of contact zones makes it difficult a full understanding of processes 

occurring at early stages of divergence. Zootoca vivipara provides an intriguing 

model for the study of speciation between viviparous and oviparous lineages in 

squamate reptiles. Although the genetic pattern observed in contact zones could 

reflect the evolutionary history of differentiation, specific ecological requirements 

make the contact zones between viviparous and oviparous subspecies of Z. vivipara 

extremely rare. Here, we studied a recently discovered syntopic area of Z. v. vivipara 

(viviparous) and Z. v. carniolica (oviparous) in the central Italian Alps. For the first 

time, we used genetic markers for investigating the genetic structure and the level of 

introgression between these two subspecies in a contact zone, demonstrating that the 

speciation process is complete in this area, with no evidence of recent reinforcement. 

Patterns of genetic variability in mtDNA sequences and microsatellites and 

morphological data provide new insights into the role of reproductive mode in the 

speciation process. Phylogenetic and genotypic divergence suggests that the two 

subspecies have experienced long independent evolutionary histories, during which 

phenotypic differences evolved. 
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Introduction 

 

Ongoing discussions in evolutionary biology debate the relative roles of genetic 

divergence in allopatry and reinforcement in secondary contact in the speciation 

process between two lineages (Jiggins et al. 1996; Coyne & Orr 2004). To resolve this 

issue, contact (or hybrid) zones between two or more differentiated lineages within a 

species are often studied (e.g. Phillips et al. 2004; Leache & Cole 2007; Johnson et al. 

2013; Miraldo et al. 2013). The comparison of the patterns of genetic diversity 

observed in a series of contact (or hybrid) zones within the same species, reflecting 

varying stages of the speciation process (e.g. unimodal hybrid zones where hybrid 

genotypes predominate, and bimodal zones where hybrids are rare and parental 

genotypes prevail), may produce particularly relevant insights (Jiggins & Mallet 

2000). However, in contact zones where hybrids are lacking (i.e. speciation is 

complete), either genetic and phenotypic differentiation in allopatry has precluded 

hybridization upon secondary contact, or pre-zygotic or post-zygotic barriers have 

reinforced partial reproductive isolation. In this case, detailed genetic studies may 

reveal the history of the speciation process and resolve this conundrum.  

The Eurasian lacertid lizard, Zootoca vivipara, offers a unique model for 

studying the role of reproductive mode in speciation. Despite its scientific name, this 

species shows both ovoviviparous (more commonly referred as ‘viviparous’ in this 

species) and oviparous reproduction (Surget-Groba et al. 2001). Although there are 

two other species of squamate lizards with both modes of reproduction  (the 

Australian scincid lizards Lerista bougaunvilli and Saiphos equalis; Qualls & Shine 

1998; Smith et al. 2001), only Z. vivipara is known to have potentially hybridizing 

egg-bearing and live-bearing populations (Surget-Groba et al. 2002; Cornetti et al. 

2014). 

The subspecies Z. v. vivipara (viviparous), is found in many wetland areas 

from western Europe to Japan, while oviparous populations of Z. vivipara occupy two 

allopatric areas in southern Europe: one in the Pyrenees (Z. v. louislantzi; Arribas 

2009), the other in the central eastern Alps (Z. v. carniolica; Mayer et al. 2000). The 

distributions of Z. v. louislantzi and Z. v. vivipara do not overlap, while Z. v. 

carniolica and Z. v. vivipara are sympatric in the Alpine chain. However, syntopic 

locations of the latter two subspecies are rare, probably due to ecological 

differentiation: viviparous individuals have a higher cold tolerance than oviparous 
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ones (Voituron et al. 2004), and offspring that develop inside the body of the females 

for longer are more likely to survive freezing temperatures (Blackburn 2005). In fact, 

previous surveys have only identified one location where Z. v. vivipara and Z. v. 

carniolica are found in syntopy (Carinthia, Austria; Lindtke et al. 2010). In this 

contact zone, Lindtke et al. (2010) reported several putative hybrids with apparently 

intermediate developmental traits. 

 In this study we analyze in detail another potential contact zone between Z. v. 

carniolica and Z. v. vivipara identified during recent field surveys (Cornetti et al. in 

preparation) using a set of highly variable genetic markers and a morphological 

characteristic considered a secondary sexual trait, the number of femoral pores 

(Martin & Lopez 2000), with the aim of giving insight into the speciation process. 

These results have important implications for the taxonomy of the genus and, 

consequently, for the conservation status of relatively rare Z. v. carniolica 

populations.  

 

Materials and Methods 

 

During recent alpine-wide field surveys, some of us (LC, FB, GS, GG) identified a 

relatively small area (0.72 km2) of potential overlap between Z. v. vivipara and Z. v. 

carniolica in the alpine valley Valmora (central northern Italy, 46°02’15”-46°02’36” 

N; 9°37’09”-9°38’01” E; 1400-1600 m above sea level; Figure 3.1). Subsequently, 

during the summers of 2012 and 2013, 60 lizards were captured by hand within this 

area over 27 non-consecutive days by one to four surveyors. In order to confirm that 

there was adequate sampling coverage, mixture models for open populations were 

used to estimate the local abundance of lizards for four sites of the study area (Royle 

2004; Kéry et al. 2009; see Figure 3.1), assuming that detection probability may have 

been affected by the date, air temperature, precipitation, solar radiation and number of 

surveyors. We used the Akaike’s Information Criterion, corrected for small sample 

size, to identify the combination of predictors best explaining detection probability 

(Richards et al. 2011); we assumed negative binomial error for the abundance 

component of models. Models were run using the package ‘unmarked’ in R (Fiske et 

al. 2011). An empirical Bayes algorithm was used to estimate lizard abundance in the 
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four sites and 95% CI. The results suggest that the 60 captured individuals represented 

at least 50% of the resident lizard population (see Table 3.1). 

 

 

Figure 3.1. Detailed map of sampling area; closed circles represent capture site of Z. v. vivipara and 

open circles represent capture site of Z. v. carniolica, identified to ‘subspecies’ according to cytb 

haplotype. Ovals describe the four sites used for lizard abundance estimation. 

 

 
Abundance 

site Mean 95% CI 

Site 1 7.0 3 - 13 

Site 2  13.9 8 - 22 

Site 3 16.9 10 - 26 

Site 4  41.3 31 - 50 

 

Table 3.1. Empirical Bayes estimation of lizard abundance in the four sites within the study area. 
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 Before releasing lizards, we photographed the ventral side of each individual; 

these photographs were used for counting the number of femoral pores on the inside 

of each hind limb. The mean number of femoral pores was calculated as the arithmetic 

mean between the number of pores on the right and left limbs (Guillaume et al. 2006). 

 Three mm tail tips were collected and stored at room temperature in 95% 

ethanol until DNA extraction. All sampling procedures complied with the current 

laws of the Italian Ministry of Environment and the Environmental Unit 

(DPN/2D/2003/2267). Genomic DNA was extracted using the QIAGEN DNeasy 

Tissue Kit and QIACUBE automated DNA extractor (QIAGEN Inc., Hilden, 

Germany). For each sample, a 385-base pair (bp) fragment of the mitochondrial gene 

cytochrome b (cytb) was amplified using the primers MVZ04 and MVZ05 (Smith & 

Patton 1991). Cytb is the most extensively sequenced marker for the Zootoca genus 

and, therefore, is useful for comparison of our results with previous studies, and to 

confirm subspecies identification, since no morphological traits unequivocally 

distinguish the two forms. PCR amplification was carried out according to Cornetti et 

al. (2014). PCR products were purified and sequenced in both directions on an ABI 

Prism 3730 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). Thirteen 

microsatellite (STR) markers (Lv-4-alpha, Lv-2-145, Lv-4-X and Lv-4-115 from 

Boudjemadi et al. 1999; B114 from Remon et al. 2008; Lacviv04, Lacviv06, 

Lacviv26, Lacviv07, Lacviv27, Lacviv30, Lacviv05 and Lacviv17 from Stevens et al. 

2012) were also amplified in seven multiplexed runs under the following conditions: 

initial incubation at 94°C for 10 min, followed by 30 cycles of 94°C for 1 min, 

annealing temperature (Ta) for 45 s, and 65 °C for 1 min, with a final extension of 

65 °C for 10 min (Ta: 50°C for B114, Lv-2-145; Ta: 51°C for Lv-4-X; Ta: 52°C for 

Lv-4-alpha; Ta: 53°C for Lacviv07, Lacviv27, Lacviv30; Ta: 55°C for Lv-4-115, 

Lacviv04, Lacviv06, Lacviv26; Ta: 57°C for Lacviv05, Lacviv17). PCR 

amplifications were optimized in a 20μl reaction volume containing 1μl of DNA, 2 µl 

HotMaster™ Taq Buffer 25 mM Mg2 (Eppendorf, Westbury, NY), 100 µM dNTPs, 

variable proportion of labeled forward primers and reverse primers, 1 unit of 

HotMaster™ Taq Polymerase (Eppendorf, Westbury, NY), and double distilled water. 

