
University of Ferrara

Engineering Department of the University of Ferrara

Doctorate Degree in Science of Engineering

Coordinator: Prof. Stefano Trillo

Cycle: XXVI

Methodologies and Toolflows

for the Predictable Design of

Reliable and Low-Power NoCs

ING-INF/01

Candidate: Advisor:

Alberto Ghiribaldi Prof. Davide Bertozzi

Academic Year 2013

.

.

To Paola, because no matter what it has always been the two of us.

Contents

Contents i

List of Figures v

List of Tables ix

Acknowledgements 1

1 Introduction 3

2 Design Methodologies for Fault-Tolerant NoC Design 7

1 Motivation . 7

2 Background . 13

2.1 The LBDR routing mechanism 13

2.2 Built-In Self-Test/Diagnosis Framework 15

3 Fault-Tolerant Architectures Under Test 18

4 The New Fault-Tolerant Flow Control 20

4.1 NACK/GO . 20

4.2 NACK/GO Operating Principle 22

4.3 Novel Low-Power Fault-Tolerant Arbiter 24

4.4 Fault-Tolerance of Routing logic and Buffer FSMs . . . 26

5 Integration with Network-Level Fault Tolerance 26

6 Global Strategy for Self-Configuration 27

7 Routing Primitive Architecture 31

8 Experimental Results . 34

8.1 Area and Critical Path of the Fault-Tolerant Switch

Architectures . 35

ii Contents

8.2 Power Consumption 37

8.3 Area Overhead of the Routing Primitive 38

8.4 Fault tolerance of the routing primitive 39

8.5 Fault tolerance of the dual network 41

8.6 Performance analysis 41

9 Conclusions . 45

3 Non-Intrusive Trace & Debug NoC Architecture with Accu-

rate Timestamping for GALS SoCs 47

1 Motivation . 47

2 Related Work . 50

3 Proposed Architecture and Topology 50

4 Timestamping . 54

5 Results . 58

6 Conclusion . 61

4 A Vertically Integrated and Interoperable Multi-Vendor Syn-

thesis Flow for Predictable NoC Design in Nanoscale Tech-

nologies 63

1 Motivation . 63

2 CEF File Format . 66

3 The Flow at a Glance . 68

3.1 Front-End . 69

3.2 Back-End . 71

4 Experimental Results . 73

4.1 Floorplanning & Topology Synthesis, claims A and B . 74

4.2 Physical Convergence, claims A and C2 76

4.3 Correlation of Dynamic Power, claim B 78

4.4 Correlation of IR Drop Maps, claim C1 78

5 Conclusion . 79

5 A Transition-Signaling Bundled Data NoC Switch Architec-

ture for Cost-Effective GALS Multicore Systems 81

1 Motivation . 81

2 Previous Work . 84

Contents iii

3 Switch Architecture . 85

3.1 Mousetrap Pipelines 85

3.2 Input Port Module Architecture 86

3.3 Output Port Module Architecture 88

3.4 4-Input Mutex Design 90

3.5 Transition-Signaling Circular FIFO 91

4 Virtual Channel Links . 92

4.1 First Solution: Credit-based flow-control 95

Blocks detail . 95

4.2 Second Solution: Non-Blocking pipeline stages 97

Blocks detail . 98

4.3 Timing Constraints . 100

5 Semi-Automated Design Flow 101

6 Experimental Results . 104

Experimental Setup . 104

Comparative Analysis 105

NoC Link Effect . 105

Power Analysis . 107

7 Conclusions . 109

6 Conclusions 111

Bibliography 113

Author’s Publications List 125

List of Figures

2.1 Baseline switch architecture. Not all connections are showed. . 13

2.2 LBDR logic. 14

2.3 The cooperative testing framework saving TPG instances and

covering their faults. 16

2.4 The TMR optimized switch. 19

2.5 The optimized switch for error correction. 19

2.6 NACK/GO switch architecture. 20

2.7 NACK/GO Flow control operation 22

2.8 Fault tolerant arbiter implementation. 25

2.9 Topology of the dual network. 28

2.10 Configuration strategy at glance. 29

2.11 Dual network routing primitive. 32

2.12 TMR approach with per primitive voting system. 32

2.13 Area comparison between TMR, ECC and NACK/GO switch. 34

2.14 Critical path comparison between TMR, ECC and NACK/GO

switch. 35

2.15 Power consumption for idle, parallel and hotspot traffic con-

dition. 38

2.16 NoC configuration: area overhead. 39

2.17 Average configuration time (excluding the configuration algo-

rithm). 43

2.18 Percentage of fully working networks (no switch excluded)

varying the number of injected stuck-at faults. 44

2.19 Unusable network. 44

3.1 Hierarchical ring topology . 49

vi List of Figures

3.2 Transmission of a weight change packet π∆ 53

3.3 Weight adjustment . 54

3.4 10-bit counter . 56

3.5 Throughput and latency vs. buffer size 59

3.6 Latency histogram . 60

3.7 Power up error . 61

4.1 CEF-enabled interoperability between NoC design tools. . . . 68

4.2 Proposed flow for the implementation of application-specific

NoCs targeting heterogeneous systems. 69

4.3 NoC Topology Synthesizer: block characterization flow. 70

4.4 The NoC synthesizer inserts the NoC blocks into input floor-

plan by minimally perturbing block positions. 72

4.5 Concurrent Hierarchical Layout Generation 73

4.6 Topologies generated by the Synthesizer engine for the various

floorplans for different flit widths. 75

4.7 Correlation of NoC power between early-phase and post-layout

analysis. 78

4.8 Floorplan with best communication and best IR drop. 80

5.1 Input Port Module . 86

5.2 Packet Route Selector . 87

5.3 Request Generator for Output Port Module 0 88

5.4 Output Port Module . 89

5.5 Microarchitecture of new 4-input arbiter 90

5.6 Circular FIFO: top-level view 93

5.7 Schematic of Write and Read Control Blocks 93

5.8 Virtual Channel, initial idea 94

5.9 Virtual Channel, Credit-based 95

5.10 Virtual Channel Credit-based, Arbitration Module 96

5.11 Virtual Channel Credit-based, Virtual Channel Counter 97

5.12 Virtual Channel Credit-based, Receiver Module 97

5.13 Virtual Channel Credit-based, Pipeline Stage 98

5.14 Virtual Channel Non-Blocking, Pipeline Stage 99

5.15 Virtual Channel Non-Blocking, Pipeline Stage 100

List of Figures vii

5.16 Virtual Channel Non-Blocking, Pipeline Stage 101

5.17 Performance results with unpipelined links 106

5.18 Performance results with link pipelining 107

5.19 Power consumption of the different switch architectures, vary-

ing the traffic injected . 108

5.20 Average energy required to propagate a Flit form input to

output . 108

List of Tables

2.1 Failure probability of a fault-tolerant routing primitive, as a

percentage of the input test patterns. 40

4.1 Four selected reference floorplans in extreme corners with re-

gard to CommCost and IR-drop. 74

4.2 Main metrics of the four selected design points, one per input

floorplan, as estimated by the NoC Synthesizer. 76

4.3 Timing convergence for all clock domains with proposed method-

ology, before and after Global Optimization 77

5.1 Asynchronous vs. Synchronous Switch 105

Acknowledgements

I would like to thank my advisor, Professor Davide Bertozzi, for his contin-

uous support, motivation and guidance during my research and study. His

limitless energy and enthusiasm in this journey together motivated all his

Ph.D. Students, including me.

In addition, I would like to thank Professor Steven Nowick for taking me

as an intern at Columbia University. This experience made me understood

the importance of transmitting your knowledge and how to relate with your

co-workers.

A special thank goes to all my lab friends here at the MPSoC research group

in Ferrara. What started here is much more than just work together, but are

experiences and moments I will never forget.

I am also grateful to my parents, for supporting me and directing me through

all these years of University.

My deepest and genuine gratitude goes to my girlfriend Paola, for staying by

my side during these years of Ph.D., no matter how tough it was.

Chapter 1

Introduction

In recent years, in order to overcome speed and power limitations of mono-

lithic solutions, Chip Multi-Core and Many-Core have become a common

practice in modern industrial landscape. Network-on-Chip (NoC) have been

a clear key enabler for effective Multi-Core system integration, because they

offer a regular and distributed structure on top of which different processing

elements (cores, memories of accelerators) can be integrated, offering in this

way the scalability and modularity that traditional shared buses could not

achieve.

In the embedded system domain, a first possible solution to create these

Multi-Core systems is by replicating in a regular way a basic computation

tile, usually composed by a CPU and a memory bank, and its associated

NoC switch element. These architectures lend themselves to become general

purpose programmable accelerators or processing units, since the associated

computational power is strictly related to the number of cores active at a

time. At the opposite, if systems Multi-Core are designed for a specific target

application domain, they usually feature custom heterogeneous devices, not

only CPUs and memory banks but also other integrated blocks, such as

peripherals controllers or graphic accelerators and so on, all interconnected

by a custom NoC architecture.

However, there is today the unmistakable need to evolve design methodologies

and toolflows for Network-on-Chip based embedded systems. In particular,

the quest for low-power requirements is nowadays a more-than-ever urgent

dilemma. Modern circuits feature billion of transistors, and neither power

4 Introduction

management techniques nor batteries capacity are able to endure the increas-

ingly higher integration capability of digital devices. Besides, power concerns

come together with modern nanoscale silicon technology design issues.

On one hand, system failure rates are expected to increase exponentially at

every technology node when integrated circuit wear-out failure mechanisms

are not compensated for. As a result, all systems – not only high-availability

or mission-critical systems – must be designed for resilience. Being the com-

munication backbone of the entire system, NoCs are very susceptible to per-

manent, intermittent and transient faults, since a single error in the network

can put the whole system integrity at risk, jeopardizing its connectivity. How-

ever, error detection and/or correction mechanisms have a non-negligible im-

pact on the network power, and if power-reliability trade-off is not properly

accounted for upfront, the design outcome can be no longer viable for its

excessive energy requirements.

On the other hand, to meet the stringent time-to-market deadlines, the de-

sign cycle of such a distributed and heterogeneous architecture must not be

prolonged by unnecessary design iterations. In particular, it is mandatory

that modern and future toolflows take into account back-end physical con-

straints, in order to find from the first design stages the correct placement of

various blocks, in this way minimizing hotspots, enhancing communication

traffic locality and paving the way for final timing convergence. This holds

especially when considering Application-Specific Embedded Systems. In fact,

being these systems built from many different IPs, system construction re-

quires a custom-tailored Network-on-Chip topology synthesis. For application

specific NoCs, the synthesis flow is key in order to reach the most predictable

and power-efficient solution for the system at hand.

Overall, there is a clear need to better discriminate reliability strategies and

interconnect topology solutions upfront, by ranking designs based on power

metric. In this thesis, we tackle this challenge by proposing power-aware de-

sign technologies. First of all, we start analyzing design methodologies for

cost-effective fault-tolerant NoC design, deriving the most suitable applica-

tion for both General-Purpose and Application-Specific embedded systems.

In the second place, we exploit these design methodologies for fault tolerance

as a case study on top of which we develop a comprehensive and interoper-

5

able synthesis flow for Application-Specific Network-on-Chip, spanning from

application requirements down to layout generation, dealing with Network-

on-Chip design on nanoscale technologies with less design iterations.

Finally, we take into account the most aggressive and disruptive methodology

for embedded systems with ultra-low power constraints. Since clock distribu-

tion itself represents a considerable amount of the whole power consumption

of the entire system, our final goal is to migrate NoC basic building blocks to

asynchronous (or clockless) design style, proposing a switch architecture that

outperforms its synchronous counterpart in terms of energy-per-bit, power

consumption and area footprint, while maintaining comparable performance

with its synchronous counterpart. We deal with this challenge delivering a

standard cell design methodology and mainstream CAD tool flows, in this

way partially relaxing the requirement of using asynchronous blocks only as

hard macros.

Chapter 2

Design Methodologies for

Fault-Tolerant NoC Design

1 Motivation

Modern integrated systems are increasingly multi-core, since congruent mul-

tiples in processing power are pursued by replicating processing engines on

the same silicon die rather than by evolving the microarchitecture of mono-

lithic processing cores. This latter approach has in fact historically resulted

in diminishing returns. In this context, systems become susceptible to errors:

even though replicated cores are available in such chip multiprocessors, they

are not sufficient for providing system level fault protection due to the lack

of fault tolerance and/or fault isolation in their shared components [1].

The system integration and communication infrastructure is certainly the

most important of such shared components. For large scale systems, network-

on-chip (NoC) architectures are today mainstream for global intra-chip com-

munication: they facilitate the modular construction of many-core architec-

tures, they provide communication abstractions and services across com-

ponent boundaries and they enable the top-down design of highly power-

manageable architectures.

As faults will appear with increasing probability due to the susceptibil-

ity of shrinking feature sizes to process variability, age-related degradation,

crosstalk, and single-event upsets, designing efficient fault tolerant NoCs be-

comes a key requirement.

8 Design Methodologies for Fault-Tolerant NoC Design

Transient faults cannot be handled by off-line strategies as they appear and

disappear unpredictably. Fault-tolerant systems must be therefore employed

to satisfy the high reliability constraints imposed by modern systems. In this

direction, there are three major approaches.

First, Modular Redundancy can be adopted. For instance, Constantinides

et al. demonstrated the BulletProof router, which efficiently uses N-modular

redundancy (NMR) techniques for router level reliability [16]. However, NMR

approaches are expensive, as they require at least N times the silicon area to

implement. Additionally, network level reliability needs to be considered since

some logic is impossible or expensive to duplicate (e.g., clock tree) or spares

may run out, resulting in the loss of a router. Similarly, Time Redundancy

(TR) [51] can be adopted to protect the NoC against faulty components.

However, Time Redundancy decreases the performance of the NoC, since all

information needs to be retransmitted.

Alternatively, error detecting codes can be used. The detection phase is fol-

lowed by a recovery one, for instance based on the retry of the unsuccessful

operation. Simple retransmission schemes are described in [18, 19]. In terms

of implementation, [17,19] use a single transmission buffer that contains both

sent and unsent flits together. [18] uses link-level retransmission together with

the Unique Token Protocol (UTP) to ensure reliability. However, it requires

at least two copies of a packet in the network, increasing buffer occupancy

and flow control complexity. In contrast, [54] minimizes control logic by us-

ing a barrel shifter as retransmission buffer whose size is matched to the

round trip notification latency of a NACK. The work in [37] targets virtual

channel NoC implementations and uses dynamic packet fragmentation in tan-

dem with a credit-based fault-tolerant flow control to recover from corrupted

virtual channel states. In general, state-of-the-art in fault-tolerant flow con-

trol can be reviewed in [57], where the power inefficient ACK/NACK or the

high-impact T-Error protocols are compared. The key take-away is that more

research is needed in this domain, a challenge that for instance [37] takes on.

Unfortunately, the solution in [37] comes with heavy throughput limitations.

Finally, error correcting codes (ECC) can be employed. They typically al-

low the correction of a limited amount of errors per codeword in order to

contain complexity. Nonetheless, they are commonly reported to introduce

2.1 Motivation 9

a high timing penalty, because of the delay of the encoder/decoder and cor-

rection blocks. In [83] the router selects on the fly the most effective ECC

scheme to send the data trough the link. The work in [23] proposes to use

the Hamming Code on the input buffers to protect FIFO data. Similarly [21]

protects the data-path via an ECC strategy. However, by using the fault

tolerance techniques proposed in [21, 23, 83], but also in [63] and [62], only

the links are protected, and incur large area and performance overhead. A

retransmission scheme that enables graceful degradation of NoC communi-

cation performance under high failure rates is proposed in [40], but again

the control path is not protected. Interestingly, erroneous behaviour in the

functionality of the routing process or in output port arbitration may cause

flit/packet misrouting. In the worst case, this results into loss of informa-

tion or even into a deadlock condition. Clearly, robust protection against

such upsets should be provided. Finally, [15] adopts error correcting coding

to perform on-line testing but achieves a quite low coverage (63%). [54] pro-

poses a mechanism able to exploit an ECC strategy for single error correction

and a retransmission procedure once a double error is revealed. Anyway, the

area overhead to support such mechanism is really severe, in addition to the

high switching activity suffered from the retransmission buffer.

In general, the use of ECC in the above approaches suffers from two main

limitations. First, the corrector is used at each clock cycle and ends up in

the critical path. Second, the proposed architectures are not robust to many

transient faults affecting the corrector itself. Moreover, there is consensus on

the fact that error detection followed by retransmission typically has a milder

impact on network power than error correction. This is the assumption of

the work in [40] and the result of an ad-hoc experimental framework in [10]

and [50]. However, none of these works relies on accurate microarchitectural

studies and on physical implementation efforts, which are instead the key

contributions of this thesis, in combination with the switch-level integration

of design methods for fault-tolerance.

On the other hand, the capability of surviving permanent faults in the net-

work closely depends on the flexibility of the routing framework, including

both a reprogrammable routing mechanism [45], a fault-tolerant routing al-

gorithm [29] and a suitable combination thereof [60]. Most of the proposals

10 Design Methodologies for Fault-Tolerant NoC Design

for fault-tolerant routing algorithms proposed so far for NoCs are based on

programmable routing tables, storing the target output port to be taken

by a packet for a given destination [53]. Unfortunately, table-based routing

suffers from scalability limitations [61]. Above all, most fault tolerant rout-

ing frameworks do not address the testing problem: they just assume that

faults are detected somehow on the fly and notified to the reconfiguration

infrastructure [68].

The open literature offers a plethora of works tackling the problem of fault

tolerance in the NoC domain. Unfortunately, most of them utilize distributed

approaches which are inherently weak since they are deadlock prone or re-

quire flooding operations as well as the need to track several network status

information thus calling for additional buffering resources. Zhang et al in [85]

propose a topology reconfiguration strategy which is based on the concept of

virtual topology. However, no discussion is provided regarding the reconfigu-

ration mechanism of the entire system. In [33], a heuristic search algorithm for

re-routing in on-chip network is presented. Unfortunately, the algorithm can

not guarantee that every generated configuration is valid, therefore, a manual

check is required. Authors in [2] present another rerouting algorithm which

unfortunately does not guarantee 100% deadlock freedom, requires flooding

strategies and increases the transmission time due to ping-pong re-routing.

Furthermore, such an approach demands for considerable buffering resources

in order to keep a history of all the packets traversing a switch. Configurable

routing has been proposed in several forms, e.g., in [5], the authors propose

a custom methodology, based on packet rerouting, to handle data transfers

upon power management events or system faults. However, their approach is

not general and is actually working around faults in the attached cores, not

in the NoC itself. Deterministic routing is characterized by its simplicity and

minimal overhead; it can be easily configured to avoid deadlocks [70] and

natively guarantees in-order delivery. Unfortunately, deterministic routing

does not adjust to the system evolution over time; on the contrary, dynamic

routing has been proposed to achieve goals such as bypassing faulty nodes

and minimizing congestion [3]. Dynamic routing needs decentralized deci-

sion processes and is therefore often achieved with dedicated logic in every

router [9].

2.1 Motivation 11

This thesis considers the common fault-tolerance strategies for SEUs (error

correction, error detection and retransmission, triple modular redundancy)

and provides the needed support for them to a baseline NoC switch for use

in the embedded computing domain. The microarchitecture-level approach

taken by this thesis brought two key novelties. On one hand, we could clearly

identify missing gaps in the current landscape of fault-tolerant switches,

namely fault-tolerant flow control and on-demand correction, and propose

new solutions for them. On the other hand, we were able to contrast re-

transmission oriented vs. correction oriented techniques by capturing their

global switch level implications (both data path and control path) in an ar-

chitecture homogeneous experimental setting. Also, physical implementation

analysis enabled to consider key second-order effects from logic synthesis,

placement and routing. Overall, this thesis delivers practical insights for the

provision of SEU tolerance to NoCs in a power-constrained environment.

In addition, this thesis moves from the perspective that fault detection and

system reconfiguration can not be considered two separate tasks but they

need to be co-designed with each-other and along with the underlying sys-

tem from the ground up, and not as an afterthought. In fact, relevant inter-

dependencies exist between the two frameworks:

(i) Testing and diagnosis granularity are dictated by the routing mechanism

flexibility and by the hardware support for reliability in the network.

(ii) Similarly, the amount of control information that needs to be repro-

grammed upon fault detection depends on the routing mechanism and on

the way it exposes flexibility.

(iii) The place where responses to test patterns are analyzed and diagnosis

information are computed has to be matched to the place where the course

of action for network reconfiguration is taken. As an example, given a dis-

tributed built-in self-test (BIST) approach to NoC testing, failure patterns

could be either notified to a global controller or directly used by a local mech-

anism for distributed reconfiguration. The system-level architectural impli-

cations in the two cases are radically different.

This thesis aims at overcoming the limitations stemming from the isolated

development of testing and configuration strategies by co-designing the

two strategies together for better optimization and by addressing the

12 Design Methodologies for Fault-Tolerant NoC Design

system-level implications of implementing the entire fault-diagnosis

and configuration procedure.

In particular, the contribution of this chapter can be detailed as follows:

� the complete hardware infrastructure for NoC fault-tolerance and

configuration. We start from a baseline switch architecture featuring

reconfigurable routing logic and built-in self-testing procedure, and we

provide additional hardware support, spanning from three alternative

solution for tackling SEUs up to the global infrastructure for control

signaling. Above all, this thesis shows how all these components can

be co-designed and specialized in the presence of a logic-based dis-

tributed routing (LBDR) mechanism, providing much better scal-

ability to nanoscale technologies than forwarding tables from an area,

power and delay viewpoint.

� the global configuration strategy orchestrating the operation of the

hardware components together while at the same time implementing

a mix of fault-tolerance and online testing strategies ensuring reliable

communication between testing/diagnosis logic with the reconfigu-

ration manager and viceversa. Primary objective of the design choices

is to avoid flagging a corrupted NoC switch as operational because of

faults in the configuration infrastructure. We opt for a centralized con-

figuration mechanism where a global controller with full visibility of the

network state is in charge of computing reconfiguration information for

the routing mechanism in the switches.

� we provide accurate characterization of quality metrics of the pro-

posed system infrastructure, which are typically overlooked in previous

work or provided with lower accuracy (e.g., incomplete analysis, timing

constraints for synthesis omitted) or under oversimplifying assumptions

(e.g., single stuck-at faults). In particular, we assess incremental area

overhead for BIST, diagnosis and for reconfiguration in an architecture-

homogeneous experimental setting. Also, we perform fault simulation

with a fault injector acting upon the gate level netlist of the configu-

ration infrastructure and categorize the severity and occurrence prob-

ability of fault implications on the global configuration process.

2.2 Background 13

CONTROL

LOGIC

CONTROL

LOGIC

INPUT WEST OUTPUT NORTH

ARBITER

NORTH

CONTROL

LOGIC

CONTROL

LOGIC

INPUT EAST OUTPUT SOUTH

ARBITER

SOUTH

LBDR

EAST

.

.

.

.

.

.

LBDR

WEST

Figure 2.1: Baseline switch architecture. Not all connections are showed.

2 Background

The switch architecture proposed in this work is a major extension of the

baseline ×pipesLite switch [71], illustrated in Figure 2.1, which targets the

embedded computing domain with a very lightweight architecture. It imple-

ments both input and output buffering and relies on wormhole switching.

The crossing latency is 1 cycle in the link and 1 cycle inside the switch, a

design point suitable for the embedded computing domain. The switch relies

on a STALL/GO flow control protocol (see section 4).

The switch architecture is divided into a control path and a data path. In-

put buffers, crossbar multiplexers and output buffers belong to the data

path, while port-arbiters, routing modules and buffer control logic belong

to the control path. The switch implements logic-based distributed routing

(LBDR [59]): instead of relying on routing tables, each switch has simple

combinational logic that computes target output ports from packet destina-

tions. The support for different routing algorithms and topology shapes is

achieved by means of 26 configuration bits for the routing mechanism of the

switch.

2.1 The LBDR routing mechanism

There are two main reasons leading us to select logic-based distributed rout-

ing (LBDR) as the routing mechanism of choice for our target NoC.

