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ABSTRACT 

A piled raft is a composite foundation in which the piles are used as 

settlement reducers and they share, with the raft, the load from the 

superstructure. The applied load is transferred from the raft to the 

shallow soil and to the pile heads, and from the piles it is diffused 

through the shaft and the base to deeper soil. The pile–raft and pile–pile 

interactions represent the distinctive aspect of the piled raft foundations 

since they modify the load–bearing behaviour of each foundation 

component, compared to an analogous isolated element, thus determining 

the overall foundation behaviour. 

The main aim of this thesis is to highlight the effects of the raft–soil–pile 

interactions on the resistance and stiffness of axially loaded piled raft 

foundations in sand. 

A series of centrifuge tests on models of rigid circular piled rafts in loose 

saturated sand has been performed to this end, employing both non 

displacement and displacement piles. The raft settlement and the load 

transmitted to the pile heads and bases were monitored during the tests, 

which also included unpiled raft and isolated pile tests. 

The test results have been analysed in terms of bearing capacity and 

stiffness; the former according to a load efficiency method, the latter by 

comparing the values obtained from centrifuge tests with those evaluated 

through a simplified analytical method. 
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In order to clarify the effect of the pressure transmitted by the raft to the 

soil on the behaviour of a single capped pile, some of the centrifuge tests 

were simulated via finite element numerical analyses, using an elasto–

plastic strain hardening constitutive model for the sand. The geometry 

and the dimensions of the numerical models corresponded to those of the 

physical ones and the simulations were carried out applying an 

accelerated gravitational field to the mesh. 

The influence of a granular layer, interposed between the raft and the pile 

heads, on the load transfer mechanism has also been analysed, through an 

additional series of centrifuge tests which was performed on square rigid 

raft models on displacement piles in dry dense sand. 
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Chapter 1 

Introduction 

1.1 Background 

Piles can be included in a foundation for two main design reasons: in 

order to provide adequate bearing capacity or to reduce settlements to an 

acceptable level. 

The everyday design of piled footings is based on the assumption that the 

total weight of the superstructure is supported by the piles, even when the 

second design criterion is more critical. A different approach, involving 

the use of piles as settlement reducers, has been postulated by Burland et 

al. (1977), Padfield and Sharrock (1983), Hansbo and Jedenby (1983), 

Hansbo (1984), Cooke (1986). The basic concept of this approach is that 

the foundation comprises only the number of piles that are necessary to 

reduce settlements to a tolerable amount and the loads from the structure 

are transmitted, via a raft, in part to the piles and in part to the foundation 

soil (load shared between the raft and piles). This approach allows the 

piled footing design to be optimized and the number of piles to be 

significantly reduced. 

Foundations on settlement reducing piles, herein also referred to as piled 

rafts, have to rely on the ductile behaviour of piles, since the 
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serviceability settlements are often sufficient to fully mobilise the pile 

bearing capacity [Burland et al. (1977), Burland (1995)]. Friction piles 

are adequate for use as settlement reducers, as the shaft capacity is 

mobilised at small settlements and, for most soils, it remains almost 

constant, even for relatively large settlements. 

Settlement reducing piles can be used for two reasons: to decrease the 

total settlement, in the case of rigid foundations and to reduce both the 

total and the differential settlements, when dealing with flexible rafts 

[Randolph and Clancy (1994), Horikoshi and Randolph (1998), Russo 

and Viggiani (1998), Viggiani (2001), Poulos (2001), Randolph (2003), 

Mandolini (2003), Randolph et al. (2004)]. In the latter case, the design is 

focused on the distribution of the piles in the plane and on the spacing 

which minimises the raft deflections. 

However, a relatively small number of piles could raise the problem of 

high bending moments and cracking in the raft and a concentration of 

axial stresses in the pile heads. Constraint reactions between the pile 

heads and the raft can be reduced by disconnecting the piles from the raft 

through the use of an interposed fill layer [Wong et al. (2000), 

Burghignoli et al. (2007), Jamiolkowski et al. (2009)]. 

1.2 Objectives 

The resistance and stiffness of a piled raft and the load sharing 

mechanism between the raft and the piles are governed by the complex 

soil–structure interactions which take place between the load–bearing 

components of the foundation: the piles, the raft and the soil. 

The present work is aimed at (i) highlighting the effects of the raft–soil–

pile interactions on the load–settlement behaviour and stiffness of the 

piled rafts, (ii) understanding the load transfer mechanisms which take 
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place within a piled raft and (iii) exploring the load sharing mechanisms 

between the raft and the piles. The behaviour of piled raft foundations in 

sand subject to vertical axial loading has been investigated. 

A series of centrifuge tests on models of rigid circular piled rafts in loose 

saturated sand were performed to this end, employing both non 

displacement and displacement piles, in order to compare the influence of 

the installation method on the efficiency of the piles as settlement 

reducers. The testing programme included the models of isolated single 

pile, unpiled raft and piled rafts on 1, 3, 7 and 13 piles; the piles were in 

direct contact with the raft. 

Finite element numerical analyses were also performed, using an elasto–

plastic strain hardening constitutive model, in order to reproduce some of 

the centrifuge tests that were carried out and to highlight the effect of the 

pressure transmitted by the raft to the soil on the behaviour of a single 

pile beneath the raft. The geometry and the dimensions of the numerical 

models corresponded to those of physical ones and the simulations were 

carried out applying an accelerated gravitational field to the mesh. 

Finally, the influence of a granular layer, interposed between the raft and 

the pile heads, on the load transfer mechanisms and on the overall load–

settlement behaviour of piled rafts was analysed, through a second series 

of centrifuge tests which was performed on models of square rigid raft on 

1, 4 and 9 displacement piles in dry dense sand. 

1.3 Thesis structure 

The present thesis consists of the following seven chapters. 

• A literature review on piled raft foundation analysis and design 

techniques is presented in Chapter 2. Analytical and experimental 
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methods are presented, as well as field observations of real structures 

on settlement reducing piles. 

• In Chapter 3 the characteristics of the centrifuge tests performed on 

models of rigid circular piled rafts in loose saturated sand, with both 

non displacement and displacement piles, are illustrated. The test soil, 

the geometry of the models and the testing procedures are described in 

detail. The most important features concerning centrifuge modelling 

are also outlined. 

• The experimental results of the centrifuge tests (as described in 

Chapter 3) are presented and discussed in Chapter 4. The influences of 

the soil–pile, pile–raft and pile–pile interactions on the piled raft 

stiffness and resistance are the primary concerns. First, the load–

settlement behaviour of an isolated single pile is analysed. The 

influence of the raft pressure on the soil surface on the behaviour of a 

single capped pile is then pointed out. The effects of the interaction 

between the piles in a piled raft are then highlighted. Finally, the 

overall load–settlement behaviour of the piled raft models and the 

efficiency of piles as settlement reducers are analysed. Results are 

presented for both non displacement and displacement piles. 

• The centrifuge test results (as presented in Chapter 4) are analysed in 

terms of bearing capacity and stiffness in Chapter 5. The piled raft 

bearing capacity is examined according to a load efficiency method. 

The piled raft stiffness is analysed by comparing the values obtained 

from centrifuge tests with those evaluated through a simplified 

analytical method. 
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• In Chapter 6, the results of the finite element numerical simulations 

are presented and compared with the centrifuge test results, previously 

shown in Chapter 4. 

• Some of the results of a second series of centrifuge tests, which were 

performed on models of square rigid piled rafts in dense sand, with 

displacement piles, both in contact with the raft and disconnected 

from the raft through a granular bed, are analysed in Chapter 7. The 

details of the experimental set–up and of the test procedure are also 

given. 

• A summary of the main results obtained from the present work is 

presented in Chapter 8. 



Chapter 2 

Literature review 

2.1 Introduction 

A review of analytical and experimental methods concerning the analysis 

and design techniques of piled raft foundations is presented as well as 

recent field observations of real structures on settlement reducing piles. 

2.2 Experimental works 

1g model tests 

Akinmusuru (1980) performed laboratory tests on an unpiled raft, free–

standing pile groups and piled rafts in dry sand and showed that the 

capacity of the piled foundations exceeds the sum of the bearing capacity 

of the pile group and the cap, due to the increase in the pile bearing 

capacity caused by the pile–raft interaction (contact pressure of the raft 

on the soil). 

Cooke (1986) reported an extensive series of small scale model tests on 

unpiled rafts, free–standing pile groups and piled rafts of various sizes, in 

stiff clay. He noted that the piled raft stiffness was as a maximum 30% 

greater than that of the free–standing pile groups, while the pile raft 

bearing capacity was much greater than that of the free–standing pile 
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groups. He pointed out the importance of pile length on the piled raft 

behaviour and observed that piles should be long in relation to the raft 

size. He also observed that, in the case of a rigid raft, the distribution of 

the load between the piles of piled raft foundations depends on the 

number of piles and their spacing. For the most common spacings, the 

external piles can be expected to carry at least twice the load carried by 

the interior piles. 

Phung (1993) performed large scale field tests on shallow footings, 

isolated piles, free–standing pile groups and piled rafts in loose to dense 

sand and used several load efficiency coefficients, which varied 

according to the settlement level considered, to compare the capacities of 

the elements of the piled footings with those of the single pile, the pile 

group and the unpiled raft. He found that that piled raft behaviour is 

mainly governed by the raft–pile interaction, which causes an increase in 

the pile shaft capacity due to the contact pressure of the raft on the soil. 

He noted that the centre pile of the piled rafts always takes the largest 

load portion. 

Lee and Chung (2005) executed small scale model tests on free–standing 

pile groups and piled footings in dense sand and analysed the influence 

of the pile cap on the behaviour of vertically loaded pile groups. From 

the test results it was found that the effect of the cap in contact with the 

underlying soil results in an increase in the skin friction, mainly after the 

pile yielding load has been reached, with dependency on the pile spacing. 

They also observed that a much lower load is carried by the raft in piled 

rafts than by the raft alone, at least at the initial loading stage. 

Centrifuge model tests 

Horikoshi (1995) and Horikoshi and Randolph (1996) presented the 

results of centrifuge tests on models of a flexible circular raft on small 



Chapter 2                                        Literature review                                         9 

centred pile groups and a fully piled foundation in clay. They found that 

even a small pile group can significantly reduce the differential 

settlement of a raft in spite of the relatively low loads being transferred to 

the pile group. Loading tests conducted on isolated single piles and single 

capped piles showed that a small cap in contact with the soil could 

significantly increase the pile bearing capacity, because of the transfer of 

the load to the soil through the cap. 

Conte el al. (2003) extended the experimental work of Horikoshi (1995) 

and Horikoshi and Randolph (1996) and carried out centrifuge tests on 

models of stiff square pile groups and piled rafts in clay. They found that 

the contribution of the pile capacity to the overall capacity of piled rafts 

decreases where the raft protrudes beyond the pile group and that central 

settlement reducing piles beneath the raft can be loaded close to their full 

capacity without compromising the foundation stability. 

Fioravante and Jamiolkowski (2005) performed centrifuge tests on 

models of a rigid circular piled raft in overconsolidated clay and found 

that the load distribution within a pile group under a rigid raft, in the 

working load range, is not uniform and is consistent with the prediction 

of a linear–elastic analysis. They also observed that the load transfer 

mechanism within a group of settlement reducing piles is different from 

that observed for an isolated pile and the difference can mainly be 

ascribed to the effect of the load that is transferred by the raft to the soil 

and to the additional confinement between the neighbouring piles. 

2.3 Analytical works 

Several methods of analysing piled rafts have been developed, and some 

of these have been summarized by Poulos et al. (1997), Poulos (2001a 

and b). Three classes of analysis method have been identified: 
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• simplified calculation methods, which involve a number of 

simplifications in relation to the modelling of the soil profile and the 

loading conditions on the raft; 

• approximate computer–based methods, such as the “strip–on–springs” 

approach, in which the raft is represented by a series of strip footings, 

and the piles are represented by springs of appropriate stiffness, or the 

“plate–on–springs” approach, in which the raft is represented by a 

plate and the piles as springs; 

• more rigorous computer–based methods, such as boundary element 

methods, in which both the raft and the piles within the system are 

discretised with boundary elements, and use is made of the elastic 

theory; methods combining boundary elements for the piles and finite 

element analysis for the raft; simplified finite element analyses, which 

usually involve the representation of the foundation system as a plane 

strain problem or an axisymmetric problem; three–dimensional finite 

element analyses. 

2.3.1 Simplified analysis methods 

Equivalent raft method 

The foundation is considered as a whole and the piled raft settlement is 

estimated considering an equivalent raft situated two–thirds of the way 

down the part of the piles which penetrate the main foundation stratum, 

or at the level of the pile bases for end bearing piles [Tomlinson (1986), 

Bowles (1988)]. The average settlement at the ground level is calculated 

as: 

wavg = wr +we           [L]       (2.1) 

where: 
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wr = raft settlement [L]; 

we = elastic compression of the piles above the level of the equivalent 

raft, which are treated as free–stand columns [L]. 

A load–spread of 1 in 4 is generally assumed in order to evaluate the 

equivalent raft area. A convenient method of calculating wr is based on 

the integration of the vertical strains below the equivalent raft, allowing 

for variations in the soil modulus and correcting the raft embedment 

below the ground surface, as follows [Poulos (1993)]: 

i
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where: 

qt = average pressure applied to the raft [FL-2]; 

Iε = influence factor from which the vertical strain may be calculated [-]; 

Hi = thickness of the ith layer [L]; 

Es = Young’s modulus of the ith layer [FL-2]; 

FD = correction factor according to Fox (1948) [-]; 

ns = number of soil layers [-]. 

For consistency, the embedment depth should be taken as that below the 

top of the main bearing stratum, rather than that from the ground surface. 

Poulos (1993) presented the results of a parametric study that compared 

the equivalent raft method with more rigorous analysis and found that, 

for groups containing more than 16 piles, the equivalent raft method can 

be a useful approach for settlement prediction, while it significantly 

overpredicts the settlement for a relatively small number of piles. 

Equivalent pier method 

The region of the soil in which the piles are embedded is considered as a 

continuum and the pile group is replaced by an equivalent pier [Poulos 



12                  Modelling of Piled Rafts Foundations in Sand                  D. Giretti 

and Davis (1980)]. For a pile group of area Ag, the diameter of the 

equivalent pier is taken as: 

ggeq A13.1A4d =
π

=        [L]       (2.3) 

and Young’s modulus of the pier as: 

Eeq = Es + (Ep – Es)
g

pg

A
A

       [FL-2]      (2.4) 

where: 

Ep = Young’s modulus of the piles [FL-2]; 

Es = average Young’s modulus of the soil penetrated by the piles [FL-2]; 

Apg = total cross–sectional area of the piles in the group [L2]. 

Poulos (1993) presented the results of a parametric study which 

compared the equivalent pier method with more rigorous analysis and 

found that the equivalent pier method tends to underpredict the 

settlement as the number of piles in the group increases while, for groups 

containing a relative small number of piles, it can be used with some 

confidence. 

Poulos–Davis–Randolph (PDR) method 

The ultimate load capacity of the piled raft foundation is taken as the 

lower of the following two values: 

• the sum of the ultimate capacities of the raft plus all the piles; 

• the ultimate capacity of a block containing the piles and the raft, plus 

that of the portion of the raft outside the periphery of the piles. 

The approach outlined by Randolph (1994) can be adopted in order to 

estimate the load–settlement behaviour. The stiffness of the piled raft 

foundation is estimated as follows: 
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where: 

kpr = stiffness of the piled raft [FL-1]; 

kp = stiffness of the pile group [FL-1]; 

kr = stiffness of the raft alone [FL-1]; 

αrp = raft–pile interaction factor [-]. 

The proportion of the total applied load carried by the raft is: 
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where: 

Qr = load transmitted by the raft to the soil [F]; 

Qt = total load applied to the raft [F]. 

Eqs. 2.5 and 2.6 are used to develop a tri–linear load–settlement curve, as 

shown in Figure 2.1(a). The stiffness of the piled raft is computed from 

Eq. (2.5) for the number of piles being considered. This stiffness will 

remain operative until the pile capacity is fully mobilised (point A). 

Load Q

Settlement w

Pile + raft
elastic

Pile capacity fully
utilised raft elestic

Pile + raft ultimate 
capacity reached

A

B

Load Q

Settlement w

Estimated load settlement
curve for raft

w0

Q0

wd

Q1

(a) (b)  
Figure 2.1. (a) PDR method and (b) Burland’s simplified design concept. 
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Beyond Point A, the stiffness of the foundation system is that of the raft 

alone (kr), and this holds until the ultimate load capacity of the piled raft 

foundation system is reached (Point B). At this stage, the load–settlement 

relationship becomes horizontal. 

Poulos (2001b) compared the piled raft load–settlement behaviour, 

computed with the PDR method, with that obtained from more rigorous 

methods and found good agreement. 

Burland’s approach 

Burland (1995) developed the following simplified design process for 

piles that are chosen to act as settlement reducers and to develop their full 

geotechnical capacity at the working load: 

• estimate the total long–term load–settlement relationship for the raft 

without piles (see Figure 2.1(b)). The design load Q0 gives a total 

settlement w0; 

• assess an acceptable design settlement wd, which should include a 

margin of safety: Q1 is the load carried by the raft corresponding to 

wd; 

• the load excess Q0 – Q1 is assumed to be carried by settlement-

reducing piles. The shaft resistance of these piles will be fully 

mobilized and therefore no factor of safety is applied. 

However, Burland suggested that a “mobilisation factor” of about 0.9 can 

be applied for a “conservative estimate” of the ultimate shaft capacity, 

QSu. If the piles are located below columns that carry a load in excess of 

QSu, the piled raft may be analysed as a raft on which reduced column 

loads act. The reduced load at such columns is Qr = Q – 0.9QSu and the 

bending moments in the raft can therefore be obtained by analysing the 

piled raft as a raft subjected to the reduced loads Qr. Burland did not 

explicitly give out a process to estimate the settlement of piled rafts; 
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Poulos (2001b) suggested adopting the approximate Randolph (1994) 

approach, in which: wpr = wr·kr/kpr, where wpr = settlement of the piled 

raft, wr = settlement of the raft without piles subjected to the total applied 

load. Eq. 2.5 can be used to estimate kpr. 

2.3.2 Approximate computer methods 

Strip–on–springs approach 

An example of the strip–on–springs method has been presented by 

Poulos (1991). A section of the raft is represented by a strip and the 

supporting piles by springs. An approximate allowance is made for all 

the interaction components between the foundation elements; the effects 

of the parts of the raft outside the strip section being analysed are taken 

into account by computing the free–field soil settlements due to these 

parts. These settlements are then incorporated in the analysis, and the 

strip section is analysed to obtain the settlements and moments due to the 

applied load on that strip section and the soil settlements due to the 

sections outside the raft. The soil non–linearity is taken into account in an 

approximate manner by limiting the strip–soil contact pressures so that it 

does not exceed the bearing capacity (in compression) or the raft uplift 

capacity in tension. The pile loads are similarly limited so that the 

compressive and uplift capacities of the piles are not exceeded. However, 

the ultimate pile load capacities must be pre–determined, and are usually 

assumed to be the same as those of isolated piles. In reality, as shown by 

Cooke (1986), Phung (1993), Lee and Chung (2005), Horikoshi and 

Randolph (1996), Katzenbach et al. (1998), Katzenbach et al. (2000), 

Fioravante and Jamiolkowski. (2005), the load transmitted to the soil by 

the raft can have a beneficial effect on the pile behaviour in the piled raft 

system. Good agreement between the strip–on–springs method and other 
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calculation methods (simplified and more rigorous) has been found by 

Poulos (2001b). 

Plate–on–springs approach 

In this type of analysis, the raft is represented by an elastic plate, the soil 

is represented by an elastic continuum and the piles are modelled as 

interacting springs [Clancy and Randolph (1993), Poulos (1994)]. Poulos 

(1994) employed a finite difference method for the plate. Allowance is 

made for the various interactions via approximate elastic solutions. 

Allowance is also made for layering of the soil profile, the effects of the 

piles reaching their ultimate capacity (both in compression and tension), 

the development of bearing capacity failure below the raft, and the 

presence of free–field soil settlements acting on the foundation system. A 

later version of this analysis method has replaced the finite difference 

analysis for the raft with a finite element analysis, and has employed a 

modified approach to consider the development of the ultimate load 

capacity in the piles. Russo (1998) and Russo and Viggiani (1998) 

described a similar approach to the previous methods, in which the 

various interactions are obtained from the elastic theory and non–linear 

behaviour of the piles is considered via the assumption of a hyperbolic 

load–settlement curve for single piles. The pile–pile interactions are only 

applied to the elastic component of pile settlement, while the non–linear 

component of settlement of the pile is assumed to arise only from loading 

on that particular pile. 

2.3.3 More rigorous computer methods 

Mixed technique 

El-Mossallamy and Franke (1998) and Franke et al. (2000) presented a 

method that combines boundary element and finite element analysis. The 



Chapter 2                                        Literature review                                         17 

raft is modelled by FEM as a plate–in–bending, acted on by the 

superstructure loads and supported by non–linear elastic springs at each 

node of the mesh. These springs in part represent the piles and in part the 

soil. The contact pressure between the raft and the soil and between the 

piles and the soil are modelled by BEM, i.e. the boundary element mesh 

contains only elements at the raft–soil and pile–soil interfaces [a similar 

solution to that proposed by Butterfield and Banerjee (1971)]. The finite 

stiffness of the raft and the piles, as well as the non–linear pile response, 

are taken into account. 

The model was successfully applied for the back–calculation of the 

behaviour of the Messeturm and Westendstrasse buidings in Frankfurt. In 

particular the Authors found that on one hand the effect of the pile–raft 

interaction decreases the modulus of pile reaction but, on the other, it 

increases the ultimate pile load. These effects depend on the load level, 

on the raft and group dimensions and on the pile location in the pile 

group. Moreover, the pile skin friction is mobilised from the pile tip 

upwards, in contrast to what happens for an isolated pile, since the soil 

just beneath the raft is forced to settle by the same amount as the raft and 

the pile tops. The degree of shaft friction mobilisation along the piles 

depends on the pile location. 

Two–dimensional numerical analyses 

The foundation is assumed to be a two–dimensional (plane strain) 

problem, or an axially symmetric three–dimensional problem. In both 

cases, significant approximations need to be made, especially with 

respect to the piles, which must be smeared to a wall or to an annulus and 

given an equivalent stiffness equal to the total stiffness of the piles being 

represented. Problems are also encountered in representing concentrated 

loadings in such an analysis, since these must also be smeared. 
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Poulos (2001b) compared the results of a plane–strain analyses with 

those obtained from the PDR approach, from the approximate computer 

methods previously mentioned and from a complete three–dimensional 

analysis and found that two–dimensional analysis can seriously over-

predict settlements because of the implicit assumption of plane strain in 

the analysis. He suggested that plane strain analyses of piled rafts must 

be approached with extreme caution because the results may be 

misleading if the raft is essentially square or rectangular. 

Three–dimensional numerical analyses 

A complete three–dimensional analysis of a piled raft foundation system 

can be carried out by finite element analysis. Katzenbach and Reul 

(1997) and Katzenbach et al. (1998) described a structural model which 

allows the different load–settlement behaviour of rafts and piles and the 

raft–soil, raft–pile and pile–pile interactions to be analysed. In the 

numerical simulation presented, the continuum and the piles are 

represented by three–dimensional isoparametric finite elements while the 

raft is modelled with shell elements. Infinite elements, which respond 

like an elastic half–space, are used at the borders. The piles are simulated 

as linear elastic and the raft is considered rigid. The soil is modelled as an 

elasto–plastic material. Shearing at the pile shaft is considered by 

shearing of the finite elements that represented the soil. 

The structural model has successfully been applied for the design of tall 

buildings [Katzenbach et al. (1997)]. The author showed that the piles 

within the piled raft foundation develop more than twice the shaft 

resistance of a single isolated pile or a pile within a normal pile group, 

with the centre piles showing the largest values. This is because of the 

increased normal stresses generated between the soil and the pile shaft by 

the loading on the raft. 
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However, the main problem related to FE analyses is the time involved in 

obtaining a solution. Such analyses are more suitable for obtaining 

benchmark solutions against which to compare simpler analysis methods, 

rather than as routine design tools. Katzenbach et al. (1998) developed an 

interaction diagram which relates the relative settlement (ratio of the 

settlement of the piled raft to the raft alone) to the number of piles and 

their length–to–diameter ratio, L/d. This diagram clearly shows that, for a 

given number of piles, the relative settlement is reduced as L/d increases. 

It also shows that there is generally very little benefit to be obtained in 

using more than about 20 piles. 

2.2 Field data and case studies 

Most case histories of piled raft foundations deal with piled rafts in 

clayey soils. In the last few years, the application of piled rafts has been 

extended to sandy soils. 

Katzenbach et al. (2000) and Reul (2003) reported on the performance of 

several piled raft foundations recently realised in Germany, both in soft 

clay (Frankfurt clay) and in loose sand (Berlin sand). In almost every 

case, the piled rafts were built using large diameter cast in situ bored 

piles. All were controlled by geotechnical monitoring. The results of the 

monitoring on the first piled raft projects (in which the piles carried about 

80% of the structural load) allowed the piled raft design to be optimised. 

In the most recent projects, 1/1 and 1.5/1 load sharing values between the 

raft and piles have been obtained. A great influence of the position of the 

pile beneath the raft on the pile load–settlement behaviour has been 

observed for the piled raft in the Frankfurt clay, where the load increases 

from the centre to the external piles. The variation in the load with the 

pile position is due to the block deformation of the pile group, which 
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causes small differential settlements between the piles at the centre of the 

raft and the surrounding soil. Hence, the pile shaft loads of the centre 

piles are smaller than the pile shaft loads of the edge and corner piles. 

The Authors also observed that piled rafts effectively reduce maximum 

and differential settlements and, in urban environments, these positive 

effects also help guarantee the stability and serviceability of existing 

buildings. In comparison to conventional pile foundations, the 

application of piled rafts can lead to economic reductions of up to 60% in 

the total number and length of the piles needed for the foundations. 

O’Neill (2005) summarised 24 case histories of piled raft foundations. 

The subsoil conditions which were analysed ranged from soft clay to stiff 

soil overlying rock; the pile types were bored, auger and driven. O’Neill 

observed that in most cases the piles were bored and placed on a more–

or–less uniform grid under the tower part of the structure, at 4 to 5 pile 

diameters on the centres, mainly in order to reduce raft stresses and 

differential settlements under sustained loads. Under these conditions, 

and if the soil is overconsolidated, a 1/1 load sharing between the raft and 

piles can be gained if the piles are allowed to be loaded to about 80% of 

their ultimate load. When the soil is slightly overconsolidated and the 

piles are loaded in excess of 80% of their ultimate capacity, the raft tends 

to carry a higher proportion of the loads. Instead, when the piles are 

loaded to about 50% of their ultimate capacity, the piles carry more than 

one–half of the sustained working loads. This is the condition that was 

observed for most of the case histories reported. 



Chapter 3 

Experimental set–up 

3.1 on centrifuge modelling 

The mechanical behaviour of a natural soil depends on its “state 

parameters”: its nature (e.g. mineralogical composition), its physical 

properties (such as water content or relative density), its chemical 

properties (such as digenesis, cementation), its effective stress state and 

its stress history. A physical model can artificially reproduce the 

mechanical behaviour of a soil only if the model correctly replicates the 

prototype state. 

Due to the intrinsic difficulties involved in reproducing all the relevant 

aspects of a soil state, some approximation are generally accepted in 

physical modelling; the skill is to spot the appropriate level of 

simplification, to recognise the most important features with respect to 

the engineering problems that have to be considered. Maintaining 

consistency in the stress field of the physical model is certainly one of the 

key factors to accurate modelling. 

Multi-g physical modelling is based on the principle that, if a model, in 

which each linear dimension is reduced by a factor N, is subjected to a 

centrifuge acceleration of a = Ng (where g is the gravity field), the self-
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weight of any material used for the model is N times larger than in a 1g 

gravity field. Therefore, a 1/N model at the centrifuge acceleration of a = 

Ng achieves the equivalent vertical stress of the full scale prototype, 

assuming that a material with the same mass density is used in the model. 

