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Introdution
The natural omplexities of petroleum reservoir systems ontinue to providea hallenge to geosientists. The absene of reliable data often leads to aninadequate understanding of reservoir behaviour and onsequently to poorperformane preditions. Although this is an ongoing problem and one whihmay be di�ult to resolve without additional data and/or investment, itis important to pursue the best possible solutions using whatever data isreadily available. Data integration, and risk and unertainty assessment,have beome the major issues in reservoir haraterization. The large amountof data for eah well and the presene of di�erent wells to onsider togethermake this task also omplex espeially if the subjetivity of the interpretationhas to be redued.In past deades, lassial data proessing tools and physial models wereadequate for the solution of relatively �simple� geologial problems. Howeverbeause of the unertainties whih are inherent in geologial data, the hal-lenge we now fae is not just to predit the presene of hydroarbons, butrather to quantify the on�dene of reservoir preditions. We are inreas-ingly being faed with more and more omplex problems, and reliane on



ii Introdutionurrent tehnologies based on onventional methodologies is beoming lesssatisfatory. The development of reliable interpretation methods is of primeimportane regarding the reservoir understanding and data integration is aruial step in order to reate useful desription models and to redue theamount of time neessary for eah study.Arti�ial intelligene, data mining tehniques and statistis methods arewidely used in reservoir modelling, for instane in predition of sedimentaryfaies1. Delineation of lithofaies from well log data is a typial lassi�ationtask. Geologists have to spend a signi�ant amount of time interpretinglogs to identify the lithologial omposition of the investigated rok, e.g.the perentage of lay ontent. Based on this alulation, the faies aredivided into di�erent lasses of lithofaies, a time onsuming task that mustbe repeated for eah well. The same result an be ahieved with unsupervisedalgorithms, they an identify lusters of well-log responses along availableinput data (log parameters) that are representative of variuos rok faies,similar to what a geologist would lassially do. For example, bulk density,neutron porosity, soni travel time and potassium ontent an be used asinput data sets. Supervised mahine learning is the searh for algorithms (i.e.deision trees or regression methods) that reason from externally suppliedinstanes to produe general hypotheses, whih then make preditions aboutfuture instanes [43℄.Unsupervised and supervised tehniques an help the geologist in faiesanalysis leading to the development of new interpretative methods for reser-voir haraterization. However, reservoir haraterization is improved wheninformation from di�erent wells in the same area is taken into onsideration,giving reliable support to further analysis of unknown wells in the same �eld.1A faies is a body of sedimentary rok distinguished from others by its lithology,geometry, sedimentary strutures, proximity to other types of sedimentary rok, and fossilontent.



Introdution iiiObjetiveIn petroleum geology, exploration and prodution wells are often analysedusing image logs, beause they provide a visual representation of the boreholesurfae and they are fundamental to retrieve information on bedding androks harateristis.Aim of the work was to de�ne and implement a suite of automati andsemi-automati tools for interpretation of image logs and large datasets ofsubsurfae data oming from geologial exploration. This led to the develop-ment of I2AM (Intelligent Image Analysis and Mapping), a semi-automatisystem that exploits image proessing algorithms and arti�ial intelligenetehniques to analyse and lassify borehole images.More in detail, the objetives of the I2AM approah are: (1) to automat-ially extrat rok properties information from all the di�erent types of datareorded/measured in the wells, and visual features from image logs in parti-ular; (2) to identify lusters along the wells that have similar harateristis;(3) to predit lass distribution over new wells in the same area.In partiular, we propose a asade of tehniques, i.e., pattern reognition,lustering and learning lassi�ations algorithms, in order to:
• �rst, identify relevant features in image logs, suh as vugs and sinusoids,by applying image proessing algorithms in order to extrat numerialvalues for eah suh feature;
• seond, luster several regions of the same well or of di�erent wells intosimilar groups, by applying hierarhial lustering;
• hoose the set of most signi�ant lusters: in this work, this is done bythe expert of the domain but it an also exploit indexes;
• �nally, feed a mahine learning algorithm with the identi�ed relevantlusters as lasses, in order to learn a lassi�er to be applied to newinstanes and wells, possibly o-loated.



iv IntrodutionThe main bene�ts of this approah are the ability to manage and use alarge amount of subsurfae data simultaneously. Moreover, the automatiidenti�ation of similar portions of wells by hierarhial lustering saves alot of time for the geologist (sine he analyses only the previously identi�edlusters). The interpretation time redues from days to hours and subjetiv-ity errors are avoided. Moreover, hosen lusters are the input for supervisedlearning methods whih learn a lassi�ation that an be applied to new wells.Finally, the learned models an also be studied for a luster haraterization,in a desriptive approah.Sine a pro�table way to address the hallenge of the omputer aidedreservoir haraterization was to use a standard proess to guide the imple-mentation of a reliable and useful solution, we have onsidered a number ofthem. KDD (Knowledge Disovery in Databases), SEMMA (Sample, Ex-plore, Modify, Model, Assess) and CRISP-DM (Cross Industry StandardProess for Data Mining) represent the state of the art methodologies in de-veloping data mining appliations [5℄. CRISP-DM provides a non proprietaryand freely available standard proess for �tting data mining into the generalproblem-solving strategy of a business or researh unit. Due to its industrialharater and its ompleteness, CRISP-DM is the most interesting proessthat an easily map the reservoir haraterization ontext. Therefore, in thisPh.D. work we adopt CRISP-DM proess.StrutureThis thesis is organized following the CRISP-DM proess.In Part I we provide an introdution and some bakground informationabout data mining, petroleum geology and and how they an be relatedeah other. Chapter 1 desribe the CRSIP-DM proess, Chapter 2 providessome bakground and related works about data mining and mahine visiontehniques used in this work. Chapter 3 desribes the Business & DataUnderstanding phase: petroleum exploration and prodution proess are



Introdution vexplained also in terms of available data.Part II is dediated to the new approahes and solution proposed in thiswork. Data Preparation phase takes plae in Chapter 4: new mahinevision algorithm for image log interpretation are proposed and tested. Chap-ter 5 and Chapter 6 propose and disuss a new reservoir haraterizationmodel based on data mining tehniques, foussing on theModeling & Eval-uation phases.Part III with Chapter 7 onludes the thesis giving a brief overview to thedeveloped tools in the Deployment phase. Finally Chapter 8 summarizesresults and onlusion.
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Part IINTRODUCTION ANDBACKGROUND
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CHAPTER 1
CRISP-DM

There is a temptation in some ompanies, due to departmental inertia andompartmentalization, to approah data mining haphazardly, to reinvent thewheel and dupliate e�ort. A ross-industry standard was learly requiredthat is industry neutral, tool-neutral, and appliation-neutral. The Cross-Industry Standard Proess for Data Mining (CRISP-DM) [16℄ was developedin 1996 by analysts representing DaimlerChrysler, SPSS, and NCR.This short hapter introdues the CRISP-DM methodology (Setion 1.1)and referene model (Setion 1.2), this is very useful in order to understandthe main struture of the entire Ph.D. work.1.1 CRISP-DM methodologyIn the past two deades oil and gas ompanies have spent millions of dollarsto ollet digital data or to onvert the existing data into digital form. Thisis due to the fat that they have realized the value of data and the potential



4 1. CRISP-DMit possesses in enhaning their operations. IT departments in larger oil andgas ompanies and major servie ompanies and other vendors have devel-oped sophistiated software tools that allow operators to organize their data,urrently existing in di�erent databases, into a ohesive data warehouse andmake it available to information engineers. Furthermore, several software ap-pliations have been developed to put all that information on the geologists�nger tips so they an look at all sorts of data pertaining to a reservoir, a�eld or a well.Although these are absolutely essential for suessful operation of a largeompany, it has reated a new monster. There are far more data that theones that ould be e�etively analysed. Human brain, although being themost remarkable information proessing entity, an only work simultaneouslyin many dimensions and is inapable of proessing very large volumes ofdata. As the volume of data inreases, inexorably, the proportion of it thatpeople understand dereases, alarmingly. Lying hidden in all this data isinformation, potentially useful information, that is rarely made expliit ortaken advantage of.Data mining and knowledge disovery, as an integrated proess an ometo resue in suh oasions. Data mining is de�ned as the proess of dis-overing patterns in data. The proess must be automati or (more usually)semi-automati. The patterns disovered must be meaningful in that theylead to some advantage, usually an eonomi advantage.Data mining is also a reative proess whih requires a number of dif-ferent skills and knowledge and it needs a standard approah whih will (1)help to translate business problems into data mining tasks, (2) suggest ap-propriate data transformations and data mining tehniques, and (3) providemeans for evaluating the e�etiveness of the results and doumenting theexperiene. The CRISP-DM (CRoss Industry Standard Proess for DataMining) projet [16℄ addressed parts of these problems by de�ning a proessmodel whih provides a framework for arrying out data mining projetswhih is independent of both the industry setor and the tehnology used.



1.1 CRISP-DM methodology 5The CRISP-DM proess model aims to make large data mining projets, lessostly, more reliable, more repeatable, more manageable, and faster.The CRISP-DM methodology is desribed in terms of a hierarhial pro-ess model, onsisting of sets of tasks desribed at four levels of abstration(from general to spei�): phase, generi task, speialized task, and proessinstane (see Figure 1.1.).At the top level, the data mining proess is organized into six phases, thatwill be de�ned later; eah phase onsists of several seond-level generi tasks.This seond level is alled generi beause it is intended to be general enoughto over all possible data mining situations. The generi tasks are intendedto be as omplete and stable as possible. Complete means overing boththe whole proess of data mining and all possible data mining appliations.Stable means that the model should be valid for yet unforeseen developmentslike new modeling tehniques.The third level, the speialized task level, is the plae to desribe howations in the generi tasks should be arried out in ertain spei� situations.For example, at the seond level there might be a generi task alled leandata. The third level desribes how this task di�ers in di�erent situations,suh as leaning numeri values versus leaning ategorial values, or whetherthe problem type is lustering or preditive modeling.The desription of phases and tasks as disrete steps performed in a spe-i� order represents an idealized sequene of events. In pratie, many of thetasks an be performed in a di�erent order, and it will often be neessary torepeatedly baktrak to previous tasks and repeat ertain ations. Our pro-ess model does not attempt to apture all of these possible routes throughthe data mining proess beause this would require an overly omplex proessmodel.The fourth level, the proess instane, is a reord of the ations, deisions,and results of an atual data mining engagement. A proess instane is orga-nized aording to the tasks de�ned at the higher levels, but represents whatatually happened in a partiular engagement, rather than what happens in



6 1. CRISP-DMgeneral.

Figure 1.1: Four Level Breakdown of the CRISP-DM Methodology for DataMining.
1.2 The referene modelAording to CRISP-DM, a given data mining projet has a life yle on-sisting of six phases. Figure 1.2 shows the phases of a data mining proess.The sequene of the phases is not rigid. Moving bak and forth betweendi�erent phases is always required. It depends on the outome of eah phasewhih phase or whih partiular task of a phase, has to be performed next.The arrows indiate the most important and frequent dependenies betweenphases. Data mining is not over one a solution is deployed. The lessonslearned during the proess and from the deployed solution an trigger new,often more foused business questions. Subsequent data mining proesseswill bene�t from the experienes of previous ones.In the following, we outline eah phase brie�y.



1.2 The referene model 7

Figure 1.2: Phases of the CRISP-DM referene model.Business understandingThis initial phase fouses on understanding the projet objetives and re-quirements from a business perspetive, then onverting this knowledge intoa data mining problem de�nition and a preliminary plan designed to ahievethe objetives.Data understandingThe data understanding phase starts with an initial data olletion and pro-eeds with ativities in order to get familiar with the data, to identify dataquality problems, to disover �rst insights into the data or to detet inter-esting subsets to form hypotheses for hidden information.



8 1. CRISP-DMData preparationThe data preparation phase overs all ativities to onstrut the �nal dataset(data that will be fed into the modeling tool(s)) from the initial raw data.Data preparation tasks are likely to be performed multiple times and not inany presribed order. Tasks inlude table, reord and attribute seletion aswell as transformation and leaning of data for modeling tools.ModelingIn this phase, various modeling tehniques are seleted and applied and theirparameters are alibrated to optimal values. Typially, there are severaltehniques for the same data mining problem type. Some tehniques havespei� requirements on the form of data. Therefore, stepping bak to thedata preparation phase is often neessary.EvaluationAt this stage in the projet you have built a model (or models) that appearsto have high quality from a data analysis perspetive. Before proeeding to�nal deployment of the model, it is important to more thoroughly evaluatethe model and review the steps exeuted to onstrut the model to be ertainit properly ahieves the business objetives. A key objetive is to determineif there is some important business issue that has not been su�iently on-sidered. At the end of this phase, a deision on the use of the data miningresults should be reahed.DeploymentCreation of the model is generally not the end of the projet. Even if thepurpose of the model is to inrease knowledge of the data, the knowledgegained will need to be organized and presented in a way that the ustomeran use it. It often involves applying �live� models within an organization'sdeision making proesses, for example in real-time personalization of Web



1.2 The referene model 9pages or repeated soring of marketing databases. However, depending on therequirements, the deployment phase an be as simple as generating a reportor as omplex as implementing a repeatable data mining proess aross theenterprise. In many ases it is the ustomer, not the data analyst, whoarries out the deployment steps. However, even if the analyst will not arryout the deployment e�ort it is important for the ustomer to understand upfront what ations need to be arried out in order to atually make use ofthe reated models.Images used in this hapter and more information about the CRISP-DMstandard proess an be found at http://www.risp-dm.org.





CHAPTER 2
Bakground

This hapter provides some preliminaries bakground about data miningtehniques used in this work. First in Setion 2.1 a new and simple las-si�ation of the proesses known as data mining is given, then in Setion 2.2lustering algorithms are presented. Setion 2.3 explains supervised learningmethods and �nally Setion 2.4 presents some related works on unsuper-vised and supervised learning in asade, automati lusters validation andmahine vision applied in petroleum geology.2.1 A new Data Mining visionAs mentioned before, data mining is de�ned as the proess of disoveringpatterns in data. How are the patterns expressed? Useful patterns allowus to make nontrivial preditions on new data. There are two extremes forthe expression of a pattern: as a blak box whose innards are e�etivelyinomprehensible and as a transparent box whose onstrution reveals the



12 2. Bakgroundstruture of the pattern. Both, we are assuming, make good preditions.The di�erene is whether or not the patterns that are mined are representedin terms of a struture that an be examined, reasoned about, and usedto inform future deisions. Witten an Frank [78℄ all it strutural patternsbeause they apture the deision struture in an expliit way. In otherwords, patterns help to explain something about the data.The new interest in data mining may be attributed to the fat that thenew set of proesses that are alled data mining are a super set of the pro-esses that previously were known as data mining. The original data miningproesses were summarized as a olletion of statistial analysis. The newdata mining proesses inlude several mahine learning tehniques as wellas statistial analysis. The addition of the reently popularized mahinelearning and intelligent proesses suh as arti�ial neural networks, genetialgorithms, fuzzy logi, and modi�ed luster analyses have onsiderably in-reased the apabilities and utilities o�ered by data mining.Many authors have o�ered di�erent lassi�ations of the proesses thatare olletively known as data mining [77℄. The most appropriate of thesede�nitions (one that suites petroleum industry most appropriately) seems tobe the one that identi�es two lasses of data mining proesses. These aredesriptive and preditive data mining. In several ases, desriptive datamining an be onsidered as a subset of preditive data mining. In otherwords, in order to perform preditive data mining suessfully, one, mostprobably, will have to perform a desriptive data mining �rst and then usethe information and the results of this proess to omplete the preditivedata mining.2.1.1 Desriptive Data MiningDesriptive data mining is very useful for getting an initial understanding ofthe presented data. Desriptive data mining is an exploratory proess andattempts to disover patterns and relationships between di�erent featurespresent in the database. During the desriptive data mining proess the



2.1 A new Data Mining vision 13data miner must keep in mind that relevane is an important issue. In otherwords, the relationships disovered by the miner must be those that userswould are about. During this proess many non-obvious patters may popout that may be of interest to the data owners.The tools used during the desriptive data mining proess are usuallyonsisted of di�erent types of luster analysis suh as hierarhial lustering,k-mean lustering, and fuzzy -mean lustering. Other popular desriptivedata mining tools are assoiation/lassi�ation rule indution tehniques.
2.1.2 Preditive Data MiningAs was previously mentioned, preditive data mining is a super set thatshould inlude desriptive data mining as part of its proesses, or at least,that is how we would like to de�ne it based on our past experiene. Duringthe preditive data mining the desriptive data mining proesses are usedas a prelude to development of a preditive model. The preditive modelan then be used in order to answer questions and assist the data miner inidentifying trends in the data. What is most interesting about preditivedata mining that distinguishes it from the desriptive data mining is that itan identify the type of patterns that might not yet exist in the dataset buthas the potential of developing.Unlike the desriptive data mining that is an unsupervised proess, pre-ditive data mining is very muh a supervised proess. Preditive data min-ing not only disovers the present patterns and information in the data itattempts to solve problems. Through the existene of modeling proessesin the analysis the preditive data mining an answer questions that annotbe answered by other tehniques. Tools that are used in the preditive datamining proess inlude deision trees, neural networks, geneti algorithmsand fuzzy systems. Deision trees are ideal for solving problems that an bedisseted into a logial progression of events [51℄.