14 Design Methodologies for Fault-Tolerant NoC Design

First, routing logic features better delay and area scalability with respect to

forwarding tables, both with technology scaling and with increase of network

size [61]. For small network instances, only register-based memory macro

implementations are competitive, however they increase with the network

size, while LBDR logic only grows with the switch radix [59].

Second, it reduces the amount of signaling between the NoC switches and the

configuration manager, since the routing logic partially retains its flexibility

by means of few configuration bits (namely routing Rxy, connectivity Cx and

deroute bits dr). The number of these bits (26 in the LBDR variant of this

thesis) is orders of magnitude smaller than the size of a forwarding table, yet

makes the routing mechanism reconfigurable.

(a) Route computation

logic.

DEROUTE

DEMUX
(enable)

dr0dr1

UN'
UE'
UW'
US'

UN'

UE'

UW'

US'

UN

UE

UW

US

(b) Deroute

logic.

Figure 2.2: LBDR logic.

The core of LBDR logic is illustrated in Fig.2.2(a), showing the conditions

that select the output port north UN ′ for packet routing. The routing deci-

sion is taken based on:

� the quadrant N ′/S ′/W ′/E ′ of packet destination (whose ID is embed-

ded into the incoming packet);

� the routing restrictions posed by a deadlock-free routing algorithm

(coded by the routing bits);

� the switch connections with the rest of the network (coded by the con-

nectivity bits).

2.2.2 Built-In Self-Test/Diagnosis Framework 15

For some failure patterns, LBDR may not be able to find a route for the

packet. In that case, a couple of additional deroute bits feed a logic which

computes a valid output port to reach the destination. This extends the fault

coverage of LBDR, which in [59] was proved able to work in roughly 60%

of the irregular topologies derived from a 2D mesh. A larger coverage would

require the NoC to revert to virtual cut-through switching and is therefore

left for future work.

It is worth recalling that LBDR is a routing mechanism that supports the

most widely used routing algorithms for irregular topologies, including segment-

based SR [46] routing. As proved in [59], whenever a faulty 2D mesh topology

can be handled by LBDR (including its deroute capability), it is always pos-

sible to find a suitable SR instance that can be used in combination with

LBDR to route that topology.

Simply, a fault detection is equivalent to a change in the topology, and the

routing, connectivity and deroute bits of all the switches have to be pro-

grammed from scratch or incrementally updated with respect to the original

fault-free scenario. In [59], this is on burden of a configuration algorithm,

which needs the list of failed links to recompute the configuration bits for cor-

rect routing with the available communication resources. Failure of a switch

input or output port (and associated internal logic) can be viewed as the

failure of the connected link.

Next section will illustrate the Built-In Self-Testing and Self-diagnosis (BIST/BISD)

strategy which meets this requirement and provides an indication of whether

input and output ports of a switch are operational.

Also, later on in the thesis it will be presented how to establish a reliable

bidirectional path from the testing logic to the configuration manager and

finally to the routing logic to be reprogrammed.

2.2 Built-In Self-Test/Diagnosis Framework

The key idea of our “Built-in Self-Test/Built-in Self-Diagnosis” (BIST/BISD)

framework consists of exploiting the inherent structural redundancy of an on-

chip network. We opt for testing the NoC switches in parallel, thus making

test application time independent of the network size. Communication chan-

nels between switches are tested as a part of the switch testing framework.

16 Design Methodologies for Fault-Tolerant NoC Design

OUT

CHANNEL

COMPARATOR
TPG

TPG

TPG

TPG

LINK

BUF

IN

BUF

(a) Testing communi-

cation channels.

ARBITER

COMPARATOR

ARBITER
TPG

TPG

TPG

TPG

ARBITER

EAST

ARBITERSOUTH

NORTH ARBITER

WEST

(b) Testing output port

arbiters.

COMPARATOR

LBDR
TPG

TPG

TPG

TPG

L

B

D

R

L

B

D

R

L B D R

L B D R

(c) Testing LBDR rout-

ing logic.

Figure 2.3: The cooperative testing framework saving TPG instances and

covering their faults.

Each switch can in turn test its several internal instances of the same sub-

blocks (crossbar muxes, communication channels, port arbiters, routing mod-

ules) concurrently. In fact, all the instances are assumed to be identical,

therefore they should output the same results if there is no fault. As a con-

sequence, the test responses from these instances are fed to a comparator

tree. This makes the successive diagnosis much easier. There is a unique test

pattern generator (TPG) for all the instances of the same block, thus cutting

down on the number of TPGs. Although the principle is similar to what has

been proposed in [4,6,31], there is a fundamental difference. If the TPG of a

set of block instances is affected by a fault, then the comparison logic will not

be able to capture this since all instances provide the same wrong response.

To avoid this, a cooperative framework is devised, such that each switch tests

the block instances of its neighboring switches [73].

As an example, a switch tests the incoming communication channels from

its north/south/west/east neighbors (i.e., it feeds their test responses to its

local comparator tree), thus checking the responses to distinct instances of

the same TPG. This way, a non-null coverage of TPG faults becomes feasible.

Fig.2.3(a) clearly illustrates the cooperative testing framework for commu-

nication channels and the need for a single TPG instance per switch to feed

test patterns to all of its output ports. Faults in the TPG, in the output

buffer, in the link and in the input buffer will be revealed in the downstream

2.2.2 Built-In Self-Test/Diagnosis Framework 17

switch. Each switch ends up testing its input links, while its output links will

be tested by their respective downstream switches.

The same principle can be applied for the testing of switch internal block

instances associated with each output port: crossbar muxes and output port

arbiters. Fig.2.3(b) shows the case of port arbiters. The main requirement for

testing these instances is that the communication channels bringing test re-

sponses to the comparators in the downstream switches are working correctly.

Clearly, testing these modules can only occur after communication channels

have been tested. Therefore, the procedures in Fig.2.3(a) and Fig.2.3(b) oc-

cur sequentially in time. Should one communication channel result defective,

this would not be a problem, since it would not make any sense to test and

use a port arbiter when the corresponding port is not operational. Crossbar

multiplexers associated with each output port are tested in the same way

and are hereafter not illustrated in Fig.2.3 for lack of space.

Inspired by such cooperative approach applied to the testing of channels and

arbiters, we now extend such principle also to test block instances associated

with each switch input port with some modifications. This is the case of the

LBDR routing block. The key idea to preserve the benefits of cooperative

and concurrent testing is to carry test patterns rather than test responses

over the communication channels to neighboring switches, where the LBDR

instances are stimulated and their responses compared (see Fig.2.3(c)). If the

channel is not working, testing and using the downstream routing block is

useless, since it is associated with an input port that will not be used.

On a cycle by cycle basis, comparator outputs are fed to a diagnosis logic

which identifies where exactly the fault occurred. In our diagnosis framework,

each switch checks whether test responses from its input ports are correct

or not. As a consequence, the outcome of the diagnosis is coded in only 5

bits, one for each input port of the current switch (they would be of course

doubled if a two-rail code is implemented to protect them against stuck-at

faults). A ’1’ indicates that the port is faulty. In practice, the fault may be

located either in the input buffer or in the LBDR module, in the connected

communication link or even in the output buffer and associated port arbiter

and crossbar multiplexer of the upstream switch. This further level of detail

is not needed, since in any case the key take-away is that the link is unusable,

18 Design Methodologies for Fault-Tolerant NoC Design

and this is enough for a global controller to recompute the configuration bits

for the LBDR mechanism. In the final implementation, other 5 bits will be

needed to code the diagnosis outcome because of practical implementation

issues associated with network flow control. Further details on this can be

found in [73].

After the testing procedure has been completed, 10 bits are produced by

each switch and have to be fed to the actual configuration infrastructure.

Next section motivates the choice of our centralized approach and details the

architecture of the configuration infrastructure, which is centered around a

dual network for signaling of control information between switches and the

controller and vice versa (see Fig 2.9).

3 Fault-Tolerant Architectures Under Test

This thesis considers and compares, at the microarchitecture and post place

& route levels, three main approaches for SEU tolerance.

The three improved versions analyzed in this thesis are:

(1) Triple Modular Redundancy (TMR). In this architecture, links as well as

switch data lanes are triplicated (Fig.2.4). As regards its control path, voting

is performed for the registers of every finite state machine, to prevent a tran-

sient fault from misaligning their states. The TMR architecture can afford

using the native STALL/GO flow control. This is the reference solution for

fault-tolerance used for the sake of comparison.

(2) Error Correcting Switch Architecture. This solution is illustrated in Fig-

ure 2.5. Error correctors are used at every clock cycle both at the level of

switch-to-switch communications and for intra-router data path operation.

Concerning the control path, TMR is applied both to buffer FSMs and to

routing logic/arbiters. Since correctors are enabled at every clock cycle and

lie on the switch critical path, they introduce severe switching activity and

delay penalty. In contrast, solutions based on ECCs are typically advocated

by those designers who cannot stand the retransmission latency in spite of

its low occurrence probability.

(3) NACK-GO Switch Architecture. In this retransmission-oriented solution,

a fault-tolerant flow control protocol (NACK/GO) is used on the data path

2.3 Fault-Tolerant Architectures Under Test 19

Figure 2.4: The TMR optimized switch.

Figure 2.5: The optimized switch for error correction.

to notify error detection and trigger link-level data retransmissions, and also

on the internal switch data path, to ask for data retransmissions from switch

input to output buffers. The switch architecture is illustrated in Fig.2.6. In-

terestingly, on-demand correctors are used to repair corrupted values in the

source buffers, which a retransmission would not fix. Thanks to the retrans-

mission capability of the data path, the control path can implement a simpler

dual-modular redundancy: in case of differences between the replicated paths,

the current transfer is invalidated and a retransmission is required in the next

cycle (see section 4.3). Next, the NACK/GO protocol is derived, and later

on the control path is detailed accordingly.

20 Design Methodologies for Fault-Tolerant NoC Design

Figure 2.6: NACK/GO switch architecture.

4 The New Fault-Tolerant Flow Control

4.1 NACK/GO

STALL/GO is one of the simplest flow control protocols that can be found in

the open literature. It leverages only one forward signal, that flags the avail-

ability of new valid data (Valid signal) and one backward signal, used to stop

the communication flow when a new flit cannot be accepted due to conges-

tion in the downstream node (Stall signal). Conversely, ACK/NACK is a flow

control protocol with error detection/notification capabilities. It exploits a

Go-back-N policy to manage and control correctness of the transmitted data.

When an error is detected in a transmitted flit, the receiver signals this event

to the sender, who will retransmit the flit with the corrupted information

and all the (N) successive ones.

Unfortunately, the ACK/NACK protocol does not make a clear distinction

between the backpressure phenomenon and the occurrence/detection of tran-

sient faults. As a consequence, a nack received by the upstream switch means

that the flit should be retransmitted for some reason. In case of congestion

of downstream paths, the protocol keeps retransmitting the same flit indefi-

nitely regardless of the receiver state, thus proving power-inefficient. On the

contrary when a STALL/GO protocol is considered then transmission freezes

until a go arrives, in case a stall notification is received upstream. This pro-

tocol is much more power efficient but does not provide any kind of support

2.4.1 NACK/GO 21

for fault tolerance and data retransmission.

Augmenting the protocol in this direction was one key objective of this thesis,

thus coming up with the NACK/GO flow control protocol. NACK/GO

is a new protocol, and associated switch implementation, that offers full error

detection and notification capabilities of ACK/NACK while preserving the

power efficiency of STALL/GO for error-free operation.

NACK/GO leverages four control signals to control transmission of data and

achieve fault tolerance. There are two signals going in the same direction of

the data stream, and two backward propagating signals.

Valid : this signal flags availability of new data, and it triggers the data

transfer.

Trash : this control signal notifies that the data currently being transmitted

is corrupted and should be discarded. The reason why the valid signal is not

used for this is to optimize the internal critical path of the switch and avoid

multi-cycle switch traversal.

Stall : it stalls the transmission in case of traffic congestion. The Stall signal

stops the communication flow, freezing all the forwarding control signals and

data to their current value.

Nack : Nack signal is de-asserted low when a valid flit has been received in

the previous clock cycle (Acknowledgement). In contrast, Nack is asserted

high whenever no valid flit is received, either because no transmission took

place or because the accepted flit is detected as corrupted.

NACK/GO combines the best of STALL/GO and ACK/NACK.

Like STALL/GO, it exploits an efficient methodology to block the commu-

nication traffic in case of congestion, avoiding the unnecessary switching ac-

tivity for flit retransmission as in ACK/NACK. It uses a signal to notify

the availability of free buffer positions inside the receiver, so communication

can be frozen when congestion occurs. Furthermore, a Stall signal avoids the

roundtrip necessary to resume communication from the packet that was not

accepted like in ACK/NACK, leading to a better average performance.

In addition, it features the error flagging capability not exposed by STALL/GO.

In this way the system can re-establish a correct working point and resume

its correct operating condition.

These advantages come at the cost of extra channel wiring, since a total

22 Design Methodologies for Fault-Tolerant NoC Design

Figure 2.7: NACK/GO Flow control operation

of 4 control signals are needed, rather than the 2 of STALL/GO, and a

more complex control logic inside the buffers and the switches. NACK/GO

features worse minimum buffer slot requirements than STALL/GO, since

it requires a minimum of 3 buffer slots. In addition, every pipeline stage

inside the link should have not only flow control capabilities, but also error

detection/correction capabilities. For this reason, every repeater must have

at least three buffer positions, more than the two required for STALL/GO.

4.2 NACK/GO Operating Principle

In order to describe the details of the NACK/GO operating principle, this

section will suppose a communication taking place between an upstream node

M (master) and a destination node S (sink), as illustrated in Fig.2.7. The

master node sends 5 data flits, named from A to E.

Clock cycle 1 The source node M has a new data available. It will begin the

transfer by flagging the possibility to send a new flit, A, asserting the Valid

control signal high. The destination node S will communicate its availability

to receive the incoming transmission by asserting the Stall backward control

signal low. In such a configuration, the flit A is successfully transferred from

Master to Sink. It is however not possible to discard it in the Master node

M yet, since it is still waiting for the acknowledgement from the destination

that will take place in the next clock cycle.

Clock cycle 2 The source node tries to send the next flit available, B. Sup-

pose that while transmitting, the sender detects an error inside B (i.e., it

2.4.2 NACK/GO Operating Principle 23

has received an incorrect flit from its upstream node, which is speculatively

sent to S while performing error detection in parallel). The sender will notify

that the ongoing flit is corrupted with the Trash signal in case of mispec-

ulation. The receiver S will receive the B flit, but this will not be stored.

The transmission of the flit is discarded, and the source will start the appro-

priate procedure to recover and re-establish the correctness of flit B before

transmitting it again. In the meantime, destination S will check the A flit, re-

ceived in the previous clock cycle. Since no error is detected, the Nack signal

is de-asserted low.

Clock cycle 3 After an arbitrary number of clock cycles (not showed here),

in which the Valid signal has been de-asserted low, Master has a new version

of B, and can transmit it. It signals the transmission using Valid signal,

and the Sink is able to accept it. Nack is asserted high, because during the

previous clock cycle nothing has been received.

Clock cycle 4 After storing B, the destination’s buffer is now full. The next

coming flit cannot be stored before a new communication takes place between

S and its downstream node. The Master will try to transfer the successive flit

of the sequence, C, but will face the Stall signal controlled by the destination.

In such a situation, M will keep the actual configuration until the Stall signal

is unset. Concurrently, the received B flit is signaled as correct.

Clock cycle 5 When S has free space in its buffer memory, it will de-assert

Stall signal and M will be able to complete the transfer of C.

Clock cycle 6 Master transfers the following flit, D. Let us suppose that

something went wrong during the communication. Sink will store it, but the

data received will be D’, not a valid data word.

Clock cycle 7 After a redundancy check, the receiver signals to the trans-

mitter that the previous flit transmission has been erroneous. In order to

notify such event the Nack signal is asserted high. Since anyway any other

flit following the corrupted one must be retransmitted, the current ongoing

data flit, E, is discarded.

Clock cycle 8 The Sink module will be waiting for the transmitter to reply

with the same flit signaled as corrupted. Nack signal will remain asserted

high until a correct flit will be received. In the meanwhile, since a Nack

signal has been received after a valid flit transmission, the transmitter will

24 Design Methodologies for Fault-Tolerant NoC Design

take an arbitrary number of clock cycles in order to recover the flit that

failed to be correctly transferred. Such number of clock cycles can even be

0, if the adopted policy is not to correct the flit at all but just to retransmit

it. This depends on the degree of protection against transient faults. In fact,

if the fault occurs on the link, a simple retransmission is enough. Vice versa,

if the stored value in the switch buffer has been changed by a SEU, such

change is irreversible and only correction can restore the original value, while

retransmissions will result only into the same incorrect receipt of data. These

are choices that the architecture designer has to take while implementing

NACK/GO communication protocol in an actual network. The next valid

transmission will be a reply to the error condition previously flagged.

Clock cycle 9 Now, the data that had been transmitted while the Nack

signal was asserted high is transmitted again. D flit is signaled as correctly

received.

Clock cycle 10 Finally, the last flit transmitted is acknowledged by the

receiver.

4.3 Novel Low-Power Fault-Tolerant Arbiter

By exploiting the retransmission capability provided by NACK/GO, we de-

signed the fault-tolerant control path that supports NACK/GO flow control

operation.

The novel fault-tolerant arbiter was designed following Figure 2.8. It rep-

resents an effective variant of a baseline TMR arbiter (like for the error

correcting switch).

As showed in Figure 2.8, the transition logic, representing the arbiter com-

binational logic for computing the next FSM state, is doubled. Therefore,

the outputs of the two transition logic instances are compared in a Two-

Rail Checker (TRC) module (i.e. a redundant comparator block with fault

tolerance capability) and feed the state memory register of the arbiter. The

state memory register is triplicated as in a conventional TMR strategy al-

though it is enabled by the TRC module output. When the two transition

logic blocks generate the same result, then they are not affected by an error

and the state memory register can sample the new state. On the other hand,

the TRC block freezes the state of the arbiter registers when the transition

2.4.3 Novel Low-Power Fault-Tolerant Arbiter 25

Figure 2.8: Fault tolerant arbiter implementation.

logic blocks provide different results. In this latter case, the valid signal to

the output port is deasserted. As a consequence, the output port will not

read the incoming information affected by errors, and since no valid data has

been stored in the current clock cycle, the Nack signal will be asserted high

in the following clock cycle. This will be interpreted by the input buffer as a

request of retransmission.

Thus, the outputs of the three state memory registers are voted before feeding

two instances of the output combinational logic with the arbiter current

state. Then, the outputs of the combinational logic modules are compared

in a TRC comparator following the previous implementation adopted for the

transition logic modules. Finally, when the above mentioned comparator

reveals an error, then the valid signal to the output port is deasserted and

the information coming from the output combinational logic is discarded.

The baseline behavior of the arbiter remains the same: it selects between

different inputs competing for the same output port, operating with a round

robin arbitration policy in order to enforce fairness between all the requests.

New conditions and events had to be managed in order to cope with error

detection: whenever an error is detected in the output buffer, the Nack signal

must be routed to the correct destination. If this takes place on the head flit

of a packet, that stores the information about destination, in order to avoid

26 Design Methodologies for Fault-Tolerant NoC Design

misrouting the current source will lose the grant acquired by the arbiter. In

the following clock cycle, the route will be re-computed and the arbitration

process will take place again. On the other hand, when an error is signaled for

the last flit of a packet (tail flit), the sender has already lost the grant given

by the arbiter and has no longer exclusive access to the output port. For this

reason, the arbiter does not consider any new request, and the sender that

had the grant in the previous clock cycle acquires again access to the output

port. In this way the correct status of the various actors is re-established, and

the corrected flit can now be retransmitted. Lastly, when a flit is signaled as

corrupted while being transmitted (Trash signal asserted high), the arbiter

must propagate this condition to the output port, and ignore the current

transaction taking place. The trash signal is forwarded to the output buffer,

that will ignore the current incoming flit.

4.4 Fault-Tolerance of Routing logic and Buffer FSMs

In order to protect routing logic, two LBDR replicas directly feed the combi-

national logic cascaded to the TRC of the arbiter. A failure in the LBDR logic

will be tackled by the arbiter’s Two Rail Checkers, thus exploiting the coop-

eration with the arbiter to achieve fault-tolerance by means of an effective

lightweight solution.

The status registers of buffer FSMs need additional protection. For this pur-

pose, the simplest thing was to implement TMR in light of the low-complexity

of replicated circuits. This solution is the same adopted for the error correc-

tion switch.

Figure 2.6 depicts the final NACK/GO switch architecture.

5 Integration with Network-Level Fault Tol-

erance

Although the above architectures have been primarily designed to tackle

SEUs, they are both capable of handling intermittent faults.

Some physical effects such as wear-out end up in permanent faults, but are

known to have a gradual onset. In practice, frequent transient faults affect-

2.6 Global Strategy for Self-Configuration 27

ing the same circuitry denote the possible onset of a permanent fault. Before

this happens, the network routing function could be modified to exclude the

affected circuit from communication traffic. NACK/GO lends itself to such

a policy, since its retransmission and/or voting events may be notified to the

global controller (e.g., via the dual bus in [27]) which may monitor the dis-

tribution and frequency of transient faults over time and eventually take the

proper course of recovery action. Exactly the same policy can be supported

by the error correcting switch by notifying correction and/or voting events

to the controller.

6 Global Strategy for Self-Configuration

A distributed configuration strategy avoids single points of failure at the cost

of significant resource over-provisioning. In fact, complex communication ex-

tensions are typically needed both for baseline operation of the configuration

logic (additional signaling mechanisms with neighboring switches, complex

routing computation or table update logic which may potentially render the

switch multi-cycle, rule checking mechanisms for deadlock avoidance) and

to improve the percentage of supported fault patterns (e.g., broadcasting,

virtual channels, hardware timeouts, large storage or combinations thereof).

The main reason lies in the lack of visibility of global network state at a

NoC switch. Therefore, this latter has to take the proper course of action

to become aware of the state of neighboring nodes, to find a routing path

to every network destination and to avoid deadlock and livelock. This is a

lengthy process that partially offsets the benefits of distributed configuration.

Even accepting this, final routing solutions cannot be always guaranteed to

be completely deadlock-free and frequently incur mis-routing [2].

The suitability of these requirements for the embedded computing domain

is questionable. Therefore, the investment of our work is on a centralized

approach, which envisions a global controller with full visibility of the network

state and that is able to reprogram the routing mechanism of the switches

accordingly.

The previous section has already showed that minimizing signaling needs

from the network to the controller and vice versa is an orthogonal concern

28 Design Methodologies for Fault-Tolerant NoC Design

across all layers of the reconfiguration framework, starting from the routing

mechanism up to the optimized design of the signaling architecture.

Above all, the main challenge we tackle in this thesis is to carry vital diag-

nosis and configuration information from the network to the controller and

vice versa in a reliable way, since manufacturing yield is tightly related to the

reliability of these communications. If we use the data network for such a crit-

ical information exchange, the intricacy is again associated with the reduced

view each switch has of the network failure pattern, which tends to over-

provision the NoC architecture (e.g., virtual channels, flooding capability)

or to uncover many failure combinations. Alternatively, the controller might

discover by itself the failure pattern by means of a lengthy and non-trivial

process starting from neighboring nodes and through them reaching the most

remote nodes. Finally, enforcing fault-tolerance of the whole data network for

the sake of safe configuration is overly expensive area- and performance-wise,

even when more advanced techniques than NMR (N-modular redundancy)

are used [21].

The above reasons justify the use of a dedicated dual-network for control

signaling. The network is composed by a set of replicated routing primitives,

each one associated with, and connected to, a switch of the main data NoC.

Unlike the full featured and richly connected main NoC, the dual NoC imple-

ments a straightforward ring topology where the routing primitives are simply

cascaded. The global controller closes the ring, as illustrated in Fig.2.9.

TILE TILE TILE TILE

TILETILETILE GLOBAL
CTRL

DUAL NETWORK

SW SW SW SW

SWSWSWSW

Figure 2.9: Topology of the dual network.