If the stress–strain characteristic of the model material is the same as in 

the prototype, for example if the same soil is used in the model, similarity 

of strains is also achieved. 

If the scaling factor for a generic quantity is defined as: x* = xprot/xmod 

(where xprot = the value of the quantity x at the prototype scale and xmod = 

the value of the quantity x at the model scale), in a soil model prepared 

from the prototype material (i.e. identical material rheology in the model 

as in the prototype and density scaling factor ρ* = ρprot/ρmod = 1), 

geometrically scaled down N times with respect to the prototype 

(geometrical scaling factor L* = Lprot/Lmod = N) and subject to a 

gravitational field N times higher than the prototype (gravity scaling 

factor g* = gprot/gmod = 1/N), the centrifuge acceleration reproduces the 

same stresses and strains as in the prototype so that the model exhibits 

identical mechanical behaviour as the prototype soil [Schofield (1980)]. 

The observations from the model can be related to the prototype using 

the similarity relationships reported in Table 3.1, which are valid within 

continuum mechanics. 

Much effort is still being devoted to understanding the reproducibility, at 

a small scale, of interface problems, such as pile shaft friction 

mobilisation, which are a matter of discontinuity mechanics rather than 

continuum mechanics. The displacement required to mobilise the 

ultimate shaft friction of model piles is often comparable with that 

required for full scale piles (from about 1 to 10 mm), which would 
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suggest that the relative–displacement scaling factor is very close to 

unity, i.e. wprot ≈ wmod [Fioravante et al. (2008a)]. 

Table 3.1. Similarity relationships. 
Quantity Prototype Model
Acceleration 1 N 
Length 1 1/N 
Area 1 1/N2 
Volume 1 1/N3 
Velocity (projectile) 1 1 
Velocity (undrained conditions) 1 N 
Mass 1 1/N3 
Force 1 1/N2 
Energy 1 1/N3 
Stress 1 1 
Strain 1 1 
Mass Density 1 1 
Energy density 1 1 
Time (Dynamic) 1 1/N 
Time (Diffusion) 1 1/N2 
Time (Creep) 1 1 
Frequency 1 N 

In centrifuge modelling, the following points should be taken into 

account: 

• The centrifuge acceleration applied to the model is radius dependent; 

thus the vertical stress distribution of the model is parabolic and it 

diverges slightly from the linear distribution of the overburden 

stresses in the prototype. 

• The soil surface and the free water surface of the model are not flat. 

• The existence of rigid side walls and a rigid base may affect the 

behaviour of the model; care is necessary when designing the 

boundary conditions in the model. 

• In centrifuge models, the same type of soil is generally used as in the 

prototype, in order to ensure the same stress–strain response. Thus the 
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proportion of the particle size to the structure size is not scaled. The 

particle size effects are generally negligible for clay, while they have 

to be carefully controlled for sand and silt. 

3.2 The ISMGEO geotechnical centrifuge 

The model tests were performed using the ISMGEO (Istituto 

Sperimentale Modelli Geotecnici, Seriate – BG – Italy) geotechnical 

centrifuge, herein simply called IGC, which is a beam centrifuge made 

up of a symmetrical rotating arm with a diameter of 6 m, a height of 2 m 

and a width of 1 m, which gives it a nominal radius of 2 m. The arm 

holds two swinging platforms, one used to carry the model container and 

the other the counterweight; during the test, the platforms lock 

horizontally to the arm to prevent transmitting the working loads to the 

basket suspensions. An outer fairing covers the arm and they 

concurrently rotate to reduce air resistance and perturbation during flight. 

The centrifuge has the potential of reaching an acceleration of 600g at a 

payload of 400 kg. The maximum dimensions of the model are: length = 

1 m, height = 0.8 m, with = 0.5 m; further details can be found in Baldi et 

al. (1988). Figure 3.1 shows a scheme of the IGC. The unusual shape of 

the arm offers the following advantages: 

• small distortion of the centrifugal field in the model, since its main 

dimension is parallel to the rotation axis; 

• low deflection of the support plane of the swinging basket; 

• easy location of instruments close to the rotation axis because of the 

absence of a central shaft across the arm. 

The IGC houses a shaking table, which is capable of reproducing a single 

degree of freedom prototype strong motion events at a model scale. The 
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axis of motion of the shaker is parallel to the centrifuge rotational axis, 

thus problems related to Corioli’s acceleration are avoided. The shaker is 

not integrated into the swinging platform, but is directly connected to the 

rigid arm: the model container is moved into contact with the table in 

flight and released before dynamic excitation of the model starts; the 

shaker forces are entirely transferred from the slip table to the model 

container by mechanical coupling. 

 
Figure 3.1. The ISMGEO Geotechnical Centrifuge. 

3.3 Test soil 

Experiments have been performed using saturated FF sand (FFS), a very 

fine and uniform silica powder derived by grinding and sieving pit rocks. 

It mainly consists of sub angular particles and it is made of 98.2% quartz, 

1.3% feldspar and 0.5% mica. Figure 3.2 reports the grain size 

distribution of FFS, whose physical properties are summarised in Table 

3.2. 
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The mechanical behaviour of FFS was characterised through a large 

series of triaxial tests; wide ranges of initial mean stress, p’0, and void 

ratio, e0, were experienced, p’0 and e0 ranging from 15 to 800 kPa and 

from 0.88 to 1.09, respectively. The local strain and the shear wave 

propagation velocity were measured using bender elements (BE) during 

some tests. 
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Figure 3.2. Grain size distribution of the FF sand. 

Table 3.2. Physical properties of the FF sand. 
γd,min 

[kN/m3] 
γd,max 

[kN/m3] 
emax 
[-] 

emin 
[-] 

GS 
[-] 

D50 
[mm] 

UC 
[-] 

11.58 14.78 1.211 0.732 2.61 0.093 1.88 
γd,max and γd,min = maximum and minimum dry density 
emax and emin = maximum and minimum void ratio 
GS = specific density 
D50 = mean particle size 
UC = uniformity coefficient 

Table 3.3 reports, for all the tests, the values of the void ratio, e, the 

relative density, DR, the confining pressure, p’, the deviator stresses, q, 

and the stress ratio, η, measured at the beginning of the tests and at the 

critical state condition. 
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The experimental results of the undrained and drained tests performed on 

specimens characterised by initial DR0 and p0’ values comparable with 

those of the centrifuge soil models (i.e. DR0 ≈ 25% ÷ 35% and p’0 < 250 

kPa, see next sections) are shown in Figures 3.3o t 3.7. The q-p’ effective 

stress paths are reported in Figures 3.3 and 3.5, for the undrained and 

drained tests, respectively; the stress-strain responses are represented in 

the q/p’-εa space in Figures 3.4 and 3.6 (where εa = axial deformation of 

the specimens); the e-p’ paths are shown in Figure. 3.7. The critical state 

conditions are highlighted in Figures 3.3, 3.5 and 3.7. 

Table 3.3. Triaxial tests on the FF sand. 
Initial condition Critical state 

Test* e0 
[-] 

DR0 
[%] 

p’0 
[kPa] 

q0 
[kPa]

η0 
[-] 

ecv 
[-] 

p’cv 
[kPa]

qcv 
[kPa]

ηcv 
[-] 

CIU148 0.889 67.2 593 0 0 0.889 1304 1860 1.426 
CIU 119 1.022 39.5 800 0 0 1.022 404 565.3 1.399 
CIU1_07 1.069 29.5 25 0 0 1.069 391 525.4 1.341 
CIU2_07 1.065 30.5 50 0 0 1.065 421.3 560.2 1.33 
CIU3_07 1.032 37.3 100 0 0 1.032 487 652 1.339 
CIU4_07 1.047 34.1 200 0 0 1.047 528 713 1.350 
CIU5_07 1.064 30.6 15 0 0 1.064 481.7 631.8 1.312 
CIU6_07 1.017 40.4 25 0 0 1.017 655.7 857.6 1.308 
CIU23_07 1.053 33 100 0 0 1.053 573 799 1.393 

CIU_1_100 1.005 43 100 0 0 1.005 435.3 591.2 1.358 
CID1_07 1.076 28.2 25 0 0 1.145 45.1 60.4 1.338 
CID2_07 1.064 30.7 50 0 0 1.109 97.9 143.6 1.467 
CID101 1.073 28.8 50 0 0 1.085 91.7 123.7 1.349 
CID102 1.088 25.6 100 0 0 1.074 178.6 237.3 1.329 
CID103 1.054 32.8 250 0 0 1.008 455.4 609.7 1.339 
CID104 1.062 31 400 0 0     

CID104B 1.056 32.3 400 0 0 0.970 718.2 951.9 1.325 
CID107** 1.092 24.8 100 0 0 1.088 182.1 241.2 1.325 
CK0D112 1.029 38.1 290 170 0.58 1.005 422.4 561 1.328 
CID121 0.999 44.2 250 0 0 0.986 479.7 691.6 1.442 
CID132 0.890 66.9 100 0 0 0.966 194.0 275.4 1.420 
CID134 0.878 69.6 400 0 0     

CID137** 0.941 56.3 100 0 0 0.999 187.3 260.6 1.391 
CK0D140 0.931 58.5 73 39 0.53 1.016 115.2 163.2 1.416 
CID138 0.947 55.1 100 0 0 1.004 189.0 268.4 1.420 

CK0D142 0.894 66.1 275 195 0.7     
* CIU = isotropic compression, undrained shear 
   CID = isotropic compression, drained shear 
   CK0D = one-dimensional compression, drained shear 
** Overconsolidation ratio OCR = 2 
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Figure 3.3. Undrained tests: effective stress paths. 
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Figure 3.4. Undrained tests: stress–strain response. 
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Figure 3.5. Drained tests: effective stress paths. 
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Figure 3.6. Drained tests: stress–strain response. 
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As shown in Figures 3.3 and 3.4, the specimens subjected to an 

undrained shear passed through a so–called ‘phase transformation state’ 

[(Ishihara et al. (1975)] and then approached the critical state, while those 

subjected to drained tests (Figs. 3.5, 3.6 and 3.7) experienced a stress 

peak followed by stress softening and failure at the critical state. 

The FFS at low density and low confining pressure behaves like “dense” 

sand and exerts dilative behaviour. 

The stress ratios at critical state ηcv resulted to be almost the same for all 

the triaxial tests, as can be seen in Table 3.3, thus the value of the critical 

stress ratio M was assumed equal to 1.35; this gives a shearing resistance 

angle at critical state φ’cv ≈ 33°. 

In order to define the position of the critical state line (CSL) in the e-p’ 

space, fitting was carried out of all the critical state conditions reported in 

Figure 3.7, using the approach proposed by Li and Wang (1998), which 

defines the equation of the CSL as: 

ξ

Γ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ−=

a
cv p

'pee          [-]        (3.1) 

where: 

eΓ, λ, ξ = material constant that determines the position of the critical 

state line in the e-p’ space [-]; 

pa = 101 kPa = atmospheric pressure for stress normalisation [FL-2]. 

The critical state parameters of the FFS, calibrated on the basis of the 

triaxial test results, are summarised in Table 3.4; the computed CSL is 

represented in Figure 3.7. 

Table 3.4. Critical state parameters for the FFS. 
M 
[-] 

eΓ 
[-] 

λ 
[-] 

ξ 
[-] 

1.35 1.15 0.026 0.901 



Chapter 3                                      Experimental set–up                                      31 

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

10 100 1000

p' [kPa]

e [-]
CID 1 2007
CID 2 2007
CID 101
CID 102
CID 103
CID 107
CIU 1 2007
CIU 2 2007
CIU 3 2007
CIU 4 2007
CIU 5 2007
CIU 6 2007
CIU 23 2007
Critical state values - undrained tests
Critical state values - drained tests
CSL

 
Figure 3.7. Undrained and drained tests: e-p’ paths. 

With reference to the triaxial tests with BE, Table 3.5 lists the values of 

the mean pressure, p’, of the vertical and horizontal stresses, σ’v and σ’h, 

and of the void index, e, at which the shear wave velocity VS was 

measured; the values of the small strain shear modulus, G0, are also 

reported. From the measured values, G0 has been expressed as a function 

of the current effective stresses and void ratio, according to the relation 

proposed by Fioravante (2000): 

nh2

a

h

nv2

a

vd2
G0 pp
eCG ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ σ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ
=

''       [FL-2]      (3.2) 

where: 

d, nv, nh = non–dimensional function exponents, determined 

experimentally by Fioravante (2000) for Ticino sand, and equal to –0.4, 

0.136, 0.084, respectively [-]; 

CG = 60 MPa = dimensional material constant determined by fitting the 

experimental data for FFS [FL-2]. 
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The measured and computed G0 values are plotted in Figure 3.8 as a 

function of the mean stress p’. As expected, G0 increases as the confining 

pressure increases. 

Table 3.5. Bender Element test results. 

Test p’ 
[kPa]

σ’v 
[kPa]

σ’h 
[kPa]

OCR
[-] 

e 
[-] 

VS 
[m/s] 

G0 
[MPa] 

CID101 49.7 50.2 49.5 1 1.073 134.6 32.3 
CID102 100.1 100.3 100.0 1 1.088 166.9 49.4 
CID103 251.2 251.2 251.2 1 1.054 217.0 84.0 
CID107 101.7 103.2 100.9 2 1.092 174.6 53.9 

CK0D112 290.8 403.7 234.3 1 1.029 238.7 102.2 
CID121 249.7 250.2 249.5 1 0.999 234.5 99.2 
CID134 399.7 399.9 399.6 1 0.878 273.6 139.0 
CID137 100.2 100.3 100.1 2 0.941 189.5 65.7 

CK0D140 73.3 99.0 60.4 1 0.931 157.7 45.6 
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Figure 3.8. Measured and computed small strain shear modulus. 

The degradation curves of the secant Young’s modulus, Es,sec = q/εa, have 

been derived from the triaxial tests in which the local strains have been 

measured, as shown in Figure 3.9, where the values of Es,sec, normalised 

over the small strain value Es0, are plotted as a function of the axial strain 
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εa. An elastic threshold can be individuated at εa ≈ 0.002% ÷ 0.005%. 

The stress–strain response of the FFS becomes highly non–linear at 

higher strains than the elastic threshold; the rate of the decay of the 

secant shear stiffness does not seem to be influenced by the stress history. 
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Figure 3.9. Normalised secant Young’s modulus degradation curves. 

3.4 Model raft and model piles 

The adopted geometrical scaling factor of the models was N = 100; all 

the piled raft models were tested under an acceleration field of a = 100g, 

which was reached in correspondence to the soil surface. 

The model raft was a 88 mm diameter (dr) and 15 mm thick (tr) steel 

disc, characterized by a modulus of elasticity Er = 2.1*105 MPa and a 

moment of inertia, evaluated with respect to the barycentric axis, of Jr = 

294.37 m4 at the prototype scale. 

The raft–soil stiffness ratio, krs, defined hereafter, resulted to be high 

enough (krs = 95) to consider the raft rigid [Horikoshi and Randolph 
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(1997)]. As a consequence, the settlement of the raft was considered 

uniform in the test interpretation. 
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where: 

Es0 = 87 MPa = small strain Young’s modulus of the subsoil evaluated 

via the elastic theory from Eq. 3.2, at depth z = dr/2, as suggested by 

Mayne and Poulos (1999)] [FL-2]; 

νs = 0.24 = Poisson’s ratio of the soil [-]; 

νr = 0.3 = Poisson’s ratio of the raft [-]. 

The model piles employed in the centrifuge tests were close–ended and 

free headed and they had an external diameter Dp of 8 mm and a length 

Lp of 160 mm (slenderness ratio of 20). 

The value of Dp was chosen as large as possible to allow a group of 13 

model piles, with adequate spacing, to be loaded by a sufficiently small 

raft to minimise the geometrical constraints of the container, as shown in 

Figure 3.10, where the main geometrical characteristics of the models 

and the boundary conditions are reported. The ratio between the diameter 

of the container (400 mm) and the diameter of the raft (dr = 88 mm) was 

equal to 4.5 and, during the tests, the distance of the pile tips from the 

container bottom was always greater than 30Dp. 

The ratio of the model pile diameter normalised with respect to the mean 

particle size dimension was Dp/D50 = 86 and this was considered high 

enough to minimise the effects of grain size on the interface behaviour 

[Garnier and Konig (1998), Foray et al. (1998), Fioravante (2002), 

Garnier (2002)]. 
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Figure 3.10. Boundary conditions and model test set-up. 

The piles were made from an aluminium alloy hollow pipe which had an 

external skin roughness Rt ≈ 120 ÷ 300 µm, which was obtained through 

mechanical turning and measured peak to peak by a micrometrical 

profilometer. The minimum value of the relative roughness was 

Rn=Rt/D50 ≈ 1.3. A relative roughness Rn > 0.1 ensures that shear failure 

occurs in the soil surrounding the pile and produces an interface friction 

angle, δ’, equal to the shearing resistance angle at the critical state, φ’cv, 

so that the ultimate value of the shear resistance does not depend on the 
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pile roughness [Yoshimi and Kishida (1981), Kishida and Uesugi (1987), 

Jardine et al. (1993), Foray et al. (1995), Garnier and Konig (1998)]. 

Some of the model piles were instrumented with load cells, as shown in 

Figure 3.10. The fairly small diameter allowed a maximum of two load 

cells per pile to be incorporated, and these measured the loads at two 

positions along the shaft. 

The instrumented model piles were assembled in two configurations: the 

upper load cell was placed at the pile head (hereafter referred to as 

position A) while the lower load cell was placed at the pile base (position 

B) or alternatively at mid–pile length (position C). The measurement 

sections of load cells A, C and B were at depths of 0.22Lp, 0.61Lp and 

0.99Lp from the pile top, respectively. Figure 3.11 reports a scheme of 

the instrumented model piles. 

The adopted instrumentation allowed the axial loads transmitted to each 

instrumented pile to be measured and the load transmitted through the 

shaft to be estimated. 

The miniaturised load cells, made of stainless steel, had a 4 mm x 4 mm 

square cross-section. Two active strain gauges were coated with an 

acrylic moisture barrier onto each of the four flat surfaces. One was used 

to measure the pile–longitudinal strains, the other the pile–transversal 

strains (the flat surfaces caused negligible pre–straining of the gauges). 

The 8 strain gauges were connected within a complex Wheatstone bridge 

which permitted bending and temperature effects to be cancelled in the 

readings and gave a very accurate measurement of the axial load. 

The instrumented cross-section was covered by a coaxial protective 

stainless steel jacket which prevented the strain gauges from being 

compressed by radial stresses. 
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Figure 3.11. Scheme of the instrumented model piles (all dimensions in mm). 

The sleeve, which had an external diameter of 8 mm and the same 

external skin roughness as the aluminium pipe, was sealed with O–rings 

as a second moisture barrier. 

Very thin wires, connecting the load cell to the data acquisition system, 

were guided through the centre cavity of the model piles. A picture of a 

load cell and of the instrumented model piles is reported in Figure 3.12. 

Each load cell was calibrated and the calibration load cycle was repeated 

three times to verify the repeatability and the absence of significant 

hysteresis in the measurements. The drift of the offset at zero loads was 

carefully detected and minimised. The output signals from the load cells 

were amplified by a factor of 100. The calibration curves of two load 
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cells are shown in Figure 3.13, where the electrical output signals of the 

cells are plotted vs. the applied axial load. 
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Figure 3.12. Model piles and miniaturised load cells. 

The equivalent axial stiffness of the instrumented model piles was 

measured through a series of load controlled axial load test with a Shenk-

TREBBLE testing machine; during the tests, the shortening ∆l0 of a pile 

segment of initial length l0 ≈ 0.94Lp was measured with two LDTs for 

different applied axial load values. As shown in Figure 3.14, where the 

applied axial load Q is plotted vs. the measured axial strain εa the pile 

axial stiffness was obtained through a linear regression of the measured 

data and it resulted that: 
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Figure 3.13. Load cell calibration curves. 
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Figure 3.14. Axial load–axial strain response of an instrumented model pile. 
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(EpAp)eq = ∆Q/εa = 1615 kN (model scale)   [F]     (3.4) 

where: 

Ep = 74000 MPa = Young’s modulus of the pile [FL-2]; 

Ap = the cross–sectional area of the pile [L2]; 

∆Q = applied load increment [F]; 

εa = ∆l0/l0 = axial strain of the pile [-]. 

Due to their high axial stiffness, the piles were considered rigid in the test 

interpretation and their settlements were assumed constant with depth. 

3.5 Test programme and test procedures 

The test programme consisted of twenty loading tests conducted on the 

eight model schemes shown in Figure 3.15 and listed below. Al the 

foundations were subject to vertical axial loading. Figure 3.16 reports the 

load cell configuration in the tests. The dimensions of the foundations are 

reported in the model and the prototype scale in Table 3.6. 

• model scheme R: unpiled raft (test No. 1) 

• model scheme IP: isolated single pile (tests No. 2, 3, 4, 5, 10 and 11) 

• model scheme PR1: 1-pile raft (tests No. 6 and 12) 

• model scheme PR3(A): 3-pile raft, spacing s = 8.66Dp (tests No. 7, 8, 

13 and 14) 

• model scheme PR7(A): 7-pile raft, spacing s = 5Dp (tests No. 9, 15 

and 16) 

• model scheme PR13: 13-pile raft, radial spacing s = 2.5Dp (tests No. 

17 and 18) 

• model scheme PR3(a): 3-pile raft, spacing s = 4.33Dp (test No. 19) 

• model scheme PR7(a): 7-pile raft, spacing s = 2.5Dp (test No. 20) 
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Table 3.6. Foundation dimensions (model and prototype scale). 
Dimensions Model (mm) Prototype (m)
Raft diameter dr  88 8.8 
Pile diameter Dp  8 0.8 
Pile length Lp  160 16.0 

PR3(A) 69.3 6.93 
PR7(A) 40 4 
PR13 20* 2* 

PR3(a) 34.65 3.46 
Pile spacing s 

PR7(a) 20 2 
* radial distance 
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Figure 3.15. Model schemes. 
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Figure 3.16. Test load cell configurations. 

The following test procedure was adopted. 

Non displacement pile rafts 

(a) At 1g: each soil model was reconstituted to a very low relative 

density (DR ≈ 15% ÷ 20%) by pluviating, in air, the dry sand into a 

cylindrical container at a very small and constant height of fall. The 

cylindrical container had an internal diameter of 400 mm, a height of 

840 mm and rigid walls to avoid lateral displacements of the soil. 

During the pluvial deposition, two miniaturised pore pressure 

transducers were inserted into the soil mass (PPTs 1 and 2 in Figure 

3.10), the first placed on the container bottom, the second near the 

pile tips. At the end of the deposition, the soil surface was located at a 

level of 440 mm above the container bottom. After deposition, the 

sand was saturated through an upward tap water flow with a small 

hydraulic gradient to avoid soil disturbance. The water level was kept 
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constant at a depth of 18 mm from the soil surface during the 

following centrifuge spinning (1.8 m at the prototype scale), as 

monitored by the PPTs. 

(b) At 1g: the model piles were completely embedded into the soil 

specimen in pre-bored holes. A very rigid frame, which held two 

linear displacement transducers to monitor the raft displacement 

(LDTs 1 and 2 in Fig. 3.10), an external load cell to measure the 

applied load, the raft plate and a hydraulic actuator, was mounted 

onto the container top. In the isolated pile load tests, the raft plate was 

replaced by a 8 mm diameter piston. The container was then loaded 

onto the centrifuge and accelerated to 75g. 

(c) At 75g: as the model was subjected to the acceleration field in the 

centrifuge, the soil surface settled and the model consolidated, as 

monitored by the PPTs and by a further LDT fixed to the container 

wall which measured at a distance of 150 mm from the centre of the 

container (LDT3 in Fig. 3.10). Even though the weight of the model 

piles was close to that of the substituted soil, differential settlements 

occurred between the piles and the surrounding soil during the in–

flight consolidation and the soil surface settled 1–1.5 mm more than 

the piles. This is illustrated in Figure 3.17, which compares the 

profile of the soil consolidation settlement predicted by a numerical 

simulation, as a function of the model depth, z, with the pile 

settlement profile. Thus, at the end of the consolidation, the piles 

were pushed down slightly by the raft plate (or by the piston for the 

isolated pile) in order to align them with the soil surface; then the raft 

plate was lifted and the piles were unloaded, the centrifuge speed was 

increased to the target value of 100g and a second consolidation 

occurred. This “atypical” procedure was adopted to minimise the 
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unavoidable problem of the different alignments of the pile heads 

with respect to the soil surface. The piles installed in this manner 

simulated ideally bored prototype piles. 

(d) At 100g: the raft plate (or the piston for the isolated pile) was slowly 

lowered until contact with the soil surface and the pile heads was 

achieved, then the loading test was performed until a relative pile 

displacement w/Dp ≈ 100% was reached, where w is the measured 

settlement. 

Displacement pile rafts 

(a) At 1g: as for the non displacement pile raft models, each soil model 

was reconstituted to a very low relative density (DR ≈ 15% ÷ 20%) by 

pluviating, in air, the dry sand into a cylindrical container at a very 

small and constant height of fall. The cylindrical container had an 

internal diameter of 400 mm, a height of 840 mm and rigid walls to 

avoid lateral displacements of the soil. During the pluvial deposition, 

two miniaturised pore pressure transducers were inserted into the soil 

mass (PPTs 1 and 2 in Figure 3.10), the first placed on the container 

bottom, the second near the pile tips. At the end of the deposition, the 

soil surface was located at a level of 440 mm above the container 

bottom. After deposition, the sand was saturated through an upward 

tap water flow with a small hydraulic gradient to avoid soil 

disturbance. The water level was kept constant at a depth of 18 mm 

from the soil surface during the following centrifuge spinning (1.8 m 

at the prototype scale), as monitored by the PPTs. 

(b) At 1g: the piles were inserted into pre–bored holes for a length of 

130 mm (embedded length = 0.8Lp). The rigid frame, with LDTs 1 

and 2, the external load cell, the raft plate and the hydraulic actuator, 

was mounted onto the container top (as for the bored piles, in the 
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isolated pile load tests the raft was replaced by a 8 mm diameter 

piston), the container was loaded onto the centrifuge and accelerated 

to 100g. 

(c) At 100g: the soil model was allowed to consolidate. The raft plate (or 

the piston for the isolated pile) was then slowly lowered until contact 

with the pile heads was achieved and the model piles were jacked for 

30–32 mm into the soil model at 100g; the raft was then lifted up and 

the jacking load was removed. Drained penetration conditions were 

ensured by a low penetration rate and confirmed by the constant pore 

pressure values measured by PPT2. This pile installation procedure 

was assumed adequate to fully mobilise the end bearing capacity, 

since the piles penetrated 3.75Dp at least, but it produced a lower 

densification of the soil around the pile than a 100g full pile length 

penetration would; however, it was necessary to jack the groups of 

free headed piles simultaneously. 
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Figure 3.17. Schematic of the soil and pile displacement profiles after in–flight 
consolidation at 75g. Model scale. 
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(d) At 100g: the raft plate (or the piston for the isolated pile) was slowly 

lowered until contact with the soil surface and the pile heads was 

achieved, then the loading test was performed until a relative pile 

displacement w/Dp ≈ 100% was reached, where w is the measured 

settlement. 

In both the non displacement and displacement pile raft load tests, the 

jacking and the loading phases were executed at a constant loading rate 

of 50 N/min. The compression load, applied by the servo–controlled 

hydraulic actuator, was measured by the external load cell. The external 

and internal forces as well as the raft and sand settlements were 

continuously recorded (acquisition frequency equal to 0.1 Hz). The pore 

pressure measured by PPT2 showed constant values during the tests, i.e. 

the loading conditions were drained. The foundation settlement, w, was 

obtained by averaging the measurement values of LDTs 1 and 2, which 

were placed in diametrically opposite positions from the actuator, as 

shown in Figure 3.10. 

The installation procedure (jacking and jacking load removal for the 

displacement pile; in–flight alignment, alignment load removal and 

acceleration to 100g for the non displacement piles) produced residual 

stresses (negative skin friction in the upper shaft balanced by positive 

lower shaft friction and base resistance) which have been accounted for 

in the interpretation of the loading test results [Fioravante et al. (2006)]. 

The data presented in the following chapters refer to the average density 

attained at the end of the 100g in–flight consolidation, which was about 

DR ≈ 34% in all tests, as reported in Table 3.7, where the main 

characteristics of the tests are summarised. 