14 2. Bakground2.2 Clustering tehniquesCluster analysis is an unsupervised learning method that onstitutes a or-nerstone of an intelligent data analysis proess. It is used for the explorationof inter-relationships among a olletion of patterns, by organizing them intohomogeneous lusters. It is alled unsupervised learning beause unlike las-si�ation (known as supervised learning), no a priori labeling of some patternsis available to use in ategorizing others and inferring the luster struture ofthe whole data [42℄. It is de�ned as the task of ategorizing objets havingseveral attributes into di�erent lasses suh that the objets belonging to thesame lass are similar, and those that are broken down into di�erent lassesare not. Intra-onnetivity is a measure of the density of onnetions betweenthe instanes of a single luster. A high intra-onnetivity indiates a goodlustering arrangement beause the instanes grouped within the same lus-ter are highly dependent on eah other. Inter-onnetivity is a measure of theonnetivity between distint lusters. A low degree of interonnetivity isdesirable beause it indiates that individual lusters are largely independentof eah other.Every instane in the dataset is represented using the same set of at-tributes. The attributes are ontinuous, ategorial or binary. To induea hypothesis from a given data set, a learning system needs to make as-sumptions about the hypothesis to be learned. These assumptions are alledbiases. Sine every learning algorithm uses some biases, it behaves well insome domains where its biases are appropriate while it performs poorly inother domains.A problem with the lustering methods is that the interpretation of thelusters may be di�ult. In addition, the algorithms will always assign thedata to lusters even if there were no lusters in the data. Therefore, ifthe goal is to make inferenes about its luster struture, it is essential toanalyse whether the data set exhibits a lustering tendeny. In a real-worldappliation there may be errors (alled noise) in the olleted data set due toinaurate measurement or due to missing values therefore a pre-proessing



2.2 Clustering tehniques 15is needed (e.g. hoose a strategy for handling missing attribute values).The hoie of whih spei� learning algorithm to use is a ritial step, too.The issue of relating the learning algorithms to the type of data and to thenature of the problem to be solved still remains an open and fundamentalproblem [39℄.Cluster analysis is a di�ult problem beause many fators (suh as ef-fetive similarity measures, riterion funtions, algorithms and initial ondi-tions) ome into play in devising a well tuned lustering tehnique for a givenlustering problem. Moreover, it is well known that no lustering method anadequately handle all sorts of luster strutures (shape, size and density).Sometimes the quality of the lusters that are found an be improved bypre-proessing the data. It is not unommon to try to �nd noisy values andeliminate them by a preproessing step. Another ommon tehnique is to usepost-proessing steps to try to �x up the lusters that have been found. Forexample, small lusters are often eliminated sine they frequently representgroups of outliers (instanes with noise). Alternatively, two small lustersthat are lose together an be merged. Finally, large lusters an be splitinto smaller lusters.Outlier detetion is one of the major objetives in data mining, whosetask is to �nd small groups of data objets that are exeptional when om-pared with rest large amount of data. Outlier mining has strong appliationbakground in teleommuniation, �nanial fraud detetion, and data lean-ing, sine the patterns lying behind the outliers are usually interesting forhelping the deision makers to make pro�t or improve the servie quality.Generally, lustering algorithms an be ategorized into partitioningmeth-ods, hierarhial methods, density-based methods, and grid-based methods.An exellent survey of lustering tehniques an be found in [39℄.2.2.1 Partitioning methodsPartitioning methods are divided into two major subategories, the entroidand the medoids algorithms. The entroid algorithms represent eah luster



16 2. Bakgroundby using the gravity entre of the instanes. The medoid algorithms representeah luster by means of the instanes losest to the gravity entre.The most well-known entroid algorithm is the k-means [39℄. The k-means method partitions the data set into k subsets suh that all points ina given subset are losest to the same entre. In detail, it randomly selets kof the instanes to represent the lusters. Based on the seleted attributes,all remaining instanes are assigned to their loser entre. K-means thenomputes the new enters by taking the mean of all data points belongingto the same luster. The operation is iterated until there is no hange inthe gravity entres. If k annot be known ahead of time, various values of kan be evaluated until the most suitable one is found. The e�etiveness ofthis method as well as of others relies heavily on the objetive funtion usedin measuring the distane between instanes. The di�ulty is in �nding adistane measure that works well with all types of data.Generally, the k-means algorithm has the following important properties:1) It is e�ient in proessing large data sets, 2) It often terminates at a loaloptimum, 3) The lusters have spherial shapes, 4) It is sensitive to noise.2.2.2 Hierarhial methodsThe hierarhial methods group data instanes into a tree of lusters. Thereare two major methods under this ategory. One is the agglomerative method,whih forms the lusters in a bottom-up fashion until all data instanes be-long to the same luster. The other is the divisive method, whih splits up thedata set into smaller luster in a top-down fashion until eah luster ontainsonly one instane. Both divisive algorithms and agglomerative algorithmsan be represented by dendrograms (see Figure 2.1). Both agglomerativeand divisive methods are known for their quik termination. However, bothmethods su�er from their inability to perform adjustments one the splittingor merging deision is made. Other advantages are: 1) does not require thenumber of lusters to be known in advane, 2) omputes a omplete hierar-hy of lusters, 3) good result visualizations are integrated into the methods,



2.2 Clustering tehniques 174) a ��at� partition an be derived afterwards (e.g. via a ut through thedendrogram).

Figure 2.1: Example of dendrogram and olor mosai with two open nodes(yan nodes).Hierarhial lustering tehniques use various riteria to deide �loally�at eah step whih lusters should be joined (or split for divisive approahes).For agglomerative hierarhial tehniques, the riterion is typially to mergethe �losest� pair of lusters, where �lose� is de�ned by a spei�ed measureof luster proximity. There are three de�nitions of the loseness betweentwo lusters: single-link, omplete-link and average-link. The single-linksimilarity between two lusters is the similarity between the two most similarinstanes, one of whih appears in eah luster. Single link is good at handlingnon-elliptial shapes, but is sensitive to noise and outliers. The omplete-link similarity is the similarity between the two most dissimilar instanes, one



18 2. Bakgroundfrom eah luster. Complete link is less suseptible to noise and outliers, butan break large lusters, and has trouble with onvex shapes. The average-link similarity is a ompromise between the two.2.2.3 Ensembles of lustering algorithmsThe theoretial foundation of ombining multiple lustering algorithms isstill in its early stages. In fat, ombining multiple lustering algorithms isa more hallenging problem than ombining multiple lassi�ers. In [55℄ thereason that impede the study of lustering ombination has been identi�ed asvarious lustering algorithms produe largely di�erent results due to di�erentlustering riteria, ombining the lustering results diretly with integrationrules, suh as sum, produt, median and majority vote an not generate agood meaningful result.Cluster ensembles an be formed in a number of di�erent ways [66℄, suhas (1) the use of a number of di�erent lustering tehniques (either deliber-ately or arbitrarily seleted); (2) the use of a single tehnique many timeswith di�erent initial onditions; (3) the use of di�erent partial subsets offeatures or patterns.2.2.4 Other lustering tehniquesDensity-based lustering algorithms try to �nd lusters based on density ofdata points in a region. One of the most well known density-based lusteringalgorithms is the DBSCAN [25℄.Grid-based lustering algorithms �rst quantize the lustering spae into a�nite number of ells (hyper-retangles) and then perform the required opera-tions on the quantized spae.Some of the grid-based lustering algorithms are:STatistial INformation Grid-basedmethod -STING [76℄, WaveCluster [65℄,and CLustering In QUEst - CLIQUE [1℄.



2.3 Supervised learning tehniques 192.3 Supervised learning tehniquesIndutive mahine learning is the proess of learning a set of rules frominstanes (examples in a training set), or more generally speaking, reatinga lassi�er that an be used to generalize from new instanes [43℄.The �rst step is de�ning the dataset. Every instane in any dataset usedby mahine learning algorithms is represented using the same set of features.The features may be ontinuous, ategorial or binary. If instanes are givenwith known labels (the orresponding orret outputs) then the learning isalled supervised, in ontrast to unsupervised learning, where instanes areunlabeled.The hoie of whih spei� learning algorithm should be used is a ritialstep. One preliminary testing is judged to be satisfatory, the lassi�er(mapping from unlabeled instanes to lasses) is available for routine use.The lassi�er's evaluation is most often based on predition auray (theperentage of orret predition divided by the total number of preditions).There are at least three tehniques whih are used to alulate a lassi�erauray when applied to instanes not inluded in the learning set. Onetehnique is to split the training set by using two-thirds for training andthe other third for estimating performane. In another tehnique, known asross-validation, the training set is divided into mutually exlusive and equal-sized subsets and for eah subset the lassi�er is trained on the union of allthe other subsets. The average of the error rate of eah subset is thereforean estimate of the error rate of the lassi�er. Leave-one-out validation is aspeial ase of ross validation. All test subsets onsist of a single instane.This type of validation is, of ourse, more expensive omputationally, butuseful when the most aurate estimate of a lassi�er's error rate is required.Supervised lassi�ation is one of the tasks most frequently arried out byso-alled Intelligent Systems. Thus, a large number of tehniques have beendeveloped based on arti�ial intelligene (logial/symboli tehniques), per-eptron based tehniques and statistis (bayesian networks, instane-basedtehniques). In next setions, we will fous on the most important super-



20 2. Bakgroundvised mahine learning tehniques, starting with logial/symboli algorithms.Logi based algorithms inludes deision trees and rule-based lassi�ers.All supervised learning tehniques were tested in a real industry ontextusing WEKA, the open soure data mining software written in Java. WEKAis a suite of tools for data pre-proessing, lassi�ation, regression, lustering,assoiation rules, and visualization [36℄.2.3.1 Deision treesDeision trees are trees that lassify instanes by sorting them based onfeature values. Eah node in a deision tree represents a feature in an instaneto be lassi�ed, and eah branh represents a value that the node an assume.Instanes are lassi�ed starting at the root node and sorted based on theirfeature values.The problem of onstruting optimal binary deision trees is an NP-omplete problem and thus theoretiians have searhed for e�ient heuristisfor onstruting near-optimal deision trees. This problem an be solved re-ursively. First, selet an attribute to plae at the root node and make abranh for eah possible value. This splits up the example set into subsets,one for eah value of the attribute. In order to selet the attribute to on-sider, we must evaluate the results, and selet the attribute that splits theexample set in subsets ontaining instanes of the same lass. To perfetlydisriminate lasses valuing a single attribute is often impossible, so we musthose the most �pure� division. Repeating reursively the proess on thesubsets, we an reah a perfet division between lasses and then stop thelassi�ation.The feature that best divides the training data would be the root nodeof the tree. There are numerous methods for �nding the feature that bestdivides the training data suh as information gain [37℄ and gini index [11℄.The most well-know algorithm in the literature for building deision treesis the C4.5 [57℄. In our experiments we use J48 algorithm, whih is animplementation of C4.5.



2.3 Supervised learning tehniques 21One of the most useful harateristis of deision trees is their ompre-hensibility. People an easily understand why a deision tree lassi�es aninstane as belonging to a spei� lass. Sine a deision tree onstitutes ahierarhy of tests, an unknown feature value during lassi�ation is usuallydealt with by passing the example down all branhes of the node where theunknown feature value was deteted, and eah branh outputs a lass distri-bution. The output is a ombination of the di�erent lass distributions thatsum to 1. The assumption made in the deision trees is that instanes belong-ing to di�erent lasses have di�erent values in at least one of their features.Deision trees tend to perform better when dealing with disrete/ategorial.Random Forests is an algorithm based on a ombination of tree predi-tors suh that eah tree depends on the values of a random vetor sampledindependently and with the same distribution for all trees in the forest [12℄.The generalization error for forests onverges to a limit as the number oftrees in the forest beomes large.Rotation Forest is an algorithm for generating ensembles of lassi�ers [60℄.It onsists in splitting the feature set into K subsets, running prinipal om-ponent analysis separately on eah subset and then reassembling a new ex-trated feature set while keeping all the omponents. The data is transformedlinearly into the new features. A deision tree lassi�er is trained with thisdata set. Di�erent splits of the feature set will lead to di�erent rotations,thus diverse lassi�ers are obtained. On the other hand, the informationabout the satter of the data is ompletely preserved in the new spae ofextrated features. In this way it builts aurate individual lassi�ers. Thus,we target diversity and auray together.2.3.2 Learning set of rulesDeision trees an be translated into a set of rules by reating a separaterule for eah path from the root to a leaf in the tree [57℄. However, rulesan also be diretly indued from training data using a variety of rule-basedalgorithms. Classi�ation rules represent eah lass by disjuntive normal



22 2. Bakgroundform (DNF). The goal is to onstrut the smallest rule-set that is onsistentwith the training data. A large number of learned rules is usually a sign thatthe learning algorithm is attempting to �remember� the training set, insteadof disovering the assumptions that govern it.For the task of learning binary problems, rules are more omprehensiblethan deision trees beause typial rule-based approahes learn a set of rulesfor only the positive lass. Moreover, the divide and onquer approah (usedby deision trees) is usually more e�ient than the separate and onquerapproah (used by rule-based algorithms). Separate-and-onquer algorithmslook at one lass at a time, and try to produe rules that uniquely identifythe lass. They do this independent of all the other lasses in the trainingset. For this reason, for small datasets, it may be better to use a divide-and-onquer algorithm that onsiders the entire set at one.In our experiments we use PART and JRIP. PART is an algorithm for ruleindution that ombines two di�erent approahes (C4.5 and RIPPER) in anattempt to avoid their respetive problems [30℄. The method ombines thedivide-and-onquer strategy for deision tree learning with the separate-and-onquer one for rule learning. It adopts the separate-and-onquer strategy inthat it builds a rule, removes the instanes it overs, and ontinues reatingrules reursively for the remaining instanes until none are left. However, itdi�ers from the standard approah in the way that eah rule is reated. Inessene, to make a single rule, a pruned deision tree is built for the urrentset of instanes, the leaf with the largest overage is made into a rule, and thetree is disarded. JRIP is the WEKA implementation of RIPPER (RepeatedInremental Pruning to Produe Error Redution). It is able to generateompat and easy to read rules [19℄.2.3.3 Naive bayes lassi�ersConversely to arti�ial neural networks, statistial approahes are hara-terized by having an expliit underlying probability model, whih providesa probability that an instane belongs in eah lass, rather than simply a



2.3 Supervised learning tehniques 23lassi�ation. Bayesian networks are the most well known representative ofstatistial learning algorithms. A omprehensive book on Bayesian networksis [40℄. Naive Bayesian networks (NB) are very simple Bayesian networkswhih are omposed of direted ayli graphs with only one parent (repre-senting the unobserved node) and several hildren (orresponding to observednodes) with a strong assumption of independene among hild nodes in theontext of their parent. The major advantage of the naive Bayes lassi�er isits short omputational time for training. In addition, sine the model hasthe form of a produt, it an be onverted into a sum through the use oflogarithms with signi�ant onsequent omputational advantages.2.3.4 Linear regressionLinear regression an easily be used for lassi�ation in domains with numeriattributes. Indeed, we an use any regression tehnique, whether linear ornon-linear, for lassi�ation. The trik is to perform a regression for eahlass, setting the output equal to one for training instanes that belong tothe lass and zero for those that do not. The result is a linear expression forthe lass. Then, given a test example of unknown lass, alulate the valueof eah linear expression and hoose the one that is largest. This methodis sometimes alled multiresponse linear regression. We use Logisti, animplementation of a two-lass logisti regression model with a ridge estima-tor [46℄.ClassifiationViaRegression is an algorithm that implements lassi-�ation using regression methods as explained in [29℄. Model trees are atype of deision tree with linear regression funtions at the leaves, useful forprediting ontinuous numeri values. They an be applied to lassi�ationproblems by employing a standard method of transforming a lassi�ationproblem into a problem of funtion approximation.A omplete review of supervised mahine learning tehniques, inludingpereptron based tehniques (single or multi layered pereptrons), radial ba-sis funtion networks, instane based learning and support vetor mahines,



