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Abstract 
 

The Po river cross east-west the whole Northern Italy and flows within a densely populated 

area characterized by intense agriculture and industrial activities. In spite of its importance, 

systematic geochemical and isotopic investigations of its water are rare and never 

reported for the whole basin scale. The aim of this study was to fill this knowledge gap 

investigating the Po river water through a chemical and multi-isotopic approach that 

includes oxygen, hydrogen, carbon, nitrogen sulphur and strontium isotope data. 

The Po river flows within the Padanian plain, which is a sedimentary basin bound to the N 

by the Alpine mountains, to the SW by the Apennine hills and to the E by the Adriatic Sea 

and cover an area of more than 71,000 km2 (a quarter of the national territory). From the 

geological point of view the basin was characterized by a marine sedimentation in the 

Pliocene to Early Pleistocene, followed by fluvial sedimentation that enhanced during the 

glaciation periods. Within the plain the most important fluvial system is represented by the 

Po river which is progressively fed by many tributaries (and groundwater flows) from both 

the Alps and the Apennines. The Alpine streams are mainly fed by snow melting and show 

a seasonal peak flow during the spring-early summer period, while the Apennines streams 

have a rainy, and therefore intermittent, influence showing a minimum seasonal flow 

(drought) during the summer. These tributaries account for the annual regime of the Po 

river which is characterized by two low-level hydrometric periods (winter and summer) and 

two flood periods (late fall and spring). The first flood period reflects the intense late fall 

rains, while the second is due to snow melt from the higher sectors of the. The average 

discharge rate is 1,500 m3/s and maximum peak flows of 10,300 m3/s at section of 

Occhiobello, which is located in the lower reach of the river (close to the city of Ferrara), 

right upstream of the deltaic system.  

The isotopic compositions (δ18O - δD ) demonstrate that the predominant part of the runoff 

derives from the Alpine sector of the catchment through important tributaries such as Dora 

Baltea, Ticino, Adda and Tanaro rivers, whereas the contribution of the Apennines 

tributaries is less important. Geochemical and isotopic data show that the Po river water 

attains a homogeneous composition at ca. 100 km from the spring. The average 

composition measured at Occhiobello is characterized by δ18O 9.6‰, δD 64.0‰, TDS 

(Total Dissolved Solids) 260 mg/L, chloride 15 mg/L and by a general Ca–HCO3 

hydrochemical facies, which is maintained for most of the river stream, only varying in the 

terminal part where the river is diverted in a complex deltaic system affected by more 

significant evaporation and mixing with saline water evidenced by higher TDS and chloride 



content (up to 8,000 mg/L and 4,000 mg/L, respectively). The comparison of the data 

presented in this thesis with historical chemical analyses of Po river (available for the past 

fifty years) indicates that the major components (i.e. Ca2+, Mg2+, Na+, K+, HCO3, Cl, SO4) 

of the runoff water remained constant over the last decades suggesting that they reflect 

natural compositions unaffected by anthropogenic activities; in contrast, nitrate drastically 

increases from less than 1 mg/L to an average value of 9 mg/L as result of diffuse 

contamination. Coherently, δ13C (between -11.4‰ and -4.4‰) and δ34S (between 4.2‰ 

and 8.0‰) and also the 87Sr/86Sr (between 0.70896 and 0.70974) are compatible with the 

weathering and dissolution processes that involve the lithologies outcropping in the basin, 

while extremely variable δ15N (between -4.1‰ and 18.0‰) indicates contribution from 

pollutants of urban origin as well as components released by the agricultural and 

zootechnical activities. These observations confirm that although the origin of the main 

constituents of the Po river water is geogenic, anthropogenic contributions are also 

effective.   The data also highlight an evolution of the dissolved nitrogen species that 

appear extremely reactive, especially in the deltaic part of the river, which is characterized 

by denitrification processes. 

Geochemical and isotopic maps have been drawn to visualize spatial gradients, which 

reflect the evolution of the river water composition at progressive distance from the source; 

more detailed maps were focused on the deltaic part in order to visualize the processes 

occurring in the transitional zone toward the Adriatic Sea. It has to be noted that the 

presented data represent a snapshot of the nowadays river condition, and that future 

monitoring will be useful to highlight a) progressive involvement of further anthropogenic 

components and b) on-going environmental (climatic) changes. For these reasons this 

research contribute to integrate the GLObal River Chemistry (GLORICH) database 

(Hartmann et al. 2014, Proc Earth Plan Sci ) which is a useful tool to monitor earth surface 

processes at extensive scales and high resolution, and also to implement existing isotopic 

hydro-archives that provide additional information that cannot routinely be recovered from 

elementary chemistry alone (Bowen et al. 2009, Earth Plan Sc). 

