
UNIVERSITÀ DEGLI STUDI DI FERRARA

FACOLTÀ DI INGEGNERIA

DOTTORATO DI RICERCA IN SCIENZE DELL’INGEGNERIA
Ciclo XXVII

COORDINATORE Prof. Stefano Trillo

SETTORE SCIENTIFICO DISCIPLINARE ING-INF/05

Solving Real-Life Hydroinformatics Problems

with Operations Research

and Artificial Intelligence

Dottorando

Dott. Andrea Peano

Tutore

Prof. Marco Gavanelli

Correlatore

Dott.ssa Maddalena Nonato

Anni 2012/2014

Abstract

Many real life problems in the hydraulic engineering literature can be modelled
as constrained optimisation problems. Often, they are addressed in the literature
through genetic algorithms, although other techniques have been proposed. In
this thesis, we address two of these real life problems through a variety of tech-
niques taken from the Artificial Intelligence and Operations Research areas, such
as mixed-integer linear programming, logic programming, genetic algorithms and
path relinking, together with hybridization amongst these technologies and with
hydraulic simulators. For the first time, an Answer Set Programming formulation
of hydroinformatics problems is proposed.

The two real life problems addressed hereby are the optimisation of the re-
sponse in case of contamination events, and the optimisation of the positioning of
the isolation valves.

The constraints of the former describe the feasible region of the Multiple Trav-
elling Salesman Problem, while the objective function is computed by a hydraulic
simulator. A simulation–optimisation approach based on Genetic Algorithms,
mathematical programming, and Path Relinking, and a thorough experimental
analysis are discussed hereby.

The constraints of the latter problem describe a graph partitioning enriched
with a maximum flow, and it is a new variant of the common graph partitioning.
A new mathematical model plus a new formalization in logic programming are
discussed in this work. In particular, the technologies adopted are mixed-integer
linear programming and Answer Set Programming.

Addressing these two real applications in hydraulic engineering as constrained
optimisation problems has allowed for i) computing applicable solutions to the
real case, ii) computing better solutions than the ones proposed in the hydraulic
literature, iii) exploiting graph theory for modellization and solving purposes,
iv) solving the problems by well suited technologies in Operations Research and
Artificial Intelligence, and v) designing new integrated and hybrid architectures
for a more effective solving.

Sinossi

Molti problemi dell’ingegneria idraulica possono essere modellati come problemi
di ottimizzazione vincolata. Spesso nella letteratura dell’ingegneria idraulica tali
problemi vengono affrontati tramite algoritmi genetici, sebbene esistano altre tec-
niche. In questa tesi vengono affrontati due problemi reali dell’ingegneria idraulica
attraverso diverse tecniche della Ricerca Operativa e dell’Intelligenza Artificiale,
come ad esempio la programmazione matematica, la programmazione logica, gli
algoritmi genetici e il path relinking; vengono discusse inoltre delle ibridizzazioni
di tali techniche, alcune delle quali con i simulatori simulatori idraulici. Inoltre,
questa tesi propone per la prima volta delle codifiche in Answer Set Programming
per dei problemi di idroinformatica.

Le due applicazioni reali sono: l’ottimizzazione del piano di intervento in caso
di contaminazione della rete idrica, l’ottimizzazione del posizionamento delle valv-
ole di isolamento.

I vincoli del primo problema di ottimizzazione descrivono la regione ammissi-
bile del noto Multiple Travelling Salesman Problem, mentre la funzione obiettivo
può essere calcolata da un simulatore idraulico. Questo lavoro propone un approc-
cio di simulazione–ottimizzazione che integra Algoritmi Genetici, programmazione
matematica, Path Relinking, e ne discute inoltre un’estesa analisi sperimentale.

I vincoli del secondo problema descrivono un Graph Partitioning arricchito da
un problema di flusso massimo, ed è una versione inedita del classico problema di
partizionamento. Questo lavoro propone diversi nuovi modelli matematici e logici,
sviluppati in Mixed Integer Linear Programming e Answer Set Programming.

Le due applicazioni reali in ingegneria idraulica in esame sono state quindi
modellate come problemi di ottimizzazione vincolata permettendo di i) calcolare
soluzioni applicabili al caso reale, ii) calcolare soluzioni migliori rispetto a quelle
presenti nella letteratura idraulica, iii) sfruttare concetti di teoria dei grafi per
la modellazione e la risoluzione dei problemi, iv) risolvere i modelli attraverso
l’utilizzo di tecnologie molto efficaci della Ricerca Operativa e dell’Intelligenza
Artificiale, v) progettare nuove architetture integrate o ibride che permettono
una risoluzione più efficace del problema.

Acknowledgements

I am really grateful to Prof. Marco Gavanelli and Dr. Maddalena Nonato; they
have always fostered my path, and I always felt lucky for their constant availability.

I am also grateful to Prof. Marco Franchini and Dr. Stefano Alvisi for their
fruitful cooperation and suggestions regarding the hydraulic engineering field.

I am glad to have spent 6 months at the Institute of Computer Science of the
University of Potsdam, and I would like to thank Prof. Torsten Schaub, Max
Ostrowski, Dr. Martin Gebser, and Prof. Mutsunori Banbara for hosting me and
mentoring me during that period.

Thanks to my brothers life and travel companions (increasing order by height):
Stefania, Sergio, John, Paola, Stefan. They filled every piece of time I could give
them in the past three years.

Thanks to my family, for being the most beautiful and encouraging example of
imperfection that works perfectly.

And thanks to Sarah, for every time she has touched my mind.

Contents

List of Figures xiii

List of Tables xv

List of Acronyms xvii

List of Symbols in Chapter 2 xix

List of Symbols in Chapter 3 xxi

1 Introduction 1
1.1 Optimisation issues in hydraulic networks 2
1.2 Constrained Optimisation Problems: a practical approach 5

1.2.1 Handling contaminations 7
1.2.2 Placing isolation valves . 9

2 Scheduling countermeasures in case of contaminations 11
2.1 Problem Description . 12
2.2 Related Works . 17
2.3 A Genetic Algorithm Framework for the RCP 20
2.4 A Genetic Algorithm Based on Sequences 22
2.5 A Genetic Algorithm based on the Two-part Chromosome 25
2.6 A Genetic Algorithm Based on Activation Times 27

2.6.1 An Integer Programming Model to Restore Feasibility . . . 28
2.6.2 Tighter Integration GA-MILP 32

2.7 Computational Results . 35
2.7.1 Dimensioning the population size 38
2.7.2 Impact of high performance solvers 39
2.7.3 General comparison of the proposed variants 42

2.8 Intensification by Path Relinking 51
2.8.1 Selection of reference candidates 52

xi

CONTENTS xii

2.8.2 Solution representations 53
2.8.3 Computational results . 57

2.9 Future improvements . 60

3 Optimal placement of Isolation Valves 63
3.1 Problem definition . 64

3.1.1 Valves closure and sector isolation 64
3.1.2 Unintended Isolations . 67
3.1.3 The Isolation Valves Location Problem 68

3.2 Related works . 68
3.3 Hydraulic sectors and graph partitioning 70
3.4 Mathematical models for the BIVLP 73

3.4.1 Modelling network sectorization 73
3.4.2 Modelling unintended isolations 77
3.4.3 Weaknesses of common B&B 84
3.4.4 A general bilevel MILP model for the IVLP 86
3.4.5 A single level reformulation for IVLP 87

3.5 A Logic Programming formulation 89
3.5.1 Answer Set Programming 90
3.5.2 ASP Programs based on Pipe Reachability 94
3.5.3 An ASP Program based on Sector Reachability 99

3.6 Search space reduction strategies 101
3.6.1 Estimation of the Number of Sectors 102
3.6.2 Symmetry Breaking on the Names of Sectors 106
3.6.3 Symmetry breaking on valves positioning 107
3.6.4 Redundant valves elimination 108

3.7 Computational results . 110
3.8 Future improvements in IVLP . 119

3.8.1 Further research on the MILP model 119
3.8.2 Further research on the ASP model 122
3.8.3 Hybrid metaheuristics approaches 122

Conclusions 125

Appendices 129

Bibliography 135

Author’s Publications List 151

List of Figures

2.1 An example of the tree representation of the two parents and the
offspring in (2.3) obtained by the crossover 24

2.2 Graphic representation of the crossover MILPX in a 3D space . . 33
2.3 Architecture of the time-based Hybrid Genetic Algorithm 35
2.4 Picture of the hydraulic distribution network of Ferrara 36
2.5 Population size calibration, average on 100 runs of the best solution

value of 2CCS at each EPANET call, scenario A, 500 simulation calls 39
2.6 MILP solver running times distribution over 9000 runs 40
2.7 Impact of tolerance gap on the number of feasibility restore after

mutations. 41
2.8 Rankings 100× 20 runs . 43
2.9 Nemenyi Post Hoc Analysis (from Tables 2.2a and 2.2b) 47
2.10 Nemenyi Post Hoc Analysis (from Tables 2.3a and 2.3b) 48
2.11 Percentage position of the averaged best solutions found by each

method within the best and the worst solutions 50
2.12 Graphical representation of Path Relinking 52
2.13 Feasible References and Target solutions for 8 devices 55
2.14 Input to the MILP solver at the i-th iteration of the PR 57
2.15 Algorithm architecture of Path Relinking 58
2.16 Global solving architecture . 58

3.1 A simple hydraulic network . 65
3.2 A feasible isolation system for the net in Figure 3.1 66
3.3 The introduction and connection of the super–reservoir σ 71
3.4 Two adjacent pipes of the hydraulic network and their representa-

tion in G and G. 71
3.5 Optimal solutions with 3 and 4 valves 75
3.6 Solution with an useless valve . 75
3.7 A solution on a small net . 76
3.8 The flows on the network when a sector is isolated 78

xiii

LIST OF FIGURES xiv

3.9 The oriented graph G . 79

3.10 The flow model on G for sector 2 82
3.11 A small B&B search tree . 85
3.12 Example network . 95
3.13 Example network . 95
3.14 The two-step solving procedure 104
3.15 Configuration containing a redundant valve 109
3.16 Smax(Nv) values and computing times of Max(♯S) in ASP and

MILP for the Apulian network . 112
3.17 The Apulian network and optimisation performance 116
3.18 The Realtown network and optimisation performance 117
3.19 The Anytown network and optimisation performance 118

List of Tables

2.1 Average number of calls to the MILP solver, averaged on 5 scenarios
for 100% MILPX . 42

2.2 Nemenyi Post Hoc Analysis: for each pair of algorithms we show
the percentage of scenarios in which the algorithm in row performs
better than the algorithm in column, with a statistical significance
lower than α∗ = 0.05/21 = 0.0024 46

2.3 Nemenyi Post Hoc Analysis: for each pair of algorithms we show
the percentage of scenarios in which the algorithm in row performs
better than the algorithm in column, with a statistical significance
lower than α∗ = 0.05/10 = 0.005 46

2.4 Predecessors list of Figure 2.13 55
2.5 Number of improvements and average improvement of volume of

Path Relinking (PR) on 10 runs 59

3.1 Sector specifications for Figure 3.2 67
3.2 Two symmetric solutions for graph in Figure 3.10a 85
3.3 Approaches and features developed for the BIVLP 110
3.4 Solving time (s) of Gurobi with different configurations 113
3.5 Computing time (s) of the ASP encoding Sectors and the MILP

program using N ∗
s for the Apulian network 115

xv

List of Acronyms

ACO Ant Colony Optimisation

AI Artificial Intelligence

ASP Answer Set Programming

B&B Branch and Bound

BIVLP Bottleneck Isolation Valves Location Problem

CP Constraint Programming

CLP Constraint Logic Programming

CLP(FD) Constraint Logic Programming on Finite Domain

COP Constrained Optimisation Problem

CSP Constraint Satisfation Problem

CWS Contamination Warning System

DFS Depth First Search

GA Genetic Algorithm

GPP Graph Partitioning Problem

FD Finite Domain

FRP Feasibility Restoring Problem

IC Integrity Constraint

IVLP Isolation Valves Location Problem

xvii

List of Acronyms xviii

LP Logic Programming

LS Local Search

MILP Mixed Integer Linear Programming

MINLP Mixed Integer Non-Linear Programming

MCB Minimum Cycle Basis

MFP Maximum Flow Problem

mTSP Multiple Travelling Salesman Problem

OR Operations Research

PMSP Parallel Machine Scheduling Problem

PR Path Relinking

SAT Satisfiability testing

SLD Selective Linear Definite clause resolution

SB Symmetry Breaking

RCP Response to Contamination Problem

TSP Travelling Salesman Problem

VRP Vehicle Routing Problem

WDS Water Distribution System

List of Symbols in Chapter 2

m number of hydraulic devices (hydrants and valves) 14
n number of teams of technicians 14
tF feasible vector of activation times 14
d depot (or departure point of the teams) 14
τij travelling time from device i to device j 14
U maximum allowable pause 14
2C two chromosomes encoding 22
Cdev chromosome of devices . 22
Cteam chromosome of teams . 22
Cpause chromosome of pauses . 24
CS Constant Speed . 25
V S Variable Speed . 25
2CCS 2C with constant speed . 25
2CV S 2C with variable speed . 25
Cpart second part chromosome of the 2P encoding 25
2P two–part chromosome encoding 25
2PCS 2P with constant speed . 25
2P V S 2P with variable speed . 26
BX binary crossover . 27
BXPF binary crossover with a posteriori feasibility restoring 28
MILPX MILP crossover . 28
t a vector of activation times 29
τ the matrix of activation times 29
xij binary variable stating that a team activates j right after i . 29
δi displace variable defined as tFi − ti 29
δ vector of displace variables 29
M a large number . 30
δ+i positive displace variable defined as |δi| 30
pi the i-th activation time of the parent p 33
δ+i,p variable representing |ti − pi| if positive 33

xix

LIST OF SYMBOLS IN CHAPTER 2 xx

δ−i,p variable representing |ti − pi| if negative 33
H time-based Hybrid GA . 34
HCS H with constant speed . 34
HV S H with variable speed . 34
H(p, s) H with p ∈ {0, 25, 50, 75, 100}% and s ∈ {CS, V S} 37
rs the reference set . 51
r a reference solution . 51
g the target solution . 51
PRseq Path Relinking based on sequences 56
PRh Path Relinking based on activation time (hybrid PR) 57

List of Symbols in Chapter 3

s a sector, i.e., a set of pipes (a connected component) 65
va,b the valve that is installed on the extreme a of the pipe (a, b) 66
vb,a the valve that is installed on the extreme b of the pipe (a, b) 66
ID(s) internal demand of the sector s 66
UD(s) unsatisfied demand due to the isolation of the sector s . . . 67
δij user demand of the pipe (i, j) 70
σ the super–reservoir . 70
G the plain graph representing the hydraulic network 70
V the set of vertices in G . 70
J the set of junctions nodes in G 70
T the set of edges connecting σ to the nodes in J 70
E the set of edges in G . 70
W the set edges’ weights in G 70
G the extended graph modelling the multicut 72
V the set of vertices in G . 72
ǫij a vertex in G modelling the generic pipe (i, j) 72
Γ the set of vertices in G containing the ǫ–nodes 72
E the set of edges in G . 72
Ψ the set of edges modelling the possible places of the valves . 72
W the set edges’ weights in G 72
S the set of sectors . 72
Nv the number of available valves 72
Ns number of allowed sectors 72
τ sij the variable stating if vi,j is a boundary valve of s 73
zsi the partition variable stating if the node i is in the sector s . 73
τ s the set of binary variables defining the boundary valves of s 76
τ sij the whole set of variables defining the valve positioning . . . 76
ID(τ s) satisfied demand of the sector s 76
UD(τ s) unsatisfied due to the closure of the valves of s 76
SD(τ s) satisfied demand when the valves of s are closed 76

xxi

LIST OF SYMBOLS IN CHAPTER 3 xxii

GP (τ) the partitioning constraints 77
Υ the whole user demand of the network 77
P the super–sink . 79

G the graph modelling the network flows 79

V the set of vertices in G . 79
E the set of edges in G . 79

Ψ the set of high capacitated arcs connecting the ǫ-nodes . . . 79

W the set of capacities . 79

xs
u,v the flow variable for sector s and arc (u, v) ∈ E 79

FP (τ s) the set of flow constraints 83
UB♯S(Nv) an upper bound on the number of sector given Nv valves . . 103
Nmin

v minimum number of valves to disconnect the entire network 103
Smax(Nv) the maximum number of sectors given Nv valves 104
Max(♯S) the optimisation program to compute Smax(Nv) 104
C the cycle basis . 108

Chapter 1

Introduction

Water is life and since the ancient Sumerians, about 5500 years ago, human beings
prefer that water comes to them rather than the opposite. Gorgeous infrastruc-
tures had been built later to serve this purpose: Romans constructed about 800
kilometres of water conduits only in the city of Rome. At that time the gravity
was the engine to move water, so aqueducts were mainly built to carry this good
from the natural sources to the cities and to feed the main places of the city;
however connecting common houses was far from possible. Nowadays electric-
ity feeds pumps to boost water into canals and pipes, from the reservoir to our
taps. Current infrastructures in developed countries are still enormous and very
complex.

Water Distribution Systems (WDSs) can be divided into rural and urban sys-
tems. The former distribute water to the primary sector, so also to farms. The
latter distribute drinking water to the inhabitants of urban regions. Thus, they
are central for human life and their importance is growing hand to hand with the
demographic and the economic growth: water is now a rare essential good.

From the design to the management, every phase of the life cycle of a WDS
requires huge financial resources, which are rare as well even more in developing
countries. At the same time, the trend is to connect any point that demands
water, giving rise to capillary infrastructures also called hydraulic networks. The
task of designing these networks and manage them is now related to sustainability,
efficiency, and reliability. A hydraulic network has to be sustainable for the com-
munity it serves; it has to be efficient, to avoid wasting useful financial resource;
it has to be reliable, because naturally exposed to failures.

Hydraulic engineers take strategic choices during the design phase of urban
networks; these choices have immediate implementation costs but they also af-
fect the system’s functionality, which means system’s costs, until the successive

1

1. Introduction 2

renewing phase. Up to the last decades the existing urban networks grew slowly;
so hydraulic engineers could exploit experience and rule of thumb in order to
arrange good solutions. Nowadays populations move fast to the cities and local
administrations response by setting up big urban districts from scratch. Dubay
is an extreme example. Furthermore, hydraulic networks of common cities are
getting aged and inadequate by the time; renewing phases of these networks, or
their portions, are also more frequent. Finally, hydraulic engineers have to pre-
pare infrastructures and procedures to limit the consequences due to accidental
or intentional disasters like contaminations; in fact huge industrial districts are
often adjacent to cities, like in Fukushima where radioactive water was spilled out
of the nuclear plant; the attention to terrorist threats is increased worldwide after
the 9/11, and water supply networks are among the most vulnerable infrastruc-
tures and potentially hazardous to the health. In any of these scenarios hydraulic
engineers can not find even feasible solutions by hand anymore and need to be
supported by automated decision tools.

Hydroinformatics is the discipline that provides computational tools to hy-
draulic engineers, to support design and management choices for hydraulic net-
works. It is a hybrid discipline, by definition; it joins scientific concepts in hy-
draulic engineering and Computer Science indeed.

1.1 Optimisation issues in hydraulic networks

A modern urban WDS consists of thousands of pipes, where pressurized water
flows from the reservoir and pumping stations to the users. A pipe can host
several users, so its pressure head (i.e., the quantity of energy of the water due
to the pressure) should be sufficient to satisfy its whole demand in any moment
of the day. Several devices are installed on the network, some are devoted to the
flow control, others for monitoring or safety purposes; among all the following
devices are the most prevalent: pumps that increase the energy of the flows,
valves that regulate the flow can pass through, quality sensors that check the
quantity of certain elements, hydrants that provide water for emergency purposes,
metering stations that measure the water use of a region. Water flows follow
the thermodynamic laws that rule within the pipes the pressure variations, the
energy lost by the flows, and the conservation of energy, which are mostly non-
linear relations.

To ensure the minimal pressure head given the characterization of any demand
point of the network, the diameters of the pipe should be sufficiently dimensioned.
On the other hand, bigger diameters lead to higher unit cost of the pipe and

3 1.1 Optimisation issues in hydraulic networks

energy costs to keep it pressurized. During the second half of the past century the
hydraulic community took interest into the problem to find the optimal size of
the diameters so that the minimal pressure heads are guaranteed and the network
costs are minimized. In the last decades, also reliability has been involved into
the optimal design of hydraulic networks, that is the capability of the network to
overcome failures and it has been defined analytically by means of the Resilience
Index [1]. The strategic decisions to achieve the optimal design of the network
are the diameters of pipes; not every choice is feasible, in fact diameters directly
affect water flows in the network, and by consequent of the thermodynamic laws
also the pressure, which should respect minimal requirements depending on the
user demands. Diameters also affect costs, that should be minimized, and lead to
a certain degree of resilience of the network, that should be maximized. Recently
the trend in hydroinformatics is to address this problem by metaheuristics; for
example Creaco and Franchini exploited Genetic Algorithms (GAs) [2], Cunha
and Sousa used Simulated Annealing [3], and Maier et al. used Ant Colony
Optimisation (ACO) [4]. A literature review is provided in [5].

Apart from this, also the task to position hydraulic devices on the network is a
strategic decision. Pumps are installed to guarantee pressure heads by minimizing
the pumping system’s costs [6]. Valves are installed to allow for isolation of broken
pipes by minimizing both the unsatisfied demand due to the isolation and the costs
of the isolation system’s costs [7, 8]. Sensors are placed by seeking a compromise
between the coverage of the network, in order to detect as many contamination
events as possible, and their costs [9] (see [10, 11] for a literature review).

As far as the operative problems, they are more related to schedule the activ-
ities of these devices. For example pumps and valves can be controlled in order
to increase or decrease pressure during some time periods [12–14] in order to save
energy. Valves and hydrants can be activated in certain instants to reduce the
impact of contamination events [15, 16].

Many other design and management issues in hydraulic network are optimi-
sation problems, and hydroinformatics provides automated tools to address them
and find good solutions. For example, all the above optimisation issues can be
solved as combinatorial problems in which a set of decision variables with discrete
domains draws the solution space of the problem; dedicated algorithms are used
to search optimal or sub-optimal solutions on that space. For example, in the
optimal design of the diameters, every pipe becomes a discrete variable and its
domain is the set of possible diameters; every possible position of the pipe can be
represented by a boolean variable, stating whether the device is installed or not;
the schedules of the devices can be represented by discrete variables containing
the actual activation times. Combinatorial problems can be addressed straight-

1. Introduction 4

forwardly by means of evolutionary metaheuristics, and this is also a trend within
the hydraulic community, that widely uses GAs among all; the studies cited so
far are GA-based indeed. This trend is motivated by many factors. GAs are well
integrated into common software suits like MATLAB [17]; also, these techniques
allow for multi-objective optimisation, which is an important requirement if the
aim is to strike a good compromise between functionality and costs. Moreover,
GAs are very well suited to be coupled with hydraulic simulators, that are often
used to check the feasibility of the solution and eventually to compute its quality.
Due to the nature of the thermodynamic laws in fact, it is not straightforward
to formalize the relations between decisions of the problem and the consequent
effects on the water flows. Hydraulic simulators, like EPANET [18], allow for an
over-time estimation of the water flows in terms of pressure and speed. In partic-
ular EPANET takes in input a description of the network topology (like position
and length of pipes), the user demands in any demand point and for several time
periods, in order to handle with dynamic variations of user demands along the
day; it computes instant by instant the state of the network in any point. In
EPANET the values of the decision variables can be easily integrated and become
an additional input to the simulation: estimating the effect of those decisions is
only a matter of computational time. The resulting architecture configures a clas-
sical simulation–optimisation approach [19, 20], where metaheuristic procedures
use the simulator as a black-box function.

In combinatorial optimisation a solution of the problem is represented by one
or more combinations of values the variable can take, called strings. The the whole
set of possible combinations is the search space that an algorithm can explore to
find out the best solution, and its cardinality measures the size of the search space.
For instance, recall that in the optimal design problem every pipe is a discrete
variable spanning over the possible diameter values, so having m pipes and k
possible diameters the strings that can be represented are km: an exponential
number. Metaheuristics like GAs have the property to explore only a part of this
search space, turning out with good solutions if well calibrated. In general, a
search strategy should be tuned to have a good compromise between how much
search space it explores and the quality of the best solution it is able to compute.

However, depending on the problem’s structures the researcher is faced with,
the decision variables are often linked together by some relations that make many
solutions infeasible. In the literature these relations are called constraints, and
their role is fundamental to understand the exact nature of the problem and
its actual complexity. Metaheuristics are blind w.r.t. these constraints and can
even get stuck into infeasible regions of the search space. Sometimes hydraulic
engineers can not even find a way to express and exploit these constraints and they

5 1.2 Constrained Optimisation Problems: a practical approach

often delegate to a posteriori procedures the task to compute whether a solution
is feasible or not; this assessment is made possible by a burdensome hydraulic
simulation in the case a dedicated algorithm is not available.

1.2 Constrained Optimisation Problems: a prac-

tical approach

Computer Science provides further modelling and solving tools that can be very
effective to address the very same optimisation problems in hydraulic network.
In the literature of Operations Research and Artificial Intelligence, optimisation
problems that exhibit constraints on variables are called Constrained Optimisation
Problem (COP). Optimisation problems can be often represented by:

� a set v of variables with a finite domain of real or integer values;

� a set c of constraints linking finite subsets of variables;

� an objective function o(w, v) that associates costs (or weights) w to the
variables and has to be minimized or maximized.

A variable is said to be assigned when it takes one value of its domain. An
assignment v for the entire set v that respects the whole set of constraints is a
feasible solution of the problem. A solution v′ is optimal for minimization (or
maximization) problems if o(w, v′) ≤ o(w, v′′) (or o(w, v′) ≥ o(w, v′′)) for any
other solution v′′.

Basically a constrained optimisation problem maps the decisions of the prob-
lem into the variables, the intrinsic relations among the decisions into constraints,
and the goodness of the decisions into an objective value computed by a cost
function.

Moreover, Computer Science provides deep theoretical knowledge to study ev-
ery aspects of optimisation problems. For example, complexity theory studies how
difficult is the task to solve computational problems and in particular COPs [21].
Graph theory studies those problem structures that can be represented into a
graph [22, 23], that is a natural way to model networks in mathematics. Two
main fields actively put effort into finding new effective theories, languages, and
algorithms to address COPs and their applications: Operations Research (OR)
and Artificial Intelligence (AI).

In Operations Research the best known paradigm to declare constrained op-
timisation problems is the mathematical programming; the constraints are linear

1. Introduction 6

and non linear equations, linking continuous and integer variables. For problems
having discrete and real variables and linear constraints this paradigm is called
Mixed Integer Linear Programming (MILP), whereas for non-linear constraints
is Mixed Integer Non-Linear Programming (MINLP). The resolution of a MILP
program relies on the mathematical theory of the polytopes [24], a geometric rep-
resentation of the problem. To compute the optimal solutions of these programs
the best known solvers apply, among all, Branch and Bound (B&B) and the Sim-
plex algorithm. Also network problems on graphs can be effectively expressed with
mathematical formulations. Moreover, metaheuristics belong to this field either.

Several communities in Artificial Intelligence are active in developing tech-
nologies to solve optimisation problems. The principal formalisms used in AI are
Constraint Programming (CP) [25] and Logic Programming (LP) [26]. The former
is a declarative paradigm that divides constraints into families, e.g., scheduling
constraints, geometrical constraints, and each particular constraint has an ad hoc
propagation algorithm. The latter is a declarative paradigm based on the first-
order logic, that expresses relations among variables by means of logic rules. Well
known specialization of LP very suited to address optimisation problems are Con-
straint Logic Programming (CLP) [27] and Answer Set Programming (ASP) [28].
The core resolution strategies here rely basically on the concept of propagation,
which means that a choice on a variable, i.e., deleting one or more values from its
domain, causes a modification on the variables’ domains that are linked by the
same constraint. So that choice, thanks to a dedicated algorithm, is propagated
towards other variables. The aim is to keep consistent the domains after any
choice. The roots of these techniques were developed to solve the well known
Constraint Satisfation Problem (CSP) [29] and Satisfiability testing (SAT) [30].

Several approaches in OR have been already proposed to solve optimisation
problems in hydraulic network. For example recently MINLP has been proposed
for the optimal design of diameters [31]. Several MILP programs were proposed
for the optimal placement of pumps [6] and sensors [32, 33]. Anyway, mathemat-
ical programming is not new for the hydroinformatic community. More recently
solution approaches have been proposed in AI either, for example for the optimal
placement of valves [34].

Knowing the actual structure of the problem through its constraints means to
be able to design better solving architectures, either exact or not. The constraints
in fact interpret the features the solution should have, thus allow for computing
only applicable solutions. Also, constraints give a certain shape to the problem,
they determine the family it belongs, thus far giving an appropriate name to the
problem, which makes possible to identify the pertaining literature in Computer
Science. If complete formal description does exist already, the constraints may

7 1.2 Constrained Optimisation Problems: a practical approach

allow the researcher to identify certain substructures of the problem; for example
it may be possible to divide the constraints into different subsets, each one having
the form a particular problem family. Moreover, constraints and variables might
be decomposed into hard to solve and easy to solve substructures, that makes
possible an integrated solving procedure. Finally, the language and the solver to
be considered to solve a problem may depend strongly on nature of the constraints.
For example, in case of integer variables and global constraints, i.e., constraints
spanning over large sets of variables, one could choose for a CP approach; in
case of continuous variables and linear equations one could choose for a MILP
approach; in case of logic implications, one could choose for ASP.

In other words, modelling design and management issues in hydraulic net-
works by means of constrained optimisation problems and addressing them by
the appropriate techniques can have many benefits: detect the actual structure of
the problem and its complexity and access to the available literature and solving
technologies; consider only feasible solutions and drive the search by means of
an analytical description of the objective function, which allows for saving the
computational cost of burdensome simulations; enrich existing metaheuristic ap-
proaches with ad hoc procedures depending on the constraints; avoid to exploit
the combinatorial component of a problem that is easier to solve by a systematic
approach. We believe that many problems in hydroinformatics have not been
formulated as constrained optimisation problems yet, even though they had been
investigated by many studies.

The applications this work describes are real–life problems in hydroinformat-
ics. The first is operative and optimises the tasks of the technicians in case of
contamination events of the urban hydraulic network. It is called Response to
Contamination Problem. The second is strategical and optimises the position-
ing of the isolation valves to make broken pipes isolable. It is called Isolation
Valves Location Problem. Next sections introduce these problems and give a gen-
eral overview about how a proper identification of the constrained substructures
enhanced the state of the art.

1.2.1 Handling contaminations

During contamination events of the WDS users could consume toxic water until
the contaminant is completely worn out. Depending on the toxicity of the agent,
contaminated water can be a health hazard even mortal. Quality sensors monitor
the quantity of certain chemical and biological elements and raise an alarm when-
ever an element overcomes a safety threshold. The sensor also gives an information
about where the contamination is active. From this, the technicians can apply

1. Introduction 8

a response by activating the valves and the hydrants installed on the surround-
ings. Opening hydrants means dispelling contaminated water and decreasing the
pressure heads of the pipes. Closing valves means diverting contaminated water,
either towards less urbanised districts (with less user demand) or towards open
hydrants, for example.

The problem to optimise the placement of the sensors and to identify the set of
devices to be activated in case of contamination events was addressed in [15]. Here
the response was computed by considering only a restricted set of “reasonable”
schedules to be assigned to the available technicians. The study was tested into
the network of Ferrara, a medium sized city of about 100, 000 citizens. The quality
of the response was measured with the volume of contaminated water consumed
by the population, and it was estimated by a hydraulic simulation that takes
about 5 seconds. A genetic algorithm was used to optimise the set of devices to
be activated.

Actually the technicians can be much less than the number of devices and they
would have to travel from device to device to operate the designated operations.
Knowing this, the schedules computed so far are not applicable anymore on a real
context. Fortunately, the feasible region of this problem is described by a well
known constrained optimisation problem, namely the Multiple Travelling Sales-
man Problem (mTSP), which is NP-hard. In the mTSP, m salesmen visit once
and only once every customer they have to serve. In this application the salesmen
are the technicians and the cities are the hydraulic devices. The constraints of
the Travelling Salesman Problem (TSP) describe all those schedules that allow
the technicians to reach their devices compatibly with the travelling times on the
street network. Unfortunately the interactions between the activation times and
the water flows are too complex to formalize an appropriate objective function,
so any solution of the mTSP should be evaluated through a hydraulic simula-
tion. A first attempt would be then to apply a common sense criterion in case
of emergency: instruct the technicians in order to activate the devices as soon as
possible; this can be translated into a mathematical relation that minimizes, for
example, the makespan, i.e., the activation time of the last device. The hydraulic
simulation of this common sense schedules gives volumes of contaminated water
consumed by the citizens much greater than the schedules computed randomly.

This has incentivized to design search algorithm based on evolutionary tem-
plates that could exploit the knowledge of the particular feasible region of the
mTSP. The resulting architectures exploit effectively the combinatorial nature of
the problem and its constraints, as described in Chapter 2; they combine genetic
encodings for the mTSP, MILP models based on the mTSP, and EPANET. The
mTSP substructure of the Response to Contamination Problem has also made

9 1.2 Constrained Optimisation Problems: a practical approach

possible to develop intensification procedures based on Path Relinking.

1.2.2 Placing isolation valves

The positioning of isolation valves is a strategic decision, very related to the re-
silience of the network. Every time a pipe gets broken, technicians close a group
of valves to isolate that zone and fix the damage. Ideally every pipe should have
two valves at its extremes; unfortunately, a part the installation costs, the valves
is also a breakable object and lead to higher probability of pipe failures and con-
sequent maintenance costs. The isolation system should be designed limiting the
number of available valves, typically much lower than the number of pipes. Given
that, the valves should be installed so that any pipe can be isolated; this deter-
mines that a feasible positioning of valves draws a sectorization of the network.
Every sector is a group of pipes that get isolated all together every time one of
them needs to be fixed. The users linked to that sector experience the lack of
water; this service disruption can be measured by considering the instant water
demands (l/s) of all the users that get disconnected during the isolation. So the
optimal positioning of the available isolation valves would minimize a function on
the service disruption and the valves’ costs; this problem is called Isolation Valves
Location Problem (IVLP). A particular specialization minimizes the unsatisfied
demand in the worst isolation case, and it is called Bottleneck Isolation Valves
Location Problem (BIVLP).

The combinatorial component of this problem can be drawn by considering
a boolean variable for each place that can host a valve. Typically valves can
be installed on the two extremes of the pipes, so with m pipes and n valves
the combinations are

�
2m
n

�
. Actually not every combination is feasible, because

many placements of the valves do not draw a sectorization of the network, which
means that some pipes cannot be isolated. Moreover, some placement of the n
valves are “inefficient” in the sense that the sectorizations are given by a subset
of those valves, and the others are useless. The genetic algorithms in the liter-
ature explore these solutions [7]; fortunately given a positioning of valves it is
quite simple to detect the sectors and the unsatisfied demand they determine, so
dedicated postprocedures detect infeasible solutions and computes the fitness of
the feasible ones.

The first exact approach for this problem was a Constraint Logic Programming
on Finite Domain (CLP(FD)) [34], so in AI. This program defines the constraints
that allow for the actual sectorization of the network and prevent to install useless
valves; the resolution was the first providing the exact Pareto front for the Apulian
network used in [7].

1. Introduction 10

Chapter 3 describes thoroughly the first mathematical formalization of the
IVLP. This formalization implements a mathematical description of the well
known Graph Partitioning Problem, which is NP-hard. Also, to compute the
unsatisfied demand of the various isolation scenarios a Maximum Flow Problem
structure has been integrated into the model. This model describes mathemati-
cally the two main structures of the problem: the partitioning, and the flows. The
first layer involves the hard variables of the problem, because they are the decision
variables as well as integer; the nested layer involves the easy variables, concern-
ing the water flows. This perspective allows for the resolution by decomposition
methods. This work also investigates another approach in Logic Programming,
more precisely in Answer Set Programming. In ASP the problem can be modelled
in several ways, for example the sectorization can be achieved either by explic-
itly defining sectors or not; also, the unintended isolations can be modelled by
computing the reachability of pipes as well as of sectors from the tank.