Overall, the dual network has to carry 10 diagnosis bits to the controller

from every switch, and to get back 26 routing configuration bits to them.

These relatively small requirements leave ample room for designing the dual

2.6 Global Strategy for Self-Configuration 29

network aggressively for fault tolerance while marginally impacting overall

NoC area footprint (see section 7).

The operating principle of our configuration strategy is as follows (see Fig.2.10):

at system bootstrap, after performing the BIST/BISD phase, each switch has

to communicate the result of its diagnosis to the global controller through the

dual network. However, in order to make sure that no transfer errors occurred

during this communication (unmasked by the fault-tolerance mechanism), a

specific online testing protocol is implemented 1.

correct response check

diagnostic bits are
carried to the controller

arrival order and
dual-rail code check

configuration bits
are sent to the switches

switches perform BIST and
write diagnostic packets
into the dual network

configuration algorithm
computes LBDR bits

switch reader interfaces
store configuration

configuration bits
are sent back

to the controller

configuration bits are sent
back as an acknowledgement

switches configure LBDR
bits and start operation

success fail

new topology figure
is generated

switch is
excluded

success fail

Figure 2.10: Configuration strategy at glance.

In particular, the writer interface of each switch (into its associated routing

1The word “online” here is relative to the configuration process.

30 Design Methodologies for Fault-Tolerant NoC Design

primitive) sends the diagnostic bits by leveraging a two-rail encoding scheme

in time. This way, the global controller can check whether an unmasked fault

has corrupted the diagnosis information of a specific switch. In case, the

switch is considered to be unusable and left out of the configuration process.

Also, the arrival order of diagnostic bits is deterministic, therefore the con-

troller can easily realize whether a switch is so corrupted not to be able to

transmit. At the end of this initial signaling phase, the new topology con-

nectivity pattern is derived, since diagnosis bits indicate which links/switch

ports are faulty. Therefore, a configuration algorithm can be executed, thus

computing configuration bits for the LBDR logic of each switch. These bits

are then sent to all the switches via the dual network. Based on our testing

protocol, switches send back the received bits to the controller, so that this

latter can check whether the transmission was successful. If transmitted and

received data match, then the controller sends them again to the switches as

an acknowledgment. Upon the arrival of the same configuration bits twice,

the switches then configure LBDR bits and trigger switch operation. This

is done by deactivating the flow control stall signal to neighboring switches,

which prevents to store incoming data until the configuration phase com-

pletes. This is the same signal used for normal flow control in the main NoC

at regime.

The rationale behind the three-way handshake protocol is that, the reader

interface of the switch from the routing primitive needs to be tested as well

in order to make sure that it is able to correctly receive data and reconfigure

the routing mechanism accordingly.

Now, let us assume that the controller detects that a switch is not able to

correctly receive configuration bits. Then, the switch is excluded and the

configuration algorithm recomputes routing, connectivity and deroute bits

selectively for the neighboring switches, thus accounting for the new change

of the actual topology. Other switches are not involved in this signaling round

and are kept temporarily blocked. Affected switches in turn receive a different

set of configuration bits than before, therefore they send them back again to

the controller to check correct receipt. The procedure is iterated until no

mismatch is detected by the controller: at that time, the acknowledgment is

sent to all switches, so that they start operation concurrently.

2.7 Routing Primitive Architecture 31

Please note that unmasked stuck-at faults in the dual network are not neces-

sarily incompatible with its correct operation. In fact, should they match by

chance the configuration bit transmitted on that bit, the configuration works

correctly. Every time the configuration bits are changed, they might reveal

the stuck-at bit, but in this case the three-way handshake enables to detect

this at the controller and to conservatively discard the affected switch.

Our configuration strategy aims at correctly configuring switches of the main

NoC even in the presence of faults in the dual network and prefers to discard

those switches that cannot either send diagnostic bits or receive configuration

bits correctly because of unmasked faults by the fault-tolerance mechanisms.

We want to avoid flagging a switch or a link as operational when it is actually

not working, since this would make network operation not trustworthy. We

rather prefer to conservatively discard well-behaving components when their

ability to correctly interact with the controller is uncertain. Next section will

detail the architecture of the routing primitive.

7 Routing Primitive Architecture

From an architecture viewpoint (see Fig.2.11), the routing primitive resem-

bles an oversimplified version of an input buffered clocked switch. An input

decoder discriminates between packets destined to the controller (collision

between these latter and packets originating from the local switch is solved

by an allocator) and those destined to the local switch. All packets on the

dual network have a fixed 3 flit length. Flit width is 15 bits. The input buffer

has 2 slots (for stall/go flow control management) while the allocator imple-

ments a fixed priority algorithm in light of the operating principle of the dual

network. This latter is as follows. After the BIST phase completes in the local

switch, diagnostic bits are generated and forwarded to the routing primitive

through the writer interface. Packets are 3 flits long. The header flit carries

sender switch ID. The second flit carries diagnostic bits while the third one

carries negated diagnostic bits. The controller transmits configuration bits

again in 3 flits. The header contains target switch ID and flit type. The sec-

ond and third flits contain LBDR bits. Whenever the primitive receives a

configuration packet, the reader interface eliminates the header information

32 Design Methodologies for Fault-Tolerant NoC Design

ALLOCATOR

BUFFERFLIT
IN FLIT

OUT

DIAGNOSTIC
BITS

CONFIGURATION
BITS

WRITER

DECODER

READER

D
E
M
U
X

M
U
X

Figure 2.11: Dual network routing primitive.

and extracts the LBDR bits.

The dual network is a critical component for the correct configuration of the

system. Therefore, we decided to provide fault-tolerance capability to it by

means of triple modular redundancy (TMR). This latter has been preferred

to information redundancy (e.g., error correcting codes, ECCs) for ease of

design. In fact, TMR only requires the replication of the routing primitive

in the dual network, whereas the use of ECCs (such as Hamming codes),

although requiring less overhead, would imply the utilization of ad-hoc de-

sign techniques to avoid that signal fan-outs introduce errors that cannot be

corrected.

V

V

V

V

FLIT
IN 0

FLIT
IN 1

FLIT
IN 2

FLIT
OUT 0

FLIT
OUT 1

FLIT
OUT 2

DIAGNOSTIC
BITS

CONFIGURATION
BITS

Figure 2.12: TMR approach with per primitive voting system.

2.7 Routing Primitive Architecture 33

The simplest approach to TMR implementation consists of replicating the

dual-network three times and to vote it at the input of the controller interface

(for switch-to-controller signaling). This approach, however, has a probability

of failure that does not scale well with the size of the network. In this regards,

let pf be the probability that, because of faults, a single routing primitive is

unable to deliver one input flit to the target output port uncorrupted. When

TMR is applied with voting at the controller, the probability Pi that the i-th

stage of the replicated dual network fails to correctly communicate with the

controller is:

Pi = 1− Prob{at least two voter inputs are correct} =

1−
((3

2

)(
(1− pf)i

)2(
1− (1− pf)i

)
+
(
(1− pf)i

)3
)

(2.1)

where (1− pf)i denotes the probability that a voter input correctly receives

the input of the i-th stage. In case pf � 1, the above equation provides

Pi ' 6i2p2
f . Of course, the presence of the term i2 gives rise to problems in

the presence of large values of i (the furthest away nodes from the controller).

Also, since our dual network is not a one-way chain but a ring where config-

uration bits also flow, PN (where N is the number of ring nodes) coincides

with the failure probability of the ring as a whole. To solve this problem we

decided to vote at the output of each stage of the dual network (see Fig.

2.12). In this scheme, in fact, Pi scales in a better way because it depends

on i. In particular, let qf be the probability that a routing primitive of the

dual network or its output voter are faulty (therefore, qf > pf because of

the additional voter area). Therefore, the probability Pb that a triplicated

primitive and associated output voters work is:

Pb = Prob{at least two voters outputs are correct} =((3

2

)
(1 − qf)2(1 − (1 − qf)) + (1 − qf)3

)
(2.2)

Finally, the probability that the i-th stage of the fault-tolerant dual network

does not communicate with the controller is:

Pi = 1− P i
b (2.3)

34 Design Methodologies for Fault-Tolerant NoC Design

that if qf � 1 becomes Pi ' 3iq2
f , thus showing a linear dependency on i that

scales better with the size of the dual network. Therefore, the scheme in Fig.

2.12 is adopted. It should be noted that also flow control signals (valid and

stall/go) are voted. From the figure, voting of the incoming configuration bits

is also apparent. Should a fault affect this voter, the online testing procedure

is able to detect this, since transmitted configuration bits by the controller

would not match the same bits that the switch sends back to the controller

for a double check, and the switch would be discarded.

8 Experimental Results

Figure 2.13: Area comparison between TMR, ECC and NACK/GO switch.

2.8.1 Area and Critical Path of the Fault-Tolerant Switch Architectures 35

Figure 2.14: Critical path comparison between TMR, ECC and NACK/GO

switch.

8.1 Area and Critical Path of the Fault-Tolerant Switch

Architectures

In this section we illustrate the experimental results carried out for the three

switches (TMR, NACK/GO, ECC) in terms of area, critical path and power

consumption. All the analyzes discussed in this work have been carried out

by means of a backend synthesis flow leveraging mainstream industrial tools.

The technology library is a low-power low-Vth 65nm STMicroelectronics li-

brary.

The area results are showed in Figure 2.13, while critical path comparison is

presented in Figure 2.14. Please note that all the results are normalized with

respect to the plain TMR solution.

The area of the TMR switch is not only given by the various triplicated

modules, but a non-negligible contribution comes from the numerous voters,

instantiated not only in the control path inside the switch, but also for every

bit of the data path of every input channel. In addition, due to the large

area footprint, long wires affect performance of the component. Numerous

electric buffers are instantiated during place&route to speed up transmission

36 Design Methodologies for Fault-Tolerant NoC Design

on internal paths, leading to additional area overhead. The result is a total

area that is much more than triplicated (around 4.5x) with respect to the

baseline solution, and a performance drop that exceeds the pure contribution

of the voters on the critical path. These are very interesting second order

effects that are typically overlooked in most literature surveys.

The version of the switch correcting at every clock cycle (ECC) greatly re-

duces the area footprint with respect to TMR, while almost balancing the

area figures of the NACK-GO switch. Unfortunately, the corrector modules

lie on the critical path and operate at every clock cycle, and not only upon

fault detection as in the NACK-GO switch, so the performance is negatively

affected. The critical path is 27% longer than the NACK-GO switch. The

presented results refer to a single cycle switch. Please note that pipelining

the correction phase would only speed up the throughput, but would neg-

atively affect the latency making the switch multi-cycle. Furthermore it is

important to note that this solution does not guarantee complete fault toler-

ance, because correctors are not immune against transient faults which may

result in packet misrouting.

As far as the NACK/GO switch is concerned, a non-negligible area contribu-

tion comes from detector and corrector modules. These count for almost 13%

of the total area. In many works in the literature targeting transient faults the

problem of data corruption inside buffers is typically omitted, therefore the

overhead of correctors in retransmission-oriented solutions is not accounted

for.

When comparing NACK-GO with the ECC strategy, we can notice a similar

area footprint for the output buffers while the ECC solution presents a lighter

input buffer. This latter result is due to the oversizing of the NACK-GO

input buffer. Indeed, a higher amount of slot buffers is required by NACK-

GO with respect to STALL/GO. As regards the correctors, they bring a

high area overhead to the ECC solution since they lie on the switch critical

path. On the other hand, the NACK-GO switch has smaller correctors but it

requires detectors not adopted by the ECC counterpart. As a consequence,

the two switches require a similar total amount of area for correction and

detection modules. Concerning the control path, the novel arbiter proposed

in section 4.3 does not directly bring area benefit. In fact, the complexity

2.8.2 Power Consumption 37

of the arbiter increases to support the NACK-GO protocol and offsets the

area reduction achieved by avoiding the third arbiter replica. Anyway, the

arbiter is the key enabler for further optimizations in both the LBDR, the

crossbar and the voters. Indeed the NACK-GO LBDR is lighter than the

ECC LBDR solution since the triplication of its logic is avoided by exploiting

the retransmission mechanism introduced by the novel arbiter. Furthermore,

voters are approximately cut by half into the NACK-GO switch because the

novel arbiter is no longer requiring most of voters. Finally, the critical path

between the arbiter and the crossbar is relaxed due to the voters removal,

thus the crossbar results smaller. All together, the NACK/GO switch saves

12% of total area with respect to the ECC switch.

As regards the timing, despite the optimization done on the detector module

as explained in section 4.2, the overall performance of the NACK/GO switch

is limited by the additional complexity of buffer control logic and therefore

matches TMR performance while clearly outperforming the ECC switch.

In conclusion, the NACK/GO solution outperforms the two basic switch

upgrades both from an area (59% area footprint with respect to the plain

TMR solution) and performance (critical path lower by 22% with respect to

the ECC switch) viewpoint.

8.2 Power Consumption

A number of experiments has been carried out to assess the power consump-

tion of the NACK/GO switch and the two fault-tolerant counterparts (i.e.

ECC and TMR).

The NACK/GO, TMR and ECC switches have been tested under different

traffic patterns: idle, hotspot and parallel. Post-layout simulations have been

carried out at 500MHz. All the results were grouped per traffic pattern. As

we found out in previous experiments (in Section 8.1), the area overhead of

the TMR solution comes along with a high power penalty. In fact, the TMR

switch is the most power greedy under all possible traffic patterns, as showed

in Fig. 2.15.

On the contrary, the NACK/GO and the ECC solution perform better than

TMR although a small power penalty is paid by the NACK/GO switch with

respect to the ECC counterpart. This penalty is mainly due to a larger

38 Design Methodologies for Fault-Tolerant NoC Design

Figure 2.15: Power consumption for idle, parallel and hotspot traffic condi-

tion.

amount of buffering resources and the inherent complexity of the NACK/GO

control logic which introduce power consumption overhead during the idle

and the hotspot/parallel traffic conditions respectively.

Moreover, we estimated the peak power trend during detection/correction of

failures. As a result, the ECC and the TMR solutions preserve the peak power

results achieved in the failure-free scenario while the NACK/GO solution

reduces peak power by 36%. This happens because, while the ECC and the

TMR solutions enable correctors and voters each cycle, regardless of the

actual failures, the NACK/GO switch requires a retransmission exclusively

upon failure detection. In this latter case, the main part of the NACK/GO

switch is stalled while only correctors are running.

8.3 Area Overhead of the Routing Primitive

A 5x5 NoC switch of the ×pipesLite architecture [71] has been synthesized

with a 65nm industrial technology library in three variants: the baseline

switch, the BIST-augmented switch and the BIST-augmented switch with

a fault-tolerant routing primitive (like in Fig. 2.12). Two different target

operating frequencies have been selected: 500 MHz and 700 MHz.

Area results are reported in Fig. 2.16. The area overhead of the routing

2.8.4 Fault tolerance of the routing primitive 39

primitive is 12.5% at 500 MHz and 12.8% at 700 MHz of the baseline switch,

far better than replicating the entire primary network. Interestingly, total

switch area with the fault-tolerant routing primitive is just +11.3% higher

(at 500 MHz; +10.6% when operating at 700 MHz) than that of the BIST-

augmented switch.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

baseline

with BIST

with dual

baseline

with BIST

with dual

A
re

a
(u

m
2)

700MHz500MHz

Figure 2.16: NoC configuration: area overhead.

8.4 Fault tolerance of the routing primitive

In what follows, the stuck-at fault model is assumed. Fault-tolerance of the

TMR-augmented routing primitive was assessed by exhaustively injecting

stuck-at faults in the gate level netlist. Then, test patterns generated in

an exhaustive way were provided at the primary inputs to check response

integrity. The stimulated input port depends on the working phase of the

configuration strategy. Three working conditions were taken into account:

(i) transmission of diagnostic bits from the switch to the next element of the

ring structure (communication toward the Global Controller);

(ii) generic transmission from the upstream node to the downstream node;

(iii) configuration transmission from the upstream node to the switch (pro-

gramming of routing bits).

40 Design Methodologies for Fault-Tolerant NoC Design

redundant primitive TMR-less primitive

stuck-at TOTAL switch system TOTAL switch system

1 0.02 0.02 0 25.54 17.48 8.06

2 5.12 3.9 1.22 45.75 30.65 15.1

3 9.06 6.8 2.26 x x x

4 14.63 10.92 3.71 x x x

Table 2.1: Failure probability of a fault-tolerant routing primitive, as a per-

centage of the input test patterns.

The failure probability has been evaluated based on response correctness, i.e.

even if a fault is present, if the response of the circuit is correct (i.e., 2 out of 3

output voters provide the correct input bit) the test passes successfully. This

is also the case when a stuck-at fault has the same value of the corresponding

transmitted bit (and other kinds of “lucky” situations). Tests with single

stuck-at and with multiple stuck-at faults were run. Results are reported in

Table 2.1 (“x” stands for not tested for lack of interest).

Column “total” represents the total failure probability of the routing primi-

tive in the presence of n faults in the primitive itself. This means that TMR is

not able to contain error spreading. However, in these unfortunate cases, our

online testing strategies come into play (dual-rail encoding, three-way hand-

shaking) and enable the global controller to take the proper course of action.

Therefore, column “switch” indicates the percentage of cases where only the

local switch is discarded from the configuration process by the controller.

Only the “system” column indicates when the ring structure becomes unus-

able (the global controller can neither receive diagnostic bits from a group of

switches nor correctly reconfigure the others).

Results show that, while redundancy allows for an almost 100% coverage of

single stuck-at faults, without redundancy (simple primitive) the probability

of transmission failure rises to 25.54%. When multiple stuck-at faults are

considered, the probability of failure of the simple element skyrockets, while

redundant primitive keeps working unaffected in most cases. Please notice

that while single stuck-at faults were exhaustively injected, 10000 random

injections for 2,3 and 4 faults were experimented.

2.8.5 Fault tolerance of the dual network 41

8.5 Fault tolerance of the dual network

The data collected in the previous subsection can now be used in formulas

(1) and (3) to provide the probability to use the dual network to configure

at least one switch.

Assuming P0 the probability of having a single fault, and consequently P 2
0

the probability of having two faults, x1 the probability of having a system

failure (see previous section) because of a single stuck-at fault and x2 the

probability of having a system failure because of two stuck-at faults, being

P0 � 1 we can calculate directly pf of the first formula as

pf = x′1 · P0 + x′2 · P 2
0 = 8.06 · P0 + 15.1 · P 2

0

and Pb of the third formula from

1− Pb = x′′1 · P0 + x′′2 · P 2
0 = 0 · P0 + 1.22 · P 2

0

Comparing the two different instances of the dual network as from section 7,

the improvement of the failure probability when voting at every stage rather

than having a single voter before the Global Controller is approximately 40·n,

where n is the number of stages of the ring (maths omitted). This results in

an architecture which is 630 times more robust when 16 network nodes are

considered.

8.6 Performance analysis

In order to simulate the entire reconfiguration process, we set up a Verilog

testbench materializing the following scenario. A 4x4 mesh is considered as

reference topology; 16 routing primitives are instantiated and connected to-

gether thus creating a chain topology which is dual with respect to the main

network (see Fig. 2.9). The dual network is completed with a zero-time be-

havioural model implementing the behaviour of the global controller. The

fault injection takes place by automatically injecting a growing number of

stuck-at faults among the primitives. The set of possible consequences of such

fault injection are enumerated as follows:

Errors masqueraded: the fault injection is solved by the inherent fault toler-

ance capabilities of the dual network provided by the TMR and the voting

42 Design Methodologies for Fault-Tolerant NoC Design

system.

Switch(es) exclusion: when fault injection is such that the TMR system of a

primitive is fooled, the relative switch might not be able to correctly notify its

status to the global controller (or conversely the global controller might not

correctly reprogram the switch). Therefore, the configuration strategy im-

plemented in the global controller would automatically exclude such switch

element from the final topology. Please note that, even in such condition,

the primitive might still properly serve as a gateway for the dual network

thus correctly delivering diagnosis and reconfiguration information for other

switches.

Unusable network: if the fault injection is such that the TMR system of the

routing primitive is fooled and the primitive itself is no longer able to for-

ward diagnosis and reconfiguration patterns from/to the other elements of

the dual network, then the network becomes unusable (i.e., not configurable

via the dual network).

Catastrophic programming errors: the global controller programs the switches

erroneously but does not detect such event. This situation leads to an inco-

herent status of the routing mechanism in each switch and ends up with

an overall wrongly programmed network. According to our simulation setup,

such scenarios are very rare and take place only 0.3% of the times over 10k

experiments (with a significant number of injected faults: from 6 to 9).

In order to characterize the aforementioned scenarios in reasonable time,

each number of different faults has been injected 1000 times with a uniform

random distribution in the routing primitive gate-level netlist.

As previously discussed when commenting the reconfiguration strategy of

Figure 2.10, the time required by the configuration mechanism to correctly

reprogram all the working switches of the system highly depends on the

number of faulty primitives of the dual network. In fact, every time a switch

has to be discarded by the global controller since not reachable through the

dual network, the topology structure changes and part of the reconfiguration

strategy (Fig.2.10) has to rerun. In the experiment reported in Fig. 2.17,

an increasing number of faults were randomly injected in the dual network.

The plot reports, for such number, the slow down factor experienced by the

global configuration strategy when such number of stuck-at faults increases.

2.8.6 Performance analysis 43

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

0 1 2 3 4 5 6 7 8 9 10

S
lo

w
 d

ow
n

fa
ct

or

Number of Stuck-ats

Figure 2.17: Average configuration time (excluding the configuration algo-

rithm).

In fact, the higher the number of stuck-at faults, the higher the probability of

communication failures through the dual network, therefore the reconfigura-

tion strategy has to rerun several times before converging to a final topology

picture. Please note that this analysis does not account for the number of

cycles required by the configuration algorithm running on a microprocessor

acting as the global controller. Therefore, the reported result is the execution

time of the“bare” hardware of the configuration strategy 2.

Fig. 2.18 reports, for an increasing number of injected faults, the percentage

of the fully working networks. We consider a fully working network, a network

where no switches have been excluded because of a communication failure

through the dual network. For those cases where the network features at least

one non-working switch, the average number of discarded switches ranges

between 3 and 4 thus pointing out the effectiveness of our combined BIST

and fault tolerance techniques. The extreme case where all the switches are

excluded is reported in Fig. 2.19. This figure accounts for the case where

the wrong operation of one or more routing primitives prevents the global

controller from correctly reprogramming all network switches thus ending

2For this experiment we assume the controller to generate configuration bits randomly

44 Design Methodologies for Fault-Tolerant NoC Design

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7 8 9 10

%
 fu

lly
 w

or
ki

ng
 n

et
w

or
ks

Number of Stuck-ats

Figure 2.18: Percentage of fully working networks (no switch excluded) vary-

ing the number of injected stuck-at faults.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0 1 2 3 4 5 6 7 8 9 10

O
cc

ur
re

nc
es

 %

Number of Stuck-ats

Figure 2.19: Unusable network.

up in a non-configurable system. Interestingly, even with a large number of

injected faults, only a 3.5% of experiments report an unusable network.

2.9 Conclusions 45

9 Conclusions

This thesis takes on the challenge of guiding NoC designers toward the ex-

tension of their baseline architectures for fault-tolerance in a resource con-

strained environment. SEUs are targeted, in addition to intermittent faults.

First, we proved that better solutions exist than traditional TMR approaches,

which become increasingly prohibitive in nanoscale technologies. Second, er-

ror correction was proved to be readily available by careful choice of the

correcting code and by blindly applying TMR only to the control path. As a

result, error correction impacted the critical path by 22% and the total switch

area by 13% with respect to link/switch-level retransmissions. In contrast,

correction was surprisingly found to be the most power efficient approach

for the same target speed, thus materializing the benefits of the lower com-

plexity on the control logic and of the lower buffering requirements dictated

by the native STALL/GO flow control. Moreover, we brought fault-tolerant

flow control to the next stage by combining the benefits of STALL/GO and

of ACK/NACK. The resulting solution pays the price of a complex control

logic to manage retransmissions, although it enables to preserve the critical

path and therefore suits the needs of high speed NoC realizations.