The actual settlement pattern of the sand during the in–flight 

consolidation is non–linear with depth, as shown in Figure 3.17, thus the 
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relative density increases with depth and is slightly lower at the soil 

surface and slightly higher at the container bottom, with respect to the 

average value. The maximum scatter from the average value has been 

estimated to be about +5%. 

The soil densification around the pile shaft produced by the in–flight 

jacking has not been quantified. 

Table 3.7. Main characteristics of the performed tests. 
Test 
No. 

Test 
name Scheme No. of 

piles n 
Type of 

piles 
Load cell 

layout 
DR 
(%) 

1 URLT0 R - -  31 
2 D-PLT1 IP 1 Displacement L0 39 
3 D-PLT2 IP 1 Displacement L0 33 
4 D-PLT3 IP 1 Displacement L0 36 
5 D-PLT4 IP 1 Displacement L0 34 
6 D-PRLT1 PR1 1 Displacement L1 34 
7 D-PRLT2 PR3(A) 3 Displacement L2 31 
8 D-PRLT3 PR3(A) 3 Displacement L2 32 
9 D-PRLT4 PR7(A) 7 Displacement L3 35 

10 ND-PLT5 IP 1 Non displacement L0 35 
11 ND-PLT6 IP 1 Non displacement L0 35 
12 ND-PRLT5 PR1 1 Non displacement L1 35 
13 ND-PRLT6 PR3(A) 3 Non displacement L2 35 
14 ND-PRLT7 PR3(A) 3 Non displacement L2 35 
15 ND-PRLT8 PR7(A) 7 Non displacement L3 37 
16 ND-PRLT9 PR7(A) 7 Non displacement L4 35 
17 ND-PRLT10 PR13 13 Non displacement L5 41 
18 ND-PRLT11 PR13 13 Non displacement L6 35 
19 ND-PRLT12 PR3(a) 3 Non displacement L7 31 
20 ND-PRLT13 PR7(a) 7 Non displacement L8 30 

3.6 In–flight cone penetration tests 

In order to check the soil model uniformity and the repeatability of the 

deposition procedure, two in–flight static cone penetration tests were 

performed on dummy models, using the ISMGEO miniaturised electrical 

piezocone. The cone has a diameter dc = 11.3 mm, an apex angle of 60° 

and a sleeve friction of 11 mm in diameter and 37 mm in length. One 

load cell measures the cone resistance and another one measures the cone 
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resistance plus the shaft friction, up to forces of 9.8 kN. A Druck 

PDCR42 pressure transducer (35 bar capacity) has been installed on the 

tip for interstitial pressure measurements. 

Figure 3.18 shows a CPT model test scheme. The boundary conditions 

and particle size ratio for the tests were: D/dc = 35, where D is the 

internal diameter of the container; sc/dc = 17, where sc is the CPT 

distance from the side wall; dc/D50 = 121.5. These values, according to 

Bolton et al. (1999) are large enough to minimise any scale effects on the 

results. 

During the tests, a penetration rate of 2 mm/s ensured drained conditions, 

as shown by the pore pressure measurement. 
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Figure 3.18. Cone penetration test set–up. 
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The obtained cone resistance qc profiles are shown in the prototype scale 

in Figure 3.19 as a function of the depth z. A good uniformity and 

repeatability of the test samples can be observed. The measured qc 

profiles are compared in the Figure with the qc values computed using the 

empirical correlation, which was established on the basis of CPTs 

performed in a large calibration chamber on four silica sands, as 

proposed by Jamiolkowski et al. (2003): 
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where: 

p’0 = mean effective stress at cone depth [FL-2]; 

pa = 101 kPa = atmospheric pressure [FL-2]; 

C0, C1, C2 = non–dimensional correlation factors [-], equal to 18, 0.46 

and 2.96 respectively. The correlation has been adapted to centrifuge 

results, modifying the C0 coefficient. A good agreement between the 

computed and measured values can be observed. 
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Figure 3.19. Measured and computed qc profiles. Prototype scale. 



Chapter 4 

Test results 

4.1 Introduction 

A piled raft is a composite foundation that consists of three load–bearing 

components: a raft, piles and the subsoil. Its behaviour is determined by 

complex soil–structure interactions between the elements of the 

foundation and the subsoil, which can be represented by a functional 

scheme, as reported Figure 4.1. 

The soil–pile (S–P) interaction is mainly governed by the pile installation 

procedure that is adopted, these procedures range from non displacement 

to displacement methods. 

The soil–raft (S–R) interaction depends above all on the relative stiffness 

of the raft–soil. 

The pile–raft (P–R) and pile–pile (P–P) interactions depend on the 

number of piles, on their spacing and on the piled raft geometry (raft 

dimensions, pile length and diameter). The P–R and P–P interactions 

modify the load–bearing behaviour of each foundation component, 

compared to an analogous isolated element. 



52                 Modelling of Piled Raft Foundations in Sand                  D. Giretti 

i i

Lp

Dp

S–P
P–R

P–P

qt

qr
Qp

qt = applied stress Qp = load transmitted to piles qr = pressure transmitted to soil

(S–P)  Soil–pile interaction (S–R) Soil–raft interaction

(P–R)  Pile–raft interaction (P–P) Pile–pile interaction

S–R

INTERACTION BETWEEN
PILED RAFT AND SOIL

Dp

L p
 

Figure 4.1. Soil–structure interaction effects for a piled raft foundation, adapted from 
Katzenbach et al. (1998) and Katzenbach et al. (2000). 

Pile–raft interaction (P–R in Figure 4.1) 

The shear stress distribution along a pile depends on the relative 

movements between the pile and the soil. As pointed out by Butterfield 

and Banerjee (1971), Cooke et al. (1980), Randolph (1983), Burland 

(1995) the raft in a piled raft exerts a “shielding effect” on the pile skin 
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friction mobilisation and causes a different load–transfer mechanism 

from the piles to the soil, with respect to an isolated pile. 

The soil under the raft is forced to settle by the same amount as the piles 

and no skin friction can develop at the pile heads. Thus, the skin friction 

mobilisation (S–P in Fig. 4.1) starts at the pile tips and moves upwards; 

the degree of shaft friction mobilisation is maximum at the pile bases and 

reduces to zero at the pile tops. 

As a consequence, the rate at which shaft friction mobilisation takes 

place with increasing settlement is slower for a pile that is part of a piled 

raft than for a single free standing pile. In addition, the overlapping of the 

individual displacement fields of the cap and the piles can produce a 

softer pile response [Randolph (1983), Randolph (1994)]. 

On the other hand, the raft–soil contact pressure (S–R in Fig. 4.1) causes 

an increase in the soil stress level around the piles, like a corresponding 

overburden pressure, therefore the ultimate shear resistance of a pile in a 

piled raft increases compared to an isolated pile [Phung (1993), El-

Mossallamy and Franke (1998), Franke et al. (2000), Katzenbach et al. 

(2000), Poulos (2001)]. 

As a consequence of the raft–pile interactions, the ultimate skin friction 

and the pile displacement required to mobilise it are greater in the case of 

a pile that is part of a piled raft than in the case of an isolated pile. 

The presence of piles also influences the behaviour of the raft in 

comparison to an equivalent shallow foundation. The load shed from the 

piles (S–P in Fig. 4.1) causes displacements in the soil mass, particularly 

at the soil surface beneath the raft, which lead to a decrease in the contact 

pressure beneath the raft next to the pile shaft. Thus, the load carried by 

the raft for a given displacement is modified by the load transmitted by 

the piles to the soil [Randolph (1983), Katzenbach et al. (2000)]. 
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Pile–pile interaction (P–P in Figure 4.1) 

In comparison to an isolated single pile, two main interaction effects take 

place in a group of piles, as it has been pointed out by several authors, 

including Poulos (1968), Randolph and Wroth (1979), Poulos and Davis 

(1980), Cooke et al. (1980), O’Neill (1983), Mylonakis and Gazetas 

(1998): (i) on one hand the decrease in the pile reaction modulus (i.e. the 

load–settlement ratio) and on the other (ii) the increase in the pile bearing 

capacity. These effects depend on the load level, on the raft and group 

dimensions and on the location of the pile within the group. 

The increase in settlement of an individual pile in a group is due to the 

superimposition of the deformation fields of the neighbouring piles in the 

group (i.e. group effect). The increase in the ultimate capacity of an 

individual pile in a group standing in a soil with internal friction is due to 

the increase in the intergranular stresses due to confinement by the 

neighbouring piles. 

These effects are enhanced in a piled raft due to the previously described 

raft–soil contact pressure effect (S–R in Fig. 4.1). 

In this chapter, the influence of the S–P, P–R and P–P interactions on the 

piled raft stiffness and resistance is discussed, on the basis of an analysis 

of the centrifuge test results. The chapter is formed as follows: 

• isolated single pile: comparison between the load–settlement 

behaviour of non displacement (ND) and displacement (D) piles; 

• single pile beneath the raft: comparison between the load–settlement 

behaviour of non displacement (ND) and displacement (D) piles; 

• groups of non displacement (ND) piles beneath the raft: comparison 

between the load–settlement behaviour of piles in a piled footing with 

that of a single pile under the raft; 
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• groups of displacement (D) piles beneath the raft: comparison 

between the load–settlement behaviour of piles in a piled footing with 

that of a single pile under the raft; 

• piled rafts: comparison between the overall load–settlement behaviour 

of non displacement (ND) and displacement (D) pile rafts. 

In this chapter, the data are presented in dimensionless form, except 

where otherwise noted. The load settlement–curves in the Figures are 

plotted vs. the measured settlement w, normalised both to the pile 

diameter, w/Dp, and to the raft diameter, w/dr. In the Figures where the 

foundation stiffness is represented, the stiffness values are reported for 

relative settlements w/Dp >1% or w/dr > 0.1%; smaller measured 

displacement values have not been considered reliable enough. 

The experimental results were very consistent and therefore not all the 

test results are shown. 

Forces and stresses on piles from centrifuge tests 

In the test interpretation, all the forces have been assumed to act parallel 

to the vertical axis of the piles. With reference to Figure 4.2, the load 

acting on the pile head, QA (i.e. pile total capacity), has a downward 

positive sign, while the shaft resistance, QS, and the loads acting at mid–

pile, QC, and on the pile base, QB (i.e. base capacity), have an upward 

positive sign. 

The loads acting on the pile head, QA, at mid–pile, QC, and at pile base, 

QB, were directly measured during the tests by means of load cells named 

A, C and B, respectively (see Figure 4.2). 

The shaft resistance acting between load cells A–B, QS,AB and between 

load cells A–C, QS,AC have been computed from the cell readings by 

means of the equilibrium equation: 
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QS,AB(w) = QA(w) + WAB – QB(w)    [F]       (4.1) 

QS,AC(w) = QA(w) + WAC – QC(w)    [F]       (4.2) 

where: 

WAB = the dead weight of the pile between positions A and B [F]; 

WAC = the dead weight of the pile between positions A and C [F]; 

w = measured settlement [L]. 

QA QA QA

QB QB

QCQC

QS,AB

QS,AC QS,AC

QS, CB

Load
cell A

Load
cell B

Load
cell C

A –B pile A–C pile Equivalent
A–C–B pile

 
Figure 4.2. Forces on piles subjected to a compressive axial load. 

Due to the axial–symmetry of the load and geometry, it has been 

assumed that the piles placed at the same radial distance from the raft 

centre have experienced the same load distribution with depth; therefore, 

the measurements obtained from model piles alternatively instrumented 

A–B and A–C have been merged to compose an equivalent A–C–B pile, 

at that radius, see Figures 4.2 and 4.3. The shaft resistance acting 

between load cells C–B, QS,CB has been derived as follows: 
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QS,BC(w) = QS,AB(w) – QS,AC(w)     [F]       (4.3) 

The unit loads acting on the pile head, qA, at mid–pile, qC, and at pile 

base, qB, and the shear stresses acting between positions A–B, τS,AB, A–C, 

τS,AC, and C–B, τS,CB have been computed as follows: 

4
D

)w(Q)w(q 2
p

X
X π

=  X = A, C, B  [FL-2]      (4.4) 

pAB

AB,S
AB,S DL

)w(Q
)w(

π
=τ         [FL-2]      (4.5) 

pAC

AC,S
AC,S DL

)w(Q
)w(

π
=τ         [FL-2]      (4.6) 

pCB

CB,S
CB,S DL

)w(Q
)w(

π
=τ         [FL-2]      (4.7) 

where: 

Dp = pile diameter [L]; 

LAB, LAC, LCB = the distance between the measurements sections of load 

cells A–B, A–C, and C–B, respectively [L]. 

It should be noted that residual stresses, caused by the installation 

procedure, acted on the piles, in all the tests, for both non displacement 

and displacement piles, before the loading tests (zero external load and w 

= 0). For the displacement piles, the removal of the jacking load at the 

end of the 100g in–flight jacking caused the elastic extension of the pile 

and the consequent mobilisation of negative skin friction on the upper 

shaft. As for the non displacement piles, the 100g in–flight consolidation 

caused a small downwards shallow soil–pile relative settlement and the 

mobilisation of negative skin friction on the upper shaft. The negative 

skin friction and the pile self weight for both the displacement and the 



58                 Modelling of Piled Raft Foundations in Sand                  D. Giretti 

non displacement piles were balanced by positive lower shaft and base 

resistances. 

The residual stresses acting on the piles have been taken into account in 

the test interpretation [Fioravante et al. (2006)]. 

Load cells A e B

Load cells A e C

Non instrumented pile

PR13-L5

5 + 3 = equivalent A–C–B pile at the radial
distance of 5Dp from the raft centre

2 + 4 = equivalent A–C–B pile at the radial 
distance of 2.5Dp from the raft centre

1
2

3

4
5

 
Figure 4.3. Equivalent edge and inner piles in the PR13 model (test ND-PRLT10). 

4.2 Isolated pile 

Six tests were carried out on isolated non displacement (ND) and 

displacement (D) model piles (IP model scheme, see Figures 3.15 and 

3.16, and Table 3.7). The scatter of the results of analogous loading tests 

was very limited, which confirmed the repeatability of the model 

preparation method. 

The results of two tests (ND-PLT6 and D-PLT3 tests, Table 3.7) are 

compared in Figures 4.4 and 4.5, where the unit loads acting on the pile 

head and base, qA and qB, and the shaft friction acting between the load 

cells A and B, τS,AB, are represented as a function of the measured 

settlement normalised to the pile diameter, w/Dp. The main test results 

are summarised in Table 4.1. 
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Table 4.1. Main results of the IP models 
 Isolated single piles 
 ND IP pile D IP pile 

SHAFT 
FRICTION 

τS,AB 
[kPa] 

w/Dp 
[%] 

τS,AB 
[kPa] 

w/Dp 
[%] 

at peak 35.5 8 40 8 
at large w/Dp 32 100 27 100 
BASE 
RESISTANCE 

qB 
[MPa]

w/Dp 
[%] 

qB 
[MPa]

w/Dp 
[%] 

at large w/Dp 3.5 100 4.1 100 
TOTAL 
CAPACITY 

qA 
[MPa]

w/Dp 
[%] 

qA 
[MPa]

w/Dp 
[%] 

at peak - - 5.8 9 
at large w/Dp 5.3 100 5.5 100 
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Figure 4.4. Unit loads acting on the pile head qA and base qB vs. the pile settlement 
normalised to the pile diameter w/Dp for the ND and D isolated piles. 

As for the D pile, the unit load acting on the pile head, qA increases to a 

peak value which is reached at w/Dp ≈ 9%, then it reduces towards a 

steady post peak value; the ND pile shows a progressive qA mobilisation 

with settlements and it reaches almost the same values as the D pile at 

w/Dp = 100% (Figure 4.4). As expected, the base load of the D pile is 
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almost fully mobilised at w/Dp = 10%, while a larger value of w/Dp than 

100% is required to completely mobilise the qB of the ND pile (Figure 

4.4). As far as the shaft friction is concerned (Figure 4.5), τS,AB for both 

the D and the ND piles increases to a peak value which is reached at 

w/Dp ≈ 8%, (the peak value attained by the D pile is slightly larger than 

that achieved by the ND pile) and then it decreases as w/Dp increases, 

toward a steady value; a reduction of 32% and 10% can be observed for 

the displacement and the non displacement pile, respectively. 

The occurrence of sand dilatancy in the interface zone could have caused 

the τS,AB peaks and the following stress softening observed for both the 

displacement and the non displacement piles [Wernick (1978), Boulon 

and Foray (1986), Boulon (1988) and (1989)]. The dilatancy effects are 

more pronounced in the displacement pile, probably due to the effect of 

the sand densification around the shaft which was produced by the 100g 

in–flight jacking. 
 

0

20

40

60

80

100

0 20 40 60 80 100

τS,AB [kPa]

w/Dp [%]

TESTS ND-PLT6 D-PLT3
PILES ND D

N. PILES
SCHEME
LAYOUT

SAND
DR (%) 35 36

a/g
DIMENSION

Dp

Lp

MODEL - PROTOTYPE
8 mm - 0.8 m

160 mm - 16 m

100

ISOLATED PILE LOAD TESTS

IP
1 (A - B)

L0
FF

D 
τS,AB

ND 
τS,AB

qA

qB

τS,AB

 
Figure 4.5. Shear stress acting between load cells A and B τS,AB vs. the pile settlement 
normalised to the pile diameter w/Dp for the ND and D isolated piles. 
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The mobilisation curves of the ND and D isolated piles stiffness, kp,IP 

(i.e. load–settlement ratio) are plotted at the prototype scale in Figure 4.6 

vs. the pile relative settlement, w/Dp. The curves are similar to those of 

the decay of the soil stiffness and they are characterised by a significant 

decay which occurs in the w/Dp range from 1% to 10%. The D isolated 

single pile results ≈ 20% stiffer than the ND pile at w/Dp <10%. 
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Figure 4.6. Isolated pile stiffness kp vs. the pile settlement normalised to the pile 
diameter w/Dp for the ND and D isolated piles. Prototype scale. 

4.3 Single pile beneath the raft 

The load–settlement curves of the single pile beneath the raft derived 

from the ND and D 1-pile raft tests (tests ND-PRLT5 e D-PRLT1, PR1 

model scheme, see Figures 3.15 and 3.16 and Table 3.7) are reported in 

Figures 4.7 to 4.10, as a function of the settlement normalised to the pile 

diameter, w/Dp (left–hand side) and to the raft diameter, w/dr (right–hand 

side). The unit loads acting on the pile head and base, qA and qB, are 

shown in Figures 4.7 and 4.9, for the ND and the D piles, respectively; 
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the shear stress acting between load cells A and B, τS,AB is plotted in 

Figures 4.8 and 4.10 for the ND and the D piles, respectively. For 

comparison purposes, the Figures report the results of the ND and D IP 

tests. 

The relevant results of the PR1 tests are summarised and compared with 

those of the isolated pile tests in Table 4.2; their qualitative analysis 

highlights the great influence of the pile–raft interaction on the pile 

capacity mobilisation. The interpretation of the presented data can be 

summarised as follows: 

• the base capacity, qB mobilised by the ND and D PR1 piles, is 

comparable with that of the analogous isolated pile (Figures 4.7 and 

4.9); 

• the ND and the D PR1 piles experience similar values of the shear 

stress, τS,AB (Figures 4.8 and 4.10); 

 

 

Table 4.2. Main results of the IP and PR1 models 
 ND piles D piles 
 IP pile PR1 pile IP pile PR1 pile 

SHAFT 
FRICTION 

τS,AB 
[kPa] 

w/Dp 
[%] 

τS,AB 
[kPa] 

w/Dp
[%] 

τS,AB 
[kPa] 

w/Dp 
[%] 

τS,AB 
[kPa] 

w/Dp 
[%] 

at peak 35.5 8 63 8.6 40 8 52 10 
after peak - - 53 20 - - 50 15.5 
at large w/Dp 32 100 77 100 27 100 76 100 
BASE 
RESISTANCE 

qB 
[MPa]

w/Dp 
[%] 

qB 
[MPa]

w/Dp
[%] 

qB 
[MPa]

w/Dp 
[%] 

qB 
[MPa] 

w/Dp 
[%] 

at large w/Dp 3.5 100 3.5 100 4.1 100 4.2 100 
TOTAL 
CAPACITY 

qA 
[MPa]

w/Dp 
[%] 

qA 
[MPa]

w/Dp
[%] 

qA 
[MPa]

w/Dp 
[%] 

qA 
[MPa] 

w/Dp 
[%] 

at peak - - 5.8 9.5 5.8 9 7.1 10 
after peak - - 5.5 20 - - 6.9 20 
at large w/Dp 5.3 100 8 100 5.5 100 8.5 100 
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• both the ND and the D PR1 piles mobilise shear stress peak values. 

The settlements required to mobilise the peaks are w/Dp ≈ 8.6% and 

10%, respectively. These w/Dp values are comparable with those 

required to mobilise the peaks of the analogous isolated piles; 

• after the peak has been attained, the τS,AB curves of both the ND and 

the D PR1 piles exhibit a tendency to decrease slightly, to a settlement 

value that ranges from 1.5 to 2.0 times the w/Dp values at the peak, 

followed, at larger w/Dp, by a steady trend to increase. At w/Dp = 

100%, the ND and the D piles reach τS,AB values that are 22% and 46% 

higher than those at the peak, respectively; 

• the values of τS,AB at the peak settlement and at larger settlements than 

the peak, of both the ND and the D PR1 piles, are substantially larger 

than those observed for the corresponding isolated piles; 

• due to the higher shaft resistances, the pile capacity qA, for both the 

ND and D PR1 piles, is significantly higher than that of the analogous 

isolated pile, over the whole settlement range experienced (Figures 4.7 

and 4.9). The PR1 qA curves are characterised by a peak value, due to 

the mobilisation of the τS,AB peak, after which the pile capacity 

increases further (stress hardening) at an almost steady rate. Neither 

the ND nor the D PR1 piles mobilise their ultimate capacity at the 

maximum settlement reached. 

The different shaft friction mobilisation mechanisms observed for the 

isolated pile and for the single pile beneath the raft can be ascribed to the 

effect of the pressure transmitted directly by the raft to the underlying 

soil, qr (see Figure 4.1). This load induces an increase in the vertical 

stress in the soil ∆σ’v which, in turn, causes an increase in the radial 
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stress acting on the pile shaft, ∆σ’r, which generates an increase in shaft 

resistance, especially in the upper pile portion (“∆σ’r effect”). 
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Figure 4.7. Unit loads acting on the pile head qA and base qB vs. the settlement 
normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter w/dr 
(right–hand side) for the isolated and single capped ND piles. 
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Figure 4.8. Shear stress acting between load cells A and B τS,AB vs. the settlement 
normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter w/dr 
(right–hand side) for the isolated and single capped ND piles. 
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Figure 4.9. Unit loads acting on the pile head qA and base qB vs. the settlement 
normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter w/dr 
(right–hand side) for the isolated and single capped D piles. 
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Figure 4.10. Shear stress acting between load cells A and B τS,AB vs. the settlement 
normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter w/dr 
(right–hand side) for the isolated and single capped D piles. 
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The “∆σ’r effect” becomes relevant when the pile is approaching its 

ultimate shear stress and it has resulted to be slightly more pronounced in 

the ND pile than in the D pile. 

The “∆σ’r effect” seems to have a negligible influence on the base 

resistance mobilisation, at least in the settlement range that has been 

investigated. 

At lower settlements than the peak values, neither a softer pile response, 

caused by the overlapping of the individual displacement fields of the cap 

and the pile [Randolph (1983), Randolph (1994)] nor a minor shear stress 

mobilisation due to the “shielding effect” [Burland (1995), Franke et. al 

(2000), Katzenbach (2000)] have been observed, as they were probably 

compensated for by the “∆σr effect”. Instead, the single piles beneath the 

raft result to be slightly stiffer than the isolated piles, as shown in Figure 

4.11, where the stiffness of the both the ND and D PR1 piles, kp,PR1, is 

plotted vs. w/Dp (data at the prototype scale). The stiffness mobilisation 

curves of the ND and D IP pile are also reported in the Figure. 
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Figure 4.11. Pile stiffness kp vs. the settlement normalised to the pile diameter w/Dp for 
the ND and D isolated and single capped piles. Prototype scale. 
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4.4. Groups of piles beneath the raft 

4.4.1 Non displacement pile groups 

Groups of 3 ND piles: PR3(A) and PR3(a) models 

The pile load–settlement curves obtained from two load tests on 3-pile 

raft models, with the ND piles placed alternatively at spacing s = 8.66Dp 

and s = 4.33Dp (tests ND-PRLT7 and ND-PRLT12, model schemes 

PR3(A) and PR3(a), see Figures 3.15 and 3.16 and Table 3.7) are plotted 

in Figures 4.12 and 4.13 vs. the settlement normalised to the pile 

diameter, w/Dp (left–hand side) and to the raft diameter, w/dr (right–hand 

side). The Figures report the loads acting on the pile head and the base, 

qA and qB, and the shear stress acting between load cells A and B, τS,AB, of 

the equivalent pile of the groups. The data relative to the single ND pile 

beneath the raft are also reported, for comparison purposes. The main 

results of the tests are summarised in Table 4.3. 

The equivalent ND PR3(A) pile has almost the same load–settlement 

behaviour as the ND single pile beneath the raft; the qA, qB and τS,AB 

curves of the PR3(a) equivalent pile are similar to those of the ND PR1 

pile, with slightly lower values of the unit base load and almost the same 

shaft friction values. The increase in the pile shaft capacity, due to the 

pressure exerted by the raft on the underlying soil (“∆σ’r effect”), is the 

same as in PR1, for the whole range of settlements experienced. At small 

w/Dp, both piles are softer than the single pile beneath the raft, as shown 

in Figure 4.14, where the stiffness mobilisation curves of the ND 

equivalent PR3(A) and PR3(a) piles are compared with that of the ND 

PR1 pile (data at the prototype scale), and this is probably due to pile–

pile interactions that were even experienced at the large spacing s = 

8.66Dp. 
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Table 4.3. Main results of the PR3(A) and PR3(a) models – ND piles. 
 ND pile rafts 
 PR1 pile PR3(A) eq. pile PR3(a) eq. pile 

SHAFT 
FRICTION 

τS,AB 
[kPa] 

w/Dp 
[%] 

τS,AB 
[kPa] 

w/Dp 
[%] 

τS,AB 
[kPa] 

w/Dp 
[%] 

at peak 63 8.6 61 9.7 59 9.5 
post peak 53 20 54 25 54 25 
at large w/Dp 77 100 77 100 71 100 
BASE 
RESISTANCE 

qB 
[MPa] 

w/Dp 
[%] 

qB 
[MPa] 

w/Dp 
[%] 

qB 
[MPa] 

w/Dp 
[%] 

at large w/Dp 3.5 100 3.5 100 3.1 100 
TOTAL 
CAPACITY 

qA 
[MPa] 

w/Dp 
[%] 

qA 
[MPa] 

w/Dp 
[%] 

qA 
[MPa] 

w/Dp 
[%] 

at peak 5.8 9.5 5.6 10.6 5.2 10.7 
post peak 5.5 20 5.5 20 5 20 
at large w/Dp 8 100 7.9 100 7.2 100 
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Figure 4.12. Unit loads acting on the pile head qA and base qB vs. the settlement 
normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter w/dr 
(right–hand side) for the ND equivalent piles of the PR3(A) and PR3(a) models and the 
ND PR1 pile. 

In Figure 4.15, the shear stress acting on the equivalent pile of the 

PR3(A) model is divided into two components, the upper and the lower 

shaft friction transfer curves, τS,AC and τS,CB; unfortunately, the load cell C 
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readings stopped at w/Dp ≈ 42%. The Figure shows that τS,AC reaches a 

peak value at w/Dp = 9.7% and then, as the settlement increases, after an 

initial stress softening, it is subject to a further increment that can be 

attributed to the radial stress increment induced around the upper pile 

shaft by the raft in direct contact with the soil. τS,CB reaches a limit value 

at w/Dp = 8%, beyond which it seems to remain essentially constant; this 

suggests that in the ND PR3(A) model, the effects of the contact pressure 

transmitted by the raft to the soil do not influence the lower part of the 

shaft, at least up to the level of displacement analysed. As expected, τS,AC 

is lower than τS,CB, in the settlement range analysed and, at smaller 

settlements than the peak value, it is mobilised at a lower rate. 