Chapter 2

Scheduling countermeasures in
case of contaminations

The geo-political scenario arising from 9/11 has spurred research concerning in-
frastructures protection policies and recovery procedures from intentionally in-
duced service disruptions, e.g., because of a terrorist attack. Threats that used to
be perceived as low risk, and therefore used to be disregarded, have now become
part of the list of potential events that may put at risk national security, not only
in the US but all over the western world.

Water Distribution Systems (WDSs) are among the most vulnerable infras-
tructures. They are greatly exposed to the risk of contamination by chemical and
biological agents due to the physical layout of their networks and to the sensitivity
to contamination of the commodity they supply: drinking water. People rely on
water quality for a number of crucial activities, such as cooking and washing in pri-
vate households. Clear water is essential in operating restaurants, hospitals, and
farms. Most industries rely on clear water availability for their functioning, not
to mention the use of water in the food supply chain. The potential damage due
to water contamination is not only economical. Adding deadly contaminant into
a hydraulic network can cause human losses, since contaminant quickly spreads
through the network and population alerting strategies may not entirely ward off
users’ water consumption. For these reasons, WDSs are sensitive targets for ter-
rorist attacks. Accidental contamination events, though, are not of minor concern,
and they may happen in the most unpredictable way. Real examples include the
case of a fire truck connected to a fire hydrant which injected aqueous firefighting
foam into the neighbourhoods pipes, or the unintentional dispersion through the
network of the salmonella bacteria, originally present in a contaminated storage
tank in disrepair.

11

2. Scheduling countermeasures in case of contaminations 12

WDSs usually have a vast planimetric extent, e.g., a small city network may
reach 200km and a thousand of pipes and nodes. Their wide extension and sparse
topology makes WDSs difficult to secure either by inspection or by forbidding
access. Indeed, almost every user connection provides an unprotected access to
the local public WDS. In this framework, monitoring and promptly recovering is
more viable than securing the whole WDS. Much effort has been devoted by the
scientific community to the development of sensor based Contamination Warning
Systems (CWSs). The common policy followed in the deployment of CWSs con-
sists of installing several sensors along the network, strategically located according
to optimization procedures [35]. Sensors periodically check water quality. As soon
as a sensor has detected a contaminant, countermeasures are implemented in order
to mitigate the impact on the population.

The complete shut down of the network is usually to be avoided due to its
many drawbacks. For example, fire-fighting capabilities must always be ensured,
and customers with special needs which rely on continuous supply may be harmed.
If the network is well districted, it may be possible to isolate the affected part
of the network without failing to provide water supply to the entire community.
However, when the network is of large size and it is not divided into district
metered areas, the water utility is faced with the choice of leaving out of service
an entire city or undertake some action on the network devices, which can alter the
water flow and modify the contaminant spreading, in order to achieve contaminant
isolation, containment, and flushing.

2.1 Problem Description

Two kinds of operations can be performed on network devices to realize system
flushing and system isolation: the former is achieved by opening hydrants in
order to expel contaminated water, while the second consists of isolating pipes by
closing their isolation valves. In most WDSs, devices must be operated manually
by teams of technicians who are dispatched on the network to open hydrants
and close valves on site. This introduces significant delays on the operations
and forbids to operate a large number of devices in case of a limited number of
teams. Devices selection is itself a challenge, largely addressed in the hydraulic
engineering literature (see section 2.2). Those studies also show that the time at
which a device is operated strongly impacts the pattern of contaminant spreading.

The problem is to determine the feasible scheduling of the devices operations
which minimizes the impact on the population. This objective is usually measured
as the volume of contaminated water consumed by the users during a given period

13 2.1 Problem Description

after contamination. Three issues characterize this problem.

A first issue concerns the objective function computing time. The volume
of consumed contaminated water depends on the time at which each device is
activated, but it can neither be easily computed nor approximated by simple
analytical calculus, whereas it can be simulated. A hydraulic and quality simulator
such as EPANET [18] takes as input the network configuration, the user demands
along the day, the open/closed status of the devices, and the scheduling, i.e.,
the time at which each device is operated, and returns the volume of consumed
contaminated water. EPANET is a discrete event-based simulator, so the length
of the simulation period and the size of the time step used in the simulation affect
the computational burden of the process. In this case, the simulation period must
be long enough to span all the interval going from the time the alarm is raised to
the time when contaminant disappears from the network, i.e., its concentration
falls below the danger threshold at any demand point along the network. Several
toxic substances can cause human death even when present at low concentration,
e.g., 0.3mg/ml. Therefore, the period to be considered as the simulation horizon
spans several hours after the contamination event. At the same time, though, the
size of the simulation time step must be short enough to capture all meaningful
variations of water flow and user demand at demand nodes over time. For results
to be reliable in case of real world networks, each simulation may take various
seconds of computing time on a modern computer, ranging from 5′′ to 7′′ for a
network of about 800 nodes and 1100 main pipes. As a consequence, whatever
the solution approach is, the total number of calls to the simulator cannot exceed
some threshold to be practically usable, even in an off line procedure such as ours.

A second issue concerns the lack of a priori information about the features of a
good schedule. Unfortunately, scheduling the devices according to common sense
inspired criteria is of no use in reducing the volume of consumed contaminated
water [15]. In particular, the sooner the better principle does not hold once the set
up time required for the teams to get ready has elapsed, since the contaminant has
already being flowing through the network for a while. Therefore, the objective
is not to operate all devices as soon as possible, as common sense would suggest.

In this problem, there is no rule of thumb to predict the features of a good
schedule, because of the complicated hydraulic laws that rule contaminant spread-
ing. Valves, when closed, interrupt water flow and may isolate a pipe. Hydrants,
when open, attract water, alter water flow, and expel large water quantities. These
actions, when combined, can potentially redirect contaminant away from heavy
consumption sectors of the network, decrease its concentration below the critical
threshold, or prevent contaminated water to flow toward densely populated areas.
The outcome of these interactions can not be anticipated simply by looking at the

2. Scheduling countermeasures in case of contaminations 14

operation times, and there is no way to discriminate between a good and a bad
schedule without simulation.

A third issue concerns the feasibility of the schedule to be computed. The
devices assigned to the same team of technicians are activated one at a time,
sequentially, at different times, since travel times along the route from a device to
the next are not negligible.

A vector tF representing the activation times of each device is feasible if and
only if there exists a partition of the n devices into the m teams and a total
order on each subset such that the following conditions hold. Having set to 0 the
departure time tFd from the mobilization point d, then the operation time tFj of
device j, if operated by the same team and immediately after device i with no
idle time in between, must verify the equation

tFi + τij = tFj (2.1)

where τij is the travelling time required to cover the distance distij from the loca-
tion of device i to j, with respect to a given constant speed. All schedules comply-
ing with these requirements are feasible, and the search for an optimal schedule
must take such constraints into account. Note that the feasibility constraints of
the scheduling coincide with those of a well known combinatorial optimization
problem, i.e., the Multiple Travelling Salesman Problem (mTSP) [36].

As stated before, devices activation strongly affects how water flows on a pipe
network -and thus how contaminant spreads - by increasing or decreasing the
discharge within some pipes and towards certain nodes (e.g. opening a hydrant
typically increases the flow towards nodes next to the hydrant itself); delaying a
valve or an hydrant opening can thus avoid the contaminant to be drawn toward
a critical zone (e.g. a densely populated zone). Thus, delaying some devices’
activations might yield more effective schedules. Such delays can be modelled
through a “maximum allowable pause” once technicians have arrived on site before
each device activation; in this case, tFj can not exceed tFi + τij more than a given
quantity U , so Eq. (2.1) becomes:

tFj ≥ tFi + τij (2.1a)

tFj ≤ tFi + τij + U (2.1b)

Allowing for a pause before each device activation has then three important re-
turns w.r.t. our problem:

� inter-relations among the activation of different devices can be captured;

� the variable speed of technicians is also modeled, because the quantity
distij/(t

F
j − tFi) is not always the same;

15 2.1 Problem Description

� the feasible region is enlarged since the number of feasible activation times
increases remarkably.

It is worth noting that the scheduling horizon (the range of activation times)
here considered depends on the selected devices and the associated distances. In
particular, for the constant speed case, the scheduling horizon is bounded by the
duration of the longest Hamiltonian path and it is much shorter than the sim-
ulation horizon. In the variable speed case, in principle, the scheduling horizon
could be as long as the simulation horizon, but in practice there is no point in
operating a device long after the alarm was raised. In fact, since contaminant
concentration rapidly decreases over time (though still significant along the sim-
ulation horizon), decisions concerning devices activations taken during the initial
period have more impact. As stated above, this does not mean that all devices
should be activated as soon as possible, however postponing their activation for
too long leaves high concentrations of contaminant all over the network for too
long causing high level consumption of contaminated water. Therefore, as far as
the the variable speed assumption, the scheduling horizon becomes considerably
longer than the constant speed case, though still much shorter than the simulation
horizon.

Summing up, this problem poses many challenges from a mathematical pro-
gramming point of view. The objective function value is obtained by a compu-
tationally expensive simulation. The lack of analytical representation does not
provide gradient related information. The feasible region has a combinatorial
structure, so that, on the one hand, solutions enumeration is not viable even for
small instances, on the other hand, the feasible region is not continuous, and a
schedule with a good objective function value may be of no use if quite far from
any feasible schedule. No relaxation on either sides, i.e., objective function re-
laxation or feasibility constraints relaxations, provides a meaningful lower bound.
Upper bounds obtained by common sense inspired solutions can be quite loose.
In this framework, meta-heuristics appear a viable tool for tackling this problem.

Glover in [19] discusses in depth the advantages of meta-heuristics for solving
optimization-simulation problems in combinatorial optimization. Meta-heuristics
are robust with respect to the kind of function to be optimized and are able to ex-
ploit the combinatorial structure of the problem to build search trajectories in the
feasible region. Concerning the choice of a meta-heuristic for the current problem,
recall that simulation is the only way to evaluate the quality of a schedule and the
effect of small modifications with respect to a given schedule, such as postponing
or anticipating the operation time of a single device, can not be evaluated a priori.
Therefore, there is no computational saving in searching within a neighbourhood
of the current schedule rather than far away from it. Moreover, in local search

2. Scheduling countermeasures in case of contaminations 16

based methods, adjacent solutions along the search trajectory are generally close
to each other, due to the neighborhood mechanism. Therefore, a reduced num-
ber of function evaluations would not allow such methods to move sufficiently far
from the starting solution. In such cases, global searches such as evolutionary
algorithms are often preferred to neighbourhood based local searches, for their
ability to explore a wider part of the feasible region with a limited number of
solution evaluations. To computationally support this intuition a standard Local
Search algorithm has been implemented and tested. Such considerations lead us
to select Genetic Algorithm (GA) as the solution approach.

The solving approach consists of three genetic algorithms that address the
problem of assigning devices to teams for a given number m of teams, and schedul-
ing the teams operations, in order to minimize the volume of contaminated water
consumed by the users. Let us call this problem Response to Contamination
Problem (RCP). Section 2.2 discusses related works.

The general framework architecture of the genetic algorithms is discussed in
Section 2.3. The first two encodings come from the literature on the genetic al-
gorithms for the mTSP, namely the two chromosome representation described in
Section 2.4 and the two part chromosome representation presented in Section 2.5.
The third, i.e., the time-based representation introduced in Section 2.6, is original
and it is built on the mathematical models, in Mixed Integer Linear Program-
ming (MILP), developed for the mTSP. We experimentally compare all these
representations on the real instance of a medium sized city. Results are presented
and discussed in Section 2.7.

The first time-based representation was presented in [37]. Afterwards, a further
study [38] extended the previous one by:

� extending every genetic encoding to handle variable speed of the technicians;

� dimensioning the population size through dedicated experiments;

� evaluating pros and cons of using high performance MILP solvers in the
framework of the time-based representation;

� performing a comprehensive computational campaign spanning all over the
proposed solving methods and the contamination scenarios.

A preliminary report of these results was first presented in [39].
This chapter wants to be an overview of the studies above, which are the state

of the art for the Response to Contamination Problem (RCP); finally it extends
the genetic approach with a final intensification procedure by Path Relinking,
which is thoroughly described in Section 2.8.

17 2.2 Related Works

2.2 Related Works

The RCP is a multi-disciplinary problem, as it involves issues related to hydraulic
engineering, environmental science, simulation, and combinatorial optimization.
Related works can thus be found in all these disciplines.

Environmental studies suggest to use several types of quality sensors simul-
taneously [40]. The hydraulic engineering literature provides many contributions
that report the use of optimization techniques, up to various degrees, to tackle two
problems strongly related to the RCP, i.e., the sensor location problem and the
identification of the devices to be activated once contamination has been detected.
These two problems are solved in this order, before solving the RCP. Concern-
ing sensor location when designing a CWS, Murray et al. [35] propose a MILP
model which is close to the p-median facility location problem, where sensors are
associated to facilities, the contamination accidents are associated to clients, and
the cost of serving a client by a given facility represents the damage due to the
accident if that sensor is the first one to detect the contamination, supposing
that countermeasures are taken instantaneously, as soon as the contamination is
detected. Since sensors are potentially located at any junction of the network
and the number of contamination scenarios is quite large, the challenge is given
by the enormous amount of information required to compute and store the cost
coefficients, which incorporate the results of contaminant transport simulations
for each scenario. Despite this difficulty, results are so good that this technology
has already been put into practice at several water utilities. Recently, Krause
et al. [41] exploited submodularity to compute near-optimal sensor placements,
and solved the sensor location problem on a drinking water distribution system of
more than 21,000 nodes. The key observation is that the function which computes
the amount of population protected from consuming contaminated water by early
detection provided by a given set of sensor locations is submodular. Regarding
the most suitable subset of devices to be activated, given the location of the first
alerted sensor, the hydraulic engineering literature provides several approaches:
Alfonso et al. [16] and Guidorzi et al. [15] propose a multi-objective approach
minimizing the number n of operated devices and the impact on the population.

Regarding the actual schedule of devices activations, which is the subject of
this study, this issue has only been partially addressed in the hydraulic engi-
neering literature. Baranowsky and LeBoeuf [42] employ a genetic algorithm to
determine the optimal flushing and valving operations in order to minimize the
total network contaminant concentration following sensor detection. However, as
well as Alfonso et al. [16], they suppose to activate all the selected devices in-
stantaneously and simultaneously. More realistically, Guidorzi et al. [15] build a

2. Scheduling countermeasures in case of contaminations 18

schedule heuristically according to common sense criteria. However, there is no
assurance that this approach gives a (near) optimum scheduling, i.e., a scheduling
that minimizes the volume of consumed contaminated water.

Recently, Shafiee and Berglund [43] proposed a simulation-optimisation ap-
proach to compute optimal sensor-hydrant decision trees to be browsed during
the contamination events. However the travelling times of technicians are not
taken into account, then the application of the resulting hydrant schedule may be
impracticable.

The feasibility constraints of the RCP coincide with those of a well known
combinatorial optimization problem, i.e., the multiple Traveling Salesman Prob-
lem (see [36] for a recent review), as already mentioned. In the mTSP, m sales-
men visit the nodes of a graph minimizing total traveled distance. Nodes must be
assigned to salesmen and ordered within each salesman. The mTSP literature de-
voted to the use of genetic algorithms provides useful suggestions. The lack of an
analytical representation of tractable size for the RCP objective function leaves no
room for mathematical programming based approaches, which could have taken
advantage of the several studies on the polyhedral structure of the mTSP. Never-
theless, as this paper shows, the mathematical structure of the feasible region of
the RCP can be exploited in the framework of a meta heuristic method as a tool
to restore or even impose solution feasibility, yielding hybrid solution approaches.

Differences between RCP and mTSP concern the objective function: in the
mTSP it is easily computed, being the sum of traveled distances, while ours
requires an expensive simulation. Moreover, local changes of the mTSP solution
concerning just a few arcs of the routes affect the solution value only for the
modified arcs, while in RCP the entire water flow can be modified by a local
change, and the impact evaluation of any small change requires an entire hydraulic
simulation. In addition, while mTSP’s good quality solutions tend to visit the
nodes as soon as possible, in our problem the early closure of a valve may divert
contaminant towards high consumption/demand areas, so that a delay in the
schedule sometimes improves the objective function value.

Since a good encoding should reflect the features characterizing the cost of
the corresponding solution, the choice for an encoding is biased by the specific
objective function to be optimized. As the solution cost in the mTSP depends
on selected arcs, which model pairs of successive nodes in the route, most GA
encodings emphasize the information concerning the nodes sequencing, which is
to say, the relative position of the nodes is more important than their absolute
position in the sequence.

The two most common encodings are the One Chromosome and the Two Chro-
mosomes encodings. The first one reports the sequences of nodes visited by each

19 2.2 Related Works

salesman separated by a symbol, say −1, different from any node identifier [44].
The second one is made of two vectors, the first one is a node permutation and the
second one reports a salesman identifier for each node [45]. Both representations
are heavily affected by redundancy. Carter and Ragsdale [46] propose a new rep-
resentation based on the so called Two Part Chromosome, which has a much lower
redundancy. A computational study supports the evidence that redundancy ham-
pers the search, since the same solution is visited several times as it corresponds to
multiple individuals. In the experiments, ordered crossover was used for the first
two encodings and for the first part of the Two Part Chromosome, while a single
point asexual crossover method was used for its second part. However, a sort of
local search was made concerning this second part, by trying several alternatives.
The Two Part Chromosome based genetic algorithm produced statistically signif-
icantly better results. The Two Part Chromosome was also successfully applied in
solving a scheduling problem in the newspaper industry [47]. More recently, Chen
and Chen [48] experimentally analyze different crossover and mutation operators
for the Two Part Chromosome on few instances of the TSPLIB [49].

The RCP feasibility structure is common to another well known family of
sequencing problems in combinatorial optimization, i.e., the Parallel Machine
Scheduling Problem (PMSP) with sequence dependent set up times. In PMSP,
each team is seen as a machine and each task as a job to be performed by a single
machine, while sequence dependent set up times model traveling times. Therefore,
also PMSP requires partitioning and ordering decisions. Other than in mTSP,
though, in PMSP the focus is on the execution time of the jobs since the solution
value usually depends on the schedule tF . For example, commonly used objec-
tive functions are the makespan, the total weighted completion time, the total
weighted earliness or tardiness with respect to the job due date. Despite of the
relevance of the execution time, this information is not directly encoded into the
chromosomes of the genetic algorithms that have been proposed to tackle PMSP
s. In general, genetic representations are affected by a certain degree of redun-
dancy, so that similar solutions may be represented by quite different individuals,
thus making it difficult for an offspring to inherit their features. When cross-over
is performed directly on the solution, though, ad hoc repair operators are usu-
ally required to restore feasibility. PMSP provides the perfect example. Due to
the feasibility constraints that limit the values of tF , often the encoding models
only the partitioning decisions while the schedule on each machine is obtained
by applying some dispatching rules. For example, Fowler et al. [50] use a genetic
algorithm to assign jobs to machines, while machine scheduling on the individ-
ual machine is performed according to a greedy criterion. Gonçalves et al. [51]
use a random keys representation in a hybrid GA for the Job Shop Scheduling

2. Scheduling countermeasures in case of contaminations 20

problem: schedules are constructed using a priority rule in which the priorities
are defined by the GA, and a local search heuristic is applied to improve the so-
lution. Sivrikaya-Şerifoǧlu and Ulusoy [52] tackle the parallel machine scheduling
problem with earliness and tardiness penalties, where a set of independent jobs
with sequence-dependent set up times and distinct due dates must be scheduled
on a set of parallel machines in a non-preemptive fashion such that the sum of
the weighted earliness and tardiness values of all jobs is minimized. Two genetic
algorithms are proposed. The first one is based on the classical, sequence based,
2 chromosome representation, while idle times are handled by dispatching rules.
Rules include classical ones, such as the non delay rule which schedules each job
at its earliest start time, as well as original ones, such as the forward pass and
backward-forward pass which aim at completing jobs at their due dates. The
second one adds a third chromosome to the 2 chromosome representation, which
indicates if a job must be scheduled at its ready time or at its best start time.
In Zhang et al. [53], multiple teams of photographers must be scheduled to serve
a large number of schools. The objective is to minimize total traveled distance
and duration. An mTSP model is used to formalize the problem which is then
solved by a genetic algorithm that uses a sequence based encoding. Cheng and
Gen [54] devised a hybrid genetic algorithm to solve a parallel machine scheduling
problem to minimize the maximum weighted lateness. The genetic algorithm is
used to evolve the job partition among the machines as well as the job sequence
within each machine, while a local optimizer is used to improve the job order on
each single machine. Even when scheduling on a single machine and despite of
time based objective functions, permutation based encodings are preferred to time
based encodings, as in [55] which solves a scheduling problem with set up times
minimizing total tardiness.

Many other references can be found in Allahverdi et al. [56], that provides a
recent review of scheduling problems with set up times and costs. As far as we
know, however, no encodings use the scheduling time directly in the chromosome.

Finally, several techniques for simulation–optimisation problems have been
proposed in the literature recently [20,57]. However, these studies address uncon-
strained problems.

2.3 A Genetic Algorithm Framework for the Re-

sponse to Contamination Problem

A genetic algorithm (GA) draws inspiration from the mechanism of species evo-
lution; each solution of a problem is encoded in some data structure, the chromo-

21 2.3 A Genetic Algorithm Framework for the RCP

some. An initial population of individuals, each represented by a chromosome, is
generated and then recombined through operators, most important the crossover
operator. A crossover takes as input two chromosomes and generates a new in-
dividual that will be inserted into the new, evolved population. The candidate
parents are often selected based on their fitness: a measure of the solution quality.
Defining a GA, thus, basically amounts to define the structure of chromosomes,
the selection operator, the recombination operators (crossover and mutation), be-
sides fitness measures and termination conditions.

In the RCP, the evaluation of an individual’s fitness requires a long hydraulic
simulation, so the main obstacle to obtaining good solutions is the limited com-
puting time. Therefore, our termination condition is a fixed number of invocations
to the hydraulic simulator.

The hydraulic and quality simulations were performed through EPANET [18],
an open-source water distribution system modeling software package, developed by
the U.S. Environmental Protection Agency (EPA). EPANET performs extended-
period simulation of hydraulic and water-quality behavior within pressurized pipe
networks, reproducing the movement of drinking-water constituents within dis-
tribution systems over time. EPANET also supports the simulation of spatially
and temporally varying water demand, therefore it provides a realistic picture of
user consumption. EPANET is able to describe the propagation of a contaminant
through the network and its concentration for each time slot and location, whence
the quantity of consumed contaminant during the day. In order to provide real-
istic results, the unit time slot of the discrete time simulation must be kept in
the range of few minutes. At the same time, thought, the contaminant may take
several hours to reduce its concentration below the danger threshold, and thus the
simulation must encompass a large number of time slots. EPANET first performs
a simulation of the flow in the hydraulic network over time with respect to the
current schedule. Only afterwards, it computes how the contaminant spreads over
the network, at which concentration and in which instants it is present at each
user demand node. Therefore, the volume of consumed contaminated water can
be known only at the end of the simulation, so that the simulation process can
not be interrupted before its end, for example as soon as the objective function
value has reached a given threshold. Since each call to the hydraulic simulator is
time demanding, we store the input/output data of each call in a sort of caching
mechanism. If the objective function has been invoked before with the same ar-
guments, its value is not re-computed but retrieved from the cache. Thus, the
number of invocations is not proportional to the number of generations.

Other features common to all the GA families further introduced are: a classi-
cal roulette wheel procedure for parent selection, an elitist generational replacement

2. Scheduling countermeasures in case of contaminations 22

scheme, mutation of clones, and random generation of the initial population.
In particular, the initial population is generated as follows. Each gene is cre-

ated by picking at random a device identifier, according to a uniform distribution.
If the selected device already appears in the chromosome, it is discarded and the
process is repeated. Then, a team identifier is randomly selected, and it is as-
signed to the device, guaranteeing that at least one device is assigned to each
team. For the variable speed case, a third vector of n elements is created by sam-
pling according to a uniform distribution the discrete set {0, · · · , U} of feasible
pause durations. As it will be clear in the following, this representation is based
on the Two Chromosome encoding; the translation of the initial population into
the other encodings is straightforward.

In the next three sections we will recall two well known encodings taken from
the literature on mTSP, and introduce a new one, targeting the specific features
of our problem. A further variant for the ad hoc encoding will be also discussed.
All these encodings will be described in case of constant traveling speed as well
as variable traveling speed.

2.4 A Genetic Algorithm Based on Sequences

As mentioned, the RCP shares the feasibility structure of an mTSP defined on
a graph where the mobilization point corresponds to the depot d and each client
node to one of the n devices to operate. Then we can borrow from the encodings
used for the mTSP.

The first encoding we consider is called the two chromosome technique by [46],
and we will use the acronym 2C in the rest of the chapter. The chromosome con-
sists of two rows: the first represents the sequence of the devices to be activated,
the second the identifier of the team that operates the corresponding device. For
example, in the chromosome:

Cdev
� �� �

3 4 1 2 8 5 7 6

1 2 1 3 2 3 2 2
� �� �

Cteam

(2.2)

team number 1 visits nodes 3 and 1 (in this order); team 2 visits 4, 8, 7, and 6,
while team 3 visits 2 and 5. This encoding, as all those based on permutations,
is affected by redundancy which can slow down the convergence of the genetic
algorithm [46]. For example, if we permute columns 1 and 2 in Eq. (2.2), we obtain

23 2.4 A Genetic Algorithm Based on Sequences

exactly the same scheduling of the teams, but with a different representation. In
fact, the first row of the 2C encoding gives a total order on the nodes, but in the
scheduling the order of the nodes is actually significant only within each route.
Ideally, the order of nodes should only be a partial order, since devices operated
by different teams cannot be compared. The size of the solution space of this
representation is n!mn [46].

So far with the cons. Regarding the pros, this encoding supports simple
crossover operators, thanks to the representation into a linear data structure.
For example, one can use the one-point ordered crossover [58]. Given two par-
ents, f and m, and an integer i in the interval [1, n], two offspring are generated
as follows: the first child inherits the first i columns from f and fills the other
columns with the remaining elements taken from m in that order; the second one
takes the first i columns from m and the others from f in the given order. In the
example depicted in (2.3), we take i = 4 so the first 4 columns of the child are
inherited from f , while the remaining devices, namely 7, 3, 8, and 5, are taken
from m in such order, together with the team information.

f =
6 4 1 2 8 5 7 3

1 2 1 3 2 1 2 2

m =
2 7 3 8 4 6 1 5

2 1 3 3 1 2 1 2

⇒
6 4 1 2 7 3 8 5

1 2 1 3
� �� �

f

1 3 3 2
� �� �

m

(2.3)

The idea behind this operator is the following. The aim of a good crossover
operator is having each offspring inherit those features that made its ancestors
successful. We have no information about what influences the value of our objec-
tive function, lacking a simple analytic formulation: we can only make reasonable
assumptions. A possible assumption is that the sequence of activations could
influence such value. So, if a sequence is successful, keeping parts of this se-
quence could make the offspring successful as well. Note that, using a single point
crossover, the offspring always inherits the first i elements from one of its parents.
This is done on purpose, since devices operated as first strongly influence contam-
inant spreading, and the first i elements of the sequence are likely to determine

2. Scheduling countermeasures in case of contaminations 24

which devices are operated first, at least for one team. Figure 2.1 shows the tree
representation of the offspring in (2.3): in the child tree, the rooted subtree in
bold, Td, comes from f , while the routes of m, after the shrink due to the deletion
of the already selected nodes, are appended to Td according to the team naming
adopted in m. Symmetrically, the second child is generated by inheriting the first
i columns from m while the remaining devices are activated in the order and by
the teams as in f .

d

✟
✟
✟✟

❍
❍

❍❍

6

1

5

4

8

7

3

2

+
d

✟
✟
✟

❍
❍

❍

7

4

1

2

6

5

3

8

=⇒
d

✟
✟
✟

❍
❍

❍

6

1

7

4

5

2

3

8

parent f parent m offspring

Figure 2.1: An example of the tree representation of the two parents and the
offspring in (2.3) obtained by the crossover

Each solution (each tree) is associated with an equivalence class of individuals,
each with a different chromosome representation, and this representation impacts
on the crossover results. In order to reduce this impact, before crossover we shuffle
the columns of each parent while preserving the partial order. In other words, we
randomly pick another representative for the same tree in the equivalence class.
A further level of redundancy comes from team names; by renaming teams we
get different representations of the same solution. To deal with this symmetry,
that may generate very different offspring from very similar parents, we adopt
a standard team naming approach: the team operating device 1 takes name 1;
the team that operates the device with smallest identifier amongst the remaining
devices takes name 2, and so on.

Allowing for Variable Speed in 2C

As already mentioned, in the RCP introducing delays in the schedule may improve
the objective function value. To this purpose, the 2C encoding can be extended
with a new vector Cpause, assigning a pause to each device, ranging from 0 to

25 2.5 A Genetic Algorithm based on the Two-part Chromosome

an upper bound U . This can be equivalently thought of as the teams moving
at Variable Speed (V S). The resulting encoding consists of three chromosomes,
but, for the sake of clarity, we call it “Two Chromosomes encoding with Variable
Speed” (2CV S). We will refer to the Constant Speed (CS) variant as 2CCS.

It is worth pointing out that certain pause values might modify the order of
the activations given by the first two chromosomes. For instance, considering
the previous individual (2.2), for an opportune travelling time matrix τ we may
obtain that the team 1, moving at constant speed, activates the related sequence
in tCS

3 = τd3 = 7 and tCS
1 = τd3 + τ31 = 9; while the team 3 activates its sequence

in tCS
2 = τd2 = 5 and tCS

5 = τd2 + τ25 = 8. According with the resulting activation
times, the total order of activations of the devices assigned to such teams is
{2, 3, 5, 1}. Instead, the following possible representation of (2.2) in the space of
2CV S :

3 4 1 2 8 5 7 6

1 2 1 3 2 3 2 2

1 1 5 5 4 3 3 2
� �� �

Cpause

(2.4)

yields the activation times tV S
3 = τd3 + 1 = 8, tV S

1 = τd3 + 1 + τ31 + 5 = 15,
tV S
2 = τd2 + 5 = 10, and tV S

5 = τd2 + 5+ τ25 + 3 = 16. In this way, the total order
of activations of the concerned devices is changed in {3, 2, 1, 5}.

Regarding the crossover operator associated to the 2CV S encoding, we ex-
tended the one-point ordered crossover in order to handle Cpause in the same way
as the other two chromosomes.

2.5 A Genetic Algorithm based on the Two-part

Chromosome

In [46] a so called two-part chromosome (2P , or 2P CS) is proposed, with lower
redundancy with respect to the other encodings so far proposed in the literature.
The permutation part of the chromosome, Cdev, made of n integers as usual, is
followed by a second part, Cpart, being a string of m integers summing up to n.
Its kth value tells how many elements are part of the kth tour. For example, the

2. Scheduling countermeasures in case of contaminations 26

same solution depicted in (2.2) would become (2.5).

2
� �� �

3 1

4
� �� �

4 8 7 6

2
� �� �

2 5
� �� �

Cdev

2 4 2
� �� �

Cpart

(2.5)

This way, the size of the representation space is lowered to the order of n!
�
n−1
m−1

�
.

As in [46], we adopt the above mentioned one-point ordered crossover for the first
chromosome part Cdev, and a single point asexual crossover (a random rotation)
for the second one Cpart. Both are closed with respect to this encoding and yield
feasible solutions. Actually, in [46] the first chromosome of the new child is coupled
to every second part chromosomes in the population in order to find out a better
solution; this search would consume a number of simulations in the amount of the
population size for each individual of the new population. This procedure should
be avoided in this application, as there is a limit on the EPANET calls.

While the 2P encoding has a lower redundancy if compared to traditional per-
mutation based encodings, redundancy can not be completely avoided. Indeed,
redundancy is inherent into this kind of representation, since the encoding distin-
guishes among salesmen in the representation space, while they are all identical
in the solution space. For example, the same solution of Eq. (2.5) could also be
represented in 2P as follows:

2
� �� �

3 1

2
� �� �

2 5

4
� �� �

4 8 7 6
� �� �

Cdev

2 2 4
� �� �

Cpart

Allowing for Variable Speed in 2P

As well as in the 2C encoding, a straightforward extension of 2P for variable
speeds, called 2P V S , can be achieved by defining the Cpause chromosome. In this
way, the representation of (2.4) would become the following:

Cdev
� �� �

3 1 4 8 7 6 2 5

Cpart

� �� �

2 4 2

1 5 1 4 3 2 5 2
� �� �

Cpause

(2.6)

Also for the 2P V S , we provided a suitable extension of the one-point ordered
crossover, in which the elements Cdevi and Cpausei are inherited jointly.

27 2.6 A Genetic Algorithm Based on Activation Times

Finally, in the 2CCS (i.e., the basic 2C), 2CV S , 2PCS and 2P V S GA s, we adopt
the same mutation operator, i.e., swapping two columns of the chromosomes (i.e.,
Cdev, Cteam for 2C encodings, and Cpause for VS encodings), and it is applied
randomly with given probability. Such probability has a base value of 2%, it is
increased of 1% in case of no improvement for 3 consecutive generations, and reset
to the base value in case of improvement.

2.6 A Genetic Algorithm Based on Activation

Times

The previous encodings support schedule feasibility since they encode mTSP solu-
tions, and any such solution identifies a feasible schedule. However, their crossover
operators do not allow to directly propagate the activation time of a device to the
next generation. Unluckily, the activation time is the basic piece of information in
our problem, which can not be transmitted unless the whole sequence is inherited.

A straightforward encoding, which emphasizes the scheduling information, en-
codes activation times directly in the chromosome, with the ith gene modelling
the activation time of device i. Such encoding, being the direct representation of
the solution, is redundancy free. The absence of redundancy, however, goes to
the detriment of feasibility, which is no longer guaranteed and must be explicitly
restored after crossover and mutation. Indeed, a generic vector of activation times
does not carry along with it any knowledge of the tours followed in the graph,
nor the number of teams, therefore there is no straightforward crossover oper-
ator which can preserve feasibility since the encoding itself lacks the necessary
information.

Consider for example the well known binary crossover operator (BX), which
selects genes from the two parents based on a randomly generated binary mask.
A time-based GA based on BX may yield vectors spanning the whole space Rn

(the most obvious relaxation of the feasible region) but the returned solution may
not only be infeasible but also quite different from the closest feasible one. For
example, if the activation times of the two parents are as follows

f = 3 4 3 1 8 5 7 6

m = 1 8 1 3 6 3 2 2

and the bit mask selects the times in odd positions from f and the ones on even
positions from m, the spawned child would be

c = 3 8 3 3 8 3 7 2

2. Scheduling countermeasures in case of contaminations 28

Notice that the child c has four devices that must be operated at time 3. This
means that if we have tree teams, it is impossible to operate four devices exactly
in the same instant, although it was possible for each of the parents.

In order to have only feasible schedules in the population, we apply a step to
restore feasibility after the application of each genetic operator.

In the following, we hybridize in two ways the GA with a MILP solver. In
particular, we introduce a MILP model mapping any vector of activation times to
its closest feasible point. It will be used to restore feasibility at every step after
the BX crossover, and this approach will be denoted as BX with a posteriori
feasibility restore (BXPF). Furthermore, we extend this idea and integrate the
MILP model directly within the genetic operator, giving rise to a second approach
denoted as MILPX.

2.6.1 An Integer Programming Model to Restore Feasi-
bility

Let t be a generic vector of activation times. If t is not feasible, i.e., it cannot
be obtained by any scheduling of the teams, we propose to repair it by turning it
into the feasible point tF closest to t by norm L1.