!
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1 PREFACE 

 

The current PhD project is the follow up of my undergraduated thesis that was focused on 

the geochemical study of Po River waters in the surrounding of Ferrara (Marchina, 2011). 

Developing this thesis I familiarized with the analytical facilities (ion chromatography, ICP-

MS) available at the University of Ferrara (Department of Physics and Earth Sciences) in 

order to obtain information on major and trace elements of the riverine waters. In this 

framework, I also spent a period at the IGG-CNR of Pisa under the supervision of Dr. Luigi 

Dallai to analyze stable isotopes (δ18O – δD) in water samples by IRMS (isotope ratio 

mass spectrometry). In the PhD project I decided to extend the geochemical study to the 

whole river that was sampled in different seasons during the three year of the project (April 

2012, August 2012, March 2013, May 2013, May 2014) in several sites located between 

the Monviso sources to the delta, where the river flows toward the Adriatic Sea. Note that 

PhD project was greatly favoured by the acquisition (just in the initial period of my PhD 

project) of a new instrument (CRDS Los Gatos LWIA 24-d isotopic analyser) for the 

analyses of the water stable isotopes that became essential for the development of the 

current research. My geochemical background was subsequently enriched by another 

stage at the CNR of Pisa (June 2012, November-December 2013) devoted to the analyses 

of the strontium isotopes of Po River water in collaboration with Dr. Maddalena Pennisi, 

and by a 4 months research period in the framework of a “Erasmus Placement program” 

(from March 2013 to July 2013) at the Helmholtz-Zentrum für Umweltforschung (UFZ) of 

Leipzig/Halle (Germany), where I developed a fruitful collaboration with Prof. Kay Knöller 

in order to investigate the carbon-nitrogen-sulphur isotopes of the dissolved components 

of Po river water. In the third year I implemented the geochemical and isotopic analyses of 

the dissolved components investigating the suspended matter in the Po river waters using 

an additional new IRMS instrument acquired by the Department of Physics and Earth 

Sciences of the University of Ferrara. Finally, thanks to an additional scholarship 

(specifically dedicated to youth researchers), provided by the University of Ferrara, I spent 

a three months visiting period in the USA at the New Hampshire University, where the Po 

River water were investigated by MC-ICP-MS, under the supervision of Professor Julie 

Bryce and her collaborators. This period was of fundamental importance to discuss the 

existing hypothesis and to initiate the writing of this thesis (and of related papers) in the 
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english language. In the following sections I report the outcome of these distinct research 

periods, in order to provide new insights on the processes and dynamics occurring in this 

important river.  
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2 OVERVIEW ON THE PO RIVER AND ITS BASIN  

 

Bacino Fiume Po

Area: 70027,19 Km 2

Superficie reale: 73939,26 Km2

 

Figure 1:  Po River catchment area (Northern Italy). The Po river course is represented in light blue.  

 

The Po plain (Figs 1 and 2 Ch. 2) is a sedimentary basin bound to the N by the Alpine 

mountains, to the SW by the Apennine hills and to the E by the Adriatic Sea . From the 

geological point of view the basin was characterized by a marine sedimentation in the 

Pliocene to Early Pleistocene, followed by fluvial sedimentation that was enhanced during 

the glaciation periods (Garzanti et al. 2011). Within the plain, the most important fluvial 

system is represented by the Po river, which becomes more important with the addition of 

many tributaries (and groundwater flows) from both the Alps and the Apennines. The 

Alpine streams are mainly fed by snow melting and show a seasonal peak flow during the 

spring-early summer period, while the Apennines streams have a rainy, and therefore 

intermittent, influence showing a minimum seasonal flow (drought) during the summer. 

These tributaries account for the annual regime of the Po river, which is characterized by 
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two low-level hydrometric periods (winter and summer) and two flood periods (late fall and 

spring). The first flood period reflects the intense late fall rains, while the second is due to 

snow melt from the higher sectors of the catchment (Zanchettin et al. 2008; Coppola et al., 

2014; Fatichi et al., 2014). 