PCR products were run with an internal lane standard (LIZ) on an ABI 3130 (Applied 

Biosystems, Foster City, CA, USA); alleles were scored using GeneMapper® 

software.  
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Sequence fragments were edited with FinchTV 1.4.0 (Geospiza, Inc. Seattle, 

WA, USA; http://www.geospiza.com), assembled using Sequencher 4.7 (Gene Codes. 

Corporation, USA) and aligned using Clustal X (Thompson et al. 1997). These and all 

publicly available haplotypes found across the Alpine chain were collapsed into a 

median-joining network using Network 4.6.1.1 (http://www.fluxus-

engineering.com/sharenet_rn.htm), so that the subspecies of each of our samples 

could be identified. 

The STR data were tested for deviations from Hardy-Weinberg equilibrium 

(HWE) and linkage disequilibrium (LD) using Genepop 4.0 (Rousset 2008). Possible 

genotyping errors (presence of null alleles, large allele dropout and stuttering) were 

assessed with Micro-Checker 2.2.3 (Van Oosterhout et al. 2004). Since some markers 

had null alleles (see Results section), we used FreeNa (Chapuis & Estoup 2007) for 

calculating if such null alleles induced a positive bias in the estimates of Fst. Genetic 

variation at STRs and subspecies differentiation were investigated using the R 

package diveRsity (Keenan et al. 2013); number of alleles (Na), allelic richness (Ar), 

observed and expected heterozygosity (Ho and He, respectively) were calculated for 

each subspecies, while Fst was calculated between subspecies. Factorial 

Correspondence Analysis (FCA) implemented in Genetix (Belkhir et al. 2004) was 

used for visualizing the distribution of genetic variation across individuals. 

NewHybrids 1.1 beta (Anderson & Thompson 2002) and Structure 2.3.4 

(Pritchard et al. 2000; Falush et al. 2003) were used for inferring hybridization 

between subspecies; that is, individual lizards were categorized as belonging to either 

parental subspecies (pure vivipara, pure carniolica) or one of the hybrid categories 

(F1, F2, or backcross) using a Bayesian algorithm and Markov chain Monte Carlo 

(MCMC) sampling. We ran 10 independent analyses using uniform priors, and a 

burn-in of 2.5x105 followed by 106 iterations. In order to detect possible hybrids, we 

also ran 10 independent analyses of Structure using K=2 clusters, representing the two 

hybridizing subspecies (burn-in of 2.5x105 followed by 106 iterations).  

Finally, we used microsatellites data for estimating the divergence time 

between Z. v. carniolica and Z. v. vivipara using the Approximate Bayesian 

Computation (ABC) framework implemented in DIYABC 2.0 (Cornuet et al. 2010; 

for details about prior distribution of parameters see Table 3.3). We modeled a single 

scenario describing the divergence of the two populations, without gene flow. 
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Results 

 

All 60 samples were successfully sequenced for cytb. Three haplotypes were 

identified corresponding to previously deposited sequences (OS3, VB1 and VL_26; 

accession numbers: AF444038, AF247976, KF898394). On the basis of haplotype, 

our sample set consists of 29 Z. v. carniolica (all with haplotype OS3), and 31 Z. v. 

vivipara (23 of the VL_26 and eight of the VB1 haplotype). The median-joining 

network shown in Figure 3.2a highlights the high level of divergence (19 mutations) 

between Z. v. vivipara and Z. v. carniolica populations in the contact zone studied 

here (see Figure 3.2a). 

 All thirteen STRs were successfully genotyped for all samples. MicroChecker 

results suggest the presence of null alleles for four markers; however, these are 

distributed evenly among subspecies (Lv115 and Lacviv04 in Z. v. carniolica and 

Lacviv07, Lacviv30 in Z. v. vivipara). In addition, three of these loci (all except 

Lacviv30), showed significant deviation from Hardy Weinberg equilibrium (P<0.05), 

after correction for multiple testing using False Discovery Rate (FDR; Benjamini & 

Hochberg 1995). Only one out of 78 locus pairs showed significant genotypic linkage 

(P<0.05; Lv-4-X and Lacviv30). However since subsequent analyses of the dataset 

with or without deviant loci led to very similar conclusions, we will only present here 

the results of analyses including all 13 STRs. 

 Visualization of the overall genotypic variation in STRs (Figure 3.2b) suggests 

a marked genetic difference between individuals belonging to the two cytb clades, 

corresponding to Z. v. vivipara and Z. v. carniolica subspecies, with no mitochondrial 

introgression. Genetic variability within the two populations was similar, and 

although Z. v. carniolica had lower estimates for all indices, these differences were 

not significant (t-test, P>0.05; Table 4.2). The mean number of private alleles was 2.6 

(56%) and 4.0 (66%) in Z. v. carniolica e Z. v. vivipara, respectively; the Fst value 

between populations was high and significant (0.381) and very similar to the Fst 

calculated excluding null alleles with FreeNa (0.372). 
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Subspecies N Na Ar Ho He 

      

Z. v. carniolica 29 4.69 4.34 0.47 0.51 

      

Z. v. vivipara 31 6.08 5.35 0.51 0.57 

 

Table 3.2. Genetic variation within the Z. vivipara subspecies carniolica and vivipara from one 

syntopic site. Number of alleles (Na), allelic richness (Ar), observed and expected heterozygosity (Ho 

and He). 

 

Admixture analyses using NewHybrids clearly show the lack of hybrid 

individuals in our sample set, and all samples were assigned to their pure parental 

subspecies with a probability above 99%. Similarly, Structure estimated a mean 

posterior probability of ranking Z. v. carniolica individuals to one cluster of 99.7% 

and Z. v. vivipara individuals to the other, of 99.5% (Figure 3.2c).  

Finally, with ABC approach, we obtained an estimated divergence time 

between the two subspecies as being about 100.000 years before present (95% CI 

18.000-780.000, considering a generation time of 3 years, Corti et al. 2010; for details 

see Table 3.3). 

We successfully counted the number of femoral pores from all individuals 

except 12 juveniles, which presented underdeveloped and/or undeveloped femoral 

pores. The range of the mean number of femoral pores per individual slightly overlaps 

between subspecies (Z. v. vivipara: 8.5-11.5; Z. v. carniolica: 11.5-15.0), but their 

means are highly statistically different (t-test, P<10-12).  The range of number of 

femoral pores in females overlaps slightly (Z. v. vivipara: 8.5-11.5; Z. v. carniolica: 

11.5-15.0), but that of males does not (Z. v. vivipara: 9.0-11.0; Z. v. carniolica: 12.5-

14.5). 
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Figure 3.2. Analysis of mitochondrial and nuclear genetic variation of Z. vivipara in the Valmora contact zone. (a) 

Network analysis including deposited sequences from Alpine distributions of common lizard subspecies: closed 

and open circles represent mtDNA haplotypes of Z. v. vivipara and Z. v. carniolica respectively; circles indicated 

by asterisks correspond to haplotypes found in this study; grey dots represent diverging mutations between 

observed haplotypes. (b) FCA of genotypic variation between individuals divided according to cytb assignment. 

(c) Plot representing q-value of individuals belonging to predefined mtDNA clusters as estimated by 

STRUCTURE. 
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Prior Posterior 

 

min max mean median Quantile 2.5% Quantile 97.5% 

N_carn 10 10000 4050 3810 697 8990 

N_viv 10 10000 6190 6420 1660 9700 

t 0 500000 56400 39500 5980 266000 

Mutation rate 0.00005 0.001 0.00017 0.00013 0.00006 0.00054 

p 0.1 0.5 0.41 0.42 0.26 0.5 

 

Table 3.3. Prior and posterior distribution of demographic and mutational parameters used in the ABC 

framework for estimating the time of divergence between Z. v. vivipara and Z. v. carniolica. All one-

sample and two-samples summary statistics available were used (for details see DIYABC 2.0 maunal). 

N_carn and N_viv are the effective population size of Z. v. carniolica and Z. v. vivipara, respectively; 

t_div is the time of divergence between subspecies, expressed in generations; mean_µ is the mean 

mutation rate for microsatellite markers; mean_P is the mean parameter of geometric distribution. 

 

 

Discussion 

 

Here, for the first time, we investigated the genetic pattern in a syntopic area of Z. v. 

vivipara and Z. v. carniolica for understanding the process of divergence between 

viviparous and oviparous lineages and the role of reproductive mode. Our results 

show that speciation is complete since our multi-locus analyses confirm two highly 

distinct groups and the presence of hybrid individuals can be confidently excluded. 