As an example, consider a small network with 4 devices plus the mobilization
point d, 2 teams and the following travelling time matrix τ :

τ =

d 1 2 3 4

d − 1 1 1 1
1 1 − 1 3 1
2 1 1 − 4 7
3 1 3 4 − 3
4 1 1 7 3 −

Vectors m = [1, 1, 4, 8] and f = [2, 5, 1, 1] model feasible schedules but the
BX operator, by using the binary mask [1,1,0,0], yields the infeasible child t =
[1, 1, 1, 1]; the restoring procedure returns tF = [2, 1, 1, 3] as the closest feasible
vector, which is indeed at 3 units distance from t by L1.

Several MILP models can be adopted to find tF , building on those developed
for the mTSP [36] and routing problems in general, among which the following
2-index flow-based formulation [59]. The constraints extend the mTSP model
with travelling times information, the objective function minimizes the distance
of the vector tF from t. To make it possible additional variables and constraints
have to be integrated into the MILP model; this section describes first the core of

29 2.6 A Genetic Algorithm Based on Activation Times

the MILP model for the mTSP, then it extends it with the constraints that are
necessary to generate vectors tF that are as close as possible to the input.
The input parameters are:

t a vector of n ideal activation times.

τ a matrix (n+1)× (n+1); τij represents the time that a team takes to move
from the location of device i to that of device j; a given constant speed of
the teams is considered on the street layer of the city.

The unknowns are:

X a matrix (n + 1) × (n + 1) of 0-1 variables. xij = 1 iff j is activated right
after i by the same team; i is activated first by its team iff xdi = 1; xii = 0
∀i (no self loop arcs).

tF a vector of n+1 activation times; tFi is the time at which device i is activated,
and tFd is the departure time from the depot d.

δ a vector of n differences: it is defined as δi = ti − tFi .

The constraints:

tFi ≥ τdi ∀i ∈ {1..n} (2.7a)

δi = ti − tFi ∀i ∈ {1..n} (2.7b)

tFd = 0 (2.7c)
�

i∈{1..n}

xdi = m (2.7d)

�

j∈{1..n}∪d

xij = 1 ∀i ∈ {1..n} (2.7e)

�

j∈{1..n}∪d

xij =
�

h∈{1..n}∪d

xhi ∀i ∈ {1..n} (2.7f)

tFi ≤ M + xdi(τdi −M) ∀i ∈ {1..n} (2.7g)

tFi + τij ≤ tFj + (1− xij)M + xji(τij + τji −M) ∀i, j ∈ {1..n} (2.7h)

Constraint (2.7a) says that device i can be activated no earlier than the time it
takes to reach it from d. Eq. (2.7b) is the definition of δ. Teams leave the depot
at time 0 (Eq. (2.7c)). All m teams depart from the depot (Eq. (2.7d)). All nodes
except d are visited exactly once (Eq. (2.7e)). For each node i, the total number
of teams arriving to i is equal to the number of teams leaving i. Eq. (2.7f) are the

2. Scheduling countermeasures in case of contaminations 30

so called flow balance constraints. Constraint (2.7g) is the linearisation of the
implication xdi = 1 =⇒ tFi ≤ τdi, where M is a sufficiently large positive number;
together with Constraint (2.7a), it imposes that the starting time of the first
devices must be equal to their traveling time from d. Constraint (2.7h) links the
activation times tF to the ordering between devices given by matrix X ; indeed,
(2.7h) linearises the implications:

xij = 1 =⇒ tFi + τij ≤ tFj

xij = 1 =⇒ tFi + τij ≥ tFj .

Eq. (2.7h) imposes that the arrival time at device j equals the starting time from i
plus the travelling time from i to j, thus implementing the constant speed variant
of the time-based GA. The objective function associated to problem (2.7a-2.7h)
is the minimization of the L1 distance between tF and t, namely:

min||δ||1 = min

�

i∈{1..n}

|δi|

 (2.8)

To linearize this function, we introduce new unknowns δ+ that represent the
absolute value of δ, and minimize their sum:

min||δ||1 = min

�

i∈{1..n}

δ+i

 (2.8a)

δ+i + δi ≥ 0 ∀i ∈ {1..n} (2.8b)

δ+i ≥ −δi ∀i ∈ {1..n} (2.8c)

We call this problem the Feasibility Restoring Problem (FRP).

Problem Complexity

Theorem 1. The Feasibility Restoring Problem, aiming at finding the feasible
vector tF of activation times that is closest, according to norm L1, to the ideal
vector t, is NP-Hard.

Proof. The Feasibility Restoring Problem (FRP) can be reformulated in the frame-
work of machine scheduling problems. Consider m parallel identical machines, a
set of n jobs to be executed, and a distinct due date ti for each job i = 1, · · · , n.
Each job i has a duration di and there are sequence-dependent set up times, i.e.,

31 2.6 A Genetic Algorithm Based on Activation Times

a set up time sij must be spent if job i is executed right before job j on the
same machine. Set up times to initialize the machine before the first job are also
present. Each job must be assigned to exactly one machine. Each machine can
execute a job at a time, and preemption is not allowed. Therefore, jobs on the
same machine are totally ordered. The target is to minimize the sum of earliness
and tardiness penalties with respect to the due dates. This problem is NP-Hard,
since it is a generalization of the scheduling of independent jobs with a common
due date on a single machine [21].

The FRP can be stated in terms of the machine scheduling problem introduced
above as follows: each job corresponds to a device to be activated, job durations
are null (which comes at no loss of generality since positive durations can be
included in the set up times), due dates correspond to the ideal activation times t,
earliness and tardiness penalties for each job are unitary, set up times {sij} are the
travelling times on the network {τij}, and initialization set up times correspond
to the travelling times from the depot. Regarding the objective function, the
distance between the two vectors tF and t according to norm L1 is in fact the sum
of the absolute values of the differences, which corresponds to the sum of earliness
and tardiness of the scheduling time of the jobs with respect to their due date.
This fact, beside the need for linearisation, motivates the choice of the L1 norm
to evaluate the distance between tF and t.

Summarizing, since FRP is a reformulation of a NP-Hard machine scheduling
problem, it follows that FRP is NP-Hard as well.

Since there is no known polynomial algorithm for the exact solution of FRP,
it is reasonable to adopt an exponential worst case complexity approach, such
as formalizing FRP by the MILP model provided in (2.7a-2.7h) and solving this
model by a MILP solver.

A Variable Speed Variant for BXPF

The time encoding allows us to encompass the variable speed variant of BXPF
without the need of adding a vector Cpause to the chromosome, as it was necessary
for both the Two Chromosome and the Two Parts Chromosome in order to encode
the pause before the activation of each device. Indeed, the time encoding already
possesses all the information required. What is affected, though, is the feasible
region of the time vectors, since now a chromosome is feasible as long as there is
a solution to the associated mTSP such that the activation time of each device
coded in the gene is greater than or equal to the activation time of the preceding
device plus the traveling time. It follows that the MILP model for the FRP
must be modified to take into account this broader feasible region. Recall that

2. Scheduling countermeasures in case of contaminations 32

U denotes the maximum pause allowed. Constraints (2.7g) and (2.7h) are now
modified as follows:

tFi ≤ M + xdi(τdi + U −M) ∀i ∈ {1..n}

tFi + τij ≤ tFj + (1− xij)M ∀i, j ∈ {1..n}

+ xji(τij + τji + U −M)

2.6.2 Tighter Integration GA-MILP

Restoring feasibility after crossover may yield children quite different from their
parents, since feasibility restoring could disrupt those patterns responsible for
parents’ fitness. For this reason, we moved the call to the MILP solver inside the
crossover operator, giving rise to a new operator that we call MILPX. In this
way, MILPX generates directly a new individual proven to be feasible and, at
the same time, resembling its parents as much as possible among all their feasible
children.

More precisely, given the chromosomes of the mating individuals f ≡ (f1, . . . , fn)
and m ≡ (m1, . . . , mn), we generate the child c that minimizes the quantity

n�

i=1

min(|ci − fi|, |ci −mi|)

Stated otherwise, we can consider each chromosome as a point in a n-dimensional
space. The two chromosomes f and m of the mating individuals define a hyper-
parallelepiped that has m and f as two vertices, and with sides parallel to the
coordinate axes. Figure 2.2) shows a 3D representation of this space; crosses
represent feasible points, m and f are the mating individuals of size 3; c is the
closest feasible point (at distance δ) to a vertex of the parallelepiped. The MILP
solver selects the feasible point in the n-space closest to any vertex of the hyper-
parallelepiped. In this way, if there exists a feasible point in the n-space that
inherits each coordinate from one of the two parents, it will be generated (or,
if there exist more points with such feature, one of them is definitely generated
as a spawn). Otherwise, the feasible point closest to one of such points is the
spawned individual. This is implemented by slightly modifying the MILP model
(2.7a-2.7h), by introducing a vector of unknowns w to range on the vertices of
the hyper-parallelepiped; wi = 1 iff the i-th coordinate of child c is inherited from
f (i.e., ci = fi) and wi = 0 otherwise (if ci = mi). The definition (2.7b) of the
displacement δ becomes:

δi = fiwi +mi(1− wi)− tFi ∀i ∈ {1..n}

33 2.6 A Genetic Algorithm Based on Activation Times

f

mδ

c

(f1, f2, m3)

Figure 2.2: Graphic representation of the crossover MILPX in a 3D space

In order to avoid the offspring to be a clone of one of the parents, an additional
set of constraints and a new family of variables and constraints are introduced.
Variable δ+i,p model the i − th distance between the offspring and the parent p,
if positive. Variable δ−i,p model the i − th distance between the offspring and the
parent p, if negative. Thus, for each parent p (m and f) and device i the following
relations should hold:

δ+i,p =

�

0 if |ti − pi| < 0

|ti − pi| if |ti − pi| ≥ 0

δ−i,p =

�

|ti − pi| if |ti − pi| < 0

0 if |ti − pi| ≥ 0

A possible linearisation of the equations above is:

δ+i,p ≤ Mbi,p ∀i ∈ {1..n}

δ−i,p ≤ M −Mbi,p ∀i ∈ {1..n}

pi = δ+i,p − δ−i,p + ti ∀i ∈ {1..n}

The variables bpi are binary and state whether the distance between the parent and
the offspring is positive or not. The following constraints require such distances
to be greater than a positive threshold Δ:

�

i∈{1..n}

�
δ+i,p + δ−i,p

�
≥ Δ

2. Scheduling countermeasures in case of contaminations 34

Note that the same condition can not be guaranteed by simply bounding the
number of coordinates coming from each parent, i.e.,

�

i∈{1..n}

wi ≥ 1

and
�

i∈{1..n}

wi ≤ n− 1

For example, these conditions have no effect when parents have one or more genes
with the same value: suppose that f1 = m1, the solver could select a child identical
to parent m by selecting w1 = 1; in this way

�

i wi = 1 although the child c is
identical to one parent. Near the end of the search, it is not uncommon to have
parents with equal value of one coordinate.

MILPX and BXPF have different characteristics. Since the two parents are
feasible vertices of the hyper-parallelepiped, MILPX may become quite conser-
vative as the search proceeds. In fact, MILPX tends to reproduce entire patterns
of the parents, such as the scheduling of single teams. In this way it may soon
reduce the diversity of the population, even though it succeeds in transmitting
meaningful information. On the contrary, BXPF may disrupt the scheduling
patterns of the parents but it may help to divert the search away from local
optima.

BothMILPX andBXPF select a reference vertex of the hyper-parallelepiped,
to which the feasible offspring has to be as close as possible. MILPX and BXPF
can be seen as the two extremes concerning the use of randomness in the choice of
the reference vertex. In BXPF , it is a pure random choice, implemented by the
binary mask of BX . On the contrary, in MILPX the choice is fully deterministic
and it is driven by feasibility. In fact, MILPX selects as the reference vertex the
vertex whose distance from the closest feasible point is minimum. There is no way
to tell in advance which crossover operator is the best one. Both crossovers can be
used within a hybrid GA, each one being used according with a given probability.
Different values of such a probability are evaluated experimentally, as reported in
Section 2.7.

Summing up, for the GA based on activation times we propose two crossovers,
BXPF and MILPX, which can be used within the same algorithm, being in-
voked with different probability, yielding the so called time-based Hybrid GAs (H)
with constant and variable speed (HCS, HV S). The initial population is built by
using the same procedure as the sequence-based encodings (see Section 2.3): for
each new individual a random permutation of devices is associated with a random

35 2.7 Computational Results

combination of teams, whence the activation time chromosome is computed; even-
tually, only the time chromosomes are kept in the population. Finally, mutation
is applied when a generated offspring already belongs to the current population
(a clone), and consists of swapping the activation time of two devices, restoring
feasibility if necessary.

The main blocks of the final solving architecture are depicted in Figure 2.3.

initial population

No

Yes

hydraulic sim.

update Cache get O.F.(I)
from Cache

I ∈ Cache?

is population
filled?

child already in
population?

BX

MILPX
MILP Solver

x random
x < p(BXPF)?

parent
selectionelitismtermination

criteria

restore feas.
MILP Solver

crossover

mutation

No

No

No

Yes

Yes

(t∗, V ∗)

No

Yes

∀I ∈ population

Generation of the new population

BXPF

Figure 2.3: Architecture of the time-based Hybrid Genetic Algorithm

2.7 Computational Results

We applied the presented GA s to the water distribution network of Ferrara, Italy,
population 130,000. A sketch of the network is reported in Figure 2.4. Topology
network data are sensitive information therefore can not be distributed.

In the current experiments, the road network on which the teams move along,
coincides with the water distribution network. We claim that this occurs at no loss

2. Scheduling countermeasures in case of contaminations 36

Figure 2.4: Picture of the hydraulic distribution network of Ferrara

of generality, regarding the assessment of the efficiency of the solution approach,
since there is no relationship between how the teams move on the road network
and how the contaminant spreads over the hydraulic network. What matters for a
significant experimental study is that the travel time between devices on the road
network is not negligible, so that the order in which devices are operated affects
devices activation times of a quantity sufficiently high to impact contaminant
spreading. This condition is satisfied by our instances. Travel times range from 5
to 15 minutes, and the maximum pause duration U is set equal to 5’.

A previous work on the same network [15] selected the set of devices to be
operated after contamination detection by way of a multi-criteria GA, targeting
both minimal number of devices and minimal volume of consumed contaminated
water, supposing to have as many teams as devices, all departing at the same
time. From the Pareto front provided in [15], a point associated with a good
trade-off was selected, yielding the n = 13 devices to be operated.

37 2.7 Computational Results

Commonly, the response procedure starts as soon as a sensor raises the alarm.
As stated in [15], an alarm event detects a dangerous toxicity plausibly due to sev-
eral contamination’s locations and times; in our case, 42 contamination scenarios
exist which can be simulated and then optimized. We considerably extended the
experimental campaign of [39], which had been carried out on 5 scenarios equally
spread with respect to the objective function value associated to the scheduling
computed according to the as soon as possible criterion. This scheduling, in turn,
is obtained by solving a MILP model for the mTSP with constraints (2.7a), (2.7c-
2.7h), and U = 0, minimizing the maximum among the devices activation times
{tFi , i ∈ 1..n}, which is also called the makespan. This study selects 20 scenarios,
including the previous 5, selected according to the same criterion.

With respect to [39], we improved the quality of the MIP solver used to tackle
the optimization problems in the Hybrid GA s and to compute the minimum
makespan schedule. CBC COIN-OR [60] is the open-source code MILP Solver
used in [39], while in this study we adopted a commercial MILP Solver, namely
Gurobi [61]. Pros and cons are discussed further on.

As mentioned, EPANET is the hydraulic simulator used in this study, an open-
source software developed by the U.S. Environmental Protection Agency (EPA)
which has become a standard tool in the hydraulic engineering literature [18].
Each simulation requires on average about 5 seconds. This time is almost constant,
since it is mainly determined by the size of the time steps and by the length of
the simulation period. Each call to the MILP solver is, on average, in the order
of a few tens of milliseconds, so that computing time for solving one instance is
basically proportional to the number of EPANET calls. Note that this number
corresponds to the number of different solutions inspected during the search, since
the cache memory mechanism spares simulation time in case of solutions already
evaluated. According to the needs of the local water utility, the total computing
time for solving one instance should not exceed one hour. Therefore, a reasonable
choice is to set a cutoff of 500 invocations to the hydraulic simulator. The average
computational time of each GA is approximately 5× 500 seconds, and variance is
negligible.

Other parameters are the population size Npop = 20, and the team number
m = 3. The value of m was set by the managers of the utility company operating
the Ferrara network. With these parameters, Gurobi’s running time is negligible
w.r.t. EPANET, as already mentioned. We set a time out limit of 1 second to
ensure limited variability.

Overall, we ran 14 GA s. The first 10 belong to the time-based Hybrid GA
s family (section 2.6) and differ from each other regarding speed configuration,
i.e. constant speed (CS) and variable speed (VS), and the chance of using the

2. Scheduling countermeasures in case of contaminations 38

MILPX method rather than BXPF as the crossover operator at the current
iteration. More specifically, we tested five MILPX probability values, namely
{0, 25, 50, 75, 100}%. We name them with respect to the percentage of MILPX,
i.e., the variable speed variant of the hybrid GA where MILPX is used with
probability 0.25 and BXPF has probability 0.75 is denoted as H(25%, V S). The
other four GA s belong to the permutation-based family (sections 2.4 and 2.5),
namely, 2CCS, 2CV S , 2PCS, and 2P V S GA s. For each scenario, we run each GA
100 times. Each GA, at each run, shares the same initial population as the other
GA s for the same variant (constant and variable speed), which is to say, there
are 200 different initial populations, the first 100 are made of feasible solutions for
the variable speed case, while the remaining 100 are feasible also for the constant
speed case.

The experimental campaign aims at tuning the population size; providing com-
putational evidence of the gain given by using time based encodings with respect
to permutation based ones for solving this problem; deriving some indications con-
cerning the best settings of the hybrid genetic algorithm, such as the percentage
of MILPX and BXPF and the use of powerful MILP solvers; analysing whether
the devised solution approach is able to cope with the most challenging version
of our problem, that is the variable speed variant.

2.7.1 Dimensioning the population size

The Population size Npop has been calibrated experimentally, by running on
few scenarios algorithm 2CCS. All scenarios yielded similar results. We re-
port the data for scenario A in Figure 2.5. The average over 100 runs of the
best solution value at each EPANET call is reported, for population size in
{10, 20, 40, 60, 80, 100}. Larger populations allow to start the search from bet-
ter quality solutions, but this advantage is not compensated by the low number
of generations allowed by our stopping criterion, i.e., 500 invocations to the hy-
draulic simulator that was indicated by the hydraulic engineers. Having to deal
with this strong limitation, we suppose that our algorithms perform better if gen-
erating less offspring from an improving population rather than generating more
offspring from the same population. However, as confirmed in the GA literature,
small population sizes affect diversity and may accelerate convergence to medium
quality solutions and hamper the search. This can be observed when comparing
the evolution of the population size 10 with the population size 20.

The ideal population size may also depend on the specific representation to
be used. Since in this case it was calibrated with respect to 2CCS representation,
which in turn is sufficiently similar to the 2P representation to extend the results,

39 2.7 Computational Results

the time based GAs might benefit from an ad hoc calibration of the population
size. Keeping this in mind in the further analysis we believe that our final con-
clusions may only further benefit from this possibility. Figure 2.5 suggests in fact
to set Npop = 20.

�����

�����

�����

�����

�����

�����

�����

� �� ��� ��� ��� ��� ��� ��� ��� ��� ���

��
��
��

��
��
��

��
�
��
��
��
��
��
��

��
���
��
��
�

������������

���

���

���

���

���

����

Figure 2.5: Population size calibration, average on 100 runs of the best solution
value of 2CCS at each EPANET call, scenario A, 500 simulation calls

Despite the fact that in the genetic algorithm literature Npop is usually much
larger than 20, i.e., 100, it should be mentioned that in some other studies such
as [55] where there is no such a tight limitations on the number of function eval-
uations, calibration yielded much smaller values than 100 such as 40.

2.7.2 Impact of high performance solvers

As a consequence of the bottleneck step represented by the simulation time and of
the limit on their number, the running time allowed to each algorithm is basically
the same, and most important, due to the caching mechanism, the number of
different solutions each algorithm inspects is also equal, i.e., 500. As mentioned,
the MILP solver running time is negligible with respect to the simulation time,
so that all the hybrid algorithms take, on average, the same amount of time as
the others. Figure 2.6 shows the distribution of the running time of the Gurobi
MILP solver on 9000 runs. The runs have been randomly sampled during several
executions of our hybrid algorithms. Each bar shows the number of runs whose
running time lies within the corresponding interval. It can be seen that the vast
majority of the values lies below 0.12 seconds.

2. Scheduling countermeasures in case of contaminations 40

����

����

����

����

����

����

� ��� ��� ��� ��� ���

��
��
���

��
��
��

��
��
�

������������������������

Figure 2.6: MILP solver running times distribution over 9000 runs

Let us discuss pros and cons of using high performance MILP solvers in our
hybrid GA s. We switched from CBC to Gurobi in order to improve robustness
with respect to running time and results. Both solvers were used with a time out
limit set to 1 second, which CBC used to reach sometimes while Gurobi seldom
reaches it. So far with the pros. Cons regard an increasing number of clones being
generated by MILPX. In order to discuss these issues in further details let us
analyse the data of the hybrid GA with 100% MILPX .

Recall that MILPX tends to propagate parents feasible patterns, so that,
when two parents are similar and population diversity is low, MILPX tends to
produce clones. While we forbid an offspring to be a clone of its parents, there
is no way to forbid it to be equal to an individual in the current population.
Mutation occurs when a clone is produced, which requires a feasibility restore
and then another call to the solver. Willing to keep the good features of Gurobi,
we addressed this issue by allowing a positive tolerance in accepting suboptimal
solutions, namely we accept a suboptimal solution with an absolute gap of 5 and
10 minutes. This trick sharply reduced the number of calls to the solver due to
feasibility restore after mutation, in both settings, constant and variable speed.
Figure 2.7 shows, for both cases, the percentage of calls to the MILP solver due
to a restore following a mutation, computed with respect to the total number of
calls; this number includes one call for each crossover operation, which determines
the reference vertex and returns its closest feasible solution as the offspring. In
the case of constant speed, an absolute tolerance of 10 reduces to one half, on
average, the percentage of calls devoted to feasibility restore, and a tolerance of

41 2.7 Computational Results

��

��

���

���

���

���

����������� �����������

��
��
��
��
��
��
��
��

��
��
��
��
��
��

�� ����� ����� ������

Figure 2.7: Impact of tolerance gap on the number of feasibility restore after
mutations.

5 reduces it roughly by a quarter. This effect is evident, although less significant,
also in case of variable speed. A possible explanation is the following. In case of
null tolerance, the solver determines the optimal solution. Disregarding the case
of multiple optima, there is a unique vertex which can be the reference vertex, so
the solver simply identifies it, but it does not have to take any decision. On the
contrary, in case of a positive tolerance, more than one vertex can be the reference
vertex, and which one will be selected by the solver depends on several features
regarding the search strategies of the solver, which we can not control. Seen from
the outside, then, it is a sort of random choice among the potential reference
vertices. The degree of randomness of the choice is controlled by the tolerance
parameter, which defines the distance of those vertices that are considered to
be adequately acceptable. From this point of view, i.e., regarding the degree of
randomness in the choice of the reference vertex, the MILPX crossover with
tolerance lies between the pure MILPX and BXPF .

Table 2.1 reports the absolute number of MILP solver calls, averaged over 5
scenarios, for both constant and variable speed. It can be noticed that a positive
tolerance not only reduces the number of calls due to mutations of clones, but
it also reduces the number of calls due to the MILPX crossover. In fact, after
mutation, another clone could be obtained if the feasibility restoring process maps
the mutated schedule to a solution already present in the population. In such a
case, another crossover operation is performed, thus increasing the number of
calls to the MILP solver. On the contrary, a wider choice is allowed by relaxing

2. Scheduling countermeasures in case of contaminations 42

Table 2.1: Average number of calls to the MILP solver, averaged on 5 scenarios
for 100% MILPX

Constant Speed Variable Speed
GAP MILPX Restore MILPX Restore

0 779 236 634 138
5 692 133 590 90
10 611 79 564 68

the optimality requirement regarding the distance from the infeasible mutated
schedule, and chance may take to a new solution which is not part of the current
population. Again, this effect is more evident for the variable speed case, in which
there is a higher number of feasible solutions within a given distance from a vertex.

The different behaviour in case of constant or variable speed may be due to
the following reason. The variable speed feasible region is much wider than the
constant speed one, and it is also locally compact. Therefore, also the set of the
feasible values for the operation time of a device is much wider, and, there are
probably several feasible points in the neighbourhood of each vertex, as well as
several vertices which have a feasible point close enough to be selected. All these
features may help to keep the search enough diversified and then reach better
solutions.

As a conclusion, we run all the following experiments with the tolerance thresh-
old equal to 10 for the MILPX crossover.

2.7.3 General comparison of the proposed variants

Figure 2.8 provides an overall picture of the quality of the results of the different
GA s, by examining how good each of them ranks over the 100 runs on all the 20
scenarios. In particular, we count how many times each GA ranks first, second,
third, and within the first three positions, respectively, over a total of 100 × 20
runs.

Considering variable speed, one can say that both permutation based encod-
ings are not competitive with respect to any time based encoding; considering
constant speed, the same holds except for H(100%, CS) whose performance ap-
pears to be close to the one of 2CCS. This confirms our hypothesis that, in this
problem, the information related to the operation time of a device is more relevant
than the information related to the relative order of the devices operation times.

It can also be noted that the best performing encoding for the mTSP, i.e.,

43 2.7 Computational Results

��

��

���

���

���

���

���

���

���

��
��
��

��
��
��
���
��

��
��
��

� ��� ��� ��� ���������

Figure 2.8: Rankings 100× 20 runs

2PCS, performs worse than the classical 2CCS. The same holds for the variable
speed variant. This may be due to the fact that both 2CCS and 2CV S , used
together with the one-point ordered crossover, are more likely than 2P V S and
2PCS to transmit information regarding the first devices to be operated by the
teams, and such devices seem to have a major impact on the pattern according
to which water flows.

Note that it is worth facing the challenge of the variable speed variant. The
best performing algorithm is indeed H(25%, V S). Moreover, any hybrid variable
speed GA improves on any permutation based GA.

The impact of the relative presence of the two crossovers in the hybrid GA
s varies depending on which speed variant is considered. While in the constant
speed case the performance improves with the probability of the BXPF crossover,
in variable speed, the MILPX crossover shows some degree of efficacy. This may
be related to the previous observation that the variable speed variant of MILPX
is less affected by the phenomenon of clones.

Statistical analysis

In order to have a scientific comparison of the effectiveness of the algorithms, we
performed a significance test analysis. The choice of a statistical test should take
into consideration the properties of the available dataset.

Consider the values of the solutions returned by a GA after a given number
of runs. This population does not follow any particular distribution. For each

2. Scheduling countermeasures in case of contaminations 44

scenario, we have 100 different runs for each algorithm, and the initial populations
are equal for each run, within the same speed variant. Therefore, in our case we
can say that:

� for each scenario and for each speed variant we have a “complete block de-
sign” of experiments, i.e., each algorithm is tested over the whole set of
initial populations;

� the results related to the same speed configuration and the same scenario
can be thought of as a “paired” dataset, because the i-th run of each GA
starts from the same initial population.

Therefore, the data associated to a given scenario and a given speed configuration
satisfies the conditions required to apply the Friedman test [62, 63].

The Friedman test computes the significance level of rejecting the so called
“null” hypothesis, i.e., that there are no different behaviours among the algo-
rithms. If the resulting p-value is lower than an opportune confidence level α
(commonly equal to 0.05), the null hypothesis can be rejected with a good confi-
dence level.

Whenever the p-value of a Friedman test is low enough, one can perform the
Nemenyi post hoc analysis [64] in order to find out which pairs of algorithms
have (significantly) different behaviours. The Nemenyi procedure consists of pair-
wise comparisons among the set of selected algorithms. However, although con-
fidence levels in each single comparison can be low, the probability of having at
least one error increases with the number of comparisons. In general, in order
to ensure that a multiple comparisons test yields significant values, the stan-
dard confidence level can be made more tight by using an opportune correction
method. In the literature, the most known (and the most conservative) method
is the Bonferroni correction [65, 66], which defines the new confidence level as
α∗ = α/Number of comparisons).

All tests have been carried out with XLSTAT, a commercial Microsoft Excel
add-on [67]. A useful reference textbook for nonparametric statistical analysis
is [63].

All the Friedman tests performed on the complete block design datasets return
a p-value lower than 0.05, often under 0.0001. This means that for any scenario
and speed variant there are algorithms that perform better than someone else. To
analyse if there are recurrent statistical significant comparisons of GA s over the
whole set of scenario, we first performed the Nemenyi test procedure on each con-
sistent dataset, and then, for each possible comparison, we computed the number
of times in which a comparison is statistically significant (given the opportune
correction) over the 20 scenarios.

45 2.7 Computational Results

To ease presentation, we split the statistical analysis into two blocks: in the
first we compare the sequence-based algorithms with the activation time-based
algorithms, while in the second, we compare the activation time-based amongst
them.

In the first, the aim is to show if, in general, the Hybrid GA s outperform
the others based on sequences, both for the constant and the variable speed.
Table 2.2a and Figure 2.9a show the percentage of significant comparisons between
each GA with 2C and 2P GA s in the cases of constant speed, while Table 2.2b
and Figure 2.9b are for the case of variable speed. It is very clear that both the
2PCS and 2P V S are outperformed by the Hybrid GA on about the whole set of
scenarios, and, symmetrically (but not obvious), the two speed variants of 2P
never were significantly better than the others. The Hybrid GA outperforms the
2CV S for all the MILPX configurations between 80% and the 100% of scenarios.
But for the constant speed variants the chart in Figure 2.9a shows that the Hybrid
GA loses effectiveness increasing the MILPX selection chance.

In the second, we performed the Nemenyi procedure only over the datasets re-
lated to the Hybrid algorithm. Tables 2.3a and 2.3b report, as the previous tables,
the percentage of significant comparisons of the tested configurations over the set
of 20 scenarios, and an overview is given by Figures 2.10a and 2.10b. There, it can
be seen that for the CS Hybrid GA a lower frequency of MILPX corresponds
to an efficiency loss, see for example the percentage of significant comparisons
of H(0%, CS) and H(25%, CS) w.r.t. H(75%, CS) and H(100%, CS) in Figure
2.10a. This is not observed for the variable speed case (Figure 2.10a), where for
all MILPX configurations the percentage of significant comparisons lies under
the 50% of cases.

The boxplots in Appendix 3.8.3 provide a schematic view of the performance
of the 14 GA s for each of the 20 scenarios, for all the 100 runs. The specific
scenario affects the performance of all the GA s. In fact, the variance of the
results of each GA varies on the different scenarios according to same pattern; for
example, all GA s have a high variance on scenario P and a much lower one on
scenario T.

We noticed that the GA s achieve very different levels of contaminated con-
sumed water on different scenarios, whereas their relative performance, i.e., how
good a GA is with respect to another one, does not vary considerably according
to the scenario. Since the quantity of contaminant injected is the same for each
scenario, it follows that the activation of the n devices is not equally effective in
each scenario. Moreover, we can observe that in the worst scenarios, namely I
and P, the variable speed variant hybrid GA s are not competitive with respect to
the ones at constant speed. We argue that this might be due to the choice of the

2. Scheduling countermeasures in case of contaminations 46

Table 2.2: Nemenyi Post Hoc Analysis: for each pair of algorithms we show the
percentage of scenarios in which the algorithm in row performs better than the
algorithm in column, with a statistical significance lower than α∗ = 0.05/21 =
0.0024

(a) Constant Speed

2CCS 2PCS

2CCS - 90%
2PCS 0% -
H (CS,0%) 95% 100%
H (CS,25%) 70% 100%
H (CS,50%) 50% 100%
H (CS,75%) 35% 100%
H (CS,100%) 15% 90%

(b) Variable Speed

2CVS 2PVS

2CVS - 20%
2PVS 0% -
H (VS,0%) 100% 100%
H (VS,25%) 100% 100%
H (VS,50%) 95% 100%
H (VS,75%) 85% 100%
H (VS,100%) 80% 90%

Table 2.3: Nemenyi Post Hoc Analysis: for each pair of algorithms we show the
percentage of scenarios in which the algorithm in row performs better than the
algorithm in column, with a statistical significance lower than α∗ = 0.05/10 =
0.005

(a) Constant Speed

CS H(0%) H(25%) H(50%) H(75%) H(100%)

H(0%) - 5% 50% 65% 80%
H(25%) 0% - 15% 50% 85%
H(50%) 0% 0% - 5% 50%
H(75%) 0% 0% 0% - 10%
H(100%) 0% 0% 0% 0% -

(b) Variable Speed

VS H(0%) H(25%) H(50%) H(75%) H(100%)

H(0%) - 0% 10% 15% 20%
H(25%) 30% - 5% 25% 45%
H(50%) 25% 0% - 0% 20%
H(75%) 30% 0% 0% - 10%
H(100%) 30% 0% 5% 0% -

47 2.7 Computational Results

��

���

���

���

���

����

������� ������� ��������� ���������� ���������� ���������� �����������

������� �������

(a) Constant Speed (Table 2.2a)

��

���

���

���

���

����

������� ������� ��������� ���������� ���������� ���������� �����������

������� �������

(b) Variable Speed (Table 2.2b)

Figure 2.9: Nemenyi Post Hoc Analysis (from Tables 2.2a and 2.2b)

2. Scheduling countermeasures in case of contaminations 48

��

���

���

���

���

���

���

���

���

���

��������� ���������� ���������� ���������� �����������

���������
����������
����������
����������
�����������

(a) Constant Speed (Table 2.3a)

��

���

���

���

���

���

��������� ���������� ���������� ���������� �����������

���������
����������
����������
����������
�����������

(b) Variable Speed (Table 2.3b)

Figure 2.10: Nemenyi Post Hoc Analysis (from Tables 2.3a and 2.3b)

49 2.7 Computational Results

devices to be operated. The resulting shape of the objective function may thus
be quite rough, and this may be a too difficult obstacle to deal with, beside the
wider feasible region, with such a limited sized population.

Comparison with common sense and local search approaches

Moreover, we want to provide computational evidence to support our intuition
regarding the inefficacy of common sense inspired solutions, such as those min-
imizing the makespan of the activation process as well as the latency of device
activations. To this purpose we implemented and solved the corresponding MILP
models. These are basically minor variants of the model presented in 2.6.1, differ-
ing in the objective function. The maximum and the sum of the tFi is minimized
in the makespan and in the latency case, respectively.

A second comparison involves the use of blind random search (BRS). In this
case, the GAs performance is compared against the results provided by the in-
spection of 500 randomly chosen feasible solutions. We implemented a BRS for
both the constant and variable speed cases, and used the same procedure adopted
for the initial population generation.

A further investigation concerns the supposed poor performance of neighbour-
hood based heuristics when such a limited number of function evaluations is al-
lowed. To support this intuition, we implemented a classical Local Search (LS) for
the constant speed case. The neighbourhood is given by all solutions obtained by
moving a device from its current position to any other feasible location. In order
to make a wise use of the limited number of function evaluations, we adopted a
first improvement scheme and avoided to visit solutions already inspected. A max-
imum of 500 simulation is allowed to each LS. The starting solution is randomly
chosen according to the same procedure used to build the initial population of the
GAs. For a fair comparison, the LS was run several times, each time starting from
a different solution. As expected, the search trajectory of LS visits on average a
small number of points, namely 17, and the solutions inspected are all very sim-
ilar to each other, which makes the returned solution much dependent from the
starting solution. A local minimum is reached within the 500 evaluations in 38%
of runs and the average number of calls is 461. This is not surprising considering
that the local optimality proof itself requires O(n2) evaluations and it suggests
that not much improvement could by gained by a more sophisticated neighbour-
hood based metaheuristics able to escape from local minima. In our case LS keeps
the search confined into a limited subset of the feasible region whereas it could
be possibly used as an intensification procedure to be applied to elite solutions
returned by the GAs.