Load cell C did not work during the tests on the PR3(a) model, thus it 

was not possible to derive the local shaft friction transfer curve of the 

equivalent pile. 
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Figure 4.13. Shear stress acting between load cells A and B τS,AB vs. the settlement 
normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter w/dr 
(right–hand side) for the ND equivalent piles of the PR3(A) and PR3(a) models and the 
ND PR1 pile. 
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Figure 4.14. Pile stiffness kp vs. the settlement normalised to the pile diameter w/Dp for 
the ND equivalent piles of the PR3(A) and PR3(a) models and the ND PR1 pile. 
Prototype scale. 
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Figure 4.15. Shear stress acting between load cells A–C τS,AC and C–B τS,CB vs. the 
settlement normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter 
w/dr (right–hand side) for the ND equivalent piles of the PR3(A) model. 
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Group of 7 ND piles: PR7(A) model 

The load–settlement curves of the centre and the equivalent edge piles of 

the ND PR7(A) model (ND-PRLT9 test, pile spacing s = 5Dp, see 

Figures 3.15 and 3.16 and Table 3.7) are represented in Figures 4.16 (qA 

and qB) and 4.17 (τS,AB), vs. relative settlements w/Dp, (on the left–hand 

side) and w/dr, (on the right–hand side). The results of the ND single pile 

beneath the raft are also reported in the Figures. The main test results are 

summarised in Table 4.4. 

The shaft friction mobilisation curves of both the centre and the edge 

piles have a similar shape to that of the ND PR1 pile but they are 

characterised by a lower mobilisation gradient at small settlement (before 

the τS,AB peak values are reached), indicating that the interactions between 

the piles in the PR7(A) group start to produce significant effects on the 

pile stiffness. The centre and edge pile τS,AB peak values are comparable 

with the peak value of the ND single pile under the raft and they are 

reached at relative settlements which are approximately 1.6÷1.8 times the 

w/Dp value required to mobilise the PR1 τS,AB peak. 

After the peaks have been attained, the edge pile τS,AB curve is almost 

coincident with that of the ND PR1 pile, while the centre pile shear stress 

increases with a greater rate than the τS,AB mobilisation gradient of the 

ND PR1 pile, reaching a 50% greater value than the peak value at w/Dp = 

100%. This would seem to suggest that the “∆σ’r effect”, observed for the 

single pile beneath the raft, is enhanced by the confining effect exercised 

by the peripheral piles for the centre ND PR7(A) pile, at settlement w/Dp 

> 15%. 

As shown in Figure 4.7, the pressure transmitted by the raft to the soil 

seems to exert negligible effects on the ND PR1 pile qB mobilisation, 

thus the increase in qB of the PR7(A) centre and edge piles, with respect 
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to the PR1 pile, shown in Figure 4.16, could be due to the non 

homogeneity of the local soil or to interaction effects between the pile 

tips, especially for the centre pile. 

Table 4.4. Main results of the PR7(A) model – ND piles. 
 ND pile rafts 

 PR1 pile PR7(A) eq. edge 
pile 

PR7(A) centre 
pile 

SHAFT 
FRICTION 

τS,AB 
[kPa] 

w/Dp
[%] 

τS,AB 
[kPa] 

w/Dp 
[%] 

τS,AB 
[kPa] 

w/Dp 
[%] 

at peak 63 8.6 58.5 14 65.5 15.5 
post peak 53 20 55 26 63.5 26 
at large w/Dp 77 100 81 100 99 100 
BASE 
RESISTANCE 

qB 
[MPa] 

w/Dp
[%] 

qB 
[MPa] 

w/Dp 
[%] 

qB 
[MPa] 

w/Dp 
[%] 

at large w/Dp 3.5 100 4.2 100 4.6 100 
TOTAL 
CAPACITY 

qA 
[MPa] 

w/Dp
[%] 

qA 
[MPa] 

w/Dp 
[%] 

qA 
[MPa] 

w/Dp 
[%] 

at peak 5.8 9.5 5.9 14.5 6.5 16.5 
post peak 5.5 20 5.9 20 6.5 20 
at large w/Dp 8 100 8.8 100 10.4 100 
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Figure 4.16. Unit loads acting on the pile head qA and base qB vs. the settlement 
normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter w/dr 
(right–hand side) for the centre and eq. edge ND piles of the PR7(A) model and the ND 
PR1 pile. 
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Figure 4.17. Shear stress acting between load cells A–B τS,AB vs. the settlement 
normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter w/dr 
(right–hand side) for the centre and eq. edge ND piles of the PR7(A) model and the ND 
PR1 pile. 

The PR7(A) qA curves show that, before reaching a threshold value at 

small settlements (w/Dp = 15%÷16%), both the edge and the centre 

PR7(A) piles are softer than the ND PR1 pile (due to the softer shaft 

response). This is also highlighted in Figure 4.18, where the kp 

mobilisation curve of the average pile of the group is compared with that 

of the ND PR1 pile (data at the prototype scale). 

At larger settlements than the threshold value, the edge pile experiences 

slightly higher qA values than the PR1 pile, but at the same mobilisation 

rate. The centre pile, once the qA threshold value has been reached, has a 

stiffer response than the single pile beneath the raft and it experiences 

significantly higher bearing capacity values. 

In Figure 4.19, the shear stress acting on the equivalent edge pile of the 

ND PR7(A) model is divided into the two components, τS,AC and τS,CB. 

The upper shaft friction transfer reaches a peak value at w/Dp = 13.6% 
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and then, as the settlement increases, after an initial stress softening, it 

further increases, due to the “∆σ’r effect”, reaching a higher value than 

τS,CB at w/Dp ≈ 70% 
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Figure 4.18. Pile stiffness kp vs. the settlement normalised to the pile diameter w/Dp for 
the ND average pile of the PR7(A) model and the ND PR1 pile. Prototype scale. 
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Figure 4.19. Shear stress acting between load cells A–C τS,AC and C–B τS,CB vs. the 
settlement normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter 
w/dr (right–hand side) for the ND eq. edge piles of the PR7(A) model. 
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As for the lower shaft friction transfer curve, τS,CB reaches a limit value at 

w/Dp = 12%, then it increases slightly at w/Dp > 40%, suggesting that the 

effects of the contact pressure transmitted by the raft to the soil beyond 

this settlement level also begin to influence the lower part of the shaft. 

τS,CB is mobilised at small settlements with a higher rate than τS,AC. 

Group of 7 ND piles: PR7(a) model 

The load–settlement curves of the centre and the equivalent edge ND 

piles of the PR7(a) model (ND-PRLT13 test, pile spacing s = 2.5Dp, see 

Figures 3.15 and 3.16 and Table 3.7) are plotted in Figures 4.20 and 4.21, 

where the unit loads acting on the pile head and tip, and the shear stresses 

acting between load cells A and B are plotted, respectively. The results of 

the ND single pile beneath the raft are also reported in the Figure. The 

relevant test results are summarised in Table 4.5. 

Table 4.5. Main results of the PR7(a) model – ND piles. 
 ND pile rafts 
 PR1 pile PR7(a) eq. edge pile PR7(a) centre pile 

SHAFT 
FRICTION 

τS,AB 
[kPa] 

w/Dp 
[%] 

τS,AB 
[kPa] 

w/Dp 
[%] 

τS,AB 
[kPa] 

w/Dp 
[%] 

at peak 63 8.6 60 20 73 35 
post peak 53 20 - - - - 
at large w/Dp 77 100 80 100 90 100 
BASE 
RESISTANCE 

qB 
[MPa] 

w/Dp 
[%] 

qB 
[MPa] 

w/Dp 
[%] 

qB 
[MPa] 

w/Dp 
[%] 

at large w/Dp 3.5 100 3.4 100 5.2 100 
TOTAL 
CAPACITY 

qA 
[MPa] 

w/Dp 
[%] 

qA 
[MPa] 

w/Dp 
[%] 

qA 
[MPa] 

w/Dp 
[%] 

at peak 5.8 9.5 - - - - 
post peak 5.5 20 - - - - 
at large w/Dp 8 100 8 100 10.4 100 

The τS,AB curves of the PR7(a) piles are characterised by a progressive 

mobilisation of the shear resistance, with a considerable lower gradient 

than the single pile beneath the raft, and a shear stress peak, followed by 
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stress softening, is no longer evident. The edge pile reaches a τS,AB 

yielding value at w/Dp = 20%, which is comparable with the τS,AB peak 

value of the ND single pile under the raft; its shear stress curve 

approaches that of the PR1 pile at larger settlements. The centre pile 

experiences a considerably higher τS,AB yielding value than the ND PR1 

pile peak stress, at w/Dp = 35%; its shear stress further increases at larger 

settlements. As for the ND piles of the PR7(A) model, these results 

suggest that the interactions between the piles in the PR7(a) group cause 

a significant decrease in the shaft friction mobilisation rate; on the other 

hand, the confinement effects exerted by the neighbouring piles enhance 

the “∆σ’r effect” that has already been observed for the single pile 

beneath the raft and produce an increase in the limit capacity of the shaft 

for the centre pile. 
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Figure 4.20. Unit loads acting on the pile head qA and base qB vs. the settlement 
normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter w/dr (left–
hand side) for the ND centre and eq. edge piles of the PR7(a) model and the ND PR1 
pile. 
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Figure 4.21. Shear stress acting between load cells A and B τS,AB vs. the settlement 
normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter w/dr (left–
hand side) for the ND centre and eq. edge piles of the PR7(a) model and the ND PR1 
pile. 

As far as the base capacity is concerned, the edge pile has a very similar 

qB mobilisation curve to that of the PR1 pile (Figure 4.20), whereas the 

centre pile experiences notably higher qB values, as observed for the 

PR7(A) centre pile. These results support the hypothesis of interaction 

effects between the peripheral pile tips on the centre pile base. 

The following comments can be made on the total capacity of the PR7(a) 

piles: 

• qA is mobilised progressively for both the edge and centre piles and 

neither a peak nor failure values are reached; 

• at small settlements, the pile tangent stiffness is noticeably lower than 

that of the ND PR1 pile (negative group effects), which is also shown 

in Figure 4.22, where the kp mobilisation curve of the average pile of 

the group is compared with that of the ND PR1 pile (data at the 

prototype scale); 
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• at w/Dp > 15%, the load carried by the centre pile, qA is considerably 

greater than that of the ND PR1 pile (positive group effects); 

• the total capacity of the centre pile is higher than that of the edge pile 

over the whole range of settlements experienced. 

In Figure 4.23, the shear stress acting on the equivalent edge pile of the 

PR7(a) model is divided into the two components, τS,AC and τS,CB. Both 

τS,AC and τS,CB reach a threshold value at w/Dp ≈ 20% and then, as the 

settlement increases, they further increase, due to the effect of the contact 

pressure transmitted by the raft to the soil. At lower settlements than 

20%, τS,CB is mobilised at a higher rate than τS,AC. 

 

 

 

0

50

100

150

1 10 100w/Dp [%]

kp [kN/mm]

PR1 PR7(a)

kp,PR1

kp,PR7(a)

PILES LOADED TO FULL 
SHAFT CAPACITY

TESTS ND-PRLT5 ND-PRLT13
PILES ND ND

N. PILES 1 (A - B) 7 (2A-B+2A-C)
SCHEME PR1 PR7(a)
LAYOUT L1 L8

s - 2.5Dp

SAND
DR (%) 35 30

a/g
DIMENSION

Dp

Lp
dr

FF

100

8 mm - 0.8 m
160 mm - 16 m
88 mm - 8.8 m

MODEL - PROTOTYPE

 
Figure 4.22. Pile stiffness kp vs. the settlement normalised to the pile diameter w/Dp for 
the average ND PR7(a) pile and the ND PR1 pile. Prototype scale. 
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Figure 4.23. Shear stress acting between load cells A–C τS,AC and C–B τS,CB vs. the 
settlement normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter 
w/dr (left–hand side) for the ND PR7(a) eq. edge pile. 

Group of 13 ND piles: PR13 model 

Figures 4.24 and 4.25 present the 13-pile raft test results (ND-PRLT10 

test, PR13 model scheme, see Figure 3.15 and 3.16 and Table 3.7) vs. the 

relative settlements w/Dp (on the left–hand side) and w/dr (on the right–

hand side). The Figures compare the load–settlement behaviour of the 

centre, the inner (2.5Dp from the raft centre) and the edge (5Dp from the 

raft centre) piles with that of the ND single pile beneath the raft. The 

main test results are summarised in Table 4.6. Figure 4.26 compares the 

kp mobilisation curve of the average pile of the group with that of the ND 

PR1 pile, at the prototype scale. The local shaft friction transfer curves of 

the edge and inner equivalent piles are reported in Figures 4.27 and 4.28. 

The presented results confirm that the confinement effect exerted by the 

neighbouring piles causes an increase in the pile shear stress limit value 

and a decrease in the shaft friction mobilisation rate at small settlements. 
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In fact, the τS,AB yielding value increases moving from the outer to the 

centre pile and the gradient of the τS,AB curves at smaller w/Dp than the 

yielding value decreases from the outer to the centre pile. 

The base resistance qB also increases from the outer to the centre pile, 

and this highlights the interaction and confinement effects exerted by the 

peripheral pile tips on the inner and centre pile bases. 

Table 4.6. Main results of the PR13 model – ND piles. 
 ND 13-pile rafts 
 eq. edge pile eq. inner pile centre pile 

SHAFT 
FRICTIO 

τS,AB 
[kPa] 

w/Dp 
[%] 

τS,AB 
[kPa] 

w/Dp 
[%] 

τS,AB 
[kPa] 

w/Dp 
[%] 

at peak 70 20 80 40 90 48 
at large w/Dp 93 100 96 100 86 100 
BASE 
RESISTANCE 

qB 
[MPa] 

w/Dp 
[%] 

qB 
[MPa] 

w/Dp 
[%] 

qB 
[MPa] 

w/Dp 
[%] 

at large w/Dp 4.7 100 5.9 100 10.1 100 
TOTAL 
CAPACITY 

qA 
[MPa] 

w/Dp 
[%] 

qA 
[MPa] 

w/Dp 
[%] 

qA 
[MPa] 

w/Dp 
[%] 

at large w/Dp 10.1 100 11.6 100 15.2 100 
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Figure 4.24. Unit loads acting on the pile head qA and base qB vs. the settlement 
normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter w/dr 
(right–hand side) for the centre, eq. inner and eq. edge ND piles of the PR13 model. 
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Figure 4.25. Shear stress acting between load cells A and B τS,AB vs. the settlement 
normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter w/dr 
(right–hand side) for the centre, eq. inner and eq. edge ND piles of the PR13 model. 
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Figure 4.26. Pile stiffness kp vs. the settlement normalised to the pile diameter w/Dp for 
the ND PR13 average pile and the ND PR1 pile. Prototype scale. 
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Figure 4.27. Shear stress acting between load cells A–C τS,AC and C–B τS,CB vs. the 
settlement normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter 
w/dr (right–hand side) for the ND eq. edge pile of the PR13 model. 

 

 

0

20

40

60

80

100

0 20 40 60 80 100

τS [kPa]

w/Dp [%]

0

1

2

3

4

5

6

7

8

9
w/dr [%]

TEST ND-PRLT10
PILES ND

N. PILES 13 (3A-B+2A-C)
SCHEME PR13
LAYOUT L5

s 2.5Dp

SAND FF
DR (%) 41

a/g 100
DIMENSION MODEL - PROTOTYPE

Dp 8 mm - 0.8 m
Lp 160 mm - 16 m
dr 88 mm - 8.8 m

PR13

PR13
τS,ACPR13

τS,CB

INNER PILE

qB

τS,AC

τS,CB

qA

qc

 
Figure 4.28. Shear stress acting between load cells A–C τS,AC and C–B τS,CB vs. the 
settlement normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter 
w/dr (right–hand side) for the ND eq. inner pile of the PR13 model. 
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4.4.2 Displacement pile groups 

Group of 3 D piles: PR3(A)model 

The pile load–settlement curves obtained from a 3-pile raft load test with 

the displacement piles placed at the spacing s = 8.66Dp (test D-PRLT3, 

model scheme PR3(A), see Figures 3.15 and 3.16 and Table 3.7) are 

plotted in Figures 4.29 and 4.30 vs. the settlement normalised to the pile 

diameter, w/Dp (on the left–hand side) and to the raft diameter, w/dr (on 

the left–hand side). The Figures report the loads acting on the pile head 

and base, qA and qB, and the shear stress acting between load cells A and 

B, τS,AB of the equivalent pile in the group. 

They also report the results of the single D pile under the raft (PR1). The 

main test results are summarised in Table 4.7. 

The equivalent D PR3(A) pile mobilises slightly lower values of qB and 

slightly higher values of τS,AB, compared with the D PR1 pile, but with 

the same mobilisation mechanisms. 

Table 4.7. Main results of the PR3(A) model – D piles. 
 D pile rafts 
 PR1 pile PR3(A) eq. pile 

SHAFT 
FRICTION 

τS,AB 
[kPa] 

w/Dp 
[%] 

τS,AB 
[kPa] 

w/Dp 
[%] 

at peak 52 10 57 9.8 
post peak 50 15.5 55.5 16.7 
at large w/Dp 76 100 80 100 
BASE 
RESISTANCE 

qB 
[MPa] 

w/Dp 
[%] 

qB 
[MPa] 

w/Dp 
[%] 

at large w/Dp 4.2 100 3.7 100 
TOTAL 
CAPACITY 

qA 
[MPa] 

w/Dp 
[%] 

qA 
[MPa] 

w/Dp 
[%] 

at peak 7.1 10 6.8 10 
post peak 6.9 20 6.7 17.5 
at large w/Dp 8.5 100 8.3 100 
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Figure 4.29. Unit loads acting on the pile head qA and base qB vs. the settlement 
normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter w/dr 
(right–hand side) for the D eq. pile of the PR3(A) model. 
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Figure 4.30. Shear stress acting between load cells A and B τS,AB vs. the settlement 
normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter w/dr 
(right–hand side) for the D eq. pile of the PR3(A) model. 
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The increase in the pile shaft capacity, due to the pressure exerted by the 

raft on the underlying soil (“∆σ’r effect”), is the same as in PR1, over the 

whole settlement range experienced. 

The overall load–settlement behaviour of the piles in the PR3(A) group 

(qA curve) is the same as that of the single pile beneath the raft. 

The kp mobilisation curve of the equivalent D PR3(A) pile, plotted at the 

prototype scale in Figure 4.31 vs. w/Dp, after an initial non–linearity, is 

identical to that of the D PR1 pile at w/Dp > 3%, indicating that the 

possible interaction effects between the 3 displacement piles are 

negligible at spacing s = 8.66Dp. 

In Figure 4.32, the shear stress acting on the equivalent pile of the group 

is divided into two components, the upper and the lower shaft friction 

transfer curves, τS,AC and τS,CB. τS,AC reaches a peak value at w/Dp = 8.5% 

and then, as the settlement increases, after an initial stress softening, it 

receives a further increment due to the “∆σ’r effect”. 

τS,CB reaches a yielding value at w/Dp = 10%, beyond which it steadily 

increases, due to the contact pressure of the raft on the soil. Unlike what 

was observed for the ND PR3(A) piles, the “∆σ’r effect” is extended to 

the lower segment of the pile, suggesting a stiffer response of the soil, 

probably due to the soil densification produced by the pile jacking. 

The upper shaft friction τS,AC is lower than τS,CB over the whole settlement 

range experienced and it is mobilised with a lower rate. 
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Figure 4.31. Pile stiffness kp vs. the settlement normalised to the pile diameter w/Dp for 
the D eq. pile of the PR3(A) model and the D PR1 pile. Prototype scale. 
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Figure 4.32. Shear stress acting between load cells A–C τS,AC and C–B τS,CB vs. the 
settlement normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter 
w/dr (right–hand side) for the D eq. pile of the PR3(A) model. 
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Group of 7 D piles: PR7(A) model 

The load–settlement curves of the centre and the equivalent edge piles of 

the PR7(A) model (D-PRLT4 test, pile spacing s = 5Dp, see Figures 3.15 

and 3.16 and Table 3.7) are represented in Figures 4.33 (qA and qB) and 

4.34 (τS,AB), with respect to the relative settlements, w/Dp and w/dr. The 

results of the D single pile beneath the raft test are also reported in the 

Figures. The relevant test results are summarised in Table 4.8. 

The shear stress and the base load of both the edge and centre piles result 

to be considerably greater than those of the single displacement pile 

beneath the raft, over almost the whole settlement range investigated. 

With respect to the PR1 pile base capacity, the qB values of the edge and 

the centre piles are about 20% and 50% higher, respectively. The 

observed increase in qB can be attributed to the superimposition of the 

compaction zones under the pile tips and to the increase in the radial 

stress around the pile bases produced by the pile jacking. This effect is 

more pronounced for the centre pile, as it is more confined. 

Table 4.8. Main results of the PR7(A) model – D piles. 
 D pile rafts 

 PR1 pile PR7(A) eq. edge 
pile 

PR7(A) centre 
pile 

SHAFT 
FRICTION 

τS,AB 
[kPa] 

w/Dp 
[%] 

τS,AB 
[kPa] 

w/Dp 
[%] 

τS,AB 
[kPa] 

w/Dp 
[%] 

at peak 52 10 73.5 11.5 75.5 13.5 
post peak 50 15.5 68.7 24.2 70 26 
at large w/Dp 76 100 102 100 104 100 
BASE 
RESISTANCE 

qB 
[MPa] 

w/Dp 
[%] 

qB 
[MPa] 

w/Dp 
[%] 

qB 
[MPa] 

w/Dp 
[%] 

at large w/Dp 4.2 100 5.1 100 6.6 100 
TOTAL 
CAPACITY 

qA 
[MPa] 

w/Dp 
[%] 

qA 
[MPa] 

w/Dp 
[%] 

qA 
[MPa] 

w/Dp 
[%] 

at peak 7.1 10 9.2 13.5 10.8 15 
post peak 6.9 20 9 24 10.5 26.4 
at large w/Dp 8.5 100 11.1 100 12.7 100 
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Figure 4.33. Unit loads acting on the pile head qA and base qB vs. the settlement 
normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter w/dr 
(right–hand side) for the D centre and eq. edge piles of the PR7(A) model and the D 
PR1 pile. 

As far as the shaft friction is concerned, the edge and the centre piles 

show similar values of τS,AB and they both have similar shaped 

mobilisation curves as that of the displacement PR1 pile. The peak values 

are considerably higher (about 45%) than that of the D PR1 pile and they 

are reached at a slightly higher rate. The very high values of the shear 

stress mobilised by all the PR7(A) piles, with respect to the PR1 pile, 

confirm that the “∆σ’r effect” is increased due to the confining effect 

exercised by the neighbouring piles, and this leads to an enhanced shaft 

capacity. They also suggest that a further shaft capacity improvement is 

produced by the soil densification and the increase in radial stresses 

induced in the soil mass by the jacking of the pile group. This further 

improvement involves all the piles of the PR7(A) group and it likely 

occurs to compensate for, or even exceed, the interaction effects between 

the piles on the shaft capacity mobilisation rate. This is confirmed by the 
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kp mobilisation curve of the average pile of the group which is plotted vs. 

w/Dp in Figure 4.35, where the kp curve of the D PR1 pile is also reported 

(data at the prototype scale): from w/Dp >2%, the stiffness values of the 

average pile of the PR7(A) group is higher than that of the single pile 

beneath the raft. 

The local shaft friction transfer curves of the equivalent edge pile, 

reported in Figure 4.36, show that τS,AC is characterised by a peak value 

that is reached at w/Dp = 12.4% and then, after an initial stress softening, 

it further increases as the settlement increases due to the “∆σ’r effect”. As 

for the lower shaft friction transfer curve, τS,CB is mobilised with a higher 

rate than τS,AC and it reaches a limit value at w/Dp = 10.6%, then it 

increases, as it is influenced like τS,AC by the effect of the contact pressure 

of the raft on the soil. 
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Figure 4.34. Shear stress acting between load cells A–B τS,AB vs. the settlement 
normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter w/dr 
(right–hand side) for the D centre and eq. edge piles of the PR7(A) model and the D 
PR1 pile. 
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Figure 4.35. Pile stiffness kp vs. the settlement normalised to the pile diameter w/Dp for 
the D PR7(A) average pile and the D PR1 pile. Prototype scale. 
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Figure 4.36. Shear stress acting between load cells A–C τS,AC and C–B τS,CB vs. the 
settlement normalised to the pile diameter w/Dp (left–hand side) and to the raft diameter 
w/dr (right–hand side) for the D edge eq. piles of the PR7(A) model. 
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4.5 Load sharing and efficiency of piled rafts 

In this section, the overall load–settlement behaviour of the piled rafts is 

reported and analysed. The results of the centrifuge tests on the non 

displacement pile rafts (tests ND-PRLT5, 7, 9, 10, 12, 13) are presented 

in the Figures 4.37, 4.38. 4.39 and 4.40, which report, with respect to the 

measured settlement normalised to the raft diameter, w/dr, the total unit 

load carried by the raft, qt, the total axial load transmitted by the raft to 

the pile heads, Qp (in the model scale), the pressure transmitted by the 

raft to the soil, qr and the piled raft stiffness kpr (load/settlement ratio) 

curves, respectively. The analogous results obtained from the tests on the 

displacement pile rafts (tests D-PRLT1, 3, 4) are shown in Figures 4.41, 

4.42, 4.43 and 4.44. The piled raft stiffness is represented at the prototype 

scale. Figures 4.37, 4.39, 4.41 and 4.43 also report the results of the 

unpiled raft load test, R (test URLT0) for which qt = qr. 

The qt, Qp and qr values have been evaluated as follows: 

qt (w) = Qt(w) / (π 2
rd /4)       [FL-2]      (4.8) 

∑=
=

n

1i
Aip )w(Q)w(Q  n = 1, 3, 7, 13 [F]       (4.9) 

4
D

n
4
d

)w(Q)w(q 2
p

2
r

r
r π

⋅−
π

=  n = 1, 3, 7, 13 [FL-2]         (4.10) 

where: 

Qt = measured load applied to the raft [F]; 

n = number of piles [-]; 

QAi = axial load measured at the head of the ith pile [F]; 

Qr = Qt – Qp = load transmitted by the raft to the soil [F]. 

In the interpretation of the tests performed on model schemes PR7(A), 

PR7(a) and PR13, the axis symmetry of the geometry and of the loading 
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conditions allowed us to account for the non instrumented piles, which 

have been considered to be as loaded as the instrumented piles placed at 

the same radial distance from the raft centre. 
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Figure 4.37 Total applied stress qt vs. the raft relative settlement w/dr for the ND pile 
rafts. 
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Figure 4.38. Load transmitted to the piles Qp vs. the raft relative settlement w/dr for the 
ND pile rafts. Model scale. 
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The load sharing mechanisms between the soil and piles, expressed by 

the ratios Qp/Qt and Qr/Qt, have been computed on the basis of the results 

reported in Figures 4.37 to 4.39 and 4.41 to 4.43; they are shown in 

Figure 4.45, for the ND pile rafts and in Figure 4.46 for the D pile rafts, 

respectively. 

The piled raft settlement efficiency has been evaluated as follows: 

ζ = (wur – wpr) / wur       [-]           (4.11) 

where: 

wur = settlement of the unpiled raft at a given applied pressure, qt [L]; 

wpr = settlement of the piled rafts at the same qt [L]. 

The ζ curves, which have been derived from the results reported in 

Figures 4.37 and 4.41, are shown in Figures 4.47 (ND pile rafts) and 4.48 

(D pile rafts) as a function of the number of piles and for values of qt 

ranging from 25 to 530 kPa. 

The following comments can be made on the basis of an examination of 

Figures from 4.37 to 4.48: 

• The unpiled raft R exhibits an almost linear stress–settlement curve 

and, as expected, it settles more than the piled raft foundations at the 

same applied stress (Figures 4.37 and 4.41). 