The absence of introgression suggests that the isolation between the two subspecies is 

not recent, and was likely complete before the last glaciation, possibly as a result of a 

switch in reproductive mode.  In addition, some preliminarily data on morphological 

traits related to reproduction suggest that reinforcement may have occurred in the past 

in the contact zone we analysed.  

In the studied area, speciation between the oviparous Z. v. carniolica and the 

viviparous Z. v. vivipara is complete, without ongoing evidence of gene flow. 

MtDNA sequences confirmed the deep haplotypic divergence between lineages 

(Figure 3.2a), previously suggested by a mitochondrial phylogenetic study, that 

estimated the divergence time between Z. v. carniolica and Z. v. vivipara at about 4.5 

Mya (95 % CI 6.1-2.6; Cornetti et al. 2014). We also reported profound genotypic 

differentiation (FCA, Figure 3.2b), likely determined by lack of gene flow over time, 

corroborated by a high and significant Fst value between subspecies (0.381) and a high 
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percentage of private alleles (56% and 66% in Z. v. carniolica e Z. v. vivipara, 

respectively). In addition, with ABC analysis of microsatellites, we estimated a 

median divergence time between the two subspecies of about 0.12 Mya years (95% CI 

0.018-0.78 Mya), or at least before the Last Glacial Maximum (LGM; Ivy-Ochs et al. 

2008). Thus, molecular analyses clearly illustrated the lack of gene flow between 

oviparous and viviparous lineages in this contact zone. 

Absence of hybrid genotypes of any category (F1, F2 and backcrosses) 

highlighted that the occurrence of natural hybrids is extremely unlikely (Figure 3.2c), 

and confirms that speciation is complete in this area. In fact, convincing evidence of 

natural hybridization between oviparous and viviparous Z. vivipara has never been 

reported. Only hybridization in captivity has been noted (Arrayago et al. 1996), with 

these authors suggesting that the geographically isolated Z. v. louislantzi and Z .v. 

vivipara can successfully hybridize, although the fitness of F1 hybrids was lower than 

that of parental forms. However, Z. v. louislantzi and Z. v. vivipara, contrary to Z. v. 

carniolica and Z. v. vivipara, have a very similar karyotype (Odierna et al. 2001), and 

they are phylogenetically closer to each other than Z. v. carniolica and Z. v. vivipara. 

Since post-zygotic isolation and genetic distance are generally positively correlated 

(e.g., Presgraves 2002; Mendelson 2003), we expect a more reduced viability/fertility 

in a carniolica x vivipara F1 hybrid than a louislantzi x vivipara one. Furthermore, 

hybridization in captivity may be not indicative of processes occurring in nature. 

Lindtke et al. (2010) claimed that natural hybridization occurs between wild 

population of Z. v. carniolica and Z. v. vivipara, but this analysis was based on 

phenotypic traits that taken singularly are known to lead to erroneous conclusions 

(Allendorf et al. 2001). In the only other contact zone reported for these subspecies 

(Carinthia, Austria), Lindtke et al. (2010) captured two putative hybrid females 

showing advanced development of embryos at oviposition, shortened incubation 

period of their eggs and reduced eggshell thickness; however, the authors admitted 

that genetic analyses were needed in order to confirm the hybrid origin of these 

individuals. More detailed studies in this second hybrid zone should be carried out to 

confirm whether hybridization has also ceased in other parts of the Z. v. vivpara and 

Z. v. carniolica ranges. 

Our molecular results do not allow us to establish when the transition from 

oviparity to viviparity in Z. vivipara occurred, but in reptiles this switch is 

consistently associated with colonization of cold climates (Shine 2005; Pincheira-
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Dinoso et al. 2013). Similarly, for Z. vivipara, oviparity is considered ancestral, and it 

has been demonstrated that the evolution and distribution of viviparous and oviparous 

populations have been mainly shaped by Pliocene/Pleistocene climatic oscillations 

(i.e. 5.3 to 0.01 Mya; Surget-Groba et al. 2001). A previous study based on mtDNA 

concluded that Quaternary glacial phases pushed the distribution of oviparous Z. 

vivipara populations to southern areas of Europe. It is hypothesized that colder 

climatic conditions exerted a strong selective pressure on populations between the 

Balkan Peninsula and southern Russia (when further southern range expansions were 

impeded by the sea), giving rise to viviparity. Viviparity then permitted the 

recolonization of northern Eurasia by these populations during interglacial periods 

(see also Figure 1 in Surget-Groba et al. 2006). Surviving oviparous populations in 

the Italian peninsula, currently classified as Z. v. carniolica, presumably remained 

well-adapted to the warmer climate, since their spatial and demographic re-expansion 

after glacial waves was limited to areas south of the Alps (Surget-Groba et al. 2002). 

The above hypothesis would indicate that the switch to viviparity in Z. vivipara 

occurred between 5.3 to 0.01 Mya, in the same range as mitochondrial phylogenetic 

analysis and simulation-based analyses of microsatellite data suggest that vivipara and 

carniolica began to differentiate (4.5-0.12 Mya), long before their secondary contact 

in Valmora. Interestingly, it has been previously demonstrated that shifts in 

reproductive mode are usually correlated with genetic divergence of lineages 

(Fairbairn et al. 1998; Schulte et al. 2000; Smith et al. 2001; Velo-Anton et al. 2012; 

Boomer et al. 2012). 

There appears to be a discrepancy among estimated times of divergence 

between subspecies calculated using mtDNA (4.5 Mya, 95 % CI 6.1-2.6) and nuclear 

microsatellites (0.12 Mya, 95% CI 0.018-0.78). Such a discrepancy is frequently 

observed (e.g., Portnoy et al. 2010; Rodriguez et al. 2010; Charruau et al. 2011), and 

may be related to the calibration of the mtDNA clock, the estimated parameters of the 

different mutation models, the generation time assumed in the ABC analysis, and/or 

to the fact that the TMRCA (time to the most recent common ancestor) of the mtDNA 

genealogy tend to overestimate the age of the population split if the ancestral 

population size was very large. However, these contrasting results do not undermine 

the hypothesis that divergence between Z. v. vivipara and Z. v. carniolica occurred 

long before their secondary contact in the Valmora valley, and was almost certainly 

complete before the LGM. 
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The evolutionary transition from oviparity to viviparity requires major 

structural, physiological and, therefore, genetic changes (Thompson & Speake 2006; 

Murphy & Thompson 2011). Nonetheless, and perhaps remarkably, this switch has 

been reported at least 115 times in squamate reptiles, out of a total of 140 switches for 

vertebrates (Sites et al. 2011). Thus, this change in reproductive mode in Z. v. 

vivipara may have determined the genetic differentiation between these subspecies. 

The ecological shift that coincided with the evolution of viviparity would have 

resulted in an allopatric distribution of the two subspecies and in the Alps in different 

altitudinal distributions (mean: 1200 (range: 450-1880) m asl and 1700 (1160-2160) 

m asl, for Z. v. carniolica and Z. v. vivipara, respectively; Cornetti et al. 2014), where 

drift may have promoted further differentiation. 

In addition to a switch in reproductive mode and drift, karyotypic divergence 

may also have posed significant post-zygotic barriers upon secondary contact, such as 

hybrid subfertility, sterility or inviability (Coyne & Orr 2004; Kitano et al. 2009). The 

karyotype of Z. v. carniolica and Z. v. vivipara differ by a fusion between the W sex 

chromosome and an autosome, so that males and females of Z. v. carniolica have the 

same number of chromosomes (2n=36), whereas Z. v. vivipara males have 2n=36 and 

females, 2n= 35 (Odierna et al. 2001). F1 hybrids between carniolica males x vivipara 

females are expected to carry trivalents which may misalign and/or fail to segregate 

regularly during meiosis, causing germ cell death and/or resulting in inviable 

aneuploid gametes. Essentially, this type of chromosomal rearrangement may cause 

lowered hybrid fitness, potentially limiting gene flow between the two lineages 

(Rieseberg 2001; Faria & Navarro 2010 and references therein). Chromosome fusions 

are known to have played an important role in the speciation process in many 

vertebrates (White 1969), including lizards (Leache & Sites 2010), especially when a 

sex chromosome is involved (Qvarnström & Bailey 2009). During secondary contact 

of the two highly differentiated oviparous and viviparous subspecies after the last 

LGM, if hybridization between Z. v. vivipara and Z. v. carniolica occurred and did not 

result in completely sterile hybrids, the lowered fitness of F1 hybrids caused by 

genetic and karyotypic differences may have promoted speciation by reinforcement. 

There is some morphological evidence for such a process within this hybrid zone. 