2. Scheduling countermeasures in case of contaminations 50

Figure 2.11 provides a global picture of the performance of alternative methods
(i.e., latency, makespan, BRS-VS, BRS-CS and LS) when compared to the best
performing GAs (H(CS, 0%) and H(V S, 25%)). The average solution values are

� � � � � � � � � � � � � � � � � � � �
��������

������� �� �������� ������� ������� ��������� ��������

����

�����

Figure 2.11: Percentage position of the averaged best solutions found by each
method within the best and the worst solutions

reported for BRS-VS, BRS-CS, LS, and the two GAs. For each scenario, values are
scaled as follows to enhance readability. Making 0 the value of the best solution
ever computed and making 100 the value of the worst among all solutions, each
solution value is rescaled in this range. It can be noted that GAs always perform
better than BRSs; the LS is actually competitive only for 7 of the 20 selected
scenarios and its generalization to the variable speed case is not straightforward.

Comparison with previous works

The best 6 solutions that are known for the Ferrara’s network were computed by
GAs in [15], and are:

� a schedule where devices are activated instantaneously after the alarm;

� 5 “handmade” schedules with Nteams = {1, 2, 3, 4, 7}.

The schedules were evaluated by EPANET over 42 contamination scenarios and
the averaged volume of contaminated water consumed by the users were in order:
50, 725, 52, 511, 44, 799, 44, 571, 44, 287, and 47, 287 litres. The best schedule

51 2.8 Intensification by Path Relinking

was then obtained by considering the availability of 4 teams. Every GA proposed
hereby computes better schedules with only 3 teams. For example, any configu-
ration of the hybrid GA is able to find solutions with averaged volume lower than
34, 000 litres, so much better than the ones in [15].

2.8 Intensification by Path Relinking

Despite the hybrid genetic algorithm based on activation times (Section 2.6) com-
putes on avarege better solutions than the other approaches, it lacks of robustness
for some of the tested contamination scenarios (see Section 2.7). For those scenar-
ios the boxplots shown in Appendix 3.8.3 report large boxes for common GAs as
well as the hybrid ones (see for example boxplot for scenario K); so, even though
the hybrid GAs provide on average good solutions the variance may be high. This
is due to the fact that GAs often get stuck on local optima, around the starting
population.

Also, notice that the experimental analysis performed on each scenario consists
of 100 runs, which means about 70 hours of computing time. For real applications,
even offline, it would be necessary to consider a lower number of calls.

All these motivations are incentives to research further on improving robust-
ness of the proposed GAs. For example, it might be possible to perform an inten-
sification step just on the final population found by any GA run, but this would
not be very effective, in fact by definition a final population of a genetic algorithm
contains a high similarity, even more whenever the algorithm is stuck in a local
optimum. In such a case additional EPANET calls would be then used during
the exploration of a search space which is not promising anymore. A promising
approach would be to exploit the dataset in output to different GA runs, i.e., a
bunch of best populations.

Path Relinking (PR) [68] is a well known intensification technique. Working
on a reference set (rs) composed of several solutions, PR first selects from rs a
reference (r) and a target (g) solution, then it iterates valid moves to transform
step by step r into g (Figure 2.12). This procedure allows for the exploration of the
path between two good solutions, according to the hypothesis that a better one
can be found among the feasible solutions in the middle. In literature the reference
and the target are also called “initial” and “guiding” solutions respectively.

Since PR builds a new solution starting from the features of two elite solutions,
it can be also seen as an evolutionary algorithm, in which randomness is substi-
tuted by a deterministic search strategy that draws the possible path between two
feasible solutions.

2. Scheduling countermeasures in case of contaminations 52

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� gr

r1

r2

r3

Figure 2.12: Graphical representation of Path Relinking

The building blocks of a Path Relinking algorithm are:

� the reference set and its construction;

� the reference and the target solutions and their selection;

� the path between two solutions, i.e., the neighbourhood structure.

In our case, the bunch of best populations given by some GA runs provides
naturally the reference set of PR, the target g can be easily selected as the best
solution in rs, and the reference r has to be selected properly through quality
and diversity criteria, as Section 2.8.1 reports. In Section 2.8.2, taking the cue
from several aspects of the genetic encodings proposed in Sections 2.4 and 2.6,
the neighbourhood structure is discussed.

This is the first time Path Relinking is used to address the mTSP, but in the
last decade it has been applied to many variants of its generalization, i.e., the
Vehicle Routing Problem (VRP) [59, 69]; several studies combine in fact PR to
Taboo Search [70], GRASP [71–73], and co-operative search [74].

Moreover, PR has been already coupled to Genetic Algorithms for several prob-
lems [75–77], but this is the first application combining GA and PR together on
optimisation problems in hydroinformatics and more especially on vehicle routing
variants.

Finally, the only approach exploiting path relinking in a simulation-optimisation
context was proposed to address a resource allocation problem [78] in oil industry,
it combines Particle Swarm Optimisation and PR.

2.8.1 Selection of reference candidates

As stated before, the reference set can be built up from the final populations of the
GAs. In particular, both quality and diversity from the target have to be taken
into account; thus, different metrics can be combined together to filter properly
the initial dataset.

53 2.8 Intensification by Path Relinking

The distance between two solutions can be evaluated considering the routes
of the teams as well as the activation times. Despite in the former studies the
diversity is measured on the graph representation of the VRP [70–74], in this case
the preferred way is to measure the diversity over the time representation. In
fact the graph representations of the solution would introduce a huge amount of
redundancy (see Section 2.4), this means that the same vector of activation times
can be mapped into different trees that may differ a lot w.r.t. the metrics defined
for graph representations.

The metrics here proposed for the time representation are the Hamming dis-
tance

h(g, r) =

Ndev�

i=1

di

where di = 1 if gi �= ri and 0 otherwise, and the Euclidean distance

e(g, r) =

�
�
�
�

Ndev�

i=1

(gi − ri)2

between two vectors of activation times t and r. The former gives a measure about
how many elements differ in the vectors, whereas the latter measures how much
the vector differ in terms of activation times. In order to prevent the inclusion of
too similar vectors in rs, two thresholds β and γ are defined: given the target g
a solution r is included only if h(g, r) ≤ β and e(g, r) ≥ γ.

As far as the quality of the reference set, a proper metric is to consider only
solutions having quality within a certain percentage distance γ from the target’s
one, i.e., q(r)−q(g)

q(g)
≤ δ holds for any r ∈ rs.

Finally, the choice of β, γ, and δ is really important, even more whenever
the number of evaluations is limited. In fact, in this case excluding a promising
solution may affect hugely the effectiveness of the approach.

2.8.2 Solution representations

In order to solve this mTSP variant by Path Relinking a proper solution repre-
sentation is necessary.

The sequence based variant

As stated before, for Vehicle Routing several PR approaches have been already
proposed in the literature; since mTSP and VRP have some problem structures

2. Scheduling countermeasures in case of contaminations 54

in common (e.g., the routes), those studies can provide a good starting point to
design a suitable solution representation.

In particular, the neighbourhood structure for VRP problems is built up from
the subset of customers that are served by different routes [70], the new position
of a customer can be then computed following cost driven decisions [70] or consid-
ering the shortest path to transform a route of r into a route of g [73]; a memory
can be used to store information that can help the search in the next steps, and,
finally the reference set can be updated dynamically during the search [74]. In
these studies the solutions are represented as strings of symbols, in which any
route is expressed by the set of visited customers; in this representation the relo-
cate operator is massively adopted and adapted to each particular VRP variant.

A similar representation was also used to define the “sequence” genetic en-
coding and it has been extensively discussed in Section 2.4: the routes are ex-
plicitly defined by strings of devices and the order within each string defines the
visiting order of the team. In our mTSP variant there is no analytical formal-
ization of the subtour’s cost and several VRP constraints are relaxed, thus the
neighbourhood structure is much easier and it can be drawn through the prede-
cessors of the hydraulic devices. In the i-th iteration of the PR procedure, let
pir(dev) and pt(dev) be the predecessors of dev in ri and g respectively, the set
P i = {dev ∈ {1..Ndev} | pir(dev) �= pt(dev)} be the set of devices of ri having
different predecessors in g. The neighbourhood at the step i is then defined as
the solutions ri+1 in which for at least one dev ∈ P i the property dev �∈ P i+1

must hold. In other words, the way to move from ri to ri+1 is to fix into ri one
predecessor according to g. On the tree representation this move “relocates” one
or more devices into the same route or across different routes, making the refer-
ence tree closer to the target. Whenever P i = ∅ the target is reached and the
algorithm ends up. Since P i+1 ⊂ P i the algorithm always ends in a finite number
of steps.

The whole neighbourhood at the step i consist of all those devices having a
different predecessor in t. Given the current device i its whole neighbourhood is
explored and evaluated by EPANET;

The predecessors for solutions shown in Figure 2.13 are listed in Table 2.4.
Here r and g share only the predecessor of 3, so P 0 = {1, 2, 4, 5, 6, 7, 8} and its
cardinality (|P 0|) is 7. A valid move would be for example to relocate 5 after its
predecessor in g, i.e., 3. Let 2 be the best move after the 7 EPANET calls, then
in r1 2 is relocated after 5. The tree representation of r1 is shown in Figure 2.13,
now it shares two equal predecessors with g and the neighbourhood size is 6. The
next step is to move from r1 to r2, having P 1 = {1, 4, 5, 6, 7, 8}; now, moving only
5 without preserving the subroute “5–2” would be destructive w.r.t. the previous

55 2.8 Intensification by Path Relinking

d

✟
✟
✟✟

❍
❍

❍❍

6

1

5

4

8

7

2

3

d

✟
✟
✟✟

❍
❍

❍❍

6

1

5

2

4

8

7

3

reference r reference r1

d

✟
✟
✟✟

❍
❍

❍❍

6

1

4

8

7

3

5

2

d

✟
✟
✟

❍
❍

❍

7

4

1

8

6

3

5

2

reference r2 target g

Figure 2.13: Feasible References and Target solutions for 8 devices

Table 2.4: Predecessors list of Figure 2.13

dev r r1 r2 g

1 6 6 6 d
2 7 5∗ 5∗ 5
3 d d d d
4 d d d 7
5 1 1 3∗ 3
6 d d d 1
7 8 8 8 d
8 4 4 4 6

2. Scheduling countermeasures in case of contaminations 56

moves. Consequently, to keep valid the previous moves the algorithm must use a
memory, where the previous choices are stored; in Table 2.4 the devices having a
fixed predecessor are highlighted by a ∗. The use of this memory also allows for
the relocation of subroutes; in fact, moving 5 will now assign the subroute 5–2 to
the device 3.

Moreover, since empty routes are considered as infeasible solutions, the algo-
rithm prevents the move to empty a route.

This version of PR moves at most Ndev times and calls EPANET at most
Ndev(Ndev+1)

2
times.

From now, we refer to this version as the “sequence” PR (PRseq).

The time based variant

Similarly to the time based encoding described in Section 2.6, the time based
variant of the PR works on the activation times of the solutions. In such a case
r and g are vectors of times and the i-th neighbourhood is given by the set of
feasible vectors having at least i elements in common with g and the others as
similar to the ri ones as possible. It is clear that a feasible vector with these
characteristics always exists, namely the target vector.

This neighbourhood structure can be represented in a more practical way by
the indexes of the elements of ri that differ from g, i.e., P i = {k ∈ [1..Ndev] |
rik �= gk}. Unfortunately, in this representation assigning rik = tk may yield an
infeasible time vector.

The MILP program (2.7a)-(2.7h) can be used with the purpose to compute the
closest feasible vector to ri having rik = gk for the choosen k; furthermore, in order
to keep valid the previous moves, every previous assignment has to be imposed in
the current step. In other words, at the i-th iteration the input to the solver would
be: r, g, the assignments rjh = gh from the previous iterations j < i, the current
assignment rik = gk. This should be done for every k ∈ P i, which means that the
feasible moves are at most |P i|; the best one w.r.t. the EPANET evaluation is
chosen. Whenever the neighbourhood collapses into the target solution, i.e., every
k ∈ P i leads to the target vector, the PR ends. Figure 2.14 shows an example
of this: at the first iteration the best move was with k = 5, at the second with
k = 1; the current iteration is now the 3-th, and a new call to the MILP solver is
going to be performed with the new k = 8. Notice that the previous assignments
are passed again to the solver.

Since the number of feasible moves decreases at each iteration of at least one
unit, the maximum number of EPANET calls is again Ndev(Ndev+1)

2
.

Notice that, as the Genetic Algorithm based on activation times, this PR is

57 2.8 Intensification by Path Relinking

r3 = 13 43 31

↑ r21 = g1 ↑ r15 = g5 ↑ r38 = g8

g = 13 24 33 25 43 19 37 31

Figure 2.14: Input to the MILP solver at the i-th iteration of the PR

also hybrid, thus we will refer to it as the “hybrid” PR (PRh).
This MILP model could be also extended in order to compute only the feasible

vector ri+1 having at least one more element in common with g, with the hasty
attempt to save precious EPANET calls. In such a case at most Ndev points would
be explored and this would limit too much the exploration capabilities of the PR
algorithm.

The final architecture

The two variants share the same algorithm architecture, shown in Figure 2.15.
The “MILP solver” module is enabled only in the PR based on activation times.
In this schemata the generic element of P i is named e and it is considered to be
either a device for the PRseq or a time vector’s index for the PRh. Notice that
also the PR algorithm involves a cache containing the volumes of the solutions
already visited. This is very useful because PR may visit, and it often does,
identical solutions; in this way, PR is restarted on several references until the
maximum number of simulations is reached.

The proposed general architecture to optimise the countermeasures in case of
contamination events in a water distribution system is depicted in Figure 2.16.
As shown here, GAs and PR blocks share the same cache, so a solution is not
evaluated twice along the solving blocks.

2.8.3 Computational results

The experimental analysis is based on the assumption that having a limited num-
ber of EPANET calls it would be better to consume a big part of them in per-
forming hybrid genetic algorithms, in order to visit as many regions of the search
space as possible; then, Path Relinking is used to explore the paths among those
regions, looking for better solutions.

The hypothesis is that allotting n − 1 parts of hydraulic simulations to GAs
plus the last part to the PR is better than spending everything into GAs, even
more on those scenarios where GAs lack of robustness.

2. Scheduling countermeasures in case of contaminations 58

Reference Set
Filtering

β γ δ

ri+1 ∈ cache?

Reference Set

Select g and r

Final
Populations

is P i �= ∅ ?

Build ri+1(e)

get O.F.(ri+1)

Yes

No

Update CacheEpanet Call

Max

from Cache

Yes

Update t∗

No

Yes
t∗Epanet?

No

Move to ri+1

∀e ∈ P i

Path Relinking Schemata

MILP
Solver

Figure 2.15: Algorithm architecture of Path Relinking

· · ·

n-th
Hybrid GA

PR

Cache

(t∗, V ∗)

· · ·

Figure 2.16: Global solving architecture

59 2.8 Intensification by Path Relinking

The reference set was built up from the final populations of 10 GA runs (ev-
ery GA terminates after 500 EPANET calls). On every scenario, to perform 10
independent runs of PR, 100 GAs have been ran and the final populations have
been collected and grouped into 10 groups of 10 final populations; PRseq and
PRh have been tested on each of these groups with a limit to the EPANET calls
500 (as any GA).

Table 2.5 reports the number of improvements within 10 runs of PRseq and
PRh, also it reports the averaged percentage improvement in terms of volume
of contaminated water (for each run the percentage improvement is given as
V (t∗)−V (t)

V (t)
∗100). The rows are sorted by considering the third and the last column

Table 2.5: Number of improvements and average improvement of volume of PR
on 10 runs

Scen
♯ IMP AVE IMP

PRseq PRh PRseq PRh

A 8 10 1.21% 0.81%
K 4 10 0.29% 0.55%
B 0 9 0.00% 0.30%
F 4 8 0.45% 0.42%
C 3 8 0.04% 0.38%
G 0 8 0.00% 0.38%
J 5 8 0.17% 0.34%
D 5 7 0.38% 0.35%
E 5 7 0.49% 0.31%
O 0 7 0.00% 0.20%
Q 6 7 0.14% 0.14%
N 3 6 0.09% 0.27%
T 2 6 0.03% 0.20%
P 2 6 0.02% 0.15%
S 2 5 0.01% 0.28%
I 2 5 0.02% 0.06%
R 4 4 0.11% 0.15%
H 3 4 0.23% 0.10%
M 2 3 0.03% 0.11%
L 0 3 0.00% 0.03%

as first and second key respectively. This order clearly exhibits that for some
scenarios PR is in general a good intensification approach, e.g., scenarios A, K,

2. Scheduling countermeasures in case of contaminations 60

B, F , C, G, and J for which PRh computes a better solution for up the 80%
of runs. Moreover, the first three of the above scenarios have a gap between the
best and worst solution found by 100 GA runs of about the 15% (see boxplots in
Appendix 3.8.3). For other scenarios, namely L, M , H , R, I, and S only the PRh
comes up to the 50% of improving runs. In particular, among these scenarios both
the PR variants obtain the worst percentage improvement on the L and I; here
the gap between the worst and best solutions found by 100 GAs runs is about the
3%, so very tight. It is also clear that PRh always outperforms PRseq in terms
of number of improving runs, in every row of ♯IMP the PRh’s entry is greater
that the PRseq’s one indeed. PRseq outperforms PRh only on five scenarios in
terms of averaged volume of contaminated water (AVE IMP in the table). An-
other remarkable result is that allotting every computational resource to the GAs
did not outperform the PR, in fact one more independent GA run was not able
to find any better solution than the PR.

In general, the gain in terms of quality is up to 1%. This means that the
volume of contaminated water would decrease of about 14 litres for scenario T
and 144 litres for scenario B; these might seem insignificant amounts but even a
single glass of toxic water can irreparably damage a human life.

2.9 Future improvements

The hypothesis that 10 GAs plus 1 PR is better than 11 independent GAs has
been experimented. The results suggest that PR is an appropriate tool to imple-
ment an intensification phase. This will be also compared to other intensification
procedures, like a GA that starts from the final population of the previous GA
runs. Statistical analysis should validate the results.

Last experiments on PR algorithms have shown that intensification procedures
can help whenever GAs get stuck on local optima. This paves the way towards
a new hybrid algorithm, joining capabilities of genetic algorithms, mathematical
programming, and path relinking in a more integrated architecture. However, the
experimental investigation on PR effectiveness was performed by considering the
hybrid GAs as a first independent step (Section 40), and the question now would
become whether PR could be fully integrated into it.

One idea would be to allot an amount of the available hydraulic simulations to
several small genetic algorithms; before the complete convergence of GA modules
the algorithms allocates the computational resources left to the path relinking
procedures. This approach needs to be finely tuned on the number of GAs, the
size of population, the number of generations, and then the amount of compu-

61 2.9 Future improvements

tational resources to assign to the path relinking step. Also the structure of the
architecture has to be thoroughly designed, in fact GA and PR steps can be or-
ganized as chains or rings. In the former case the educated populations would
be the reference set of an intensification procedure, then the bunch of solutions
found by PR could be reinserted into the initial population of a second genetic
algorithm. In the latter case one path relinking module does an intensification on
a pair of educated populations coming up from parallel genetic algorithms, then
a final intensification can be performed on the former PR solutions.

Furthermore, the PR literature proposes several strategies to select the target
and the reference solution. Also, the target can change dynamically during the
search, whenever a new best candidate is reached. All these opportunities should
be properly integrated and tested.

Chapter 3

Optimal placement of Isolation
Valves

In this chapter we introduce a real problem in hydraulic engineering concerning
the location of the isolation valves of a Water Distribution System (WDS), and
reformulate it as a graph based optimization problem.

Isolation valves are closed whenever broken pipes need to be isolated and fixed
by technicians; this entails a service disruption for the users. Also, apart instal-
lation, valves lead to huge maintenance costs, because they are very vulnerable
to failures. This limits the isolation system to a number of devices and their
positioning must be thoroughly designed in order to:

� guarantee a good resilience of the hydraulic network;

� minimize costs of the isolation system;

� minimize the unsatisfied demand of the users during the isolations.

Locating the isolation valves is part of the design issues of the urban hydraulic
networks, and it arises whenever a city district is either planned from scratch or
renewed. Typically, depending on the demographic growth of a region, a design
phase is expected to take place every 30-100 years in developed and developing
countries, and it takes long time and huge financial efforts. Thus, together with
other design issues, the positioning of isolation valves comes up as a strategic opti-
misation problem, because it has a bearing on long-term financial assets, network
resilience and users satisfaction. In Section 3.1.1 the problem is described more
in detail and its main structures are detected and highlighted.

Until a few years ago the location of hydraulic devices such as valves was
planned following rules of thumb and the experience of the engineers. In the last

63

3. Optimal placement of Isolation Valves 64

two decades, several techniques in computer science have been exploited to set
up non-exact approaches. For example, being genetic algorithms fully integrated
into MATLAB [17] and other technical tools, many studies rely on this technique
in hydraulic literature. Nevertheless, no mathematical models have been yet pro-
posed by hydraulic engineers for this optimisation problem, but we claim it as a
necessary step in order to understand complexity and combinatorial aspects of the
problem. After formal and mathematical definitions and exact solving procedures
are settled, new non-exact approaches can be studied and developed in a more
aware fashion. Refer to Section 3.2 for a detailed literature review about previous
approaches.

This Chapter wants to unify the studies in [79–81], where mathematical models
in Mixed Integer Linear Programming (MILP) (Section 3.4) and two logic pro-
gramming formulations are proposed (Section 3.5.1). Whenever possible a com-
parison between the two paradigm in terms of declarativeness and effectiveness will
be provided w.r.t. the Bottleneck Isolation Valves Location Problem (BIVLP).
Computational results are presented in Section 3.7. Furthermore, a novel Ben-
ders decomposition is proposed in Section 3.8.1. Future perspectives are finally
discussed in Section 3.8.

3.1 Problem definition

3.1.1 Valves closure and sector isolation

WDSs are complex systems whose mission is to supply water to the communities
living in their service area. A WDS is made of several components, the main
ones being: a set of reservoirs feeding the WDS, a set of pipes delivering water
to the system users, a user demand for each pipe, describing the average water
consumption by the users served by that pipe (litres per second [l/s]), a set of
junctions each one describing the connection of two or more pipes to each other.
We illustrate these components on the toy network depicted in Fig. 3.1. This
hydraulic network has a single reservoir T , 8 junctions and 10 pipes with positive
demand, plus a 0-demand pipe which connects the reservoir to the rest of the
network.

Users are connected to their closest pipe by way of smaller pipes through
which water is supplied. To this purpose, we can imagine users as being evenly
distributed along the pipe. In turn, pipes receive water at an adequate pressure
from the reservoirs to which they are connected in the hydraulic network. Usually,
the topological layout of hydraulic networks contains a few loops that increase net-
work reliability. Thus, a pipe can be connected to a reservoir by several different

65 3.1 Problem definition

� �

� � �

1 2 3

5 6

� �7 8

12l/s

4l/s 7l/s

5l/s 1l/s

9l/s 2l/s

5l/s 2l/s

6l/s

T
�

4

Figure 3.1: A simple hydraulic network

paths. Given a pipe, if each path from the pipe to each reservoir is interrupted
(or closed) by any valve, water pressure falls, the pipe no longer supplies its users
and it is said to be isolated. On the contrary, if any open path from any reservoir
exists the pipe is considered to be fed. Failure of ageing pipes frequently occurs.
In such a case, the leaking pipe is isolated on purpose, to be dewatered and fixed.
Isolation is achieved by closing some of the isolation valves purposely located on
the network, in such a way that the failed pipe gets disconnected from the reser-
voirs. In an ideal situation, each pipe would have one such valve positioned at
each of its two extremes, so that only that pipe could be disconnected in case of
maintenance by closing just its two valves, and it would require twice as many
valves as the network pipes. However, the number of valves is limited due to cost,
and their location poses a challenge, as described hereafter.

First, valves must be properly located at pipe extremes, right in adjacency to
the junctions; in fact, manholes are typically available there to make the junctions
accessible for maintenance purposes. Also, every pipe can get broken, thus any
pipe must be isolable closing some valves. Consequently, when all valves are closed
the network is subdivided into a set of subnets (or connected components in graph
theory).

Definition In hydraulic networks, the subnets that are induced by closing all
valves are called sectors. The valves that delimit a sector s are colled boundary
valves of s.

Said in another way, a sector is a set of pipes which are always connected, even

3. Optimal placement of Isolation Valves 66

when all valves are closed. It follows that pipes within the same sector share
the same status, either isolated or fed by a reservoir, depending on which valves
are closed. When a sector is isolated, all its users experience supply disruption.
Figure 3.2 reports a feasible isolation system made of 7 valves, where va,b tells
that the valve lies on junction a of the generic pipe (a, b); similarly vb,a tells
that valves is on the extreme b pipe (a, b). This feasible positioning consists
of: v1,2, near junction 1 on pipe (1, 2); v1,4, near junction 1 on pipe (1, 4); v2,3,
near junction 2 on pipe (2, 3); v3,6, near junction 3 on pipe (3, 6); v5,4, near
junction 5 on pipe (5, 4); v6,8, near junction 6 on pipe (6, 8); and finally v7,5
near junction 7 on pipe (7, 5). Four sectors are induced by those valves, namely
s1 = {(1, 2), (2, 5), (3, 6), (5, 6), (5, 7)} with internal demand ID(s1) = 17l/s; s2 =
{(1, 4), (4, 5)} with ID(s2) = 21l/s; s3 = {(2, 3)} with ID(s3) = 7l/s; and finally
s4 = {(6, 8), (7, 8)} with ID(s4) = 8l/s. Notice that in this configuration s1 is the
biggest sector in terms of internal demand. The boundary valves of s1 are v1,2,
v2,3, v3,6, v5,4, v5,7, and v6,8; for s2 are v1,4 and v5,4; for s3 are v2,3 and v3,6; and for
s4 are v5,7 and v6,8.

� �

� � �

1 2 3

5 6

v3,6

� �7 8

v6,8

v5,7

v2,3

v5,4

v1,2

v1,4

�

4

s1

s2

s3

s4

s1

sa sb
isolates

Figure 3.2: A feasible isolation system for the net in Figure 3.1

As far as the quality of the solution, the WDS engineers who design the network
aim to reduce and equally distribute the service disruption among users in case
of maintenance operations. Graph Partitioning Problem (GPP) recall several
aspects of this problem structure, and Section 3.3 deepens this analogy, turning
out with a suitable graph representation of the problem.

However, a secondary effect of sector isolation called unintended isolation

67 3.1 Problem definition

Table 3.1: Sector specifications for Figure 3.2

Sector Pipes
Demand ID Unintended UD
[l/s] [l/s] Isolations [l/s]

s1

(1, 2) 4

17 s3,s4 32
(2, 5) 5
(3, 6) 1
(5, 6) 2
(5, 7) 5

s2
(1, 4) 12

21 none 21
(4, 5) 9

s3 (2, 3) 7 7 none 7

s4
(6, 8) 2

8 none 8
(7, 8) 6

makes Graph Partitioning unable to measure properly the total unsatisfied de-
mand due to sectors isolations. In fact, due to unintended isolations the unsatis-
fied demand UD(s) when s is isolated might be greater than ID(s).

3.1.2 Unintended Isolations

A pipe for which all connections to the reservoirs go through the isolated sector
will be isolated as well when that sector is closed. Therefore, the supply disruption
associated to a sector cannot take into account only the internal user demand of
the sector itself, but must consider the demand of unintentionally isolated pipes
as well. Having at hand Table 3.1 and Figure 3.2 pipes (2, 3), (6, 8) and (7, 8)
are pointedly isolated whenever a pipe in s1, e.g., (5, 6) gets broken. Closing
s1’s boundary valves also determines the isolation of s3 and s4, so the latter
are unintended isolations of s1, and UD(s1) = ID(s1) + ID(s4) + ID(s4) =
17 + 8 + 7 = 32l/s is now the worst unsatisfied demand. In this example the role
of unintended isolation is pretty clear, being ID(s1) < UD(s1); generalizing this
into the equation

ID(s) ≤ UD(s) (3.1)

the quality measure of this problem oversteps from the internal demand of sector,
which is the common metric for GPP. To include the missing quantity and achieve

3. Optimal placement of Isolation Valves 68

the entire unsatisfied demand of a sector isolation this particular problem structure
should be modelled.

Recall that fed pipes are the ones having at least one open path to a source,
and contrariwise every path from sources to isolated pipes is interrupted by some
closed valve; these facts can be exploited by those technologies and declarative
languages for which the concept of path is easily captured: it is actually the case
of Logic Programming, as described in Section 3.5.

Furthermore, this feature deeply relies on water flows, being flows the amounts
of satisfied demands of users. Network flows are modelled in Mathematical Pro-
gramming by means of conservation and capacity equations, avoiding the possible
exponential growth of paths on a highly connected graph. To handle unintended
isolations over a main GPP formulation a proper graph representation and a
mathematical model are presented in Section 3.4.2.

3.1.3 The Isolation Valves Location Problem

The Isolation Valves Location Problem (IVLP) of WDSs consists of locating a
limited number of valves at pipe extremes so that any pipe can be isolated. What
an optimal placement is may depend on several criteria that give rise to different
objective functions and then to different problem specializations; in particular,
the Bottleneck Isolation Valves Location Problem (BIVLP) minimizes the max-
imum undelivered demand given a number of valves [79]. In this definition the
probability of failure is the same for any pipe and the cost of the positioning is
not considered within the objective function. Here Eq. (3.1) is extended as

max
s

{ID(s)} ≤ max
s

{UD(s)},

meaning that the maximum internal demand can be lower than the maximum un-
satisfied demand varying the isolated sector s. Accordingly, the objective function
can be stated in a general fashion as

min : max
s

{UD(s)}.

3.2 Related works

The two main issues related to the IVLP problem addressed in the hydraulic
engineering literature are: the identification of the segments (i.e., the sectors) and
unintended isolation due to the closure of some isolation valves, and the optimal
location of isolation valves. Regarding the first topic, among others, [82,83] exploit

69 3.2 Related works

a dual representation of the network, with segments treated as nodes and valves
as links; [7,8] exploit the topological incidence matrices to identify the segments.
Regarding the second topic, both [7] and [8] tackle the problem by bi-objective
genetic algorithms, seeking a compromise between cost and solution quality. In
particular, the former minimizes the number of valves and the maximum supply
disruption. The latter minimizes the cost of the installed valves related to pipe
diameters and the average supply disruption weighted by the probability of pipe
failure. Both provide an approximation of the Pareto frontier and no bounds to
evaluate the quality of the heuristic solutions.

The first exact approach for the IVLP we are aware of is based on Constraint
Logic Programming on Finite Domain (CLP(FD)) [27], and models the problem as
a two-players game and three moves: player 1 locates the valves, player 2 chooses
a pipe to break, and player 1 closes a set of valves [34]. Here sector identification
is an integrated part of the search strategy and it consists of a graph visit from
the broken pipe towards the closest reachable valves.

A recent exact approach models stochastic pipe failures [84], and it is based
on the mathematical models developed in this work. To find feasible solutions
within reasonable computing time it also proposes a heuristic solving procedure;
this decomposes the problem into two layers: the hard one that involves the posi-
tioning of valves and is partially solved by a greedy heuristic, whereas the easier
layer completes the solution by solving several simplified stochastic subproblems.
Although the model has been decomposed, the resulting decomposition schema is
not solved by following the classical iterative procedure, where at each step the
subproblems pass useful information to be used in the next upper-level step.

The valve placement problem has some similarities with the graph partition-
ing problem, in which the goal is to partition a graph into (almost) equal-size
subgraphs. Graph partitioning is NP-hard, and most works deal with heuristics
or approximation algorithms. A pioneering work [85] proposes a greedy algo-
rithm which iteratively improves a k-way partition of a graph by solving a 2-way
partition on different pairs of node subsets. A different approach is based on
the spectral analysis of the graph [86]. Other related problems are the multicut
problems [87], in which the aim is to remove the minimal set of edges such that
given pairs of nodes are no longer connected. Despite these similarities, the valve
placement problem can not be tackled by the solution approaches that have been
developed for the graph partitioning problem and for the multicut problem, none
of which can handle the issue of unintended isolation. However, it describes the
feasible region of the IVLP and consequently it has a fundamental role in this
problem; next section tightens this relationship.

3. Optimal placement of Isolation Valves 70

3.3 Hydraulic sectors and graph partitioning

The Graph partitioning is one of the most studied problems in combinatorial
optimization, and admits several variants. Recall that a partition of a set is a
collection of non-empty disjoint subsets whose union returns the set. Generally
speaking, GPP consists of partitioning the vertices of a graph into a set of con-
nected components by removing a minimum (weight) set of edges, according to
some criteria.

Definition The set of removed edges to disconnect the components is referred to
as a multicut.

Often, the number of components of the partition is fixed, and the number of nodes
in each component is bounded from above. Literature references are many, among
which [88] investigates the polytopes associated to the integer programming for-
mulations of the major variants, and [89] studies the convex hull of incidence
vectors of feasible multicuts for the capacitated GPP.

The several analogies between the hydraulic network sectorisation and graph
partitioning, as recently exploited in the hydraulic engineering literature [90], seem
at first to provide an ideal framework for modelling BIVLP. Recall that each pipe
must belong to one sector in order to be isolated if required, but only one sector,
due to the minimality of sector definition. Therefore, sectors induce a partition on
the positive demand pipes, whose associated multicut models the location of the
isolation valves at pipe extremes. As stated before, this simple correspondence,
though, does not allow us to address the issue of unintended isolation. To meet
this requirement in MILP, we need to introduce an extended graph that represents
the topology of the network, on which “flow variables” will model water flows, thus
capturing unintended supply disruption. We first provide a graph representation
of he hydraulic network supporting graph partition, and in the Section 3.4.2 we
show how to extend such graph to handle unintended isolation.

First, we model the user demand of a pipe (i, j) as concentrated in a single
point denoted ǫij , located in the middle of the pipe. Denote by δij such demand.
Then, we shrink all the reservoirs into a single one, to which we associate node σ,
and connect this super–reservoir to the junctions that were originally connected
to the sources (as shown in Figure 3.3).

Now we can introduce the graph G that represents the junctions and pipes of
the hydraulic network as nodes and edges, respectively.

Definition The undirected and weighted graph G = (V,E,W) consists of:

V the set of verteces that is union of:

71 3.3 Hydraulic sectors and graph partitioning

� �

� �

1 2

3 4

T1 T2
� �

� �

1 2

3 4

σ

Figure 3.3: The introduction and connection of the super–reservoir σ

σ the reservoir (or tank)

J the set of nodes modelling the junctions of the hydraulic network

E the set of edges that is union of:

T the set of the structural edges corresponding to 0-demand pipes which
connect σ to a vertex in J ;

Ψ the set of the edges modelling the pipes.

W the set of weights containing the demands δij for any (i, j) ∈ E.

Fig. 3.4 shows how the two adjacent pipes of the hydraulic network are modelled
in graph G.

1 2 3� ��1l/s 2l/s

δ1,2 = 1l/s δ2,3 = 2l/s

ǫ1,2 ǫ2,3

(1,2) (2,3)

(1,ǫ1,2) (2,ǫ1,2) (2,ǫ2,3) (3,ǫ2,3)

δ1,2 δ2,3

3

3

2

2

1

1

Network :

G:

G:

Figure 3.4: Two adjacent pipes of the hydraulic network and their representation
in G and G.

In this graph representation the multicut would consist of pipes; but to dis-
connect an entire pipe two valves should be placed on the its extremes. In this
application the pipe can host only one valve, so the multicut should consist of the
“pipe’s extremes”. In other words, in the IVLP the cut passes through the valves

3. Optimal placement of Isolation Valves 72

rather than on the pipes. Thus, the extension of G should represent all possible
places can host a valve. Since a pipe can host two valves on its extremes and
weights on GPP are typically on nodes rather than on edges, the new graph G
represents pipes as weighted nodes (say ǫ nodes) and connects each pipe-node to
its two junction-nodes by means of undirected edges.