• The piled raft stress–settlement curves are non linear and they are 

characterised by a progressive decay in the stiffness as the applied 

pressure increases (Figures 4.37 and 4.41); a sharp change in their 

slope occurs at the settlement at which the yielding load of the piles 

(Qpy) is mobilised (Figures 4.38 and 4.42). The yielding settlement 

increases for an increasing number of piles. At larger w/dr than the 

yielding settlement, the load carried by the piled rafts further 
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increases, at an almost steady rate, which is greater than that of the 

unpiled raft R. 

0

2

4

6

8

0 200 400 600 800 1000 1200

qr [kPa]

w/dr [%]

DR = 31% DR = 35% DR = 35% DR = 31% DR = 35% DR = 30% DR = 41%

R PR1 PR3(A) PR3(a) PR7(A) PR7(a) PR13
R

PR1PR3(a)

PR7(a)
PR3(A)

(ND-PRLT7)

PR7(A)
(ND-PRLT9)

PR13
(ND-PRLT10)

ND PILE RAFTS

 
Figure 4.39. Pressure directly transmitted by the raft to the soil qr vs. the raft relative 
settlement w/dr for the ND pile rafts. 
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Figure 4.40. Piled raft stiffness kpr vs. the raft relative settlement w/dr for the ND piled 
rafts. Prototype scale. 
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Figure 4.41. Total applied stress qt vs. the raft relative settlement w/dr for the D pile 
rafts. 

• The piled raft foundations do not reach their ultimate loads in the 

explored settlement range. 

• Comparing Figures 4.37 and 4.41, it can be seen that at a given value 

of qt, the rafts on the ND piles exhibit a larger relative settlement than 

the analogous models on the D piles, the difference becoming more 

marked as the number of piles increases (see also Figures 4.47 and 

4.48). 

• At small w/dr, the piles support most of the applied load (Figures 4.38 

and 4.45, 4.42 and 4.46) and the piled raft stiffness mainly reflects that 

of the pile group. As a consequence, as the number of piles increases 

the foundation stiffness increases and, as the pile spacing decreases, 

the number of piles being the same (see PR7(A) and PR7(a) models in 

Figure 4.41 and 4.42), the piled raft stiffness decreases (as can be seen 

in Section 4.4, the interactions between the piles become stronger as 

the piles become closer). 
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Figure 4.42. Load transmitted to the piles Qp vs. the raft relative settlement w/dr for the 
D pile rafts. Model scale. 
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Figure 4.43. Pressure directly transmitted by the raft to the soil qr vs. the raft relative 
settlement w/dr for the D pile rafts. 
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• At larger settlements than the yielding value, the steady increase in the 

stress qt carried by the piled rafts is mostly transmitted to the soil 

(Figures 4.39 and 4.45, 4.43 and 4.46) and the foundation stiffness 

begins to be controlled by that of the raft–soil contact. However, once 

the piles have reached their limit capacity, Qp still increases slightly as 

the raft settlement increases, due to the increase in the vertical and 

radial stresses acting on the pile shaft produced by the pressure 

transmitted via the soil–raft contact, qr (“∆σ’r effect” described in 

Sections 4.3 and 4.4). Accordingly, even at large settlements, the piled 

raft tangent stiffness values are larger than the values observed for the 

unpiled raft R. 

• In the ND pile rafts, the pile group yielding load, Qpy, (see Figure 

4.38) results to be approximately proportional to the number of piles 

in models PR3(A), PR3(a), PR7(A) and PR7(a) (i.e. Qpy,PR3(A) ≈ 

3Qpy,PR1, Qpy,PR3(a) ≈ 3Qpy,PR1, Qpy,PR7(A) ≈7Qpy,PR1 and Qpy,PR7(a) 

≈7Qpy,PR1), while in PR13 Qpy,PR13>13Qpy,PR1. In the D pile rafts, the 

pile group limit load, Qpy (see Figure 4.42) is proportional to the 

number of piles in model PR3(A), while in PR7(A), 

Qpy,PR7(A)>7Qpy,PR1. These results reflect the behaviour of the 

individual piles analysed in Sections 4.4.1 and 4.4.2: the bearing 

capacity of each pile in the group in the models ND PR13 and D 

PR7(A) results to be significantly higher than that of the single pile 

beneath the raft, due to the confinement effect exerted by the 

neighbouring piles and, but only for the D piles, also due to the soil 

densification and radial stress increase produced by the pile jacking. 
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• In the ND PR7(A), PR7(a) and PR13 models, the pile group tangent 

stiffness is affected by interactions of the pile in the group, at smaller 

settlement than the yielding value. 

0

300

600

900

1200

0.1 1 10w/dr [%]

kpr [kN/mm]

PR1

PR3(A)
PR7(A)

R

D PILE RAFTS

DR = 31% DR = 34% DR = 32% DR = 35%

R PR1 PR3(A) PR7(A)

 
Figure 4.44. D pile raft stiffness kpr vs. the raft relative settlement w/dr. Prototype scale. 
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Figure 4.45. Load sharing mechanism for the ND pile rafts. 
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• Figure 4.43 shows that the qr curves of the D pile rafts are almost 

linear; at settlement w/dr < 2% they are approximately superimposed 

over the R curve, while at larger w/dr, the load carried by the soil is 

slightly higher in the piled raft than in the unpiled raft. This would 

seem to suggest that the displacement field induced by the piles in the 

soil does not influence the stiffness of the raft to any great extent. As 

for the piled rafts with the ND piles (Figure 4.39), the qr curves of 

models PR1, PR3(A) and PR7(A) are more scattered than the 

analogous D pile raft curves, and they are characterised by an initial 

non linearity, probably due to a modest misaligning of the pile heads 

with respect to the sand surface and to a non uniform contact between 

the raft and the soil, which cause a minor transfer of the applied load 

from the raft to the soil at the initial loading stage. However, at w/dr > 

2%, the curves approach the R curve, confirming what was observed 

for the D pile raft models, i.e. the negligible effect of the raft–pile 

interaction on the raft transfer mechanism. In the PR7(a) and PR13 

models, the qr curves are remarkably non linear and a lower qr value is 

transmitted to the soil: in these models, the displacement fields 

induced in the soil mass by the very close piles cause a significant 

decrease in the contact pressure beneath the raft next to the pile shaft. 

• The load sharing mechanism between the raft and the piles in the ND 

pile raft models is illustrated in Figure 4.45, where the ratios, Qp/Qt 

and Qr/Qt are plotted versus w/dr. The Figure illustrates that the share 

of the total applied load transmitted to the soil (Qr/Qt ratio) decreases 

as the number of piles increases. Taking the value w/dr = 1.5% as 

reference settlement, the computed values of Qr/Qt are 55% for PR1, 

30% for both PR3(A) and PR3(a) and 15% for PR7(A); modest or 

even negligible values have been obtained for PR7(a) and PR13. As 
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for the D pile rafts (Figure 4.46), in a similar ways to what has been 

observed for the ND piles, Qr/Qt decays as the number of piles 

increases. At the settlement value w/dr = 1.5%, the magnitude of Qr/Qt 

is 64% for PR1, 37% for PR3(A) and 14% for PR7(A). 

• The piled raft efficiency ζ depends on the number and type of piles 

and on their limit load. As shown in Figures 4.47 and 4.48, which 

report the ζ curves of the ND and the D pile rafts, ζ results to be 

almost constant before the pile group limit load is reached, then ζ 

decays as qt increases; comparing the values of ζ for the same number 

of piles, the ND piles are less effective as settlement reducers than the 

D piles. In order to achieve ζ > 0.5 over the whole qt range considered, 

at least 3 D piles or 7 ND piles are necessary. The piled raft with 7 D 

piles and that with 13 ND piles have about the same efficiency for qt ≤ 

530 kPa, ζ ≈ 0.95, (the pile group yielding load has not been reached). 
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Figure 4.46. Load sharing mechanism for the D pile rafts. 
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Figure 4.47. Settlement efficiency ζ for the ND pile rafts. 
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Figure 4.48. Settlement efficiency ζ for the D pile rafts. 



Chapter 5 

Piled raft bearing capacity and stiffness 

5.1 Introduction 

The results of centrifuge tests performed on piled raft models are 

analysed in this chapter in terms of bearing capacity and stiffness. 

The piled raft bearing capacity has been examined according to the load 

efficiency method proposed by Phung (1993) and the following 

quantities have been compared, at the same settlement level: 

i) the total, shaft and base resistances of the average pile of a piled raft 

with the analogous resistances of an isolated single pile; 

ii) the total load per pile within a piled raft with the total capacity of an 

isolated single pile; 

iii)  the load carried by the raft within a piled footing with the load carried 

by an unpiled raft;  

iv)  the total load carried by a piled raft with the load carried by an 

unpiled raft. 

The piled raft stiffness has been analysed by comparing the values 

obtained from centrifuge tests with those evaluated through the 

simplified method proposed by Randolph (1983, 1994), which allows the 

overall stiffness of a piled raft foundation to be calculated thorough the 
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estimation of the interaction effects between its component elements (raft 

and piles). 

The results of the following tests have been analysed in this chapter (see 

Figures 3.15 and 3.16 and Table 3.7): 

• unpiled raft: test URLT0 – R model; 

• ND isolated pile: test ND-PLT6 – IP model; 

• ND piled rafts: tests ND-PRLT 5, 7, 9, 10, 12, 13 – models PR1, 

PR3(A), PR3(a), PR7(A), PR7(a), PR13; 

• D isolated pile: test D-PLT3 – IP model; 

• D piled rafts: tests D-PRLT 1, 3, 4 – models PR1, PR3(A) and 

PR7(A). 

5.2 Load efficiency and piled raft bearing capacity 

The concept of group efficiency was originally used to compare the 

ultimate bearing capacity of a free–standing pile group with that of an 

isolated single pile, under equal soil conditions, in order to highlight the 

effect of the pile–pile interactions on the group ultimate capacity 

[Kishida and Meyerhof (1965), Vesic (1969)]. Many researchers have 

used the same concept for piled footings; Phung (1993) defined several 

load efficiencies for piled footings with respect to isolated piles and 

shallow foundations under equal soil conditions, in order to highlight the 

pile–pile and pile–raft interactions within a piled raft. Load efficiencies 

should be related to the displacement rather than to the ultimate loads, 

particularly when dealing with piled raft foundations, where the 

interaction mechanisms between the soil, piles and raft are progressively 
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mobilised and a gradual load redistribution take place with increasing 

displacements. 

Efficiency function ξ1 compares the behaviour of an individual pile 

belonging to a free–standing pile group with that of an isolated piled at 

the same settlement level; it therefore shows the effects of the pile–pile 

interactions: 

ξ1(w/dr) = (Qp,FG/n)/Qp,IP       [-]        (5.1) 

where: 

n = number of piles [-]; 

Qp,FG = load on a free–standing pile group [F]; 

Qp,IP = load on a single isolated pile [F]. 

Efficiency ξ2 compares the behaviour of an individual pile belonging to a 

piled raft with that of an isolated pile at the same settlement level, hence 

it shows the total effects of both the pile–pile and pile–raft interactions 

on the pile behaviour: 

ξ2(w/dr) = (Qp,PR/n)/Qp,IP       [-]        (5.2) 

where: 

Qp,PR = load carried by the piles in a piled raft [F]. 

Efficiency function ξ3 compares a single pile–raft unit with an isolated 

pile at the same settlement level, and therefore shows the effects of the 

pile–pile and pile–raft interactions on the piled raft capacity: 

ξ3(w/dr) = (Qt,PR/n)/Qp,IP       [-]        (5.3) 

where: 

Qt,PR = total load on a piled raft [F]. 
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Comparing the share of the total load carried by the raft in a piled footing 

with the load carried by the corresponding unpiled raft at the same 

settlement level, efficiency function ξ4 shows the influence of the pile–

raft interactions on the raft behaviour: 

ξ4(w/dr) = Qr,PR/Qr,UR       [-]        (5.4) 

where: 

Qr,PR = load carried by the raft in a piled raft [F]; 

Qr,UR = load on an unpiled raft [F]. 

Finally, efficiency function ξ5 compares the total load carried by the piled 

footing with the load carried by the unpiled raft, at the same settlement 

level, therefore it expresses the contribution of the raft to the piled raft 

capacity. 

ξ5(w/dr) = Qt,PR/Qr,UR       [-]        (5.5) 

The load efficiencies ξ2, ξ3, ξ4 and ξ5 obtained from the performed 

centrifuge tests are presented in this section; the loads acting on the piled 

rafts and on their bearing elements are compared with the loads carried 

by the isolated pile and by the unpiled raft, at the same settlement level. 

Efficiency ξ2 has been subdivided into two components, the tip and shaft 

efficiencies, i.e.: 

ξ2S(w/dr) = (QS,PR/n)/QS,IP       [-]        (5.6) 

ξ2B(w/dr) = (QB,PR/n)/QB,IP       [-]        (5.7) 

where: 

QS,PR = total shaft resistance of the piles in a piled raft [F]; 

QB,PR = total base resistance of the piles in a piled raft [F]; 

QS,IP = shaft resistance of the isolated pile [F]; 

QB,IP = base resistance of the isolated pile [F]. 
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5.2.1 ND pile rafts – load efficiency functions ξ2 and ξ3 

The ξ2 functions (Eq. 5.2) evaluated for the ND pile rafts with respect to 

the ND isolated pile, are plotted in Figure 5.1. In Figures 5.2 and 5.3, the 

ξ2 curves have been subdivided into the two components, ξ2S = shaft 

efficiency of the group (Eq. 5.6) and ξ2B = base efficiency of the group 

(Eq. 5.7). Figure 5.4 reports the ξ3 (Eq. 5.3) curves for the same tests. 

Efficiency ξ2 of the group of piles results to be larger than unity over 

almost the whole range of investigated settlements for all the ND pile raft 

models analysed, and it has a tendency to increase with increasing 

settlement. Only at very small settlements (i.e. w/dr < 0.5%), where the 

ND piles are influenced by the softening effect of the pile–pile 

interactions, are the ξ2 values of all the models (except PR1) < 1 (see 

Figures 4.7, 4.12, 4.16, 4.20 and 4.24). 
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Figure 5.1. Load efficiency ξ2 for the ND pile rafts. 



108                  Modelling of Piled Raft Foundations in Sand                 D. Giretti 

0

2

4

6

8

0 1 2 3 4

ξ2S [-]

w/dr [%]

PR1

PR7(a)
PR3(a)

PR13
(ND-PRLT10)

PR7(A)
(ND-PRLT9)

PR3(A)
(ND-PRLT7)

DR = 35% DR = 35% DR = 31%

DR = 35% DR = 30% DR = 41%

PR1 PR3(A) PR3(a)

PR7(A) PR7(a) PR13

ND PILE RAFTS

 
Figure 5.2. Load efficiency ξ2S for the ND pile rafts. 
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Figure 5.3. Load efficiency ξ2B for the ND pile rafts. 

Thus, the ξ2 values of the ND PR1 model increase from ≈ 1, at the 

beginning of the test, to ≈ 1.5 at w/dr = 8%. The ξ2 values of the other ND 
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models increase from slightly lower values than unity, at w/dr < 0.5%, to 

values that are even higher than 1.5 (PR7(A) and PR13) at w/dr = 8%. 

The ξ2S curves assume higher values than unity at w/dr > 0.5. The ξ2S 

curves of the PR1, PR3(A) and PR3(a) groups experience a peak (when 

the piles mobilise the shear stress peak values), while the ξ2S values of 

the PR7(A), PR7(a) and PR13 groups increase progressively. At 

settlement w/dr > 1.5%, the ξ2S value of all the models increases almost 

linearly, from ≈ 1.5÷1.9 at w/dr = 1.5%, to ≈ 2.2÷2.8 at w/dr = 8%. 

The higher shaft efficiency than unity of the ND piles can be attributed to 

the “∆σ’r effect”, which enhances the pile shaft capacity; for the PR7(A), 

PR7(a) and PR13 groups, the ξ2S values > 1 can also be attributed to the 

confinement effect exerted by the neighbouring piles, which improves 

the shaft capacity even more. 

As far as the base efficiency is concerned, ξ2B is approximately equal to 

unity in all the ND pile groups, except in PR13, for which ξ2B ranges 

from 1, at the beginning of the test, to 1.6 at w/dr = 8%. As shown in 

Section 4.3, the raft pressure on the soil surface in the performed tests 

produced negligible effects on the ND pile end bearing capacity, (Figure 

4.7); however, interactions between pile tips have been observed in a 

close spaced pile group, such as the PR13 group, and these interactions 

cause a higher base capacity than that of the isolated pile (see Figure 

4.24). 

As for load efficiency ξ3, which compares the load on a single pile–raft 

unit with the load carried by an isolated pile, Figure 5.4 shows that ξ3 

increases almost linearly with increasing settlement for each ND pile raft 

model, from values ≈ 1 at the beginning of the tests to significantly 

higher values than unity at large w/dr. On the other hand, ξ3 decreases 

with an increasing number of piles, since, as shown in Section 4.5 
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(Figure 4.45), at a given raft settlement, the raft contribution to the piled 

raft capacity decreases as the number of piles increases. At a given pile 

number, ξ3 is slightly lower for the smaller pile spacing. 
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Figure 5.4. Load efficiency ξ3 for the ND pile rafts. 

5.2.2 ND pile rafts – load efficiency functions ξ4 and ξ5 

Figures 5.5 and 5.6 report the ξ4 and ξ5 efficiency functions (Eqs. 5.4 and 

5.5) evaluated for the ND pile rafts with respect to the unpiled raft. 

The ξ4 values of the PR1, PR3(A), PR3(a) and PR7(A) models increase, 

as the settlement increases, up to a relative settlement w/dr ≈ 4%, then 

they approach unity, indicating that, at large settlements, the effects of 

the raft–pile interactions on the raft capacity are negligible. The lower 

efficiency than unity at w/dr < 4% is due to the non uniform contact 

between the raft and the soil at the initial stage of the tests, which caused 

a lower raft contribution to the foundation capacity (see Figure 4.39). 
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Figure 5.5. Load efficiency ξ4 for the ND pile rafts. 
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Figure 5.6. Load efficiency ξ5 for the ND pile rafts. 

The ξ4 values of the PR7(a) and PR13 models are significantly lower 

than unity over the whole settlement range that has been analysed, 

indicating that, in close spaced pile groups, the pile–raft interaction 
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effects on the raft capacity cause a decrease in the contact pressure 

beneath the raft next to the pile shaft. 

The ξ5 curves reported in Figure 5.6 have the same shape for all the ND 

pile rafts: at settlement w/dr < 1% ÷ 1.5, i.e. before the piles reach their 

limit load and the applied load is carried above all by the piles, ξ5 

assumes very high values and then it drops rather quickly towards the 

steady values that are reached at large settlements. The steady ξ5 values 

mainly depend on the amount of the raft contribution to the piled raft 

capacity: the higher the raft contribution (as in PR1 with respect to PR13, 

see Figure 4.45), the lower the ξ5 steady values reached at large 

settlements. 

5.2.3 D pile rafts – load efficiency functions ξ2 and ξ3 

The ξ2 load efficiency functions (Eq.5.2) evaluated for the D pile rafts, 

with respect to the D isolated pile, are plotted in Figure 5.7. In Figures 

5.8 and 5.9, the ξ2 curves have been subdivided into the two components, 

ξ2S = shaft efficiency of the group (Eq.5.6) and ξ2B = base efficiency of 

the group (Eq.5.7). The load efficiency ξ3 (Eq. 5.3) obtained from the 

same tests is plotted in Figure 5.10. 

For all the analysed D pile rafts, the total efficiency ξ2 of the pile group is 

larger than unity over the whole range of investigated settlements, and it 

has a tendency to increase with increasing settlement. The ξ2 values of 

the PR1 and PR3(A) groups increase almost linearly from 1.1, at the 

initial stage of the tests, to ≈ 1.5 at w/dr = 8%. In the PR7(A) group, ξ2 

ranges from 1.2, at small settlements, to 2 at w/dr = 8%. The ξ2 values of 

the D PR7(A) group are similar to those of the ND PR13 group. 

In all the D pile groups, the ξ2S values are higher than unity. At 

settlement w/dr ≈ 1% ÷ 1.2%, the ξ2S curves reach a peak, in 
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correspondence to the mobilisation of the pile shaft friction peak value, 

and then they increase almost linearly with increasing w/dr. 
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Figure 5.7. Load efficiency ξ2 for the D pile rafts. 
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Figure 5.8. Load efficiency ξ2S for the D pile rafts. 



114                  Modelling of Piled Raft Foundations in Sand                 D. Giretti 

The higher shaft efficiency than unity of the D piles can be attributed to 

the “∆σ’r effect”, which enhances the pile shaft capacity and, as far as the 

PR7(A) group is concerned, to the confinement effect exerted by the 

neighbouring piles, which further improves the shaft capacity. Moreover, 

the ξ2S values of the D PR7 group are greater than those of the ND PR7 

group, due to the effect of the sand compaction produced by jacking, 

which noticeably enhances the shaft capacity of all the piles in the group 

(see Figure 4.34). 

The base efficiency, ξ2B is roughly equal to unity in PR1 and PR3(A) and 

it is ≈ 1.35 in PR7(A). As seen for the ND pile rafts, the contact pressure 

of the raft on the soil surface in the performed tests has no significant 

influence on the D pile end bearing capacity (see Figure 4.9); the high 

base efficiency of the PR7(A) group is mainly due to the effect of the 

compacted sand zones under the tips produced by the pile jacking, which 

leads to an improved base capacity (see Figure 4.33). 
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Figure 5.9. Load efficiency ξ2B for the D pile rafts. 
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The ξ3 load efficiency function of the D pile rafts, plotted in Figure 5.10 

vs. the raft relative settlement, w/dr, increase almost linearly with 

increasing settlements, from values ≈ 1 at the initial loading stage to 

significantly higher values than unity at large w/dr. At a given raft 

settlement, ξ3 decreases with an increasing number of piles, since the raft 

contribution to the piled raft capacity decreases as the number of piles 

increases (Figure 4.46). 
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Figure 5.10. Load efficiency ξ3 for the D pile rafts. 

5.2.4 D pile rafts – load efficiency functions ξ4 and ξ5 

Figures 5.11 and 5.12 report the ξ4 and ξ5 efficiency function (Eqs. 5.4 

and 5.5) evaluated for the D pile rafts with respect to the unpiled raft. 

The ξ4 curves of all the D pile rafts tend to a constant value (ξ4 ≈ 1.15), 

which is reached at w/dr = 1.5%÷2% (see also Figure 4.32), indicating 

negligible effects of the pile–raft interactions on the raft capacity. 

The ξ5 curves shown in Figure 5.12 have the same shape as those 

observed for the ND pile rafts: at settlement w/dr < 1% ÷ 1.5%, ξ5 

assumes very high values and then drops rather quickly towards steady 
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values which are reached at large settlements. The steady ξ5 values 

depend on the contribution amount of the raft to the piled raft capacity: 

the higher the raft contribution (as in PR1, see also Figure 4.46), the 

lower the ξ5 steady values reached at large settlements. 

The ξ5 efficiency values of the D pile rafts are higher than those of the 

ND pile rafts for the same test layout. 
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Figure 5.11. Load efficiency ξ4 for the D pile rafts. 

5.2.5 Piled raft bearing capacity 

As proposed by Phung (1993), the total capacity of a piled raft may be 

calculated as follows: 

Qt,PR = n (ξ2S·QS,IP + ξ2B·QB,IP) + ξ4Qr   [F]       (5.8) 

where: 

n = number of piles [-]; 

ξ2S, ξ2SB = shaft, base efficiency of an individual pile in a piled raft [-]; 

QS,IP, QB,IP = shaft and base capacities of the isolated pile [F]; 

ξ4 = efficiency of the raft in a piled footing [-]; 

Qr = unpiled raft capacity [F]. 



Chapter 5                      Piled raft bearing capacity and stiffness                     117 

0

2

4

6

8

0 2 4 6 8 10 12 14

ξ5 [-]

w/dr [%] DR = 34% DR = 32% DR = 35%

PR1 PR3(A) PR7(A)

D PILE RAFTS

PR1

PR7(A)

PR3(A)
(D-PRLT3)

 
Figure 5.12. Load efficiency ξ5 for the D pile rafts. 

The efficiencies ξ2S and ξ2B consider the pile–pile and the pile–raft 

interaction effects on the pile shaft and base capacities. 

In the performed tests, the influence of the raft on the base capacity was 

negligible, but the base efficiency ξ2B can assume higher values than 

unity due to the interaction effect between the pile tips and, in the case of 

jacked piles, due to the effects of the soil densification produced by the 

pile installation (see PR13 in Figure 5.3 and PR7 in Figure 5.9). 

The performed tests have shown that the values of efficiency ξ2S depend 

on many factors. 

In the case of ND piles, at very small settlement (w/dr < 0.5%), negative 

group effects, due to the superimposition of the individual pile 

displacement fields, can produces a decrease in the shaft friction 

mobilisation rate, which leads to lower values of ξ2S than unity. At larger 

settlements, ξ2S can result to be higher than unity due to the pile–raft 

interaction effects (“∆σ’r effect”), and shows a tendency to increase as 
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the number of piles increases, due to the confinement effects between the 

neighbouring piles. 

In the case of D piles, the shaft efficiency can be significantly higher than 

unity, even at small settlements, due to the superimposition of several 

effects: the “∆σ’r effect”, confinement effects between the neighbouring 

piles and the soil densification effect produced by the jacking of groups 

of piles. 

As far as the load efficiency ξ4, which represents the pile–raft interaction 

effect on the raft capacity, is concerned, the centrifuge test results as 

shown in Figures 5.5 and 5.11 suggest that ξ4 can be assumed equal to 

unity in small groups of piles, while in large groups of piles or in close 

spaced groups, the raft contribution to the piled raft capacity can be lower 

than unity. 

5.3 Piled raft stiffness 

5.3.1 Introduction 

Several approaches have been proposed in recent years to analyse piled 

raft foundations: from simplified analytical methods involving a simple 

constitutive soil model and a simplified soil profile [e.g. Poulos and 

Davis (1980), Randolph (1983), Randolph (1994), Franke et al. (1994)], 

to very complex procedures employing three–dimensional finite element 

or boundary element analyses and more realistic elastic–plastic 

constitutive soil models [e.g. Katzenbach et al. (1998), Franke et al. 

(2000), Katzenbach et al. (2000)]. 

The applicability of complete numerical analyses to real problems is 

limited, due to the magnitude of the computational resources required for 

foundations of practical proportions. 
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Simplified approaches, which rely on the extrapolation of results 

produced for single pile raft units, from necessity have to incorporate 

approximations, but they are more practical for the routine design of 

piled rafts. 

Randolph’s simplified approach employs a flexibility matrix to combine 

the individual stiffnesses of a pile group and a raft to derive the overall 

stiffness of a piled raft. The piles are assumed to be loaded below their 

failure load; the settlement of each foundation component is expressed 

as: 
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where:  

kp, kr = overall stiffness (i.e. load/displacement) of a pile group and of a 

raft in isolation, respectively [FL-1]; 

αrp, αpr = interaction factors, that quantify the influence of the pile group 

on the raft and the influence of the raft on a pile group, respectively [-]; 

Qp, Qr = loads on the piles and on the raft, respectively [F]. 

According to the reciprocal theorem, the terms on the trailing diagonal of 

the flexibility matrix must be equal, therefore the interaction factors are 

related by: 

p

r
rppr k

k
α=α        [-]       (5.10) 

Since the (average) settlements of the piles and raft are identical, Eqs. 5.9 

and 5.10 allow the overall stiffness of a piled raft, kpr to be calculated as: 
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=        [FL-1]     (5.11) 
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On the basis of superimposition of the displacement field induced by a 

single pile and by a circular cap, Randolph (1983) has shown that the 

interaction factor αrp for a single capped pile (single pile–raft unit) may 

be approximated by: 

)D/r2ln(
)bln(1

pm
rp −=α        [-]       (5.12) 

where: 

b = ratio of the circular cap diameter to pile diameter Dp [-] 

rm = radius of influence of a pile [L], related to the embedded pile length 

Lp by [Randolph and Wroth (1978)]: 

rm = 2.5·ρs·Lp·(1 – νs)       [L]      (5.13) 

where: 

ρs = soil inhomogeneity factor [-]; 

νs = Poisson’s ratio of the soil [-]. 