Although the two subspecies do not show clear morphological differences, Z. v. 

carniolica is said to be distinguishable from Z. v. vivipara for its larger body size, 

lower number of ventral scale rows and higher number of femoral pores. However, 
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the ranges of each of these measurements greatly overlap between the two lineages 

when individuals from the entire distribution range are analyzed (Guillaume et al. 

2006). In contrast, in the contact zone studied here, we found that the ranges of the 

mean number of femoral pores slightly overlap between subspecies and, more 

significantly, the ranges of number of femoral pores in males do not overlap at all 

(9.0-11.0 and 12.5-14.5 in Z. v. vivipara and Z. v. carniolica, respectively). In lizards, 

femoral pores are closely related to the production of chemical compounds involved 

in reproduction; therefore, differences in the number of male femoral pores may 

influence female mating choice and could provide the basis for premating 

reproductive isolation (Martin & Lopez 2000; Mason & Parker 2010; Gabirot et al. 

2012). The fact that there is very little overlap in ranges within the contact zone (but 

highly overlapping outside of it) suggests that this morphological trait has been 

selected during speciation, effectively reducing hybridization between the subspecies 

(speciation by reproductive character displacement; Hoskin & Higgie 2010 and 

references therein). 

On the basis of genotypic results found here and previous studies about 

karyotypic and phylogenetic divergence between Z. v. vivipara and Z. v. carniolica, 

we hypothesize that the speciation process between the two lineages was complete or 

almost complete before their secondary contact in the Alpine chain as a result of a 

switch in reproductive mode some time before the LGM. If reinforcement happened, 

as suggested by the divergence in the number of femoral pores in males within the 

hybrid zone as compared to the whole range of the species, it was many generations 

ago, and all signs of gene flow have since disappeared. In this scenario, the role of 

reproductive mode may have made a strong contribution to genetic differentiation, 

although drift was almost certainly a contributing factor in allopatry.   

 Given the high level of genetic divergence and lack of gene flow between Z. v. 

vivipara and Z. v. carniolica, these two ‘subspecies’ should be considered as separate 

management units for conservation purposes. Since the most suitable habitats for Z. v. 

carniolica are considered threatened by climate change and anthropization (Moore et 

al. 2002), conservation measures should be urgently re-evaluated since Z. vivipara is 

currently considered of Least Concern (IUCN 2013).  

 

 

 



93 

References 

 

Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: Setting 

conservation guidelines. Trends in Ecology and Evolution, 16, 613-622. 

Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids 

using multilocus genetic data. Genetics, 160, 1217-1229. 

Arrayago MJ, Bea A, Heulin B (1996) Hybridization experiment between oviparous and 

viviparous strains of Lacerta vivipara: a new insight into the evolution of viviparity in 

reptiles. Herpetologica, 52, 333-342. 

Arribas OJ (2009) Morphological variability of the Cantabro-Pyrenean populations of 

Zootoca vivipara (JACQUIN, 1787) with description of a new subspecies. Herpetozoa, 21, 

123-146. 

Belkhir K, Borsa P, Chikhi L, Raufaste N,  Bonhomme F (1996-2004) GENETIX 4.05, 

logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, 

Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier 

(France). 

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and 

powerful approach to multiple testing. Journal of the Royal Statistical Society B, 57, 289-

300. 

Boomer JJ, Harcourt RG, Francis MP, Stow AJ (2012) Genetic divergence, speciation and 

biogeography of Mustelus (sharks) in the central Indo-Pacific and Australasia. Molecular 

Phylogenetics and Evolution, 64, 697-703. 

Boudjemadi K, Martin O, Simon JC, Estoup A (1999) Development and cross-species 

comparison of microsatellite markers in two lizard species, Lacerta vivipara and Podarcis 

muralis. Molecular Ecology, 8, 513-525. 

Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population 

differentiation. Molecular Biology and Evolution, 24, 621-631. 

Charruau P, Fernandes C, Orozco-Terwengel P, Peters J, Hunter L, Ziaie H et al. (2011) 

Phylogeography, genetic structure and population divergence time of cheetahs in Africa 

and Asia: evidence for long-term geographic isolates. Molecular Ecology, 20, 706-724. 

Cornetti L, Menegon M, Giovine G, Heulin B, Vernesi C (2014) Mitochondrial and nuclear 

survey of Zootoca vivipara across the eastern Italian Alps: evolutionary relationships, 

historical demography and conservation implications. PLoS ONE, 9, e85912. 

doi:10.1371/journal.pone.0085912. 

Cornuet JM, Veyssier J, Pudlo P, Dehne-Garcia A, Gautier M, Leblois R et al. (2014) 

DIYABC v2.0: a software to make Approximate Bayesian Computation inferences about 

population history using single nucleotide polymorphism, DNA sequence and 

microsatellite data. Bioinformatics. doi: 10.1093/bioinformatics/btt763. 

Corti C, Capula M, Luiselli L, Razzetti E, Sindaco R, eds. (2010) Fauna d’Italia, Reptilia. 

Calderini, Milan, Italia. 

Coyne JA, Orr HA (2004) Speciation. Sinauer Associates Sunderland, MA. 

Fairbairn J, Shine R, Moritz C, Frommer M (1998) Phylogenetic Relationships between 

Oviparous and Viviparous Populations of an Australian Lizard (Lerista bougainvillii, 

Scincidae). Molecular Phylogenetics Evolution, 10, 95-103. 

Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus 

genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567-1587. 

Faria R,  Navarro A (2010) Chromosomal speciation revisited rearranging theory with pieces 

of evidence. Trends in Ecology and Evoution, 25, 660–669. 

Fiske I, Chandler R (2011) unmarked: An R Package for Fitting Hierarchical Models of 

Wildlife Occurrence and Abundance. Journal of Statistical Software, 43, 1-23. 

Gabirot MP, López JM (2012) Differences in chemical sexual signals may promote 

reproductive isolation and cryptic speciation between Iberian wall lizard populations. 



94 

International Journal of Evolutionary Biology, Article ID 698520, 13 pages 

http://dx.doi.org/10.1155/2012/698520.  

Guillaume CP, Heulin B, Pavlinov IY, Semenov DV, Bea A, Vogrin N et al., (2006) 

Morphological variations in the common lizard, Lacerta (Zootoca) vivipara. Russian 

Journal of Herpetology, 13, 1-10. 

Hoskin CJ, Higgie M (2010) Speciation via species interactions: the divergence of mating 

traits within species. Ecology Letters. 13, 409-420. 

IUCN 2013. The IUCN Red List of Threatened Species. Version 2013.2. 

Ivy-Ochs S, Kerschner H, Reuther A, Preusser F, Heine K, Maisch M, et al., (2008) 

Chronology of the last glacial cycle in the European Alps. Journal of Quaternary Science, 

23, 559-573. 

Jiggins CD, McMillan WO, Neukirchen W, Mallet J (1996) What can hybrid zones tell us 

about speciation? The case of Heliconius erato and H. himera (Lepidoptera: 

Nymphalidae). Biological Journal of Linnean Society, 59, 221-242. 

Jiggins CD, Mallet J (2000) Bimodal hybrid zones and speciation. Trends in Ecology and 

Evolution, 15, 250-255. 

Johnson SB, Won YJ, Harvey JBJ, Vrijenhoek RC (2013) A hybrid zone between 

Bathymodiolus mussel lineages from eastern Pacific hydrothermal vent. BMC 

Evolutionary Biology, 13, 1-18. 

Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA (2013) diveRsity: An R 

package for the estimation of population genetics parameters and their associated errors. 

Methods in Ecology and Evolution, 4, 782-788. 

Kéry M, Dorazio RM, Soldaat L, Van Strien A, Zuiderwijk A, Royle JA (2009) Trend 

estimation in populations with imperfect detection. Journal of Applied Ecology, 46, 1163-

1172. 

Kitano J, Ross JA, Mori S, Kume M, Jones FC, Chan YF et al. (2009) A role for a neo-sex 

chromosome in stickleback speciation. Nature, 461, 1079-1083. 

Leache AD, Cole CJ (2007) Hybridization between multiple fence lizard lineages in an 

ecotone: locally discordant variation in mitochondrial DNA, chromosomes, and 

morphology. Molecular Ecology, 16, 1035-1054. 

Leache AD, Sites JW (2010) Chromosome evolution and diversification in North American 

spiny lizards (genus Sceloporus). Cytogenetics and Genome Research, 127, 166-181. 

Lindtke D, Mayer W, Böhme W (2010) Identification of a contact zone between oviparous 

and viviparous common lizards (Zootoca vivipara) in central Europe: reproductive 

strategies and natural hybridization. Salamandra, 46, 73-82. 

Martin J, Lopez P (2000) Chemoreception, symmetry, and mate choice in lizards. Proc. R. 