Definition The extended undirected graph G = (V , E,W) is made of:

V the set of vertices, s.t. V = V ∪ Γ, and Γ = {ǫij | (i, j) ∈ E};

E the set of edges, s.t. E = T ∪Ψ, and Ψ = {(i, ǫij), (j, ǫij) | ǫi,j ∈ Γ};

W the set of weights associated to the vertices in V , s.t. W = {wu | u ∈ V } and

wu =

�

δu if u ∈ Γ

0 if u /∈ Γ

Since now weights are only on the ǫ–nodes, in this graph δij will be also referred
to as δǫij .

Each edge in Ψ can host a valve, while edges in T do not. In real life WDSs,
actually, a special valve is always present on each pipe in T in order to isolate
the reservoir from the network, if the reservoir needs maintenance. However, such
a valve would never be closed for pipe maintenance purposes, so we disregard it
here. Therefore, we assume that the edges in T bear no valves. Furthermore, to
keep notation simple, we suppose that all pipes other than those incident on the
reservoirs have positive demand.

The MILP model we propose in this work needs to be dimensioned in the
number of sectors and valves that are allowed.

Definition The number of available valves is Nv, and the maximum number of
sectors admitted is Ns.

Recall that UD(s) is the undelivered demand associated to sector s, for s ∈
S = {1, .., Ns}, and it is given by the sum of δij for each pipe (i, j) which gets
isolated when the boundary valves of sector s are closed. We search for the
location of at most Nv valves on as many edges of Ψ yielding at most Ns sectors
such that maxs∈S{UD(s)} is minimum. The mathematical and logic programs
we propose for the GPP structure of BIVLP, Section 3.4 and 3.5.2 respectively,
need to be dimensioned on Ns; in fact some variables and constraints of the
mathematical model and some predicates of the logic program rely on an explicit
indexing of the sectors. Consequently, the relation between Nv and Ns has a role

73 3.4 Mathematical models for the BIVLP

on the effectiveness of the solving procedure; Section 3.6.1 delves into this aspect.
Moreover, explicating the sectors’ names may yield to symmetries; this is also a
valid reason to:

� make the bound on Ns as tight as possible (Section 3.6.1);

� find good strategies to break the symmetries (Section 3.6.2).

Moreover, different configurations of valves may yield the same cost of the
sectors; this should be prevented through symmetry breaking strategies (Sec-
tion 3.6.1). Valves can be also redundant, in the sense that they may not con-
tribute to the multicut; to avoid this the cycles of the graph can be exploited, as
described in Section 3.6.4.

3.4 Mathematical models for the Bottleneck Iso-

lation Valves Location Problem

In Operations Research (OR) and applied mathematics Constrained Optimisation
Problems (COPs) can be often stated in MILP [24], which is a mathematical
paradigm. MILP programs can be solved by using different techniques, the most
used combines a Branch and Bound (B&B) search algorithm and the famous
Simplex algorithm [24]. Some of the most known solvers are: Coin-OR CBC [60],
CPLEX [91], Gurobi [61], SCIP [92], XPress [93] and others. MILP has been
widely used to address graph partitioning and network design problems [88,89,94].

This section first describes a graph partitioning model on graph G. How to
extend G to model unintended undelivered demand and finally to address the
BIVLP is described in Section 3.4.2. A bilevel [95] MILP model for the IVLP is
presented in Section 3.4.4. In Section 3.4.5 the bilevel model is then reduced into
a single level MILP by exploiting the min cut – max flow theorem [96].

3.4.1 Modelling network sectorization

To model the sectorization of the network in G we introduce the following sets of
variable:

τ sij ∈ {0, 1}, ∀ (i, ǫij) ∈ Ψ, ∀ s ∈ S, is a binary variable equal to 1 if a boundary
valve for s is located on pipe (i, j) near i in the hydraulic network (edge
(i, ǫij) in G), and 0 otherwise.
Likewise, τ sji = 1 if the valve is near j, that is, on edge (j, ǫij) in G.

3. Optimal placement of Isolation Valves 74

zsi ∈ {0, 1}, ∀ i ∈ V , ∀ s ∈ S, is a binary variable equal to 1 if node i belongs
to sector s and 0 otherwise.

The following constraints partition the vertices of G into at most Ns sectors
with limited user demand δmax, by cutting at most Nv edges in E.

�

s∈S

zsi = 1, ∀ i ∈ V (3.2a)

�

s∈S

�

ǫij∈Γ

(τ sij + τ sji) ≤ 2Nv (3.2b)

�

ǫij∈Γ

zsǫijδǫij ≤ δmax, ∀ s ∈ S, (3.2c)

These constraints impose the following. Each node in V belongs to one and only
one sector (3.2a). At most Nv valves are available (3.2b); being valves boundary
of exactly two sectors the amount of τ s

i,j summed over s ∈ S must be reduced by
half; this constraint is a reformulation of

�

ǫij∈Γ

�

1

2

�

s∈S

τ sij +
1

2

�

s∈S

τ sji

�

≤ Nv

�

ǫij∈Γ

�

1

2

�

s∈S

(τ sij + τ sij)

�

≤ Nv

1

2

�

ǫij∈Γ

�

s∈S

(τ sij + τ sij) ≤ Nv

The sum of user demands of the edges within the same sector is bounded from
above by constraint (3.2c) that excludes very unbalanced partitions with sectors
with large demand. However, the threshold δmax as well as the parameters Nv and
Ns must be carefully set so that a feasible solution exists and no optimal solution
is cut off. Note that there is no constraint requiring to use all the available valves,
because increasing the number of valves does not necessarily improve the optimal
solution value. For example in Figure 3.5, the value of the worst unsatisfied
demand is 10l/s with Nv = {3, 4}. Moreover, we want to avoid solutions with
useless valves, i.e., valves positioned on an edge whose vertices belong to the same
sector. For example in Figure 3.6 v1,4 and v5,4 are boundary valves of s1; v1,2
and v5,4 are boundary valves of s2; whereas the valve v6,3 is not boundary of any
sector.

75 3.4 Mathematical models for the BIVLP

� �

� �

1 2

3 4

T

10l/s 1l/s

2l/s

3l/s
� �

� �

1 2

3 4

T

10l/s 1l/s

2l/s

3l/s

Figure 3.5: Optimal solutions with 3 and 4 valves

� �

� �

1 2

4 5

T
�

�

3

6

s2

s1

Figure 3.6: Solution with an useless valve

The following constraint states the relation between a valve and the sector of
the vertices of the edge where the valve is located, and it imposes that all valves
are boundary valves. Recall that τ s

ij refers to a valve positioned between vertex
i and vertex ǫij . We use the symbol ⊕ to denote the XOR logical operator and
then provide the system of integer linear inequalities that define the operator.

τ si,j = zsi ⊕ zsǫij , ∀(i, ǫij) ∈ Ψ, ∀s ∈ S (3.3)

Constraints (3.3) state that a boundary valve of sector s is positioned on an edge
if and only if exactly one of the two vertices belongs to s. (3.3) can be formulated
as the following set of linear inequalities, for each edge (i, ǫij) ∈ Ψ and for each
s ∈ S.

τ sij ≤ zsi + zsǫij (3.3a)

τ sij ≤ 2− (zsi + zsǫij) (3.3b)

τ sij ≥ zsi − zsǫij (3.3c)

τ sij ≥ zsǫij − zsi (3.3d)

The same constraints hold for any (j, ǫij) ∈ Ψ.
Notice that in this formalization also zsσ is defined, i.e., also the tank node

need to be assigned to a sector. Since we are not interested into the sectorization

3. Optimal placement of Isolation Valves 76

of node σ and its adjacent nodes we assign them to the additional sector 0, the
set of sectors’ indexes is now S = {0, 1, . . . , Ns}, and the following variables are
fixed:

z0σ = 1 (3.4a)

z0t = 1 t | (σ, t) ∈ T (3.4b)

τ 0σj = 1 ∀(σ, j) ∈ T (3.4c)

In particular, Eq. (3.4a) imposes the tank nodes to be in the sector 0; Eq. (3.4a)
imposes that a valve is installed on every pipe linked to the tank. In order to
make the model smaller any other variable and constraints depending on s = 0
can be omitted; in fact the other variables in τ 0 and z0 would be directly set to 0.

Figure 3.7 depicts a piece of solution on a toy network and gives a topological
positioning to the variables. Here, any other variable, e.g., z2ǫt,a, z

1
b , and τ 2a,b, is 0

in this solution.

ǫt,a ǫa,b bat

z0t,a = 1

τ 0t,a = 1 = τ 1t,a

z1ǫt,a = 1

τ 1b,a = 1 = τ 2b,a

z1ǫa,b = 1 z2b = 1

s0 s1 s2

Figure 3.7: A solution on a small net

The user demand that is unsatisfied when sector s is isolated clearly depends
on where the sector’s boundary valves have been located, according to the current
configuration of the isolation system. Recall that the binary variables that model
the positioning of the boundary valves for s are in the set τ s. We also call τ the
entire set of these variable, and it is defined as

τ =
�

s∈S

τ s

Since the sector s is drawn by its τ s, we call:

ID(τ s) its internal demand;

UD(τ s) the unsatisfied demand due to its isolation;

SD(τ s) the satisfied demand when it is isolated.

77 3.4 Mathematical models for the BIVLP

Reading between the lines, these quantities depend on the variables in τ s with 1,
i.e., the boundary valves of the sector s. In the hydraulic network those valves
should be closed to isolate s.

Let us represent the feasible partitioning of the graph drawn by constraints
(3.2a-3.2c), (3.3a-3.3d) as GP (τ). Therefore, BIVLP can be stated as

minΔ (3.5a)

s.t.

GP (τ), (3.5b)

Δ ≥ UD(τ s), ∀ s ∈ S (3.5c)

In other words the optimisation problem in (3.5a–3.5c) minimizes the maximum
unsatisfied demand, namely Δ, varying the isolated sector, given a positioning τ
of valves that draw a sectorization the network.

In the following, we provide a mathematical description of UD(τ s) as the
objective value of a nested optimization problem.

3.4.2 Modelling unintended isolations

As stated in the introduction of this chapter the quality of the partitioning must
be measured by means of the unsatisfied demand of the users, rather than on
the internal demand of the single sector; this is due to the unintended isolations,
that extend effects of an isolation towards other portions of the network. In
mathematical programming this quantity is can be modelled by considering the
satisfied demand; recall in fact that the satisfied demands on an hydraulic network
are flows, flowing from the sources to the demand points (i.e., the users). In such
a case, given

Υ =
�

(i,j)∈ E

δij

the total user demand of the network, then

UD(τ s) = Υ− SD(τ s).

Basically, this means that the unsatisfied demand when the boundary valves of s
(the elements of τ s equal to 1) are closed amounts to the entire demand of the
network but the demand that is satisfied.

3. Optimal placement of Isolation Valves 78

The optimisation problem in (3.5a–3.5c) becomes

minΔ (3.6a)

s.t.

GP (τ), (3.6b)

Δ ≥ Υ− SD(τ s), ∀ s ∈ S (3.6c)

The quantity SD(τ s) can be described through a flow model on a network when
the edges of s have been “deleted”; the flows goes from the source to the demands
point, i.e., the ǫ–nodes, through those edges that are still reachable; the ǫ–nodes
are connected to a sink that collects all the water flowing in the network (like a
sewer). Figure 3.8 gives an insight about how the flows in the small network in
Figure 3.6 look like when sector s2 is isolated. In particular, pipes (1, 2) and (4, 5)
are fed, and the water goes from T to the sink P ; the other pipes are not fed,
being their sector disconnected, and the dashed lines represent empty pipes.

� �

� �

1 2

4 5

�

�

3

6

P

High capacitated fed pipe

Low capacitated fed pipe

High capacitated unfed pipe

Low capacitated unfed pipe

Closed valve

Open valve

Figure 3.8: The flows on the network when a sector is isolated

In a flow model the flows have a direction; so the edges of the graph should
be oriented. The edges should be also capacitated, in order to limit the flows
according with the network capacity. However, graph G is not oriented and we
can not state a priori where the flows go; moreover, edges in G are not capacitated.
To model network flows a further extension of the graph is introduced. The idea
is to split any edges in Γ, say (i, ǫij), into two opposite oriented edges, (i, ǫij) and
(ǫij, i); the same for (j, ǫij). Since we have no information about how much water
will flow through these related pipes, the edges are high capacitated; however the
maximal flow can go out from the tank is the total demand of the network, so
these edges have capacity Υ. Also, if a pipe (i, j) is fed, its entire demand is

79 3.4 Mathematical models for the BIVLP

satisfied, this means that between ǫi,j and P are flowing δǫij l/s; since we have
not information whether the pipe is actually fed or not the capacity of the new
directed edge (ǫij , P) is δǫ. Figure 3.8 also shows high and low capacitated edges.

Definition The new oriented graph G = (V , E,W), shown in Figure 3.9, consists
of:

V = V ∪ P , where P is the sink, collecting all user demand that is satisfied;

E = T ∪Ψ ∪ Π where

T = T , the set of directed edges going from the sources to the adjacent
junctions;

Ψ = {(i, ǫij), (ǫij , i), (j, ǫij), (ǫij, j) | ǫij ∈ Γ}, the set of directed edge con-
necting junctions to the ǫ-nodes and viceversa;

Π = {(ǫij , P) | ǫij ∈ Γ}, the set of directed edges connecting the ǫ-nodes to
the sink;

W = {wij}, the set of costs and that later will be flow capacities, where

wij =

�

Υ ∀(i, j) ∈ Ψ

δǫij ∀(ǫij , P) ∈ Π

321

P

ǫ2,3

δǫ1,2 δǫ2,3

ǫ1,2Υ
Υ

Υ Υ Υ
σ

Figure 3.9: The oriented graph G

Let us introduce for this graph representation of the hydraulic network, Ns

families of multicommodity flow variables, one for each sector. They are used to
represent water flows in the hydraulic network when a given sector is isolated.

First, we define the variables modelling the flow on network pipes. For each

s ∈ S and (u, v) ∈ Ψ, a pair of non negative flow variables are introduced, namely,
xs
uv and xs

vu. Recall that v = ǫi,j for some pipe (i, j), and u ∈ {i, j}. Therefore,

3. Optimal placement of Isolation Valves 80

each pipe (i, j) yields four flow variables for each sector, namely, xs
i,ǫij

, xs
ǫij ,i

, xs
j,ǫij

,
and xs

ǫij ,j
. All such variables are bounded by the sum of users demand Υ, unless

a boundary valve for s is located on the edge, say near i. In such a case, τ s
ij = 1

and xs
i,ǫij

= xs
ǫij ,i

= 0 must hold.

Second, we introduce flow variables on the demand edges in Π, connecting
each demand vertex ǫij to the sink P . For each s ∈ S and ǫij ∈ Γ, let xs

ǫij ,P

be such variable. This variable, for any s, is bounded above by the actual user
demand of pipe (i, j), that is δǫij previously introduced.

Finally, for each s ∈ S and for each edge in T connecting the reservoir σ to a
junction j ∈ J , a non negative flow variable xs

σ,j is introduced, with capacity Υ;
in fact, those edges can provide at most the total user demand.

In general, in order to compute the delivered demand given a sector isolation,
an associated Maximum Flow Problem (MFP) on a graph whose topology depends
on the valve placement τ must be solved. In particular, since sectors are isolated
one at a time, we can consider separately each such scenario. In order to represent
the water flow when a given sector s is isolated, we solve a MFP from the reservoir
σ to the sink P with respect to the flow variables indexed by s. For each sector s,
the mathematical model of the MFP is defined by conservation constraints at the
nodes, capacity constraints on the flow variables, and the objective function is the
maximization of the flow entering in P . Conservation constraints state that the
amount of flow in input to the nodes is equal to the amount in output. Capacity
constraints set the maximum amount of flow the edges can carry. The optimal
value provides the user demand that is satisfied when s is isolated. Capacity goes
down to 0 on the arcs where boundary valves of sector s have been located; for
example, if τ sij = 0 then the flows in (i, ǫij) and (ǫij , i) are bounded to 0. The
problem to maximize the flow in a network whose topology depends on τ s can be
stated in MILP as follows:

SD(τ s) = max xs
P,σ (3.7a)

s.t. (3.7b)

xs
σ,i −

�

(i,ǫij)∈Ψ

(xs
i,ǫij

) = 0 ∀(σ, i) ∈ T , (3.7c)

xs
i,ǫij

+ xs
j,ǫij

− xs
ǫij ,i

− xs
ǫij ,j

− xs
ǫij ,P

= 0 ∀ǫij ∈ V , (3.7d)
�

(ǫij ,P)∈Π

xs
ǫij ,P

− xs
P,σ = 0, (3.7e)

81 3.4 Mathematical models for the BIVLP

xs
P,σ −

�

(σ,i)∈T

xs
σ,i = 0, (3.7f)

xs
i,ǫij

≤ Υ(1− τ sij) ∀(i, ǫij) ∈ Ψ, (3.7g)

xs
ǫij ,i

≤ Υ(1− τ sij) ∀(ǫij , i) ∈ Ψ, (3.7h)

xs
j,ǫij

≤ Υ(1− τ sji) ∀(j, ǫij) ∈ Ψ, (3.7i)

xs
ǫij ,j

≤ Υ(1− τ sji) ∀(ǫij , j) ∈ Ψ, (3.7j)

xs
ǫij ,P

≤ δǫij ∀(ǫij , P) ∈ Π, (3.7k)

xs
σ,i ≤ Υ ∀(σ, i) ∈ T , (3.7l)

xs
i,j ≥ 0 ∀(i, j) ∈ E. (3.7m)

Constraints (3.7a–3.7m) model the MFP for a given sector s. A fake arc going
from the sink P to the source σ with non negative flow variable xs

Pσ is introduced
so that the problem can be stated as a circulation problem. Arc (P, σ) is the only
arc outgoing from P and entering σ, therefore the objective function can then be
stated as maximizing xs

P,σ. Conservation constraints at junction nodes are given
in (3.7c), at the sink in (3.7d), and at the reservoir in (3.7e), at demand nodes

in (3.7f). Capacity constraints for the flow variables on the edges in Ψ, which
depends on valves location, are given in (3.7g-3.7j). In particular, if τ s

ij = 1 the
flow in (i, ǫij) for s is Υ(1− 1) = 0; contrariwise, if τ s

ij = 0 the flow in (i, ǫij) for s
is lower than Υ(1− 0) = Υ. Similarly, capacity constraints for the flow variables

defined on the demand edges in Π are given in (3.7k).

This linear program is a common MFP reformulated on G but the flows on

edges in Ψ, and indirectly those in Π (towards the sink), depend on τ s, i.e., the
boundary valves of s. Remember that τ s = {0, 1} and consider a feasible set
of fixed values τ s, this means that the network for sector s is smaller than the
original, being some edges 0-capacitated; for example (3.7g) becomes:

xs
i,ǫij

≤

�

Υ(1− 0) ≤ Υ if τ sij = 0

Υ(1− 1) ≤ 0 otherwise
∀ (i, ǫij) ∈ Ψ

Whenever some flows in Ψ are forced to be null for the sector s, also some edges

in Π are in turn disconnected; Figure 3.10 shows it on the small instance in
Figure 3.9. In particular in Figure 3.10a shows capacity constraints for sector 2
when τ 22,1 = 1, and Figure 3.10b shows the maximum flow solution.

3. Optimal placement of Isolation Valves 82

321

P

ǫ1,2 ǫ2,3

x2
ǫ1,2,P

≤ δǫ1,2

s1 = 1 s2 = 2

τ 12,1 = τ 22,1 = 1

x2
ǫ2,3,P

≤ δǫ1,2

x2
2,ǫ1,2

≤ 0

x2
ǫ1,2,2

≤ 0

σ

(a) Capacity constraints for sector 2 if τ 22,1 = 1

321

P

ǫ2,3
x2
1,ǫ1,2

= δǫ1,2

x2
ǫ1,2,P

= δǫ1,2

x2
σ,1 = δǫ1,2

s1 = 1 s2 = 2

τ 12,1 = τ 22,1 = 1

x2
ǫ2,3,P

= 0

ǫ1,2
σ

(b) A solution of maximum flow

Figure 3.10: The flow model on G for sector 2

This MILP model for the MFP has to be defined for any s ∈ S. The flows’
capacities depend on variables τ s, which are meant to be an input of the program.
Next section explains how to integrate this model into the main GPP program,
achieving a unique MILP model for the BIVLP.

Finally, the resulting model can be generalized, in order to achieve a general
framework for the IVLP; Section 3.4.4 describes this reformulation.

Integrating MFPs into GPP

To complete the optimisation model (3.6a–3.6c) the maximum flow must be im-
posed so that quantity SD(τ s) correctly measures the satisfied demand given a

83 3.4 Mathematical models for the BIVLP

sector disconnection; the model can be stated as following:

minΔ (3.8a)

s.t.

GP (τ), (3.8b)

Δ ≥ Υ− SD(τ s) ∀ s ∈ S, (3.8c)

MFP (τ s)

SD(τ s) =max xs
P,σ

s.t.

FP (τ s)

∀ s ∈ S. (3.8d)

where FP (τ s) is the set of flow constraints (3.7a–3.7m). This formulation can not
be solved by any off-the-shelf MILP solver, because there are several maximization
statement. Fortunately, in this case minimizing the maximum unsatisfied demand
means basically to maximize the minimum satisfied demand. This can be also
obtained mathematically by considering that Υ is a constant, and

min
s
{Υ− SD(τ s)} = max

s
{SD(τ s)}.

Consequently, the main objective is now to maximize Δ, and the optimisation
statements within the submodels (3.8d) can be omitted:

maxΔ (3.9a)

s.t.

GP (τ), (3.9b)

Δ ≤ xs
P,σ ∀ s ∈ S, (3.9c)

FP (τ s) ∀ s ∈ S. (3.9d)

Notice that this model holds because we are interested into maximizing only the
satisfied demand of the worst sector, say ṡ; in fact, in the optimal solution of this
model, there is no guarantee that the flows of other sectors s �= ṡ are maximal.
Whenever the objective function of the general IVLP needs to guarantee the
maximality of every sector’s flow, this model will not fit anymore. In Section 3.4.4
this model is generalized in order to achieve the maximality of any sector’s flow.

The model in (3.9a–3.9d) can be passed to a common off-the-shelf MILP solver.
Next section analyses the possible weaknesses a common Branch and Bound res-
olution may suffer of.

Finally, the formulation in (3.8a–3.8d) is still very useful, being the basis
to define a suitable optimisation model for the general IVLP, as described in
Section 3.4.4.

3. Optimal placement of Isolation Valves 84

3.4.3 Weaknesses of common Branch and Bound

Continuous relaxation. Common B&B techniques compute lower bounds (up-
per bounds for maximization problems like BIVLP) on the optimal value by solv-
ing the continuous relaxation of the integer variables; in this case the sets of
variables τ and z. Since the effectiveness of B&B strongly depends on this bound,
it is important to analyse how tight the relaxed value is w.r.t. the integral optimal
solution.

Flows in constraints (3.7g–3.7j) are bounded to the high value Υ. This means
that even for high fractional values of a few variables in τ the capacity of the pipes
would be still enough to feed the entire network, e.g.,

τ sij = 0.9 ⇒ xs
i,ǫij

= xs
ǫij ,i

= 0.1Υ

In this relation, the valve vij in the boundary of s can be considered almost closed;
nevertheless, the water flowing through that pipe is really high if Υ >> δǫi,j .
Since the aim is to maximize the flow, the continuous relaxation often returns
with objective value Υ, even on deep nodes of the search tree. This has a bearing
on the general effectiveness of common B&B.

Variable and value selection. At each node of the search tree a common
B&B splits the model into two smaller MILP programs (or branches of the tree),
following the divide et impera paradigm; the aim is to give a integral value to the
variables that should be integer in the solution, namely τ and z in this case. To
do that, two choices have to be taken on these variables, that are:

� select a variable to branch;

� select which branch is visited first.

Typically the B&B first selects the variable having the closest value to an integer.
As far as the visit order, it applies a Depth First Search (DFS) with priority on
left side. In Figure 3.11 the generic variable Vb is selected for the branching after
the root node r has been solved; the two branches impose Vb ≤ ⌊v⌋ on the left,
and Vb ≥ ⌈v⌉ on the right. Then node 1 is solved first. Notice that for binary
variables the two branches become Vb = 0 on the left, and Vb = 1 on the right.

Variables τ and z in (3.9a–3.9d) are binary: the search would explore first
branches giving value 0 to those variables. Unfortunately, stating zsi = 0 is almost
meaningless, in fact this choice does not draw a new part of sectorization; anyway,
after a choice like this a new node is relaxed and solved, but the new optimal value
might be basically the same as before. Stating τ s

ij = 0 means that for sector s the

85 3.4 Mathematical models for the BIVLP

r

1 2

Vb ≤ ⌊v⌋ Vb ≥ ⌈v⌉

Figure 3.11: A small B&B search tree

pipes (i, ǫij) and (ǫij , i) are hugely capacitated, but this does not prevent to put
a valve there for another sector: this choice is again almost ineffective.

Some MILP solvers can be tuned in order to customize the variable selection
policy and branching priority. In this case, it would be better to branch first on
the set τ , assigning first the value 1.

Symmetry on sectors’ indexes. Consider the solution in Figure 3.10b, sectors
S1 and S2 can be swapped, and the quality of the solution would be the same.
Table 3.2 reports two symmetric solutions for graph in Figure 3.10a; the omitted
values are 0 in both solutions. Both “Sol.1” (the solution in Figure 3.10b) and

Table 3.2: Two symmetric solutions for graph in Figure 3.10a

Variables
Sol. 1 Sol. 2
S1 S2 S1 S2

τ1,2 1 0 0 1
τ2,1 1 1 1 1
· · · · · ·
z1 1 0 0 1
zǫ1,2 1 0 0 1
z2 0 1 1 0
zǫ2,3 0 1 1 0
z3 0 1 1 0
· · · · · ·
xσ,1 0 δ1,2 δ1,2 0
x1,ǫ1,2 0 δ1,2 δ1,2 0
xǫ1,2,P 0 δ1,2 δ1,2 0
· · · · · ·

SD(s) 0 δ1,2 δ1,2 0

mins{SD(s)} 0 0

3. Optimal placement of Isolation Valves 86

“Sol.2” draw the same sectorization and have the same flow values on the network;
thus, the objective function is the same. They differ from each other only because
of the sector names, that are simply swapped in these two solutions.

Symmetry may strongly worsen the effectiveness of the solving procedure, and
it should be addressed to prevent performance deterioration. MILP formulations
for GPP are known to be subjected to this effect [97]. Symmetry breaking strate-
gies are discussed further in Section 3.6.

3.4.4 A general bilevel MILP model for the IVLP

As stated in Section 3.1.3 the generic IVLP can be coupled with various objective
functions depending on the needs. The most known ones are the maximization
of the satisfied demand under some assumptions (e.g., in the worst isolation case,
on average, ecc...) and the minimization of the cost of the isolation system.
For the BIVLP specialization the objective function in model (3.8a–3.8d) already
maximizes the network flow for the worst sector, it can be reformulated then
as (3.9a–3.9d) and solved by means of common MILP solvers.

Whenever the objective function does not ensure the maximality of the network
flows the BIVLP program (3.9a–3.9d) would not be suitable anymore, being the
amount of the satisfied demands of non-maximal sectors incorrect. The IVLP is
then generalized as:

min : f(τ) + g(z) + l(x) (3.10a)

s.t.

GP (τ), (3.10b)

MFP (τ s)

SD(τ s) =max : xs
P,σ

s.t.

FP (τ s)

∀ s ∈ S. (3.10c)

Since we presume that this model does not ensure in general the maximality of
flows and may also want to minimize some flows, it can be seen as a Bilevel MILP
model. In general the water distribution system of a city is owned and managed
by a single commercial entity, and it has no reason to put neither costs nor toll on
its own network flows. But for other supplies, like gas, electricity, internet traffic,
the provider usually pays for using another infrastructure.

Bilevel optimization [95] provides the framework for modelling optimization
problems where two decision makers with conflicting objective functions are in-
volved in a hierarchical relationship. The leader takes its decisions aware of the
fact that their value depends on how the follower reacts to such decisions. Here,

87 3.4 Mathematical models for the BIVLP

the leader sets the topology of the isolation system, locating the available valves
on the pipes. The follower, sector by sector, maximizes the flow from σ to P on
a graph whose topology depends on the boundary valves of the sector; in other
words the users maximize the consumption of water compatibly with the pipe
capacities and the flow’s cost.

Bilevel optimization problems can be tackled by imposing inner problem op-
timality by adding its optimality conditions, usually expressed as non linear con-
straints, to the inner problem feasibility constraints, and reformulating the whole
problem as a single level optimization problem.

3.4.5 A single level reformulation for IVLP

When the inner problem is a continuous linear programming problem, duality can
be exploited to state optimality by way of linear constraints [98]. In our case,
given the valves location, each subproblem is a maximum flow whose dual is the
minimum capacity cut provided in (3.11a–3.11h).

Every s ∈ S has its own dual, where there is a dual variable for each constraint
of the MFP model, indexed here:

ωs
i,ǫij

,ωs
ǫij,i

,ωs
j,ǫij

,ωs
ǫij ,j

, ∀ǫij ∈ V are the non negative variables associated to
capacity constraints (3.7g–3.7j).

ωs
ǫij ,P

, ∀ ǫij ∈ V are the non negative variables associated to capacity con-
straints (3.7k).

ωs
σ,i, ∀ (σ, i) ∈ T are the non negative variables associated to capacity con-

straints (3.7l).

πs
i , ∀ i ∈ V \ σ are the unconstrained node potential variables associated to

flow balance constraints (3.7c) and (3.7f).

πs
P and πs

σ are the potential variables associated to the sink and the source
flow balance constraints (3.7d) and (3.7e).

For each sector, an equivalent reformulation of the dual problem of (3.7a-3.7m) is

3. Optimal placement of Isolation Valves 88

stated below.

min :
�

(i,ǫij)∈Ψ

Υ(1− τ sij)(ω
s
i,ǫij

+ ωs
ǫij ,i

)+

+
�

(j,ǫij)∈Ψ

Υ(1− τ sji)(ω
s
j,ǫij

+ ωs
ǫij ,j

)+

+
�

(ǫij ,P)∈Π

(δǫijω
s
ǫij ,P

) (3.11a)

πs
P − πs

σ ≥ 1, (3.11b)

πs
i − πs

ǫij
+ ωs

i,ǫij
≥ 0 ∀ (i, ǫij) ∈ Ψ, (3.11c)

πs
ǫij

− πs
i + ωs

ǫij ,i
≥ 0 ∀ (ǫij, i) ∈ Ψ, (3.11d)

πs
j − πs

ǫij
+ ωs

j,ǫij
≥ 0 ∀ (j, ǫij) ∈ Ψ, (3.11e)

πs
ǫij

− πs
j + ωs

ǫij ,j
≥ 0 ∀ (ǫij, j) ∈ Ψ, (3.11f)

πs
ǫij

− πs
P + ωs

ǫij ,P
≥ 0 ∀ (ǫij, P) ∈ Π, (3.11g)

πs
σ − πs

i + ωs
σ,i ≥ 0 ∀ (σ, i) ∈ T , (3.11h)

ωs
σ,i, ≥ 0 ∀(σ, i) ∈ T , (3.11i)

ωs
ǫij ,P

≥ 0 ∀(ǫij , P) ∈ Π. (3.11j)

ωs
i,ǫij ,i

,ωs
ǫij,i

≥ 0 ∀ (i, ǫij), (ǫij , i) ∈ Ψ, (3.11k)

ωs
j,ǫij,i

,ωs
ǫij ,j

≥ 0 ∀ (j, ǫij), (ǫij, j) ∈ Ψ. (3.11l)

The dual objective function coefficients of ω depend on τ . To linearise this
non linear expression, for each sector we introduce two non negative variables µs

i,ǫij

and µs
ǫij ,i

for each edge (i, ǫij) ∈ Ψ and constraints (3.12a-3.12b), which realize
the equivalence µs

i,ǫij
= ωs

i,ǫij
τ sij .

µs
i,ǫij

≤ ωs
i,ǫij

∀(i, ǫij) ∈ Ψ, ∀s ∈ S, (3.12a)

µs
i,ǫij

≤ Υτ sij ∀(i, ǫij) ∈ Ψ, ∀s ∈ S. (3.12b)

µs
i,ǫij

is no greater than ωs
i,ǫij

and it is forced to 0 when τ s
ij is 0. Since its coefficient

in the objective function to be minimized is −Υ < 0, then µs
i,ǫij

will be equal to

ωs
i,ǫij

if τ sij = 1. The same holds for (ǫij , i), (j, ǫij), and (ǫij , j) ∈ Ψ.

89 A Logic Programming formulation

Now we can replace the objective function in (3.10c) of the inner problem for
each s ∈ S by constraint (3.13a–3.13b) that imposes the well known max flow –
min cut optimality condition.

γs =
�

(i,ǫij)∈Ψ

�

Υ(ωs
i,ǫij

+ ωs
ǫij ,i

)−Υ(µs
i,ǫij

+ µs
ǫij ,i

)
�

�

(j,ǫij)∈Ψ

�

Υ(ωs
j,ǫij

+ ωs
ǫij ,j

)−Υ(µs
j,ǫij

+ µs
ǫij ,j

)
�

+
�

(ǫij ,P)∈D

(δǫijω
s
ǫij ,P

), (3.13a)

γs = xs
P,σ. (3.13b)

Finally, let us call CP (τ s) the linear constraints of the minimum cut program in
(3.11b–3.11l,3.13a), the single level MILP for the general IVLP is given by:

min : f(τ) + g(z) + l(x) (3.14a)

s.t.

GP (τ), (3.14b)

MFP (τ s)

γs = xs
P,σ

FP (τ s)

CP (τ s)

∀ s ∈ S. (3.14c)

Depending on the real objective function this model is now solvable by common
MILP solvers; it is even suitable to solve the BIVLP, but there is no reason
to prefer this program to the other in (3.9a–3.9d), which involves a number of
variables and constraints by far lower.

3.5 A Logic Programming formulation

Logic Programming (LP) [26] is a declarative paradigm in Artificial Intelligence
(AI) [99] based on the first order logic, and the most famous LP language is
Prolog [100]. A program in Prolog is typically queried by means of an inference
algorithm such as Selective Linear Definite clause resolution (SLD), well known
implementations are: BProlog [101], ECLiPSe [102], SICStus Prolog [103], SWI-
Prolog [104]. Another logic language is called Answer Set Programming (ASP) [28,
105, 106] and some implementations are: Cmodels [107], DLV [108], Clingo [109].

3. Optimal placement of Isolation Valves 90

COPs often are addressed in LP by Constraint Logic Programming (CLP) and
ASP. In particular a Constraint Logic Programming on Finite Domain (CLP(FD))
program has been already proposed for the BIVLP [34]. In the last decade ASP
has come up as a competitive technology to address COPs, both for its high
declarative capability and the effectiveness of the off-the-shelf ASP solvers.

In the next pages we go further on the ASP syntax, afterwards three ASP
encodings are proposed for the BILVP. The encodings in Section 3.5.2 have been
proposed in [80], the latter encoding described in Section 3.5.3 has been proposed
in [81].

3.5.1 Answer Set Programming

Answer Set Programming (ASP) is a class of logic programming languages that
rely on the stable model semantics [110], also known as answer set semantics.
We assume a basic familiarity with logic programming and its syntax; for an
introduction one can refer to [26].