24 2. Bakgroundan be found in [43℄.2.4 Related worksThe new approah presented in this Ph.D. thesis uses a two step algorithm:�rst lustering is used to objetively and quikly evaluate a large dataset,then deision trees or regression methods are used to predit and propagatethe haraterization in new unknown dataset.Unsupervised and supervised learning algorithms in asade are a knownsolution in all those problems where input are large datasets totally or par-tially unlabelled and where the goal is to reate a preditive model.Clustering is a major tool used in a number of appliations, basi dire-tions in whih lustering is of use are: data redution, hypothesis generation,hypothesis testing an predition based on groups [67℄. Hierarhial luster-ing, a tehnique used in this Ph.D. work, do not atually partition a data setinto lusters, but ompute a hierarhial model, whih re�ets its possiblylustering struture. The �rst problem with these algorithms is that lustersare not expliit and have to be determined somehow from the representa-tion. Several lustering validity approahes have been developed [47℄. Inliterature, some methods for automati lusters extration from a hierarhi-al representation an be found on [3, 61, 8℄. In [3℄ the authors propose amethod for reahability plots that is based on the steepness of the �dents�in a reahability plot. Unfortunately, this method requires an input pa-rameter, whih is di�ult to understand and hard to determine. In [61℄,the authors analyze the relation between hierarhial lustering algorithmsthat have di�erent outputs, i.e. between the Single-Link method, whih pro-dues a dendrogram,and OPTICS, whih produes a reahability plot. Theydevelop methods to onvert dendrograms and reahability plots into eahother. Then they introdue a new tehnique to reate a tree that ontainsonly the signi�ant lusters from a hierarhial representation as nodes. In athird work, [8℄, several luster evaluation tehniques for gene expression data



2.4 Related works 25analysis are desribed. Normalisation and validity aggregation strategies areproposed to improve the predition of the number of relevant lusters.Theauthors use K-means lustering algorithm and the work is tested only overa 2-lasses datasets. Another interesting and pioneering work is [10℄ wherea non-horizontal dendrogram ut is proposed for the �rst time. This paperpresents a tool for interative interpretation of hierarhial lustering resultsand it has been tested on a eletri load urve dataset. Even if this last paperintrodues the idea of a non-horizontal ut of the dendrogram, it does notprovide any automati proedure for this task. In this Ph.D. work we thendeided to extend and apply the onepts of automati luster extration,presented in the former papers, in this partiular tree utting proess, seeSetion 5.1.The goal of supervised learning is to build a onise model of the distri-bution of lass labels in terms of preditor features. The resulting lassi�ersis then used to assign lass labels to the testing instanes where the val-ues of the preditor features are known, but the value of the lass label isunknown [43℄. Combining these two approahes we an take advantages interms of data understanding and predition auray.Most appliations of ombined tehniques are related to natural languageand text mining. For instane lustering an be used as a feature ompressionand/or extration method: features are lustered into groups based on se-leted lustering riteria. Typially, the parameters of the luster beome theweighted average of the parameters of its onstituent features [45℄. Anotherinteresting researh area, in text lassi�ation, is semi-supervised learning:training data ontain both labelled and unlabelled examples. Clustering anbe used, in asade with supervised algorithms, as a method to extrat infor-mation from the unlabelled data in order to boost the lassi�ation task. Forinstane is used: i) to reate a training set from unlabelled data [31℄, [20℄,ii) to augment the dataset with new features [59℄ and iii) to o-train a las-si�er [44℄.In reservoir analysis best results are given when the domain expert iden-



26 2. Bakgroundti�es right number of lusters. Very interesting solutions to this problem,that use luster ensemble tehniques, are presented in [33℄. There are a largenumber of appliations of supervised learning algorithms in reservoir hara-terization, modelling and predition. They use Markov hain [9℄ to preditfaies distribution also integrating di�erent soures (onventional log, imagelog and ores) [7℄ from same well. Some lustering tehniques help the geolo-gist in faies analysis [81℄ and ombining this with neural networks led to thedevelopment of new interpretative methods for reservoir haraterization [41℄.Subsurfae data analysis also involves mahine vision algorithms in orderto extrat image features and use them as dataset for unsupervised learningalgorithms. Main topis of well log image analysis are urve detetion andimage segmentation. Several approahes have been studied for detetion ofurves, that represent fratures, over a noisy image suh as [80℄, [74℄, highproess time is the ruial disadvantage of these methods. In this Ph.D. workfratures detetion is based on [72℄: it uses a simpli�ed version of orientationspae as preproessing step for a generalized radon transformation [48℄.Image segmentation is used for porosity rok measurement: pores appearas irular spots in log images. Segmentation algorithms are based on oneof two basi properties of intensity values: disontinuity and similarity. Inthe �rst ategory, the approah is to partition an image based on abrupthanges in intensity, suh as edges (i.e. Canny edge detetor [13℄). Theprinipal approahes in the seond ategory are based on partitioning animage into regions that are similar aording to a set of prede�ned riteria.Thresholding, region growing (i.e. [50℄), and region splitting and merging areexamples of methods in this ategory. Other proposed reent approahes [22℄are segmentation based on the mean shift proedure [21℄, multiresolutionsegmentation of low-depth-of-�eld images [75℄, a Bayesian-framework-basedsegmentation involving the Markov hain Monte Carlo tehnique [70℄, andan EM-algorithm-based segmentation using a Gaussian mixture model [14℄.A sequential segmentation approah that starts with texture features andre�nes segmentation using olor features is explored in [17℄. An unsupervised



2.4 Related works 27approah for segmentation of images ontaining homogeneous olor/textureregions has been proposed in [23℄. In this work the fous is on segmentationobtained by threshold operations. Other interesting tehniques for automatiimage texture analysis are developed in [79℄.





CHAPTER 3
Business & Data Understanding

In this hapter we will see an introdution to the geologial bakground:petroleum exploration is the searh by petroleum geologists and geophysi-ists for hydroarbon deposits beneath the Earth's surfae, suh as oil andnatural gas. The extration (or prodution) of petroleum is the proessby whih usable petroleum is extrated and removed from the earth. Oiland gas exploration and prodution (E&P) are grouped under the siene ofpetroleum geology.Following the CRISP-DM model this is the Business & Data Under-standing phase where the fous is on the projet objetives and requirementsfrom a business perspetive. In this phase it is important to identify the keyonepts and onvert them into a data mining problem de�nition. Availabledata are presented and observed from a tehnial point of view.This hapter is strutured as follows: Setion 3.1 presents some basisonept about petroleum E&P, Setion 3.2 shows available data in reservoirmodeling proess. Setion 3.3 explains the �manual� methodology used for



30 3. Business & Data Understandinggeologial interpretation of subsurfae data that this work tries to onvert ina semi-automated proess. Finally Setion 3.4 presents two main ategoriesof well log.3.1 Petroleum Exploration and ProdutionIn order to have a ommerial deposit of gas or oil, three geologial onditionsmust have been met. First, there must be a soure rok in the subsurfae ofthe area that generated the gas or oil at some time in the geologial past.Seond, there must be a separate, subsurfae reservoir rok to hold the gasor oil. Third, there must be a trap on the reservoir rok to onentrate thegas or oil into ommerial quantities.The uppermost rust of the earth in oil-and-gas produing areas is om-posed of sedimentary rok layers. Sedimentary roks are the soure andreservoir roks for gas and oil. These roks are alled sedimentary roks be-ause they are omposed of sediments. Sediments are (1) partiles suh assand grains that were formed by the breakdown of pre-existing roks andtransported, (2) seashells, or (3) salt that preipitated from of water. Thesedimentary roks that make up the earth's rust are millions and sometimesbillions of years old. During the vast expanse of geologial time, sea levelhas not been onstant. Many times in the past, the seas have risen to overthe land and then fallen to expose the land. During these times, sedimentswere deposited (Figure 3.1). These sediments are relatively simple mate-rials suh as sands deposited along beahes, mud on the sea bottom, andbeds of seashells. These anient sediments, piled layer upon layer, form thesedimentary roks that are drilled to �nd and produe oil and gas.The soure of gas and oil is the organi matter that is buried and preservedin the anient sedimentary roks. These roks ontain not only inorgani par-tiles suh as sand grains and mud, but also dead plant and animal material.The most ommon organi-rih sedimentary rok (the soure rok for mostof the gas and oil) is blak shale. It was deposited as organi-rih mud on an
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Figure 3.1: Sediments deposition.anient oean bottom.Gas and oil are relatively light in density ompared to water that alsoours in the subsurfae sedimentary roks. After oil and gas have beengenerated, they rise due to buoyany through fratures in the subsurfaeroks. The rising gas and oil an interset a layer of reservoir rok. A reservoirrok is a sedimentary rok that ontains billions of tiny spaes alled pores.A ommon sedimentary rok is sandstone omposed of sand grains similarto the sand grains on a beah or in a river hannel. Sand grains are likespheres, and there is no way the grains will �t together perfetly. There arepore spaes between the sand grains on a beah and in a sandstone rok. Thegas and oil �ow into the pores of the reservoir rok layer (see Figure 3.2).How are subsurfae deposits of gas and oil loated? During the earlydays of drilling, it was thought that there were large, �owing underground
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Figure 3.2: Gas, oil and water �ow into the pores of a rok.rivers and subsurfae pools of oil. Early drillers, however, had some suessbeause many subsurfae traps are leaky. There are small fratures in theaprok, and some of the oil and gas leaks up and seeps onto the surfae.The early drillers loated their Wells on the seeps.By the early 1900s, the priniples of subsurfae gas and oil deposits werebeoming better known. Oil ompanies realized that by mapping how thesedimentary rok layers rop our on the surfae of the ground, the rok layersould be projeted into the subsurfae, and traps ould be loated. Geologistswere hired to map rok outrops.Later, seismi method was developed to detet hidden traps in the sub-surfae. Seismi exploration uses a soure and detetor. The soure is loatedon or near the surfae and gives o� an impulse of sound energy into the sub-surfae. The sound energy bounes o� sedimentary rok layers and returnsto the surfae to be reorded by the detetor. Sound ehoes are used to makean image of the subsurfae rok layers.The only way to know for sure if a trap ontains ommerial amounts ofgas and oil is to drill a well. A well drilled to �nd a new gas or oil �eld isalled a wildat well. Most wildat wells are dry holes with no ommerialamounts of gas or oil. The well is drilled using a rotary drilling rig. There anbe thousands of feet of drillpipe with a bit on the end, alled the drillstring,suspended in the well.To evaluate the well, a servie ompany runs a wireline well log. A loggingtruk is driven out to the well. A long ylinder ontaining instruments alled
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Figure 3.3: Migration and trap of hydroarbons.a sonde is unloaded from the truk and lowered down the well on a wireline.As the sonde is brought bak up the well, the instruments remotely sense theeletrial, soni, and radioative properties of the surrounding roks and their�uids. These measurements are digitally reorded in a well log (Figure 3.4).It is used to determine the omposition of eah rok layer, whether the roklayer has pores, and what �uid (water, gas, or oil) is in the pores. Dependingon the test results, the well an be plugged and abandoned as a dry hole orompleted as a produer.3.2 Reservoir modeling and interpretationAs it an be easily understood, geosientists need reliable and aurate in-formation to support their studies and help them in their searh for re-soures [63℄. This information has di�erent origins suh as outrops or sub-surfae data.An outrop is a visible exposure of bedrok or anient super�ial depositson the surfae of the Earth [38℄. Outrops do not over the majority ofthe Earth's land surfae beause in most plaes the bedrok or super�ialdeposits are overed by a mantle of soil and vegetation and annot be seenor examined losely. However in plaes where the overlying over is removedthrough erosion or tetoni uplift, the rok may be exposed, or rop out. In



34 3. Business & Data Understanding

Figure 3.4: A well logging truk reording a well log.petroleum researh outrop information has been progressively replaed bydrilling data or ompleted by surfae geophysis or borehole geophysis, thelatter inluding wireline logging.Subsurfae data an inlude: surfae seismi data, ores and well logging.Information provided by surfae seismi is the only one that allows on-tinuous study of formation subsurfae. It ompletes our pereption of theseformation on the outrops. Two and three dimensional pitures of subsurfaeare extremely important tools for exploration of subsurfae sine they givediret information on petrophysial properties of the formation.Core obtained while drilling, by virtue of their size and ontinuous nature,permit a thorough geologial analysis over a hosen interval. Even more theyan provide information at mirosope sale suh as grain and pore size.



3.2 Reservoir modeling and interpretation 35Well logging is de�ned as:
• the at or proess of making or reording a log;
• the method or tehnique by whih subsurfae formations are hara-terized relative to depth, by measurements or observation on the roksof a borehole.A log is a ontinuous reord as a funtion of depth of observations madeon the rok and �uids of the geologi setion exposed in a well bore. Welllogs are of speial interest for several reasons. They provide the only soureof data to give aurate information on the depth and the apparent, andeven real, thikness of beds. They give a nearly ontinuous analysis of theformations and also they generally analyse a volume of rok that is oftengreater than the one represented by a ore or plug. Consequently, theyare more representative of the mean properties of the rok, espeially inheterogeneous roks. But, at the same moment they provide a very detaildesription of the formations if images are reorded. This is the reasonwhy logging data are so important. It is no more possible to oneive anygeologial synthesis and reservoir evaluation without the exploitation of welllogging data.There are many types of logging tools, ranging from ommon measure-ments (pressure and temperature), to advane rok properties and fratureanalysis, �uid properties in the wellbore or formation properties. See Fig-ure 3.7 for an example of well log.The omplete haraterization of depositional faies and strutural fea-tures is an important step in the proess of understanding the reservoir po-tentiality. Faies distribution, depositional geometries, porosity types andfrature/stylolites identi�ations are key parameters to orretly desribereservoirs. In the proess of reservoir de�nition the availability of diretsubsurfae information (ores) is fundamental, when diret subsurfae infor-mation are sare or their quality is poor the use of indiret tools, to de�neand predit depositional faies and strutural geometries, is important to



36 3. Business & Data Understandinghave a more omplete appreiation of the entire reservoir. In this ase, it isimportant to properly alibrate the indiret tools with the ore observationsand analysis. Image logs represent one of the more advaned and importantindiret tools to desribe the roks harateristis; when orretly alibratedwith ores and used in assoiations the other onventional eletri logs, itan represent a key element to predit faies and harateristis in un-oredsetions of the reservoir.The FMI (Fullbore FormationMiroImager, see Figure 3.5 and Figure 3.6)is an eletrial imaging devie made by eletrode that measure resistivity andrequire a ondutive borehole �uid. As with onventional resistivity loggingdevies, the resistivity measurement is a funtion of porosity, pore �uid, poregeometry, ementation and lay ontent and is in�uened by mineralogy [54℄.Eah sensor of the eletrial devie, makes a resistivity measurement of theborehole wall as a funtion of azimuth and depth. The resistivity loggingmeasurements, in general, represent a rok volume some distane into theformation, beyond the borehole wall. Normal drilling onditions fore bore-hole �uid espeially into fratures, thereby reating a ondutivity ontrastwith the adjaent rok formations. These ontrasts are measured by eletri-al imaging devies whih makes them exellent tools for frature detetionand haraterization. Considering the quality of the image it is possible alsoto use these devies to interpret every surfae that represent a ontrast of re-sistivity in the formation, thus beds with di�erent lithologial harateristis,layer surfaes, erosional surfaes.3.3 Geologial interpretation of subsurfae dataThe objetive of the geologial interpretation is to try to integrate and tointerpret image and eletrial logs in order to orrelate all the logs to geo-logial harateristis of the rok (lithology, surfaes, porosity) and of thedepositional environment or stratigraphi unit.The approah to the geologial haraterization of FMI log image onsists
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Figure 3.5: FMI measurement devie with urrent path.in a visual analysis of the FMI images over the onsidered setion of the well.The analysis fous on the harateristis of the image and in partiular on:the homogeneity of the image (texture of the image); the type of features ob-served (linear surfaes, pathes) on dimensions of features (ontinuity, thik-ness); organization of features and image (organized, disorganized, aligned,sparse); the ontrast of resistivity between the matrix and the features andbetween di�erent features (high, low resistivity ontrast).These properties represent the main parameters to haraterize the FMIimage and based on these harateristis the entire log is sanned and stud-
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Figure 3.6: Examples of high resolution wireline imaging tools. (a) The FMIresistivity imager. (b) The STAR resistivity imager. () The CBIL aoustiimager.ied. At the end of this proess it is possible to identify some repetitiveharateristis of the images that ombined between them supply a typialimage response to the FMI. In this way, it is possible to build a model thatonsiders the most important FMI images observed repeatedly on the log.The model is represented by a map (Textural Map, see Figure 3.8) whereall the observed FMI images are organized based on their main harateris-tis. All the FMI images an be grouped in FMI faies distinguished on theirimage harateristis. The FMI faies one plaed on the textural map overit entirely. The following step is to alibrate, over the ored intervals, theFMI texture faies with ore images/desriptions in order to assign to eah
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Figure 3.7: Example of image log and eletrial log plotted together.