The value of αrp for pile groups can be calculated by considering a 

representative single pile–raft unit, where the representative unit has a 

raft area that is equal to the mean raft area per pile of the complete 

foundation. 

The raft stiffness, kr, can be estimated via the elastic theory, for example 

using the Fraser and Wardle (1976) or Mayne and Poulos (1999) 

solutions. The pile group stiffness, kp, can also be estimated from the 

elastic theory, if the single pile stiffness is known and using approaches 

such as those described by Poulos and Davis (1980) or Fleming et al. 

(1992). 

The approach proposed by Poulos and Davis (1980) and reviewed by 

Poulos (1989), expresses the increase in settlement ∆w of a pile in a 

group due to interaction, in terms of an interaction factor α (which is the 
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ratio of ∆w to the settlement for a single isolated pile under its own load) 

and it assumes that ∆w may be obtained by superimposition of the values 

of α of the individual piles in the group. In a group of n piles with the 

same geometry, the settlement wk of pile k of the group is given by: 

∑ α⋅ω=
=

n

ij
kjj1k Qw        [L]      (5.14) 

where: 

ω1 = displacement of a single isolated pile under unit load (i.e. pile 

flexibility), which can be computed from the elastic theory or derived 

from a pile load test [F-1L]; 

Qj = the load on pile j [F]; 

αkj = interaction factor for pile k due to any other pile j within the group, 

corresponding to the spacing skj between piles k and j [-]. 

The interaction factors have been computed from boundary element 

analysis and presented by the Authors in graphical form. 

Eq. 5.14 can be written for each pile in the group, thus leading to a total 

of n equations, which, together with the equilibrium equation, can be 

solved for the cases of: i) a flexible raft and known load on each pile, i.e. 

non–uniform settlement among the piles; ii) a rigid pile cap and uniform 

settlement of the piles, i.e. non–uniform distribution of the load in the 

piles. 

5.3.2 Piled raft stiffness from Randolph’s approach  

In this section, the measured foundation stiffness is compared, for each 

centrifuge test on ND and D piled raft model, with that computed using 

Randolph’s simplified approach, which is expressed by Eq. 5.11. The 

measured stiffness values are reported for relative settlements w/dr > 
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0.1%; smaller measured displacement values have not been considered 

reliable enough. 

The raft stiffness, kr, introduced into Eq. 5.11, has been estimated on the 

basis of the results of the unpiled raft centrifuge test. The unpiled raft R 

exhibited an almost linear load–settlement curve, as shown in Figures 

4.37 and 4.41. In Figure 5.13, the measured kr is plotted at the prototype 

scale vs. w/dr; limited scatter of the experimental data around the mean 

value can be observed. Hence, a constant kr value has been assumed in 

the computation, kr = 37.5 kN/mm. 

The pile group stiffness, kp, has been derived from the ND and D isolated 

pile load–settlement curves, using the interaction factor approach 

described by Poulos and Davis (1980). The reference stiffness values 

obtained from the isolated pile tests, kp,IP, are plotted in Figure 5.14 at the 

prototype scale vs. the pile settlement normalised to the raft diameter, 

w/dr. 

As suggested by Randolph (1994) and by Mandolini and Viggiani 

(1997), the interaction factors have only been applied to the elastic 

component of the settlement of adjacent piles, since the plastic 

component of settlement is due to localised phenomenon and is not 

transmitted to the neighbouring piles. The group pile response has been 

constructed from the softened elastic response of the isolated pile, to 

which the original plastic displacement of the single isolated pile has 

been added. 

The interaction factors have been computed using the low–strain (far 

field) elastic Young’s modulus, to take into account the small strain level 

that occurs in the soil between the piles. 

Randolph’s approach for the computation of kpr has been used up to the 

settlement required to mobilise the limit shaft capacity of the pile groups. 
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Figure 5.13. Measured unpiled raft (R) stiffness kr vs. the raft relative settlement w/dr. 
Prototype scale. 
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Figure 5.14. Isolated pile measured stiffness kp,IP vs. the pile settlement normalised to 
the raft diameter w/dr for the ND and D IP piles. Prototype scale. 
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For larger applied loads, the piled raft settlement and stiffness have been 

evaluated following the procedure suggested by Randolph (1983) for 

piles loaded to full shaft capacity: 

• the load carried by the raft has been evaluated as the total applied load 

less the load carried by the piles when the limit shaft capacity of the 

group is mobilised (group pile yielding load), i.e. Qr =Qt – Qpy; 

• the settlement of the raft has been estimated as a function of the load 

transferred to the raft (i.e. wr = Qr/kr); 

• the additional pile contribution to the raft settlement has been obtained 

by multiplying the settlement at which the group piles mobilise their 

limit load, by the interaction factor given in Eq. 5.12. 

A similar approach has been described by Thorburn et al. (1983). 

5.3.1.1 Non displacement pile raft stiffness 

Figures 5.15 to 5.20 compare the piled raft stiffness values measured 

from centrifuge tests on ND pile footings with those computed following 

the previously described procedure. The kpr curves in the Figures are 

represented at the prototype scale vs. the raft relative settlement, w/dr. 

The Figures also report the measured and computed pile group stiffness, 

kp. The computed kp has been evaluated, up to the settlement required to 

mobilise the limit shaft capacity of the pile groups, from the ND isolated 

pile stiffness, kp,IP (ND-PLT6 test, Figure 5.14). 

The measured kpr curves reported in Figures 5.15–5.20 are characterised 

by a progressive stiffness decay. The early values are likely to be slightly 

underestimated since, at the initial loading stage, the misaligning of the 

ND pile heads, with respect to the sand surface, caused a non uniform 

contact between the raft and the soil, i.e. incomplete contribution of the 
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raft to the foundation overall stiffness at small displacements. Thus the 

experimental kpr values at small w/dr are very close to the kp values. 
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Figure 5.15. Measured and computed overall stiffness kpr and pile group stiffness kp vs. 
the raft relative settlement w/dr for the ND PR1 model. Prototype scale. 
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Figure 5.16. Measured and computed overall stiffness kpr and pile group stiffness kp vs. 
the raft relative settlement w/dr for the ND PR3(A) model. Prototype scale. 
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However, at small settlements, the measured kpr mainly reflect the pile 

stiffness, thus as the number of piles increases, the foundation stiffness 

increases; as the pile spacing decreases, the number of piles being the 

same, the piled raft stiffness decreases. 

At larger relative settlement than 1%, the kpr curves tend towards a steady 

value, which mainly reflects the unpiled raft R stiffness. 

As for the computed stiffness, the kpr curves are very close to the kp 

computed curves at smaller w/dr than the value required to mobilise the 

pile full shaft capacity, indicating a limited contribution of the raft 

stiffness to the computed stiffness kpr. 

For the PR1, PR3(A) and PR3(a) models, the computed curves are in 

good agreement with the measured ones (Figures 5.15, 5.16 and 5.17, 

respectively), over the whole settlement range that was analysed. For the 

PR7(A), PR7(a) and PR13 models (Figures 5.18, 5.19 and 5.20, 

respectively), the computed kpr values result to be lower than the 

measured ones, especially at w/dr < 1%. 

The underestimation of the computed kpr for the foundations with 7 and 

13 ND piles can mainly be attributed to the underestimation of the 

computed pile group stiffness, kp, i.e. to the overestimation of pile 

interaction factors. 

As seen in Sections 4.4.1 and 5.2.1, in the 7- and 13- ND pile rafts, the 

interactions between the neighbouring piles on one hand produce a 

decrease in the pile stiffness and on the other an enhanced pile capacity. 

The latter “positive” effects are likely to partially compensate the former 

“negative” effects. This compensating effect, which cannot be taken into 

account in the kp computations, could explain the underestimation of the 

computed kpr stiffness. 
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Figure 5.17. Measured and computed overall stiffness kpr and pile group stiffness, kp vs. 
the raft relative settlement w/dr for the ND PR3(a) model. Prototype scale. 
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Figure 5.18. Measured and computed overall stiffness kpr and pile group stiffness kp vs. 
the raft relative settlement w/dr for the ND PR7(A) model. Prototype scale. 
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Figure 5.19. Measured and computed overall stiffness kpr and pile group stiffness kp vs. 
the raft relative settlement w/dr for the ND PR7(a) model. Prototype scale. 
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Figure 5.20. Measured and computed overall stiffness kpr and pile group stiffness kp vs. 
the raft relative settlement w/dr for the ND PR13 model. Prototype scale. 
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5.3.1.2 Displacement pile raft stiffness 

Figures 5.21 to 5.23 compare the piled raft stiffness values obtained from 

centrifuge tests on D pile footings with those computed according to 

Randolph’s procedure. The kpr curves in the Figures are represented at 

the prototype scale vs. the raft relative settlement, w/dr. The Figures also 

report the measured and computed pile group stiffness, kp. The computed 

kp has been evaluated up to the settlement required to mobilise the limit 

shaft capacity of the pile groups, from the D isolated pile stiffness, kp,IP 

(D-PLT3 test, Figure 5.14). 

As seen for the ND pile rafts, the D pile raft kpr curves are characterised 

by a progressive stiffness decay. At small settlements, the piled raft 

stiffness mainly reflects that of the pile group, thus as the number of piles 

increases, the initial stiffness of the foundations also increases. 

At larger settlement than 1%, the kpr curves tend towards a steady value, 

which mainly reflects the unpiled raft R stiffness. 
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Figure 5.21. Measured and computed overall stiffness kpr and pile group stiffness kp vs. 
the raft relative settlement w/dr for the D PR1 model. Prototype scale. 
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Figure 5.22. Measured and computed overall stiffness kpr and pile group stiffness kp vs. 
the raft relative settlement w/dr for the D PR3(A) model. Prototype scale. 

The D pile rafts have measured higher kpr values than the values 

measured for the analogous models with non displacement piles, over the 

whole range of settlements analysed. This is partially due to the higher 

values of the stiffness of the D pile groups compared with the ND pile 

groups and partially to the more uniform contact between the raft and the 

sand surface at the initial loading stage (i.e. full contribution of the raft to 

the overall stiffness of the foundations at small displacements). The 

contribution of the raft to the foundation stiffness is significant over the 

entire range of settlements experienced. 

The computed kpr values are below the measured values, the trend 

becoming more marked as the number of piles increases. 

At settlement w/dr < 1% (smaller w/dr than the value required to mobilise 

the pile full shaft capacity), the computed kpr curves are very similar to 

the computed kp curves, indicating a limited contribution of the raft 

stiffness to the computed kpr. However, the underestimation of the 
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computed kpr, can mainly be attributed to the underestimation of the 

computed pile group stiffness, kp, in other words to overestimation of the 

pile interaction factors. 
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Figure 5.23. Measured and computed overall stiffness kpr and pile group stiffness kp vs. 
the raft relative settlement w/dr for the D PR7(A) model. Prototype scale. 

As seen in Sections 4.4.2, the effect of the soil densification produced by 

the jacking of a group of piles and, in PR7(A), the confinement effect 

exerted by neighbouring piles, compensate for and even exceed the pile–

pile “negative” interactions and a softer pile response has not been 

observed. In order to take into account this experimental evidence, a 

second calculation of kpr has been carried out for the PR3(A) and PR7(A) 

models, assuming interaction factors equal to zero and the pile group 

stiffness equal to kp,PR3(A) = 3·kp,IP and kp,PR7(A) = 7·kp,IP, respectively. The 

second set of computation results are reported in Figures 5.24 and 5.25 

and are labelled as “computed 2”. The new computed kpr values are 

closer to the measured values, but still lower than those, probably due to 
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(i) the underestimation of the raft contribution (ii) the underestimation of 

the confining effects, which have significantly enhanced the pile capacity 

in the PR7(A) model. 
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Figure 5.24. Measured and computed overall stiffness kpr vs. the raft relative settlement 
w/dr for the D PR3(A) model. Prototype scale. 
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Figure 5.25. Measured and computed overall stiffness kpr vs. the raft relative settlement 
w/dr for the D PR7(A) model. Prototype scale. 



Chapter 6 

Numerical analyses 

6.1 Introduction 

A series of numerical simulations have been carried out on unpiled raft, 

non displacement isolated pile and non displacement 1-pile raft models. 

The numerical analyses were aimed at reproducing the centrifuge tests, 

thus the same geometry and dimensions as the physical models were 

adopted for the numerical simulations, which were carried out applying a 

gravitational field of 100g to the mesh (which should have reproduced 

the centrifuge acceleration field). 

Two–dimensional axisymmetric analyses were performed, using the 

Tochnog (1989) code, a three-dimensional free explicit/implicit FE 

programme, developed by FEAT. 

In this chapter, the results of the numerical analyses are compared with 

those of the centrifuge tests, with the main aim of highlighting the effect 

of the pressure transmitted by the raft to the soil on the behaviour of the 

single pile under the raft. 
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6.2 Constitutive model parameter calibration 

The numerical analyses have been performed using the elasto–plastic 

strain hardening model proposed by Li and Dafalias (2000), which was 

implemented in the Tochnog code by Fontana (2004). 

This constitutive model treats the dilatancy as a state–dependent quantity 

(i.e. dilatancy d dependent on the current state parameter ψ of the soil 

and on the stress ratio η = q/p’) within the framework of critical–state soil 

mechanics. 

The state parameter ψ, which represents the difference between the 

current void ratio, e, and the critical state void ratio corresponding to the 

current confining pressure, ecv, [i.e. ψ = e – ecv, Been and Jefferies 

(1985)], is used to measure how far the material state is from the critical 

state. The position of the critical state line in the e-p’ space is determined 

through the approach proposed by Li and Wang (1998), described in Eq. 

3.1. 

With the state parameter as the state variable, a particular form of a state–

dependent dilatancy is proposed which represents a modification to the 

dilatancy function in the original Camclay model: 

)Me(
M
dd m0 η−= ψ          [-]        (6.1) 

where: 

M = critical stress ratio [-]; 

d0, m = positive modelling parameters [-]. 

The model assumes that plastic deformations occur when the stress ratio 

η exceeds its historic maximum and a constant η path induces no plastic 

deformation. On the basis of the state–dependent dilatancy relation that 

has been proposed and assuming a yield criterion of the form f = q – ηp’ 
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= 0, the following constitutive equations, which relate the volumetric and 

distortional stress increments, dp’ and dq, to the volumetric and 

distortional strain increments, dεv and dεq, are deduced: 
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               [FL-2]      (6.2) 

where: 

G = elastic shear modulus [FL-2]; 

K = elastic bulk modulus [FL-2]; 

h(L) = Heaviside function, with h(L) = 1 for L > 0 and h(L) = 0 for L <0; 

Kp = plastic hardening modulus [Dafalias (1986)] [FL-2]. 

Li and Dafalias (2000) suggest expressing the elastic shear modulus G 

via the by Richart et al. (1970) empirical equation, as a function of the 

current mean stress state, p’, the current void ratio, e, and a material non 

dimensional constant, G0
*. The elastic bulk modulus K can be derived 

from G via the elastic theory as a function of Poisson’s ratio, ν. In the 

model, ν is considered as a material constant that is independent of the 

pressure and density. For the plastic modulus Kp, the following relation is 

proposed: 

)Me(hGeK n
n

p η−
η

= ψ−
ψ

       [FL-2]      (6.3) 

where: 

h, n = positive model parameter [-]. 

The Authors have found that a variable h with density fitted the 

experimental data better and propose a simple linear dependence: h = h1 

– h2e. 
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There are eleven material parameters in the model: the elastic parameters 

G0
* and K; the critical state parameters M, eΓ, λ and ξ; the dilatancy 

parameters d0 and m and the hardening parameters h1, h2 and n. 

The Li and Dafalias constitutive model is able to predict the critical state, 

to produce the correct soil stiffness at small and large strains and to 

simulate the behaviour of sand not only under triaxial 

compression/extension but also for other conditions, thus it has been 

considered adequate to simulate the shaft shearing process. In order to 

consider the plastic deformation at constant η, which can influence the 

load–settlement behaviour of the raft, a p’ controlling cap was added to 

the original model, in the performed analyses [Fontana (2009)]. 

The model parameters of the FF sand introduced into the numerical 

analyses presented in this chapter, have been calibrated on the basis of 

the results of triaxial tests performed on the low density and low 

confining pressure FFS specimens previously shown in Chapter 3, 

following the calibration procedure suggested by the Authors. They were 

then adjusted to reproduce the unpiled raft centrifuge test results (see 

Section 6.4.1 and Figure 6.8). The model parameters for the FFS are 

reported in Table 6.1. 

Table 6.1. Model parameters calibrated for the FFS. 
Elastic 

parameters [-] 
Critical state 

parameters [-]
Dilatancy 

parameters [-]
Hardening 

parameters [-] 

G0
* = 25 

ν = 0.25 

M = 1.35 
eΓ = 1.15 
λ = 0.026 
ξ = 0.901 

d0 = 0.8 
m = 2 

h1 = 2.528 
h2 = 2.08 
n = 1.5 

In order to check the accuracy of the calibrated parameters, the first step 

in the FE analyses regarded the triaxial tests simulation. Figures 6.1 to 

6.6 compare the triaxial test results with the results of the numerical 
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simulations. The results have been considered acceptable even though 

better results could be achieved. 
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Figure 6.1. Experimental and numerical results of the undrained tests: effective stress 
paths. 
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Figure 6.2. Experimental and numerical results of the undrained tests: stress–strain 
response. 
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Figure 6.3. Experimental and numerical results of the undrained tests: pore water 
pressure ∆u. 
 

 

 

 

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35

εa [%]

q/p' [-]

CID 1 2007
CID 2 2007
CID 101
CID 1 2007 tochnog
CID 2 2007 tochnog
CID 101 tochnog

 
Figure 6.4. Experimental and numerical results of the drained tests: stress–strain 
response. 
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Figure 6.5. Experimental and numerical results of the drained tests: q-e paths. 
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Figure 6.6. Experimental and numerical results of the drained tests: e-p’ paths. 



140                 Modelling of Piled Raft Foundations in Sand                  D. Giretti 

6.3 Finite element models and simulation procedures 

Two–dimensional axisymmetric simulations have been carried out; the 

analyses domain was discretised by means of four–nodded quadrilateral 

elements. 

Three models were simulated: an unpiled raft, a non displacement 

isolated pile and a non displacement 1-pile raft. 

The numerical analyses were aimed at reproducing the centrifuge 

models, thus the geometry and the dimensions of the numerical models 

corresponded to those of the physical ones (models R, IP and PR1, see 

Figure 3.15 and Table 3.7) and the simulations were carried out applying 

a gravitational field of 100g to the mesh. 

A 44 mm radius raft and a 4 mm radius and 160 mm long pile, embedded 

in a 200 mm radius and 440 mm deep soil model, have been considered. 

The analyses were performed assuming a homogeneous soil with an 

initial void ratio e = 1.067. 

The mesh and the boundary conditions used for the two–dimensional 

axisymmetric simulations of the 1-pile raft model are shown in Figure 

6.7. The mesh contains 14836 elements and 15102 nodes. The size of the 

first soil elements in contact with the lateral boundary that represents the 

pile shaft was set equal to 1 mm, a value which is very close to the mean 

grain size (D50 ≈ 0.093 mm). The adopted contact element size did not 

produce any local numerical instability due to the high concentration of 

shear strains in the interface elements, which are generally observed in 

medium dense and dense sand, as quoted by Loukidis and Salgado 

(2008). 

The rigid boundary, which represents the raft bottom, was removed in the 

isolated pile model. The rigid boundaries, which represent the pile shaft 



Chapter 6                                     Numerical analyses                                      141 

and base, were removed in the unpiled raft model and the mesh was 

extended to the symmetry axis of the model. 
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Figure 6.7. Finite element mesh and boundary conditions in the 1-pile raft simulation. 



142                 Modelling of Piled Raft Foundations in Sand                  D. Giretti 

The following simulation procedures have been adopted. 

Unpiled raft R 

The simulations were carried out applying uniform displacement 

increments along the entire raft–soil interface, assuming a perfectly rigid 

raft; the maximum relative settlement achieved was w/dr = 5%. 

Non displacement isolated pile IP 

Uniform displacement increments were applied along the entire pile–soil 

interface, including the pile tip, assuming a perfectly rigid pile. 

In order to replicate the installation procedure of the non displacement 

pile carried out during centrifuge tests, i.e. to simulate the alignment of 

the pile head with the soil surface which took place in–flight at 75g and 

the subsequent loading test carried out at 100g (described in Chapter 3), 

the pile was preloaded up to a settlement of w/Dp = 15% and then 

unloaded. At the end of the installation simulation, residual forces, which 

were comparable to those measured during the centrifuge tests, acted on 

the pile. Subsequently, the pile was reloaded up to a pile relative 

settlement of w/Dp = 36%. 

Non displacement 1-pile raft PR1 

Uniform displacement increments were applied along the entire raft–soil 

interface and pile–soil interface, including the pile tip, assuming a 

perfectly rigid raft and pile. The pile preloading procedure was adopted. 

The maximum pile relative settlement achieved during the loading phase 

was w/Dp = 46% (w/dr = 4.2%). 
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6.4 Results 

In following sections, the length quantities are presented in non–

dimensional form: the depth z is normalised to the pile length, z/Lp; the 

settlement w is normalised to the raft diameter or to the pile diameter, 

w/dr or w/Dp; the distance from the model axis of symmetry R is 

normalised to the raft radius, R/rr (where rr = dr/2). 

6.4.1. Unpiled raft R 

Figures 6.8 to 6.11 report some of the results of the numerical 

simulations of unpiled raft model R. Figure 6.8 compares the simulated 

stress–settlement curve (applied pressure qt vs. the raft relative settlement 

w/dr) to that measured in the centrifuge (test URLT0, see Figure 3.15 and 

Table 3.7). The numerical qt curve is almost superimposed over the 

centrifuge one, at a lower settlement than 2%, then it diverges slightly as 

w/dr increases and reaches 10% higher values at w/dr = 5%. 

Figures 6.9 and 6.10 show the profiles of the increment in the vertical 

and radial effective stresses, ∆σ’v and ∆σ’r, respectively, as a function of 

z/Lp, at several R/rr. Figure 6.11 reports the profiles of ∆σ’r as a function 

of R/rr, at several z/Lp. The values of ∆σ’v and ∆σ’r, which have been 

evaluated as the current values of the vertical and radial effective 

stresses, σ’v and σ’r, minus the initial overburden values, σ’v0 and σ’r0 (i.e. 

∆σ’v = σ’v – σ’v0; ∆σ’r = σ’r – σ’r0), are represented in Figures 6.9 to 6.11 

for five values of w/dr, ranging from 0.45% to 2.27%. 

The ∆σ’v and ∆σ’r curves reported in Figures 6.9 to 6.11 show a 

significant stress concentration under the raft at z/Lp < 0.5. The stress 

increment due to the raft pressure becomes progressively lower at greater 

depth, and it is quite negligible at the depth z/Lp=1. As expected, the 
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stress concentration just beneath the raft is higher at the raft edge (R/rr = 

1) and lower at the raft centre (R/rr = 0). 
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Figure 6.8. Unpiled raft: numerical simulation vs. centrifuge test results. Total applied 
pressure qt vs. the relative settlement w/dr. 
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Figure 6.9. Numerical simulation of the unpiled raft. Profiles of the increment in the 
vertical effective stress ∆σ’v with the relative depth z/Lp at several radial distances from 
the raft axis R/rr and at several relative settlements w/dr of the raft. 
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Figure 6.10. Numerical simulation of the unpiled raft. Profiles of the increment in the 
radial effective stress ∆σ’r with the relative depth z/Lp at several radial distances from 
the raft axis R/rr and at several relative settlements w/dr of the raft. 

6.4.2. Isolated non displacement pile IP 

Figures 6.12 to 6.17 report the results of the numerical simulations of the 

IP isolated pile. The loads acting on the pile head and base, qA and qB, 

and the shaft friction τS are represented in Figures 6.12 and 6.13 vs. the 

pile relative settlement, w/Dp. The Figures also reports the qA and qB, and 

the shaft friction τS,AB values obtained from the centrifuge test on the non 

displacement IP pile (test ND-PLT6, see Figure 3.15 and Table 3.7). The 

numerical qA, qB and τS curves have a similar mobilisation pattern as the 

experimental curves, but the computed values of the base resistance and 

the shear stress are lower than the measured values, over almost the 

whole investigated settlement range. 

Figure 6.14 reports the profiles of the shear stress acting along the pile 

shaft, τs, as a function of the depth relative to the pile length, z/Lp, for 
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w/Dp values ranging from 1% to 26%. Figure 6.15 reports the profiles of 

the vertical and radial effective stresses, σ’v and σ’r, acting at the pile 

interface at w/Dp = 10.1%. Figures 6.16 and 6.17 show the profiles of the 

increments in the vertical and radial effective stresses along the pile 

shaft, ∆σ’v and ∆σ’r, as a function of z/Lp. The values of ∆σ’v and ∆σ’r, 

which have been evaluated as the current values of the vertical and radial 

effective stresses, σ’v and σ’r, minus the initial overburden values, σ’v0 

and σ’r0, are represented in Figures 6.14 to 6.16 for values of w/Dp 

ranging from 1% to 26%. 
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Figure 6.11. Numerical simulation of the unpiled raft. Profiles of the increment in the 
radial effective stress ∆σ’r with the radial distance from the raft axis R/rr at several 
relative depths from the raft bottom z/Lp and at several relative settlements w/dr of the 
raft. 
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Figure 6.12. Isolated non displacement pile: numerical simulation vs. centrifuge test 
results. Loads on pile head qA and base qB vs. the pile relative settlement w/Dp. 
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Figure 6.13. Isolated non displacement pile: numerical simulation vs. centrifuge test 
results. Shaft friction τS vs. the pile relative settlement w/Dp. 

As described by Loukidis and Salgado (2008), as the pile is subjected to 

axial loading, it drags the surrounding soil down and the increasing pile 

load is diffused in the soil through increasing shear stresses (Figures 6.13 
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and 6.14). As shearing proceeds the interface soil elements are subjected 

to the rotation of the principal effective stress directions. 
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Figure 6.14. Isolated non displacement pile: numerical simulation. Profiles of the shaft 
friction τS at several pile relative settlements w/Dp. 

The deformation mode is similar to that of simple shear, even though the 

change in soil volume leads to both radial and hoop strains. If the soil is 

generally dilative, the elements closer to the pile push against the 

neighbouring soil elements that lie in the same radial plane, a process that 

leads to a decrease in the vertical effective stress and an increase in the 

lateral effective stress. After a certain amount of vertical displacement of 

the pile (w/Dp = 2%), the soil close to the shaft reaches a critical state and 

stops dilating. This leads to an overall steady state of stress at which the 

shaft resistance reaches its limit value (Figures 6.13 and 6.14), the 

principal effective stress directions have an inclination of +45° with the 

vertical, and the radial and vertical effective stresses are almost equal, as 

can be seen in Figure 6.15, where the profiles of σ’v and σ’r, acting at the 

pile interface at w/Dp = 10.1%, are compared with the profiles of the 
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initial values σ’v0 and σ’r0. A loss of σ’v and σ’r occurs in the region at 

approximately 1.5Dp above the pile base, as the soil elements are subject 

to extension due to the compressed soil underneath. 
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Figure 6.15. Numerical simulation of the isolated non displacement pile. Profiles of the 
vertical and radial effective stresses along the pile shaft at rest and at the relative pile 
settlements w/Dp=10.1%. 
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Figure 6.16. Numerical simulation of the isolated non displacement pile. Profiles of the 
increment in the vertical effective stress ∆σ’v along the pile shaft at several pile relative 
settlements w/Dp. 
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The vertical effective stress decrease due to the shearing (∆σ’v < 0 in 

Figure 6.16) is more significant at greater depths. The radial effective 

stress increase (∆σ’r > 0 in Figure 6.17) is almost uniform along the pile 

shaft. 
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Figure 6.17. Numerical simulation of the isolated non displacement pile. Profiles of the 
increment in the radial effective stress ∆σ’r along the pile shaft at several pile relative 
settlements w/Dp. 