First of all, all strings starting with an upper case letter are considered to be
variables (e.g., Var); all the others, starting with a lower case latter are constants
(e.g., val). An atom is an expression p(t1,...,tn), which is a predicate of arity
n consisting of a functor p, and n terms t. Two atoms refer to the same predicate
if they have same functor and same arity. For brevity, all predicates p of arity n
are often referred to as p/n. A constant is also a predicate with n = 0. An atom
p(t1,...,tn) and its negation ¬p(t1,...,tn) are referred to as literals. A logic
program consists of a set of rules

l1 ∨ · · · ∨ lk ← lk+1, . . . , lm, not lm+1, . . . , not ln

where li’s from l1 to lk are literals of the head of the rule, from lk+1 to lm are
positive literals of the body, and from lm+1 to ln are negative literals of the body;
the head is this general form a disjunctive clause, while the body is a conjunction.
Rules with single literal in the head and no negative literals in the body, like

l1 ← l2, . . . , lm

are called nlp rules (from normal logic program). Rules with empty body are also
called facts while rules with empty head are called Integrity Constraint (IC):

← l2, . . . , lm, . . . , not lm+1, . . . , not ln

and their body must evaluate to false in any model of the program. In LP pro-
grams symbol ← is substituted by :- and rules always end with a dot:

l1 :- l2, . . . , lm.

91 A Logic Programming formulation

Literals and rules containing no variables are called ground. We denote as gr(r)
all possible instantiations of the rule r of the program Π, on the basis of ground
facts of the program. The ground instantiation of Π is a program consisting of all
ground instances of rules in Π, i.e., gr(Π) =

�

r∈Π gr(r). For any set M of atoms
from Π, let ΠM be the program obtained from Π by deleting (i) each rule that has
a negative literal ¬B in its body with B ∈ M and (ii) all negative literals in the
bodies of the remaining rules. Since ΠM is negation free, it has a unique minimal
Herbrand model. If this model coincides with M , then M is a Stable Model of Π
[110]. In general, a program may have zero, one, or more answer sets.

Consider the following logic program Π0 (and its grounding gr(Π0)):

Π0

p(1).

p(2).

q(X,Y):- p(X), p(Y),

X!=Y, not q(Y,X).

gr(Π0)

p(1).

p(2).

q(2,1):- not q(1,2).

q(1,2):- not q(2,1).

The program Π0 has two answer sets:

S1 = {p(1). p(2). q(1, 2).} and S2 = {p(1). p(2). q(2, 1).}

Among the various dialects and implementations of ASP, we use the language
of the grounder Gringo [111], that extends the basic logic programming syntax
with a number of features. We show the most relevant to this article, while the
interested reader can refer to [111] for a complete description.

Intervals If an atom a(i..j), where i and j are integers, is in a clause, the clause
is repeated for all possible values k such that i ≤ k ≤ j. For example, the fact
a(1..4). is expanded to four facts, namely a(1). a(2). a(3). a(4).

Conditions allow for instantiating variables to collections of terms within a
single rule. A condition has the syntax a(X) : c(X), and it is expanded to as
many a(X) atoms as those making true the atom c(X). For example, consider
the program Π1 and its grounding gr(Π1)

Π1

�
p(1..3).

q:- r(X):p(X).
gr(Π1)

�
p(1). p(2). p(3).

q:- r(1), r(2), r(3).

Notice that the condition in the body is expanded to a conjunction.

3. Optimal placement of Isolation Valves 92

Counting [112] If a1, a2, a3, . . . are atoms, and l and u are integers, the aggre-
gate

l {a1, a2, a3, . . . } u

is true for every set S of atoms including from l to u members of {a1, a2, a3, . . . },
i.e., l ≤ |{ai ∈ S}| ≤ u. Trivial bounds can be omitted.

Summation If a1, a2, a3, . . . are atoms and v1, v2, v3, . . . are integers, the aggre-
gate

l ♯sum[a1 = v1, a2 = v2, a3 = v3, . . .] u

is true for every set S of atoms such that the sum of vi over included members ai
of {a1, a2, a3, . . . } is in the interval [l, u]:

l ≤
�

i:ai∈S

vi ≤ u

Choice rules and optimisation statements In combinatorial optimisation
the answer sets of an ASP program represent the feasible solutions of the problem.
To compute the optimal answer set, an ASP solver needs to guess on the decision
variables of the problem and optimise an aggregated value that depends on those
variable. A choice is made on a set of candidates and it is stated by means of a
counting aggregate, as following:

l {c1, c2, c3, . . . } u.

This statement asks to the solver to look for answer sets containing a number of
facts c ranging between l and u.

On some predicates of the program a cost function can be maximized (or min-
imized) by an optimisation statement, in which a cost is assigned to the variables
of interest. For example, the first statement below maximizes the sum of the c’s
costs, whereas the second minimizes it:

♯maximize[p1 = 1, p2 = 2, p3 = 3, . . .].

♯minimize[p1 = 1, p2 = 2, p3 = 3, . . .].

The following ASP program:

1 1 {a,b,c,d} 2.

2 b :- c.

3 #maximize[a=1,b=2,c=3,d=4].

93 A Logic Programming formulation

is maximized by the answer set {b. d.}. A possible translation of this ASP
program into the mathematical analogue would be:

max : 1a+ 2b+ 3c+ 4d (3.15a)

c ≤ b (3.15b)

a+ b+ c+ d ≥ 1 (3.15c)

a+ b+ c+ d ≤ 2 (3.15d)

a, b, c, d ∈ {0, 1} (3.15e)

Rule 1 can be translated into the three mathematical relations in Eq. (3.15c–
3.15e); Rule 2 is Eq. (3.15b); finally Rule 3 is the optimisation statement (3.15a).
However this is a particular case, in fact ASP programs can not always be trans-
lated into MILP by following this schema.

ASP solvers

Usually, ASP solvers [107, 108, 112–114] work in two stages. In the first, called
grounding, the program is converted into an equivalent ground program. The
ground program can be very large, depending on the input program. The second
stage is devoted to looking for stable models (answer sets) of the ground program.

ASP Formulations for the BIVLP

We present three different ASP programs to the Bottleneck Isolation Valves Lo-
cation Problem. Two of them share a common set of rules, which define the
reachability of each pipe from sources varying the isolated pipe, so they are pre-
sented together in Section 3.5.2. These two approaches differ in the definition of
the worst isolation case, either in terms of a single pipe or a group of pipes.

In the third approach, described in Section 3.5.3, reachability from tanks is
defined only for the sectors, and the worst isolation case is computed by varying
the isolated sector.

In all cases, the input data consists of a set of facts that describe the graph
of the water distribution network. Nodes are given as facts of the form node(X),
while labelled edges are facts of the form e(I,J,D), where I and J are nodes of
the graph, and D is the demand associated to the edge. The instances of e(I,J,D)
are supposed to be symmetric. The sources of water are usually tanks, and they
are given in the form tank(N), where N is the name of the node. The maximum
number of available valves Nv is given in input as a fact nv(Nv). E.g., the network
in Figure 3.1 is represented as:

3. Optimal placement of Isolation Valves 94

tank(1). node(1..8). nv(7).

e(1,2,4). e(1,4 ,12). e(2,3,7). e(2,5,5). e(3,6,1).

e(4,5,9). e(5,6,2). e(5,7,5). e(6,8,2). e(7,8,6).

To simplify notation, we will also use the following definitions:

1 e(X,Y):- e(X,Y,_).

2 sym(X,Y):- e(X,Y).

3 sym(Y,X):- e(X,Y).

4 swap(e(X,Y),e(X,Y)):- e(X,Y).

5 swap(e(X,Y),e(Y,X)):- e(X,Y).

6 adj(COM ,U1,U2,e(X,Y),e(W,Z)):-

not tank(COM),

swap(e(X,Y),e(COM ,U1)),

swap(e(W,Z),e(COM ,U2)), U1!=U2.

Predicate sym/2 defines the symmetric edge of the graph. Predicate swap/5 con-
tains the edge e(X, Y) (Rule 4) and its symmetric (Rule 5). Predicate adj/5

defines pairs of adjacent edges: two different pipes e(X, Y) and e(W,Z) are ad-
jacent if they share exactly one junction node, namely COM. The terms U1 and
U2 are the uncommon nodes the adjacent have. Since the adjacency is exploited
later to model the reachability of pipe from sources, the edges having the tank as
common node are not considered to be adjacent; this condition is stated in Rule 6
by the negation “not tank(COM)”.

3.5.2 ASP Programs based on Pipe Reachability

As mentioned in the problem description (Section 3.1.1), each edge should be
isolable by closing some set of valves.

We can isolate network patches by closing valves. However, the set of closed
valves depends on where the damaged pipe is; for this reason, we define a predicate
close/2. The meaning is that close(v(A,B),e(X,Y)) is true iff the valve v(A,B)
(located on the edge e(A,B) close to node A) will be closed when the pipe e(X,Y)
is broken. Predicate close/2 is defined in Code 3.1. Rule 1 states that, for every
(tentatively isolated) edge e(X,Y), at most Nv valves can be closed. Rule 2 states
that if a valve is closed (for at least one broken pipe), then there must be a valve
in that position. Predicate valve/2 is the intended answer, as it represents the
positioning of the valves in the isolation system; the number of valves should be
exactly Nv (rule 3).

95 A Logic Programming formulation

Code 3.1: ASP encoding for isolation of a pipe based on Pipe Reachability

1 1 { c lose (v(A,B),e(X,Y)): sym(A,B) } Nv:-

e(X,Y), nv(Nv).

2 valve(A,B):- c lose (v(A,B),_).

3 :- nv(Nv), not Nv { valve(A,B): symm e(A,B) } Nv.

%reachability of pipes

4 reached(e(A,B),e(X,Y)):- e(X,Y),

swap(e(A,B),e(T,D)), tank(T),

not c lose (v(T,D),e(X,Y)).

5 reached(e(A,B),e(X,Y)):- e(X,Y),

adj(COM ,U1,U2,e(A,B),e(C,D)),

not c lose (v(COM,U1),e(X,Y)),

not c lose (v(COM,U2),e(X,Y)),

reached(e(C,D),e(X,Y)).

6 :- reached(e(X,Y),e(X,Y)).

Rules 1, 2 and 3 assure that, for each (damaged) pipe, there is a subset of the
installed valves that will be closed, but there is no knowledge of which users (or,
which pipes) will be reached by the water in each scenario.

For this purpose, predicate reached(e(A,B),e(X,Y)) explains which edges
e(A,B) are reachable by the sources when pipe e(X,Y) is damaged. In particular
(rule 4), pipe eA,B is reached if one of its endpoints is a tank and near the tank
there is no valve, or if there is a valve but it is not closed when the damaged edge
is eX,Y (Figure 3.12). Otherwise (rule 5), eA,B is reached if at least one of its
adjacent edges (eC,D in Figure 3.13) is reached and no valves are closed between
the two (again, when the damage is in eX,Y). Finally, an integrity constraint
(Rule 6) imposes that a broken pipe should not be reachable by water.

vT,D
A

A = T B = D

B

Figure 3.12: Example network

D
vCOM,U1

BA
vCOM,U2

U1 = A COM = B = C U2 = D

Figure 3.13: Example network

We propose two different ways to extend the above program in order to de-
fine and minimize the undelivered demand in the worst-case isolation: the “Pipe
Isolation” encoding, and the “Extended Sectors” encoding.

Pipe Isolation Encoding

As explained earlier, the objective is to maximize the satisfied demand (or, equiv-
alently, minimize the unsatisfied demand) in the worst case. As a first attempt,

3. Optimal placement of Isolation Valves 96

we might use the ♯sum aggregator operator [115], and define the satisfied water
demand when some pipe eX,Y is broken (SD(eX,Y)) as the sum of the demands of
the pipes reached by water:

sd(SD,e(X,Y)):- e(X,Y),

SD = #sum[reached(e(A,B),e(X,Y))=D

: e(A,B,D)].

Unfortunately, this type of aggregation leads to an explosion of the ground pro-
gram, especially if the single demands D can take large integer values. Another
way to find the minimum (total) satisfied demand is by means of pairwise compar-
isons amongst reached/2 atoms, varying the “broken” pipe, using the aggregator
♯sum as a conditional operator. Predicate lower(e(X,Y),e(W,Z)), defined by the
rule 7 in Code 3.2, is true if the satisfied demand in case the edge eX,Y is broken is
lower than the satisfied demand when the broken edge is eW,Z . In mathematical
notation, clause 7 could be written as

eX,Y � eW,Z ←
�

reached(eA,B ,eX,Y)
Dn=w(eA,B)

Dn +
�

reached(eC,D,eW,Z)
Dm=w(eC,D)

−Dm ≤ 0

In this way, the ♯sum aggregator sums with a positive sign the satisfied demand
when the broken edge is the first (eX,Y), and with a negative sign the satisfied
demand when the broken edge is the second (eW,Z). The body evaluates to true
if this algebraic sum is negative or null. The grounder instantiates rule lower/2

for each pair of edges, so that we move to the solver the task to check whether
the sum is indeed less than or equal to 0 and it will return answer sets containing
only the actual comparison results.

Now we compute the worst case: it occurs when damaging the edge eX,Y whose
isolation provides a satisfied demand less than (or equal to) the satisfied demand
due to the isolation of any other edge:

worst(e(X,Y)):- e(X,Y),

lower(e(X,Y),e(W,Z)): e(W,Z).

We now know the pipe that gives minimum satisfied demand; our objective is to
find the best valve positioning such that the satisfied demand, in the worst case, is
maximum (i.e., max : mineX,Y

{SD(eX,Y)}). Since we need to compute the value
of the corresponding satisfied demand and maximize it, one is tempted to use the
following formulation:

97 A Logic Programming formulation

min_sd(e(A,B),D):- e(A,B,D),

reached(e(A,B),WorstCase),

worst(WorstCase).

#maximize[min_sd(e(A,B),D)=D].

However, the minimum is not unique, as there can be two or more sectors that,
when isolated, provide the same delivered demand. Also, the sector corresponding
to minimal satisfied demand may contain more than one pipe: if one of those pipes
is broken, they will all provide the same delivered demand. When the minimum
is not unique, with the above definitions we would sum one contribution for each
of the equally good minima. In order to compute the correct delivered demand,
we select one of the minima, through a lexicographic comparison, with the rules
9 and 10 of Code 3.2.

Code 3.2: The Pipe Isolation Encoding

7 lower(e(X,Y),e(W,Z)):- e(X,Y), e(W,Z),

#sum[reached(e(A,B),e(X,Y))=Dn: e(A,B,Dn),

reached(e(C,D),e(W,Z))=-Dm: e(C,D,Dm)]0.

8 lower_lexico(e(X,Y),e(X,Y)):- lower(e(X,Y),e(X,Y)).

9 lower_lexico(e(X,Y),e(W,Z)):- % eX,Y ≺ eW,Z

lower(e(X,Y),e(W,Z)), not lower(e(W,Z),e(X,Y)).

10 lower_lexico(e(X,Y),e(W,Z)):- % same delivered demand

lower(e(X,Y),e(W,Z)), lower(e(W,Z),e(X,Y)),

(X,Y)<(W,Z). % this implements: X<W ∨ (X==W ∧ Y<Z)

11 min_sd(e(A,B),SD):- e(A,B,SD), e(X,Y),

lower_lexico(e(X,Y),e(W,Z)): e(W,Z),

reached(e(A,B),e(X,Y)).

12 #maximize[min_sd(e(A,B),SD)=SD: e(A,B)].

Finally, we maximise the sum of the delivered demands in the worst-case, those
defined by rule 11.

This is maybe the most declarative encoding for the BILVP. Notice that the
Pipe Isolation encoding does not need to be dimensioned on Ns. This may also
be a good point with respect to the solving algorithm, because no symmetries on
sectors’ name are here introduced.

However, the choice strategy is not very clever; in fact, the solver looks how to
close some valves in order to isolate each pipe and tries to maximize the satisfied
demand; but only the configurations of closed valves for which the intersection
among the whole set of pipe consists of Nv installed valves are feasible and can be
candidate for the optimal solution. A better choice would be instead to guess first

3. Optimal placement of Isolation Valves 98

the general positioning of the available valves, then to compute in a deterministic
fashion the set of closed valves for each pipe.

Extended Sectors Encoding

The previous Pipe Isolation encoding does not explicitly define the concept of
sector, but it maximizes the satisfied water demand of the worst-case isolation. In
Code 3.3, we associate to each pipe a sector identifier, represented as an integer.

In the hydraulic literature, a sector is simply the sub-graph encircled by a
set of valves, so each pipe belongs to exactly one sector; here we call extended
sector the set of unreachable pipes given an isolation. As explained in the in-
troduction, isolating a sector S can isolate a part of the network larger than
the sector S itself, due to the effect of unintended isolation. In such a case,
the extended sectors do not represent a partition of the network: some pipes
can belong to two (or more) extended sectors. E.g., for the network in Fig-
ure 3.1, edge e7,8 belongs of course to sector {e6,8, e7,8}, as well as to the extended
sector {e1,2, e2,5, e5,6, e5,7, e2,3, e3,6, e6,8, e7,8}, that is the set of edges that will be
de-watered in case of damage of, e.g., edge e1,2.

Code 3.3 reports rules aimed to the definition of the worst extended sector, and
to the minimization of the related undelivered demands. Predicate s/1 (rule 13)
declares the possible sector identifiers (assuming there is some maximum number
Ns of extended sectors). Predicate ext sector(e(A,B),S) says that the edge
e(A,B) belongs to the extended sector S: rule 14 states that each edge belongs
to at least one extended sector, while rule 15 states that two edges belong to the
same extended sector if, whenever one is isolated, the other one is unreachable
as well. In this case, if eA,B is not reachable due to an indirect side effect of the
isolation of eC,D, then eA,B belongs to two or more different extended sectors, at
least one of which is in common with eC,D.

Code 3.3: The Extended Sector Encoding

13 s(1..Ns).

14 1 { ext_sector(e(A,B),S): s(S) } :- e(A,B).

15 ext_sector(e(A,B),S):- e(A,B), ext_sector(e(C,D),S),

not reached(e(A,B),e(C,D)).

16 empty(S):- s(S), not ext_sector(e(A,B),S): e(A,B).

17 greater(S1,S2):- s(S1), s(S2), S1!=S2, not empty(S1),

0 #sum[ext_sector(e(A,B),S1)=D1: e(A,B,D1),

ext_sector(e(C,D),S2)=-D2: e(C,D,D2)].

18 maxSect(MaxS):- s(MaxS), not empty(MaxS),

greater(MaxS ,S): MaxS!=S: s(S).

99 A Logic Programming formulation

19 uniqueMax(S):- S=#max[maxSect(S1)=S1].

20 max_ud(e(A,B),UD):-

ext_sector(e(A,B),S), uniqueMax(S), e(A,B,UD).

21 #minimize [max_ud(e(A,B),UD)=UD].

In order to find the sector that determines the maximum service disruption if
isolated, we proceed with pairwise comparisons among all sectors, similarly to the
Pipe Isolation encoding. Rule 17 defines an order relation, and states that sector
S1≻S2 if S1 is not empty and the sum of the demands of its edges is greater than
the sum of weights of S2. Then, the worst disservice is determined by the sector
MaxS such that (∀S) MaxS�S (rule 18).

As in the Pipe Isolation encoding, two or more extended sectors may deter-
mine the same disservice, so we arbitrarily select one by choosing (among the
equally worst-case ones) the one with the maximum identifier (rule 19). Finally,
we minimize the sum of the demands of the pipes belonging to the sector of the
unique worst-case, defined by rule 20, that are the undelivered demand of the
worst isolation case (i.e., min : maxs∈S{UD(s)}).

This encoding chooses to which sector a pipe must belong and it compares
each pair of sectors in order to identify the worst one. This is better than the
Pipe Isolation encoding, because the number of comparisons is lower (in fact the
number of sectors is typically lower than the number of pipes, see Section 3.6.1).
However the solver has to guess also the binding between pipes and sectors and
this yields symmetries and the exploration of an amount of infeasible choices.

3.5.3 An ASP Program based on Sector Reachability

The third encoding does not check the reachability of each single pipe from the
tank, but checks only reachability of non-empty sectors among the Ns available.
The logic program listed in Code 3.4 models sectors as clusters of adjacent pipes
bounded by valves. Predicate valve/2 defines the valve placement, with Nv valves
(rule 22).

Code 3.4: ASP encoding based on Sector Reachability

22 Nv { valve(A,B): sym(A,B) } Nv.

23 s(1..Ns).

24 1 { sector(e(A,B),S): s(S) } 1:- e(A,B).

25 :- adj(COM,U1,U2,e(A,B),e(C,D)), s(S), sector(e(A,B),S),

not sector(e(C,D),S),

0 { valve(COM ,U1),valve(COM ,U2) } 0.

26 boundary (e(A,B),e(C,D),S1,S2):- adj(_,_,_,e(A,B),e(C,D)),

3. Optimal placement of Isolation Valves 100

sector(e(A,B),S1),

sector(e(C,D),S2), S1!=S2.

27 root(S) :- 1 {tank(A),tank(B)} 1, sector(e(A,B),S).

28 reached(Sr,I):- root(Sr), s(Sr), s(I), Sr!=I.

29 reached(S1,I):- s(I), s(S1), s(S2), S1!=S2, I!=S1, I!=S2,

not empty(I), not empty(S1),

not empty(S2), reached(S2,I),

1 { boundary (e(A,B),e(C,D),S1,S2),

boundary (e(A,B),e(C,D),S2,S1) }.

30 ext_sector(e(A,B),S):- sector(e(A,B),S).

31 ext_sector(e(A,B),S):- sector(e(A,B),S1), s(S), S!=S1,

not sector(e(A,B),S),

not empty(S), not reached(S1,S).

We associate an integer identifier to each sector (rule 23) and state that each
pipe belongs exactly to one sector (rule 24). The integrity constraint 25 imposes
that if two adjacent pipes belong to different sectors, there must be at least one
valve in between. Rule 26 defines the concept of boundary between sectors: two
adjacent pipes e(A,B) and e(C,D) are in the boundary between sectors S1 and
S2 if e(A,B) belongs to S1 and e(C,D) belongs to S2.

To properly handle unintended isolation, we define for each sector isolation
case the reachability of the other sectors from tanks. We notice that sectors
directly connected to the tank cannot be dewatered due to unintended isolation;
then, we define them as root sectors (rule 27), and state they are always reachable
when a different sector I is isolated (rule 28). Instead, the reachability of each
other sector depends on the reachability of its adjacent sectors when sector I is
isolated: sector S1 is reachable if at least one of its adjacent sectors (S2) is reached.
Otherwise, if S1 is not reached when S is isolated, S1 is an unintended isolation
of S, and its pipes belong to the same extended sector S (rule 31).

As in the two previous encodings, in order to define the worst case isolation,
in Code 3.5 we compute all the possible pair-wise comparisons between extended
sectors; then we define the worst extended sector as the one which determines the
greatest unsatisfied demand, and we break ties using the sector identifier.

Code 3.5: Computing min : maxs∈S{UD(s)}

33 :- s(S1), s(S2), S1<S2, empty(S1), not empty(S2).

34 greater(S1,S2) :- s(S1), s(S2), S1<S2,

not empty(S1), empty(S2).

35 greater(S1,S2) :- s(S1), s(S2), S1<S2,

not empty(S1), not empty(S2),

Isolated =S1, not reach(S2,Isolated).

101 Search space reduction strategies

36 greater(S1,S2) :- s(S1), s(S2), S1 < S2,

not empty(S1), not empty(S2),

Isolated=S1, reach(S2,Isolated),

0 [ext_sector(e(X,Y),S1)=D1: e(X,Y,D1),

ext_sector(e(A,B),S2)=-D2: e(A,B,D2)].

37 greater(S1,S2) :- s(S1), s(S2), S1>S2,

not empty(S1), not empty(S2),

not greater(S2,S1).

39 :- s(S1), s(S2), S1!=S2,

not empty(S1), not empty(S2),

Isolated =S2, not reach(S1,Isolated),

greater(S1,S2).

41 worst(S):- s(S), not empty(S),

greater(S,S2): s(S2): S2!=S.

43 max_ud(e(X,Y),UD) :- ext_sector(e(X,Y),S),

worst(S), e(X,Y,UD).

45 #minimize [max_ud(e(X,Y),UD)=UD: e(X,Y)].

Notice that in this encoding we do not use the closed valve predicate, but
we check reachability caused by sectors disconnections, instead of pipes disconnec-
tions. This approach (called the Sectors-based encoding) is rather different from
the previous two and strongly reduces the search space.

However, as well as the extended sectors encoding based on pipe reachability,
also this encoding guesses the binding between pipes and sectors (Rule 24); this
introduces symmetries and may lead to an amount of infeasible choices during the
search.

Next section describes thoroughly how to dimension the number of sectors
and describes several symmetry breaking strategies, in order to reduce the search
space. Such strategies are applied both for the MILP approach in Section 3.4 and
for the ASP approach proposed just above.

3.6 Search space reduction strategies

Both the MILP approach (Section 3.4) and the ASP approach (Section 3.5) are
affected by the following weaknesses:

� the dimension of the programs depends on the number of sectors Ns;

3. Optimal placement of Isolation Valves 102

� symmetry on the sectors names;

� symmetry on valve positioning;

� redundancy of particular valves configurations.

Any point of these may likely influence the solving algorithm and possibly worsen
the effectiveness.

Following the order above, this section describes in details each weakness and
proposes some strategies to face it down; whenever possible a practical formulation
of the strategies for both the approaches will be provided either.

3.6.1 Estimation of the Number of Sectors

Clearly, the value Ns should not be too small, because we could wrongly rule
out some solutions: those in which the number of sectors is actually higher than
Ns. On the other hand, the search space explored by the MILP and ASP solvers
depends on the Ns parameter: the ASP Rules 14 and 24 associate each edge
with a sector identifier, so the size of the search space is proportional to |E|Ns;
similarly, the MILP model assigns edges and nodes to the sectors, and the search
space grows with (|E|+ |V |)Ns.

The computation time depends significantly on the maximum number of sec-
tors Ns, so for optimal performance it is important to have a value as tight as
possible. The following lemma will be useful to compute a bound, based on the
number of valves.

Lemma 2. Given a connected graph and a placement of N valves AN that pro-
duced S sectors, if we add another valve the number of sectors cannot be more
than S + 1.

To prove the lemma, we rely on the graph G described in Section 3.4.1. With
this definition, each edge (i, j) ∈ Ψ can host up to one valve, so defining a partition
through valves amounts to defining a set of edges to be removed from G.

Proof 2. Adding one valve amounts to removing one edge in G. Removing an
edge (i, j) can have two possible effects:

1. if there is no other path from i to j, it disconnects the endpoints i and j,
that are now in different sectors. We obtain S+1 sectors with N +1 valves.

2. if there exists another path from i to j, then the number of sectors is un-
changed, and we have S sectors with N + 1 valves.

103 Search space reduction strategies

We are now ready to prove the following Theorem:

Theorem 3. Given a connected graph, the number of sectors that can be obtained
by adding Nv valves is at most Nv. This bound is strict.

Proof. Given any valve placement, this placement can be obtained by a procedure
that adds the valves in sequence, one after the other. We start with a graph with
only one valve: at least one valve is necessary to disconnect the network from the
tank. By induction, suppose that in the described procedure we have added N
valves, obtaining S sectors; by the inductive hypothesis, S ≤ N .

By Lemma 2, by adding a valve, the number of sectors increases at most by 1.
This means that the number of sectors Ns is bounded by the number of valves:
Ns ≤ Nv. This bound is strict, and the case Ns = Nv happens, e.g., if the network
graph is actually a tree.

Theorem 3 provides an upper bound on the number of sectors valid in any
connected graph. A tighter upper bound, depending also on network topology,
can be computed in polynomial time as

UB♯S(Nv) = cc+Nv −Nmin
v (3.16)

where Nmin
v is the minimum number of valves that disconnect the whole network

from tanks (that is the sum of the degrees of tank nodes) and cc is the number of
connected components obtained after tank nodes have been removed.

However, since the search space depends exponentially on the Ns parameter,
it could be convenient to find out the actual maximum number of sectors N ∗

s

that can be obtained on the actual graph given at most Nv valves. This could
provide a better value to be fed (as Ns parameter) to the ASP/MILP program
that computes the valve positioning, with the schema shown in Fig. 3.14 with
solid lines.

Minimizing the number of sectors

Both the MILP and ASP programs can be adapted in a straightforward way in
order to compute the tightest bound on Ns, called N∗

s . We call this program
Max(♯S). This is actually an optimisation problem by default, but it is clearly
easier to solve than the BIVLP; moreover, under certain assumptions it can be
solved as a satisfiability problem, as described below. The idea is to design a
two–step solving procedure; the first step solves Max(♯S), the new bound N ∗

s is
then the input of the BIVLP solver, as shown in Figure 3.14. Since the number of

3. Optimal placement of Isolation Valves 104

UB♯S(Nv) Max(♯S) BIVLP Program Sol.
Smax(Nv)

Smax(Nv)

Nv

Figure 3.14: The two-step solving procedure

variables and constraints of the second step grows with Ns, the whole computing
time of this architecture could be lower than the BIVLP using UB♯S(Nv). Fur-
ther details about the complexity of Max(♯S) are given in the next paragraph.
Experimental results are discussed in Section 3.7.

The maximizing program Max(♯S) is in turn dimensioned on the Ns param-
eter; in general this can be provided by Theorem 3. However, in many cases the
objective is finding the Pareto front [7], and this can be achieved by running a
sequence of optimisations, with increasing number of valves [34]. If this is the
case, one can use the following Corollary to provide a tighter bound:

Corollary 4. Given a connected graph, if with Nv valves the maximum number
of sectors is Smax(Nv) = N∗

s , then with Nv + 1 valves, the maximum number of
sectors cannot be more than Smax(Nv + 1) = N∗

s + 1.

Proof. Let ANv
be a valve positioning with Nv valves. Since Smax(Nv) is the

maximum number of sectors obtainable with Nv valves, the number of sectors
S(ANv

) corresponding to assignment ANv
is S(ANv

) ≤ Smax(Nv).
Let us now add another valve to ANv

, obtaining the assignment ANv+1. By
Lemma 2, the new valve positioning ANv+1 has at most S(ANv+1) ≤ S(ANv

)+1 ≤
N∗

s + 1 sectors.
Since S(ANv+1) ≤ Ns + 1 holds for any valve positioning ANv+1, then

max
ANv+1

S(ANv+1) ≤ Ns + 1.

To sum up, the input parameter to dimension the number of available sectors
into the general Max(♯S) program is:

Sdim(Nv) =

UB♯S(Nv) if Smax(Nv − 1) unknown

Smax(Nv − 1) + 1 if Smax(Nv − 1) = Smax(Nv − 2) + 1

Smax(Nv − 2) + 1 if Smax(Nv − 1) = Smax(Nv − 2)

(3.17)

105 Search space reduction strategies

Moreover, since

Smax(Nv − 1) ≤ Smax(Nv) ≤ Smax(Nv − 1) + 1

the maximum number of sector is:

Smax(Nv) = Smax(Nv − 1) + I I ∈ {0, 1} (3.18)

Knowing Smax(Nv − 1), the optimisation of Max(♯S) for Nv is equivalent to test
in Eq. (3.18) whether I = 1 or not, that is a satisfiability problem. Section 3.7
discusses experimental results about Max(♯S).

Implementing Max(♯S) in MILP. The MILP program in GP (τ) ≡ (3.2a-
3.2c,3.3a-3.3d) can be extended in the following way:

max :
�

s∈S

ys (3.19a)

GP (τ) (3.19b)
�

i∈V

zsi ≥ |V |ys ∀ s ∈ S (3.19c)

ys ∈ {0, 1} ∀ s ∈ S (3.19d)

To count the non-empty sectors the variables ys are introduced. Constraints (3.19c)
imposes that every sector contains something. The number of non-empty sectors
is then maximized (Eq. 3.19a).

Finally, to implement the satisfiability version and to test whether Smax(Nv) =
Smax(Nv − 1) + 1, Eq. (3.19a) can be omitted and Eq (3.19a) becomes

�

i∈V

zsi > 0.

This program has a solution only if a valve positioning with Nv valves can yield
Smax(Nv − 1) + 1 sectors.

Implementing Max(♯S) in ASP. An ASP program that finds the maximum
number of sectors can be simply obtained by considering rules 22–25 together
with the optimization statement

#minimize{ empty(S): s(S) }.

3. Optimal placement of Isolation Valves 106

and the solver will find a sectorization with minimum number of unused (empty)
sectors.

Finally, to implement the satisfiability version in ASP in order to test whether
Smax(Nv) = Smax(Nv−1)+1, instead of using the maximization statement above,
we impose that no empty sector exists:

:- empty(S).

On the complexity of Max(♯S). Max(♯S) seems very related with the min-
imum k-cut problem [116]. In this problem the aim is to compute the minimum
weight multicut that separates the network into k non-empty components. The
problem is known to be NP-Hard for an arbitrary k ≥ 3. However, for fixed k the
problem is polynomially solvable in O(nk2/2−3k/2+4T (n,m)), where T (n,m) is the
complexity of the min-cut problem on a network of n nodes and m edges.

The Max(♯S) maximizes k for a fixed size of the multicut, whereas k-cut
minimizes the multicut size for a fixed k: the question would be then whether
k-cut is the dual of Max(♯S). Anyway, the k-cut can not be easily exploited to
compute a tight bound on Ns; in fact, to know how many sectors can be drawn
with Nv valves it would be necessary that Nv(k) (or Nv(Ns)) is also monotonic,
and then run the procedure to find out the minimum k-cut several times by
increasing k, until the objective value overcomes Nv.

3.6.2 Symmetry Breaking on the Names of Sectors

Given a valve placement, by changing the identifiers of the sectors we obtain a
solution that has identical value of objective function (and, indeed, is equivalent
from the hydraulic viewpoint) but corresponds to a different solution, as explained
in Section 3.4.3; this also happens in the ASP approach. For example, if we have
Ns sectors, each valve placement has Ns! equivalent answer sets, which expands
super-exponentially the solution space searched by the ASP solver.

A first, simple way to reduce the search space is to impose a naming conven-
tion to the sectors containing given edges. For example, we can sort the edges
(and assign an integer identifier to each of them) and then state that the sector
containing edge 1 must be called sector 1. This already reduces the search space
of a factor 1/Ns. Now, we cannot force the sector containing edge 2 to be called
sector 2, because edges 1 and 2 could be in the same sector. So, we impose that
the sector containing edge 2 is called either 1 or 2. In the same way, edge i can
be in one of the sectors from 1 to i. To program this in MILP the following

107 Search space reduction strategies

constraints can be set up:

zsi = 0, ∀i ∈ V | i > s, s ∈ S. (3.20)

To program the same in ASP, Rule 24 becomes:

46 1 { sector(e(X,Y),S): S<=I: index(e(X,Y),I) } 1:- e(X,Y).

where predicate index/2 associates a unique integer identifier to each edge.
Although this strategy reduces significantly the number of symmetries, it does

not remove all of them. In particular, edges with index i ≥ Ns (where Ns is the
maximum number of sectors) are associated to the same set of sector names by
the rules 24 and 46. In the most unlucky situation, all the first Ns edges are in the
same sector, and this strategy does not remove any symmetry neither in MILP
nor in ASP.

To break all symmetries, one can reason as follows. The i-th edge should be
either in one of sectors containing the first i − 1 edges, or in a new sector. So,
the i-th edge can belong to the sectors with names from 1 to max1≤j≤i Sj if Sj

is the sector containing edge j. To implement this in MILP the following set of
constraints should be imposed:

zsi ≤
�

j∈V :j<i

zs−1
j , ∀i ∈ V | i > 1, ∀s ∈ S | s > 1

This means that if a node i with index I is in the sector S then the sector S-1

contains at least one edge with smaller index.
To implement the same in ASP, the following integrity constraint can be im-

posed:

:- s(S1), S1==S-1,

index(e(A,B),I), sector(e(A,B),S),

0 { sector(e(C,D),S1): index(e(C,D),I2): I2<I } 0.

This means that if an edge with index I is in the sector s then the sector s − 1
contains at least one edge with smaller index. Note that this technique is appli-
cable to sectors, but not to extended sectors of the ASP program in Section 3.5.2,
since an edge might belong to more than one extended sector.