In addition, this thesis proposes the complete self-diagnosis and self-configuration

NoC infrastructure, capable of readapting the network to work around sin-

gle and double faults in less than 1 microsecond. As a relevant contribution,

the thesis overcomes the limitations of an isolated development of the di-

agnosis infrastructure and of the configuration mechanism, thus capturing

design inter-dependencies and coming up with a globally optimized hard-

ware/software implementation.

The key idea consists of using a centralized controller thus exploiting its

global visibility of network state for efficient routing reprogramming. Diag-

nosis bits from a distributed and scalable detection procedure are delivered

to the controller through a fault-tolerant dual control network. Online testing

strategies then enable to detect the cases where vital diagnosis and configura-

tion bits are incorrectly signaled between the NoC switches and the controller

(and vice versa), thus leading to the conservative discarding of those switches

unable to interact with the controller. Please notice that in future work the

46 Design Methodologies for Fault-Tolerant NoC Design

same dual control network could be used also for other purposes such as

debugging or congestion management.

Chapter 3

Non-Intrusive Trace & Debug

NoC Architecture with

Accurate Timestamping for

GALS SoCs

1 Motivation

On-chip debug and trace solutions are essential to the modern design flow,

where software has to be developed and optimized for a certain hardware

platform. A suboptimal software routine can have a significant, diminishing

impact on the overall performance of the system-on-chip (SoC). Decrease of

performance can be caused by logical errors, such as bugs in a program’s

code. Detecting such errors could not always be a trivial task, e.g. when race

conditions are present. Furthermore, there might be other deeper dependen-

cies between the program flow and the rest of the activity occurring within

the SoC. Such complex interactions might be hard to find. Therefore, it is

advantageous to have a way of observing how a software program interacts

This chapter includes contents that are referred to a cooperative and interdisciplinary

research. Furher details can be found in [79]

48
Non-Intrusive Trace & Debug NoC Architecture with Accurate

Timestamping for GALS SoCs

with specific hardware components and how the flow of information caused

by it spreads through the SoC. Thus, it is important that the actual hardware

platform becomes, in a way, transparent to the software developer. Such a

transparency is key to better understanding how a particular code behaves

when executed and what its mutual impact with the system is. More pre-

cisely, the software development flow has to be enhanced by knowledge not

only of the micro architecture, which is executing the software program, but

also of the SoC as a whole. Information like the delay, contents and effects of

different processing blocks on a particular transaction can help optimize and

debug software and lead to shorter and more precise development cycles.

Additionally, observing the activity on of a particular SoC has to be done

in a non-intrusive way. This will ensure that the produced observations do

not interfere with the normal operation of the underlying hardware. In the

converse case, it cannot be guaranteed that the behavior of the system being

traced is the same as its behavior while not being observed. Thus, interfer-

ence might render the whole observation trace useless.

Another requirement is that observations carry, besides the information of

the observed activity, also information about the time at which they were

produced in the form of timestamps. They are essential for ordering the ob-

servations into a complete trace, detecting parallel processes and estimating

delays. Furthermore, as a lot of the modern SoCs comply to the globally

asynchronous, locally synchronous (GALS) paradigm, it is also important

that observations from different parts of a system can easily be combined

into one single trace, with high temporal accuracy. SoCs designed for mobile

communications and handheld devices rely heavily on power management

strategies involving clock and power gating to preserve energy. This imposes

a requirement on the way the system is observed to also be able to cope with

partial and full system power downs. Finally, a minimal number of resources

have to be spent on producing these observations.

This work presents a novel solution to the afore mentioned problem. The

observation of the system is performed by reporting, by a dedicated output

port of the chip, all the transitions taking place through the interfaces of each

module with the main interconnect network. Here, the complete operation

of the system can be reconstructed via software. The approach discussed

3.1 Motivation 49

R1

R2

R3

R0

M0

M1

M2

R5

R6

R7

R4

M3

M4

M5

R9R8

R10

Subsystem 0

Debug Domain

B0 B1

To Debugger

Subring 0 Subring 1

Main Ring

Subsystem 1

Figure 3.1: Hierarchical ring topology

in this paper utilizes a dedicated trace and debug network-on-chip (NoC)

architecture for transporting observations between the monitoring devices,

producing them, and the debugger module/interface. As the observations

are transported on a separate interconnect, they become by definition non-

intrusive to the normal operation of the SoC. The topology used to implement

the trace and debug NoC is a hierarchical ring, which eases its application

into GALS SoCs and have a reduces hardware requirement for its implemen-

tation. Furthermore, this work presents a novel timestamping strategy, which

is differential in nature, and is able to give accurate time to observations inde-

pendent of their subsystem of origin. The timestamping technique also allows

the trace to be consistent even after multiple partial power ups and power

downs of the individual subsystems. The final trace is composed by software

at the debugger side from all the received observations. For completeness,

the work also proposes a dummy abstract model of the monitoring devices,

referred to as monitors.

The rest of the paper is structured as follows: Section 2 presents the related

work on the problem. Section 3 presents the architecture and all the compo-

nents of the debug and trace NoC. Section 4 presents the novel timestamping

strategy. Sections 6 and 6 present, respectively, results and conclusions.

50
Non-Intrusive Trace & Debug NoC Architecture with Accurate

Timestamping for GALS SoCs

2 Related Work

Several approaches, which propose solutions to the problem of tracing a SoC,

exist. For example, the work presented in [82] illustrates an AHB tracer,

aimed at producing observations from an AHB bus. However, the authors

concentrate only on one type of interconnect. The method lacks the notion

of time and is also intrusive to the normal system operation. Other works,

like [84] and [43], concentrate on directly debugging code executed within

the processor by making use of scan-chains. Yet, their work primarily con-

centrates on inserting breakpoints and is limited to operating only within the

scope of the processor, rather than the system as a whole. The works [41]

and [30] both concentrate on transaction level debug, where the communi-

cation, rather than the state of the processor is observed. In [41] the regular

NoC interconnect of the SoC is reused for passing the observations to their

final destination. These observations, however, are generated only when the

system cores are stopped. Thus, it is not particularly suitable for tracing live

execution of software in a non-intrusive way. The work in [30] relies on scan-

chains, which can severely limit the bandwidth for observations. The work

also does not support accurate accounting of time. None of the works involve

mechanisms for coping with power saving techniques such as partial system

shutdowns.

As far as the hardware viewpoint is concerned, in [26] a dual network for

control singaling is presented, but its purpose is for hardware test, so it is

not suitable for software tracing and debugging.

3 Proposed Architecture and Topology

The topology of the architecture utilizes a hierarchical ring structure, where

a single Main Ring is connected to multiple Subrings. Each ring encompasses

at most one subsystem of the SoC, where a subsystem is defined as all the

modules residing in the same voltage and frequency domain. Routers have

two input and two output ports, and are input-buffered. One output port of

each router is connected to one input of the downstream one. This input-

output pair of ports (ring side) creates the ring structure. On the contrary,

3.3 Proposed Architecture and Topology 51

the other pair (slave side) manages the bi-directional traffic between the ring

and the attached structure. That is, in the Main Ring every router is attached

to a Bridge module, that permits voltage and frequency crossing between the

Main Ring and the Subring, while in Subrings every router is connected to

the monitor module that is responsible for traffic observations.

To reduce wiring overhead all the rings are implemented using unidirectional

links. The only bidirectional connections exist between the main ring and

the subrings, between the monitors and their corresponding routers and be-

tween the debugger and the corresponding router on the main ring. This

implementation introduces greater latency upon the traffic on the rings, but,

since traces have to be recollected and analyzed offline, high latency is not

important as long as the trace can be correctly computed.

Fig. 3.1 illustrates this structure for an example SoC with two subsystems.

Each sub ring in this model has 4 routers (R0-R3 for Subring 0 and R4-R7

for Subring 1). The main ring has only three routers (R8, R9 and R10). B0

and B1 are the bridges, which connect the two subrings to the main ring. The

boxes, labeled M0-M5, represent the monitors that generate observations.

The routing of the packets in the architecture is simple. There are two direc-

tions, in which packets can flow. They can either propagate from a monitor to

the debugger (downstream) or from the debugger to the monitors (upstream).

The amount of traffic going upstream (configuration packets) is expected to

be low as compared to the packets traveling downstream (trace packets).

Packet headers are inspected by the routers and a packet is either left onto

the particular ring or switched to the other port.

The monitors trace the activity on the bus interfaces, to which they are at-

tached. The observations are encapsulated in the form of packets, which are

injected into the subrings. These packets then, through the debug intercon-

nect, will they reach the debugger attached to R10, where they get absorbed

and included in the overall trace of the system.

The structure of the monitor module is not discussed in depth. It is an obser-

vation module, which can differ on the basis of the observed communication

protocols. However, all different monitors share a set of common features.

The purpose of a monitor is to observe in a non-intrusive way the activity on

a transmission channel, such as the input and ports of a core or a memory,

52
Non-Intrusive Trace & Debug NoC Architecture with Accurate

Timestamping for GALS SoCs

encapsulate it in the form of NoC packets, and forwards them on the rings.

All monitors use the same timestamping mechanism, as discussed in Sec-

tion 4. A monitor can be programmed to be in non-operative mode, where no

activity is reported, or operative mode, where it is sensing the transmission

taking place on the observed channel. Upon monitor’s activation or deactiva-

tion a special packet is emitted, as discussed below. As the monitor is able

to receive as well as transmit packets, it can be constructed in such way as

to interact with the module it is observing. This, for example, may allow the

programming of breakpoints and, hence, allows the discussed solution to be

used non only as as a trace, but as a debug architecture as well.

Because of the NoC’s hierarchical ring structure, a special arbitration scheme

has been designed, in order to provide fairness between the packets produced

by different monitors. To explain the rationale of this, let’s refer back in Fig.

3.1. In Subring 0, supposing all Monitors M0-M2 being operative, Router

R1 attached to Monitor M0 will receive more traffic from the Ring port,

where both M2 and M1 are sending packets, than from the one attached to

M0. By using a simple round-robin arbitration, the Monitor nearest to the

bridge would be privileged. Assuming that there is always a competition on

the subring, the probability of winning all of the K + 1 arbitrations is given

in Eq. 3.1.

Ppass(πK) =

(
1

2

)K+1

= 2−K−1 (3.1)

As it can be seen the probability varies with K and for K >> 0 it tends to 0.

Thus, it is unfair for packets that have to traverse more hops. To resolve this

issue a better, weighted arbitration scheme is used. Instead of having equal

weights wP0 = wP1 for the two ports, they are scaled in correspondence to

the location of the router. This means that each of the two input ports have

a different probability to have access to the ring output port. For the router

attached to the Kth monitor, the weights are as defined by Eq. 3.2 - 3.3.

wKP0
= N −K − 1 (3.2)

wKP1
= 1 (3.3)

3.3 Proposed Architecture and Topology 53

R1R2R3

M0M1M2

Change

πctrl π∆

Change

Figure 3.2: Transmission of a weight change packet π∆

For a ring with N monitors the new weights allow for a new pass probability

expression P fair
pass (πK) to be computed (Eq. 3.4). It is independent of the

relative position of the monitor and ensures fairness to all monitors within a

subring.

P fair
pass (πK) =

1

N −K

K−1∏
i=0

N − i− 1

N − i
=

1

N
(3.4)

The fairness, however, can be lost because of monitor programming. If within

a subring not all monitors are working, the weighting scheme may become

again unfair. Thus, adjustable weights wKP0
are introduced (Eq. 3.5). The

adjusting factor ∆ signifies the change in the number of working monitors

N . Hence, a ring can be seen as having variable size.

wKP0
= Nold + ∆−K − 1 = Nnew −K − 1 (3.5)

Whenever a monitor M is activated or deactivated, a special packet π∆M
is

sent. When the routers, connected to the monitors, receive it on their ring

port (P0), they adapt the weight according to the ∆ ∈ {−1, 1} carried by the

packet (Fig. 3.2). Fig. 3.3 shows an example of a sub-ring connected to four

Modules. Fig. 3.3(a) illustrates the weights when all monitors are active for

a particular subring. Fig. 3.3(b) shows how the weights look like when M2 is

not working. The router attached to the last (Kth) monitor has weights equal

to the ones of the successive downstream router, attached to the (K − 1)th

monitor. This an assumption based on the amount of traffic coming from the

debugger. The control traffic (upstream) is expected to be negligible with

54
Non-Intrusive Trace & Debug NoC Architecture with Accurate

Timestamping for GALS SoCs

respect to the one produced by the monitors. If the wK−1P0
> wK−1P0

, then

the Kth monitor will get advantage over the (K−1)th one. Therefore, keeping

wK−1P0
= wK−1P0

= 1 would be more fair.

R1R2R3

R0

M0M1M2

R4

M3

1

3

1 1 1

2
1

1

(a)

R1R2R3

R0

M0M1M2

R4

M3

1

2

1 1 1

1
1

1

(b)

Figure 3.3: Weight adjustment

4 Timestamping

Knowing exactly when a transmission is started or received by the actors

of the communication is an important feature, required for an accurate in-

spection of the system under analysis. Every observation must carry such

information, in order to produce a meaningful trace. This can be achieved by

3.4 Timestamping 55

inserting information about time to each packet, and can be produced in sev-

eral ways. As an example the system time can be exploited, or a dedicated

counter calculating the clock cycles from the start of the system. Unfor-

tunately, the first approach is intrusive to the SoC behavior as it requires

access to a module, which is part of the system under observation. The sec-

ond approach implies finite measure of time, since every counter will over-

flow sooner or later. In addition, the counter implementation requires high

bitwidth counters and, thus, large timestamps, which consume bandwidth on

the NoC. Furthermore, this approach fails under the assumption of partial

system power downs and clock gating, because these procedures alter the

behavior of the counter or modify its value. In addtion, in modern SoC there

is not a common time reference, since the same architecture can be composed

by multiple clock domains. For this reason, defining a reference on which to

align every observation is even more difficult.

In order to overcome the previous limitations, and at the same time reduce

the hardware utilized for this purpose, we designed a differential timestamp-

ing procedure. The main idea is that every ring of the topology shares the

same clock domain, so shares the same time reference. For this reason, it is

possible to use a small N -bit counter to keep track of time within the sub-

system. Each subring S has its own counter CS, or a number of unique and

equivalent counters. The counters need not have the same size or partitioning

among different subrings.

Each Monitor, when a transfer is observed, takes the counter value and in-

cludes it as a timestamp to the packet. Each router that bridges a subring S

to the main ring (R0 and R4 in Fig. 3.1) and the router interfaced with the

debugger (R10) periodically generate special packets, in order to inspect the

progress of the counters inside every sub-system. Such a packet is generated

and emitted every time the associated counter overflows, and it is referred to

as end of period packet (πEOPS
). The debugger keeps count of the absolute

number of periods ES for each subring by counting the number of received

πEOPS
. Thus, each time it receives a πEOPS

it increases ES by 1. When a

normal trace packet πS, originating from subring S, is received, it is ordered

in the trace by the use of its differential timestamp δπS and ES. The absolute

time estimate t̂(πS) for an observation πS with timestamp δπS from subring

56
Non-Intrusive Trace & Debug NoC Architecture with Accurate

Timestamping for GALS SoCs

S with clock period TclkS can be computed by Eq. 3.6.

t̂(πS) = TclkS(ES2KCS + (δπS mod 2KCS)) (3.6)

However, this equation may lead to errors when, for example, back in Fig 3.1

monitor M0 generates an observation packet π0 at time t, and shrtly after at

time t+ ∆t, before π0 has left the subring R0 generates the πEOP0 . As πEOP0

is generated in front of π0, by the time the second reaches the debugger, the

first would have already increased E0 by 1. Thus, Eq. 3.6 will render false

t̂(π0), as the observation was obviously produced before the synchronization

packet πEOP0 .

To overcome this limitation, the N -bit counter used to construct the differ-

ential timestamps is further, virtually subdivided into two portions of K and

M bits. Fig. 3.4 illustrates this for N = 10, M = 2 and K = 8. Thus, the

higher M bits can be seen as a count on how many times the K-bit portion

has overflowed. By associating the K bits to the time an observation is made

within a period of 2KCS clock cycles, the M bits are a counter mod 2MCS of

these periods.

N︷ ︸︸ ︷
0 0︸︷︷︸
M

0 0 0 0 0 0 0 0︸ ︷︷ ︸
K

Figure 3.4: 10-bit counter

By generating the πEOP0 packet every time theK-bit portion of the associated

counter overflows, the higher M bits serve as an indicator to the period to

which a trace packet π relates. A relative period, indicating one of the last

M periods of a subring S can be computed as ÊS = ES mod 2MCS . The

equation for t̂ is then adapted, such that when ÊS < bδπS/2KCS c then Eq.

3.7 is used, otherwise Eq. 3.8.

3.4 Timestamping 57

t̂(πS) = TclkS

((
ES − (2MCS + ÊS −

⌊
δπS

2KCS

⌋)
2KCS +

+(δπS mod 2KCS)

)
(3.7)

t̂(πS) = TclkS

((
ES − (ÊS −

⌊
δπS

2KCS

⌋)
2KCS +

+(δπS mod 2KCS)

)
(3.8)

This approach allows a packet πS from S to experience a maximum delay of

2NCS clock cycles before being falsely ordered in the trace. This makes the

NoC observations traffic highly tolerant to latencies. As the trace generation

is a computationally expensive task, it is assumed that the debugger carries

it out in software.

Finally, in order to comply with the partial power down and clock gating,

another type of packet, a wake up packet πWUPS
, is introduced. The πWUPS

originates from the routers on the main ring, which connect it to the subrings

(in Fig. 3.1 these are R8 and R9). A packet is created and sent to the debug-

ger, whenever a router on the main ring senses the wake up of the attached

subsystem S. It samples the value of Cmain and uses it as a timestamp to

πWUPS
. Usually, bridges connecting different frequency islands make use of

brute-force synchronizers, that introduce not only latency but also some un-

certainity in the time a signal is sampled (usually at most one clock cycle).

For simplicity, the time needed for synchronization is not included in the

discussion, and it can be additionally included as a constant factor. By using

either Eg. 3.7 or Eq. 3.8, an offset time t̂offsetS = t̂(πWUPS
) is computed.

It indicates the time, at which the subsystem S has waken up according to

the time of the main ring. This leads to the t̃(πS) = toffsetS + t̂(πS) for the

approximate absolute time estimate of the packets coming from S after wake

up. Assuming that a subsystem S can wake at any point in time and no

synchronization penalty, i.e. the router detects the wake up immediately, the

introduced timing error ε is in [0;TclkM), where TclkM is the clock period on

the main ring. The error lies below one clock of the main ring clock period,

which is supposed to be the clock with higher frequency of the system, and

makes the timestamping approach very robust. Compliance with clock gating

58
Non-Intrusive Trace & Debug NoC Architecture with Accurate

Timestamping for GALS SoCs

is achieved in a similar way, by using the clock-gating signal of the subsystem

as a reset to the associated subring counter.

5 Results

A SystemC transaction level model of the proposed solution has been imple-

mented. The system used for the simulations has the following setup:

� 2 subsystems (2 subrings and 2 bridges)

� 5 monitors per subsystem

� Flit size of 16-bit

� TclkM = 3 ns

� Tclk0 = 7 ns

� Tclk1 = 9 ns

� All counters have the same size, with N = 10, K = 8 and M = 2.

� All the monitors inject random observations of lengths between 4 and

40 flits

The higher the bandwidth provided, the more observations can be made si-

multaneously. If the monitors cannot inject the observed activity into the

debug network due to congestion, information has to be trimmed to prevent

incomplete or corrupted traces. Congestion on the debug network is usu-

ally avoided by having large buffer storage. On the other hand, the system

is required to introduce as less hardware overhead as possible. To explore

this tradeoff, the depths of the buffers in the routers and in the bridges are

swept between the size of 3 and 10 flits. For each case a simulation has

been performed. Fig. 3.5(a) shows how the throughput changes in accor-

dance to the buffer resources for an average injection rate of 498MBps. It

can be seen that increasing the buffers of all the routers has almost the same

effect on the throughput (460MBps) as increasing the buffers only in the

bridges (450MBps). Combining both does not produce a significant benefit

(480MBps). The overhead of the router buffers, however, is much higher be-

cause there are a total of 24 buffers affecting the throughput in the routers

vs. only 2 in the bridges (only downstream considered).

3.5 Results 59

(a)

(b)

Figure 3.5: Throughput and latency vs. buffer size

60
Non-Intrusive Trace & Debug NoC Architecture with Accurate

Timestamping for GALS SoCs

Next, Fig 3.5(b) illustrates how the latency scales with the different buffer

sizes. It can be seen that the latency grows with growth of buffer space in the

routers and decreases with increase in buffer space in the bridges. The effect

is caused by the increase of number of packets in transient, which are stored

in the subrings. The buffers on the bridges do not contribute to the latency,

but reduce it because they act as a storage space before the fast interconnect

(the main ring). They allow a packet to be slowly stored while the router

in main ring is transferring other packets, and then read rapidly in a bursty

fashion once the access to the main ring has been granted. This observation

also concludes that having increase in the bridge buffer space is better than

increasing the buffer space of the routers.

Figure 3.6: Latency histogram

Fig. 3.6 illustrates the latency histogram for a simulation run. The buffers

of the bridges were set to depth of 10, while the routers were left with 3 flit

buffers. It illustrates that packets can tolerate high latency. In the simulated

conditions, even a latency of 2.7µs (900 clokc cycles) is acceptable and does

not introduce an error in the trace.

Fig. 3.7 shows how the error of the time estimate t̃ looks like when par-

tial shutdown is introduced in the simulation. The figure shows the plot of

ε = (t̃ − tsim)/TclkM for the whole trace, where tsim is the actual simula-

tion time at which an observation was created. The figure shows that, even

after multiple power down (1 , 2 and 5) and power up (3 and 4

3.6 Conclusion 61

0 1 2 3 4 5 6 7 80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

9 10

x107

1 2 3 4 5

E
rr

o
r

a
s
 a

 p
e
rc

e
n

ta
g

e
 o

f
c
lo

c
k
 p

e
ri

o
d

Time [ps]

Figure 3.7: Power up error

) events, the total error of t̃ is always below one clock cycle of the Main Ring.

By requirement the debug and trace NoC has to come with as little overhead

as possible. To demonstrate the small overhead of the presented solution,

RTL models of the routers and the bridge were created and synthesis was

performed. The results show that the area consumed for a subring with 6

routers (5 monitors) and a bridge is only 1002 FlipFlops and 2190 gates (3-

flit buffers for the routers and 10-flit for the bridge). The maximum clock

frequency achieved in 40nm is 800Mhz, where the limiting factor is the

bridge, which in its current implementation imposes a timing constraint of

half a clock period.

6 Conclusion

This paper presented a novel NoC architecture for tracing and debugging

GALS SoCs. The proposed solution provides capability for non-intrusive

tracing, which is essential to observing the true interaction between soft-

ware and hardware. Furthermore, the work presented a versatile and robust

timestamping approach, which comes with minimum hardware overhead, is

able to work across multiple domains and recovers with minimal error after

partial system power downs and clock gatings. Finally, as shown, the solution

requires low amount of hardware resources and at the same time provides

62
Non-Intrusive Trace & Debug NoC Architecture with Accurate

Timestamping for GALS SoCs

unmatched capabilities.

Chapter 4

A Vertically Integrated and

Interoperable Multi-Vendor

Synthesis Flow for Predictable

NoC Design in Nanoscale

Technologies

1 Motivation

As of today, there are few (actually, not too many) design methodologies and

CAD tool flows for application-specific networks-on-chip (NOCs) [7, 36, 69].

Especially in industry, interconnect vendors complement their interconnect

IP offering with tooling to automate the creation of the system interconnect

based on the communication requirements of the SoC at hand. State-of-the-

art design methodologies and toolflows typically cover a limited range of the

whole design process, especially topology synthesis [11,39,48,49,67,80], and

rely on a library-based approach to NoC design, wherein predesigned soft

This chapter includes contents that are referred to a cooperative and interdisciplinary

research. Furher details can be found in [25]

64
A Vertically Integrated and Interoperable Multi-Vendor Synthesis Flow for

Predictable NoC Design in Nanoscale Technologies

macros are composed at instantiation time to build arbitrary topologies.