Soc. B,. 267, 1265-1269. 

Mason RT, Parker MR (2010) Social behaviour and pheromonal communication in reptiles. 

Journal of Comparative Physiology A, 196, 729-749. 

Mayer W, Böhme W, Tiedemann F, Bischoff W (2000) On viviparous populations of Zootoca 

vivipara (Jacquin, 1787) in south-eastern Central Europe and their phylogenetic 

relationship to neighbouring viviparous and South-west European oviparous populations 

(Squamata: Sauria: Lacertidae). Herpetozoa, 13, 59-69. 

Mendelson TC (2003) Sexual isolation evolves faster than hybrid inviability in a diverse and 

sexually dimorphic genus of fish Percidae: Etheostoma. Evolution, 57, 317-327. 

Miraldo A, Faria C, Hewitt GM, Paulo OS, Emerson BC (2013) Genetic analysis of a contact 

zone between two lineages of the ocellated lizard (Lacerta lepida Daudin 1802) in 

southeastern Iberia reveal a steep and narrow hybrid zone. Journal of Zoological 

Systematics and Evolutionary Research, 51, 45-54. 

Moore PD (2002) The future of cool temperate bogs. Environmental Conservation, 29, 3-20. 

Murphy BF, Thompson MB (2011) A review of the evolution of viviparity in squamate 

reptiles: the past, present and future role of molecular biology and genomics. Journal of 

Comparative Physiology B, 181, 575-594. 



95 

Odierna G, Heulin B, Guillaume CP, Vogrin N, Aprea G, Capriglione T, et al., (2001) 

Evolutionary and biogeographical implications of the karyological variations in the 

oviparous and viviparous forms of Lacerta vivipara. Ecography, 24, 332-340. 

Phillips BL, Baird SJE, Moritz C (2004) When vicars meet: A narrow contact zone between 

morphologically cryptic phylogeographic lineages of the rainforest skink, Carlia 

rubrigularis. Evolution, 58, 1536-1548. 

Pincheira-Dinoso D, Tregenza T, Witt MJ, Hodgson DJ (2013) The evolution of viviparity 

opens opportunities for lizard radiation but drives it into a climatic cul-de-sac. Global 

Ecology and Biogeography, 22, 857-867. 

Portnoy DS, McDowell JR, Heist EJ, Musick JA, Graves JE (2010) World phylogeography 

and male-mediated gene flow in the sandbar shark, Carcharhinus plumbeus. Molecular 

Ecology, 19, 1994-2010. 

Presgraves DC (2002) Patterns of postzygotic isolation in Lepidoptera. Evolution, 56, 1168-

1183. 

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using 

multilocus genotype data. Genetics, 155, 945-959. 

Qualls CP,  Shine R (1998) Lerista bougainvillii, a case study for the evolution of viviparity 

in reptiles. Journal of Evolutionary Biology, 11, 63-78. 

Qvarnström A, Bailey RI (2009) Speciation through evolution of sex-linked genes. Heredity, 

102, 4-15. 

Remón N, Vila M, Galán P, Naveira H (2008) Isolation and characterization of polymorphic 

microsatellite markers in Iberolacerta monticola, and cross-species amplification in 

Iberolacerta galani and Zootoca vivipara. Molecular Ecology Resources, 8, 1351-1353. 

Richards SA, Whittingham MJ, Stephens PA (2011) Model selection and model averaging in 

behavioural ecology: the utility of the IT-AIC framework. Behavioral Ecology and 

Sociobiology, 65, 77-89. 

Rieseberg LH (2001) Trends in Ecology and Evolution, 16, 351-358. 

Rodríguez F, Pérez T, Hammer SE, Alboronoz J, Domínguez A (2010) Integrating 

phylogeographic patterns of microsatellite and mtDNA divergence to infer the 

evolutionary history of chamois (genus Rupicapra). BMC Evolutionary Biology, 10, 222. 

Rousset F (2008) Genepop'007: a complete reimplementation of the Genepop software for 

Windows and Linux. Molecular Ecology Resources, 8, 103-106. 

Royle JA (2004) N-mixture models for estimating population size from spatially replicated 

counts. Biometrics, 60, 108-115. 

Schulte JA, Macey JR, Espinoza RE, Larson A (2000) Phylogenetic relationships in the 

iguanid lizard genus Liolaemus: Multiple origins of viviparous reproduction and evidence 

for recurring Andean vicariance and dispersal. Biologucal Journal of Linnean Society, 69, 

75-102. 

Shine R (2005) Life-history evolution in reptiles. Annual Review of Ecology, Evolution and 

Systematics, 36, 23-46. 

Sites JW, Reeder TW, Wiens JJ (2011) Phylogenetic insights on evolutionary novelties in 

lizards and snakes: Sex, birth, bodies, niches, and venom. Annual Review of Ecology, 

Evolution and Systematics, 42, 227-244. 

Smith MF, Patton JL (1991) Variation in mitochondrial cytochrome b sequence in natural 

populations of South American akodontine rodents (Muridae: Sigmodontinae). Molecular 

Biology and Evolution, 8, 85-103. 

Smith SA, Austin CC, Shine R (2001) A phylogenetic analysis of variation in reproductive 

mode within an Australian lizard (Saiphos equalis, Scincidae). Biological Journal of 

Linnean Society, 74, 131-139. 

Stevens V, Richard M, Bleay C, Clobert J (2012) Twelve new polymorphic microsatellite loci 

for the common lizard, Zootoca vivipara. Molecular Ecology Resources, 

doi:10.1111/j.1755-0998.2011.03004.x. 

Surget-Groba Y, Heulin B, Guillaume CP, Thorpe R, Kupriyanova L (2001) Intraspecific 

phylogeography of Lacerta vivipara and the evolution of viviparity. Molecular 

Phylogenetics and Evolution,18, 449-459. 



96 

Surget-Groba Y, Heulin B, Ghielmi S, Guillaume CP, Vogrin N (2002) Phylogeography and 

conservation of the populations of Zootoca vivipara carniolica. Biological Conservation, 

106, 365-372. 

Surget-Groba Y, Heulin B, Guillaume CP, Puky M, Semenov D, et al. (2006) Multiple origins 

of viviparity, or reversal from viviparity to oviparity? The European common lizard 

(Zootoca vivipara, Lacertidae) and the evolution of parity. Biological Journal of Linnean 

Society, 87, 1-11. 

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX 

windows interface: flexible strategies for multiple sequence alignment aided by quality 

analysis tools. Nucleic Acids Research, 24, 4876-4882. 

Thompson MB, Speake BK (2006) A review of the evolution of viviparity inlizards: structure, 

function and physiology of the placenta. Journal of Comparative Physiology B, 176, 179-

189. 

Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software 

for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology 

Notes, 4, 535-538. 

Velo-Antón G, Zamudio KR, Cordero-Rivera A (2012) Genetic drift and rapid evolution of 

viviparity in insular fire salamanders (Salamandra salamandra). Heredity, 108, 410-418. 

Voituron Y, Heulin B,  Surget-Groba Y (2004) Comparison of the cold hardiness capacities of 

the oviparous and viviparous forms of Lacerta vivipara: a preliminary study. Journal of 

Experimental Zoology, 301A, 367-373. 

White MJD (1969) Chromosomal rearrangements and speciation in animals. Annual Review 

of Genetics, 3, 75-98. 

 

  



97 

Fourth study: Zootoca vivipara as a model species to analyse the 

evolutionary transition from oviparity to viviparity in squamate reptiles: a 

genomic approach 

 

Manuscript in preparation 

 

Abstract 

 

Among the 140 switches in reproductive mode from oviparity to viviparity observed 

in vertebrates, at least 115 occurred in squamate reptile. However, very rare examples 

of species showing both the reproductive modes exist. Zootoca vivipara, across its 

wide distributional range, presents egg-laying and live-bearing populations, providing 

an interesting model for studying the evolutionary transition from oviparous to 

viviparous reproductive mode. Here, I studied samples from the whole distributional 

range of the species using a recently developed method for reducing the complexity of 

a genome (RAD tag sequencing) that allows to simultaneously discover and analyse 

thousands of Single Nucleotide Polymorphisms (SNPs). I found about two hundreds 

SNPs statistically associated to the switch in reproductive mode; sequences physically 

linked to these polymorphisms were blasted against the Anolis carolinensis genome. 