3.6.3 Symmetry breaking on valves positioning

As noticed in [34], if a junction node of the network has cardinality 2 there is no
reason neither to i) place two valves around it nor ii) try both positioning of the
same valve. The former is pretty clear being the junction nodes weightless. The

3. Optimal placement of Isolation Valves 108

latter is due to a symmetry, in fact placing a valve on one side of the junction
determines the same objective value w.r.t. placing it on the other, being again
the junction nodes weightless.

To avoid the solver to search on these choices, the following constraints are
included into the MILP formulation:

τ sij = 0, ∀(i, j) ∈ E | card(i) = 2, ∃(i, k) ∈ E, k < j, ∀s ∈ S

and into the ASP programs:

1 :- sym(I,J), sym(I,K), J<K, card(I,2)
�, valve(I,J .

where predicate card defines the cardinality of node A. Both prevent that a valve
is installed on a given side of a junction node with cardinality 2.

3.6.4 Redundant valves elimination

As noticed in [34], if a closed path in the graph (i.e., a cycle) contains exactly one
valve, then that valve is redundant. In fact, even when the valve is closed, the
water can find another path from one side of the valve to the other, so that the
valve cannot possibly separate two sectors. So, one can reduce the search space
by discarding a priori those valve placements that contain redundant valves.

In MILP this can be implemented by means of the following variables and
constraints:

�

(i,j)∈C

(τ si,j + τ sj,i) ≥ 2τ sk,l ∀(k, l) ∈ C, ∀C ∈ C, ∀s ∈ S

�

(i,j)∈C

(τ si,j + τ sj,i) ≥ 2τ sl,k ∀(k, l) ∈ C, ∀C ∈ C, ∀s ∈ S

where C is a cycle in a set of cycles C. This constraint basically states that if
there is at least one valve in the cycle, the sum of valves must be greater than 1.
However the MILP model for graph partitioning in Section 3.4.1 prevent already
to place redundant valves, and there is no reason to impose the constraints above.

In ASP, this optimization amounts to add an integrity constraint:

:- cycle(K), 1 { valve(I,J): cycle(K,e(I,J)),

valve(J,I): cycle(K,e(I,J)) } 1.

109 Search space reduction strategies

1

2 3

5

6 7

4

�

� �

�

��

�

Figure 3.15: Configuration containing a redundant valve

assuming that each cycle (for which one wants to forbid redundant valves) is
declared with a fact cycle(K) and membership of edges to cycles is declared with
facts cycle(e(A,B),K).

The number of cycles is exponential in the size of the graph; in order to reduce
the number of constraints of the ground program, one can use a smaller set of
cycles. In [34], the cycles considered for redundant valve elimination are faces of
the graph, that are a concept of planar graphs. When drawing the graph on a
plane, each of the regions surrounded by edges of the graph is called a face; the
number of faces is polynomial, as proven by Euler, and they can be computed in
polynomial time. However, hydraulic networks are not planar in general, and the
detection of redundant valves can be further improved.

All the cycles in a general graph with loops can be expressed by means of a
cycle basis (CB) that is always of size m−n+1 having m edges and n nodes [117].
Any other cycle is a linear combination of the vector space of CB. In non-planar
graphs the closest concept to the faces is the Minimum Cycle Basis (MCB), i.e.,
the cycle basis that minimizes a function cost on the edges. Considering all
unit weights the minimal cycle consists of chordless cycles. There are several
polynomial algorithms to compute the MCB [118, 119] and the most known are
the de Pina [120] and the Horton [117] algorithms.

Figure 3.15 shows a configuration of valves on a toy network that contains a
redundant valve, i.e., v2,5. This valve is the only within cycle C = {2, 3, 4, 5}, so
it does not split the cycle into different sectors. This redundant valve would not
be detected by the faces, since cycle C is not a face of the planar graph. However,
it is a chordless cycle and consequently it is included on the minimal cycle basis.

We conjecture that imposing constraints for the elimination of redundant
valves on the minimum cycle basis is sufficient to prevent redundant valves on
longer cycles; but no proof supports this conjecture yet.

Further remarks. Finally, on propagation based solvers such as ASP solvers,
we expect all these strategies can be vary effective. Instead, for MILP the above
strategies do not tighten the continuous relaxation, which is the generator of the

3. Optimal placement of Isolation Valves 110

upper bound on the optimal value. This means that these strategies can possibly
fix some variables along the B&B tree, but it is difficult to say whether and how
effective they can be. In fact, sometimes adding constraints to a MILP model
makes the solving time of the continuous relaxation slightly longer, and more
time is spent in every node of the B&B.

Table 3.3 reports the exact approaches for the BIVLP proposed in this dis-
cussion, plus the previous CLP(FD) [34]. The table also links these approaches
to the features developed to reduce the search space, such as Symmetry Breaking
(S.B.) strategies, and redundant valves elimination.

Table 3.3: Approaches and features developed for the BIVLP

❛
❛
❛
❛
❛
❛
❛
❛
❛

❛
❛

Feature

Approach
Logic Programming

Answer Set Programming

MILP CLP(FD)
Pipe Extended

Sectors
Isolation Sectors

S.B. on sectors � n.n. n.n. n.a. �

S.B. on valves � � � � �

Redundant valves
n.n. On faces MCB MCB MCB

elimination

n.n.: not needed - n.a.: not applicable - MCB: Minimum Cycle Basis

3.7 Computational results

The experimental platform for the BIVLP (Section 3.1.1) consists of a MILP
(Section 3.4) model and 3 ASP encodings (Section 3.5.1) plus a CLP(FD) pro-
gram [34].

Optimization runs were performed on an Intel Dual Core architecture based
on E6550 CPUs with 2.33GHz and 4GB of RAM. Only one core and a timeout
of 86400 seconds (24 hours) were used for each run. We used the Gurobi [61]
solver v5.0 to solve the MILP model, and the Clasp solver, provided by Potsdam
Answer Set Solving Collection (Potassco) [114] to solve the ASP programs. The
grounding time of Gringo for the ASP programs was negligible for all the tested
instances.

111 Computational results

We run the algorithms on the following three hydraulic networks. Apulian
(Figure 3.17a) is the benchmark considered in [7,34], and represents a part of the
distribution network of the Apulia region in Italy. In particular, studies [7,34] used
in this network a limit of at most one valve per pipe. Realtown (Figure 3.18a) is
the distribution network of a real city (the details are sensitive data and cannot be
disclosed). Anytown (Figure 3.19a) is a widely used benchmark in the hydraulic
engineering literature, and represents the WDS of a typical American town. The
ASP programs and the instances are available online.1 The aim is to analyze the
computational behaviour of the various approaches and configurations by varying
the networks and the number of available valves. For each network the number of
valves ranges in [Nmin

v , . . . , Nmax
v], i.e., from the minimum number of valves that

disconnects the network from the sources to the maximum number the network
can host.

The MILP model and the ASP programs have been dimensioned on Ns by
using the upper bound UB♯S(Nv) in Eq. (3.16), and the maximum number of sec-
tors Smax(Nv) obtained by the optimisation of the Max(♯S) model. For example,
in the Apulian network the cardinality of the tank node is 3, so Nv

min = 3 and
UB♯S(Nv) = Nv−2. Further details about the computational results for Max(♯S)
will be provided just below.

Computational analysis of Max(♯S). As discussed in Section 3.6.1, the size
of the search space for the MILP and some of the ASP programs depends on a
critical parameter: the maximum number Ns of sectors, for which we proposed in
Eq. (3.16) an easy to compute upper bound UB♯S(Nv).

However, a tighter bound can be computed with a separate optimization
process, as explained in Section 3.6.1, to compute the real maximum number
Smax(Nv) of sectors in the given distribution network. The resulting optimization
process consists now of two steps, namely computing Smax(Nv) and minimising the
worst service disruption (Figure 3.14); of course, the total computing time, given
Nv, should consider both the running times. Also the program Max(♯S) needs to
be dimensioned on the maximum number of sectors and takes in input Sdim(Nv).

To compute it we used the bound given by Corollary 4, so in order to estimate
the maximum number of sectors for Nv valves, Smax(Nv), we use the informa-
tion about the maximum number of sectors for Nv − 1 valves, Smax(Nv − 1). In
particular, recall that for Eq. (3.18):

Smax(Nv) =Smax(Nv − 1) + I I ∈ {0, 1}

1www.ing.unife.it/en/research/ai/vp_asp

3. Optimal placement of Isolation Valves 112

the problem can be considered as a satisfiability problem: finding if with one more
valve we can create one more sector (and I = 1) or not (and I = 0).

Figure 3.16 shows the time for solving both the MILP and ASP implemen-
tations of Max(♯S) in the Apulian network, varying the number of valves. The
same graph shows also Sdim(Nv), i.e., the input parameter, and the actual num-
ber of sectors Smax(Nv). Note that the running time has strong oscillations: it
depends on Nv but also on the Smax(Nv) value. If the satisfiability problem has a

Figure 3.16: Smax(Nv) values and computing times of Max(♯S) in ASP and MILP
for the Apulian network

solution (and I = 1), the search can immediately stop after finding it, while if this
problem has no solution (and I = 0), the solver has to explore the whole search
tree to prove that there is no solution for I = 1. However, this computing time is
almost negligible compared to the time for computing the best valve placement.
The ASP implementation has lower computing time than the MILP one.

Computational analysis of the MILP model. Table 3.4 reports the solving
time of Gurobi for the MILP model on the Apulian network, with Nv ∈ [3, · · · , 10].
Up to 8 valves the best configuration is the one that uses Smax(Nv) and no Sym-
metry Breaking (SB) constraints on the sectors (see Section 3.6.2). For 9 and
11 valves the best configuration is again Smax(Nv) but with SB. For 10 valves is
Smax(Nv) without SB. Consequently, tighter bound on Ns can help the search,
whereas symmetry breaking constraints on the sectors’ names do not give a clear
advantage. It is worth mentioning that Gurobi can be configured to perform its

113 Computational results

Table 3.4: Solving time (s) of Gurobi with different configurations

Nv

UB♯S(Nv) Max(♯S) Smax(Nv)

Ns Time Best time Ns Time Time (SB)

3 1 0 0 1 0 0
4 2 0 0 1 0 0
5 3 0 0 2 0 0
6 4 5 0 3 1 14
7 5 110 0 4 61 114
8 6 850 0 4 267 460
9 7 2905 0 5 2992 2055
10 8 17300 25 6 9598 timeout
11 9 timeout 853 6 timeout 59420
12 10 timeout 5 7 timeout timeout

own symmetry breaking strategies; however this always increases solving time
than the MILP one.

Computational analysis of the ASP programs. The Pipe Isolation and
the Extended Sectors encodings use information about all possible paths between
tanks and edges to handle unintended isolations. Between these two programs the
Extended Sectors need in general a lower number of comparisons to determine the
worst isolation case, so we expect this one to be more effective than Pipe Isolation.
Moreover, since the number of paths increases exponentially with the number of
edges, we expect in general a better performance of the Sectors encoding, which
builds up a sectorization and computes reachability of sectors. The charts in
Figures 3.17b, 3.18b and 3.19b show that the Sectors encoding outperforms the
others for all the networks. Also, the Extended Sectors outperforms Pipe Isolation.

A further series of experiments studies the effectiveness of the optimizations
shown in Section 3.6, namely the elimination of redundant valves (Section 3.6.4)
and the symmetry breaking on sectors’ names (Section 3.6.2). In these experi-
ments, we considered only the Sectors encoding, that had performed best in the
previous set of experiments. In the graphs in Figures 3.17c, 3.18c and 3.19c, we
compare the versions of the Sectors encoding: the base encoding, the addition
of Symmetry Breaking constraints, the removal of redundant valves based on
Cycles, and the combination of symmetry breaking with redundant valves elim-
ination (Complete). In the cycles and complete configurations, we consider the

3. Optimal placement of Isolation Valves 114

elimination of redundant valves based on all cycles or only on minimal cycles.
As we can see, in all networks both the symmetry breaking and the redundant
valve elimination provide a notable speedup; moreover, in general combining the
two techniques provides a further improvement.

The number of cycles used in the redundant valves elimination has also an
effect on the computing time. In some cases considering all the cycles (instead
of only the minimal ones) provides some improvement, while in others increasing
the number of cycles increases the computing time. It is worth noting that in all
cases, considering all cycles is better than considering no cycles at all, however,
in general, removing the redundant valves only on the minimal cycles provides
better performance. This can be seen in particular in the “Anytown” benchmark:
in this case the number of cycles is very large (15267), so the resulting ground
program can be very large for the solver.

In Figures 3.17d, 3.18d and 3.19d we compare the running time necessary to
find the best valve placement with different estimations for the upper bound on
the number of sectors: either setting UB♯S(Nv) (for brevity Sdim = UB(♯S)), or
using the two-stage architecture (Figure 3.14), where the first phase computes the
maximum number of sectors and the second feeds the value Smax(Nv) as input to
the optimal valve placement (for brevity Sdim = Max(♯S)). The second column in
Figures 3.17d, 3.18d and 3.19d provides always the best running time, even though
it is the sum of two optimization processes. The timings of the two processes are
shown in the graphs by splitting the column in two; the contribution of the first
phase is almost negligible.

Finally, Figures 3.17e, 3.18e and 3.19e show that the CLP(FD) formulation
is still faster than the best configuration of the Sectors ASP encoding (i.e., the
Complete(min) configuration with Sdim = max(♯S)). Both our MILP and ASP
formulation are not able to outperform CLP(FD) yet, but they can be surely
improved and also pave the way to hybrid and metaheuristics approaches. Next
section poses practical insights about further research on the optimal placement
of isolation valves.

Computational comparison between MILP and ASP approaches. Ta-
ble 3.5 reports computing times of the ASP Sectors and the MILP programs for
the Apulian network. The MILP program outperforms the ASP one for 10 valves
in the base version (without symmetry breaking). It also outperforms the ASP
version with SB but without MCB for 11 valves. However, the best configuration
among the ASP and the MILP versions is the ASP with SB and MCB.

These results show that symmetries have a notable role in the effectiveness
of the solving algorithms, both in MILP and ASP. The additional symmetry

115 Computational results

breaking constraints discussed in Section 3.6 reduce the computing time for the
ASP programs, but they are unhelpful for the MILP solver. This suggests to
design ASP encodings that assign the pipes to the sectors through deterministic
rules, so that no symmetries are introduced. In MILP, symmetry breaking should
be performed by implementing orbitopal fixing [97] into the search tree rather
than by cabling hard constraints into the model.

Table 3.5: Computing time (s) of the ASP encoding Sectors and the MILP
program using N ∗

s for the Apulian network

Base SB

Nv ASP MILP ASP ASP + MCB MILP

3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 1 0 0 14
7 7 61 4 1 114
8 67 267 29 4 460
9 1016 2992 350 51 2055
10 51722 9598 17703 889 timeout
11 timeout timeout timeout 8137 59420
12 timeout

3. Optimal placement of Isolation Valves 116

(a) Apulian WDS

�

����

����

����

����

����

����

����

� � � � � � �

��
�
��

���
�
���

��
��
��
��

��
�

��������

�������

��������������

����������������

�������

(b) Encodings comparison

�

�����

�����

�����

�����

�����

� � � � ��

��
�
��

���
��
���

��
��
��
��

��
�

��������

�������
����
��������������
������������
������������
��������������
��������������

(c) Sectors configuration comparison

��
��
�

�

����

����

����

����

�����

�����

�����

�� ��

��
�
��

���
��
���

��
��
��
��

��
�

��������

�������

�����������

������������

�������

(d) Sdim dimensioning impact

�

����

�����

�����

�����

�����

�����

� �� �� �� ��

��
�
��

���
��
���

��
��
��
��

��
�

��������

�������

����������������

�������

(e) Comparison with CLP

Figure 3.17: The Apulian network and optimisation performance

117 Computational results

(a) Realtown WDS

�

�����

�����

�����

�����

�����

�����

�����

�����

� � � � � �

��
�
��

���
��
���

��
��
��
��

��
�

��������

��������

��������������
����������������
�������

(b) Encodings comparison

�

�����

�����

�����

�����

�����

�����

� � � � ��

��
�
��

���
��
���

��
��
��
��

��
�

��������

��������
����
��������������
������������
������������
��������������
��������������

(c) Sectors configuration comparison

��
�
��

��

�

�����

�����

�����

�����

�����

�����

�� ��

��
�
��

���
��
���

��
��
��
��

��
�

��������

��������

�����������

������������

�������

(d) Sdim dimensioning impact

�

�����

�����

�����

�����

�����

�����

� � �� �� ��

��
�
��

���
��
���

��
��
��
��

��
�

��������

��������

����������������

�������

(e) Comparison with CLP

Figure 3.18: The Realtown network and optimisation performance

3. Optimal placement of Isolation Valves 118

(a) Anytown WDS

�

�����

�����

�����

�����

�����

�����

�����

� � � � � � � �� ��

��
�
��

���
��
���

��
��
��
��

��
�

��������

�������
��������������
����������������
�������

(b) Encodings comparison

�

�����

�����

�����

�����

�����

�����

�����

� � � � �� �� �� �� ��

��
�
��

���
��
���

��
��
��
��

��
�

��������

�������
����
��������������
������������
������������
��������������
��������������

(c) Sectors configuration comparison

��
��
�

�

����

����

����

����

�����

�����

�����

�� �� ��

��
�
��

���
��
���

��
��
��
��

��
�

��������

�������

�����������

������������

�������

(d) Sdim dimensioning impact

�

�����

�����

�����

�����

�����

�����

�����

�� �� �� �� ��

��
�
��

���
��
���

��
��
��
��

��
�

��������

�������

����������������

�������

(e) Comparison with CLP

Figure 3.19: The Anytown network and optimisation performance

119 Future improvements in IVLP

3.8 Future improvements in IVLP

Experimental results (Section 3.7) suggest to investigate further on MILP and
ASP approach, being computationally weak w.r.t. the CLP behaviour. Several
ideas to improve the state of the art are discussed along the next pages.

3.8.1 Further research on the MILP model

The MILP model has been solved by Branch and Bound; unfortunately the con-
tinuous relaxation does not provide good bounds on the satisfied demand (see
Section 3.4.3), thus the search tree is not pruned effectively. Also, symmetries
may even enlarge the search, but cabling symmetry breaking constraints into the
model does not give clear advantages.

To improve the MILP approach the following points should be taken into
account:

� tighten the continuous relaxation;

� improve the upper bound by means of heuristics;

� integrate ad hoc branching strategies;

� handling symmetries.

A bounding strategy for the BIVLP was proposed in [34]; even though it is
based on the internal demands of the sectors it can be performed on some nodes of
the B&B tree. Unfortunately it is not suitable to catch also unintended isolations.

Ad hoc branching strategies can be designed by considering topological aspects
of the network. For example the brancher can give higher priority to the variables
of the current biggest sector. The search can also use the cycles to select the
variables; in fact whenever a cycle contains only one valve, the branching priority
increases on the other variables of the cycle.

Symmetry breaking can be integrated into the search rather than into the
model. Orbitopal fixing [97] is a linear procedure that can be performed into any
node of the search tree for “partitioning orbitopes”. A partitioning orbitope is
the polytope drawn by a matrix of binary variables bij so that:

� each row is linked by a cardinality constraint of the form
�

i bij = 1, and

� the columns are sorted in a decreasing lexicographical order.

3. Optimal placement of Isolation Valves 120

It is actually the case of the partitioning variables zs, that are involved into
the partitioning constraints in Eq. (3.2a) and into the ordering constraints in
Eq. (3.20). Instead of adding additional constraints, this procedure checks whether
same variables are in the same orbitope of some other that are already fixed;
then, it fixes them simultaneously. This strategy had performed well for graph
partitioning problems and it can be promising for the BILVP either.

A Benders decomposition approach for IVLP

Recall the MILP model in (3.9a–3.9d):

maxΔ (3.9a)

s.t.

GP (τ), (3.9b)

Δ ≤ xs
P,σ ∀ s ∈ S, (3.9c)

FP (τ s) ∀ s ∈ S. (3.9d)

Let τ be a feasible assignment for the set of binary valves τ ; then the problem
becomes:

maxΔ (3.22a)

s.t.

Δ ≤ xs
P,σ ∀ s ∈ S, (3.22b)

FP (τ s) ∀ s ∈ S. (3.22c)

This may seem a Maximum Concurrent Flow Problem [121] at first sight, that is
NP-Hard. But notice that the s-th flow does not share the same network of the
others, so the flows of different sectors do not contribute to the same capacity.
Consequently the problem in (3.22a–3.22c) is a common Maximum Flow Problem
on parallel networks; to be solved an independent optimisation can be performed
for each sector. At the end the minimum-maximum flow is the optimal value of
δ. This algorithms runs in polynomial time, namely O(sF (m,n)), where F (m,n)
is the complexity of the algorithm used to maximise the single flow problem on a
network with m edges and n nodes.

This means that fixing the hard variables τ and z makes the problem easy
to solve. Typically in these scenarios a Benders Decomposition [24, 122] can be
applied. The problem to assign the hard variables is called the master problem,
and the easier nested problems are called subproblems. If the subproblems are

121 Future improvements in IVLP

linear programs the decomposition is the classical one from Benders, otherwise, it
is called the Generalized Benders Decomposition [123, 124].

The master problem in this case would be:

max y (3.23a)

s.t.

GP (τ), (3.23b)

c(τ s) ≥ y ∀k ∈ K, s ∈ S (3.23c)

c(τ s) ≥ 0 ∀j ∈ J, s ∈ S (3.23d)

where Eq. (3.23c) and (3.23d) are called “Benders cut”; the former is on optimality
cut and it is obtained from the dual of the subproblem every time it has an optimal
solution; instead the latter is a feasibility cut and it is obtained every time the
subproblem is infeasible. In particular K is the set of feasible suproblems, and
J is the set of infeasible subproblems. The dual of the subproblem in this case
would be Minimum Cut Problems as formalized in (3.11a–3.11l). So, accordingly
with (3.11a) the shape of the Benders cut would be:

c(τ s) ≡
�

(i,ǫij)∈Ψ

Υ(1− τ sij)(ω
s
i,ǫij

+ ωs
ǫij ,i

)+

+
�

(j,ǫij)∈Ψ

Υ(1− τ sji)(ω
s
j,ǫij

+ ωs
ǫij ,j

)+

+
�

(ǫij ,P)∈Π

(δǫijω
s
ǫij ,P

) (3.24)

Notice that in (3.24) ω are not variables anymore, but coefficients.
This procedure continues until the subproblem and the master problem have

the same objective value. In the worst case an exponential number of Benders
cuts are needed to achieve the optimality; however, the Benders decomposition
has been applied to many constrained optimisation problems on networks [125].

The master level is still an integer program and needs to be solved by B&B,
so symmetry breaking by orbitopal fixing could be useful either.

Finally, the optimality cuts in this application contain only integer coefficients.
This makes us interested into investigating hybrid resolution of the Benders de-
composition by means of ASP (the master), which better handles symmetries,
and linear programming (the subproblems). Unfortunately, for feasibility cuts
the integrality property does not hold anymore. However we believe that the sub-
problems can not be infeasible being the configuration of valves always feasible.
This should be investigated either.

3. Optimal placement of Isolation Valves 122

3.8.2 Further research on the ASP model

This work proposes also three encodings in Answer Set Programming. The first
encoding keeps the sectors implicit; for each computes a configuration of closed
valves and compares the satisfied demand of any isolation case with all the others.
The second also starts from the configuration of closed valves, groups the isolated
pipes into sectors, and compares only the unsatisfied demand of sectors. The
third encoding installs the valves, assigns the sectors to the pipes and compares
the unsatisfied demand between every pair of sectors.

As already mentioned in Section 3.5.2, both the first and the second encodings
have a main weakness: the solver for each pipe has to guess on the closed valves;
this makes the solver wrong every time the union of the closed valves is not a
feasible placement of the valves, and a lot of choices turn out as infeasible. The
encoding based on the sectors installs the valves globally, but then it also assigns
pipes to the sectors, begetting a huge amount of symmetry, though symmetry
breaking can be effectively imposed by some constraints.

A better ASP encoding would place the valves globally as in the third encoding,
would group pipes into sectors in a deterministic way (without delegating to the
search) and finally would compare the unsatisfied demand of the sectors through
the lowest number of comparisons. A version of the ASP encoding implementing
these ideas was proposed at the Model & Solve track of the ASP competition
2013, where the BIVLP was part of the benchmark set. 2

3.8.3 Hybrid metaheuristics approaches

A hydraulic network can be sketch out in order to represent only the main skele-
ton of the infrastructure. Thus, sometimes small networks can represent very
big infrastructures and a valve placement is computed for that simplified layout.
However even simplified layouts can be made of hundreds of pipes; in this case no
exact approaches in the literature are scalable enough to find even feasible solu-
tions. Neither metaheuristic approaches up to now faced with network of such a
size.

The most difficult task in big network would be represent (and find) a feasible
sectorization. For example, the genetic algorithm in [7] encodes each possible
position of a valve with a boolean variable; so the length of the encoding is 2m
with m pipes and the cardinality of the search space is 2m!. Hydraulic networks
are typically highly connected, which means they often contain a lot of loops (or
cycles). As stated in Section 3.6.4 the size of a cycle basis is m−n+1, and feasible

2https://www.mat.unical.it/aspcomp2013/

123 Future improvements in IVLP

positioning of valves would never place a single valve on a cycle of the minimal
cycle basis. A possible genetic encoding would map the placement of the valves
on the minimal cycle rather than on the feasible positions. For example the gene
may state whether on that cycle there are valves or not, otherwise it may state
how many valves it contains. Similarly to the architectures in Chapter 2, in this
case the genetic algorithm needs to be coupled to submodules in order to:

� compute new feasible individuals;

� compute the fitness of the solution.

The former is needed to prevent the exploration of infeasible solutions. The latter
is needed to find the actual placement of the valves given the individual’s DNA.
Notice that on big instances the second point would be an optimisation with an
important amount of fixed values; since cycles can be easily represented in ASP,
we believe that submodules of this architecture could be written in ASP.

Conclusions

In this work, two real applications in hydroinformatics have been addressed,
namely:

� the Response to Contamination Problem (RCP), an operative optimisation
problem, and

� the Isolation Valves Location Problem (IVLP), a strategic optimisation
problem.

These problems were addressed in the hydraulic literature by Genetic Algorithms
(GAs) [15, 15, 16]. Our approaches exploit GAs, as well as Local Search (LS),
Mixed Integer Linear Programming (MILP), Path Relinking (PR), Answer Set
Programming (ASP). To do that we modelled the problems as Constrained Op-
timisation Problems (COPs) and, in collaboration with the hydraulic engineers,
we formalized the constraints in a logical and mathematical fashion. Some of the
architectures proposed in this study are hybrid; for example, for the RCP they
integrate GA, MILP, and PR. Also, the mathematical model proposed hereby for
the IVLP allows for integrating ASP and MILP into the same solving architecture.
More details about these results are given just below.

The RCP is the problem to compute the optimal scheduling of operations that
the technicians have to implement in case of contamination events of the hydraulic
network. The case study was the hydraulic network of Ferrara (Italy), a city of
120, 000 citizens; here 3 teams of technicians were available, and 13 hydraulic
devices (hydrants and valves) were selected to be dispatched in response to the
contamination scenarios [15]. The aim was to compute the activation schedules
of the devices that minimize the volume of contaminated water consumed by
the users during the contamination event. The evaluation of this volume given
a feasible scheduling of response operations requires a hydraulic simulation, i.e.,
the objective function is a black box. Every simulation takes about 5 seconds in
EPANET [18] (an open–source hydraulic simulator), so the maximum number of
available simulations was limited to 500. The problem has been modelled as a

125

Conclusions 126

Constrained Optimisation Problem: the technicians have to move on the street
layer of the city, so the scheduling should be feasible according to the travelling
times and the constraints of the Multiple Travelling Salesman Problem (mTSP);
a Mixed Integer Linear Programming (MILP) description for the mTSP has been
provided and was inspired by the literature [36]. This is also the first novelty of
this work, in fact this model allows for considering all the possible feasible sched-
ules with the given number of teams; other studies in the hydraulic literature
assign a team to each device, otherwise if a lower number of teams is available
they define by hands some “reasonable” schedules [15,16]. A MILP solver cannot
minimize directly the volume of contaminated water, because of the complexity
of the physics laws governing the water flows; unfortunately, objective functions
interpreting common sense criteria (e.g., doing everything as soon as possible)
provided worse solutions with respect to a random search on the feasible solu-
tions. This was the second important result, because in case of emergency a fast
response is intuitively a good strategy, whereas in RCP doing randomly is better.
Consequently, a simulation–optimisation approach has been proposed, integrating
GAs, MILP, and EPANET. Two genetic encodings were inspired by the literature
of the mTSP [46]; they represent the routes of the teams and performed better
than the random search. A novel genetic encoding has been proposed to the RCP;
it uses the vector of activation times as chromosome and was inspired by the fact
that EPANET takes in input that very vector. The fitness was evaluated by
EPANET indeed. Moreover, the latter GA was hybrid because it was linked to a
MILP solver to ensure the feasibility of the solutions. The hybrid GA performed
better than the literature inspired ones. Almost 3 years of CPU time have been
used up to test our methods. The results had been validated by non–parametric
statistical tests [63]. Another novelty of this work was the application of Path
Relinking (PR) [68] to a mTSP variant and to simulation–optimisation scenarios
in general. PR is a well known strategy in Operations Research to improve the
solutions coming from another search strategy, and it has been applied to perform
an intensification on the final populations of different GA runs. The results en-
courage further investigations about a tighter integration of PR strategies into the
architecture. Finally, the solutions computed by these architectures are better on
average than the ones in the hydraulic literature; in particular, the best schedule
proposed in [15] was computed for 4 teams, and the averaged volume of contam-
inated water consumed by the users on 42 contamination scenarios was 44, 287
litres, whereas our hybrid GA, using only 3 teams, computes solutions that are
on average lower than 34, 000 litres.

The IVLP is the problem to compute the optimal placement of isolation valves
on the hydraulic network. Every time a pipe gets damaged, technicians first isolate

127

it by closing some surrounding valves, only then they fix the pipe. During these
operations all the users that are linked to the isolated region of the network
experience the lack of water. Every pipe may get broken, thus any part of the
city could experience a service disruption for a while, sooner or later. The aim
is then to minimize the unsatisfied demand due to the isolations; this would
be surely achieved by placing as many valves as needed to isolate always just
the broken pipe. Unfortunately, the valves have maintenance and installation
costs, so their number is limited; thus, a feasible placement of these valves should
determine a sectorization of the network. The problem apparently is a common
Graph Partitioning Problem, but isolating a part of the network may determine
some other unintended isolations, and this should be taken into account in order
to compute correctly the unsatisfied demand. Hydraulic engineers optimise the
placement of the available valves by means of GAs [7, 8], seeking a compromise
between cost and solution quality; the former is considered to be proportional
to the number of installed valves, the latter is the unsatisfied demand in the
worst isolation case. The problem to minimize the worst unsatisfied demand by
varying the isolation scenario is called Bottleneck IVLP (BIVLP). The first exact
approach for the BIVLP was in Constraint Logic Programming [34], so in Artificial
Intelligence; it was also the first study addressing this problem as a constrained
problem, and improved the state of the art by computing the optimal solutions
that the previous works did not provide. Instead, the first mathematical model for
the IVLP was proposed hereby; the model is expressed in MILP and identifies two
main problem structures: a main layer that contains the decision variables for the
valve placement and the graph partitioning’s constraints, and a nested maximum
flow layer that contains the variables and the constraints to compute the correct
unsatisfied demand of any isolation case. Since the variables in the GP layer are
integer and the remaining flow variables are continuous, this formulation paves
the way for a Benders decomposition, which will be investigated in future. The
MILP model has been also adapted to the BIVLP, and solved by using common
techniques in Operations Research. Some weaknesses have been detected in this
approach; the MILP model has not a good relaxation and also determines some
symmetries. Also, we proposed another approach in Artificial Intelligence, namely
in Answer Set Programming. Several ASP programs have been developed for the
BIVLP, some compute the unsatisfied demand exploiting the reachability of the
pipes from the sources, others define the sectors and their reachability. Defining
the sectors by their name yield symmetries also in ASP, but in this case they
can be effectively handled by imposing additional constraints, whereas in MILP it
was unhelpful. Both the approaches can be surely improved. For example ad hoc
symmetry breaking techniques for partitioning problems [97] can be implemented

Conclusions 128

in this case. The ASP programs can be modified in order to make the assignment
of pipes to sectors deterministic; this would also remove all symmetries. Finally,
since the best ASP programs outperforms the MILP one, the main level of the
Benders decomposition could be solved in ASP; to do that it would be necessary
to ensure that the cuts coming from the nested level do not contain real numbers.

To conclude, detecting and formalizing the constrained structure of the above
real problems in hydroinformatics has made possible to i) compute applicable
solutions, ii) exploit graph theory for modellization and solving purposes, iii) solve
the problem by well suited technologies in Operations Research and Artificial
Intelligence, and iv) propose new integrated architectures for a more effective
solving. In general, Operations Research and Artificial Intelligence, together with
graph theory, provide very well suited and well known theoretical and practical
techniques to address constrained optimisation problems. Optimisation issues in
hydroinformatics quite often present constrained structures, and we hope this
work can also help to give the insight about how strategic and promising the role
of these constraints can be.

Appendices

129

131

Boxplots

In this section, the result dataset of each scenario is depicted as a boxplot chart.
Axis x report GAs and BRSs methods, and axis y report the consumed contam-
inated volume in litres. Each boxplot involves 100 independent runs. Values of
Makespan and Latency solutions are also reported. Boxplots from scenario A to
scenario T are listed in alphabetical order.

�����

�����

�����

�����

�����

�����

�����

��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
���

��
��

� ����������

����������������� ��������������
�����

�����

�����

�����

�����

�����

��
��

��
��

��
��

��
�
��
��
��

��
��
��

��
���
��
��

� ����������

��������������� � ��������������

�����

�����

�����

�����

�����

�����

�����

�����

��
��
��

��
��
��

��
�
��
��
��

��
��
��

��
���
��
��
� ����������

����������������� ��������������
�����

�����

�����

�����

�����

�����

�����

��
��

��
��

��
��

��
�
��
��
��

��
��
��

��
���
��
��

� ����������

����������������� ��������������

�����

�����

�����

�����

�����

�����

�����

�����

�����

��
��

��
��

��
��

��
�
��
��
��

��
��
��

��
���
��
��

� ����������

��������������� � ��������������
�����

�����

�����

�����

�����

�����

�����

��
��

��
��

��
��

��
�
��
��
��

��
��
��

��
���
��
��

� ����������

����������������� ��������������

132

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
���

��
��

� ����������

����������������� ��������������

�����

�����

�����

�����

�����

�����

�����

�����

��
��
��

��
��
��

��
�
��
��
��

��
��
��

��
���
��
��
� ����������

���������������� ��������������

������

������

������

������

������

������

��
��
��

��
��
��

��
�
��
��
��

��
��
��

��
���
��
��
� ����������

����������������� ���������������
�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
���

��
��

� ����������

��������������� � ��������������

�����

�����

�����

�����

�����

�����

�����

��
��
��

��
��
��

��
�
��
��
��

��
��
��

��
���
��
��
� ����������

��������������� � ��������������
�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
���

��
��

� ����������

��������������� � ��������������

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

��
��
��

��
��
��

��
�
��
��
��

��
��
��

��
���
��
��
� ����������

����������������� ��������������
�����

�����

�����

�����

�����

�����

�����

�����

�����

��
��
��

��
��
��

��
�
��
��
��

��
��
��

��
���
��
��
� ����������

��������������� � ��������������

133

�����

�����

�����

�����

�����

�����

��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
���

��
��

� ����������

����������������� ��������������
�����

�����

�����

�����

�����

�����

�����

�����

��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
���

��
��

� ����������

����������������� ��������������

����

����

����

����

����

����

����

����

����

����

�����

��
��
��

��
��
��
��
�
��
��
��
��
��
��

��
���
��
��
� ����������

���������������� ��������������
�����

�����

�����

�����

�����

�����

�����

�����

��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
���

��
��

� ����������

����������������� ��������������

�����

�����

�����

�����

�����

�����

�����

��
��
��

��
��
��

��
�
��
��
��

��
��
��

��
���
��
��
� ����������

��������������� � ��������������

����

����

����

����

����

����

����

����

�����

��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
���

��
��

� �������� �

���������������� �������������

Bibliography

[1] E. Todini, “Looped water distribution networks design using a resilience
index based heuristic approach,” Urban Water, vol. 2, no. 2, pp. 115 –
122, 2000, developments in water distribution systems. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1462075800000492

[2] E. Creaco and M. Franchini, “Fast network multi-objective design algorithm
combined with an a posteriori procedure for reliability evaluation under var-
ious operational scenarios,” Urban Water Journal, vol. 9, no. 6, pp. 385–399,
2012. [Online]. Available: http://dx.doi.org/10.1080/1573062X.2012.690432

[3] M. Cunha and J. Sousa, “Water distribution network design optimization:
Simulated annealing approach,” Journal of Water Resources Planning and
Management, vol. 125, no. 4, pp. 215–221, 1999. [Online]. Available:
http://dx.doi.org/10.1061/(ASCE)0733-9496(1999)125:4(215)

[4] H. R. Maier, A. R. Simpson, A. C. Zecchin, W. K. Foong, K. Y.
Phang, H. Y. Seah, and C. L. Tan, “Ant colony optimization for design
of water distribution systems,” Journal of water resources planning and
management, vol. 129, no. 3, pp. 200–209, 2003. [Online]. Available:
http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9496(2003)129:3(200)

[5] M. Franchini, “Un excursus sugli algoritmi per la progettazione e la riabili-
tazione delle reti di distribuzione idrica,” L’Acqua, vol. 2, pp. 15 – 22, 2010.