40 3. Business & Data UnderstandingFMI faies a distintive geologial meaning. The �nal step of this proessis to interpret the propagate FMI faies over the entire FMI log. The �nalresult is a log that assoiates the FMI faies with depth (FMI Texture Log,see Figure 3.9).

Figure 3.8: Example of FMI faies identi�ation: (top) FMI faies hara-terization, (bottom) textural map.Using the texture log, the texture map and the FMI faies/ore alibrationit is possible to have a better idea of the distribution of the di�erent geologialharateristis over the onsidered setion.In order to implement a omplete geologial interpretation of all the data



3.4 Subsurfae data: image and eletri logs 41it is important to integrate image logs with eletri logs. The previous stepsan also be improved by adding information and log provided by other wellsin the same area. In this ase we an haraterize the entire reservoir areaby using logs from di�erent wells.3.4 Subsurfae data: image and eletri logsThere are many types of logging tools, therefore there are many type of logs.Resistivity, porosity and aousti logs are ommon eletri logs type. Imagelogs or FMI logs are digital images aquired by a speial logging tool (seeFigure 3.5 in Setion 3.2 for a detailed view of the tool) within a borehole,see Figure 3.11 for an example. An interpretation of these measurements isthen made to loate and quantify potential depth zones ontaining oil andgas [63℄.In this work we use all of the previous log types properly integrated in alarge dataset. While eletri logs are provided as table of numerial valuesalong the well depth, image logs are digital images that represent resistivitymeasurements of the rok formation taken by the wellbore surfae.3.4.1 Image logsImage logs are resistivity or aousti devies that measure ertain physialproperties of the rok at or near the well that an be displayed as imagesof the wellbore, whih an then be interpreted on a omputer. Typiallyrok properties are ontrolled by fators suh as variations in omposition,diagenesis, grain size, grain orientation, pore �uid variations, et.Image logs an provide detailed piture of the wellbore that represent thegeologial and petrophysial properties of the setion being logged. In thelate 1980's Shlumberger introdued the onept of borehole eletrial im-ages by proessing variations of the shallow miroresistivity of wellbore wallsreorded by modi�ed versions of its Stratigraphi High Resolution DipmeterToolTM . Called the Formation Miro-SannerTM (FMS), the tool measured
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Figure 3.9: Example of FMI faies desription: (top) FMI haraterization,(bottom) textural map, (right) ores.



3.4 Subsurfae data: image and eletri logs 43losely spaed arrays of foused shallow resistivity readings that are relatedto hanges in rok omposition and texture, struture, and �uid ontent [63℄.Proessing the data, in whih a range of olors are assigned to the lateral(side-to-side) and vertial variations of the miroresistivity along the well-bore, produes an image of the borehole wall.The urrent generation of tools, alled the fullbore Formation Miro Im-agerTM (FMI), reords an array of miroresistivity measurements from 192sensors on eight pads mounted on four orthogonally plaed aliper arms.The spaing and position of the pads provides 80% overage of an eight-inhdiameter hole and a resolution of 5 mm.The FMI yields a ontinuous, high-resolution eletrial image of a bore-hole and therefore omplements whole ores ut in the same well. Resistivitymeasurements are onverted into gray-level or olor-oded intensity values,and eah measurement orresponds to a pixel in the FMI image. This imageis the unrolled version of the well surfae and it is made by six vertial stripsof measurement. There is a strip for eah pad of sensors in the FMI tool, seeFigure 3.11 for an example.

Figure 3.10: Working shema of FMI devie.If the FMI-derived image is of su�ient quality and alibrated against



44 3. Business & Data Understandingthe ore, it an provide a ontinuous survey of the formation in plaes whereore is not ut, there was no ore reovery, or when a ore has been damagedthrough handling, transportation, or plugging.

Figure 3.11: Portion of FMI Image with 6 vertial strips. This image isaquired using a tool with 6 measurement pads.3.4.2 Eletri logsEletri logs are based on physial measurements made by instruments low-ered into the hole (geophysial logs).Gamma Ray log is a reord of formation's radioativity. The radiationemanates from naturally-ourring uranium, thorium and potassium. Thegamma ray gives the radioativity of the three elements ombined, while the



3.4 Subsurfae data: image and eletri logs 45spetral gamma ray shows the amount of eah individual element ontribut-ing to this radioativity. The geologial signi�ane of radioativity lies inthe distribution of these three elements.Caliper log measures variation in borehole diameters with depth. Thealiper log is printed as a ontinuous series of values of hole diameter withdepth. Where the hole has the same size as the bit whih drilled it, theformation is oherent and usually quite hard. Holes with a muh largerdiameter than the bit size are aved or washed out.Density log determines rok bulk density along a wellbore. This is theoverall density of a rok inluding solid matrix and the �uid enlosed in pores.Geologially, bulk density is a funtion of the density of the minerals forminga rok (i.e. matrix) and the enlosed volume of free �uids (porosity).Porosity log provides a ontinuous reord of a formation's reation to fastneutron bombardment. It is quoted in terms of neutron porosity. Quanti-tatively, the neutron log is used to measure porosity. Qualitatively, it is anexellent disriminator between gas and oil. When ombined with the densitylog on ompatible sales, it is one of the best subsurfae lithology indiatorsavailable, aording to our �rst goal: identify lithology of the wells.Resistivity log: is a measurement of formation's resistivity; that is itsresistane to the passage of an eletri urrent. Condutivity log measurea formation's ondutivity or its ability to ondut an eletri urrent butthis value is generally onverted diretly to resistivity. The prinipal use ofresistivity log is to �nd hydroarbons. Resistivity is de�ned as logarithmilog, so in our dataset we onverted in logarithmi sale values of resistivity.Soni or aousti log shows a formation's interval transit time. It is ameasure of a formation's apaity to transmit sound waves. Geologially,this apaity varies with lithology and with rok texture, notably porosity.
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CHAPTER 4
Data Preparation

Data Preparation involves all the ativities for dataset generation. Datatransformation, onversion and integration take plae in this fundamentalstep. This hapter presents an approah used to onvert image observationsin numerial values and to integrate dataset from di�erent soures.In Setion 4.1 mahine vision tehniques for image log interpretation arepresented. Two main tasks: urves and vauoles detetion are desribed anda solution is proposed and tested. Finally Setion 4.2 addresses the problemof integration of di�erent logs.4.1 Mahine vision for log interpretationFMI logs interpretation is a very omplex task, due to the large numberof variables and to the huge amount of data to be analysed. Usually, thegeologist performs the bedding and frature analysis by hand, in a tediousand expensive task, and then he tries to identify di�erent lasses that group



50 4. Data Preparationwell setions at di�erent depths with similar visual harateristis.In order to integrate data from di�erent soures it needs to onvert imagelog observation and interpretation in numeri data. The approah used forgeologial image interpretation is based on the detetion/measurement ofsome features for eah analysis window (360 x 100 pixel image), over theentire well. The size of the window is important beause it has a diretimpat on the resolution of the output/analysis and on the time of analysisof the entire well.In partiular these four features are:
• surfaes (bedding or fraturing that visually orrespond to sinusoids);
• number of vugs;
• ontrast between the previous features and bakground;
• organization of the texture (homogeneous vs. granular).Sinusoids in the log image an have di�erent geologial meanings: beddingor frature. They do not appear entirely in the FMI, only short parts ofthem are diretly visible. Several approahes, listed in Setion 2.4, have beenstudied for sinusoids detetion. Our approah is based on [72℄, in Setion 4.1.1a detailed desription of used tehniques is given.To �nd and ount vugs/vauoles is important to understand the rokporosity and type of �uid that �lls the vauoles. In the FMI image vauolesappear as irular or ellipsoidal areas with uniform olor, with a high orlow ontrast with the bakground. After �ltering the image, the seletionis made by ertain riteria on the deteted regions (i.e., area dimension oraverage olor). The goal is to separate vauoles from the bakground andto distinguish them on the basis of these visual features. A trivial ount ofthe vauoles and sinusoids deteted in a zone are fundamental features forthe lassi�ation of the rok. In Setion 4.1.3 we desribe our approah forvauoles detetion.



4.1 Mahine vision for log interpretation 51The ontrast value is signi�ant beause it an easily highlight the vari-ation of resistivity in the rok formation. The resistivity variation usuallydepends on the lithology and the type of rok or type of �uids that �ll thepores. This is ahieved by using a properly �ltered image FFT (Fast FourierTransform), in order to link to eah analysis window a value that an repre-sent a reliable measure of image ontrast.The internal organization of a rok is an important parameter to under-stand petrophysis and petrographi harateristis of a rok. The textureorganization is highly variable and is an important information for the fullinterpretation of rok formation, it an be �ne-grained to oarse-grained.A grainy FMI image has several small areas (grains) in ontrast with thebakground, and these areas ould be highlighted through an edge detetionalgorithm. The total amount of pixels in the edges of the proessed image,is proportional to the texture organization.For ontrast and texture detetion algorithms please refer to [26℄.4.1.1 Curves detetion: methodologyWe are interested in detetion of planar events that ut a ylinder, thisylinder represent the borehole well. In order to identify these planes in thebi-dimensional FMI image, it is neessary to determine the urve de�ned bythem.Let n̂ = (nx, ny, nz) be the vetor normal to the planar event. n̂ an beexpressed as a funtion of two angles: θd the dip angle and φa the azimuthangle, in this way:
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(4.1)Dip angle represents the inlination of the planes, while the azimuth angleis the orientation.
~v points of the plane that ross origin must satisfy:
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~v • n̂ = 0 (4.2)In order to de�ne a plane at an arbitrary depth, it is possible to addan o�set α, ~v + αn̂, where α represents distane from a plane with sameorientation that ross the origine. Let ~w be the points of the plane. Theymust satisfy:
~w • n̂ = α (4.3)

~u points of the ylinder are de�ned by:
~u = (R cos ν, R sin ν, z) (4.4)where ν and z represent independent oordinates over the ylinderwall,and R the ylinder radius.Interseting points of the plane and points of the ylinder wall we have:

z(ν) =
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nz

(α− Rnx cos ν −Rny sin ν) (4.5)this an be rede�ned as:
z(ν) = A sin(ν − ν0) + d (4.6)with:
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(4.8)
ν0 = arg(ny − jnx) (4.9)

θd and φa angles an be expressed as a funtion of the previous parameters:
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φa = ν0 +

π

2
(4.10)

θd = arctan(−
A

R
) (4.11)Planar events appear as sinusoids with amplitude A, phase ν0 and o�set d.Plane orientation is importante and it is determined by ν0 and A. Figure 4.1explain orrelation between plane and sinusoid.

Figure 4.1: A plane uts the borehole well. One the ylinder is unrolled,the plane beome a sinusoid. α angle is the dip angle while h is the peak topeak amplitude of the sinusoid.Hene, the main objetive of an algorithm for automati frature de-tetion is to �nd the three parameters that de�ne a sinusoid in the image.Figure 4.2 shows some planar events in the FMI log.Planar events that ut the borehole well an have di�erent origins: sed-imentation or fraturing. In sedimentation, several planes appear as groupsof sinusoid with small amplitude. Conversely fratures are isolated sinusoidin ontrast with the bakground and with a big amplitude.
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Figure 4.2: Sinusoids in FMI image.Generalized Radon Transform (GRT) is a tehnique used to detet urvesin an image [6℄. This tehnique, used in ombination with the OrientationSpae (see [18℄ and [73℄), an give better performane in terms of detetionpreision. Our approah is based on the tehniques presented in [72℄ and [74℄.The algorithm uses GRT in order to generate the parameter spae, thisis a tri-dimensional spae. In this spae every possible sinusoid in the im-age is de�ned by 3 parameters: amplitude, phase and o�set. Converselyfrom other works i.e. [34℄ and [68℄, GRT is not diretly applied on the bi-dimensional image but on the Orientation Spae reated from original image.One obtained the parameter spae the objetive is to identify peaks in thatspae, eah peaks represent sinusoids deteted in the image. Due to somenoisy soures and in order to remove similar peaks (that represent) similarsinusoids, a results leaning phase is neessary.



4.1 Mahine vision for log interpretation 55Steps of our algorithm, applied to �xed size images, are the following (seeFigure 4.3):1. Orientation Spae generation;2. parameter spae omputation, this is the result of the appliation ofGRT over the Orientation Spae;3. loal maxima (peaks) detetion over paramenter spae;4. results �ltering;5. �nal output is a list of deteted sinusoids, de�ned by three parameters(amplitude, phase, o�set).Orientation Spae is obtained �ltering the soure image using a set oforiented �lters. A detailed desription of the shape of the �lters is presentedin [15℄. Filters are oriented in the range [−π

2
,
π

2
) and the output is an imageper eah oriented �lters. Output images or �slies� an be staked up andreate a tri-dimensional struture. Number of �slies� is determined by the Nparameter of the �lter. It is important to note that the �lter is not a funtionof the image, thus it an be omputed a priori in eah oriented version.Due to the ylindiral shape of the weel, in our ase image is expressed inylindrial oordinates I(ν, z) while Orientation Spae is I [φ](ν, z, φ). A urvein soure image is mapped on a urve in the Orientation Spae: projetionof new urve on plane (ν, z) orresponds to the original urve. Interestingurves are sinusoids, they an be de�ned by three parameters:

~c(ν;A, ν0, d) = (ν, z(ν;A, ν0, d)) (4.12)In order to represent this urve in the Orientation Spae, the third o-ordinate φ(ν) is needed. The slope of the urve in eah points is dz(ν)/dν.Loal φ orientation is normal to the urve (see Figure4.4). Then we have:
φ(ν) = arg(−

dz

dν
(ν;A, ν0, d) + j) (4.13)



56 4. Data Preparation

Figure 4.3: Algorithm for sinusoids detetion in borehole well images.
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Figure 4.4: Loal φ orientation is normal to the urve.It is possible to represent ~c urve in the Orientation Spae, using thisurve ~c[φ]:
~c[φ](ν;A, ν0, d) = (ν, z(ν), φ(ν)) (4.14)In parameter spae eah point (A, ν0, d), de�ned by amplitude, phase ando�set, is a urve in soure image. This spae is obviuosly limited: phase variesbetween 0 to 2π, while the o�set is limited between 0 and the height of theimage (number of rows of the image). Amplitude represents the orientationof the plane that ut the well and will be limited. Radon Transform assignsto eah point of the parameter spae the value of the Radon integral: a highvalue means that the point represents an atual sinusoids in image sourewith a high probability.The desribed approah is depited in Figure 4.5.A salieny test is then applied to the identi�ed loal maxima, in fat notall of them represents an atual sinusoids in the soure image. This is due tosome di�erent fators:1. di�erent urves that share some points in image soure are mixed to-gether during Radon transform;2. very similar urves;3. fake urves, due to the noise in the image;
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Figure 4.5: The urve is transformed in another urve in the OrientationSpae. In the parameter spae this urve is represented as a point.4. missing data in FMI image due to the partial overage of the tool.In order to remove false sinusoids, all deteted urves, alled andidateevents, are listed and sorted in desending order by their Radon integralvalue. Then the following steps are applied:1. top event in the list is taken;2. the Radon integral is re-omputed;3. let p be the original integral value and p
′ the new one. If p′

>= Tp,with 0 < T < 1, then:(a) the event is aepted;(b) points of the event are removed from the Orientation Spae;() return to step 1.4. else, remove the andidate event.This algorithm guarantees that eah point of the Orientation Spae rep-resents, at most, only one event : if there are event that share same points,only one of them (the one with the highest integral value) is saved.Detailed desriptions of the implementation in JAVA language of thealgorithm are provided in [15℄.