Some of the sequences showed sequence similarity with genes potentially involved in 

physiological functions, such as vascularization and immune system, known to differ 

in groups with oviparous and viviparous reproductive mode. Although additional 

investigations should be performed on the newly identified genes, this study provides 

the first attempt to analyze transition from oviparity to viviparity at genomic level, 

with the consciousness that this shift is a very complex physiological change, 

probably mediated by hundreds of genes.  
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Introduction 

 

The evolutionary transition from oviparity to viviparity requires some major structural 

and physiological changes (Thompson & Speake 2006), but this switch has occurred 

at least 115 times in squamate reptiles, out of 140 switches in vertebrates (Sites et al 

2011). The genetic basis of this transition remains uncertain (Murphy & Thompson 

2011). The lizard Z. vivipara, showing both oviparous and viviparous populations, 

provides an interesting natural setting for studying the genetic basis of this 

evolutionary shift in reproductive mode.  

In reptiles, the evolution of viviparity is usually promoted by colder climatic 

conditions (Shine 2005; Pincheira-Dinoso et al. 2013); it has been also demonstrated 

for Z. vivipara that the distribution of viviparous and oviparous populations has been 

mainly shaped by Pliocene/Pleistocene climatic changes (Surget-Groba et al. 2001). 

Z. vivipara shows viviparous populations (Z. v. vivipara) in most of its distributional 

range and oviparous populations (Z. v. carniolica and Z. v. louislantzi) in the southern 

margin of species distribution. Oviparous populations of Z. v. carniolica living in 

northern Italy are considered the ancestral form of the species, from which viviparity 

likely evolved, permitting the recolonization of the entire continent during interglacial 

periods by Z. v. vivipara populations. Although the current discontinuous distributions 

between the western oviparous populations (Z. v. louislantzi) and viviparous (Z. v. 

vivipara) populations, phylogeographic analyses indicated that they are closely related 

to each other, suggesting a likely reversal from viviparity to oviparity in 

French/Spanish populations (Surget-Groba et al. 2006; Cornetti et al. 2014), as 

documented for other reptiles (Lee & Shine 1998; Lynch & Wagner 2010; Fenwich et 

al. 2012).  

Z. vivipara offers a unique model for investigating at genome level and within 

a single species the transition between oviparous and viviparous reproductive mode. 

In this study I analyzed this transition using a Next Generation Sequencing (NGS) 

approach.  
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Methods  

 

Forty tail tips of Z. vivipara were collected in order to cover the whole distribution of the 

species, including both viviparous (Z. v. vivipara, hereafter called V) and oviparous (Z. v. 

carniolica and Z. v. louislantzi, hereafter called O) populations (Figure 4.1 and Table 4.1).  

 

 

 

 

 

Genomic DNA was extracted using the QIAGEN DNeasy Blood and Tissue 

Kit (QIAGEN Inc., Hilden, Germany). DNA was treated with RNaseA (QIAGEN) 

and successively quantified with the fluorometer Qubit 2.0 (Invitrogen). RADtag 

sequencing (Baird et al. 2008) and Illumina technology was used to study oviparous 

and viviparous samples of Z. vivipara for simultaneously discover and analyse 

thousands of SNPs at genomic level. RADtag is a NGS technique for genotyping by 

sequencing that reduces the complexity of a genome taking advantage of the usage of 

a restriction enzyme. I digested 1μg of genomic DNA for each individual sample, 

with SbfI restriction enzyme in a 50 μl reaction volume. P1 adapter, containing unique 

barcode, was ligated onto complementary compatible ends for each sample. 

Individually barcoded samples were pooled and then sheared to an average size of 500 

bp using the ultrasonicator Covaris S220 (Covaris, Inc., Woburn MA, USA). In order 

to restrict the size range of tags to that which can be efficiently sequenced on an 

Illumina flow cell (300-500 bp), a size selection by means of agarose gel extraction 

Figure 4.1 Z. vivipara subspecies distribution. Modified from Surget-Groba et al. 2001. 

Western viviparous 

populations 

Z. v. vivipara 
 

 

 

Eastern viviparous 

populations 

Z. v. vivipara 
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Z. v. louislantzi 

 

 

 

Italian/Slovenian 

oviparous populations 

Z. v. carniolica 
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was performed. Library preparation was completed after ligating P2 adapters that 

allowed amplification of fragments that incorporated both P1 and P2 (see Figure 4.2). 

The library was run on the Illumina flow cell using Illumina HiSeq2000. 

 

 

 
 

Figure 4.2 The process of RADSeq. (A) Genomic DNA is sheared with a restriction enzyme of choice 

(SbfI in this example). (B) P1 adapter is ligated to SbfI-cut fragments. The P1 adapter is adapted from 

the Illumina sequencing adapter (full sequence not shown here), with a molecular identifier (MID; 

CGATA in this example) and a cut site overhang at the end (TGCA in this example). (C) Samples from 

multiple individuals are pooled together and all fragments are randomly sheared. Only a subset of the 

resulting fragments contains restriction sites and P1 adapters. (D) P2 adapter is ligated to all fragments. 

The P2 adapter has a divergent end. (E) PCR amplification with P1 and P2 primers. The P2 adapter 

will be completed only in the fragments ligated with P1 adapter, and so only these fragments will be 

fully amplified. (F) Pooled samples with different MIDs are separated bioinformatically and SNPs 

called (C/G SNP underlined). (G) As fragments are sheared randomly, paired end sequences from each 

sequenced fragment will cover a 300–400 bp region downstream of the restriction site (from Davey & 

Blaxter 2011). 

 

 



101 

Sample 

MtDNA 

clade Subspecies Origin 

Reproductive 

mode N of reads Mean coverage 

13_11_A A Z. v. carniolica Italy Oviparous 274639 9 

193_09_A A Z. v. carniolica Italy Oviparous 629051 11 

22_11_A A Z. v. carniolica Italy Oviparous 210776 8 

26_11_A A Z. v. carniolica Italy Oviparous 488794 9 

37_08_A A Z. v. carniolica Italy Oviparous 244868 8 

3_08_A A Z. v. carniolica Italy Oviparous 344593 9 

42_08_A A Z. v. carniolica Italy Oviparous 1579670 16 

43L_A A Z. v. carniolica Italy Oviparous 271596 8 

60L_A A Z. v. carniolica Italy Oviparous 207022 9 

63L_A A Z. v. carniolica Italy Oviparous 254436 9 

10H_B2 B Z. v. louislantzi France Oviparous 891764 12 

15H_B1 B Z. v. louislantzi France Oviparous 643905 10 

20H_B1 B Z. v. louislantzi France Oviparous 1015182 13 

26H_B1 B Z. v. louislantzi France Oviparous 439002 9 

35H_B2 B Z. v. louislantzi France Oviparous 493454 10 

4H_B2 B Z. v. louislantzi France Oviparous 409953 10 

7H_B2 B Z. v. louislantzi France Oviparous 1139493 12 

59H_D D Z. v. vivipara Russia Viviparous 622262 11 

61H_D D Z. v. vivipara Russia Viviparous 232424 8 

62H_D D Z. v. vivipara Russia Viviparous 763275 12 

65H_D D Z. v. vivipara Romania Viviparous 229294 9 

16_11_E E Z. v. vivipara Italy Viviparous 330444 9 

21_11_E E Z. v. vivipara Italy Viviparous 190891 9 

30_11_E E Z. v. vivipara Italy Viviparous 324216 9 

31_11_E E Z. v. vivipara Italy Viviparous 229458 9 

33L_E E Z. v. vivipara Italy Viviparous 611685 11 

34_11_E E Z. v. vivipara Italy Viviparous 683032 12 

35Lb_E E Z. v. vivipara Italy Viviparous 773848 11 

36Lb_E E Z. v. vivipara Italy Viviparous 118707 10 

40_11_E E Z. v. vivipara Italy Viviparous 203261 9 

42L_E E Z. v. vivipara Italy Viviparous 332969 10 

46L_E E Z. v. vivipara Italy Viviparous 830270 11 

47L_E E Z. v. vivipara Italy Viviparous 590771 11 

50L_E E Z. v. vivipara Italy Viviparous 200897 9 

63_08_E E Z. v. vivipara Italy Viviparous 637247 9 

806_09_E E Z. v. vivipara Italy Viviparous 239211 9 

80_09_E E Z. v. vivipara Italy Viviparous 209499 8 

811_09_E E Z. v. vivipara Italy Viviparous 472981 9 

79H_F F Z. v. vivipara Austria Viviparous 559903 9 

80H_F F Z. v. vivipara Austria Viviparous 349964 9 

 

Table 4.1. Details of samples analysed in this study. Mitochondrial clade according to Surget-Groba et 

al. (2006), subspecies, origin and reproductive mode. In addition, number of retained reads and mean 

coverage per samples are reported. 



102 

  

 I examined raw reads, corrected for sequencing errors, demultiplexed the data 

and isolated single nucleotide polymorphisms (SNPs) with the pipeline software 

Stacks 1.02 (Catchen et al. 2013). SNPs were then used for descriptive (R packages, 

2013), population genetics (4P, Benazzo et al. submitted), and GWAS (Gemma, Zhou 

& Stephens 2012) analyses.  