6.4.3. Non displacement 1-pile raft PR1 

Figures 6.18 to 6.25 report the results of the numerical simulations of the 

non displacement 1-pile raft (PR1 scheme). The total applied load, qt, and 

the load transmitted to the soil, qr, are represented in Figure 6.18 vs. the 

settlement normalised to the raft diameter, w/dr. The Figure also reports 

the qt and qr values obtained from the centrifuge test on the non 

displacement 1-pile raft (test ND-PRLT5, see Figure 3.15 and Table 3.7). 

The numerical and experimental load sharing mechanisms are reported in 

Figure 6.19. 

The loads acting on the pile head and base, qA and qB, and the shaft 

friction τS are represented in Figures 6.20 and 6.21 vs. the settlement 
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normalised to the pile diameter, w/Dp (left hand side) and to the raft 

diameter, w/dr (right hand side). The Figures also reports the qA, qB and 

τS,AB values obtained from the centrifuge test. 

Figures 6.22 and 6.23 show the profiles of the increment in the vertical 

and radial effective stresses, ∆σ’v and ∆σ’r, respectively, as a function of 

z/Lp, at several R/rr for values of w/Dp ranging from 1% to 26% (w/dr 

from 0.09% to 2.4%). Figure 6.24 reports the profiles of ∆σ’r as a 

function of R/rr, at several z/Lp, for the same settlement range. Figure 

6.25 reports the profiles of the shear stress acting along the pile shaft, τs, 

as a function of the depth relative to the pile length, z/Lp, for w/Dp values 

ranging from 1% to 26%. 

The load transfer mechanism from the raft to the soil and the pile is well 

reproduced by the numerical simulation, as can be seen in Figures 6.18 

and 6.19. 
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Figure 6.18. Non displacement 1-pile raft numerical simulation vs. centrifuge test 
results. Total applied pressure qt and pressure transmitted to the soil qr vs. the raft 
relative settlement w/dr. 
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Figure 6.19. Non displacement 1-pile raft numerical simulation vs. centrifuge test 
results. Load sharing mechanism. 
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Figure 6.20. Non displacement 1-pile raft: numerical simulation vs. centrifuge test 
results. Loads on pile head qA and base qB vs. the pile and raft relative settlements w/Dp 
(left hand side) and w/dr (right hand side). 
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Figure 6.21. Non displacement 1-pile raft: numerical simulation vs. centrifuge test 
results. Shaft friction τS vs. the pile and raft relative settlements w/Dp (left hand side) 
and w/dr (right hand side). 

However, the pile shaft and base capacity are underestimated as in the 

isolated single pile simulation (Figure 6.20 and 6.21). As far as the shaft 

friction mobilisation is concerned, after a limit value has been reached, τS 

increases further at large settlements (“∆σ’r effect” described in Chapter 

4). 

The profiles of the increment in the vertical and radial effective stresses, 

∆σ’v and ∆σ’r, reported in Figures 6.22, 6.23 and 6.24, highlight a 

combination of two effects along the pile–soil interface. Shearing effects, 

which cause a vertical stress reduction, as seen for the isolated pile, 

prevails at small settlements. The predominant effect at large settlements 

is that of the raft pressure on the soil, which causes an increase in both 

the vertical and radial stresses. 
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Figure 6.22. Numerical simulation of the 1-pile raft. Profiles of the increment in the 
vertical effective stress ∆σ’v with the relative depth z/Lp at several radial distances from 
the raft axis R/rr and at several raft and pile relative settlements w/dr and w/Dp. 
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Figure 6.23. Numerical simulation of the 1-pile raft. Profiles of the increment in the 
radial effective stress ∆σ’r with the relative depth z/Lp at several radial distances from 
the raft axis R/rr and at several raft and pile relative settlements w/dr and w/Dp. 
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As a consequence, the shear stress contours reported in Figure 6.25 are 

characterised by similar a pattern as the isolated pile at w/Dp < 2%, then, 

at large settlements, a progressive increment in the shear stress is caused 

in the upper pile shaft by the progressive increase in the vertical stress. 

The effect of ∆σ’r at the pile base depth (z/Lp=1) appears to be negligible. 

Figure 6.25 also highlights the shielding effect that the raft exerts on the 

pile: the soil under the raft is forced to settle by the same amount as the 

piles and no skin friction can develop at the pile heads. Thus, the degree 

of shaft friction mobilisation is maximum at the pile bases and reduces to 

zero at the pile tops. 
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Figure 6.24. Numerical simulation of the non displacement 1-pile raft. Profiles of the 
increment in the radial effective stress ∆σ’r with the radial distance from the raft axis 
R/rr at several relative depths from the raft bottom z/Lp and at several raft and pile 
relative settlements w/dr and w/Dp. 
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Figure 6.25. Non displacement 1-pile raft: numerical simulation. Profiles of the shaft 
friction τS at several raft and pile relative settlements w/dr and w/Dp. 



Chapter 7 

Contact vs. non–contact piled raft foundations 

7.1 Introduction 

When piles are used as settlement reducers, the main design aims, when 

attempting to achieve an economic foundation, are to minimise the 

number of piles and to fully utilise their bearing capacity. 

A relatively small number of piles could produce high bending moments 

and cracking in the raft and a concentration of axial stresses in the pile 

heads. In seismically active zones, if the piles are structurally connected 

to the slab, high horizontal shear forces and overturning moments may 

develop on the pile heads due to cyclic or dynamic lateral loads. In all 

these cases, the pile carrying capacity may be governed by their 

structural capacity rather than by their geotechnical capacity. Constraint 

reactions between the pile heads and the raft can be reduced by 

disconnecting the piles from the raft with an interposed fill layer; 

disconnected piles carry the loads from the superstructure in an indirect 

manner, and may be regarded as stiffeners of the subsoil. 

Some recent innovative piled footing projects have employed piled rafts 

with an interposed layer. Among others, mention can be made to the 

foundation system of the Rion Antirion Bridge [Garnier and Pecker 
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(1999), Pecker (2004)] which consists of vertical inclusions to improve 

the shear resistance of the foundation soils and to minimise the hazards 

related to differential settlements, plus a gravel bed to limit the shear 

forces and moments transmitted between the superstructure and the 

foundation soils. 

Several authors have recently presented results of numerical simulations 

[Wong et al. (2000), Liang et al. (2003), Liang et al. (2006), Huang et al. 

(2007)] or 1g model tests concerning rafts on “non–contact” settlement 

reducing piles [Cao et al. (2004)]. 

In this framework, multi–g centrifuge tests have been performed at 

ISMGEO on piled raft models axially loaded to explore the influence of a 

granular layer, interposed between a raft and piles, on the overall load–

settlement behaviour. The foundation system of the MOSE project – the 

mobile barrier system which has the aim of safeguarding the Venice 

lagoon from flooding, Burghignoli et al. (2007), Jamiolkowski et al. 

(2009) – was taken as a reference application. The MOSE system 

consists of a series of caissons, installed at the lagoon bottom inlets, 

which house flap gates. The gates will ensure the closure of the inlets 

when a high tide of +1.1 m elevation, or higher, is forecasted. The 

caisson bottoms lie on 0.5 m diameter and 19 m long driven piles 

covered by a 1 m thick layer of compacted coarse grained granular 

material. The piles have the purpose of mitigating the differential 

settlement due to spatial soil variability and to any possible placement 

imperfection linked to the complexity of the underwater works. The layer 

interposed between the pile heads and the caisson bottom has been 

designed to reduce overstressing at the connection between the piles and 

the caissons during cyclic excitation and to realise a more uniform 

pressure distribution which prevents local failure of the contact piles. 
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The centrifuge tests were aimed at investigating the influence of the raft–

granular fill–soil–pile interactions on the bearing capacity and stiffness of 

the piled raft foundation. 

In “traditional” piled rafts, the pile heads and the soil surface are forced 

to settle by the same amount as the raft, thus the pile–soil relative 

displacement is zero at the pile head and maximum at the pile tip and the 

shaft friction is mobilised from the pile point upwards [Burland (1995)]. 

The load is partially transferred from the raft to the shallow soil and 

partially to the pile heads, and from the piles it is diffused through the 

shaft and the base to deeper soil: contact piles act as settlement reducers 

by reducing the amount of load transmitted to the shallow soil. The load 

transmitted to the ground surface produces an increase in the vertical and 

horizontal stresses in the soil surrounding the piles and gives rise to an 

increase in the pile shaft capacity [Katzenbach and Arslan (1998), 

Katzenbach et al. (2000), Poulos (2001)]. The interaction between piles 

produces a decrease in the stiffness of each pile [El–Mossallamy and 

Franke (1998), Fioravante et al. (2008b)]. 

The insertion of a deformable layer between a raft and the pile heads 

allows downward soil–pile relative displacement which produces 

negative skin friction on the upper part of the shaft. Such a mechanism is 

mainly governed by the thickness and the stiffness of the interposed layer 

and by the stiffness of the subsoil. Non–contact piles act as vertical 

reinforcements of the subsoil and improve its mechanical properties by 

forming a new composite and stiffer material on which the raft rests 

[Wong et al. (2000), Liang et al. (2003), Liang et al. (2006), Huang et al. 

(2007), Fioravante (2010)]. 

This chapter shows some of the basic load transfer mechanisms on the 

bases of the interpretation of centrifuge tests. 
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7.2 Experimental set–up, test programme and test procedure 

The presented centrifuge loading tests were performed in the ISMGEO 

Geotechnical Centrifuge (IGC), previously described in Chapter 3. 

The adopted geometrical scaling factor of the models was N = 65; all the 

models were tested under an acceleration field of a = 65g. The distortion 

of the acceleration field was accounted for in the computation of the 

stress distribution with depth. 

A scaling factor of N = 65 was chosen in order to model groups of piles 

with adequate spacing loaded by a sufficiently small raft to minimise the 

boundary effects due to the proximity of the lateral container walls and 

the container bottom. 

7.2.1 Test sands, model raft and model piles 

Experiments were performed using dry silica Venice Lagoon Sand 

(VLS), herein also called “subsoil”, with 15% finer grains than 0.075 

mm, characterised by: 

– γd,min = 13.08 kN/m3 = minimum dry density; 

– γd,max = 16.50 kN/m3 = maximum dry density; 

– D50 = 0.18 mm = mean particle size; 

– UC = 3.33 = uniformity coefficient; 

– φ’cv = 35° = angle of shearing resistance at critical state. 

In the non–contact piled raft tests, the interposed granular layer was 

modelled using single sized siliceous Ticino sand (TS), herein simply 

called “interposed layer”, characterised by: 

– γd,min = 13.65 kN/m3; 

– γd,max =16.67 kN/m3; 
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– D50=0.58 mm; 

– UC = 1.79; 

– φ’cv = 35°. 

Figure 7.1 reports the grain size distribution of the test sands. 
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Figure 7.1. Grain size distribution of the test sands. 

The model raft was a square 115 mm wide (B) and 25 mm thick (tr) steel 

plate characterised by a modulus of elasticity of Er=2.1*105 MPa. The 

raft–soil stiffness ratio krs, defined below, was sufficiently high (i.e. krs = 

110) to consider the raft as rigid [Horikoshi and Randolph (1997)]. As a 

consequence, the settlement of the raft was considered uniform in the test 

interpretation. 
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where: 

Es0 = 115 MPa = small strain subsoil modulus [FL-2], evaluated at depth 

z= B/2, according to Mayne and Poulos (1999); 

νs = 0.2 = Poisson modulus of the subsoil [-]; 

νr = 0.3 =Poisson modulus of the raft [-]. 

The Es0 value introduced in the calculation was computed via the elastic 

theory as a function of the small strain shear modulus, G0, which was 

derived from the state parameter of the sand using the empirical 

correlation proposed by Saccenti (2006). The adopted correlation was 

calibrated on the basis of the shear wave velocity measurements 

performed through bender elements during triaxial tests on dry VLS 

specimens: 
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where: 

CG = 65 MPa = material constant [FL-2]; 

p’ = mean effective stress [FL-2]; 

p’a = 101 kPa = atmospheric pressure adopted for stress normalisation 

[FL-2]; 

e = void ratio [-]. 

The free–headed and close–ended model piles had an external diameter 

Dp of 8 mm and a length Lp of 292 mm; their axial stiffness was 

estimated through a direct calibration in a Shenk–Trebble loading frame 

and it resulted comparable to that of tubular steel piles or cast in situ 

concrete piles. In the test interpretation, the piles were considered rigid 

and their settlements were assumed constant with depth. 
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The piles were made from an aluminium alloy hollow pipe and they had 

an external skin roughness Rt ≈ 120 ÷ 300 µm, which was obtained 

through mechanical turning and measured peak to peak by a 

micrometrical profilometer; the minimum value of the relative roughness 

resulted to be Rn = Rt/D50 = 0.67. A relative roughness Rn > 0.1 ensures 

that shear failure occurs in the soil surrounding the pile and produces an 

interface friction angle, δ’, equal to the shearing resistance angle at the 

critical state, φ’cv, therefore the ultimate shear resistance does not depend 

on the pile roughness [Yoshimi and Kishida (1981), Kishida and Uesugi 

(1987), Jardine et al. (1993), Foray et al. (1995), Garnier and Konig 

(1998), Fioravante et al. (1999), Sarri (2001)]. 

The diameter of the model piles, normalised with respect to the particle 

size dimension, was Dp/D50 = 45; this ratio is below the lower limit given 

by Garnier and Konig (1998) (Dp/D50 > 100) and close to the limit 

suggested by Fioravante (2002) (Dp/D50 > 50). In the performed test, a 

larger value of Dp/D50, which would minimise scale effects that can 

overestimate the value of the ultimate shear stress, was not feasible since 

the value of Dp was chosen as large as possible to allow a group of 9 

model piles, with adequate spacing, to be loaded by a sufficiently small 

raft to minimise the geometrical constraints of the container, as shown in 

Figure 7.2, where the main geometrical characteristics of the model and 

the boundary conditions are reported. However, the possible increment in 

ultimate shear stress from the centrifuge tests does not affect the load 

transmission mechanisms, which are the main topic of the chapter. In the 

tests, the ratio between the diameter of the container and the raft side was 

> 3 and the distance of the pile tips from the container bottom was 

always greater than 20Dp. Some of the model piles were instrumented in 

each test. The fairly small diameter allowed a maximum of two load cells 
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per pile to be incorporated, and these measured the loads at two positions 

along the shaft. The miniaturised load cells, made from stainless steel, 

had a 4x4 mm square cross–section; two active strain gauges were 

attached onto each of the four flat surfaces, one to measure the pile–

longitudinal strains, the other the pile–transversal strains. The strain 

gauges were connected in a complex Wheatstone bridge which gave a 

very accurate measurement of the axial load. 
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Figure 7.2. Boundary conditions and test model set–up for the loading tests on the piled 
raft with the interposed layer. 

The instrumented cross–section was covered by a coaxial protective 

stainless steel jacket with an 8 mm external diameter, which prevented 

the strain gauges from being compressed by radial stresses, and it was 
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sealed with O–rings. The instrumented model piles were assembled in 

two configurations: the upper load cell was placed at the pile head 

(hereafter referred to as position A), while the lower load cell was placed 

at the pile base (position B) or alternatively at mid–pile (position C). The 

average sections of load cells A, C and B were at depths of 0.1Lp, 0.5Lp 

and 0.95Lp from the pile top, respectively. The adopted instrumentation 

allowed the axial loads transmitted to each instrumented pile to be 

measured and the load transmitted through the shaft to be estimated. 

Figure 7.3 reports a draft of the instrumented model piles. 

7.2 2 Test programme 

The test programme consisted of twenty–one loading tests conducted on 

the nine model schemes shown in Figure 7.4 and listed below, of which 

P, R and NC0 have been used as reference tests. Al the foundations were 

subject to vertical axial loading. Table 7.1 summarises the main 

characteristics of the tests presented in this chapter, while the dimensions 

of the foundations are reported in the model and prototype scale in Table 

7.2. Figure 7.5 shows the configurations of the load cells in each test. 

P:   isolated pile test (test T1); 

R:  unpiled raft test (T2); 

PR1:  1–contact piled raft test (T3 and T4); 

PR4: 4–contact piled raft test (T8); 

PR9: 9–contact piled raft test (T9); 

NC0: unpiled raft test with the interposed layer (T5); 

NC1: 1–non–contact piled raft test (with the interposed layer between the 

raft and the pile head, tests T6 and T7); 

NC4: 4–non–contact piled raft test (T10); 

NC9: 9–non–contact piled raft test (T11). 



166                  Modelling of Piled Raft Foundations in Sand                 D. Giretti 

4 mm

Pile cross section
with strain gauges

Strain gauges

Steel 
sleeve

8 mm

4 mm

Load cell

L p
= 

29
2 

m
m

27
 m

m
37

 m
m

8 mm

7.2 mm

Load cells
A

Load cell
C

Load cell
B

A-C 
pile

A-B 
pile

Dp = 8 mm  
Figure 7.3. Instrumented model piles. 

Table 7.1. Test programme. 
Scheme Test Pile number n Instrumentation Spacing s DR (%) 

P T1 1 A–B - 74 
R T2 0 – - 72 

T3 1 A–B - 68 PR1 T4 1 A–C - 72 
PR4 T8 4 2 A–B + 2 A–C 9.625Dp 77 
PR9 T9 9 3 A–B + 2 A–C 4.812Dp 69 
NC0 T5 0 – - 72 

T6 1 A–B - 69 NC1 T7 1 A - C - 72 
NC4 T10 4 2 A–B + 2 A–C 9.625Dp 72 
NC9 T11 9 3 A–B + 2 A–C 4.812Dp 70 
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Table 7.2 Foundation dimensions (model and prototype scale). 

Dimension Model (mm) Prototype (m)
Raft side (B) 115 7.5 
Pile length (Lp) 292 19 
Pile diameter (Dp) 8 0.5 

4 piles 77 5 Pile spacing s 9 piles 38.5 2.5 
Interposed layer thickness (h) 15.4 1 
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Figure 7.4. Model schemes. 
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Figure 7.5. Configuration of the load cells. 

7.2.3 Test procedure 

The following test procedure was adopted: 

(a) At 1g: each soil model was reconstituted to a relative density DR ≈ 

60%, by means of pluvial deposition of the dry sand, in a rigid steel 

cylindrical container with an internal diameter of 400 mm and a height of 

755 mm, the surface of the soil model being located at a level of 492 mm 

above the container bottom, as shown in Figure 7.2, which reports the 

set–up of an NC piled raft loading test and the boundary conditions. After 

soil deposition, the model piles were partially jacked into the soil until 15 

mm (1 m in the prototype scale) of the piles remained above the soil 

surface. A very rigid frame, which held a hydraulic actuator, two linear 

displacement transducers (LDTs) to monitor the raft displacement, an 

external load cell to measure the applied load and the raft plate (all these 

elements were rigidly connected to each other), was mounted onto the 

container top and then the model was embarked in centrifuge and 
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accelerated to 65g. In the isolated pile test, the raft plate was replaced by 

a 8 mm diameter piston. 

(b) At 65g: as the model was subjected to the acceleration field in the 

centrifuge, the soil surface settled due to consolidation (the settlement of 

the sand surface was measured with an LDT fixed to the container walls, 

see Figure 7.2); the presented data refer to the average soil density 

attained at the end of the in–flight consolidation, which was always about 

DR ≈ 70% (only in test PR4 was the final soil density higher, i.e. DR ≈ 

77%) and it was assumed constant with depth. At the end of the in–flight 

consolidation, the model piles were jacked completely into the soil model 

at 65g by means of the raft plate (or by the piston), then the raft was 

lifted up and the jacking load removed. 

Contact piled rafts: 

(c) At 65g: without stopping the centrifuge, the raft plate (or the piston) 

was slowly lowered until contact with the pile heads and the soil surface 

was achieved and the loading test was performed. 

Non–contact (NC) piled rafts: 

(c) The centrifuge was stopped and a 15.4 mm thick granular bed (1 m in 

the prototype scale) was applied through pluvial deposition at 1g to a 

very high relative density, then the soil model was again accelerated to 

65g. 

(d) At 65g: the soil model was again allowed to consolidate. At the end of 

the second in–flight consolidation, the raft plate was lowered until 

contact with the interposed layer surface was achieved and the loading 

test was performed. 
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The jacking and the loading phases were executed at a constant loading 

rate, which was applied by the servo–controlled hydraulic actuator and 

measured by the external load cell. The raft settlement was obtained by 

averaging the measurements of the two LDTs placed in diametrically 

opposite positions from the actuator, as shown in Figure 7.2. 

The “quasi–displacement” procedure adopted to install the model piles 

produced less densification of the soil around the piles than a 65g full 

pile length penetration would, but it was necessary to simultaneously jack 

a group of free headed piles. However, this procedure was assumed 

adequate to allow the full mobilisation of the shearing and bearing 

capacity to be attained. 

The residual stresses produced by the in–flight consolidation of the soil, 

by the jacking phase and by the additional overburden of the interposed 

layer, in the case of the NC piles, have been taken into account in the test 

result interpretation. 

The soil model uniformity was checked by means of in–flight static cone 

penetration tests, performed on dummy models (DR ≈ 48% and 66%, 

respectively), by means of a miniaturized electrical piezocone (diameter 

of 11.3 mm and apex angle of 60°), penetrating at a rate of 2 mm/s. The 

measured cone point resistance, qc is plotted in Figure 7.6 versus the 

vertical effective stress, σ’v. In the Figure, the measured resistance 

profiles are compared with those computed using the empirical 

correlation proposed by Jamiolkowski et al. (2003). The correlation has 

been adapted to centrifuge results, modifying the first coefficient of the 

original expression. The trend of the measured qc indicates the 

achievement of an acceptable level of uniformity. 
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Figure 7.6. In–flight Cone Penetration Test at DR ≈ 48 and 66%. 

The very limited scatter of the loads measured by the instrumented piles 

during the jacking phase of tests T1, T3, T4, T6 and T7 proved the 

repeatability of the soil model preparation method [Fioravante (2010)] 

and therefore the results of different loading tests on the same model 

scheme can be compared. The validity of this hypothesis allowed the 

results of analogous 1–piled raft tests, in which the pile was alternatively 

instrumented A–B and A–C (T3 and T4 for the contact piles, T6 and T7 

for the NC piles), to be merged to compose an “equivalent A–B–C pile” 

and the axial load distribution with depth to be evaluated. 

Due to the axial–symmetry of the load and geometry, it has also been 

assumed that the piles placed at the same distance from the raft centre 

have experienced the same load distribution with depth; therefore, the 

measurements obtained from model piles alternatively instrumented A–B 

and A–C have been merged to compose an equivalent A–C–B pile, at 

that distance. 
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7.2.4 Constraint conditions 

In the contact piled rafts, the rigid raft imposed compatibility of the 

displacements and the pile heads and the subsoil surface were forced to 

settle by the same amount as the raft: 

at z = 0    wr = ws = wp     [L]        (7.3) 

where: 

z = depth from the initial subsoil model surface [L] (see Figures 7.2 and 

7.4); 

wr = measured raft settlement [L]; 

wp = pile settlement [L]; 

ws = subsoil surface settlement [L]. 

In NC piled rafts, the interposed layer compressibility allows the piles to 

settle less than the surrounding soil, i.e. downward subsoil surface–pile 

relative displacement takes place (Fioravante 2010): 

at z = 0    wr > ws > wp     [L]       (7.4) 

The load transfer mechanisms in the contact and non–contact piled rafts 

can be summarised as schematically represented in Figure 7.7; a trace of 

the possible soil settlement distribution with depth is also shown. 

The settlements ws and wp were not measured in the NC piled raft tests 

presented here. 

7.3 Stress–settlement behaviour of the piled rafts 

Figure 7.8 reports the results of the load tests on the contact piled rafts 

(left–hand side) and those of the NC piled rafts (right–hand side) with 

respect to the raft relative settlement, wr/B. 
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Figure 7.7. Schematic of the load transfer mechanisms in contact and NC piled rafts, 
with probable profiles of soil displacement with depth ws(z). 

The total unit load applied to raft, qt (shown in Figure 7.8a), the pressure 

transmitted by the raft to the subsoil, qr (Figure 7.8b) and the total axial 

load transmitted by the raft to pile heads, Qp (Figure 7.8c, where the load 

is represented in model scale) have been computed as: 

qt = Qt/B2            [FL-2]      (7.5) 

4
D

nB

Qq 2
p2

e

r
r π

⋅−
=          [FL-2]       (7.6) 
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∑=
=

n

1i
Aip QQ      n = 1, 4, 9   [F]       (7.7) 

where: 

Qt = measured load applied to the raft [F]; 

Qr = Qt – Qp = load transmitted to the subsoil [F]; 

Be = loading area side [L], equal to B in the contact piled rafts, while, in 

the presence of the interposed layer, a loading spread of 45° was 

assumed, i.e.: Be = B + 2h, with h = interposed layer thickness [L]; 

n = number of piles [-]; 

QAi = axial load measured at the head of the ith pile [F]. 

Figures 7.8a and b also report the results of the unpiled raft load tests (R 

on the left–hand side and NC0 on the right–hand side) for which qt = qr. 

In tests PR9 and NC9, the axis symmetry of the geometry and of the 

loading conditions allowed us to account for the non instrumented piles, 

which were considered to be loaded to the same extent as the 

instrumented piles placed at the same distance from the raft centre. 

The load sharing between the soil and the piles was evaluated from the 

results reported in Figure 7.8 and the Qr/Qt and Qp/Qt, ratios are plotted 

in Figure 7.9 vs. wr/B (left–hand side contact piled rafts, right–hand side 

NC piled rafts). The piled raft settlement efficiency function, ζ was 

derived from the same results; the ζ curves, evaluated, at a certain applied 

qt, as the settlement of the unpiled raft minus the settlement of the piled 

rafts normalised to the settlement of the unpiled raft, are reported in 

Figure 7.10 as a function of the number of piles, for values of qt ranging 

from 25 to 700 kPa. 

Observing Figures 7.8, 7.9 and 7.10, the following comments can be 

made: 
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Contact piled rafts 

• The unpiled raft R shows an almost linear stress–settlement curve 

while the curves of piled rafts PR1, PR4 and PR9 are non–linear 

(Figure 7.8a, left–hand side). The piled raft stiffness values at small 

settlements depend on the pile number. Yielding occurs at wr/B ≈ 

0.3% for PR1 and PR4, at wr/B ≈ 1.2% for PR9 and it causes a sharp 

decrease in the tangent stiffness which, at larger relative settlements, 

becomes almost steady and similar to R (unfortunately test PR4 was 

interrupted at wr/B = 0.7%). In the explored range of loads, the piled 

raft foundations did not reach their ultimate load capacity and the 

load–settlement curves can be reproduced, as a first approximation, as 

bi–linear functions, according to the first and the second segments of 

the tri–linear curve defined by Poulos (2001) and sketched in Figure 

7.11. 

• The foundation yielding is caused by the yielding of the piles (Figure 

7.8c); after yielding, the observed steady increase in the total unit load 

qt, carried by PR1, PR4 and PR9, is mainly due to the almost linear 

increase in the stress transmitted to subsoil, qr (Figure 7.8b). 

• In PR4, the pile group yielding load results to be Qpy,PR4 ≈ 4Qpy,PR1, 

and Qpy,PR4 is reached at about the same settlement as Qpy,PR1; in PR9, 

the pile group yielding load is Qpy,PR9 >> 9Qpy,PR1 and it is reached at a 

higher settlement than PR1. In PR9, the increased pile yielding load 

can mainly be attributed to the effect of the compaction of the sand 

produced by the jacking of the 9 piles; the pile group is probably 

influenced by interactions between the piles which cause a softer 

response. 
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Figure 7.8. Load–settlement relationships of the piled rafts: (a) total unit load qt, (b) unit 
load transmitted to subsoil qr and (c) total load on piles Qp (model scale), for the contact 
(left–hand side) and non–contact (right–hand side) piled rafts. 
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• The qr curves of PR1, PR4 and PR9 reported in Figure 7.8b, after an 

initial non–linearity, which is probably due to a non–uniform contact 

between the raft and the soil surface, are almost linear. PR1 and PR9 

show similar tangent stiffness to R, while PR4 seems to be stiffer, 

probably because of the higher soil density (DR,PR4 ≈ 77% while the 

average value of the other tests is DR ≈ 70%). 

• As far as load sharing is concerned, the contact piles carry most of the 

applied load at small settlements while the subsoil is loaded 

progressively as the raft settles (Figure 7.9 left–hand side). After the 

piles yield, the further increment of the applied load is carried by the 

subsoil, which still has linear behaviour. 