In all cases, when we look at current toolflows with respect to future system

requirements, we can identify the following criticalities:

A. EDA flow interoperability. From the system designer’s viewpoint, the

integration of various tools is a common requirement throughout the whole

NoC synthesis flow. Also, in a design flow that requires largely interdisci-

plinary skills, it is very common that such tools come from different vendors,

each focused and specialized on a specific design step. If tool interoperability

is not properly addressed in a multi-vendor flow, the design cycle may largely

prolong.

B. Beyond composition: integration. NoC synthesis flows (possibly multi-

vendor) today rely on the juxtaposition of different design steps rather than

on their full integration, thus missing global visibility and optimization op-

portunities. This causes, among the other things, poor inter-play between

front-end and back-end design, which is prone to a lengthy and possibly inef-

ficient convergence process. In the future, integration of tools into the whole

NoC synthesis flow will have to be mastered by a backbone design method-

ology with global visibility, taking care of smart tool sequencing and of their

interplay.

C. Evolving technology requirements. Today we are at a main transition

point, where new features need to be there in design flows, all related to the

intricacy of nanoscale designs. Issues such as process variations, power grid

integrity, interconnect delay, etc. cannot be addressed as an afterthought any

more, but from the ground up. At the same time, designs should be ranked

with respect to these issues not late in the design flow, which may lead to

lengthy iterations, but rather early, during a pruning step of the design space

relying on technology awareness.

With respect to state-of-the-art, we develop a comprehensive and interoper-

able multi-vendor synthesis flow for application-specific nanoscale NoCs, and

we present a structured validation framework of the novel features of this

flow. In particular:

Claim A: We deliver tool interoperability through the definition of a com-

mon and open specification format (named CEF), that provides a consistent

representation of design data across all layers of the design process. Through

4.1 Motivation 65

the CEF format, design layers (and associated tools) exchange useful infor-

mation, design intents, or directives. Therefore, CEF is the backbone of the

proposed flow.

Validation Means: Tool Interoperability is explicitly proved by running

the proposed multi-vendor flow for the design of a multimedia system, and

by proving convergence (section 4.4.2). The CEF format is the actual means

of interoperability between mainstream and prototype tools, building up the

flow.

Claim B: We deliver a vertically integrated design flow, meaning that (i)

the entire flow is addressed, and (ii) global scope of the flow allows us to

anticipate floorplanning, a typical back-end design step, in the front-end, thus

biasing topology synthesis toward the most efficient physical implementations.

In addition, it is not just the length of wires that matters when synthesizing a

topology: for the sake of low power, large amounts of traffic should be carried

by short links overall; this is achieved by tightly coordinating floorplanning

and topology synthesis, together with use-case specification, in the proposed

flow.

Validation means: Claim B is validated in section 4.4.3 by proving the

correlation between the communication cost metric used by the floorplanner

tool to rank floorplans and the actual NoC dynamic power consumption of

synthesized topologies, measured with post-layout analysis. This proves that

topology synthesis has actually been driven to the most promising physical

implementation.

Claim C: The proposed flow coherently integrates mainstream industrial

tools with new prototype tools addressing the most daunting challenges of

NoC design in nanoscale technologies.

C1. In existing mainstream flows, analysis of the power delivery network is

not available until after physical implementation. At this stage, the turn-

around-time is often too long to justify changes to the floorplan. As a solu-

tion, the proposed flow includes a fast, early-phase power delivery network

analysis engine and integrates this into the prototype front-end floorplanner

tool. The user can thus create floorplans that are optimized for system-level

communication (see Claim B) as well as for power integrity.

C2. NoC links are the major cause of lengthy design iterations between

66
A Vertically Integrated and Interoperable Multi-Vendor Synthesis Flow for

Predictable NoC Design in Nanoscale Technologies

front-end and back-end designers. With the proposed flow it is possible to

realistically project the actual length of NoC links, and even insert repeater

stages upfront in order to meet predefined timing constraints, thus avoiding

lengthy design iterations between front-end and back-end designers.

Validation means for claim C: The flow is put at work for the synthe-

sis and physical convergence of an on-chip network for a media-rich mobile

embedded system. The validation mean is the first-time-right design of this

chip on a 40nm industrial technology library.

2 CEF File Format

CEF (Communication Exchange Format) is an open design format which

specifies SoC-level architecture and communication infrastructure. It is de-

signed to ease tool interoperability and reduce the iterative exploitation of

tools at different stages and abstraction levels of the design flow. CEF allows

for the expression of both design intent (objectives and constraints) and de-

sign implementation, describing for example:

(i) system cores, including relevant interface parameters;

(ii) communication requirements across cores, with support for multiple use

cases;

(iii) clock and power domains, including frequency and voltage scaling;

(iv) interconnect implementation, including key architectural parameters and

routes;

(v) rough floorplan of the design, including wire length annotations.

The CEF format allows for iterative and incremental design steps. For exam-

ple, communication requirements can be provided in a coarse way or mod-

eled accurately. The floorplan of the design can be omitted, then added when

available, and subsequently modified. New usage scenarios, updated NoC re-

visions, or even entirely new system cores can be added at any time, either

reflecting engineering changes or the better understanding of the system as

development proceeds.

CEF was conceived to ease the interoperability of tools involved in the de-

velopment of on-chip interconnects. To this end, it has been designed to be

expressive enough to capture the key design steps and abstraction layers in-

4.2 CEF File Format 67

volved in the design process. CEF does not enforce a strict order in which

these tools must be used, instead promoting rich interaction between tools,

back-annotation of parameters and successive refinements.

CEF has no aim to replace existing formats where established, useful stan-

dards exist, nor to model out-of-the-box every nuance of the system. For ex-

ample, at the architectural level, CEF does not replace existing NoC models

written either in C++, SystemC, Verilog, or other languages, nor it models in

detail the architectural parameters of a specific vendor’s NoC library. Instead,

CEF provides generic, broadly applicable, syntax to specify router connec-

tivity, with only some select properties (e.g. virtual channels, flit widths,

buffer depths) explicitly included. The set of built-in properties was carefully

chosen so as to remain generic and vendor-independent, yet able to express

the key parameters that impact in a major way the performance/area/power

trade-offs.

Rather than as an intermediate representation format, the CEF format is

devised as a data exchange format. The need to maximize the interoperability

of different tools has motivated the choice of the XML to make the format

easily consumable by machines while remaining readable by humans.

Figure 4.1 shows an example of the different interconnect design tools that

can interoperate on a single target system specification thanks to CEF. The

tools operate at different stages of a design process, but can now be seamlessly

mixed and matched instead of being forced in a sequential flow, enriching the

backannotation and optimization opportunities. For instance:

� A NoC architectural simulator can now take into account wire propa-

gation delays and variability effects identified by back-end tools;

� High-level exploration tools, optimizers and synthesizers can have a full

view of constraints (e.g. communication requirements, block distances)

and opportunities (e.g. architectural knobs such as buffering);

� Floorplanners can now automatically perform or optimize the system

placement with full interconnect visibility, and can update it at the

architectural level (e.g. by instantiating wire pipelining) if needed.

CEF was developed by the NaNoC consortium, including both academic and

industrial partners with key expertise in system interconnect design. Since

68
A Vertically Integrated and Interoperable Multi-Vendor Synthesis Flow for

Predictable NoC Design in Nanoscale Technologies

Figure 4.1: CEF-enabled interoperability between NoC design tools.

this thesis is focused on the NoC synthesis flow as a whole, the interested

reader is referred to [22] for CEF details.

3 The Flow at a Glance

The design flow described in this thesis revolves around physical design con-

vergence. The main concepts are to (i) automate the floorplanning of such

heterogeneous systems according to their communication and power integrity

requirements, (ii) perform NoC topology synthesis based on the resulting

floorplan, (iii) a predictable physical synthesis process due to the early mod-

eling and consideration of key technology-level convergence threats in the

flow (namely interconnect delay and power grid integrity). A comprehensive

4.3.1 Front-End 69

Proposed Frontend

synthesis

Verilog

RTL Netlist

Mainstream Backend

Figure 4.2: Proposed flow for the implementation of application-specific NoCs

targeting heterogeneous systems.

overview of the flow is reported in Figure 4.2.

3.1 Front-End

The CEF file initially includes high-level specifications of the system, includ-

ing communication bandwidth annotations between pairs of IP cores, spec-

ified on a use-case basis. A Liberty file characterizing the dynamic power

usage of each IP core is also fed as input to the flow.

System floorplanning is performed before the synthesis of the NoC topology.

Knowledge of the communication streams is used to direct the floorplan-

ner tool to place closer together system blocks that communicate the most.

Thus the total power of the NoC, once implemented, is lower, because the

routing paths carrying high bandwidth streams are short. To enforce this

behaviour, an abstract communication cost metric is defined by multiplying

the bandwidth of communication streams by the distance between the asso-

ciated communicating blocks in the floorplan. This metric is included in the

objective function of the floorplanning tool.

The IR-drop of a design is greatly influenced by its coarse-grained place-

ment, i.e., its floorplanning. Hence, in order to ensure power integrity clo-

sure, analysis of the power delivery network is warranted as early in the flow

as possible [38]. Therefore, in the proposed flow the floorplanner not only

reduces the communication cost function, but is also augmented to include

an early-phase, dynamic IR-drop analysis directly in the optimization loop.

This analysis leverages a prototype high-level power delivery network speci-

fication, and is fast enough (less than 50ms) for inclusion into the automated

70
A Vertically Integrated and Interoperable Multi-Vendor Synthesis Flow for

Predictable NoC Design in Nanoscale Technologies

Synthesis

reports

NoC Block

Instances
Scripted

Back-End

Flow

(Synthesis,

Place, Route)

NoC Power

Models

NoC Area

Models

NoC Frequency

Models

NoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo

Iterate on timing/DRC

violation

Tech

Library

NoC Block

 Library

Instance

Selection

Interpolation

(Extrapolation)

Figure 4.3: NoC Topology Synthesizer: block characterization flow.

floorplanning process in the design front-end stage. As a result, the user can

create floorplans that are optimized for system-level communication as well

as for power integrity.

With respect to commercially available tool flows, floorplanning frameworks

typically miss awareness of system-level design properties. Moreover, IR-drop

analysis is not available until after physical implementation.

The above novel features of the proposed flow have been incorporated, for the

sake of experimentation, into the existing Teklatech FloorDirector tool [76].

Plug-and-play of this tool into the flow was straightforward by making it

support CEF as its input and output format.

After the floorplanning stage the CEF file is refined to include the IP core

placement. After this, it is handed over to the topology synthesis stage, where

the Network-on-Chip is built according to the communication requirements

of the system, described in the CEF too. The most relevant requirements for

topology synthesis in the proposed flow are back-end modeling (parametric

NoC component area and speed models, abstract component power models,

interconnect delay models on the target technology), floorplan awareness for

topology synthesis, and RTL automatic generation.

These features were to a large extent exposed by the commercial iNoCs NoC

synthesis toolchain [36], which was then plugged into the whole flow by mak-

ing it support the CEF format. The key novelty consisted of extending iNoCs

framework to synthesize application-specific topologies on top of pre-assigned

floorplans, delivered by a tool from a different vendor.

The final topology synthesis flow relies on NoC components characterization

to compare different topology design points and block parameter settings.

The characterization (Figure 4.3) relies on the complete synthesis, placement

4.3.2 Back-End 71

and routing of some instances of NoC RTL blocks, including Network Inter-

faces (NI), switches and links. This process yields power, area and maximum

frequency values for those instances. Subsequently, by means of interpolation

and extrapolation, predictions are made for all other possible instances of the

library.

The baseline iNoCs’ topology synthesizer was extended to accept a system

floorplan from a CEF description as an input. The increasing impact of

wiring, in terms of power and propagation delays, strongly suggests that

it is essential to take into account the placement of the system cores in or-

der to better estimate and optimize the interconnect [35,57]. If such a flow is

followed, it is possible to better estimate the power consumption of the inter-

connect, and to design the topology (including, where needed, automatically

instantiating link repeaters to break critical timing paths) to meet timing

constraints from the ground up. In particular, the topology synthesis tool:

- estimates wire length with Manhattan distance, or more complex routing

when hard macros are in the way;

- takes decisions based on a pre-characterization of wire performance in the

target technology library;

- meets timing constraints on links through smart switch floorplanning and

link segmentation, thus making convergence of P&R more predictable.

In order to guarantee smooth integration of this step into the whole flow, the

insertion of NoC components into the design does not lead to expanding the

floorplan boundaries (Figure 4.4). In fact, power grid is designed before NoC

generation, hence expanding the floorplan would impair the assumptions of

the previous stage. To minimize the concern, while trying to avoid lengthy

iterations, optimizations were performed in the iNoCs floorplanning engine

to converge towards more compact floorplans.

RTL of a complete NoC topology, together with its succinct CEF description,

are then handed over to the physical synthesis flow for P&R.

3.2 Back-End

The RTL design is translated into a gate-level netlist mapped to the target

technology library (tool used: Synopsys Design Compiler), according to the

enforced constraints (mainly frequency and operating conditions). Boundary

72
A Vertically Integrated and Interoperable Multi-Vendor Synthesis Flow for

Predictable NoC Design in Nanoscale Technologies

(a) Input floorplan for a SoC design (b) Output floorplan with NoC com-

ponents instantiated

Figure 4.4: The NoC synthesizer inserts the NoC blocks into input floorplan

by minimally perturbing block positions.

timing constraints have been conservatively set to 25% of the fastest clock

in the design in order to take into account the delay of inter-switch links,

100× capacity of biggest inverter in the library has been used as output pin

capacitance, and 0.4ns as transition time of signals at input pins.

The generated netlist is the starting point of the layout generation process,

performed with Synopsys IC Compiler. We implemented a concurrent hierar-

chical Layout Generation methodology, exploiting a top-down approach. This

flow is presented in Figure 4.5, and reflects mature industrial layout flows [47].

After the design has been imported, the floorplan definition (in particular die

area and architectural blocks’ position) is derived according to specifications

extracted from CEF file. Then, power and ground grids are generated consid-

ering specifications from floorplanner tool. Next step is the partitioning of the

Network-on-Chip into its fundamental components, thereby making it pos-

sible to perform place&route on each block concurrently and independently.

This step is necessary to reduce layout generation complexity, machine run-

time and to have tighter control on the layout generation process. Each block

is then saved as a soft macro, so that only global routing between blocks is

required in the top level. Once layout is completed, soft macros are “uncom-

4.4 Experimental Results 73

Figure 4.5: Concurrent Hierarchical Layout Generation

mitted”, i.e. reverted back to their composing standard cells, and final global

refinements (power and/or timing driven optimizations) are performed.

The outcome of this step is a completely placed and routed netlist, together

with the associated parasitic effects. At this point, accurate power analysis

can be performed, by annotating switching activity on the resulting design.

This is done by injecting traffic patterns that reflect the predefined use cases

using for instance the Modelsim tool, and performing timing and power anal-

ysis with proper tools (e.g., the Synopsys PrimeTime suite).

4 Experimental Results

The target experimental setting is a multimedia chips for mobile phones (or

similar devices), which runs different use cases. Its technical specifications

reflect projected industrial trends of multimedia chip for the near future.

This design under test features 25 IP Cores, which include CPU, Graphic

Accelerator, various memory banks and peripherals. Further details in [74].

Extrapolating the usage scenarios of existing smart phones, communication

74
A Vertically Integrated and Interoperable Multi-Vendor Synthesis Flow for

Predictable NoC Design in Nanoscale Technologies

Floorplan CommCost IR-Drop (mV)

Best/Worst 15.83 386

Best/Best 18.87 166

Worst/Worst 43.91 383

Worst/Best 44.52 155

Table 4.1: Four selected reference floorplans in extreme corners with regard

to CommCost and IR-drop.

requirements of CPU, hardware accelerators and memory for video playback

have been scaled up to the high-end HD-TV resolution. The target technology

library is an industrial 40nm 1.20V Low-Power CMOS Standard Cell library.

The goal of this section is to demonstrate that abstract metrics (the commu-

nication cost) and modeling frameworks (IR drops) used in the early steps of

the proposed toolflow maintain a strong correlation with the physical proper-

ties of the design. In other words, we demonstrate that we are not pruning

efficient points from the design space as an effect of abstract modeling of

design properties or inaccurate/misleading objective functions in early-stage

optimization tools. We thus selected 4 floorplan design points (Table 4.1), rep-

resentative of the design space, and fed them to the next steps of the flow to

prove correlation: promising design points will actually outperform the others

as the design is refined.

4.1 Floorplanning & Topology Synthesis, claims A and

B

At this level, a correlation study was performed by synthesizing a large num-

ber of topology design points for the floorplans. The outcome can be seen

in Figure 4.6, where dots of different colors represent topologies built on dif-

ferent reference floorplans. Recall that the communication cost computed by

the floorplanning tool is expected to correlate with power consumption. The

“red” and “maroon” dots represent solutions for the two floorplans with the

lowest communication cost, and are very similar in actual power; the “blue”

and “dark blue” dots represent solutions for the two floorplans with the

4.4.1 Floorplanning & Topology Synthesis, claims A and B 75

run2

Noc14_24sw_64bits_run2

Noc13_25sw_64bits_run2

Noc11_20sw_64bits_run2

Noc11_20sw_64bits_run0

Noc12_21sw_64bits_run0

Noc15_25sw_64bits_run0

Noc10_16sw_64bits_run0

POWER (mW)

LA
T

E
N

C
Y

64 BITS

Run1=worst

IR/best comm,

comm =15.83

Run2=best IR/

best comm,

comm =18.87

Run3=worst IR/

worst comm,

comm =43.91

Run4=best IR/

worst comm,

comm =44.52

Figure 4.6: Topologies generated by the Synthesizer engine for the various

floorplans for different flit widths.

highest communication cost, and are also clustered together. Indeed, there

is a measurable difference (typically around 5 mW, or almost 10%) between

“good” and “bad” floorplans. This separation is an average across use cases,

and since this includes e.g. the Idle scenario in which the NoC is in fact in-

active, it is clearly a conservative estimate; a separation of up to 15 mW or

25% was in fact noticed in traffic-intensive use cases. Moreover, the topolo-

gies built on a worse floorplan exhibit average flow latencies that are slightly

higher, due to the need to insert, on average, a few more pipeline stages along

links.

For the rest of the study, four specific design points among those produced

by the Noc Synthesizer chosen, one per input floorplan. Without lack of gen-

erality, the flit width was fixed to 64 bits. Out of all the possible solutions at

this width, we selected representative instances with low latency and typical

power for the cloud of solutions based on the same floorplans. These four

solutions are summarized in Table 4.2. Please note that reserved area takes

into account a target cell occupancy of 50%.

The design points at this stage consist of floorplans and of application-specific

76
A Vertically Integrated and Interoperable Multi-Vendor Synthesis Flow for

Predictable NoC Design in Nanoscale Technologies

Corner Switch Flit Reserved NoC

Comm/IR Count Width Area Power

(bits) (mm2) (mW)

Best /Worst 25 64 1.73 47.5

Best /Best 25 64 1.72 46.1

Worst /Worst 16 64 1.54 51.2

Worst /Best 16 64 1.54 52.7

Table 4.2: Main metrics of the four selected design points, one per input

floorplan, as estimated by the NoC Synthesizer.

NoC topologies at the RTL level, custom-tailored for the floorplans and for

the communication requirements of the application at hand. They have been

derived by using tools from different vendors (Teklatech, iNoCs) coherently

integrated into the same flow, and they have been showed to maintain correla-

tion of power values across the hierarchy so far. With this respect, claim A is

validated, and partly also claim B about correlation. The design points now

undergo physical synthesis, involving the interplay with mainstream EDA

tools and requiring to preserve correlation across the back-end design steps.

4.2 Physical Convergence, claims A and C2

The target design includes 10 clock domains. Since synchronization is taken

care by Dual-Clock Fifos, clock signals have been defined as asynchronous

to each other so the tool will not balance the sinks among the clock nets. In

addition, a clock uncertainty of 10% has been enforced on every domain, to

account for the possible clock skew.

During Place&Route, a hierarchical design flow is a must for an intercon-

nect structure which is highly irregular, beyond being distributed. In order

to have a tighter control of the results, Hard Bounds are created to define

the areas where NoC building blocks will be placed.

Results: Total NoC area after layout turns out to be 946.152µm2 for Best

Comm./Best IR drop topology and 898.744µm2 for Worst Comm./Worst

IR drop topology, out of a chip area of 6855µm× 6855µm. Aggressive block

4.4.2 Physical Convergence, claims A and C2 77

NoC Interconnect Timing Convergence

Clock Target Slack Slack

Domain Frequency Pre-Opt Post-Opt

clk Audio 100MHz 5,75ns 3,45ns

clk CPU 500MHz 0,20ns 0,09ns

clk DDR 250MHz 0,38ns 0,17ns

clk DMA 200MHz 0,65ns 0,39ns

clk DSP 300MHz 0,34ns 0,19ns

clk Radio 150MHz 1,12ns 0,82ns

clk USB 200MHz 0,53ns 0,23ns

clk SPI 128MHz 6,33ns 2,27ns

clk SRAM 500MHz -0,19ns 0,14ns

clk Video 300MHz 0,38ns 0,20ns

Table 4.3: Timing convergence for all clock domains with proposed method-

ology, before and after Global Optimization

boundary constraints applied to NoC switches led to timing convergence after

the top level integration and global routing of the architectural blocks (3rd

column of Table 4.3). Indeed, every clock domain has a positive slack, and

only one has a small violation due to the unmatched sizing of a few gates

between intra-switch links and switch output cells. This confirms that the link

delay prediction and design engine of the topology synthesis tool have done a

good job. Given this excellent starting point, the tool does not struggle during

the global optimization phase to meet the timing requirements. Therefore, it

can afford relaxing the faster paths to reduce area and power consumption

(4th column of Table 4.3).

Overall, the described methodology actually delivers the fast convergence

claimed by our flow (i.e., claim C2, or first-time right physical design), and

completes the validation of claim A by proving effective integration of front-

end and back-end multi-vendor tools.

78
A Vertically Integrated and Interoperable Multi-Vendor Synthesis Flow for

Predictable NoC Design in Nanoscale Technologies

Figure 4.7: Correlation of NoC power between early-phase and post-layout

analysis.

4.3 Correlation of Dynamic Power, claim B

It is indeed possible to prove correlation between Sign-off and Early-phase

total NoC power numbers in communication-intensive use cases, such as in

“Video Playback”, and “Video Capture” (see Figure 4.7). Deviations never

exceed 8% for both “Best Comm” and “Worst Comm” floorplans.

Only in those use cases where the network is heavely underutilized (“LTE

modem”), and approaches the idle use case, the power gap can be as large as

25%. This is due to the different choice of flip flops the synthesis tool made

during the power model extraction methodology (Figure 4.3) and the actual

physical synthesis of the design at hand. This difference is at such a low level

of abstraction that it becomes extremely difficult to account for it upfront.

Given the large amount of specific timing and Design Rule optimizations

each topology undergoes, all requiring different effort, and the necessarily

more abstract power modeling performed during topology synthesis, these

results ultimately validate claim B.

4.4 Correlation of IR Drop Maps, claim C1

This section needs to demonstrate that the IR drop maps derived by the

front-end floorplanner (during the early phase analysis) and the same maps

4.5 Conclusion 79

derived by the signoff tool indicate the same trends and critical hotspots. The

In-Design Rail Analysis extension of Synopsys ICC was used as the reference

sign-off tool.

It is worth observing that during early-phase analysis, only the current con-

sumption of the IP cores is considered for IR drop analysis, in that the on-chip

network has not been synthesized yet. To match (and later validate) this as-

sumption, in the first place a special layout was inferred with the IP cores

only.

In Figure 4.8 we report the IR drop maps displayed by Teklatech’s early-

phase floorplanning tool and the one displayed by Synopsys ICC for this

design, with reference to the “Best Comm/Best IR drop” floorplan.