4.1 Mahine vision for log interpretation 594.1.2 Curves detetion: evaluationIn order to evaluate performanes of the algorithm, we tested it over a set ofimages from two di�erent borehole well.The algorithm always detets some events in soure images: even if thesoure images are uniform, there will be always present some peaks probablydue to the image noise. During our experiments we noted that value of thesepeaks is always muh smaller than peaks of atual planar events. Then, inour software, we implemented two type of threshold (loal and global) inorder to remove false �noisy� sinusoid.Only for the �rst well a list of human deteted sinusoids was provided:the geologist identi�es beddings and fratures, and only in this ase we andiretly ompare results.For the other well, no sinusoids are provided. Imagesshow also deteted vauoles.Well 1Figure 4.6 shows �rst seleted depth: there are few easy-to-detet sinusoids,this is beause they are in ontrast with the uniform bakground. Left imageshows sinusoids deteted by the geologist, on the right the result of the auto-mati detetion. Results are very similar: in partiular sinusoids (a, b, ) arelearly deteted, at the bottom there is a sinusoids bundle. Manual analysisallows aurate seletion of di�erent sinusoids; the result is still good and,even if the sampling in the parameters spae a�ets the sinusoids preision,two main sinusoids (d, e) are deteted.Figure 4.7 show depth 2 for well 1: there are some evident fratures thatinterset other urves. In terms of deteted sinusoids algorithm results areomparable to the manual detetion. Beddings (a, b, , d) are well identi�edwhile fratures (1, 2 ) are deteted by the algorithm and not by the geologist.Third seleted depth in well 1 is presented in Figure 4.8. In this setionthere are some fratures mixed with a sinusoid bundle (beddings) not visibleto the naked eye. Fratures are orretly identi�ed (1, 2, 3 ) and also twosinusoids of beddings are deteted (a, b). The algorithm misses sinusoids
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(a) Manual detetion (b) Automati detetionFigure 4.6: Depth 1, well 1.with big amplitude, this is due to the seleted limitation in max amplitude.In Figure 4.9 we note di�erenes between manual and automati ap-proah. There are a lot of beddings and automati tehnique identi�es onlymore evident sinusoids in the bundle (1-8 ). Deteted orientation is the sameof the manual approah, the main di�erene is in the number of detetedsinusoids, this is due to the sampling and to the leaning points phase inparameter spae. There are also other two sinusoids (a, b) not deteted bythe geologist, but it is di�ult to prove if they orrespond to atual events.Figure 4.10 shows latest depth for well 1. There are high amplitudefratures: sinusoids a, , e, f automatially deteted are almost the samedeteted with manual tehnique. Sinusoid b is not deteted by the geologist,but in the soure image there is a partial support for it. Conversely sinusoidd ould be an error of double detetion (it is very similar to e).Table 4.1 summarise all evaluation: number of deteted sinusoids in man-ual and automati approah is reported per eah depth. C are orreted
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(a) Manual detetion (b) Automati detetionFigure 4.7: Depth 2, well 1.sinusoids, identi�ed in both manual and automati approah. FP are falsepositive sinusoids while ND are all sinusoids not deteted by the geologist,but that it seems they orrespond to atual events.Depth Manual Approah Automati ApproahC FP NDDepth 1 7 6 0 0Depth 2 4 4 1 1Depth 3 6 4 1 1Depth 4 >> 10 8 1 1Depth 5 5 5 0 1Total ≈ 35 27 3 4Table 4.1: Results of deteted sinusoids for well 1.From the numerial point of view, the behavior of the algorithm seemsfairly lose to the evaluation of the geologist: over a total of about 35 sinusoids
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(a) Manual detetion (b) Automati detetionFigure 4.8: Depth 3, well 1.deteted by the geologist, the algorithm was able to orretly detet 27, or
80%. At the same time, the number of false positives is quite limited (onlyamounted to 3).The numeri data, onjugated with the visual omparison for eah depthon�rms the e�etiveness of the algorithm: the most obvious sinusoids aredeteted in almost all ases. The more evident disadvantage with respet tomanual analysis onsists in less auray in the detetion of sinusoids verylose: this behavior, as already mentioned, is due to the sampling strategyof the parameter spae.Well 2For this well, it was not possible to ompare automati detetion resultswith the manually validated ones. Therefore we will proeed to a qualitativedesription of the obtained results.The �rst analysed depth is shown in Figure 4.11: the image is rather
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(a) Manual detetion (b) Automati detetionFigure 4.9: Depth 4, well 1.grainy. The algorithm orretly identi�es two main sinusoids: there is alsoa fake sinusoid (low angle, at the enter of the �gure). This sinusoid isformed by the support belonging to two di�erent urves, atually present inthe image: in this ase the salieny test has not been able to remove theimperfetion.In depth 2 (shown in Figure 4.12), there are many sinusoids, often in-terseted with eah other. The algorithm detets a good number of atualsinusoids (sometimes also with double detetions, beause of the thikness):as in the previous ase, there are some fake results, due to inorret interpo-lation of supports belonging to di�erent urves.The last depth is shown in Figure 4.13: in this area many sinusoids arepresent, with di�erent angle. One again, the behaviour of the algorithm isgood, despite the presene of some false positive.
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(a) Manual detetion (b) Automati detetionFigure 4.10: Depth 5, well 1.4.1.3 Vauoles detetion: methodologyOur approah for vauoles detetion an be divided in three steps: segmen-tation, labeling and seletion. Segmentation identi�es a set of interestingregions that are eligible to spots. Labeling provides the regions onnetedomponents in order to then selet only those that are atual objets.In image analysis, one of the most reurrent problem is the separationof omponents in the image: the ability to identify and to separate objetsfrom the bakground. This ativity is alled image segmentation [35℄.In our work we fous on segmentation obtained by threshold operations.Let f(x, y) be the funtion that desribes our image. The image onsistsof a white objet on a dark bakground. The extration of the objet anbe ahieved by de�ning a threshold T and then omparing eah pixel valuewith it. If the pixel value exeeds the threshold, the pixel is lassi�ed as anobjet pixel, if the value is lower than the threshold, the pixel is lassi�ed as a
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(a) Soure image (b) Automati detetionFigure 4.11: Depth 1, well 2.

(a) Soure image (b) Automati detetionFigure 4.12: Depth 2, well 2.
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(a) Soure image (b) Automati detetionFigure 4.13: Depth 3, well 2.bakground pixel. The result is typially a binary image, where objet pixelsare represented in white and bakground pixel are represented in blak.Thresholding an be de�ned as an operation that involves a test against a
T funtion, whih has the following form: T = T [x, y, p(x, y), f(x, y)] where
f(x, y) is the funtion that desribes the gray-level intensity for eah pixel inthe image; p(x, y) desribes some loal properties for eah pixel in the image;
(x, y) represents the position of pixels in the image.Depending on T , there are di�erent types of threshold:

• Global Threshold: T depends only on f(x, y);
• Loal Threshold: T depends on f(x, y) and p(x, y);
• Loal Adaptive Threshold: T depends on (x, y), f(x, y) and p(x, y).Global threshold is the simplest operation: the threshold value T is om-puted one for the whole image, and the image is thresholded by omparing



4.1 Mahine vision for log interpretation 67eah pixel value with T , as desribed above. The result depends on the shapeof the image histogram. If the histogram ontains two separated peaks (onepeak orresponding to bakground pixels, and the other orresponding to ob-jet pixels), then a single value of T , if properly omputed, an produe goodresults in segmentation. Many tehniques have been proposed for the auto-mati omputation of the threshold value: some of these tehniques produean optimal value, whih means that the value minimizes a parameter relatedto the image. Otsu's method [53℄, for example, produes the threshold valuethat minimizes the intra-lasses variane, de�ned as the weighted sum of thevariane of the lasses. The lass weight orrespond to the probability thata pixel belongs to that lass.A global value for T may not be enough in order to obtain good resultsin segmentation: the loal approah, instead, omputes a di�erent thresholdvalue for eah pixel in the image, based on loal statistial features. A neigh-bourhood is de�ned for eah pixel: in this neighbourhood some statistialparameters are alulated (i.e.: mean, variane and median), whih are usedto alulate the threshold value T (x, y). Di�erent algorithms use di�erentombinations of these parameters in order to generate the threshold value.Niblak's algorithm [52℄ is an example of this type of thresholding.As pointed out before, the global threshold method is very simple andfast, but an only be suessful if the separation between the two lasses(objet vs. bakground) is lear. This happens only if the sene illuminationis uniform throughout the image. In real images, this assumption is typiallynot true. In the image, there an be intensity jumps that makes it impossibleto use a single threshold value. The loal threshold method attempts to solvethis issue, beause the threshold value is not �xed, but alulated for eahpixel on the basis of the loal image features.We developed three di�erent segmentation algorithms starting from twomain methods. The �rst method uses a partiular onvolution mask anda global thresholding tehnique. In order to remove noise and unneessarydetails, the image is �rst smoothed with a median �lter. The onvolution



68 4. Data Preparationof this image with a irular derivative mask provides a new image whereround areas or irular strutures, approximately of the same size of themask, are highlighted. The new image is then thresholded, using two globalthreshold values: Tlow and Thigh. All the (x, y) pixel where f(x, y) <= Tlow or
f(x, y) >= Thigh are onsidered objet pixels, others are bakground pixels.Using two di�erent threshold is possible to �nd two types of spots: darkspots in light bakground and vie versa. Generally we use a perentile valueto de�ne two thresholds: Tlow is the 20th perentile and Thigh the 80th. Inorder to remove isolated pixels a opening morphologial operator [62℄ is thenapplied.This method leads to the implementation of two di�erent algorithm. Thedi�erene between these two implementations is in how the onvolution man-ages the image bakground. In some ases images an have zones with non-relevant or missing information. Our �rst algorithm onsiders these zonesas bakground pixels, onversely in the seond algorithm these pixels areonsidered null values (zones with no image).The seond method uses the approah based on loal threshold. The �rststep is the appliation of a low-pass �lter to the image. The purpose of the�lter is to redue the noise in the image. Then, one de�ned the size of theneighbourhood, intensity mean (µ) and variane (σ) are omputed for eahpixel. For the alulation of the threshold value, the Niblak's algorithm [52℄is applied:

T (x, y) = µ(x, y) + kσ(x, y)The threshold value is de�ned as the sum of mean plus the standarddeviation, weighted by the parameter k. Mean and variane are alulatedin the neighbourhood of eah pixel. Here, we are assuming that the imageontains white objets on dark bakground. The detetion of dark objetson light bakground an be ahieved by inverting the original image (doingthis auses that dark pixels turn into light pixels and vie versa) and thenapplying the same algorithm.In pratie, two new images are built, starting from the original: in the



4.1 Mahine vision for log interpretation 69�rst image, the pixel value is replaed with the mean value in the neigh-bourhood. In the seond image, the pixel value is replaed with the varianealulated in the neighbourhood. To apply the Niblak's algorithm to thepixel (x, y) is su�ient to get the pixel value from the original image, and itsmean and variane from the new images.The Niblak's algorithm is reinfored with an additional onstraint, basedon the absolute value of the variane. Variane is related to the image on-trast. A small value orresponds to an area fairly uniform in the image. Toavoid the detetion of false positives, a pixel must belong to a non uniformarea: this means that the variane is to assume a high enough value. Hene athreshold value is needed to ompare the variane. First the variane imagehistogram is built, then the threshold is seleted as the value orrespondingto an arbitrary perentile (for example, the 20th perentile). The pixel forwhih the variane is lower than this value are automatially lassi�ed asbakground pixel. Niblak's algorithm is applied only to pixels that pass thistest.In order to detet light and dark objets, the method is applied to theoriginal image and to the inverted image. The result are two binary images,where only the objet pixels are highlighted in white. As before, the openingmorphologial operator is then applied to the binary images, in order tosmooth the ontours of the regions identi�ed.The seond step in the proposed approah is aimed at identifying andlabeling the onneted omponents resulting from the segmentation proess.One we obtain a binary image a labeling algorithm is applied to detet allthe image regions. The labeling algorithm identi�es the onneted ompo-nents in an image and assigns eah omponent a unique label. The algorithmruns an image san and groups its pixels into regions, based on pixel on-netivity. This proedure is often applied to binary images, resulting fromsegmentation. One omplete, the proedure returns a list of onneted re-gions that were found in the image. Eah region should represent an imageobjet.
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Figure 4.14: Example of vugs: a dark vug in a light bakground (on the left)and vie versa (on the right).Finally in the last step, for eah identi�ed region a test is applied on thesize and shape. In partiular, the tested parameters might be:

• Area: must be between a minimum and a maximum value;
• Roundness: for example, the region must be roughly irular;
• Ratio: ratio between maximum height and maximum width.These tests prevent the algorithm from deteting regions whih do notorrespond to atual objets.4.1.4 Vauoles detetion: evaluationTo evaluate our algorithm we test the detetion of vauoles (or vugs). Theyare roughly irular areas in ontrast with the bakground, see Figure 4.14for an example.Three di�erent algorithms were implemented: the �rst two (algorithm 1and 2) are very similar, and use the approah based on onvolution. The third(algorithm 3) is an implementation of the loal threshold method desribedin previous setion. All the algorithms are written in JAVA and algorithm 3is written using ImageJ [58℄ digital image proessing libraries.To determine whih method is most suitable for this task, a test wasperformed on an entire well FMI image. The analysis is arried out througha sliding window tehnique. From the main image, 300 pixel height windowsare extrated, and algorithms are applied diretly to them. Windows arepartially overlapping: this is designed to improve the auray detetionnear the edges of the windows.



4.1 Mahine vision for log interpretation 71One ompleted the analysis on the entire well, in order to evaluate theresults, about ten windows, onsidered signi�ant, have been taken: win-dows, namely, showing the most ommon situations in whih the geologistis interested. For example, a window ontaining a lot of small sized vugswas seleted, rather than a window with a few large vauoles. The hosenwindows, and the three results for eah of them, were shown to three geol-ogists: it was asked them, for eah window, to vote the algorithm (or thealgorithms) that produed best results. At the end of the proedure, all voteswere olleted and a ranking was produed.In our experiment algorithms 1 and 2 have a 7x7 pixel smoothing �lterand a 9x9 pixel irular derivative onvolution mask. Algorithm 3 runs witha 5x5 pixel smoothing �lter; the radius of the neighbourhood is 13 pixel and
k = 0.5 in the Niblak's algorithm.One eah image region is labeled, a test is applied on the size and shape.In our work the total area of eah region must be in the range 25 - 500 pixel.Roundness is de�ned as

roundness =
4πA

p2where A is the region area and p is the perimeter. All the regions with a
roundness lower than 0.25 pass the test and an be onsidered as vugs. Thelast test is based on the width-height ratio: for eah region the maximumwidth and height are omputed and only if the ratios width/height and
height/width are greater than 1.8, the region pass the test.Details on the vote are shown in Table 4.2, �nal ranking is shown inTable 4.3.In Figure 4.15 the input image (depth1 ) shows a lots of small vugs, witha low ontrast with respet to the bakground; two strips in the middle arevery dark due to a measurement error1. The geologist hoie is algorithm 3with two votes. Although this algorithm detets less vugs than the others,1This is an unavoidable error and an happens often in these type of image. Dueto the omplexity and the ost of the image aquisition, it is not possible to repeat themeasurement. The �nal image is made by a single run over the entire well.



72 4. Data PreparationGeologist A Geologist B Geologist Cdepth1 1,3 2,3 1depth2 2,3 2 3depth3 2,3 2 3depth4 3 3 3depth5 2 n.d. 3depth6 3 3 2depth7 2,3 2 3depth8 2 2 3depth9 3 n.d. 3Table 4.2: Eah geologist votes for the best algorithms (algorithm 1, 2 or 3)for eah well depth. Cells ontains geologist hoie.votesalgorithm 1 2algorithm 2 11algorithm 3 17Table 4.3: Sum of votes for eah algorithm.this was preferred beause of it provides better results (no false positive) inthe dark strips.Figure 4.16 shows the image input and output for eah algorithm atdepth2. In this ase the input image shows few big vugs and algorithm 2and 3 give best results, both gaining 2 votes. It is important to note thatalgorithm 3 shows, in general, a lear output and best auray, with a lowernumber of false positive. Detailed image results an be found in [15℄.The algorithm that produed the best overall results was the one based onthe loal threshold method. Table 4.3 shows that the seond hoie was thealgorithm 2. This indiates that, regardless the image shape, the onvolutionoperator gives best results if it onsiders only atual image zones.Results show that the algorithm 3, that uses a loal threshold, was pre-
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(a) Input image. (b) Algorithm 1 deteted spots.

() Algorithm 2 deteted spots. (d) Algorithm 3 deteted spots.Figure 4.15: Example of gray-level image input (a) and output (b,,d) atdepth1. In output images, deteted vugs are round grey area with blak thinborder.



74 4. Data Preparation

(a) Input image. (b) Algorithm 1 deteted spots.

() Algorithm 2 deteted spots. (d) Algorithm 3 deteted spots.Figure 4.16: Example of gray-level image input (a) and output (b,,d) atdepth2. In output images, deteted vugs are round grey area with blak thinborder.