Polymorphisms possibly related to the reproductive mode were identified 

using two different approaches. First, looking for Fst outliers, here defined as SNPs 

that simultaneously satisfied the following conditions: paiwise Fst ≥ 0.5 between 

vivipara (V) and carniolica (O) populations; pairwise Fst ≥ 0.5 between vivipara (V) 

and lousilantzi (O) populations; Fst ≤ 0.05 between different vivipara (V) populations. 

Second, using the method Gemma (Zhou & Stephens 2012), which calculates 

statistical genotype-phenotype association implementing the Genome-wide Efficient 

Mixed Model Association algorithm. 

 

Results and discussions 

 

The RAD sequencing experiment produced 146.439.826 paired-end raw reads. Reads 

with ambiguous barcodes (24.270), ambiguous restriction sites (31.474.031) and 

showing low quality (base call accuracy < 99.99%, 5.830.599) were discarded. The 

retained 109.110.926 reads were used for further analyses. In order to have a non-

redundant dataset, reads identified as PCR clones (i.e. identical in both paired-ends 

and corresponding to 59,4% of the total) were reduced to a single copy. Genotypic 

calling was performed using the 22.197.925 single end reads (sequences flanking the 

restriction sites), by means of alignments between individuals using 5 as minimum 

depth coverage (most of NGS study on non-model species rely on <5x coverage per 

site per individual, Nielsen et al. 2011). I identified a total of 46.314 contigs and 

82.494 SNPs, selected from the 75bp single-end reads showing no more than 5 SNPs. 

These polymorphisms were used to describe the overall genetic variation within and 

between subspecies.  

 The multidimensional scaling plot confirmed at genomic level the existence 

of one viviparous and two oviparous clades (Figure 4.3). In the viviparous group, 

some level of geographical substructure related to the distinct geographic origins can 

be clearly identified.  
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Figure 4.3. MDS resulting from about 82k SNPs about Z. vivipara subspecies. 

 

I then analyzed a restricted marker-set (4908 SNP) with a reduced impact of 

missing data (less than 50% of missing data). 217 SNPs were identified as outliers 

using both the approaches I applied. Genomic sequences (200-500 bp long, achieved 

with Illumina Paired-end protocol) physically linked to these markers were then 

BLASTed against the only reptile genome available (Anolis carolinensis, which share 

the most recent common ancestor with Z. vivipara about 180 mya, Alfoldi et al. 

2011). Among these genomic fragments I found sequence similarities in about 25% of 

them using an E-value threshold of 0.1. 

A detailed analysis of the genes identified as putatively selected during the 

reproductive mode transition, and annotated in the Anolis genome, has not been 

performed yet. Here I note however that some of them are involved in physiological 

pathways known to differ in groups with oviparous and viviparous reproductive mode 

(Murphy & Thompson, 2011), and some others (e.g., cytokines, progesterone 

receptors, angiopoietin) have been already found to be potentially correlated with the 

switch in reproductive mode (Paulesu et al. 2005; Paolucci & Di Cristo 2002; 

Brandley et al. 2012). The most interesting candidate genes found in this study are 

listed in Table 4.2, and are reproductive hormones and genes implicated in the 

immune system and vascularization. This result is compatible with the idea that 

viviparity poses a major immunological hurdle for mother and fetus (Medawar 1953), 
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and that placental development substantially alters the maternal-fetal endocrine 

regulation and vascularization (Moffett & Loke 2006). 

All the genes identified as putatively under selection and mapping into the A. 

carolinensis genome are reported in Table S4.1 

 

Genes (predicted proteins) Function 

Suppressor of cytokine signaling 

Immune system 
V-set and immunoglobulin domain 

Immunoglobulin superfamily member 

Interleukin-8-like     

Vasopressin V1A 
Vascularization 

Angiopoietin-related protein 

Progesterone binding factor Hormone receptor 

 

Table 4.2. Genes identified using Illumina paired-end sequencing and Fst outlier-GWAS approaches, 

categorized according to their function. 

 

So far, only candidate gene approaches have been taken for studying the 

evolutionary transition in reproductive mode. The advent of NGS technologies 

allowed moving from gene-by-gene to genome approach and using non-traditional 

model organisms for studying evolutionary processes. This study provided the first 

attempt to analyze the oviparity/viviparity transition at genomic level, with the 

consciousness that this shift is a very complex physiological change, probably 

mediated by hundreds of genes.  
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Supplementary materials 
 

 

 

Predicted protein     Score E-value 

plectin-like     410 3,00E-114 

vasopressin V1a receptor 318 1,00E-86 

DDB1 and CUL4 factor  316 5,00E-86 

ubiquitination factor E4A   260 3,00E-69 

coronin-6-like     230 6,00E-60 

SWI/SNF related 217 4,00E-56 

taste receptor type 1  208 2,00E-53 

prolyl 3-hydroxylase  194 4,00E-49 

C2 calcium-dependent domain   194 4,00E-49 

transcription factor E3-like   179 9,00E-45 

eukaryotic translation initiation 179 9,00E-45 

glutamate [NMDA] receptor   165 2,00E-40 

putative RNA-binding protein   152 1,00E-36 

myogenic factor 6-like   149 2,00E-35 

protein Wiz-like  149 2,00E-35 

rho guanine nucleotide exchange  147 5,00E-35 

semaphorin-4C-like     132 1,00E-30 

pro-opiomelanocortin A-like    122 2,00E-27 

protocadherin gene    98,7 2,00E-20 

v-set and immunoglobulin domain  91,5 4,00E-18 

solute carrier family 41  89,7 1,00E-17 

vinexin-like     86 2,00E-16 

cytochrome P450 2G1-like   71,6 3,00E-12 

angiopoietin-related protein    66,2 1,00E-10 

suppressor of cytokine signaling  64,4 5,00E-10 

acetyl-coenzyme A synthetase   57,2 8,00E-08 

lysozyme C    50 1,00E-05 

engulfment and cell motility  48,2 4,00E-05 

TBC1 domain family   48,2 4,00E-05 

SWS1 opsin    46,4 1,00E-04 

nucleoporin-like protein    46,4 1,00E-04 

recombining binding protein   44,6 5,00E-04 

lactoylglutathione lyase-like    44,6 5,00E-04 

hect domain and RLD  41 6,00E-03 

collagen alpha-1(XXII)    39,2 2,00E-02 

neuron-specific protein    39,2 2,00E-02 

immunoglobulin superfamily member 37,4 0,071 

zinc finger protein 407  37,4 0,071 

myotubularin-related protein    37,4 0,071 

vacuolar protein    37,4 0,071 

interleukin-8-like     37,4 0,071 

keratin aHA1    37,4 0,071 
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zumo sperm-egg fusion   37,4 0,071 

ryanodine receptor 3-like 37,4 0,071 

progesterone binding factor 37,4 0,071 

laminin     37,4 0,071 

chromatin assembly factor 37,4 0,071 

vomeronasal type-2 receptor 37,4 0,071 

aquaporin-2-like     37,4 0,071 

protein fat-free-like    37,4 0,071 

myoblast determination protein   37,4 0,071 

ankyrin-2-like     37,4 0,071 

calmin-like     37,4 0,071 

 

 

Table S4.1 Predicted proteins identified blasting contigs obtained by paired-end reads physically 

linked to putative polymorphisms under selection for the reproductive mode. Genes showing sequence 

similarity with A. carolinensis genome are listed ordered by increasing E-value (number of distinct 

alignments that are expected to occur in the database search by chance, with an equivalent or better 

score than the query sequences). The score is a value representing the overall quality of an alignment. 
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General discussion 

 

The main aim of conservation biologists is to try to preserve global biodiversity at 

ecosystem, species and genetic levels. Ecosystem biodiversity is undoubtedly 

threatened by global change as demonstrated by Quintero and Wiens (2013). 

Predictions in this article are particularly alarming, since projected rates of climate 

change exceed usual rates of ecosystem evolution by 100000-fold among suitable 

ecological niches for vertebrate species. In this context, the analysis of genetic 

variation pattern is necessary for understanding populations’ adaptive capacity in this 

period of climate changes.  

 The main effects of changing climatic conditions on wild species distribution 

are predicted to be changes in geographical location and in the extent of the range in 

line with habitat modifications. It has been already demonstrated that in order to react 

to climate warming, many species are shifting their geographic distribution toward 

higher latitudes or altitudes (Chen et al. 2011); however, species characterized by 

limited dispersal capabilities and restrictive requirements for reproduction or survival 

could be even more heavily affected by consequences of environmental changes. B. 

variegata and Z. vivipara are both characterized by reduced dispersal and specific 

ecological needs. Species range shifts, when possible according to suitable habitat 

availability, also have an impact on genetic variability. Only a restricted part of the 

original genetic variation moves to the newly colonized habitat causing repeated 

founder effect events and leading to low levels of genetic diversity (Pauls et al. 2013). 