The correlation between the two maps is evident: they both agree on indi-

cating the top-left quadrant of the design as the most critical in terms of IR

drops. A similar correlation was observed for the “Worst Comm/Worst IR

drop” floorplan.

When we compared the two floorplans (and their IR drop maps) with each

other, we noticed that relative rankings between early-phase and signoff are

in good agreement (degradations in the order of 2.3x and 1.5x respectively),

thus confirming that the front-end floorplanner would have made the right

choice when selecting the “Best Comm/Best IR drop” one.

Finally, we derived that the on-chip network has a maximum IR drop which

is from 80 to 90% lower than that of IP cores, depending on the baseline

floorplan. If we also look at the IR drop maps for the NoCs in isolation, we can

see that they peak in almost the same physical spot of the IP core maps. This

means that they do not even change the trend of the IP core maps. Therefore,

it was hereby possible to validate the floorplan tool’s assumption to perform

early-phase power integrity check by neglecting the on-chip network.

5 Conclusion

This thesis reports a vertically integrated, interoperable and multi-vendor

synthesis flow for NoCs. It ranges from application traffic specification to

layout generation and physical convergence, and integrates prototype tools

with mainstream industrial tools. Its main innovations include full vertical

80
A Vertically Integrated and Interoperable Multi-Vendor Synthesis Flow for

Predictable NoC Design in Nanoscale Technologies

(a) EARLY-PHASE ANALYSISYSIS (b) SIGNOFNOFF

Figure 4.8: Floorplan with best communication and best IR drop.

integration, global optimization of design steps for technology-aware design,

flow extensions to deal with nanoscale designs. The validation strategy of the

flow revolved around first-time-right design and the proof of correlation of

early-phase analysis and design choices with signoff.

Chapter 5

A Transition-Signaling Bundled

Data NoC Switch Architecture

for Cost-Effective GALS

Multicore Systems

1 Motivation

There is today little doubt on the fact that a high-performance and cost-

effective network-on-chip (NoC) can only be designed in nanoscale tech-

nologies under relaxed synchronization assumptions. On the other hand,

such relaxation is even desirable for the upper design layers, since mod-

ern systems are typically structured into multiple, highly power-manageable

voltage and frequency domains. The Globally Asynchronous Locally Syn-

chronous (GALS) design paradigm can effectively support this architectural

trend [13, 75]. Absorbing the heterogeneity of timing assumptions in such

systems is ultimately a burden of the system interconnect, which serves as

the global integration framework.

Asynchronous NoCs are the best candidates to take on this role, since they

rely on clockless handshaking for inter-domain communication. These designs

come with a number of potential advantages: average-case instead of worst-

case performance, no switching power of a clock tree, easier convergence of

82
A Transition-Signaling Bundled Data NoC Switch Architecture for

Cost-Effective GALS Multicore Systems

hierarchical design flows, robustness to process/voltage/temperature varia-

tions, and efficient delivery of differentiated per-link performance. However,

asynchronous NoCs are not yet at the stage of a mature interconnect technol-

ogy for widespread industrial uptake, and their exploitation in real systems

turns out to be slower than expected.

There are two fundamental barriers that prevent asynchronous NoCs from

becoming a mainstream technology. First, they suffer from poor CAD tool

support, in that design methods and tools for synchronous design cannot

be directly applied. Many rely on a full-custom approach for the design of

such circuits [32]. Some recent work holds the promise of bridging this gap

to some extent [72, 77]. However, asynchronous NoC components are still

typically delivered as rigid hard macrocells [78]. Second, the vast majority

of previous work makes use of four-phase return-to-zero (RZ) protocols, in-

volving two complete round-trip channel communications per transaction,

as well as delay-insensitive (DI) data encodings (namely dual-rail, 1-of-4 or

m-of-n) [52]. These design choices have typically resulted in an overly large

area and energy-per-bit overhead with respect to their synchronous counter-

parts [42].

More recently, the above considerations have raised the interest in single-

rail bundled data asynchronous protocols [52], which in principle provide

designs with a lower timing robustness while significantly reducing area,

wire-per-link and energy-per-bit overhead. In practice, with a bundled data

approach, circuit timing must be carefully specified and controlled to en-

sure correct operation. At the same time, transition-signaling (i.e., two-phase

communication protocol) is gaining momentum as a preferred match for high-

performance asynchronous systems [34], especially for signaling across inter-

router links [24]. Inside routers, four-phase protocols are still generally pre-

ferred since most existing two-phase asynchronous pipeline components are

complex, with large latency, area and power overheads.

The objective of this thesis is to materialize a new design point for NoC switch

architectures, bringing the benefits of asynchronous communication within

reach of cost-constrained multicore systems. To the best of our knowledge,

this is the first time a full 5-ported asynchronous switch is designed with a

transition-signaling bundled data protocol. Our main target is twofold. On

5.1 Motivation 83

the one hand, we aim at a switch architecture that largely outperforms its

synchronous counterpart with respect to area footprint, energy-per-bit and

power consumption, while maintaining roughly comparable performance. In

many previous quasi delay-insensitive (QDI) implementations, with delay-

insensitive channels, while lower overall power is delivered, there are signifi-

cant overheads in area and energy-per-bit. To validate our claim, we compare

with one of the most cost-effective synchronous switch architectures for the

multicore domain, called ×pipesLite [71]. On the other hand, we aim to be

fully compatible with a standard cell design methodology and with a main-

stream CAD tool flow for synchronous design. More specific contributions of

this work are the following:

� we take on the challenge of using two-phase bundled data not only on

inter-switch links but also inside the switch microarchitecture, to obtain

high performance while not missing the low-complexity target;

� while a promising trade-off between cost and performance with transition-

signaling bundled data has been previously been obtained with simple

routing and arbitration primitives, this work is practically extended to

a more intricate full 5-ported switch architecture;

� we aim at design convergence and high performance – above 900 Mflit/sec

– in low-power standard-Vth 40nm technology;

� we introduce two novel, highly-concurrent and efficient asynchronous

components, a transition-signaling circular FIFO and a 4-way arbiter,

each of which can be useful in other domains;

� we present a semi-automated design flow specific for transition-signaling

bundled data design, which exploits commercial synchronous tools, and

allows the creation of partially-reconfigurable macros;

� we compare quality metrics of a post-layout design of the new asyn-

chronous switch with a lightweight synchronous switch architecture (×pipesLite [71]),

in order to prove that through the selected asynchronous design style

it is possible to provide an even more competitive design point, thus

aiming to bring the benefits of asynchronous interconnect technology

within reach of resource-constrained multicore systems;

84
A Transition-Signaling Bundled Data NoC Switch Architecture for

Cost-Effective GALS Multicore Systems

� in the comparison framework with the synchronous switch, we consider

link parasitic effects, which are of key importance in nanoscale tech-

nologies and whose implications on asynchronous switch performance

are typically overlooked.

2 Previous Work

There has been a surge of interest in recent years in GALS and asynchronous

design [75], [13]. Several GALS NoC solutions have been proposed to enable

structured system design. Several of these approaches have been highly ef-

fective, especially for low- and moderate-performance distributed multicore

systems [78], [8], thus targeting a different point in the design space than the

proposed work. Some have low throughput (e.g., 200-250 MHz) [56], while

those with moderate throughput (e.g., near 500 MHz [78], [12], [65], [64])

often have significant overheads in router node latency/area/energy-per-bit.

Almost all use four-phase return-to-zero protocols, involving two complete

roundtrip channel communications per transaction (rather than the single

roundtrip communication targeted in our work), and delay-insensitive data

encoding, resulting in lower coding efficiency than the single-rail bundled

encoding used in this thesis [12], [65], [70], [3], [44].

Closer to our work is a promising recent approach targeting a two-phase pro-

tocol using a commercial computer-aided design (CAD) flow [58]. However, it

has overheads due to a delay-insensitive (LEDR) data encoding and flipflop-

based registers, and is not currently even suitable as a NoC. The GALS neural

network system of [56] also includes two-phase channels between chips, with

four-phase channels on chip, but uses delay-insensitive encoding.

The proposed NoC is based on MOUSETRAP pipelines [52, 66], which use

a low-overhead single-latch-based architecture. This thesis delivers a previ-

ously unexplored design point for asynchronous NoC architectures, relying on

two-phase bundled data encoding. We propose a more aggressive approach

than [24], who limits the two-phase protocol to inter-switch links. The pro-

posed solution builds on the work of [34] and [28], which demonstrate that

transition-signaling single-rail bundled data can be efficiently employed in

basic routing and arbitration functions. However, [34] and [28] target only

5.3 Switch Architecture 85

simple tree-based switch architectures, while this work addresses the intricacy

of a full 5-ported switch design.

3 Switch Architecture

The proposed switch architecture is highly modular and can support the

connection of an arbitrary number of input ports (Input Port Modules, IPMs)

with output ports (Output Port Modules, OPMs). While the design space

is potentially quite large, this thesis analyzes and characterizes a specific

design point with the following features: 5 input and 5 output ports, 32-bit

flit width, wormhole switching and algorithmic dimension-order routing. The

ultimate goal is in fact to assess the quality metrics that transition-signaling

bundled data can achieve on a specific design point of practical interest.

The switch architecture is inspired by the ×pipesLite architecture [71], which

represents an ultra-low complexity design point in the space of fully-synchronous

NoCs. Given this, coming up with an asynchronous switch consisting of the

same building blocks while further cutting down on area and power is the

challenge that this thesis takes on. ×pipesLite will be retained as reference

design point to prove the claim of low implementation overhead and compet-

itive design point.

3.1 Mousetrap Pipelines

The new asynchronous switch introduced in the following sections, is based on

an existing asynchronous pipeline called MOUSETRAP [52, 66], which pro-

vides high-throughput operation with low hardware overhead. Each MOUSE-

TRAP stage uses a single register based on level-sensitive latches (rather

than edge-triggered flipflops) to store data, and simple stage control (replac-

ing the clock) consisting of only a single combinational gate. These designs

use single-rail bundled data encoding, where a synchronous-style data chan-

nel is augmented with an extra req wire, and a single transition on the req

accompanying the data bundle indicates the data is valid. The req wire has

a simple one-sided timing constraint that its delay is always slightly greater

than the data channel. For further details, see [52,66].

86
A Transition-Signaling Bundled Data NoC Switch Architecture for

Cost-Effective GALS Multicore Systems

Figure 5.1: Input Port Module

3.2 Input Port Module Architecture

Input Port Modules route the packet to the correct Output Port Module,

comparing the internal switch address with the destination address contained

in the header flit. The microarchitecture of an IPM is presented in Fig. 5.1.

The single-latch input register is normally transparent, as in MOUSETRAP

pipelines, and the four Request Generator blocks are initially inactive. The

basic operation of the module begins with a head flit arriving from the input

channel, signalled by REQIN (soon after DATAIN arrives). The flit passes

directly though the the input register, which then makes itself opaque, safely

storing the data. It also sends the request (REQx) to all four Request Gen-

erator blocks, and an acknowledge (ACKIN) on the input channel. The head

flit also indicates to the Packet Route Selector to computes the single tar-

get output port, and to assert the corresponding one of four RouteSelected

signals high. This signal sets the corresponding Request Generator to packet

processing mode, which asserts its Packet Path Enabledi output high and

sends it to the target Output Port Module. In tandem, the Reqx signal is

broadcast to all four Request Generator modules, which result in transitions

on all four output requests (REQ0 to REQ3, one to each of the four Output

5.3.2 Input Port Module Architecture 87

2+8

Figure 5.2: Packet Route Selector

Port Modules); however, only the one targeted Output Port Module will be

activated, and the other requests are ignored (see details below).1

The target Output Port Module, after receiving both Packet Path Enabledi

and Reqi, sends acknowledgment ACKi to the Input Port Module. The Ack

Generator then makes a transition on output ACKx, causing the input regis-

ter to become transparent again. It is also sent to the Packet Route Selector,

which deasserts the Route Selected output.

As long as the Request Generator Block still in packet processing mode, its

Packet Path Enabledi output remains high, and all the flits of the packet

are directly transferred to the corresponding Output Port Module. Finally,

when a tail flit is received, Tail Passedi is asserted by the Output Port

Module, which resets the Request Generator to inactive mode and deasserts

the Packet Path Enabledi signal.

Details of the Packet Route Selector are shown in Fig. 5.2. The XOR2 con-

verts the two-phase signals Req and Ack to a level signal, and a matching

delay line enforces hazard-free operation of the combinational routing logic.

The implementation of the Request Generator associated with Output Port 0

is shown in Fig. 5.3. TheRoute Selected0, Tail Passed0 and Packet Path Enabled0

signals are all four-phase (i.e. level) and active-high; when the block is inac-

1Note that, since a two-phase signaling protocol is used, a REQi signal may at times

have the opposite polarity of the incoming request REQx, depending on the number of

flits that have been transmitted in previous transfers, and to which of the four Output

Port Modules.

88
A Transition-Signaling Bundled Data NoC Switch Architecture for

Cost-Effective GALS Multicore Systems

Figure 5.3: Request Generator for Output Port Module 0

tive, these signals are deasserted low. In contrast, the Req and Ack signals

are two-phase. Whenever a request transition arrives on Reqx, it causes a

transition on Req0.

There are two cases of operation. If this is the Request Generator for the

target output port, the unit receives RouteSelected0 asserted high. It then

enters packet processing mode, and asserts Packet Path Enabled0 high. The

XOR2 is used as a programmable inverter, where the correct polarity of the

Req0 output is selected by the XOR3 gate (i.e. phase converter logic). Eventu-

ally, when the tail flit arrives, the Output Port Module asserts Tail Passed0

high, which resets the Request Generator to an inactive state while deassert-

ing Packet Path Enabled0 low. Finally, the Tail Passed0 signal is deasserted

low.

Alternatively, if this is not the Request Generator for the target output port,

i.e.RouteSelected0 is not asserted, the unit is not activated and Packet Path Enabled0

remains low. As each flit arrives, the Reqx transition causes a Req0 transi-

tion, which is ignored by the corresponding Output Port Module. In fact, in

this case, Req0 makes two transitions for each flit: the XOR3 observes the

flit acknowledgment from another Output Port Module (i.e. ACK1, ACK2

or ACK3), thus always returning Req0 to its original value.

3.3 Output Port Module Architecture

Output Port Modules arbitrate between multiple incoming requests trying to

access the associated output channel. The microarchitecture of an OPM is

presented in Fig. 5.4.

5.3.3 Output Port Module Architecture 89

A
rst

rst
C

rst
D

rst
B

Figure 5.4: Output Port Module

Initially, all Packet Path Enabledi and Tail Passedi signals are low, and

the wires of each transition-signaling REQi and ACKi pair have the same

values. Latches L1 to L4 are opaque, blocking new requests until they are ar-

bitrated. Latch L5 and the Data Register are normally transparent, assuming

no congestion, similar to a basic MOUSETRAP pipeline register.

A new transfer begins when a header flit arrives from one of the IPMs, con-

currently with the associated Packet Path Enabledi signal asserted high.

The 4-way mutex arbitrates requests from multiple IPM’s trying to access

to the same output channel, granting access to exactly one of them. Once

the mutex is resolved, it performs two concurrent actions: it (i) selects the

correct data input of the multiplexer, and (ii) forwards the winning request

to the output register by making the corresponding latch (L1 to L4) trans-

parent. The 4-input XOR gate functions as a merge element, joining four

mutually-exclusive two-phase signals into a single request. This latch and

the multiplexer are programmed once at the start of a packet transmission,

and remain unchanged until after the tail flit arrives.

After the output channel request, REQOut, makes a transition, the data reg-

ister and latch L5 are made opaque. They become transparent again when

the acknowledge, ACKOUT , is received, indicating that the flit has been re-

90
A Transition-Signaling Bundled Data NoC Switch Architecture for

Cost-Effective GALS Multicore Systems

C C CC

Req0

Req1

Req2

Req3

Grant0Grant1 Grant2 Grant3

Mutex Mutex Mutex

Figure 5.5: Microarchitecture of new 4-input arbiter

ceived downstream. When data and request are safely stored (ReqEnable

goes low), the unit sends an acknowledge, ACKi, to the appropriate IPM,

completing the left handshaking communication. As each subsequent body

flit of the packet arrives, as long an acknowledgment ACKOUT has been

received for the previous flit, its data DATAi propagates directly through

the multiplexer and data register, and its request REQi propagates directly

through the corresponding latch (L1 to L4), to the output channel.

Packet transmission ends after the tail flit arrives. When the flit is sent on

the output channel, the Tail Passedi signal (asserted high) is sent to the

source IPM, along with the transition-signaling acknowledge, ACKi. Once

asserted, Tail Passedi will also cause the corresponding request latch (L1

to L4) to become opaque. In turn, the corresponding IPM will deassert

Packet Path Enabledi, thereby releasing the mutex, and the Tail Detector

then deasserts Tail Passedi.

3.4 4-Input Mutex Design

The microarchitecture of the new 4-input mutex is presented in Fig. 5.5.

While a previous widely-used 4-input mutex design [20,64] uses 6 two-input

mutex elements and has a serial critical path through 3 mutex elements, the

proposed solution uses 3 two-input mutex elements and has a critical path

through only 1 mutex element.

In this design, the left mutex element arbitrates between requests 0 and 1,

5.3.5 Transition-Signaling Circular FIFO 91

the right mutex element arbitrates between requests 2 and 3, and the center

mutex element arbitrates between requests from the right and left pairs. C-

elements are used to synchronize the operation of the middle mutex with the

side ones, both during the acquire and release phases. Whenever a grant is

given, any other request coming from the channel on the same side of the

winning one will be killed. The rationale is that, when the winning request

will be deasserted, the middle mutex has to be released, so no other requests

must be coming from the same side. This behavior provides fair arbitration

between incoming requests: in fact, requests from the other side will now

have an advantage in acquiring the middle mutex. In other words, the policy

implemented is a round robin between left and right side, and round robin

between requests within the same side.

3.5 Transition-Signaling Circular FIFO

FIFOs can be useful to provide additional storage capacity, so to improve

system-level performance. Multiple MOUSETRAP registers can be placed

one after the other, so to build a serial FIFO, but this introduces severe

latency penalty. To overcome this issue, a new circular FIFO is here proposed.

Unlike [14], which uses a bus-based interface, the proposed design can provide

much lower latency and cycle time.

The microarchitecture of the transition-signaling circular FIFO is shown in

Fig. 5.6. The FIFO uses a two-phase protocol with single-rail bundled data.

Write and Read Pointers are 1-hot level signals, selecting the active Write or

Read Control Blocks. A new transfer begins when new Data arrives, stabi-

lizes and is then followed by ReqIN signal assertion (high in the case under

analysis). A new data can be stored in a buffer slot only if: (a) the write

pointer selects that slot, and (b) that slot is empty (Fulli is at the same

logic level of Emptyi). This condition is detected in the Write Control Block

by an AND gate merging the two conditions, as can be seen in Fig. 5.7(a).

The 2-input XOR in the Write Control block implements a phase conver-

sion, to provide the correct polarity of the Request signal at the input of

the Request Latch, similar to the strategy used in the PacketRouteSelector

in the Input Port Module. The new request causes the active Write Control

block to assert Full0, close the corresponding register to store the coming

92
A Transition-Signaling Bundled Data NoC Switch Architecture for

Cost-Effective GALS Multicore Systems

Data (by deasserting En0), and assert the acknowledge to the input. This

acknowledge will be merged by the N-input XOR to generate the AckOUT

signal upstream. Finally, when ReqIN and AckOUT are at the same logical

value, the Write Counter selects the following buffer position for the next

operation. This concludes data storage.

When Full0 and Empty0 are at different logic levels, it means that new data

is available in the corresponding buffer position. If this is the case and the

read pointer selects that position, the Read Control Block (see Fig. 5.7(b))

will assert a Request, which will be merged with all the other signals out-

going from the other Read Blocks to generate the output Request ReqOUT ,

together with data from the selected position. After this event (now ReqOUT

and AckIN are at different logic values), the ReadPointer0 is immediately de-

asserted, to safely freeze the current value of the output request. In more de-

tail, request latches inside the Read Control Blocks are now closed, while the

active Read Control Block makes its internal acknowledge latch transparent,

to route the incoming signal to the correct buffer position. Next, an acknowl-

edge signal comes from the downstream environment, causing Empty0 to

make a transition and ReadPointer1 to be asserted high, thereby concluding

data transmission.

This FIFO is an important element, not yet exploited in this thesis, but

necessary when considering complete NoC topologies where larger queues

might be required.

4 Virtual Channel Links

In this section the approach we exploit for implementing Asynchronous Vir-

tual Channels is presented. The basic idea is to replicate the baseline switch

N times, one for each VC, and share the same physical link between all the

output ports associated with the same channel. Arbitration takes place on

a per-flit basis, so that whenever a Virtual Channel is blocked, the other

can proceed. Out target architecture exploits transition-signaling bundled

data protocol, with two-phase control signaling. The reference architecture

is shown in Figure 5.8.

The operation is the following: an output port of a switch request access to the

5.4 Virtual Channel Links 93

R
E
G

R
E
G

R
E
G

R
E
G M

U
X

Write
Counter

Read
Counter

ReqIN AckIN

DATAIN

ReqOUT

DATAOUT

AckOUT

Wr
Ctrl

Wr
Ctrl

Wr
Ctrl

Wr
Ctrl

Rd
Ctrl

Rd
Ctrl

Rd
Ctrl

Rd
Ctrl

En0 En1 En2 En3

Write
Pointer

Read
Pointer

1-hot

(continued)

Full0

Full1

Full2

Full3

Empty0

Empty1

Empty2

Empty3

Read
Pointer

1-hot

Figure 5.6: Circular FIFO: top-level view

ReqIN

Fulli+1

Lt
D Q
EnM

a
t
c
h
e
d

R
e
qP
h
a
s
e

S
e
l
e
c
t

Eni
to register's control port

WritePointeri

Fulli

Emptyi
AckOUT

(a) Write Control Block

AckIN

Emptyi+1

Lt
DQ

En M
a
t
c
h
e
d

A
c
k

P
h
a
s
e

S
e
l
e
c
t

Emptyi

Fulli ReqOUT
Lt
D Q
En

ReadPointeri

(b) Read Control Block

Figure 5.7: Schematic of Write and Read Control Blocks

channel arbiter, which will allow transmission to the downstream connected

switch. Once the flit is stored at the receiver (Acklink makes a transition)

the link is freed, but not the VC. The Sender Port is “fooled”, since it will

not send the following flit until the associated Virtual Channel is freed, i.e.

the previously transmitted flit has been accepted inside the switch (AckV C

makes a transition).

While a similar approach has been widely used in the open literature [12,78],

the main limitation of this solution is the huge roundtrip that is being created

94
A Transition-Signaling Bundled Data NoC Switch Architecture for

Cost-Effective GALS Multicore Systems

Arb
R
E
G

R
E
G

AckVC1

AckVC2

DataVC1

DataVC2

ReqLINK1

ReqLINK2

DataLINK

AckLINK1

AckLINK2

ReqVC1

ReqVC2

DataVC1

DataVC2

ReqVC1

ReqVC2

Switch 1
VC1

Switch 1
VC2

Switch 2
VC1

Switch 2
VC2

M
U
X

D
E
M
U
X

ReqLINK

AckLINK

AckVC

Link
Busy

VC
BusyIdle Idle

Figure 5.8: Virtual Channel, initial idea

on the link. Each request must traverse the entire link, reach the destination,

and each acknowledge must make its way back. As we saw, asynchronous

links require pipeline stages not to degrade performance. Pipelining is not

straightforward in this case: it is useless to have pipelines only on the physi-

cal link, since the sender will not provide the following flit until the Virtual

Channel will be freed (a transmission back from the receiver to the sender

must take place). In addition, it is non-trivial to design pipelines consider-

ing the particular handshake mechanism implemented (each channel has one

Request and two separate Acknowledges, and share the same physical Data

wires). Furthermore, a channel must not block the other, so link pipeline

stages architecture and communication protocol must enforce this behavior.

5.4.1 First Solution: Credit-based flow-control 95

4.1 First Solution: Credit-based flow-control

One possible solution to tackle these problems is to implement an Asyn-

chronous Credit-based Flow-Control. This solution is presented in Figure

5.9.