4.2 Well log integration 75ferred by the domain expert. In general it detets less vugs than other algo-rithms, but it seems to be most suitable in all that ases with a low ontrastbetween spots and bakground.Vugs detetion is very important for the geologist who wants to evaluatethe porosity of a rok, in order to quantify potential depth zones ontainingoil and gas. Our approah helps the geologist reduing the time for detetionof vugs in the image logs and improving the detetion auray.4.2 Well log integrationOne the system has analysed the entire image log, and the algorithms haveextrated the values that represent eah feature, these information are sum-marized in a feature table (a row for eah analysis window, a olumn for eahimage feature). This table is the �nal numerial dataset from FMI log. Nowit an be properly merged with other eletri logs.All datasets provided by eletri and image logs are, in fat, tables ormatries of features values along the well depth. In this sense integration ofseveral datasets an be viewed as alignement of 2 matries using depth as areferene parameter. This operation is then repeated for eah new datasetthat has to be added. The alignement is due by the fat that eah datasetould have its own resolution and then di�erent depth indiation. In orderto properly integrate these dataset a simple algorithm for data merging wasdeveloped.When we ompare depths of two matries it is possible that the numberof rows of the �rst matrix (alled referene matrix ) is di�erent from seondmatrix (the matrix to be aligned). In this ase we deide that the resultmatrix must have the same number of rows of the referene matrix. Foreah row of the this matrix a set of nearest rows from the seond matrix isseleted. Feature values in this set are merged aording to several providedstatistis suh as mean, median, max or min.In order to better explain the algorithm a simple example of matrix inte-



76 4. Data Preparationgration is here provided. Let matrix1 be the referene matrix and matrix2the matrix to be merged (see Tables 4.4 and 4.5). Suppose that all depthsare in asending order (this is the real ase) and that both matries start andstop at the same depth. In this ase matrix2 has a number of rows greaterthan matrix1. One a row of matrix1 is seleted, in order to �nd the set ofnearest rows to be merged, the algorithm use the following rule.
Feat.A Feat.B Feat.C Depth123 12 987 10033 145 44 10110 100 11 10220 200 42 103Table 4.4: matrix1 the refer-ene matrix.

Feat.A Feat.B Depth1 2 100.233 145 100.439 45 100.63 45 100.879 7 101.296 45 101.413 65 101.6Table 4.5: matrix2 the matrixto be added.Let x and y be two arrays. For eah xi the algorithm searhes j indexsuh that:
|xi − yj| < |xi−1 − yj| ∧ |xi − yj| < |xi+1 − yj| (4.15)In our example x is the depth olumn of matrix1 while y of matrix2.For example, seleting row number 2 in matrix1 (see Table 4.6) the al-gorithm yle over eah row of matrix2. The �rst depth is 100.2; the Equa-tion 4.16 is not true then the row is not seleted for merge.

|100.2− 101| < |100.2− 100| ∧ |100.2− 101| < |100.2− 102| (4.16)All features values in Feat.A and Feat.B of true rows in matrix2 mustbe merged (omputing mean, median, max or min) in one row. This row willbe added to the i− th row of matrix1.
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Feat.A Feat.B Feat.C Depth123 12 987 10033 145 44 10110 100 11 10220 200 42 103

matrix1

Feat.A Feat.B Depth1 2 100.2 false33 145 100.4 false39 45 100.6 true3 45 100.8 true79 7 101.2 true96 45 101.4 true13 65 101.6 false
matrix2Table 4.6: Merging algorithm: seond row seleted.It is possible that for some rows in matrix1 there are no true rows in

matrix2, see Table 4.7. In this ase the algorithm hoose the row withminimum distane and add it in seleted row in matrix1

Feat.A Feat.B Feat.C Depth123 12 987 10033 145 44 10110 100 11 10220 145 44 103
matrix1.

Feat.A Feat.B Depth1 2 100.2 false33 145 100.4 false39 45 100.6 false3 45 100.8 false79 7 101.2 false96 45 101.4 false13 65 101.6 false
matrix2Table 4.7: Merging algorithm: last row seleted.Table 4.8 is the aligned matrix: red olumns omes from matrix1, yanolumns are merged data from matrix2. In this example merged values arealulated using the statistial mean. To be more lear: �rst row ontainsvalues 17 and 73.5, these are mean values between 1 and 33 and between 2and 145.



78 4. Data PreparationFeat.A Feat.B Feat.C Depth Feat.A Feat.B123 12 987 100 17 73.533 145 44 101 54.25 35.510 100 11 102 13 6520 200 42 103 13 65Table 4.8: Resulting matrix after integration: red olumns ome form
matrix1, yan olumns are merged rows from matrix2.Implementation of this algorithm was realized in a JAVA appliation seeSetion 7.2 for more details.



CHAPTER 5
Modeling & Evaluation:Desriptive Data Mining

This and the following hapter (Chapter 6) represent theModeling & Eval-uation phase of the CRISP-DM proess where several modeling tehniquesare seleted, applied and evaluated.In Setion 5.1 a detailed desription of hierarhial lustering tehniquesand automati lustering extration are provided. Further details on indexevaluation for lustering tehniques an be found in [71℄. Setion 5.3 ontin-ues with supervised algorithms applied in order to learn and to desribe aluster partition.5.1 Hierarhial lustering and validationAs reported in Setion 2.2, hierarhial agglomerative lustering builds thehierarhy starting from the individual elements onsidered as single lusters,



80 5. Modeling & Evaluation: Desriptive Data Miningand progressively merges lusters aording to a hosen similarity measurede�ned in features spae [67℄. The output of hierarhial lustering is a treerepresented by a dendrogram: a tree-like plot where eah step of hierarhi-al lustering is represented as a node merging two branhes into a singleone. These nodes represent lusters obtained on eah step of hierarhiallustering, see Figure 5.1 for an example.

Figure 5.1: Example of dendrogram and olor mosai with �ve open nodes(yan nodes).All of the examples of the given dataset are ideally represented by theleaves in the lower part of the dendrogram. These leaves are iterativelymerged by the branhes (the height of eah branh is proportional to thedistane between the lusters merged by it) raising until the �root� node onthe top.In bioinformatis [2℄, a dendrogram is often displayed with a olor mosai(lower part of the main window in Figure 6.2): a graphial representation ofthe feature table ontents. The numerial values of the table are onverted



5.1 Hierarhial lustering and validation 81into olor tiles. By default, a high value has a bright red olor and a low valuehas bright green olor. The middle value has a blak olor. When a valuegets loser to the middle value between the green and the red lines, the olorbeomes darker. It is important to notie that the arrangement of olumnsof the olor mosai display is sorted aording to the lustering result, thusthe olor mosai doesn't show the dataset in its original ordering but eaholumn (i.e. eah example) is lose to a olumn with similar features. Theolor mosai provides to the human expert an aid to represent of all thefeatures of the whole dataset �at a glane�.The most standard way to de�ne a partition from the tree built by ahierarhial lustering algorithm is to make an horizontal ut of the tree ata spei�ed level. This is usually done by de�ning a parameter: either thenumber of desired lasses, or the height of the utting line. A more �exibleapproah is to allow the user to perform a non-horizontal ut. This approahan provide more opportunist uttings: the user may want to have moredetails in some lasses than in some others, or may want to group into thesame lass objets whih appear to be unsimilar aording to the lusteringriterion [10℄. Starting from the root node, the user an divide the lustersgoing down through the tree struture, by seleting a node to �open�, i.e. hean split that luster in two sub-lusters. In this way, it is possible to hoosethe number of lasses by �utting� the tree at desired level. In Figure 5.1there is an example in whih a non-horizontal ut provides a partition thatan not be obtained by an horizontal ut: the dataset is split into �ve lusters.As a result, eah identi�ed luster represents a set of instanes with similardistribution of the features.One of the most important issues in luster analysis is the evaluation oflustering results in order to �nd the partition (luster on�guration) thatbest �ts the underlying data: this is the main goal of luster validation.There are several evaluation indexes, suh as Dunn, Davies-Bouldin andC-index, whih assess luster ompatness and isolation. In this work weonsider Dunn's Index, sine it is simple to ompute and it did provide the



82 5. Modeling & Evaluation: Desriptive Data Miningbest results in in our experiments.The Dunn's Index [24℄ is based on the idea of identifying the luster sets,that are ompat and well separated. For any partition of lusters, where cirepresents the i − th luster of suh partition, the Dunn's validation index,
D, an be omputed with the following formula:

D = min
1≤i≤n

{

min
1≤j≤n

{

δ (Ci, Cj)

max1≤k≤n {∆(Ck)}

}}where δ (Ci, Cj) is the distane between lusters Ci and Cj (inter-lusterdistane1); max1≤k≤n {∆(Ck)} is the intra-luster distane of luster Ck, and
n is the number of lusters.In order to assess a quality measure for eah single luster of a givenpartition, we also de�ned a spei� value for eah index. These spei�indexes an be used to identify the good lusters and the weak ones and andrive the user (or an automati system) in the tree utting task, by lettinghim/it open the �bad� lusters, re�ning the partition. The spei� value ofthe index an be omputed with the formula:

Di =
min {d(xi, xj)}

max {d(xi, yi)}
, xi, yi ∈ Ci, xj ∈ Cj, i 6= j.The main goal of this measure is to maximize the inter-luster distanesand minimize the intra-luster distanes. Therefore, the luster partitionthat maximize D an be taken as the optimal ut of the lustering tree.5.2 Index driven automati lusters extrationAfter the reation of the dendrogram by using an agglomerative lusteringalgorithm, it is neessary to ut the tree in order to reate a luster struture.In simpli�ed theory, only horizontal uttings are legal, sine non-horizontaluttings violate the optimality property that two objets belonging to thesame lass are loser to eah other than two objets from di�erent lasses.1Inter-luster distane is referred to two objets from di�erent lusters, intra-lusterdistane is referred to two objets from the same luster.



5.2 Index driven automati lusters extration 83But in pratie there is a need for building lasses orresponding to moreopportunist uttings [10℄.Our tehnique performs this type of uttings, alled non-horizontal, andour tool implements it in a graphial user interfae. The utting is simplydone by liking over a node of the dendrogram; for every luster partitionand for every single luster the tool provides the validity index omputation.In order to automatially extrating a lustering partition, by using thenon-horizontal utting, our tehnique performs an index-based explorationof the lustering tree. It is possible to explore the lustering tree in severalways and we study two di�erent methods based on the seletion of the nodeto open: by hoosing the node that brings to the lustering with the bestglobal index (Go-to-best searh) and by hoosing to open the node with theworst spei� index (Expand-worst searh).The iterative exploration of the tree stops when the obtained lusteringdoes not improve the seleted index, indeed the algorithm follows a greedyapproah. Expand-worst searh has given, with all the datasets, the mostsigni�ant results and in next setions we only onsider this method. Thefollowing pseudo ode shows how our tehnique works with hoosen searhmethod driven by Dunn's Index:while(delta>epsilon) {oldDunnIndex = newDunnIndex;newClustering = dendrogram.seletClusterToSplit(expand-worst);newDunnIndex = newClustering.omputeGlobalDunnIndex;delta = newDunnIndex - oldDunnIndex; }First, we have to reate and show the dendrogram, then we start to exploreit using Expand-worst searh. The result of this method is a new lusterpartition where the node with the worst Dunn's Index (due to the nature ofthe index this is the smaller index) is opened produing two di�erent lustersfrom a single one. Now, we ompute the global Dunn's Index of the newpartition and the di�erene with the old value. If this value is smaller thana �xed threshold, we stop the tree exploration.



84 5. Modeling & Evaluation: Desriptive Data MiningBy hoosing a negative threshold the algorithm ontinue to searh untilthe new lustering partition is signi�antly worse than the previous one (lowerthan ǫ), onsidering Dunn's Index validity measure. This threshold providesa simple method to avoid loal maxima or �at zones.We tested our tehnique over di�erent datasets from UCI Mahine Learn-ing Repository [4℄: the Iris and the Syntheti Control Chart Time Seriesdataset. As a �rst step, we normalized all of the attributes with a linearadjustment in order to bring them in [0.0, 1.0℄ range. Then, we used a hi-erarhial agglomerative lustering algorithm with Eulidean distane andomplete linkage strategy. The hoie of these distane and linkage strategywas driven by two simple onsiderations: �rst they are the most known andused tehniques and seond our tests gives best results only with these ones.Every result was �nally evaluated through the true instane-lass assign-ment given by the dataset. Using Expand-worst searh driven by Dunn'sIndex with ǫ = −0.005 we obtained interesting results. Further tests withdi�erent distanes and linkage strategies for lustering algorithms or the useof other validity indexes to drive the searh of lustering on�guration, didnot have yielded the expeted results for these dataset, also using Go-to-bestsearh we do not obtain signi�ant improvements. In another work [28℄, weused Dunn, Davies-Bouldin and C-index in a ombined solution to performthe driven searh of luster on�guration. In that ase we also ompareddi�erent searh strategies and tree utting mode but automati extration oflusters do not lead to a signi�ant improvement in luster readability andinterpretation, therefore the expert have to manually identify lasses.To evaluate the improvement of our tehnique we also ompared our hi-erarhial lustering results with lustering partitions given by K-means al-gorithm [49℄. For eah lustering solution we use the number of lusters as aparameter to run K-means and then we omputed the information entropy.More details on experiments and results an be found on [27℄.Observing results, the best partition is seleted utting the tree in anon-horizontal way. Moreover, the behaviour of information gain on�rms



5.3 Learning lusters desription 85that the obtained partitions math well with the underlying struture of thedatasets.5.3 Learning lusters desriptionIn order to produe a symboli desription of harateristis of the seletedluster partitions in geology ontext, we tested supervised learning tehniquesusing eletri and image logs from 5 di�erent wells loated in the same area.Starting from a dataset already partitioned in lusters, the objetive wasto desribe eah luster. Cluster desriptions must be provided in a humanreadable way and must be based on features values or range of them. Thisled to the identi�ation of two types of assessments: a quantitative evaluationbased on the auray of provided desription, and a qualitative evaluationmade by the geologist on understandability and usefulness.Our experiments was onduted following the shema in Figure 5.2. Thewhole dataset has been built by appending all the data from the 5 wells in asingle table (see Figure 5.2). Available wells and number of instanes: well1(1023), well2 (1214), well3 (1041), well4 (953), well5 (1799).After a testing phase we deided to use only �ve of the available logs.Seleted attributes are:1. number of sinusoid in the analysis window (SIN);2. spetral gamma ray (SGR);3. bulk density (RHOB);4. delta-T ompressional (DTCO);5. neutron porosity (PHI).well5 does not have the number of sinusoids beause the image log wasnot available.The dataset was then partitioned using hierarhial lustering and the�nal dataset, used as training set for the learning phase (see Figure 5.2),
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Figure 5.2: Shema of the desriptive approah.ounts 6030 instanes and 7 attributes: SIN, SGR, RHOB, DTCO, PHI plusWELL-NAME and ID_CLUSTER.We tested four supervised algorithms from three main tehniques:
• deision tree: J48;
• lassi�ation rules: PART and JRIP;
• bayes lassi�er: NaiveBayes.Eah algorithm was tested using 10-fold ross validation tehniques.In Table 5.1 there are results for tested algorithms: for deision treesnumber of leaves and number of nodes are reported, for rules generation thenumber of rules is reported. Perentage of orreted lassi�ed instanes isshown for eah algorithm (see Figure 5.3).From a quantitative point of view all algorithms exept NaiveBayes showa perentage of orreted lassi�ed instanes greater than 80%. In this sense



5.3 Learning lusters desription 87

Figure 5.3: Preentage of orreted lassi�ed instanes for eah algorithm.J48 is the best algorithm but in desriptive data mining preision is not theonly important parameter.The geologial point of view, or in general human point of view, needmore readability of data learnt struture. To this purpose we evaluate notonly preision but also number of nodes and number of rules. This qualitativeevaluation was done looking also at output representation for eah algorithm.Figure 5.5 and Figure 5.4 show output of JRIP and NaiveBayes algorithms.JRIP (see Figure 5.5) list a rule per row and at the end the identi�ed luster.Starting from this and reading bakward, geologist ould have a �rst simplesight of luster harateristis. NaiveBayes (see Figure 5.4) shows for eahluster useful statistial measures for eah feature.In onlusion, the output of J48 is di�ult to interpret for domain expert.Algorithms for rule generation provide readable results and PART gives higherpreision than JRIP but, due to the low number of generated rules, the latteris more useful. NaiveBayes was also the geologist hoie beause it produessimple information about data struture that ould be used as summary oflusters partition.
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Figure 5.4: Example of NaiveBayes output for wells dataset.
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well1 well2 well3 well4 well5J48 leaves: 97 leaves: 57 leaves: 58 leaves: 47 leaves: 39nodes: 193 nodes: 113 nodes: 115 nodes: 93 nodes: 77CC: 85.0% CC: 86.7% CC: 84.8% CC: 83.1% CC: 86.0%PART rules: 64 rules: 29 rules: 41 rules: 37 rules: 28CC: 82.7% CC: 86.1% 85.7% 81.8% 84.3%JRIP rules: 28 rules: 21 rules: 23 rules: 17 rules: 17CC: 82.4% CC: 85.5% 82.2% 78.8% 81.9%NaiveBayes CC: 75.6% CC: 79.7% CC: 78.8% CC: 80.5% CC: 84.0%Table 5.1: Results of test with 4 supervised learning algorithm. CC areCorretly Classi�ed instanes.
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Figure 5.5: Example of output rules for JRIP algorithm for wells dataset.