This aspect is particularly worrisome when the original genetic variation and effective 

population size is already low.  

 The yellow-bellied toad B. variegata is currently considered of least concern 

(LC) by the IUCN (IUCN, 2013). However, population decline and fragmentation, as 

well as local extinctions, have been reported across its whole distributional range. In 

the first study of this thesis, I investigated the level of genetic variation and 

demographic pattern of some populations in Northern Italy. I found low levels of 

genetic variation at microsatellite markers, clear signals of population fragmentation 

and reduced estimates of effective population size. The genetic pattern observed in B. 

variegata was found to be mostly associated with a demographic decline occurred 

several thousands of generation ago, probably during the postglacial colonization of 

the Alps, but, at least in some areas, recent decline due to human related-processes 
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were inferred. These results, along with ecological requirements of the species must 

be taken into serious consideration considering the predicted environmental 

modifications and that small populations showing low genetic variation have reduced 

capacity to adapt to global changes (Willi et al. 2006). In fact, B. variegata generally 

prefers temporary habitats (e.g. puddles, stream loops) to permanent sites (e.g. ponds, 

tarns) for reproduction and consequently water availability is fundamental for its 

reproductive success; the fact that Brunetti et al. (2001) demonstrated that annual 

precipitation in north-eastern Italy decreased of about 7% in the last century, and that 

rainfall may experience a 30% decrease in annual precipitation in some areas by 2100 

(IPCC 2007) could mean that B. variegata persistence is at risk. In a context of 

changing climatic conditions, the integration of genetic results obtained in this thesis 

and predicted environmental modifications suggest that conservation measures for B. 

variegata northern Italian populations should be considered with urgency. 

 The reduced estimates of genetic variability and effective population size I 

obtained for many populations of the yellow-bellied toad can be considered alarming 

and deserve consideration for future conservation plans. In addition, when the 

effective population size is low, the effects of genetic drift are amplified; both the 

methods I used for calculating Ne suggested very low estimates, comparable to ones 

obtained in similar studies on anuran species considered endangered by the IUCN. I 

also found strong population differentiation even in a restricted area, such as the 

Province of Trento, meaning that in many cases, gene flow between populations is 

prevented because of the combined effect of reduced dispersal capabilities of the toad 

and natural or man-made environmental features. Population fragmentation is 

enhanced when habitat discontinuity is promoted by anthropization; emblematic is the 

case of the populations of Nago and Loppio, which are only 2.7 Km apart but 

negligible traces of migration were identified between them (Fst = 0.16). Since in 

similar conditions (see for example Pozzolago and Pra which are separated by 3.3 

Km, but Fst = 0.01 and not significant) genetic homogeneity was identified between 

populations in rural ecosystems, it was possible to hypothesize that anthropogenic 

barriers prevented migration, between Nago and Loppio, in the tourist area of Garda 

Lake.  

 Anthropization has also played a major role in the disappearance of Z. v. 

carniolica populations from the northern Italian lowlands. In fact, marshlands in the 

Po Plain, before human-mediated environmental alteration (for example, drainage and 
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reclamation of wetlands), were suitable habitats for the oviparous lineage. At present, 

the few remaining relict host populations show no mitochondrial variation (second 

study), likely because of the effects of genetic drift. The expected reduction in number 

and surface of wetland areas (Moore, 2002) threaten the persistence of Z. v. carniolica 

in northern Italy, both in lowlands and at mid altitude. On the contrary, the viviparous 

subspecies Z. v. vivipara showed signals of spatial and demographic expansions 

(second study). Z. v. vivipara, in fact, taking advantage of its reproductive mode tends 

to occupy higher altitudes than Z. v. carniolica and, consequently, less anthropized 

habitats. The evolution of the viviparous reproductive mode, during 

Pliocene/Pleistocene period, allowed Z. v. vivipara to colonize cold climates (both 

high altitude and latitude), making it the northernmost reptile species. Viviparous 

lacertid species, adapted to cold climates, can become threatened by the rapid 

projected increase of temperature worldwide and in particular in mountain regions 

(Brunetti et al. 2009). It has been demonstrated that viviparity itself increases the 

extinction risk among viviparous lineages belonging to the genus Liolaemus 

(Pincheira-Dinoso et al. 2013), because this parity mode is likely to be irreversible. 

Nevertheless, in this thesis, I found that, in the Zootoca genus, reversion from 

viviparity to oviparity likely occurred in currently oviparous French/Spanish 

populations (Z. v. louislantzi) according to phylogenetic analyses (second study), 

supported by a recent paper that suggests that transitions from oviparity to viviparity 

are less constrained than previously thought (Pyron & Burbrink 2014). This finding 

will not necessarily protect viviparous lineages of Z. vivipara from the exceptional 

temperature increase that is affecting the Alpine chain during the last two centuries 

(Brunetti et al. 2009). In addition, for the common lizard, whose distribution in the 

Mediterranean area is strictly correlated with moist habitats, changes in precipitation 

rates could have serious consequences for the persistence of this species. Wetlands, in 

fact, are one of the more impacted by environmental changes; the interaction of 

temperature, precipitation and atmospheric CO2 variations in the future may change 

peatbog ecosystem composition with substantial consequences on the species they 

host (Heijmans et al. 2008), with obvious consequences for Z. vivipara. 

 In the third study, I analysed the contact area between Z. v. vivipara and Z. v. 

carniolica. This location in the central Alps, identified during the field work of the 

first study, provided a suitable and rare (only one other contact zone has been 

identified, so far) natural setting for investigating the level of gene flow between 



112 

oviparous and viviparous lineages and the role of reproductive mode in speciation. 

The clear absence of hybrid individuals without current evidence of reinforcement 

showed that the speciation process is already completed in this contact zone. These 

results, however, did not clarify if the switch in reproductive mode triggered the 

speciation process; in fact, as in other examples, it was not trivial to understand if the 

transition from oviparity to viviparity was driven by natural selection (environmental 

pressures), by genetic drift (spatial isolation) or by the combination of these two 

factors.  

 The occurrence of oviparous and viviparous populations within the same 

species makes Z. vivipara a unique model for studying the evolutionary transition 

from oviparity to viviparity. In fact, although other two lacertid species (the 

Australian scincid lizards Lerista bougaunvilli and Saiphos equalis) exhibit a 

reproductive bimodality, only Z. vivipara has overlapping and potentially hybridizing 

egg-bearing and live-bearing populations.  

 In the fourth study, I applied a Next Generation Sequencing technique that 

permitted the rapid discovery and analysis of thousands of SNPs, using viviparous 

and oviparous populations from the whole geographic distribution of Z. vivipara. This 

approach confirmed the unlikely occurrence of hybrid individuals as well as 

geographic and phenotypic genetic substructure. More interestingly, this study 

provided the first attempt at investigating, using a genomic approach, the genetic basis 

of the transition from oviparity to viviparity and highlighted some genes possibly 

involved in this switch. Some of those genes have been already studied, others have 

been identified for the first time in this thesis.  

The strong genetic divergence between Z. v. vivipara and Z. v. carniolica 

outlined at the genome level strengthened the results obtained with traditional genetic 

markers. In fact, phylogenetic analyses performed with mitochondrial and nuclear 

sequences confirmed that Z. v. carniolica should be considered a separate ESU 

(second study). The species Z. vivipara is considered of least concern by the IUCN; 

nevertheless, according to the results from this thesis Z. v. carniolica should deserve 

specific conservation measures because of its genetic distinctiveness together with the 

vulnerability of its most suitable habitats. In addition, the lack of hybrid individuals in 

the contact zone between Z. v. vivipara and Z. v. carniolica (third study) suggested 

that they are two ‘good species’ according to the biological species concept (Mayr, 

1942). This substantial distinction, if confirmed in other contact zones, could call for a 
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taxonomic revision and for specific conservation actions for the subspecies Z. v. 

carniolica.  

 

 

Conclusions and future perspectives 

 

Genetic investigations demonstrated that signals of low genetic variability, patterns of 

reduced effective population size and fragmentation are affecting both the toad B. 

variegata and the lizard Z. vivipara (in particular the subspecies Z. v. carniolica). 

These two vertebrate species have in common low dispersal capability and restrictive 

ecological requirements. In particular they both live in wetland habitats, which are 

among the environments most likely to be threatened by climate warming and 

anthropization. Considering that the adaptive potential of a population depends on 

genetic diversity, specific action tailored to increase or at least preserve current 

genetic variation should be evaluated.  
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