• The piled raft efficiency function ζ depends on the number of piles 

and on their yielding load. As shown in Figure 7.10, the efficiency of 

the 1–piled raft is ζPR1 = 0.5 before yielding (qt ≤ 100 kPa); after 

yielding, ζPR1 decreases with increasing qt and reaches a steady value 

of 0.1 for qt ≥ 250 kPa. The efficiency of PR4 is almost constant for qt 

≤ 300 kPa, ζPR4 = 0.85; it decreases for qt ≥ 300 kPa and reaches a 

value of 0.5 at qt = 700 kPa. As for PR9, ζPR9 ≈ 0.88 for qt ≤ 700 kPa 

and the yielding load has not been reached. 

Non–contact piled rafts 

• The NC0 curve is almost linear and it is slightly stiffer than R due to 

the higher overburden stresses in the shallow soil and to the high 

density interposed layer (Figure 7.8a right–hand side). The stress–

settlement relationships of the NC1, NC4 and NC9 tests are quite 

linear – the first segment of the tri–linear curve defined by Poulos 

(2001), Figure 7.11 – and the piled foundation systems have not 

mobilised the yielding load of the pile group (Figure 7.8c). The 



178                  Modelling of Piled Raft Foundations in Sand                 D. Giretti 

foundation tangent stiffness increases with an increase in the number 

of piles. At a serviceability raft settlement, which can be estimated as 

approximately wr/B < 0.1%÷0.5% [O’Neill et al. (2001), Reul (2003], 

the NC pile foundations carry lower loads than the analogous contact 

pile rafts. 

0

1

2

3

4

0 25 50 75 100

Load on subsoil/applied load Qr/Qt [%]
R

af
t r

el
at

iv
e 

se
ttl

em
en

t w
r/B

 [%
]

0255075100
Load on piles/applied load Qp/Qt [%]

PR1

PR9

PR4

0 25 50 75 100

Load on subsoil/applied load Qr/Qt [%]

0255075100
Load on piles/applied load Qp/Qt [%]

NC1

NC9

NC4

CONTACT NON-CONTACT

 
Figure 7.9. Load sharing for the contact (left–hand side) and non–contact (right–hand 
side) piled rafts. 
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Figure 7.10. Piled raft settlement efficiency. 
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Figure 7.11. Simplified contact piled raft load–settlement curve, adapted from Poulos 
(2001). 

• The Qp curves reported in Figure 7.8c seem to be softer than those of 

the contact piles since they are plotted vs. the raft settlement wr, which 

is higher than wp (see Figure 7.7); in this scale, the pile contribution to 

the foundation resistance, as the raft settles, can be directly evaluated. 

• The load progressively transmitted to the pile heads, as the total 

applied load increases, results to be approximately proportional to the 

number of piles, up to the maximum settlement reached, i.e. Qp,NC4 ≈ 

4Qp,NC1 and Qp,NC9 ≈ 9Qp,NC1 (Figure 7.8c). 

• The qr curves of NC1, NC4 and NC9 reported in Figure 7.8b are 

approximately linear, slightly stiffer than NC0 and almost 

superimposed. 

• The total applied load is mainly carried by the subsoil and only a 

small quantity is transmitted to the pile heads, as shown in Figures 
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7.8b and c. The load sharing plotted on the right–hand side of Figure 

7.9 does not show a redistribution of the load as the raft settles and the 

Qp/Qt ratios remain almost constant in the experienced range of wr. 

• Since the piled raft yielding has not been reached, the settlement 

efficiency is approximately constant in the experienced displacement 

range and it depends on the number of piles: ζ = 0.08, 0.25 and 0.46 

for NC1, NC4 and NC9, respectively (Figure 7.10). 

7.4 Pile behaviour 

The dissimilar stiffness mobilisation shown by the contact and non–

contact piled rafts, as can be observed in Figure 7.8a, can be explained by 

the different constraint conditions at the raft–soil interface represented in 

Figure 7.7. 

In contact piled rafts, the piles are directly loaded by the raft through 

their heads and the pile capacity mobilisation depends on the relative 

stiffness of the pile–subsoil. At the initial loading stage, the piles are 

much stiffer than the surrounding soil and they carry most of the applied 

load, until their capacity is fully mobilised; the initial foundation stiffness 

mainly depends on the pile stiffness. 

In NC piled rafts, the load sharing and the pile capacity mobilisation are 

governed by the compressibility of the interposed layer, whose 

deformations modify the load transfer mechanism from the raft to the 

piles, allowing downward raft–subsoil–pile relative displacement. As a 

consequence, the initial foundation stiffness also depends on the 

interposed layer stiffness. 

The base and the shaft contribution of the piles have been analysed to 

focus on the aforementioned mechanisms. As extensively described by 

Fioravante (2010), the base resistance and the shaft friction mobilisation 
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curves of NC piles plotted vs. wr significantly differ from those of 

contact piles, since wr > wp. To allow a comparison between contact and 

non–contact piles, the base and shaft resistance curves have to be 

expressed as a function of the pile settlement. Since the wp of the NC 

piles was not directly measured in the tests, it was deducted indirectly. 

On the basis of the results reported below, the pile tips were considered 

not to be influenced by the load induced by the plate on the shallow soil 

at the settlements reached in the tests, hence the base mobilisation 

functions of the NC piles were assumed identical to those of the 

homologous contact piles: 

[ ∑
=

n

1i
pBi )w(Q ]NC = [ ∑

=

n

1i
pBi )w(Q ]PR  n = 1, 4, 9  [F]    (7.8) 

where: 

QBi = axial load measured at the base of ith pile [F]. 

Thus, each value of ΣQBi measured in the NC tests was associated to the 

value of wp measured in the corresponding contact pile tests. The thus 

calculated wp ranged from 5% of wr for NC1 and NC4 to 15% of wr for 

NC9, in the range of raft settlement experienced in the performed tests. 

Figure 7.12 reports the measured unit loads acting on the pile head qA 

(Figure 7.12a) and base qB (Figure 7.12b) and the mean shear stress τS,AB 

(Figure 7.12c) for the contact (left–hand side) and the NC piles (right–

hand side); qA, qB and τS,AB are plotted with respect to the measured pile 

relative settlement wp/B for the contact piles and vs. the computed wp/B 

for the NC piles. The results of the loading tests on the isolated pile P are 

also reported on the left–hand side of Figure 7.12. 

The values of qA, qB and qC (where qC is the unit load acting at mid–pile) 

gathered from the PR1, PR4 and PR9 tests are plotted vs. the depth 
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relative to the pile length, z/Lp, at values of wr/B = 0, 0.25, 0.5, 1, 2%, on 

the left–hand side of Figure 7.13; the analogous values obtained from the 

NC1, NC4 and NC9 tests are reported on the right–hand side of Figure 

7.13. 

The unit loads qA, qB and qC and τS,AB were computed as: 

4
D

n

Q
q 2

p

n

1i
Xi

X π
⋅

∑
= =    X = A, B, C n = 1, 4, 9  [FL-2]    (7.9) 

pAB

n

1i
AB,Si

AB,S DLn

Q

π⋅⋅

∑
=τ =     n = 1, 4, 9  [FL-2]         (7.10) 

where: 

n = number of piles [-]; 

∑
=

n

1i
AiQ  = the total axial load measured at the pile heads [F]; 

∑
=

n

1i
BiQ  = the total axial load measured at the pile tips [F]; 

∑
=

n

1i
CiQ  = the total axial load measured at the mid–piles [F]; 

( )∑ +−=∑
==

n

1i
ABBiAi

n

1i
AB,Si WQQQ  = the total shaft resistance acting between 

load cells A and B [F]; 

LAB = the distance between the measurement sections of cells A and B 

[L]; 

WAB = the dead weight of the pile between load cells A and B [F]. 

Some considerations can be derived from the data presented in Figures 

7.12 and 7.13. 
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Figure 7.12. Load – settlement relationships of the contact (left–hand side) and non–
contact (right–hand side) piles: (a) unit load acting on the pile heads qA, (b) unit base 
load qB and (c) mean A–B shear stress τS,AB. 
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Figure 7.13. Axial unit load distribution along the pile shaft: (a) 1–piled rafts, (b) 4–
piled rafts and (c) 9–piled rafts, for the contact (left–hand side) and NC (right–hand 
side) piled rafts. 



Chapter 7                 Contact vs. non–contact piled raft foundations                185 

Contact piles 

• The limit load of the P, PR1, PR4 and PR9 piles is mobilised at small 

settlements; after yielding, qA remains constant or increases slightly 

with settlement (Figure 7.12a). The axial unit load is transmitted from 

the piles to the subsoil by positive shaft friction and tip resistance, as 

shown on the left–hand side in Figures 7.12b, c and 7.13. 

• Isolated pile: the ductile behaviour of P is due to the combination of 

the shaft friction and the base resistance, which are both mobilised at 

wp/B ≈ 0.5÷0.6%, then τS,AB decreases slightly towards a steady value 

which is reached at large wp/B (Figure 7.12c), while qB increases 

slightly (Figure 7.12b). 

• Single pile beneath the raft: the qA curve of PR1 reaches a yielding 

value at wp/B ≈ 0.5÷0.6% with almost the same tangent stiffness as the 

isolated pile P, and then, from wp/B > 1.6%, it exhibits a steady 

tendency to increase as the pile settles (Figure 7.12a). The τS,AB curve 

achieves a higher limit value than that of P with the same gradient, 

and then it steadily increases from wp/B > 1.6%, reaching 15% higher 

values than the yielding value (Figure 7.12c). The difference between 

the τS,AB of PR1 and P suggests an enhanced pile response due to the 

increment in the vertical and horizontal stresses produced by the raft 

pressure at the soil surface, qr; such an effect becomes more 

significant when the pile is approaching its yielding load. The qB 

curve has a similar trend to that of P, even though it reaches 12% 

lower values, which suggests negligible effects of qr on the pile base 

resistance in this series of tests (Figure 7.12b). 

• PR4 piles: the qA vs. wp/B curve of the PR4 test is similar to that of 

PR1 with slightly larger qB and slightly smaller τS,AB than those of 

PR1; unfortunately, the test was interrupted at wp/B = 0.7%. 



186                  Modelling of Piled Raft Foundations in Sand                 D. Giretti 

• PR9 piles: compared to PR1, the PR9 piles reach higher yielding 

values of both qB and τS,AB, which would seem to suggest an improved 

pile capacity caused by the compaction of the sand produced by the 

jacking of 9 piles with spacing s = 4.8Dp; the softer pile response at 

small wp/B can be attributed to the overlapping of the individual 

displacement field of the neighbouring piles (Figures 17.12b and c). 

Non–contact piles 

• The qA and qB curves from the NC1, NC4 and NC9 tests are almost 

linear and do not yield at the experienced settlement. The NC4 group 

exhibits a similar initial stiffness to NC1, while the group of 9 piles 

shows softer behaviour, probably due to group effects. 

• The piles are loaded partially through their heads and partially by 

means of negative skin friction, which acts on their upper shaft 

(Figures 7.12c and 7.13, right–hand side). The pile–soil relative 

displacement is maximum at the pile heads and tips and is zero at a 

certain depth from the pile head (neutral plane). As a result, the shaft 

friction is mobilised from the pile heads downwards (upper shaft 

negative skin friction) and from the pile base upwards (lower shaft 

positive skin friction), while it is zero at the neutral plane. 

• The maximum axial stress of the piles shifts downwards from the pile 

heads, as shown on the right–hand side of Figure 7.13. This Figure 

shows that the maximum unit load is measured by mid–pile load cells 

C, as the mid–pile regions are compressed between the upper shaft 

negative shear stress and the pile head load on one hand, and the lower 

shaft positive shear stress and base resistance on the other. The neutral 

plane is probably at a lower depth than the mid–pile at the beginning 

of the load tests (negative average τS,AB at small raft settlement shown 
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on the right–hand side of Figure 7.12c) and then moves upwards as 

the applied load is increased (positive average τS,AB at large 

displacements). 

7.5 Non–contact piled raft stiffness 

Several contact piled raft design approaches have been proposed in 

recent years and have been summarised by Poulos et al. (1997) and 

Poulos (2001): from simplified analytical methods for preliminary design 

purposes, involving simple constitutive soil models and simplified soil 

profiles, to very complex methods employing three–dimensional finite 

element analyses and realistic elasto–plastic constitutive soil models. 

The NC piled raft stiffness was reproduced from the loading mechanisms 

observed in the performed physical model tests on piled rafts with the 

interposed layer according to the following rough procedure and the 

computed values have been compared with the measured ones. 

The interaction effects between the raft and piles reduce the stiffness of 

the pile group. At the same time, the increment in vertical and horizontal 

stresses due to the pressure of the raft on the subsoil causes an enhanced 

pile response. The opposite effects of raft–pile interaction on the pile 

response seem to compensate each other in the performed tests (see PR1 

in Figure 7.12). The interaction effects between the raft and piles could 

also reduce the stiffness of the raft, but the test results show that the raft 

stiffness does not seem to be dependent on the number of piles (Figure 

7.8b). These observations justify the assumption that the piles and the raft 

can be considered as independent non linear springs, i.e.: 

wr = Qr/kr  and  wp = Qp/kp    [L]          (7.11) 

where: 
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kr = unpiled raft stiffness, deduced from the NC0 test [FL-1]; 

kp = pile group stiffness [FL-1], evaluated as a function of the isolated 

pile P stiffness at small settlements, kp,P as: kp = n µ kp,P, where µ = n-e is 

the pile group efficiency, according to Fleming et al. (1992) and e = 

coefficient ranging from 0.3 to 0.6. 

A value of µ =1 was assumed in NC4, since group effects were not 

observed in PR4, which would seem to suggest that in this series of tests 

the group effects between the piles were negligible at the spacing s = 

9.6Dp. A value of µ = 0.33 (e = 0.5) was assumed in NC9. 

Since the total applied load is shared between the piles and the subsoil, 

i.e: 

Qt = Qp + Qr           [F]          (7.12) 

the piled raft settlement can be deduced from Eqs. 7.11 and 7.12 as: 

wpr = Qt/kpr = (kr wr + kp wp)/kpr     [L]          (7.13) 

where: 

kpr = piled raft stiffness [FL-1], which results to be: 

kpr = kr wr/wpr + kp wp/wpr       [FL-1]         (7.14) 

For non–contact piles, wp < wr and wr = wpr, thus the NC piled raft 

stiffness can be computed as: 

kpr = kr + kp wp/wpr = kr + β n kp,P    [FL-1]         (7.15) 

where: 

β = µ wp/wpr = pile group stiffness coefficient [-], which is equal to 0.05 

in the performed tests. 

The wp/wpr ratio is likely to depend on the interposed layer thickness and 

stiffness and on the pile group stiffness. 
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This very simplified procedure has been employed to reproduce the 

applied unit load–settlement curves of the non–contact piled raft 

foundations; the results are shown in Figure 7.14, where the measured 

(solid lines) and computed (dots) qt values are plotted vs. wr/B. 
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Figure 7.14. Measured (solid lines) and computed (dots) qt values vs. wr/B. 

7.6 Closing remarks 

The physical model test results have highlighted some major differences 

in the load–settlement behaviour of the contact and non–contact piled 

rafts, due to the different constraint conditions at the raft–soil interface. 

In the contact piled rafts, the raft and piles settle by the same amount and 

the piles are directly loaded by the raft through their heads. The load 

sharing mechanism depends on the pile–subsoil relative stiffness. 

At the initial loading stage, the piles are much stiffer than the 

surrounding soil and they carry most of the applied load until their 
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capacity is fully mobilised, while the subsoil is loaded progressively as 

the raft settles. At this stage, the contact piles reduce the foundation 

settlements by transferring a large amount of the total applied load to 

deeper and stiffer soil and the initial foundation stiffness mainly depends 

on the pile stiffness. 

When the piles reach their limit load and yield, further increments in the 

applied load are mainly carried by the subsoil, which still has linear 

behaviour, and the piled raft tangent stiffness becomes similar to that of 

the unpiled raft. 

The loading tests on contact piled rafts have also shown that the pressure 

transmitted by the raft to the subsoil increases the vertical and horizontal 

effective stresses and thus enhances the pile shaft capacity compared to 

the isolated pile, both before and after yielding. This effect could be 

further improved by the compaction of the sand which is caused by the 

jacking of close spaced piles. On the other hand, the test results have 

shown that, in a close spaced pile group, the overlapping of the 

individual displacement fields of neighbouring piles produces a decrease 

in the tangent stiffness of each pile. 

In the NC piled rafts, the insertion of a deformable layer between the raft 

and the pile heads allowed downward subsoil–pile relative displacement, 

which took place in a range of depth from the pile heads. The piles are 

loaded through their heads and through the negative skin friction acting 

on their upper shaft; the head load and the negative skin friction cause the 

pile to settle, with the consequent mobilisation of the positive skin 

friction on the lower shaft and the base resistance. This mechanism is 

likely to be governed by the interposed layer stiffness and thickness. If 

the granular fill is not stiff enough, the pile bearing capacity is not fully 
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mobilised and the efficiency of the NC piled rafts could result to be 

below that of the analogous contact piled raft. 

In this chapter, a rough procedure has been followed to reproduce the NC 

piled raft stiffness, which has been expressed as a function of the isolated 

pile stiffness, of the number of piles and of the unpiled raft stiffness. The 

influence of the compressibility of the interposed layer and the 

interaction effects between neighbouring piles has been expressed by a 

coefficient β which, from test interpretation, resulted equal to 0.05. 



Chapter 8 

Summary and conclusions 

The behaviour of rigid rafts on settlement reducing piles in sand, subject 

to vertical axial loading, has been examined in this research. 

A large numbers of centrifuge tests have been performed on piled raft 

models with the aim of: 

• highlighting the raft–soil–piles interaction effects on the pile 

behaviour and on piled raft resistance and stiffness; 

• analysing the load transfer mechanisms that take place within a piled 

raft and investigating the factors which govern the load sharing 

between the raft and the piles; 

• comparing two pile installation methods (displacement and non 

displacement piles) in terms of efficiency as settlement reducers; 

• highlighting the effect of a granular layer inserted between the raft 

bottom and the pile heads (piles not in contact with the raft) on the 

load transfer mechanism and on the piled raft stiffness. 

A series of numerical analyses has also been carried out to understand 

more clearly the effect of the pressure transmitted directly by the raft to 

the soil on the behaviour of a single pile in contact with the raft. 
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8.1 Centrifuge test results 

Two extensive centrifuge test series were performed. 

First series of centrifuge tests 

The tests were carried out on rigid circular raft models lying on a bed of 

very fine loose saturated silica sand (FF sand). The testing programme 

included the unpiled raft and the rafts on 1, 3, 7 and 13 contact piles. 

Two types of model piles were installed beneath the rafts: displacement 

(D) and non displacement (ND) piles. Load tests on models of isolated 

single pile were also performed, in order to establish the shaft and the 

base capacity as well as the load–settlement curves of the two kinds of 

piles. Altogether twenty load tests were carried out. 

• Pile–raft interaction effects: single pile under the raft vs. isolated pile 

The comparison between the load–settlement behaviour of the isolated 

pile and the single pile beneath the raft, for both the D and the ND 

piles, highlighted different shaft friction mobilisation mechanisms 

which can be ascribed to the effect of the pressure transmitted directly 

by the raft to the underlying soil. This load induced an increase in the 

vertical stress in the soil which, in turn, caused an increase in the 

radial stress acting on the pile shaft, which generated a significant 

increase in the shaft friction limit value mobilised at small 

settlements, especially in the upper pile portion (“∆σ’r effect”). The 

“∆σ’r effect” became more relevant when the pile approached its 

ultimate shear stress and it resulted to be slightly more pronounced in 

the ND pile than in the D pile. It had a negligible influence on the base 

resistance mobilisation, at least in the settlement range that has been 

investigated and for the pile length adopted. 
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At lower settlements than the limit values, neither a softer pile 

response, caused by the overlapping of the individual displacement 

fields of the cap and the pile, nor a minor shear stress mobilisation due 

to the shielding effect of the raft, were observed, as they were 

probably compensated for by the “∆σ’r effect”. Instead, the single 

piles beneath the raft resulted to be slightly stiffer than the isolated 

piles. 

The presence of the pile did not modify the load transfer mechanism 

from the raft to the soil, with respect to the unpiled raft. 

• Pile–pile interaction effects and installation method effect 

Raft on non displacement pile groups 

The tests on piled raft models on ND pile groups showed that the 

interactions between the piles caused a slower mobilisation of the 

shaft friction than the single pile beneath the raft, the trend becoming 

more marked as the number of piles increased, and, for the same 

number of piles, as the pile spacing decreased. Instead, in large pile 

groups, the confining effect exerted by the neighbouring piles 

enhanced the “∆σ’r effect” that was observed for the single pile under 

the raft, and gave higher values of the shaft limit resistance. 

Interaction between the pile tips was also observed in large pile 

groups, and this caused an improved end bearing capacity, especially 

for the more confined piles. 

Raft on displacement pile groups 

The tests on the piled raft models on the D pile groups showed that the 

interactions between the piles which produced a softer pile response 

were compensated for, or even exceeded, by the effect of the soil 

densification and increase in radial stresses induced in the soil by the 



196                 Modelling of Piled Raft Foundations in Sand                 D. Giretti 

jacking of the groups. Moreover, the superimposition of the 

compaction zone under the tips, produced by the pile jacking, caused a 

significant enhancement of the end bearing capacity in the close 

spaced pile group. 

• Load sharing and efficiency of the piled rafts 

The tests showed that the load sharing mechanism between the piles 

and the raft depended on the pile–subsoil relative stiffness. The raft 

and piles settled by the same amount and the piles were directly 

loaded by the raft through their heads. At the initial loading stage, the 

piles were stiffer than the surrounding soil and they carried most of 

the applied load until their capacity was fully mobilised, while the 

subsoil was loaded progressively as the raft settled. At this stage, the 

share of the total applied load transmitted to the soil decreased as the 

number of piles increased. The piles reduced the foundation 

settlements by transferring a great amount of the total applied load to 

deeper and stiffer soil and the foundation stiffness mainly depended 

on the pile group stiffness. As a consequence, as the number of piles 

increased the foundation stiffness increased and, as the pile spacing 

decreased, the number of piles being the same, the piled raft stiffness 

decreased (due to increasing interaction effects between the piles). 

When the piles reached their limit load and yield, the further 

increments of the applied load were mainly carried by the subsoil, 

which still showed linear behaviour, and the piled raft tangent 

stiffness began to be controlled by that of the raft–soil contact. 

The efficiency of the piles as settlement reducers depended on the 

number and type of piles and on their limit load. The efficiency 

functions resulted to be almost constant before the pile group limit 
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load was reached, then it decayed as the applied load increased; the 

ND piles were less effective as settlement reducers than the D piles. 

• Piled raft bearing capacity 

The piled raft bearing capacity was examined according to a load 

efficiency method, in order to understand the influence of the pile–pile 

and pile–raft interactions on the piled raft resistance. 

The piled raft total capacity was expressed as a function of the shaft 

and base resistance of the isolated pile and of the unpiled raft capacity, 

at a given settlement level, by means of shaft, base and raft efficiency 

functions, which accounted for the pile–pile and pile–raft interactions. 

The base efficiency functions assumed higher values than unity over 

the whole investigated settlement range due to the interaction effect 

between the pile tips and, only in the case of jacked piles, due to the 

effects of the soil densification under the bases produced by the pile 

installation. 

The shaft efficiency functions resulted to depend on many factors. In 

the case of ND piles, it was influenced by the interaction effects 

between the piles, at small settlements (lower shaft efficiency 

functions than unity), by the pile–raft interaction effects (“∆σ’r 

effect”) and by the confining effects between the piles, at large 

settlements (higher shaft efficiency functions than unity). 

In the case of D piles, the “∆σ’r effect”, the confining effects between 

the neighbouring piles and the soil densification effect produced by 

the jacking of groups of piles caused higher shaft efficiency functions 

than unity over the whole investigated settlement range. 

The raft efficiency function resulted to be equal to unity in small 

groups of piles and lower than unity in large groups of piles or in close 

spaced groups. 
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• Piled raft stiffness 

The measured foundation stiffness was compared with that computed 

using Randolph’s simplified approach. A general underestimation of 

the computed piled raft stiffness values was observed with respect to 

those measured, due to the underestimation of the contribution of the 

raft to the overall stiffness and to the overestimation of the interaction 

factors between the piles. The “∆σ’r effect”, the confinement effect 

exerted by the neighbouring piles and, only in the case of 

displacement piles, the effect of the densification produced by the 

jacking, compensated for or even exceeded the effects of the 

interactions between the piles which caused a softer pile response. 

Second series of centrifuge tests 

The second series of centrifuge tests was performed on rigid square piled 

rafts models in dry dense Venice Lagoon Sand (VLS). The testing 

programme included the unpiled raft, the displacement isolated pile and 

the piled rafts with 1, 4 and 9 displacement piles. The piled raft tests 

were carried out with the piles both in direct contact with the raft and 

separated from the raft by an interposed granular layer (non contact 

piles). Eleven load tests were performed. 

• Contact pile raft 

The tests confirmed what has been observed during the first series of 

tests, i.e. the “∆σ’r effect”, the interaction effects between the pile 

shafts and the bases, the effect of the soil densification and the 

increase in radial stresses due to the jacking. 

• Non contact piled raft: effect of the granular layer 

The tests showed that the insertion of a deformable layer between the 

raft and the pile heads allowed downward shallow soil–pile relative 
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displacement, which took place over a range of depth from the pile 

heads. The piles, which settled less than the surrounding soil and the 

raft, were loaded through their heads and through the negative skin 

friction acting on their upper shaft; the head load and the negative skin 

friction caused the pile to settle, with the consequent mobilisation of 

the positive skin friction on the lower shaft and the base resistance. 

The pile bearing capacity was only partially mobilised. The interposed 

layer stiffness and thickness governed this mechanism. 

A rough procedure was followed to reproduce the observed 

foundation stiffness, which was expressed as a function of the isolated 

pile stiffness, of the number of piles and of the unpiled raft stiffness. 

The influence of the compressibility of the interposed layer and the 

interaction effects between neighbouring piles was expressed by a 

coefficient β which, from test interpretation, resulted equal to 0.05. 

8.2 Numerical analyses results 

Finite element numerical analyses, using the state dependent dilatancy 

constitutive model proposed by Li and Dafalias (2000), were performed 

in order to reproduce some of the centrifuge tests carried out on the 

circular piled raft models: the unpiled raft, the ND isolated pile and the 

raft on 1 ND pile models. 

The parameters of the constitutive model adopted were calibrated on the 

basis of the results of the triaxial tests performed on the FFS specimens, 

and they were then adjusted to reproduce the unpiled raft centrifuge test 

results. 

The geometry and the dimensions of the numerical models corresponded 

to those of the physical ones and the simulations were carried out 

applying an accelerated gravitational field to the mesh. 
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Reasonable agreement was obtained between the simulated and the 

measured load–settlement curves. 

• Non displacement isolated pile simulation 

The simulation showed that, as the pile was subjected to axial loading 

and the shearing proceeded, the interface soil elements were subjected 

to the rotation of the principal effective stress directions. The elements 

close to the shaft pushed against the neighbouring soil elements that 

were lying on the same radial plane, a process that led to a decrease in 

the vertical effective stress and an increase in the lateral effective 

stress. After a certain amount of vertical displacement of the pile, the 

soil close to the shaft reached a critical state and stopped dilating. This 

led to an overall steady state of stress at which the shaft resistance 

reached its limit value, the principal effective stress directions had an 

inclination of +45° with the vertical, and the radial and vertical 

effective stresses were almost equal. 

• Raft on 1 non displacement pile simulation 

The numerical simulation highlighted that the behaviour of the capped 

pile was a result of two effects which took place along the pile–soil 

interface. At small settlements the shearing effects prevailed, and they 

caused a rotation of the principal direction, a vertical stress reduction 

and a radial stress increase, as seen for the isolated pile. At large 

settlements the predominant effect was that of the raft pressure on the 

soil, which caused an increase in both the vertical and radial stresses 

and a consequent increase in the shaft resistance with respect to the 

isolated pile. 
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