Arb Receiver

AckVC1

AckVC2

DataVC1

DataVC2

ReqLINK1

ReqLINK2

DataLINK

AckLINK1

AckLINK2

ReqVC1

ReqVC2

DataVC1

DataVC2

ReqVC1

ReqVC2

Switch 1
VC1

Switch 1
VC2

Switch 2
VC1

Switch 2
VC2

M
U
X

D
E
M
U
X Receiver

AckCredit1

CreditVC1

AckCredit2

CreditVC2

AckVC1

AckVC2

Figure 5.9: Virtual Channel, Credit-based

No end-to-end communication is present anymore. Each Virtual Channel

requires 4 control lines, two (Req and Ack) are required for flit transmission

downstream, and two (Credit and AckCredit) transmit the Credit upstream.

The Receiver block has buffering resources. When a channel wants to trans-

mit a flit, the arbitration block first checks if the receiver has space to accept

it, to make sure that this flit will not be stalled in the pipeline stages of the

physical link. If this condition is true, the flit has access to the link. Any

number of pipeline stages on the link is tolerated, and at the end the flit will

be stored inside the Receiver. When a flit is accepted inside the downstream

switch, a slot position will be freed inside the Receiver and a Credit will be

sent back to the sender. The credit propagation is performed just like req-ack

flow control, but with no data associated to it.

Blocks detail

In this subsection the various building blocks of this solution are described.

Arbitration module (Figure 5.10) is an extension of the arbitration primi-

tive [34]. Virtual Channel counters have been added, in order to filter incom-

96
A Transition-Signaling Bundled Data NoC Switch Architecture for

Cost-Effective GALS Multicore Systems

ing requests: they increment when a flit is transmitted (i.e. a request makes

a transition) and decremented when a credit is received. If they reach their

maximum capacity, equal to the capacity of the Receiver, they will block

any further incoming request. Also, the output latch stage is slightly differ-

ent from your solution, in order to keep the two virtual channel requests

separated.

D
A
T
A

R
E
G

D Q

En

DATA0

DATA1

M
U
X

DATAOUT

MUTEX

L1
D Q
En

L2
D Q
En

L5
D Q
En

L6
D Q
En

L11DQ
En

L10DQ
En

REQ0

REQ1

ACK1

ACK0

X0 X1

Y0 Y1

Z0

Z1

W0

W1

ACKVC1

REQVC1

REQVC2

ACKVC2

VC
counter

VC
counter

AckcreditVC2

CreditinVC2

AckcreditVC1

CreditinVC1

O
u
t
p
u
t

p
o
r
t
s

o
f

t
h
e

t
w
o

c
h
a
n
n
l
e
s

o
f

t
h
e

s
w
i
t
c
h

L
i
n
k

w
i
t
h

v
i
r
t
u
a
l

c
h
a
n
n
e
l
s

Figure 5.10: Virtual Channel Credit-based, Arbitration Module

In Figure 5.11 is shown the Virtual Channel Counter. It is implemented

as a Muller Pipeline, where tokens injected from the left side do not flow

directly to the right side, but they need an explicit “pull” to be removed

from the pipeline (the input of the last C-element is not inverted). Tokens

are injected by Request signal, while the received Credit is the “pull”.

To implement the Receiver module a simple fork-join of the control signals

between the switch and the Fifo is sufficient (Figure 5.12).

The Pipeline stage that supports Virtual Channels is depicted in Figure

5.13. It is an extension of Mousetrap Pipeline, only any request can arrive

with the associated data and make the register opaque. If a Req makes the

register opaque, no other Virtual Channel can have access to the pipeline

5.4.2 Second Solution: Non-Blocking pipeline stages 97

C C C C

Reqin

Reqout

Ackcredit

Creditin

Figure 5.11: Virtual Channel Credit-based, Virtual Channel Counter

Fifo
N slots

ReqLINK1
DataLINK

AckLINK1

AckCredit1

CreditVC1

ReqSW

DataSW

AckSW
C

D Q
En

AckCredit1

CreditVC1

Credit
Pipeline

ReqFifo

DataFifo

AckFifo

Figure 5.12: Virtual Channel Credit-based, Receiver Module

until the Acknowledge of the active transmission is being received.

4.2 Second Solution: Non-Blocking pipeline stages

A different solution can be represented by pipeline stages that do not block a

virtual channel when the other is busy. This require that each pipeline stage

can keep (at least) a flit belonging to every Virtual Channel. This solution

avoids the need for Credit-based operation, but requires arbitration to be

performed at every pipeline stage in order to decide which channel can have

access to the physical link, in case of contention.

In order to allow a stage to be non-blocking, two different backward control

98
A Transition-Signaling Bundled Data NoC Switch Architecture for

Cost-Effective GALS Multicore Systems

D
A
T
A

R
E
G

D Q

En

DATAOUT

L5
D Q
En

L6
D Q
En

Z0

Z1

ACKVC1

REQVC1

REQVC2

ACKVC2

DATAIN

REQVC1

REQVC2

ACKVC1

ACKVC2

Figure 5.13: Virtual Channel Credit-based, Pipeline Stage

signals are used (exactly as shown in Figure 5.8). ACKLINK instructs the

sender that the transmitted information has been stored (frees the physical

link), while ACKV C informs the sender that the information is being sent to

the downstream block (the buffer position associated to the virtual channel

is again empty).

Blocks detail

Arbitration module: figure 5.14. The arbitration module is again similar to

the arbitration primitive of your NoCS’10 paper. A flit of one of the two VCs

can have access to the mutex if the virtual channel is free (the C-elements

synchronize ReqV C and AckV C , preventing a new request to propagate to the

mutex input if acknowledge from the virtual channel has not been received).

5.4.2 Second Solution: Non-Blocking pipeline stages 99

A flit that has been granted access by the mutex to the channel can access the

physical link if AckLINK has been received from the downstream block (there

are no valid transmission in the physical channel). Note that since a flit can

have access to the physical link only if the downstream block has notified

that the buffer position corresponding to the virtual channel has been freed,

the flit will not be blocked between the two blocks (it will not bee stalled in

the physical channel).

DATA0

DATA1

M
U
X

DATAOUT

MUTEX

L1
D Q
En

L2
D Q
En

L11DQ
En

L10DQ
En

REQ0

REQ1

ACK1

ACK0

X0 X1

Y0 Y1

W0

W1

ACKVC1

REQVC1

REQVC2

ACKVC2

O
u
t
p
u
t

p
o
r
t
s

o
f

t
h
e

t
w
o

c
h
a
n
n
l
e
s

o
f

t
h
e

s
w
i
t
c
h

L
i
n
k

w
i
t
h

v
i
r
t
u
a
l

c
h
a
n
n
e
l
s

C C

D
A
T
A

R
E
G

D Q

En

L5
D Q
En

L6
D Q
En

Z0

Z1

ACKLN1

ACKLN2

Figure 5.14: Virtual Channel Non-Blocking, Pipeline Stage

Pipeline stage: figure 5.15. The operation of this module is similar to the

virtual channel arbiter. The main differences are the two mousetrap buffer

stages at the input of the module that manage handshaking along the physical

channel. Each buffer can store a flit from a different virtual channel.

Suppose that a flit from VC1 arrives at the input of the pipeline. Once the

flit is stored, the physical channel is released, allowing transmission on the

other virtual channel, while VC1 is still busy. Now, the newly stored flit can

require access to the mutex to the output channel. Just like the arbitration

module, the flit can have access to the output channel if the virtual channel

is free. The implementation of the output register is slightly different, but the

100
A Transition-Signaling Bundled Data NoC Switch Architecture for

Cost-Effective GALS Multicore Systems

functionality is exactly the same: we wanted to remove the cascade of two D-

latches, that we found a bit redundant (see figures 5.14 and 5.15). when the

flit is stored in the output register, the input pipeline becomes transparent

again and the virtual channel is freed.

DATAIN

REQVC1

REQVC2

ACKVC2

ACKVC1

D
A
T
A

R
E
G

D Q

En

L1
D Q
En

L2
D Q
En

D
A
T
A

R
E
G

D Q

En
M
U
X

DATAOUT

MUTEX

Y0 Y1

W0

W1

ACKVC1

REQVC1

REQVC2

ACKVC2

L
i
n
k

w
i
t
h

v
i
r
t
u
a
l

c
h
a
n
n
e
l
s

D
A
T
A

R
E
G

D Q

En

L3
D Q
En

L4
D Q
En

X0 X1

C C

ACKLN1

ACKLN2

ACKLN1

ACKLN2

L
i
n
k

w
i
t
h

v
i
r
t
u
a
l

c
h
a
n
n
e
l
s

L6 DQ
En

L5 DQ
En

Figure 5.15: Virtual Channel Non-Blocking, Pipeline Stage

Receiver: figure 5.16. The implementation of the receiver is straightforward:

these are just two separate mousetrap pipelines that accepts data from the

associated virtual channel.

4.3 Timing Constraints

To work properly, the proposed architecture requires some one-sided timing

constraints to be enforced.

One is the matching delay inside the PacketRouteSelector block, in order

to provide glitch-free operation.

A second constraint is in the Output Port Module: data must be stable long

enough before latches are closed inside the output register, i.e. to meet the

latches’ setup time. This constraint applies to both head flit path setup and

body flit propagation, and requires constraining the control path (latches

L1-4 and XOR gates) over the multiplexer delay.

5.5 Semi-Automated Design Flow 101

DATAIN
DATAOUT1

REQVC1

REQVC2

ACKLN1

ACKLN2

ACKVC2

REQVC1

REQVC2

ACKVC1

I
n
p
u
t

p
o
r
t
s

o
f

t
h
e

t
w
o

c
h
a
n
n
l
e
s

o
f

t
h
e

s
w
i
t
c
h

L
i
n
k

w
i
t
h

v
i
r
t
u
a
l

c
h
a
n
n
e
l
s

D
A
T
A

R
E
G

D Q

En

L5
D Q
En

L6
D Q
En

D
A
T
A

R
E
G

D Q

En

DATAOUT2

ACKVC1

ACKVC2

Figure 5.16: Virtual Channel Non-Blocking, Pipeline Stage

Finally, a subtle failure condition can occur during mutex release after a tail

flit has passed. The first path starts in the Output Port Module, when ac-

knowledge is generated. This path goes to the Input Port Module, through

the acknowledge merge block, through the input register control gate, mak-

ing the register transparent and allowing a request eventually pushing at its

input to enter the module, to propagate through the RequestControl Block,

and to reach the Output Port Module. The AND gates above latches L1-4

ensures that once TailPassed signal is asserted, these are closed when the

new request comes, reducing the otherwise longer path through PacketPath-

Enabled deassertion and mutex release.

Other relative timing constraints exist inside the 4-input mutex, the Request

Control Block and the circular FIFO, but they are typically satisfied in nor-

mal operation of the switch.

5 Semi-Automated Design Flow

All the previously mentioned constraints, plus other delay requirements needed

to increase performance, have been enforced across all the steps from logical

102
A Transition-Signaling Bundled Data NoC Switch Architecture for

Cost-Effective GALS Multicore Systems

synthesis to layout design by means of mainstream CAD tools in a semi-

automated design methodology. We use a Low-Power Standard-Vt 40nm In-

dustrial Technology library, Normal Process, 1.2V Supply Voltage and 300K

Nominal Temperature.

Entry level - The various blocks have been described with low-level RTL

models: their functionality has been specified using logical operators, with

only few exceptions when implementing specific asynchronous cells. Our tech-

nology library does not include C-elements nor mutexes, therefore we use

their standard-cell equivalent implementations [55,81].

Logic Synthesis - The design is synthesized and mapped to the target li-

brary using the Synopsys Design Compiler. When using asynchronous design

style, not only functionality, but also dynamic behavior is important. In order

to ensure glitch-free operation, the tool must be prevented from applying logic

optimizations to the design. On the other hand, automatic buffer insertion is

a useful optimization option that we would like to exploit. This behavior can

be achieved by using the set compile directives and set structure directives

of the tool. While Design Compiler does not understand relative timing con-

straints, they can be enforced through multiple iterations: in a first run, only

max delays are enforced, in order to meet a generic target (max performance,

minimum area); then, in a second run, the delay of the paths that have to

be matched can be extracted from the netlist (get timing path, get attribute

timing path arrival) and assigned to the required path (set min delay). The

same procedure can be used to check whether the given constraints have been

fulfilled, and iterate again if necessary.

Physical Switch Design - For this purpose we used Synopsys IC Compiler.

As in the technology mapping procedure, it is possible to enforce, extract

and compare the delays between different paths, and automatically verify if

constraints have been fulfilled. If not, it is possible to update constraints and

iterate place and route again.

Top-Level Implementation - Again, the Synopsys IC Compiler function-

ality is leveraged. The placed and routed switch netlist is saved as a hard

macro and then instantiated in the top level description of the system. This is

a typical hierarchical design methodology, which achieves reduced runtimes

and faster convergence. Since this hard macro is generated with the standard

5.5 Semi-Automated Design Flow 103

methodology described above, it still presents some degrees of freedom: data

width is parameterizable, as well as its floorplan aspect ratio and the posi-

tion of input-output ports. For this reason, this is different from a fixed hard

macro designed with a full custom approach.

In order to route interconnection wires between any two switches, we choose

to give maximum delay constraints over the link, while keeping the same max

capacitance and max transition time constraints given inside the switch. After

a first routing and buffer insertion, we freeze placement and driving strength

of data wires along them (so that their delay will no longer change), and give

minimum delay constraints over the request signal to satisfy the bundled data

protocol requirement (i.e. a request must arrive always after the correspond-

ing data has stabilized). Then, incremental physical optimization and routing

are performed. A different approach has been adopted when implementing

links with pipeline stages. A pipeline stage can help reduce cycle time over

the link, at the cost of some additional forward latency. As before, switches

were implemented as hard macros and placed a few millimeters apart. Ar-

chitectural repeaters (i.e. MOUSETRAP FIFO stages) are described as soft

macros, inferring their placement boundaries in order to have a regular floor-

plan and guide tool decisions. The tool is then allowed to size pipeline cells

and insert buffers to reduce propagation delay.

Even though the previously described methodology could produce a valid

outcome, the performance results were not satisfactory. This is because sim-

ply setting of max delays on wires does not take into account the internal

timing arcs of the latches. This issue prevents the tool to correctly estimate

the time spent on link traversal. In order to optimize our procedure, we ex-

ploited a similar method to [78], adapting it for the single-rail bundled data

case. Through IC Compiler commands, we disabled the path through the

feedback loop of register control logic, from input to output pin of latches in-

side repeaters, and defined the reset signal as a dummy clock. This approach

makes latches similar to flip flops, and the clock period gives a constraint on

the maximum forward delay. This leaves the acknowledge signal propagating

back from each pipeline stage to the previous one unbounded (we disabled the

timing path through register control logic), so a maximum delay constraint

has been enforced on it in order to speed the path through it. Again, multi-

104
A Transition-Signaling Bundled Data NoC Switch Architecture for

Cost-Effective GALS Multicore Systems

ple iterations are required to enforce bundling constraint on a request signal.

We found that this approach is more suitable when dealing with pipelined

links, since it reduces tool run times and the number of iterations required

to satisfy matching constraints with respect to the previous methodology.

6 Experimental Results

In order to evaluate our implementation choice, we compared the proposed

5x5 asynchronous switch with the baseline fully synchronous ×pipesLite

switch.

Experimental Setup

While constraints required for correct functionality can be checked and fixed

during synthesis and place and route procedures, performance evaluation

must be assessed through simulation. In order to assess performance of the

asynchronous switch, the following experimental setup has been exploited.

The switch under test receives packets from injector modules and forwards

them to absorber modules; injector and absorber are simply other instances

of the same switch, with fast loops at their boundaries (i.e., maximum in-

jection rate). This environment permits to assess the realistic handshaking

mechanism between neighboring switches, thereby avoiding overly-optimistic

results.

Latency metric is evaluated as the time interval from a request being as-

serted at the input port to a request asserted at the output port, assuming the

switch is initially empty and there is no congestion. Latency varies depend-

ing on the flit position inside the packet. Head flits experience the highest

latency since they have to set up the path from input to output port. Latency

will be evaluated focusing on head flits, since they are responsible of packet

propagation through the network. Cycle time is the interval between two

successive acknowledgments received at the switch output port.

As far as the synchronous switch is concerned, the implementation allocates

one clock cycle to traverse the switch and one clock cycle to traverse the link

connecting two switches. For this reason, cycle time is one clock period, while

latency amounts to two clock periods.

5.6 Experimental Results 105

Asynchronous Synchronous

Area 4691 µm2 16035 µm2

Latency (Head Flit) 1195 ps 1960 ps

Cycle Time (Avg.) 903 ps 980 ps

Area Efficiency 236 Mfps/mm2 63.63 Mfps/mm2

Table 5.1: Asynchronous vs. Synchronous Switch

Area efficiency is a metric that evaluates how much area is necessary to

provide a defined performance. It is calculated as:

AreaEfficiency =
DeliveredThroughput

AreaOccupancy

[
Mfps

mm2

]
Comparative Analysis

Table 5.1 presents the measured metrics. The asynchronous switch requires

71% less area, and delivers 39% lower latency and comparable throughput.

For this reason, the Area Efficiency metric is 3.7x higher for the asynchronous

implementation. It should be observed that part of the area savings come

from the different minimum buffering requirements of the two switches. Both

of them are latched at inputs and outputs. However, the synchronous switch

needs two slot buffers to properly support the stall/go flow control protocol

(i.e., not to lose data upon stall assertion). Vice versa, flow control is inher-

ently implemented in the asynchronous clockless handshaking, therefore only

a single slot latching stage is sufficient for the asynchronous switch.

NoC Link Effect

A typically overlooked issue is the effect of the inter-switch links on perfor-

mance, which are assumed ideal in Table 5.1. In order to account for this

aspect, we implement a complete layout of two switches, placed a few mil-

limeters apart, and route interconnections between them.

Fig. 5.17 shows how head latency and cycle time degrade for synchronous and

asynchronous switches when varying the inter-switch distance. Having an en-

tire clock cycle reserved for link traversal, the synchronous switch maintains

a stable performance up to 4 mm link length. From there on, the critical path

106
A Transition-Signaling Bundled Data NoC Switch Architecture for

Cost-Effective GALS Multicore Systems

Figure 5.17: Performance results with unpipelined links

moves from inside the switch into the link, thus reducing the maximum clock

frequency. On the other hand, performance of asynchronous switch grace-

fully degrades when increasing link length. Latency is always lower when

compared with the synchronous counterpart, while cycle time has a steeper

degradation, due to the signal roundtrip over the interconnect.

It is well-known that link pipelining is the way to reduce cycle time at the

expense of additional latency. This holds for both synchronous and asyn-

chronous design styles, but the implications are completely different. Adding

a pipeline stage in synchronous logic always implies one additional clock cy-

cle latency and full retiming and flow control stages, while in asynchronous

logic the latency is affected by only a few gates delay since pipeline stages

consist of simple latching stages.

Exploiting the procedure described in section 5, effects of link pipelining

are analyzed. The number of pipeline stages is selected in order to obtain

the same cycle time as the one measured for ideal link. As shown in Fig.

5.18, the additional pipeline stages negatively affect asynchronous latency,

although for link lengths below 2.5 mm performance is always better or equal

to that of the synchronous switch. For longer link lengths, the asynchronous

solution suffers the most from link parasitics due to the roundtrip delay of

its handshaking protocol.

5.6 Experimental Results 107

Figure 5.18: Performance results with link pipelining

Power Analysis

Power consumption of the switches is analyzed under different conditions,

using Prime Time on post-layout implementations. For these experiments,

the synchronous switch has been implemented in two versions, one without

and one with clock gating.

Four different case analysis are presented in Fig. 5.19. Leakage power is

smaller in asynchronous design, given the reduced area occupancy. Idle power

is analyzed considering clock tree power consumption: even if clock gating

technique can provide evident benefits with almost no performance penalty

with respect to baseline synchronous switch, the asynchronous switch, be-

ing completely clockless, requires 90% and 97% less power than clock gated

switch and baseline switch, respectively. The remaining two cases use two

different traffic benchmarks, with packets composed by 3 and 8 flits. For

hotspot (a single output channel is accessed by packets coming from every

other input channel), the asynchronous switch has an average of 85% less

power requirement than synchronous and and 73% less than synchronous

with clock gating. For the parallel benchmark (all input ports competing for

5 different output ports, no contention), power consumption is reduced on

average by 60% with respect to synchronous and 45% with respect to syn-

chronous with clock gating. Overall the small difference between 3 and 8 flits

108
A Transition-Signaling Bundled Data NoC Switch Architecture for

Cost-Effective GALS Multicore Systems

Asynch 3 flits
Asynch 8 flits
Synch 3 flits
Synch 8 flits
CG 3 flits
CG 8 flits

Traffic Pattern

P
o
w
e
r
C
o
n
s
u
m
p
t i
o
n
(m
W
)

Figure 5.19: Power consumption of the different switch architectures, varying

the traffic injected

packets is due to the extra power required during arbitration process. Power

savings not only come from the clockless architecture of the asynchronous

switch but also from its lower complexity and footprint. In fact, observing

the energy-per-flit in Fig.5.20, there is a 44% average reduction with respect

to the two synchronous switches.

Energy per Flit

Packet Length

E
n
e
rg
y
(p
J
)

Figure 5.20: Average energy required to propagate a Flit form input to output

5.7 Conclusions 109

7 Conclusions

This thesis delivers a largely unexplored design point in asynchronous NoC

switch architectures. It relies on transition-signaling bundled data to produce

a low overhead design, which at the same time meets the performance of syn-

chronous counterparts. Post-layout results indicate that area is reduced by

71%, idle power by 90%, and energy-per-flit by 45%. Throughput is roughly

comparable with the synchronous switch, while latency is actually better up

to link lengths of 2.5mm in 40nm technology. Overall area efficiency is supe-

rior (3.7x). Finally, the switch is delivered as a partially-reconfigurable hard

macro for hierarchical design flows. Timing constraints are tightly controlled

through a semi-automatic design flow relying on mainstream synchronous

CAD tools.

Chapter 6

Conclusions

This work documents the effort of providing design technologies able to tackle

the power requirements of Network-on-Chip infrastructures.

With this in mind, selective challenges of nanoscale technologies have been

considered, in order to assess the energy cost of each solution.

As far as fault tolerance is concerned, we did not just engineered design

methodologies for switch architecture, but we matched system-level infras-

tructure with local features of the switches. In this way, we found out that

when targeting single-event-upsets, error correction techniques are often less

power-hungry than error detection and recovery solutions. In addition, we

proposed an effective and low-complexity design technique for addressing

system-level diagnosis and reconfiguration.

At the same way, when dealing with the generation of application-specific

SoCs, the global interconnect cannot be treated as any other monolithic

block. The consequence would be a sub-optimal network infrastructure that

would hardly meet communication requirements and whose implementation

would not be able to reach the required performance and/or power consump-

tion specifications. In this thesis, a tool flow for the generation of an efficient

Network-on-Chip topology is described, exploiting the most suitable design

methodology for fault-tolerance for irregular topologies as a test case. Thanks

to early floorplan and topology exploration, we are able to rank designs up-

front with respect to relevant metrics such as power consumption hot-spots

and communication traffic locality. Fast convergence and predictable results

of this methodology has been proven by demonstrating correlation of design

112 Conclusions

choices across the design hierarchy and accuracy of abstract models used in

early phase analysis and synthesis.

Finally, the most power effective solution analyzed in this thesis results to be

asynchronous design. In fact, results of this design methodology applied to

switch architecture show up to 90% reduction in overall power consumption,

and a 45% average reduction in energy-per-flit, thanks in particular to the

complete removal of clock tree and associated switching activity, and intrinsic

flow-control capability that simplifies control logic.

However, even though asynchronous design technology is becoming more and

more appealing as clock distribution reaches its physical limits, this design

style is still far from being a solid solution, since procedures for complete

platform composition of clockless designs are not fully stable yet, even though

we believe this thesis described the initial steps towards this direction.