CHAPTER 6
Modeling & Evaluation:Preditive Data Mining

In this hapter a novel interpretation system for preditive data mining, basedunsupervised and supervised learning tehniques in asade, is presented.This hapter ontinues the Modeling & Evaluation phase started inthe previous one but, in following setions, a more funtional approah isused. First, in Setion 6.1, learning algorithms and evaluation tehniquesare explained following the general shema of the interpretation system. Se-tion 6.2 onludes with tests and experimental results.6.1 Casade of tehniques for preditionThe developed method helps the geosientists in his analysis, extrapolatingthe maximum amount of information integrating all the seleted logs.Our approah involves two phases (see Figure 6.1): �rst, hierarhial



92 6. Modeling & Evaluation: Preditive Data Mininglustering is applied to a set of o-loated wells in order to �nd an hiddendata struture. In this step, the domain expert hooses the best lusteringpartition that �ts the observed the faies distribution. Then, starting fromidenti�ed lusters, a supervised learning algorithm is used to learn a lassi�erwhih an be applied to new wells, in order to predit the distribution offaies.We �rst reate a large dataset that inludes data from di�erent wellsin the same area, this is the input of a lustering task. In our appliationwe use hierarhial agglomerative lustering that produes a luster hierarhyrepresented in a dendrogram. Using the dendrogram the geologist an hoosethe most suitable luster partition. The seond phase involves the preditionof faies distribution over a new, unknown well in the same area. This task isahieved by learning the model of eah luster from the previous desriptionby applying supervised learning algorithms. To this purpose it is possibleto use di�erent supervised tehniques. In order to �nd the best lassi�erfor faies distribution predition, in Setion 6.2, we test several algorithms:deision trees, lassi�ation rules and regression methods. These tehniquesallow the propagation of lasses to new wells.Following these two phases we obtain a semi-automati interpretation andpredition method for well logs. This is a semi-automati approah beausea human quality ontrol is needed in order to obtain a meaningful luster-ing partition in the domain ontext; but this is also the main advantage: thegeologist identi�es lusters only one onsidering all the available data simul-taneously and saving time. It is important to note that the method an begeneralized to di�erent appliation �eld. For instane in bioinformatis, theasade of unsupervised and supervised tehniques an be suitable in tumoranalisys and subtype disovering, produing useful models based on humanvalidated lusters [32℄.



6.1 Casade of tehniques for predition 936.1.1 Data integration and lusteringThe dataset has been built by appending all the data from the 5 wells in asingle table (see Figure 6.1).The �rst phase of the approah is the same as Setion 5.3 where luster-ing proess was onduted using a hierarhial agglomerative approah. InFigure 6.2 the resulting dendrogram, the geologist splitted the dataset into 8
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Figure 6.1: Casade of unsupervised and supervised tehniques. First hier-arhial lustering is applied and the expert hooses the lustering partition.Then a supervised learning algorithm is used to learn a lassi�er suitable forfaies distribution predition over new wells.



94 6. Modeling & Evaluation: Preditive Data Mininglusters (labeled from 1 to 8) at di�erent levels. As a result, eah identi�edluster (blak nodes) represents a set of examples with similar distributionof the features.

Figure 6.2: Hierarhial lustering result: the dendrogram with the olor mo-sai. The geologist identi�es 8 lasses utting the tree at di�erent distanes(blak nodes).From the hosen lusters, given as training examples, we an learn alassi�er by applying supervised learning. In order to �nd the most reli-able interpretation method and the best predition algorithm, we tested sev-eral tehniques based on di�erent learning approahes. We use J48, RandomForests, PART and Rotation Forest as deision trees indution and lassi-�ation rules generation algorithms.For regression we use ClassifiationViaRegression and Logisti.In order to show the apabilities of the asade method and to evaluateresults and advantages, we tested it using di�erent approahes.In the standard preditions approah (see Setion 6.2.1) we predit faiesdistribution using a lassi�er trained on the dataset reated by merging thedata from all the wells, inluding the well to be used as test set. In this



6.1 Casade of tehniques for predition 95ase the lassi�er's evaluation is often based on predition auray (seeSetion 2.3).The standard preditions approah is, in fat, far from the real use: thegeologist ould start the analysis with some wells and then a new unknownwell, from the same area, is added. This is the usual ase and it is importantto reuse the previous learned models.In blind preditions approah (see Setion 6.2.2) the well to predit it isnot ombined in the lustering with all other datasets. This means that the�new� well does not ontribute to the formation of the lustering partitionthat represents faies distribution. In this ase we an't apply diretly none ofthe previous validation tehniques beause, we miss the real lass informationfor eah item to alulate the predition auray. In order to evaluate thepredition algorithms we must set a referene lassi�ation of the unknownwell. This will be used as an ideal result to ompare performanes of di�erentpredition algorithms. We adopt two di�erent type of evaluation based ondi�erent datasets: the �rst tehnique (see Figure 6.3) uses a new datasetmade by the merging of the starting dataset with the dataset of the unknownwell, the seond tehnique uses only the dataset of the unknown well (seeFigure 6.4).The geologist reates the luster partition by utting the tree possiblyat di�erent distanes. It is important to ut the tree for the same numberof lusters and to use the same riteria used in the initial lustering (i.e.olor mosai observations or lustering metris). In this way we obtain alustering solution that will be used as referene lassi�ation omparablewith the one reated in the predition1. First we use a visual omparisonbetween predited lasses and referene lassi�ation. This an be done usinga software that shows lasses sequene with di�erent olors along the well(see Figure 6.5 and Figure 6.6). In these results it is easy to observe lasseshanges and trends. Moreover with the referene lassi�ation we still an't1For larity we will refer to referene lassi�ation as lusters, and the predited las-si�ation as lasses.
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Figure 6.3: Blind preditions. In the evaluation phase we use the wholedataset.diretly alulate the auray of the predition algorithm beause the newlusters do not neessarily math with lasses of the predited lassi�ation.We need a measure of how two di�erent lassi�ations are homogeneous andonsistent, regardless the name of the lasses. We use entropy and purity.
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Figure 6.4: Blind preditions. In the evaluation phase we use only the datasetof the unknown well.In order to assess the quality of our results, we also de�ne an entropy-based evaluation of the luster partition. This measure aims to highlight



6.1 Casade of tehniques for predition 97mathing between the obtained lustering partition and the underlying las-si�ation struture. If a lass attribute is de�ned in the given dataset, wemay want to evaluate the lustering obtained with respet to the lass at-tribute. Even if the lustering task remains an unsupervised proess (i.e.without onsidering the lass attribute in learning), a good mathing of itsresult with an underlying lassi�ation is often desirable. A reliable measurefor this type of analysis is information entropy [56, 64℄.We an de�ne the information entropy of a single lass as the unertaintyrelative to the luster attribute for its examples. Entropy for the i− th lassan be omputed using the following equation:
Hi = −

nc
∑

j=1

nij

ni

log
nij

niwhere nc is the number of lusters, ni the number of examples of the i− thlass, and nij the number of examples of the j − th luster in the i − thlass. A low entropy value reveals the �homogeneity� of a lass, with respetto the luster attribute. A lass ontaining instanes from only one luster,will sore an information entropy equal to 0. We an evaluate the entropyof the whole predited lassi�ation by omputing the weighted mean of theentropy of eah lass. The number of instanes belonging to the lass is usedas weight. This equation an be written as:
H =

1

N

nC
∑

i=1

niHiwhere N is the number of instanes in the whole dataset, nC the number oflasses and ni the number of examples into the i− th lass. A low overall en-tropy value represents a good mathing between the predited lassi�ationand the referene lassi�ation. To ompare di�erent and sequential luster-ing on�gurations in the same dendrogram, we also use the information gainmeasure. This value is equal to the di�erene between the entropy value ofthe seleted partition and the one of the previous lustering on�guration.The information gain provides an easy way to reveal improvements in lusterhomogeneity.



98 6. Modeling & Evaluation: Preditive Data MiningWe hoose entropy and information gain measures sine they providean evaluation of the homogeneity of the obtained lusters with respet tothe underlying lasses. This type of measure does not need the number oflusters to be equal to the number of lasses, sine it does not onsider adiret assoiation between a luster and a spei� lass.Purity is a simple and transparent quality evaluation measure of lassi-�ation solution. To ompute purity, eah lasses is assigned to the lusterwhih is most frequent in the lass, and then the auray of this assignmentis measured by ounting the number of orretly assigned items and dividingby N . Formally purity for i− th lass is:
Pi =

1

ni

max(nij)The overall purity of the predited solution ould be expressed as aweighted sum of individual lasses purities:
P =

nc
∑

i=1

ni

N
PiIn general, bigger the value of purity better the solution.6.2 Experimental resultsThe input dataset is the same used in Setion 5.3 and it is omposed by 6030items and 7 variables.There are also three additional attributes: the depth of the measurement(DEPTH), the geologial unit2 (UNIT)and the name of the well (WELL-NAME). Every dataset has a sampling resolution of 10 inhes.The data leaning stage and the dataset preparation was very importantand it had a signi�ant role in the entire approah. This step was madein onjuntion with the domain expert that knows the geologial meaning2A body of rok or ie that has a distint origin and onsists of dominant, unifyingfeatures that an be easily reognized and mapped.



6.2 Experimental results 99and the orrelation between di�erent measurement. It also needed partiularattention, beause of the heterogeneity of data soures.It is important to note that well2 was perforated really lose to well1,indeed in terms of image and eletrial logs they show very similar hara-teristis.Our lustering algorithm uses the following settings:
• Z normalization3;
• Manhattan distane4;
• maximum linking.6.2.1 Standard preditionThis approah uses a large dataset reated merging well1, well2, well3, well4,well5 datasets.Removing UNIT and WELL-NAME attributes we obtain adataset of 6030 instanes with DEPTH, SIN, SGR, RHOB, DTCO, PHI. Inwell5 values of SIN attribute are set to null. In this ase the knowledgeabout the harateristis of the well that will be predited is ombined withall other wells and used in the hierarhial lustering phase.The geologist identi�ed 8 di�erent lusters, reorded as CLUSTER-NAMEattribute in the dataset. The training set is then reated extrating from lus-tering solution all instanes of one well. The extrated well is used as testset (CLUSTER-NAME is removed for the test set).The validation of the approah, in the �rst part of our experiments, wasonduted using the 10-fold ross validation, then we adopted a sort of leave-one-out validation where the test subset onsists of the instanes from a singlewell. In the following we refer to this test as leave-one-well-out.3A linear normalization of eah variable that brings mean to 0 and variane to 1.4The distane algorithm used in the lustering proess an handle missing data. Ifsome attributes are missing for ertain examples, the distane has been omputed onlywith the remaining ones.



100 6. Modeling & Evaluation: Preditive Data MiningFirst, using the 10-fold ross-validation tehnique, we test the aurayof the whole dataset. In this ase test set is randomly piked from thestarting dataset regardless the well, this is not the usual way of use, but itgive an indiation of the best algorithms to hoose. Table 6.1 shows orretlylassi�ed instanes for normal and extended dataset. Rotation Forest givesbest results. normal dataset extended datasetJ48 85.2% 85.0%Random Forests 87.6% 87.2 %PART 84.6% 84.7%Rotation Forest 89.1% 88.8 %ClassifiationViaRegression 86.6% 86.4%Logisti 81.4% 81.9%Table 6.1: Corretly lassi�ed instanes for normal and extended datasetusing 10-fold ross-validation.We test the predition of eah well on 5 algorithms using leave-one-well-out validation. Table 6.2 and Table 6.3 show results of orretly lassi�edinstanes for normal and extended dataset.In the normal dataset, well2 shows very similar results of orretly las-si�ed instanes, Rotation Forest gives best result; also well3 shows similarvalues and PART gives the highest result. But the unexpeted result is thatin normal dataset 3 algorithms show best result for well3 instead of well2.In order to eluidate these results we extend the dataset by adding twoattributes: normalized depth (NORM-DEPTH) and UNIT. UNIT is the nu-merial ID of the geologial unit and NORM-DEPTH is the depth linearnormalization: its value is 0 at the top and 1 at the bottom of the analysedsetion. These values are the same for all the wells although, due to thedi�erent geologial desription, the real depth are di�erent. Swapping theDEPTH with the NORM-DEPTH in onjuntion with UNIT in the predi-tion algorithm, it is possible to better onsider di�erent rok type. In fat,



6.2 Experimental results 101well1 well2 well3 well4 well5J48 76.2% 79.0% 80.2% 73.2% 85.2%Random Forests 79.2% 80.6% 81.6% 77.9% 87.8%PART 78.4% 80.4% 82.1% 79.6% 86.5%Rotation Forest 79.8% 84.9% 78.0% 83.4% 88.7%ClassifiationViaRegression 79.7% 81.1% 81.0% 79.8% 87.6%Logisti 70.6% 80.3% 78.1% 79.0% 84.2%Table 6.2: Corretly lassi�ed instanes for normal dataset.well1 well2 well3 well4 well5J48 76.0% 82.0% 79.4% 76.4% 83.1%Random Forests 77.4% 77.9% 75.0% 77.6% 84.4%PART 76.4% 78.9% 75.7% 76.6% 85.8%Rotation Forest 75.7% 84.9% 81.0% 85.6% 88.8%ClassifiationViaRegression 79.4% 83.5% 82.5% 81.3% 88.2%Logisti 70.1% 80.0% 79.3% 80.2% 84.7 %Table 6.3: Corretly lassi�ed instanes for extended dataset.most of the predition have better auray with the extended dataset.As shown in Table 6.3, the best results for the extended dataset has beenobtained by Rotation Forest in well5, well4 and well2. For well1 and well3ClassifiationViaRegression gives good results. But hoosing RotationForest method we obtain the best result for all the wells.Another important result is the relatively short time taken by the analysis.As reported before the manual interpretation of a well an take up to onemonth. Our approah takes from 3 to 7 hours for the image analysis phaseof a well, then the lassi�ation and predition takes from 2 to 5 minutes.Adding more time for the data preparation and geologial quality ontrol(human made), we an ount at most two days per well.



102 6. Modeling & Evaluation: Preditive Data Mining6.2.2 Blind preditionIn our tests the supervised learning algorithm uses as training set the datasetreated by merging 4 of the 5 wells datasets, then predits lasses in a testwell, exluded from the same large dataset. In all our experiments we use astest wells well2 and well4.When the test set is well2 the training set is made up of 5007 instanes(well1, well3, well4, well5 ) and when the test is well4 the training set ount4989 items (well1, well2, well3, well5 ). We extend the datasets by adding twoattributes: normalized depth (NORM-DEPTH) and UNIT. For every datasetwe use 6 attributes: SIN, SGR, RHOB, DTCO, PHI, NORM-DEPTH, andUNIT.Visual omparisonFigure 6.5 and Figure 6.6 show a visual omparison between predited lassesand referene lassi�ation. First two olumns are the referene lassi�ation:made by using the whole dataset and made by using only the test well.Dashed lines represent hanges in luster distribution orretly deteted bypredition algorithms. Due to the evaluation method, in this omparison thedi�erenes between referene and predited olor lasses does not matter.More important are hanges in lasses sequene.In well4 (Figure 6.6) is di�ult to evaluate algorithms beause it presentsrapid lasses hanges along the well, but in both wells UNIT IV.3 is learlydeteted by predited lassi�ation. Also the transition between UNIT IV.2and UNIT III is orretly identi�ed by all the algorithms. An importantonsideration made by the geologist is that, due to the number of the lassesit is very di�ult to evaluate and hoose the best algorithm, but looking atthe referene lassi�ation, it seems that the �rst olumn (lustering madeby using the whole dataset) is more readable than the seond. It presentsless details and it is less omplex.



6.2 Experimental results 103Entropy and purity omparisonTable 6.4 shows results of entropy and purity for eah well. In order tobetter understand results, making further tests, we hoose to predit someinteresting setions of well2 and well4 : UNIT IV.2 and UNIT IV.3 5 Toloate them see Figure 6.5 and Figure 6.6. For eah setion we reate thetraining set extrapolating the same geologial unit from all the wells.Using both the evaluation tehniques, the whole dataset evaluation (seeFigure 6.3) and the test dataset evaluation (see Figure 6.4), we predit andalulate entropy and purity of eah well and setion. Looking at theseresults, Logisti shows better performane than other algorithms in mostases. Logisti results for well2 - UNIT IV.2 are not very good, but in fatthis setion is not very meaningful beause it is short and very homogeneous.This result on�rms, as expeted, that regression methods are suitable forpredition of ontinuous numeri values.