[6] I. Narayanan, V. Sarangan, A. Vasan, A. Srinivasan, A. Sivasubramaniam,
B. Murt, and S. Narasimhan, “Efficient booster pump placement in water
networks using graph theoretic principles,” in Green Computing Conference
(IGCC), 2012 International, June 2012, pp. 1–6. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6322271

135

BIBLIOGRAPHY 136

[7] O. Giustolisi and D. A. Savić, “Optimal design of isolation valve
system for water distribution networks,” pp. 1–13. [Online]. Available:
http://ascelibrary.org/doi/abs/10.1061/41024%28340%2931

[8] E. Creaco, M. Franchini, and S. Alvisi, “Optimal placement of
isolation valves in water distribution systems based on valve cost
and weighted average demand shortfall,” Water Resources Manage-
ment, vol. 24, no. 15, pp. 4317–4338, 2010. [Online]. Available:
http://dx.doi.org/10.1007/s11269-010-9661-5

[9] J. J. Huang, E. A. McBean, and W. James, Multi-
objective Optimization for Monitoring Sensor Placement in Wa-
ter Distribution Systems, ch. 112, pp. 1–14. [Online]. Available:
http://ascelibrary.org/doi/abs/10.1061/40941%28247%29113

[10] S. Rathi and R. Gupta, “Sensor placement methods for contamina-
tion detection in water distribution networks: A review,” Procedia
Engineering, vol. 89, no. 0, pp. 181 – 188, 2014, 16th Wa-
ter Distribution System Analysis Conference, {WDSA2014} Urban
Water Hydroinformatics and Strategic Planning. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877705814022905

[11] W. E. Hart and R. Murray, “Review of sensor placement strate-
gies for contamination warning systems in drinking water distri-
bution systems,” Journal of Water Resources Planning and Man-
agement, vol. 136, no. 6, pp. 611–619, 2010. [Online]. Available:
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000081

[12] L. E. Ormsbee and K. E. Lansey, “Optimal control of water
supply pumping systems,” Journal of Water Resources Planning and
Management, vol. 120, no. 2, pp. 237–252, 1994. [Online]. Available:
http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9496(1994)120:2(237)

[13] R. Farmani, G. A. Walters, and D. A. Savic, “Trade-off be-
tween total cost and reliability for anytown water distribution
network,” Journal of Water Resources Planning and Manage-
ment, vol. 131, no. 3, pp. 161–171, 2005. [Online]. Available:
http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9496(1994)120:2(237)

[14] F. Martinez, V. Hernandez, J. Alonso, Z. Rao, and S. Alvisi, “Optimizing
the operation of the valencia water-distribution networ,” Journal of

137 BIBLIOGRAPHY

Hydroinformatics, vol. 9, no. 1, pp. 65–78, 2007. [Online]. Available:
http://www.iwaponline.com/jh/009/jh0090065.htm

[15] M. Guidorzi, M. Franchini, and S. Alvisi, “A multi-objective approach for
detecting and responding to accidental and intentional contamination events
in water distribution systems,” Urban Water, vol. 6, no. 2, pp. 115–135,
2009. [Online]. Available: http://dx.doi.org/10.1080/15730620802566836

[16] L. Alfonso, A. Jonoski, and D. Solomatine, “Multiobjective opti-
mization of operational responses for contaminant flushing in water
distribution networks,” Journal of Water Resources Planning and
Management, vol. 136, no. 1, pp. 48–58, 2010. [Online]. Available:
http://dx.doi.org/10.1061/(ASCE)0733-9496(2010)136:1(48)

[17] MATLAB, version R2014b. Natick, Massachusetts: The MathWorks Inc.,
2014. [Online]. Available: http://uk.mathworks.com/products/matlab/

[18] L. A. Rossman, EPANET 2 users manual, National Risk Manage-
ment Research Laboratory, Office of research and development, U.S.
Environmental Protection Agency, USA., 2000. [Online]. Available:
http://nepis.epa.gov/Adobe/PDF/P1007WWU.pdf

[19] J. April, F. Glover, J. P. Kelly, and M. Laguna, “Simulation-based
optimization: Practical introduction to simulation optimization,” in
Proceedings of the 35th Conference on Winter Simulation: Driving
Innovation, ser. WSC ’03. Winter Simulation Conference, 2003, pp. 71–78.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1030818.1030830

[20] S. Shan and G. Wang, “Survey of modeling and optimization
strategies to solve high-dimensional design problems with computationally-
expensive black-box functions,” Structural and Multidisciplinary Op-
timization, vol. 41, no. 2, pp. 219–241, 2010. [Online]. Available:
http://dx.doi.org/10.1007/s00158-009-0420-2

[21] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to
the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman &
Co., 1990.

[22] D. Jungnickel and T. Schade, Graphs, networks and algorithms. Springer,
2008.

BIBLIOGRAPHY 138

[23] J. M. Harris, J. L. Hirst, and M. J. Mossinghoff, Combinatorics and graph
theory. Springer, 2008, vol. 2.

[24] R. Martin, Large Scale Linear and Integer Optimization: A Unified Ap-
proach. Springer US, 1999.

[25] F. Rossi, P. van Beek, and T. Walsh, Handbook of Constraint Programming,
ser. Foundations of Artificial Intelligence. Elsevier Science, 2006.

[26] J. W. Lloyd, Foundations of Logic Programming; (2Nd Extended Ed.). New
York, NY, USA: Springer-Verlag New York, Inc., 1987.

[27] J. Jaffar and M. J. Maher, “Constraint logic programming: a survey,” The
Journal of Logic Programming, vol. 1920, Supplement 1, no. 0, pp. 503 – 581,
1994, special Issue: Ten Years of Logic Programming. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0743106694900337

[28] M. Gelfond, “Answer sets,” in Handbook of Knowledge Representation,
F. van Harmelen, V. Lifschitz, and B. Porter, Eds. Elsevier Science, 2008,
ch. 7, pp. 285–316.

[29] K. Ghedira, Constraint Satisfaction Problems: CSP Formalisms and Tech-
niques, ser. FOCUS Series. Wiley, 2013.

[30] A. Biere, Handbook of Satisfiability, ser. Frontiers in artificial intelligence
and applications. IOS Press, 2009.

[31] C. Bragalli, C. DAmbrosio, J. Lee, A. Lodi, and P. Toth, “On the
optimal design of water distribution networks: a practical minlp approach,”
Optimization and Engineering, vol. 13, no. 2, pp. 219–246, 2012. [Online].
Available: http://dx.doi.org/10.1007/s11081-011-9141-7

[32] J. W. Berry, W. E. Hart, C. A. Phillips, and J.-
P. Watson, A Facility Location Approach to Sensor Place-
ment Optimization, 2008, ch. 110, pp. 1–4. [Online]. Available:
http://ascelibrary.org/doi/abs/10.1061/40941%28247%29111

[33] M. Propato, “Contamination warning in water networks: General mixed-
integer linear models for sensor location design,” Journal of Water Resources
Planning and Management, vol. 132, no. 4, pp. 225–233, 2006. [Online].
Available: http://dx.doi.org/10.1061/(ASCE)0733-9496(2006)132:4(225)

139 BIBLIOGRAPHY

[34] M. Cattafi, M. Gavanelli, M. Nonato, S. Alvisi, and M. Franchini, “Optimal
placement of valves in a water distribution network with CLP(FD),”
Theory and Practice of Logic Programming, vol. 11, no. 4-5, pp. 731–747,
2011. [Online]. Available: http://arxiv.org/abs/1109.1248

[35] R. Murray, W. Hart, C. Phillips, J. Berry, E. Boman, R. Carr, L. A.
Riesen, J.-P. Watson, T. Haxton, J. Herrmann, R. Janke, G. Gray,
T. Taxon, J. Uber, and K. Morley, “US environmental protection
agency uses operations research to reduce contamination risks in drinking
water,” Interfaces, vol. 39, no. 1, pp. 57–68, 2009. [Online]. Available:
http://pubsonline.informs.org/doi/abs/10.1287/inte.1080.0415

[36] T. Bektas, “The multiple traveling salesman problem: an
overview of formulations and solution procedures,” Omega,
vol. 34, no. 3, pp. 209 – 219, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0305048304001550

[37] S. Alvisi, M. Franchini, M. Gavanelli, and M. Nonato, “Near-
optimal scheduling of device activation in water distribution systems
to reduce the impact of a contamination event,” Journal of Hy-
droinformatics, vol. 14, no. 2, pp. 345–365, 2012. [Online]. Available:
http://www.iwaponline.com/jh/014/jh0140345.htm

[38] M. Gavanelli, M. Nonato, A. Peano, S. Alvisi, and M. Franchini, “Scheduling
countermeasures to contamination events by genetic algorithms,” AI
Communications, vol. 28, no. 2, pp. 259–282, 2015. [Online]. Available:
http://iospress.metapress.com/content/lr175378659g4r73/

[39] ——, “Genetic algorithms for scheduling devices operation in a water
distribution system in response to contamination events,” in Evolutionary
Computation in Combinatorial Optimization, ser. Lecture Notes in
Computer Science, J.-K. Hao and M. Middendorf, Eds. Springer
Berlin / Heidelberg, 2012, vol. 7245, pp. 124–135. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-29124-1 11

[40] S. Liu, H. Che, K. Smith, and L. Chen, “Contamination event detection
using multiple types of conventional water quality sensors in source water,”
Environ. Sci.: Processes Impacts, vol. 16, pp. 2028–2038, 2014. [Online].
Available: http://dx.doi.org/10.1039/C4EM00188E

[41] A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, and C. Faloutsos,
“Efficient sensor placement optimization for securing large water

BIBLIOGRAPHY 140

distribution networks,” Journal of Water Resources Planning and
Management, vol. 134, no. 6, pp. 516–526, 2008. [Online]. Available:
http://dx.doi.org/10.1061/(ASCE)0733-9496(2008)134:6(516)

[42] T. M. Baranowski and E. J. LeBoeuf, “Consequence management optimiza-
tion for contaminant detection and isolation,” Journal of Water Resources
Planning and Management, vol. 132, no. 4, pp. 274–282, 2006. [Online].
Available: http://dx.doi.org/10.1061/(ASCE)0733-9496(2006)132:4(274)

[43] M. E. Shafiee and E. Z. Berglund, “Real-time guidance for hydrant flushing
using sensor-hydrant decision trees,” Journal of Water Resources Planning
and Management, vol. 0, no. 0, p. 0, 2014, accepted for publication. [Online].
Available: http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000475

[44] L. Tang, J. Liu, A. Rong, and Z. Yang, “A multiple traveling
salesman problem model for hot rolling scheduling in Shanghai
Baoshan Iron & Steel Complex,” European Journal of Operational
Research, vol. 124, no. 2, pp. 267 – 282, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S037722179900380X

[45] C. J. Malmborg, “A genetic algorithm for service level based
vehicle scheduling,” European Journal of Operational Research,
vol. 93, no. 1, pp. 121 – 134, 1996. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0377221795001859

[46] A. E. Carter and C. T. Ragsdale, “A new approach to
solving the multiple traveling salesperson problem using ge-
netic algorithms,” European Journal of Operational Research,
vol. 175, no. 1, pp. 246 – 257, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377221705004236

[47] ——, “Scheduling pre-printed newspaper advertising inserts using genetic
algorithms,” Omega, vol. 30, no. 6, pp. 415 – 421, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0305048302000592

[48] S.-H. Chen and M.-C. Chen, “Operators of the two-part encoding
genetic algorithm in solving the multiple traveling salesmen problem,”
in Technologies and Applications of Artificial Intelligence (TAAI), 2011
International Conference on, Nov 2011, pp. 331–336. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6120767

141 BIBLIOGRAPHY

[49] G. Reinelt, “TSPLIB - A t.s.p. library,” Universität Augsburg, Institut
für Mathematik, Augsburg, Tech. Rep. 250, 1990. [Online]. Available:
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

[50] J. Fowler, S. Horng, and J. Cochran, “A hybridized genetic algorithm to
solve parallel machine scheduling problems with sequence dependent se-
tups,” International Journal of Industrial Engineering: Theory, Applica-
tions and Practice, vol. 10, no. 3, pp. 232 – 243, 2003.

[51] J. F. Gonçalves, J. J. de Magalhães Mendes, and M. G. C.
Resende, “A hybrid genetic algorithm for the job shop
scheduling problem,” European Journal of Operational Research,
vol. 167, no. 1, pp. 77 – 95, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377221704002656

[52] F. Sivrikaya-Şerifoǧlu and G. Ulusoy, “Parallel machine scheduling
with earliness and tardiness penalties,” Computers & Operations
Research, vol. 26, no. 8, pp. 773 – 787, 1999. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0305054898000902

[53] T. Zhang, W. Gruver, and M. Smith, “Team scheduling by genetic
search,” in Intelligent Processing and Manufacturing of Materials,
1999. IPMM ’99. Proceedings of the Second International Con-
ference on, vol. 2, 1999, pp. 839–844 vol.2. [Online]. Available:
http://dx.doi.org/10.1109/IPMM.1999.791495

[54] R. Cheng and M. Gen, “Parallel machine scheduling problems
using memetic algorithms,” Computers & Industrial Engineering,
vol. 33, no. 34, pp. 761 – 764, 1997. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0360835297002477

[55] P. A. Rubin and G. L. Ragatz, “Scheduling in a sequence dependent
setup environment with genetic search,” Computers & Operations
Research, vol. 22, no. 1, pp. 85 – 99, 1995. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0305054893E0021K

[56] A. Allahverdi, C. Ng, T. Cheng, and M. Y. Kovalyov, “A survey of
scheduling problems with setup times or costs,” European Journal of Oper-
ational Research, vol. 187, no. 3, pp. 985 – 1032, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377221706008174

BIBLIOGRAPHY 142

[57] R. G. Regis and C. A. Shoemaker, “Combining radial basis function surro-
gates and dynamic coordinate search in high-dimensional expensive black-
box optimization,” Engineering Optimization, vol. 45, no. 5, pp. 529–555,
2013. [Online]. Available: http://dx.doi.org/10.1080/0305215X.2012.687731

[58] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, 1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1989.

[59] P. Toth and D. Vigo, The Vehicle Routing Problem, P. Toth and D. Vigo,
Eds. Society for Industrial and Applied Mathematics, 2002. [Online].
Available: http://epubs.siam.org/doi/abs/10.1137/1.9780898718515

[60] J. Forrest and R. Lougee-Heimer, CBC User Guide, Computa-
tional Infrastructure for Operations Research, http://www.coin-
or.org/Cbc/cbcuserguide.html.

[61] Gurobi Optimization, Inc., “Gurobi optimizer reference manual,” 2014,
http://www.gurobi.com.

[62] M. Friedman, “The use of ranks to avoid the assumption of normality
implicit in the analysis of variance,” Journal of the American Statistical
Association, vol. 32, no. 200, pp. 675–701, 1937. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/01621459.1937.10503522

[63] E. C. Myles Hollander, Douglas A. Wolfe, Nonparametric statisti-
cal methods, 3rd ed., ser. Wiley series in probability and statis-
tics: Texts and references section. Wiley, 2014. [Online]. Available:
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470387378.html

[64] P. Nemenyi, “Distribution-free multiple comparisons,” Ph.D. dissertation,
Princeton University, 1963.

[65] C. Bonferroni, Teoria statistica delle classi e calcolo delle probabilità, ser.
Pubblicazioni del R. Istituto superiore di scienze economiche e commerciali
di Firenze. Libreria internazionale Seeber, 1936.

[66] R. Miller, Simultaneous Statistical Inference, ser. Springer Se-
ries in Statistics. Springer New York, 1981. [Online]. Available:
http://www.springer.com/us/book/9781461381242

[67] Addinsoft SARL, “XLSTAT v2012.6,” http://www.xlstat.com.

143 BIBLIOGRAPHY

[68] F. Glover, M. Laguna, and R. Mart́ı, “Fundamentals
of scatter search and path relinking,” Control and Cy-
bernetics, vol. 39, pp. 653–684, 2000. [Online]. Available:
http://leeds-faculty.colorado.edu/glover/ssandprfundamentals.pdf

[69] J. Caceres-Cruz, P. Arias, D. Guimarans, D. Riera, and A. A.
Juan, “Rich vehicle routing problem: Survey,” ACM Comput. Surv.,
vol. 47, no. 2, pp. 32:1–32:28, Dec. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2666003

[70] S. Ho and M. Gendreau, “Path relinking for the vehicle routing problem,”
Journal of Heuristics, vol. 12, no. 1-2, pp. 55–72, 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10732-006-4192-1

[71] C. Prins, C. Prodhon, and R. Calvo, “Solving the capacitated location-
routing problem by a grasp complemented by a learning process and a
path relinking,” 4OR, vol. 4, no. 3, pp. 221–238, 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10288-006-0001-9

[72] M. Reghioui, C. Prins, and N. Labadi, “Grasp with path relinking for
the capacitated arc routing problem with time windows,” in Applications
of Evolutionary Computing, ser. Lecture Notes in Computer Science,
M. Giacobini, Ed. Springer Berlin Heidelberg, 2007, vol. 4448, pp. 722–731.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-71805-5 78

[73] K. Srensen and P. Schittekat, “Statistical analysis of distance-based path
relinking for the capacitated vehicle routing problem,” Computers & Oper-
ations Research, vol. 40, no. 12, pp. 3197 – 3205, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0305054813000373

[74] A. Rahimi-Vahed, T. Crainic, M. Gendreau, and W. Rei, “A path relinking
algorithm for a multi-depot periodic vehicle routing problem,” Journal
of Heuristics, vol. 19, no. 3, pp. 497–524, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10732-013-9221-2

[75] E. Vallada and R. Ruiz, “Genetic algorithms with path relink-
ing for the minimum tardiness permutation flowshop problem,”
Omega, vol. 38, no. 12, pp. 57 – 67, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0305048309000322

[76] G. Q. Zhang and K. K. Lai, “Combining path relinking and genetic
algorithms for the multiple-level warehouse layout problem,” European

BIBLIOGRAPHY 144

Journal of Operational Research, vol. 169, no. 2, pp. 413 – 425, 2006, feature
Cluster on Scatter Search Methods for Optimization. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377221704005466

[77] M. Ranjbar, F. Kianfar, and S. Shadrokh, “Solving the resource
availability cost problem in project scheduling by path relink-
ing and genetic algorithm,” Applied Mathematics and Computa-
tion, vol. 196, no. 2, pp. 879 – 888, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0096300307007412

[78] M. Martins, S. Fuchs, L. Pando, R. Lders, and M. Del-
gado, “PSO with path relinking for resource allocation us-
ing simulation optimization,” Computers & Industrial Engineer-
ing, vol. 65, no. 2, pp. 322 – 330, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0360835213000417

[79] A. Peano, M. Nonato, M. Gavanelli, S. Alvisi, and M. Franchini, “A
bilevel mixed integer linear programming model for valves location in
water distribution systems,” in 3rd Student Conference on Operational
Research, ser. OpenAccess Series in Informatics (OASIcs), S. Ravizza
and P. Holborn, Eds., vol. 22. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2012, pp. 103–112. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2012/3551

[80] M. Gavanelli, M. Nonato, A. Peano, S. Alvisi, and M. Franchini, “An ASP
approach for the valves positioning optimization in a water distribution
system,” in 9th Italian Convention on Computational Logic (CILC 2012),
Rome, Italy, ser. CEUR workshop proceedings, F. Lisi, Ed., vol. 857, 2012,
pp. 134–148. [Online]. Available: http://ceur-ws.org/Vol-857/paper f10.pdf

[81] M. Gavanelli, M. Nonato, and A. Peano, “An ASP approach for the
valves positioning optimization in a water distribution system,” Journal of
Logic and Computation, 2013, accepted for publication. [Online]. Available:
http://logcom.oxfordjournals.org/content/early/2013/12/04/logcom.ext065

[82] H. Jun and G. V. Loganathan, “Valve-controlled segments in water
distribution systems,” Journal of Water Resources Planning and
Management, vol. 133, no. 2, pp. 145–155, 2007. [Online]. Available:
http://dx.doi.org/10.1061/(ASCE)0733-9496(2007)133:2(145)

[83] J.-J. Kao and P.-H. Li, “A segment-based optimization model
for water pipeline replacement,” Journal - American Water

145 BIBLIOGRAPHY

Works Association, vol. 99, no. 7, pp. 83–95, 2007. [Online]. Available:
http://www.awwa.org/publications/journal-awwa/abstract/articleid/15698

[84] M. Bruni, P. Beraldi, and D. Conforti, “A stochastic programming
approach for the strategic valve locations problem in a water dis-
tribution system,” Procedia - Social and Behavioral Sciences, vol.
108, no. 0, pp. 129 – 138, 2014, operational Research for De-
velopment, Sustainability and Local Economies. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877042813054669

[85] B. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning
graphs,” Bell Systems Technical Journal, vol. 49, pp. 291–307, 1970. [On-
line]. Available: http://www.cs.bell-labs.com/who/bwk/partitioning.pdf

[86] F. R. Chung, Spectral graph theory. American Mathematical Soc., 1997,
vol. 92.

[87] R. Pichler, S. Rümmele, and S. Woltran, “Multicut algorithms via
tree decompositions,” in Algorithms and Complexity, ser. Lecture Notes
in Computer Science, T. Calamoneri and J. Diaz, Eds., vol. 6078.
Springer Berlin Heidelberg, 2010, pp. 167–179. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-13073-1 16

[88] S. Chopra and M. R. Rao, “The partition problem,” Mathematical
Programming, vol. 59, no. 1-3, pp. 87–115, 1993. [Online]. Available:
http://dx.doi.org/10.1007/BF01581239

[89] C. Ferreira, A. Martin, C. de Souza, R. Weismantel, and L. Wolsey,
“Formulations and valid inequalities for the node capacitated graph
partitioning problem,” Mathematical Programming, vol. 74, no. 3, pp.
247–266, 1996. [Online]. Available: http://dx.doi.org/10.1007/BF02592198

[90] A. D. Nardo, M. D. Natale, G. Santonastaso, and S. Venticinque, “Graph
partitioning for automatic sectorization of a water distribution system,”
in Urban Water Management: Challenges and Opportunities, D. Savic,
Z. Kapelan, and D. Butler, Eds., vol. 3. Centre for Water Systems, Uni-
versity of Exeter, Exeter (UK), 2011, pp. 841–846.

[91] “IBM ILOG CPLEX Optimizer, user’s man-
ual for CPLEX,” 2010. [Online]. Available:
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

BIBLIOGRAPHY 146

[92] T. Achterberg, “Scip: Solving constraint integer programs,” Mathematical
Programming Computation, vol. 1, no. 1, pp. 1–41, July 2009. [Online].
Available: http://mpc.zib.de/index.php/MPC/article/view/4

[93] Fair Isaac Corporation, “FICO Xpress Optimization Suite.” [Online]. Avail-
able: http://www.fico.com/en/products/fico-xpress-optimization-suite

[94] B. Gendron, T. Crainic, and A. Frangioni, “Multicommodity ca-
pacitated network design,” in Telecommunications Network Planning,
ser. Centre for Research on Transportation, B. Sans and P. So-
riano, Eds. Springer US, 1999, pp. 1–19. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4615-5087-7 1

[95] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel
optimization,” Annals of Operations Research, vol. 153, no. 1, pp. 235–256,
2007. [Online]. Available: http://dx.doi.org/10.1007/s10479-007-0176-2

[96] C. Papadimitriou and K. Steiglitz, Combinatorial Optimiza-
tion: Algorithms and Complexity, ser. Dover Books on Com-
puter Science Series. Dover Publications, 1998. [Online]. Available:
https://books.google.it/books?id=cDY-joeCGoIC

[97] V. Kaibel, M. Peinhardt, and M. E. Pfetsch, “Orbitopal fixing,” Discrete
Optimization, vol. 8, no. 4, pp. 595 – 610, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1572528611000430

[98] M. Bruglieri, P. Cappanera, A. Colorni, and M. Nonato, “Modeling the
gateway location problem for multicommodity flow rerouting,” in Network
Optimization, ser. Lecture Notes in Computer Science, J. Pahl, T. Reiners,
and S. Vo, Eds. Springer Berlin Heidelberg, 2011, vol. 6701, pp. 262–276.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-21527-8 31

[99] S. Russell and P. Norvig, Artificial Intelligence: A Modern Ap-
proach, ser. Always learning. Pearson, 2014. [Online]. Available:
https://books.google.it/books?id=DFJtngEACAAJ

[100] W. Clocksin and C. Mellish, Programming in Pro-
log. Springer Berlin Heidelberg, 2003. [Online]. Available:
https://books.google.it/books?id=VjHk2Cjrti8C

[101] N.-f. Zhou, “The language features and architecture of b-prolog,” Theory
Pract. Log. Program., vol. 12, no. 1-2, pp. 189–218, Jan. 2012. [Online].
Available: http://dx.doi.org/10.1017/S1471068411000445

147 BIBLIOGRAPHY

[102] K. R. Apt and M. Wallace, Constraint Logic Programming using ECLiPSe.
Cambridge University Press, 2007.

[103] M. Carlsson and P. Mildner, “Sicstus prologthe first 25 years,” Theory
and Practice of Logic Programming, vol. 12, pp. 35–66, 1 2012. [Online].
Available: http://journals.cambridge.org/article S1471068411000482

[104] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, “Swi-prolog,” Theory
and Practice of Logic Programming, vol. 12, pp. 67–96, 1 2012. [Online].
Available: http://journals.cambridge.org/article S1471068411000494

[105] C. Baral, Knowledge Representation, Reasoning, and Declarative Problem
Solving. New York, NY, USA: Cambridge University Press, 2003.

[106] N. Leone, “Logic programming and nonmonotonic reasoning: From theory
to systems and applications,” in Logic Programming and Nonmonotonic
Reasoning, ser. Lecture Notes in Computer Science, C. Baral, G. Brewka,
and J. Schlipf, Eds. Springer Berlin Heidelberg, 2007, vol. 4483, pp. 1–1.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-72200-7 1

[107] E. Giunchiglia, Y. Lierler, and M. Maratea, “Answer set pro-
gramming based on propositional satisfiability,” Journal of Auto-
mated Reasoning, vol. 36, pp. 345–377, 2006. [Online]. Available:
http://www.cs.utexas.edu/users/ai-lab/?giu06

[108] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scar-
cello, “The DLV system for knowledge representation and reasoning,” ACM
Transactions on Computational Logic (TOCL), vol. 7, no. 3, pp. 499–562,
Jul. 2006. [Online]. Available: http://doi.acm.org/10.1145/1149114.1149117

[109] M. Gebser, B. Kaufmann, and T. Schaub, “Conflict-driven an-
swer set solving: From theory to practice,” Artificial Intelli-
gence, vol. 187-188, pp. 52–89, Aug. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.artint.2012.04.001

[110] M. Gelfond and V. Lifschitz, “The stable model semantics for
logic programming,” in Proceedings of International Logic Program-
ming Conference and Symposium, R. Kowalski, Bowen, and Ken-
neth, Eds. MIT Press, 1988, pp. 1070–1080. [Online]. Available:
http://www.cs.utexas.edu/users/ai-lab/?gel88

BIBLIOGRAPHY 148

[111] M. Gebser, R. Kaminski, M. Ostrowski, T. Schaub, and S. Thiele,
“On the input language of asp grounder gringo,” in Logic Program-
ming and Nonmonotonic Reasoning, ser. Lecture Notes in Computer
Science, E. Erdem, F. Lin, and T. Schaub, Eds., vol. 5753.
Springer Berlin Heidelberg, 2009, pp. 502–508. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04238-6 49

[112] P. Simons, I. Niemelä, and T. Soininen, “Extending and
implementing the stable model semantics,” Artificial Intelli-
gence, vol. 138, no. 12, pp. 181 – 234, 2002, knowl-
edge Representation and Logic Programming. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S000437020200187X

[113] F. Lin and Y. Zhao, “ASSAT: computing answer sets of a logic
program by SAT solvers,” Artificial Intelligence, vol. 157, no. 12,
pp. 115 – 137, 2004, nonmonotonic Reasoning. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0004370204000578

[114] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and
M. Schneider, “Potassco: The potsdam answer set solving collection,”
AI Communications, vol. 24, no. 2, pp. 107–124, Apr. 2011. [Online].
Available: http://iospress.metapress.com/content/nr20503mu5606v0x/

[115] W. Faber, N. Leone, and G. Pfeifer, “Recursive aggregates in disjunctive
logic programs: Semantics and complexity,” in Logics in Artificial
Intelligence, ser. Lecture Notes in Computer Science, J. Alferes and
J. Leite, Eds., vol. 3229. Springer Berlin Heidelberg, 2004, pp. 200–212.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-30227-8 19

[116] O. Goldschmidt and D. S. Hochbaum, “A polynomial algorithm for the k-cut
problem for fixed k,” Mathematics of Operations Research, vol. 19, no. 1, pp.
24–37, 1994. [Online]. Available: http://dx.doi.org/10.1287/moor.19.1.24

[117] J. D. Horton, “A polynomial-time algorithm to find the shortest cycle basis
of a graph,” SIAM Journal on Computing, vol. 16, no. 2, pp. 358–366,
1987. [Online]. Available: http://dx.doi.org/10.1137/0216026

[118] K. Mehlhorn and D. Michail, “Implementing minimum cycle basis
algorithms,” Journal of Experimental Algorithmics, vol. 11, Feb. 2007.
[Online]. Available: http://doi.acm.org/10.1145/1187436.1216582

149 BIBLIOGRAPHY

[119] F. Berger, P. Gritzmann, and S. de Vries, “Minimum cycle bases for
network graphs,” Algorithmica, vol. 40, no. 1, pp. 51–62, 2004. [Online].
Available: http://dx.doi.org/10.1007/s00453-004-1098-x

[120] J. C. de Pina, “Applications of shortest path methods,” Ph.D. dissertation,
Amsterdam School of Economics Research Institute (ASE-RI), 1995.

[121] F. Shahrokhi and D. W. Matula, “The maximum concurrent flow problem,”
Journal of the ACM, vol. 37, no. 2, pp. 318–334, 1990. [Online]. Available:
http://doi.acm.org/10.1145/77600.77620

[122] J. F. Benders, “Partitioning procedures for solving mixed-variables
programming problems.” Numerische Mathematik, vol. 4, pp. 238–252,
1962/63. [Online]. Available: http://eudml.org/doc/131533

[123] A. Geoffrion, “Generalized benders decomposition,” Journal of Optimization
Theory and Applications, vol. 10, no. 4, pp. 237–260, 1972. [Online].
Available: http://dx.doi.org/10.1007/BF00934810

[124] J. Hooker, Logic-Based Methods for Optimization: Combining Opti-
mization and Constraint Satisfaction, ser. Wiley Series in Discrete
Mathematics and Optimization. Wiley, 2011. [Online]. Available:
https://books.google.it/books?id=1fT6qiih5ygC

[125] A. M. Costa, “A survey on benders decomposition applied to
fixed-charge network design problems,” Computers & Operations Re-
search, vol. 32, no. 6, pp. 1429 – 1450, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0305054803003435

Author’s Publications List

[J1] Marco Gavanelli, Maddalena Nonato, Andrea Peano, Stefano Alvisi, and
Marco Franchini, “Scheduling countermeasures to contamination events by
genetic algorithms”, AI Communications, vol. 28, no. 2, pp. 259–282, 2015
doi: 10.3233/AIC-140638.
Scopus: 2-s2.0-84922560199.
ISI: 000349156700007.

[J2] Marco Gavanelli, Maddalena Nonato, and Andrea Peano, “An ASP ap-
proach for the valves positioning optimization in a water distribution sys-
tem”, Journal of Logic and Computation, accepted for publication.
doi: 10.1093/logcom/ext065.

[C1] Marco Gavanelli, Maddalena Nonato, Andrea Peano, Stefano Alvisi, and
Marco Franchini, “Genetic algorithms for scheduling devices operation in
a water distribution system in response to contamination events”, In J.-K.
Hao and M. Middendorf, editors, Evolutionary Computation in Combinato-
rial Optimization, volume 7245 of Lecture Notes in Computer Science, pages
124–135. Springer Berlin / Heidelberg, 2012
doi: 10.1007/978-3-642-29124-1 11
Scopus: 2-s2.0-84859138145.

[C2] Andrea Peano, Maddalena Nonato, Marco Gavanelli, Stefano Alvisi, and
Marco Franchini, “A bilevel mixed integer linear programming model for
valves location in water distribution systems”, In S. Ravizza and P. L.
Holborn, editors, SCOR, volume 22 of OASICS, pages 103–112. Schloss
Dagstuhl- Leibniz-Zentrum fuer Informatik, 2012
doi: 10.4230/OASIcs.SCOR.2012.103.

Author’s Publications List 152

[W1] Andrea Peano, “An ASP approach for the optimal placement of the isolation
valves in a water distribution system”, In A. Dovier and V. S. Costa, editors,
Technical Communications of the 28th International Conference on Logic
Programming (ICLP12), volume 17 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 464–468, Dagstuhl, Germany, 2012. Schloss
DagstuhlLeibniz-Zentrum fuer Informatik
doi: 10.4230/LIPIcs.ICLP.2012.464
Scopus: 2-s2.0-84880191828.

[W2] Andrea Peano, Marco Gavanelli, “An ASP approach for the optimal place-
ment of the isolation valves in a water distribution system”, In P. Liberatore,
editor, Doctoral Consortium of the 12th Symposium of the Italian Associ-
ation for Artificial Intelligence (AIxIA-DC 2012) , volume 926 of CEUR
Workshop Proceedings, pages: 33–37, 2012
Scopus: 2-s2.0-84891763101.

[W3] Marco Gavanelli, Maddalena Nonato, Andrea Peano, Stefano Alvisi, and
Marco Franchini, “An ASP approach for the valves positioning optimization
in a water distribution system”, In F. Lisi, editor, 9th Italian Convention
on Computational Logic (CILC 2012), Rome, Italy, volume 857 of CEUR
workshop proceedings, pages 134–148, 2012
Scopus: 2-s2.0-84883383155.