Bibliography

[1] Nidhi Aggarwal, Parthasarathy Ranganathan, Norman P Jouppi,

James E Smith, Kewal K Saluja, and George Krejci. Motivating com-

modity multi-core processor design for system-level error protection. In

Workshop on Silicon Errors in Logic-System Effects (SELSE), 2007.

[2] A. Alaghi, M. Sedghi, N. Karimi, M. Fathy, and Z. Navabi. Reliable

noc architecture utilizing a robust rerouting algorithm. In Design Test

Symposium (EWDTS), 2008 East-West, pages 200–203, 2008.

[3] M. Ali, Michael Welzl, and S. Hellebrand. A dynamic routing mechanism

for network on chip. In NORCHIP Conference, 2005. 23rd, pages 70–73,

2005.

[4] A.M. Amory, E. Briao, E. Cota, M. Lubaszewski, and F.G. Moraes.

A scalable test strategy for network-on-chip routers. In Test Confer-

ence, 2005. Proceedings. ITC 2005. IEEE International, pages 9 pp.–

599, 2005.

[5] F. Angiolini, D. Atienza, S. Murali, L. Benini, and G. De Micheli. Re-

liability support for on-chip memories using networks-on-chip. In Com-

puter Design, 2006. ICCD 2006. International Conference on, pages

389–396, 2006.

[6] K. Arabi. Logic bist and scan test techniques for multiple identical

blocks. In VLSI Test Symposium, 2002. (VTS 2002). Proceedings 20th

IEEE, pages 60–65, 2002.

[7] ARTERIS. http://www.arteris.com.

114 Bibliography

[8] John Bainbridge and Steve Furber. Chain: a delay-insensitive chip area

interconnect. IEEE Micro, 22(5):16–23, 2002.

[9] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin. An

asynchronous noc architecture providing low latency service and its

multi-level design framework. In Asynchronous Circuits and Systems,

2005. ASYNC 2005. Proceedings. 11th IEEE International Symposium

on, pages 54–63, 2005.

[10] Davide Bertozzi, Luca Benini, and Giovanni De Micheli. Error control

schemes for on-chip communication links: the energy-reliability trade-

off. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 24(6):818–831, 2005.

[11] Davide Bertozzi, Antoine Jalabert, Srinivasan Murali, Rutuparna

Tamhankar, Stergios Stergiou, Luca Benini, and Giovanni De Micheli.

Noc synthesis flow for customized domain specific multiprocessor

systems-on-chip. Parallel and Distributed Systems, IEEE Transactions

on, 16(2):113–129, 2005.

[12] Tobias Bjerregaard and Jens Sparso. A router architecture for

connection-oriented service guarantees in the mango clockless network-

on-chip. In Design, Automation and Test in Europe, 2005. Proceedings,

pages 1226–1231. IEEE, 2005.

[13] Daniel M Chapiro. Globally-asynchronous locally-synchronous systems.

Ph. D. Thesis, 1:50, 1984.

[14] Tiberiu Chelcea and Steven M Nowick. Low-latency asynchronous fifo’s

using token rings. In Advanced Research in Asynchronous Circuits and

Systems, 2000.(ASYNC 2000) Proceedings. Sixth International Sympo-

sium on, pages 210–220. IEEE, 2000.

[15] Caroline Concatto, Debora Matos, Luigi Carro, Fernanda Kastensmidt,

Altamiro Susin, Erika Cota, and Marcio Kreutz. Fault tolerant mecha-

nism to improve yield in nocs using a reconfigurable router. In Proceed-

ings of the 22nd Annual Symposium on Integrated Circuits and System

Design: Chip on the Dunes, page 26. ACM, 2009.

Bibliography 115

[16] Kypros Constantinides, Stephen Plaza, Jason Blome, Bin Zhang, Valeria

Bertacco, Scott Mahlke, Todd Austin, and Michael Orshansky. Bullet-

proof: A defect-tolerant cmp switch architecture. In High-Performance

Computer Architecture, 2006. The Twelfth International Symposium on,

pages 5–16. IEEE, 2006.

[17] Matteo Dall’Osso, Gianluca Biccari, Luca Giovannini, Davide Bertozzi,

and Luca Benini. Xpipes: a latency insensitive parameterized network-

on-chip architecture for multi-processor socs. In Computer Design

(ICCD), 2012 IEEE 30th International Conference on, pages 45–48.

IEEE, 2012.

[18] William J Dally, Larry R Dennison, David Harris, Kinhong Kan, and

Thucydides Xanthopoulos. Architecture and implementation of the re-

liable router. In Hot Interconnects II, pages 197–208. Citeseer, 1994.

[19] William James Dally and Brian Patrick Towles. Principles and practices

of interconnection networks. Elsevier, 2004.

[20] Rostislav Reuven Dobkin, Ran Ginosar, and Avinoam Kolodny. Qnoc

asynchronous router. Integration, the VLSI Journal, 42(2):103–115,

2009.

[21] D. Fick, A. DeOrio, Jin Hu, V. Bertacco, D Blaauw, and D Sylvester.

Vicis: A reliable network for unreliable silicon. In Design Automation

Conference, 2009. DAC ’09. 46th ACM/IEEE, pages 812–817, 2009.

[22] Communication Exchange Format (CEF) format. www.nanoc-

project.eu.

[23] Arthur Pereira Frantz, Fernanda Lima Kastensmidt, Luigi Carro, and

Erika Cota. Dependable network-on-chip router able to simultaneously

tolerate soft errors and crosstalk. In Test Conference, 2006. ITC’06.

IEEE International, pages 1–9. IEEE, 2006.

[24] Daniel Gebhardt, Junbok You, and Kenneth S Stevens. Comparing en-

ergy and latency of asynchronous and synchronous nocs for embedded

116 Bibliography

socs. In Proceedings of the 2010 Fourth ACM/IEEE International Sym-

posium on Networks-on-Chip, pages 115–122. IEEE Computer Society,

2010.

[25] A. Ghiribaldi, H.T. Fankem, F. Angiolini, M. Stensgaard, T. Bjerre-

gaard, and D. Bertozzi. A vertically integrated and interoperable multi-

vendor synthesis flow for predictable noc design in nanoscale technolo-

gies. In Design Automation Conference (ASP-DAC), 2014 19th Asia

and South Pacific, pages 337–342, Jan 2014.

[26] Alberto Ghiribaldi, Daniele Ludovici, Michele Favalli, and Davide

Bertozzi. System-level infrastructure for boot-time testing and config-

uration of networks-on-chip with programmable routing logic. In VLSI

and System-on-Chip (VLSI-SoC), 2011 IEEE/IFIP 19th International

Conference on, pages 308–313. IEEE, 2011.

[27] Alberto Ghiribaldi, Daniele Ludovici, Francisco Triviño, Alessandro

Strano, José Flich, José LUIS Sánchez, Francisco Alfaro, Michele Favalli,

and Davide Bertozzi. A complete self-testing and self-configuring noc in-

frastructure for cost-effective mpsocs. ACM Transactions on Embedded

Computing Systems (TECS), 12(4):106, 2013.

[28] Gennette Gill, Sumedh S Attarde, Geoffray Lacourba, and Steven M

Nowick. A low-latency adaptive asynchronous interconnection network

using bi-modal router nodes. In Proceedings of the Fifth ACM/IEEE

International Symposium on Networks-on-Chip, pages 193–200. ACM,

2011.

[29] M.E. Gomez, N.A. Nordbotten, J. Flich, P. Lopez, A. Robles, J. Duato,

T. Skeie, and O. Lysne. A routing methodology for achieving fault toler-

ance in direct networks. Computers, IEEE Transactions on, 55(4):400–

415, 2006.

[30] Kees Goossens, Bart Vermeulen, Remco van Steeden, and Martijn Ben-

nebroek. Transaction-Based Communication-Centric Debug. In Pro-

ceedings of the First International Symposium on Networks-on-Chip

(NOCS’07), 2007.

Bibliography 117

[31] C. Grecu, P. Pande, A. Ivanov, and R. Saleh. Bist for network-on-chip

interconnect infrastructures. In VLSI Test Symposium, 2006. Proceed-

ings. 24th IEEE, pages 6 pp.–35, 2006.

[32] Simon Hollis and Simon W Moore. Rasp: an area-efficient, on-chip net-

work. In Computer Design, 2006. ICCD 2006. International Conference

on, pages 63–69. IEEE, 2007.

[33] Nima Honarmand, Ali Shahabi, and Zain Navabi. A heuristic search

algorithm for re-routing of on-chip networks in the presence of faulty

links and switches. Proc. of IEEE EWDTS, 2007.

[34] Michael N Horak, Steven M Nowick, Matthew Carlberg, and Uzi

Vishkin. A low-overhead asynchronous interconnection network for gals

chip multiprocessors. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 30(4):494–507, 2011.

[35] Bo Huang, Song Chen, Wei Zhong, and Takeshi Yoshimura. Application-

specific network-on-chip synthesis with topology-aware floorplanning. In

Integrated Circuits and Systems Design (SBCCI), 2012 25th Symposium

on, pages 1–6. IEEE, 2012.

[36] iNoCs. http://www.inocs.com.

[37] Young Hoon Kang, Taek-Jun Kwon, and Jeffrey Draper. Fault-tolerant

flow control in on-chip networks. In Proceedings of the 2010 Fourth

ACM/IEEE International Symposium on Networks-on-Chip, NOCS ’10,

pages 79–86, Washington, DC, USA, 2010. IEEE Computer Society.

[38] Nishit Kapadia and Sudeep Pasricha. A power delivery network aware

framework for synthesis of 3d networks-on-chip with multiple voltage

islands. In VLSI Design (VLSID), 2012 25th International Conference

on, pages 262–267. IEEE, 2012.

[39] Gul N Khan and Anita Tino. Synthesis of noc interconnects for multi-

core architectures. In Complex, Intelligent and Software Intensive Sys-

tems (CISIS), 2012 Sixth International Conference on, pages 432–437.

IEEE, 2012.

118 Bibliography

[40] Adán Kohler, Gert Schley, and Martin Radetzki. Fault tolerant network

on chip switching with graceful performance degradation. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, 29(6):883–896, 2010.

[41] Cheng Kwang-Ting and A.S. Krishnakumar. A Design-for-Debug (DfD)

for NoC-based SoC Debugging via NoC. In Asian Test Symposium,

2008. ATS ’08. 17th, 2008.

[42] Didier Lattard, Edith Beigne, Fabien Clermidy, Yves Durand, Romain

Lemaire, Pascal Vivet, and Friedbert Berens. A reconfigurable base-

band platform based on an asynchronous network-on-chip. Solid-State

Circuits, IEEE Journal of, 43(1):223–235, 2008.

[43] Kuen-Jong Lee, Si-Yuan Liang, and Alan Su. A Low-Cost SOC Debug

Platform Based on On-Chip Test Architectures. In IEEE International

SOC Conference, 2009.

[44] Andrew Lines. Asynchronous interconnect for synchronous soc design.

Micro, IEEE, 24(1):32–41, 2004.

[45] I. Loi, F. Angiolini, and L. Benini. Synthesis of low-overhead config-

urable source routing tables for network interfaces. In Design, Automa-

tion Test in Europe Conference Exhibition, 2009. DATE ’09., pages 262–

267, 2009.

[46] Andres Mejia, Jose Flich, and Jose Duato. On the potentials of segment-

based routing for nocs. In Parallel Processing, 2008. ICPP’08. 37th

International Conference on, pages 594–603. IEEE, 2008.

[47] M.Igarashi. Concurrent hierarchical design with ic compiler. real life

application on mobile multi-media processor.

[48] S Murali, D Atienza, G De Micheli, F Angiolini, L Benini, P Mel-

oni, SM Carta, and L Raffo. Sunfloor: Application-specific design of

networks-on-chip. In Poster presentation at University Booth at the De-

sign, Automation and Test in Europe Conference and Exhibition, pages

6–10. Citeseer, 2006.

Bibliography 119

[49] Srinivasan Murali and Giovanni De Micheli. Sunmap: a tool for auto-

matic topology selection and generation for nocs. In Proceedings of the

41st annual Design Automation Conference, pages 914–919. ACM, 2004.

[50] Srinivasan Murali, Theocharis Theocharides, Narayanan Vijaykrishnan,

Mary Jane Irwin, Luca Benini, and Giovanni De Micheli. Analysis of

error recovery schemes for networks on chips. IEEE Design & Test of

Computers, 22(5):434–442, 2005.

[51] Michael Nicolaidis. Design for soft error mitigation. Device and Mate-

rials Reliability, IEEE Transactions on, 5(3):405–418, 2005.

[52] Steven M Nowick and Montek Singh. High-performance asynchronous

pipelines: an overview. Design & Test of Computers, IEEE, 28(5):8–22,

2011.

[53] Maurizio Palesi, Shashi Kumar, and Rickard Holsmark. A method for

router table compression for application specific routing in mesh topol-

ogy noc architectures. In Embedded Computer Systems: Architectures,

Modeling, and Simulation, pages 373–384. Springer, 2006.

[54] Dongkook Park, Chrysostomos Nicopoulos, Jongman Kim, Narayanan

Vijaykrishnan, and Chita R Das. Exploring fault-tolerant network-on-

chip architectures. In Dependable Systems and Networks, 2006. DSN

2006. International Conference on, pages 93–104. IEEE, 2006.

[55] Luis A Plana, David Clark, Simon Davidson, Steve Furber, Jim Garside,

Eustace Painkras, Jeffrey Pepper, Steve Temple, and John Bainbridge.

Spinnaker: design and implementation of a gals multicore system-on-

chip. ACM Journal on Emerging Technologies in Computing Systems

(JETC), 7(4):17, 2011.

[56] Luis A Plana, Steve B Furber, Steve Temple, Mukaram Khan, Yebin

Shi, Jian Wu, and Shufan Yang. A gals infrastructure for a massively

parallel multiprocessor. Design & Test of Computers, IEEE, 24(5):454–

463, 2007.

120 Bibliography

[57] Antonio Pullini, Federico Angiolini, Davide Bertozzi, and Luca Benini.

Fault tolerance overhead in network-on-chip flow control schemes. In

Proceedings of the 18th annual symposium on Integrated circuits and

system design, pages 224–229. ACM, 2005.

[58] Bradley R Quinton, Mark R Greenstreet, and Steven JE Wilton. Prac-

tical asynchronous interconnect network design. Very Large Scale Inte-

gration (VLSI) Systems, IEEE Transactions on, 16(5):579–588, 2008.

[59] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Cama-

cho, F. Silla, and J. Duato. Addressing manufacturing challenges with

cost-efficient fault tolerant routing. In Networks-on-Chip (NOCS), 2010

Fourth ACM/IEEE International Symposium on, pages 25–32, 2010.

[60] S. Rodrigo, C. Hernandez, J. Flich, F. Silla, J. Duato, S. Medardoni,

D. Bertozzi, A. Mejia, and D. Dai. Yield-oriented evaluation method-

ology of network-on-chip routing implementations. In System-on-Chip,

2009. SOC 2009. International Symposium on, pages 100–105, 2009.

[61] S. Rodrigo, S. Medardoni, J. Flich, D. Bertozzi, and J. Duato. Efficient

implementation of distributed routing algorithms for nocs. Computers

Digital Techniques, IET, 3(5):460–475, 2009.

[62] Daniele Rossi, Paolo Angelini, and Cecilia Metra. Configurable error

control scheme for noc signal integrity. In On-Line Testing Symposium,

2007. IOLTS 07. 13th IEEE International, pages 43–48. IEEE, 2007.

[63] Daniele Rossi, Cecilia Metra, André K Nieuwland, and Atul Katoch.

Exploiting ecc redundancy to minimize crosstalk impact. Design & Test

of Computers, IEEE, 22(1):59–70, 2005.

[64] Dobkin Rostislav, Victoria Vishnyakov, Eyal Friedman, and Ran Gi-

nosar. An asynchronous router for multiple service levels networks on

chip. In Asynchronous Circuits and Systems, 2005. ASYNC 2005. Pro-

ceedings. 11th IEEE International Symposium on, pages 44–53. IEEE,

2005.

Bibliography 121

[65] Abbas Sheibanyrad, Alain Greiner, and Ivan Miro-Panades. Multisyn-

chronous and fully asynchronous nocs for gals architectures. IEEE De-

sign & Test of Computers, 25(6):0572–580, 2008.

[66] Montek Singh and Steven M Nowick. Mousetrap: High-speed transition-

signaling asynchronous pipelines. Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, 15(6):684–698, 2007.

[67] Binjie Song, Shan Zeng, Yuchun Ma, Ning Xu, and Yu Wang. Tree-based

partitioning approach for network-on-chip synthesis. In Computer-Aided

Design and Computer Graphics (CAD/Graphics), 2011 12th Interna-

tional Conference on, pages 465–470. IEEE, 2011.

[68] Wei Song, Doug Edwards, Jose Luis Nunez-Yanez, and Sohini Das-

gupta. Adaptive stochastic routing in fault-tolerant on-chip networks.

In Networks-on-Chip, 2009. NoCS 2009. 3rd ACM/IEEE International

Symposium on, pages 32–37. IEEE, 2009.

[69] sonics. http://sonicsinc.com.

[70] D. Starobinski, M. Karpovsky, and L.A. Zakrevski. Application of net-

work calculus to general topologies using turn-prohibition. Networking,

IEEE/ACM Transactions on, 11(3):411–421, 2003.

[71] S. Stergiou, F. Angiolini, Salvatore Carta, L. Raffo, D. Bertozzi, and

G. De Micheli. times;pipes lite: a synthesis oriented design library for

networks on chips. In Design, Automation and Test in Europe, 2005.

Proceedings, pages 1188–1193 Vol. 2, 2005.

[72] Kenneth S Stevens, Yang Xu, and Vikas Vij. Characterization of asyn-

chronous templates for integration into clocked cad flows. In Asyn-

chronous Circuits and Systems, 2009. ASYNC’09. 15th IEEE Sympo-

sium on, pages 151–161. IEEE, 2009.

[73] A. Strano, C. Gómez, D. Ludovici, M. Favalli, M.E. Gomez, and

D. Bertozzi. Exploiting network-on-chip structural redundancy for a

cooperative and scalable built-in self-test architecture. In Design, Au-

tomation Test in Europe Conference Exhibition (DATE), 2011, pages

1–6, 2011.

122 Bibliography

[74] HF Tatenguem, D Ludovici, A Strano, D Bertozzi, and H Reinig. Con-

trasting multi-synchronous mpsoc design styles for fine-grained clock do-

main partitioning: the full-hd video playback case study. In Proceedings

of the 4th International Workshop on Network on Chip Architectures,

pages 37–42. ACM, 2011.

[75] Paul Teehan, Mark Greenstreet, and Guy Lemieux. A survey and taxon-

omy of gals design styles. Design & Test of Computers, IEEE, 24(5):418–

428, 2007.

[76] Teklatech. http://www.teklatech.com.

[77] Yvain Thonnart, Edith Beigné, and Pascal Vivet. A pseudo-synchronous

implementation flow for wchb qdi asynchronous circuits. In Asyn-

chronous Circuits and Systems (ASYNC), 2012 18th IEEE International

Symposium on, pages 73–80. IEEE, 2012.

[78] Yvain Thonnart, Pascal Vivet, and Fabien Clermidy. A fully-

asynchronous low-power framework for gals noc integration. In Pro-

ceedings of the Conference on Design, Automation and Test in Europe,

pages 33–38. European Design and Automation Association, 2010.

[79] Vladimir Todorov, Alberto Ghiribaldi, Helmut Reinig, Davide Bertozzi,

and Ulf Schlichtmann. Non-intrusive trace & debug noc archi-

tecture with accurate timestamping for gals socs. In Proceedings

of the Eighth IEEE/ACM/IFIP International Conference on Hard-

ware/Software Codesign and System Synthesis, CODES+ISSS ’12, pages

181–186, New York, NY, USA, 2012. ACM.

[80] Vladimir Todorov, Daniel Mueller-Gritschneder, Helmut Reinig, and Ulf

Schlichtmann. A spectral clustering approach to application-specific

network-on-chip synthesis. In Proceedings of the Conference on Design,

Automation and Test in Europe, pages 1783–1788. EDA Consortium,

2013.

[81] Kees van Berkel, Ferry Huberts, and Ad Peeters. Stretching quasi delay

insensitivity by means of extended isochronic forks. In Asynchronous

Bibliography 123

Design Methodologies, 1995. Proceedings., Second Working Conference

on, pages 99–106. IEEE, 1995.

[82] Fu-Ching Yang, Yi-Ting Lin, Chung-Fu Kao, and Ing-Jer Huang. An

On-Chip AHB Bus Tracer With Real-Time Compression and Dynamic

Multiresolution Supports for SoC. In IEEE TRANSACTIONS ON

VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2011.

[83] Qiaoyan Yu and Paul Ampadu. Adaptive error control for noc switch-

to-switch links in a variable noise environment. In Defect and Fault

Tolerance of VLSI Systems, 2008. DFTVS’08. IEEE International Sym-

posium on, pages 352–360. IEEE, 2008.

[84] Jianmin Zhang, Ming Yan, and Sikun Li. Debug Support for Scalable

System-on-Chip. In Seventh International Workshop on Microprocessor

Test and Verification (MTV’06), 2006.

[85] Lei Zhang, Yinhe Han, Qiang Xu, Xiao wei Li, and Huawei Li. On topol-

ogy reconfiguration for defect-tolerant noc-based homogeneous many-

core systems. Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, 17(9):1173–1186, 2009.

Author’s Publications List

1. Ghiribaldi Alberto, Ludovici Daniele, Favalli Michele, Bertozzi Davide.

“System-level infrastructure for boot-time testing and configuration of

networks-on-chip with programmable routing logic.”

In VLSI and System-on-Chip (VLSI-SoC), 2011 IEEE/IFIP 19th In-

ternational Conference on (pp. 308-313). IEEE. (2011, October).

2. Ghiribaldi Alberto, Strano Alessandro, Favalli Michele, Bertozzi Da-

vide. “Power efficiency of switch architecture extensions for fault toler-

ant noc design.”

In Green Computing Conference (IGCC), 2012 International (pp. 1-6).

IEEE. (2012, June).

3. Todorov Vladimir, Ghiribaldi Alberto, Reinig Helmut, Bertozzi Davide,

Schlichtmann Ulf. “Non-intrusive trace & debug noc architecture with

accurate timestamping for GALS SoCs.”

In Proceedings of the eighth IEEE/ACM/IFIP international conference

on Hardware/software codesign and system synthesis (pp. 181-186).

ACM. (2012, October).

4. Ghiribaldi Alberto, Bertozzi Davide, Nowick Steven. “A transition-

signaling bundled data NoC switch architecture for cost-effective GALS

multicore systems.”

In Proceedings of the Conference on Design, Automation and Test in

Europe (pp. 332-337). EDA Consortium. (2013, March).

5. Ghiribaldi Alberto, Fankem Herve Tatenguem, Angiolini Federico, Stens-

gaard Mikkel, Bjerregaard Tobias, Bertozzi Davide. “A vertically inte-

grated and interoperable multi-vendor synthesis flow for predictable

noc design in nanoscale technologies.”

126 Author’s Publications List

Design Automation Conference (ASP-DAC), 2014 19th Asia and South

Pacific.

6. Strano Alessandro, Ghiribaldi Alberto, Fankem Herve Tatenguem, Bertozzi

Davide. “A Feature-Rich NoC Switch with Cross-Feature Optimiza-

tions for The Next Generation of Reliable and Reconfigurable Embed-

ded Systems.”

In Proceedings of the 8th International Workshop on Interconnection

Network Architecture: On-Chip, Multi-Chip (p. 2). ACM. (2014, Jan-

uary).

7. Ramini Luca, Grani Paolo, Fankem Herve Tatenguem, Ghiribaldi Al-

berto, Bartolini Sandro, Bertozzi Davide. “Assessing the Energy Break-

Even Point Between an Optical NoC Architecture and an Aggressive

Electronic Baseline.”

In Proceedings of the Conference on Design, Automation and Test in

Europe. EDA Consortium. (2014, March)