5In well2 we onsider UNIT IV.3 as UNIT IV.3inf + UNIT IV.3sup.



104 6. Modeling & Evaluation: Preditive Data Miningwhole dataset eval. test dataset eval.entropy purity entropy puritywell2ClassifiationViaRegression 0.902 0.652 0.865 0.633J48 0.946 0.625 0.948 0.603Logisti 0.873 0.646 0.778 0.668PART 0.944 0.628 0.943 0.608Random Forests 0.905 0.636 0.873 0.622Rotation Forest 0.854 0.665 0.853 0.635well2 - UNIT IV.2ClassifiationViaRegression 0.199 0.963 0.262 0.938J48 0.132 0.975 0.195 0.951Logisti 0.199 0.963 0.262 0.938PART 0.132 0.975 0.195 0.951Random Forests 0.149 0.963 0.181 0.963Rotation Forest 0.199 0.963 0.262 0.938well2 - UNIT IV.3ClassifiationViaRegression 0.817 0.663 0.774 0.694J48 0.869 0.641 0.842 0.665Logisti 0.760 0.679 0.677 0.719PART 0.889 0.647 0.859 0.679Random Forests 0.854 0.647 0.806 0.680Rotation Forest 0.837 0.663 0.811 0.680well4ClassifiationViaRegression 0.718 0.741 0.755 0.689J48 0.745 0.735 0.775 0.681Logisti 0.703 0.751 0.737 0.697PART 0.694 0.774 0.0.742 0.705Random Forests 0.728 0.748 0.779 0.689Rotation Forest 0.683 0.769 0.761 0.696well4 - UNIT IV.2ClassifiationViaRegression 0.743 0.720 0.702 0.732J48 0.799 0.701 0.805 0.720Logisti 0.674 0.732 0.739 0.720PART 0.643 0.768 0.759 0.720Random Forests 0.690 0.750 0.742 0.701Rotation Forest 0.640 0.739 0.743 0.726well4 - UNIT IV.3ClassifiationViaRegression 0.902 0.671 0.509 0.787J48 1.004 0.606 0.559 0.740Logisti 0.908 0.628 0.612 0.697PART 0.998 0.599 0.564 0.711Random Forests 0.965 0.625 0.550 0.733Rotation Forest 0.904 0.657 0.516 0.765Table 6.4: Result of entropy and purity for hosen wells and setions. Boldvalues are the best ones for eah well setion.
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Figure 6.5: Visual omparison of lustering results of well2.
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Figure 6.6: Visual omparison of lustering results of well4.
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CHAPTER 7
Deployment

In this Ph.D. work we used several software tools, some of them were inter-nally developed and others were already available and well known. They areall integrated in a unique semi-automati system alled I2AM (IntelligentImage Analysis and Mapping). Following the CRISP-DM model this is theDeployment phase where all the e�orts are in developing a system that al-lows the use of the studied approah and model in a pro�table and repeatableway in business ontexts. Setion 7.1 desribes the main system developedin this Ph.D. work while Setion 7.2 presents another important developedtools for data integration and lustering. Finally some works and industrialappliation of our system are presented in Setion 7.3.7.1 I2AMI2AM is a semi-automati system that exploits image proessing algorithmsand arti�ial intelligene tehniques to analyse and lassify subsurfae data



110 7. Deployment(image and eletri logs). The I2AM approah an be summarized in foursteps and eah of them represents a funtional part of the entire system:1. automati features extration from FMI image log;2. features re�nement and validation;3. data integration and lustering;4. lusters validation and predition.7.1.1 Automati features extration from FMI image logIn order to automatially extrat image features from the FMI log, �rstthe system takes as input a numeri table (raw data) and represents it asimage. In the raw data table there is a row for eah depth, a olumn for eahdegree (360 degrees) and eah single ell ontains the resistivity measurement.This step produes an i2m �le readable by the main visualization tool. InFigure 7.1 the omplete shema for automati extration.Then the system analyses the entire well using a �xed size window andprodues an i2mr �le that ontains extrated features at eah depth. Thistask an take up to 7 hours for a well of 500 m but this is strongly related tothe requested preision analysis, hene it is related to the exeution param-eters of eah algorithm.All the algorithms were implemented in JAVA using also some ImageJ [58℄libraries. Eah exeution produes also a log �le where eah row represent theproessed analysis windows with the depth, the window progressive number,the used system memory and a timestamp. The following is an example ofexeution log.Tue Ot 26 17:57:57 CEST 2010 LOG: File 'tawke_1.660.i2m_analysis.log'Tue Ot 26 17:57:57 CEST 2010 LOG: Loading data from file:/home/denis/databases/fmi/dno/tawke_1/tawke_1.660.i2mTue Ot 26 17:58:10 CEST 2010 LOG: Time to load: 12614 millis---------------------------------Well: tawke_1.660



7.1 I2AM 111Size: [0, 163331℄Width: 329Analysis Size: [0, 163331℄---------------------------------Tue Ot 26 17:58:10 CEST 2010LOG: Window 1 of 1633 Row: 0 Analysis win [0, 100℄ used mem (Mb):237 SKIP.Tue Ot 26 17:58:12 CEST 2010LOG: Window 2 of 1633 Row: 100 Analysis win [100, 200℄ used mem (Mb):280Tue Ot 26 17:58:13 CEST 2010LOG: Window 3 of 1633 Row: 200 Analysis win [200, 300℄ used mem (Mb):286Tue Ot 26 17:58:14 CEST 2010LOG: Window 4 of 1633 Row: 300 Analysis win [300, 400℄ used mem (Mb):280......Tue Ot 26 18:21:04 CEST 2010LOG: Window 1632 of 1633 Row: 163100 Analysis win [163100, 163200℄ used mem (Mb):333Tue Ot 26 18:21:04 CEST 2010LOG: Window 1633 of 1633 Row: 163200 Analysis win [163200, 163300℄ used mem (Mb):333 SKIP.Tue Ot 26 18:21:04 CEST 2010 LOG: Engine Time: 00:22:53Tue Ot 26 18:21:04 CEST 2010 LOG: Write to .i2mr File: tawke_1.660.i2mr7.1.2 Features re�nement and validationAfter the automati extration of the features, results obtained by this stepare graphially presented to the interpreter.Figure 7.2 shows a sreenshot of the main window of I2AM system. Inthe left window there is the original FMI image, the i2m �le, oloured with aneditable palette. This palette an be modi�ed using the olor bar in the upperleft orner and this is useful in order to highlight some low ontrast imagefeatures. The I2AM visualisation system exploits the layers idea: one a i2m�le is showed, it is possible to load i2mr or i2m �les. i2mr ontains onlyextrated graphial features while i2m ontains also well lustering. Theenter window shows this two types of �les, all the visual features are drawnover the seleted FMI image (the beddings are also presented by tadpoles onthe right). The other measures (ontrast and texture) are represented using a
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nt
Figure 7.1: Shema of automati features extration phase: the visualization system onverts numeri table in image,then the analysis engine proess the entire image logs produing a �le that ontains extrated features for eah depth.
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Figure 7.2: Sreenshot of the main window of I2AM system. In the leftwindow there is the original FMI image oloured with an editable palette. Inthe enter window the extrated graphial features are drawn over the sameFMI. The right oloured bar is a small thumbnail of the well and it is usedto easily explore it. In the bottom there are some well setion samples foreah identi�ed luster.bar plot on the right of eah analysis window, where the length of the yellowbar represents the ontrast and the blue bar represents the texture. Thebottom window shows some well setion samples for eah identi�ed luster.The right oloured bar is a small thumbnail of the well and it is used toeasily explore it: seleting a depth, the other two windows shows the relativezoomed setion of the well.In feature and validation step the interpreter an hek the output ofthe algorithms and validate the extrated features. I2AM allows orretingvisible results, in three ways:



114 7. Deployment1. add/modify/remove sinusoids;2. add/modify/remove vauoles;3. mark some windows as �poor� (not reliable for further analysis).In order to easily perform the orretion of bedding detetion, anothertool has been integrated in the prototype: sinCAD (sinusoids ComputerAided Design). See Figure 7.3 for a sreenshot. This tool provides a fast anduseful method for identifying the sinusoids missed by the automated analysis.The interpreter an draw a surfae diretly on the image, by mouse-likingthree or more points. Then the software is able to searh for other surfaesparallel to this one, and it automatially detets the whole set of beddings.

Figure 7.3: The sinCAD interfae. Using this tool it is possible to orret,to add and to remove sinusoids automatially deteted by the algorithm.A similar approah was developed for vauoles orretion. The vauoles�nder helps the interpreter in vauoles orretion. One seleted the depthit is possible to manually hek automatially deteted vauoles and then



7.1 I2AM 115add or remove them. Figure 7.4 shows the vauoles �nder interfae whilethe geologist is removing some vauoles from a FMI log.

Figure 7.4: vauoles �nder helps the interpreter in vauoles orretion. Inleft olumn the interpreter hooses the editing mode: to add or to removevauoles. Left image is the soure image, right image shows deteted vauoles.
Finally, an important feature of I2AM system is the �poor� window mark-ing. A variety of environmental onditions and instrumental error an om-promise the measurement of some part of the well, and these defets areusually not automatially detetable. By simply liking on the well image,the interpreter an mark some of the analysed windows as �poor� and exludethem from further proessing. This step signi�antly advantages the lassi-�ation task, sine it removes some setions that an produe non reliableinterpretation.



116 7. Deployment7.1.3 Data integration and lusteringOne the image results are validated it is possible to integrate eletrial logswith image logs withDI4G, the tool presented in Setion 7.2. Finally, duringthe lustering proess (see Figure 7.5), it is neessary to hoose the lustersstruture. The interpreter an selet the better suggested lustering solutionand modify the number of lusters. This proess produes the i2m �le thatontains the seleted lustering partition.

Figure 7.5: Clustering proess in the I2AM software.
7.1.4 Clusters validation and preditionLoading the i2m �le (Figure 7.2) the geologist an validate lusters hek-ing depth-by-depth the entire well. In this step the interpreter an assign aname to eah luster and it is also possible to make some loal orretionsby hand (i.e. hange the luster assigned to a given analysis window). Fi-nally resulting i2m �le an be exported and used in WEKA [36℄ for lassespredition.



7.2 DI4G 117The �nal predited lassi�ation form the basis of the analysis on whihthe geologist arries out its onsiderations. The �nal result is a series of imagefaies that are identi�ed along the image log and that an be alibratedusing ores to sedimentary faies to assign the geologial meaning. Thislassi�ation result an also be exported in di�erent �le format in order tobe used in other spei� geologi software for reservoir analysis.7.2 DI4GDI4G (Data Integrator for Geology) is a tool developed in JAVA that usesthe algorithms explained in Setion 4.2 in order to merge di�erent dataset.The values obtained from image analysis an be aligned and merged withother data logs from the same well (suh as density, porosity, gamma ray,et.), and the tool builds a new dataset olleting data from all the seletedlogs (Figure 7.6).

Figure 7.6: DI4G builds a new dataset olleting data from all the seletedlogs.After the merging phase, DI4G let the user hoose the olumns to usein the lustering task and the ones that might be disarded (Figure 7.7).
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Figure 7.7: The olumn hooser sreen shot of DI4G. The user an deidewhih olumn are to be disarded for the following lustering proess.The following task is the lustering proess. For further details on DI4Grefer to [69℄.7.3 WorksThe I2AM system andDI4G are used by G.E.Plan Consulting srl in di�erentprojets. G.E.Plan Consulting is an oil and gas onsulting ompany thatprovides innovative servies for new exploration and development projetsand has speialisti skills in arbonate sedimentology and reservoir analysis.The ompany uses I2AM sine 2009, helping in development and testingphase and providing real dataset.The �rst important projet that involves I2AM system was the litho-logial analysis of a �eld of 6 wells, using image and eletri logs. In thisase the analysis made �by hand� by the geologist was improved using resultfrom I2AM. Another interesting work used only mahine vision tehiniquefor a porosity analysis projet of 7 wells from the same area. We used andmodi�ed the algorithm for vauoles detetion in order to ount the preseneand to measure the size of vauoles along well depth.



CHAPTER 8
Conlusions

In petroleum geology the understanding and haraterization of reservoirsneeds integration of di�erent subsurfae data in order to reate reliable reser-voir models. The large amount of data for eah well and the presene ofdi�erent wells to be simultaneously analysed make this task both omplexand time onsuming. In this senario, the development of reliable hara-terization methods is of prime importane in order to help the geologist andredue the subjetivity of data interpretation.In this Ph.D. thesis we address the omplexity of reservoir modeling us-ing mahine vision and data mining tehniques in order to desribe and topredit hidden data strutures in subsurfae data. To this purpose a novelinterpretation approah based on the use of unsupervised and supervisedlearning tehniques in asade was studied, tested and then implemented ina system alled I2AM. It onsisted of merging dataset of di�erent wells inthe same area, lustering the new dataset in order to identify faies distribu-tion (human interpretation), learning the lustering solution in a desription



120 Conlusionsmodel and then 1) desribing data struture of wells and 2) prediting re-sults for a new well from the same area. Eah well dataset was made ofthe integration of di�erent data: eletrial logs and image logs. Image logsare automatially proessed in order to obtain a numerial desription of theinterested features.By implementing I2AM image analysis engine we have identi�ed the mostsuitable methods for the extration of features from FMI log images. Foreah of these features, we developed one or more advaned image proessingalgorithms that an verify their presene and quantify them. Results showthat the implemented algorithms are suitable for a fast image log analysisbut geosientist interation is fundamental for the validation. Hene, it isimportant to give him tools and methods for result orretion.Desriptive approah was tested �rst with hierarhial lustering teh-niques using information entropy over a dataset made by the merging ofseveral borehole wells from a hydroarbon reservoir. Supervised tehniquesare then used to summarize lustering partitions in a human readable rep-resentation in order to help the geosientist in reservoir understanding. Thedeveloped lustering tool was intended as an helpful tool to better visualizeand understand the global struture and the organization of all deteted fea-tures over the entire well. The full vision of the well harateristis providedby the lustering tool is a ruial aspet of our system, sine the interpre-tation task beomes simpler and its result more reliable. In partiular, thedendrogram used to visualize and modify the result of the lustering opera-tion, improves the human expert interation allowing a sensitivity orretionand a better interpretation. Moreover using luster validation indexes, wedeveloped an algorithm that produes more realisti lusters, utting thedendrogram in a non-horizontal way. Observing results, we an assess thatthis tehnique provides a reliable partition. Moreover, the behaviour of in-formation gain on�rms that the obtained partitions math well with theunderlying struture of the datasets. Regarding supervised algorithms, rulegeneration tehniques provide readable results and PART gives higher prei-



Conlusions 121sion than JRIP but, due to the low number of generated rules, the latter ismore useful. NaiveBayes was also the geologist hoie beause it produessimple information about data struture that ould be used as summary oflusters partition.Preditive approah was tested using two di�erent strategies: standardand blind preditions. In standard preditions, one the large dataset is re-ated (merging 5 known wells from a hydroarbon reservoir), we used a partof it as training set of deision trees or regression tehniques and then we testthe learned model prediting the faies distribution over the wells. In blindpreditions we tested the learned model by prediting the faies distribu-tion over two unknown wells and some setions of them. The two unknownwells was not inluded in the initial lustering partition. In order to testthe entire method and to �nd a reliable predition algorithm we test sev-eral supervised tehniques. For standard preditions Rotation Forest andClassifiationViaRegression show best results, but Rotation Forest isa good ompromise for the predition of the entire set of wells. For blindpreditions we evaluated results using a visual omparison and omputingentropy and purity over a referene lassi�ation. This lassi�ation is gen-erated using two di�erent dataset: the starting dataset merged with theunknown well dataset and the only test well dataset. Logisti was a goodompromise for the predition of tested wells.The data preparation phase is also important in order to �nd the bestway to desribe and to highlight orrelation between wells in the same area.The main advantages of this approah are the simple management anduse a large amount of data simultaneously; the extration of realisti infor-mation about rok properties and faies identi�ation that an help in thereservoir haraterization; the avoidane of interpretation subjetivity; andthe redution of the interpretation time by largely automating the log inter-pretation, although some levels of human interation are neessary. Timingis a ruial fator in this �eld, onsequently the time redution given by ourapproah has a great impat in osts of reservoir analysis and interpretation.



122 ConlusionsThe experimental results show that the approah is viable for reservoir faiespredition in real industrial ontext where is important to reuse informationsabout wells already analysed.
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