 

Figure 2: Schematic lithological map of the Po River drainage basin and relative elevation map from Canali 

and Allodi (1962) 
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With regard to the water budget, the main Alpine tributaries (left bank) often display 

discharge higher than 100 m3/s (Dora Baltea, 110 m3/s, Ticino 290 m3/s, Adda up to 160 

m3/s), whereas the Apennine tributaries (right bank) usually show discharge lower than 50 

m3/s. The Tanaro river draining the Maritime Alps (Liguria) is the only right bank tributary 

with high average discharge (up to 130 m3/s). These tributaries transfer their water budget 

to the Po river, which progressively increases its average discharge from the upper to the 

lower part of the basin: 1.1 m3/s after 5 km from the spring, 50 m3/s after ca. 90 km from 

the source, 958 m3/s at Piacenza (300 km from the spring), 1115 m3/s at Cremona (350 

km from the spring), 1,500 m3/s at Pontelagoscuro (Montanari 2012; Tarpanelli et al. 2013; 

integrated with data provided by the Basin Authority of the Pedimont Region). Downstream 

of Pontelagoscuro, the Po river approaches a delta consisting of six major distributaries; 

from the main course the first diversion (southward) is represented by Po di Goro which 

drains ca. 15 % of the original flow. A second diversion (northward) is represented by Po di 

Levante, which is artificially regulated and separated from the main course which is known 

as Po di Venezia. The latter progressively distributes water to Po di Gnocca (southward; 

13% of the flow) and Po di Maistra (northward; 2% of the flow) finally subdividing in Po di 

Tolle (15% of the flow) and Po di Pila (55% of the flow). 

The current hydrographic network has been variably constrained by anthropogenic 

activities that: a) embanked the river to avoid the recurrent avulsions and diversions 

(Castellarin et al. 2011); b) constructed dams to store water reservoirs (Zampieri et al., 

2014); c) organized a widespread network of artificial canals that are used to regulate the 

hydrological flow as well as to irrigate agricultural fields (Bozzola and Swanson 2014). 

According to the hydrological balance provided by Montanari (2012) the annual River 

recharge consists of ∼ 78 km3 of water, 25 of which are lost by evapotranspiration while 

6.5 are consumed by civil, agricultural and industrial uses, leading to a discharge of ∼ 47 

km3 of river water within the Adriatic Sea, roughly in agreement with the previous 

estimation of Artina et al. (1990) which proposed an annual flow of 42.6 km3 of river water 

toward the sea. 

The chemical composition of the studied waters is directly related to the nature of the 

lithologies included in the basin and to the related weathering processes. It is important to 

note that from the geological point of view, the western Alps are mainly comprised of 
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crystalline (metamorphic and granitoid) basement rocks that pertain to the Alpine and 

Hercynian orogenic cycles and by Jurassic ophiolites (serpentinized peridotites, gabbros 

and basalts), with only subordinate limestone compositions of Triassic and Jurassic age. 

The northern Apennines is mainly made of Tertiary flysh (alternation of sandstone and 

pelite rocks) and Jurassic ophiolites (Garzanti et al. 2011; 2012). The Padanian plain is 

obviously made of alluvial sediments representing the weathering products of the rocks 

mentioned above (Amorosi 2012; Bianchini et al. 2012; 2013; 2014).  
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3 PRELIMINARY GEOCHEMICAL INVESTIGATION ON THE PO RIVER IN 
THE SURROUNDINGS OF FERRARA (years 2010 - 2011) 

 

 

Figure 1: a) Location of the Po River watershed (investigated area) in Northern Italy and relatively sampling 

station (red dots) of the sampling campaigns in the years 2010 – 2011; b) Average monthly precipitation at 

Pontelagoscuro station (Ferrara) during the year 2010; c) Discharge of the Po river in the section of 

Pontelagoscuro (Ferrara) during the year 2010. 

 

This chapter briefly reports the data carried out in the period August 2010, November 2010 

and February 2011, available for the restricted zone in the surrounding of Ferrara (Fig. 1a, 

Ch. 3). This represents the incipit of the current PhD project on the geochemistry of Po 

river water. This sampling and the relative data were carried out under the supervision of 

Dr. Claudio Natali in a phase in which I wasn’t independent yet. Therefore a more detailed 

description of the analytical methods will be reported in the next chapters for the 

subsequent sampling campaigns in which my operative role has been predominant. 

Table 1, Ch. 3 reports some parameters measured in the field (temperature, pH and water 

conductivity) as well as major and trace elements (reported in mg/L and µg/L respectively). 

The investigated waters display a Ca-HCO3 hydrochemical facies, with limited seasonal 
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variation. As concerns dissolved heavy metals V, Cr, Mn, Fe, Ni never exceed the drinking 

water tolerance threshold. Anomalous concentration of iron (1,200 µg/L), aluminium (650 

µg/L) and manganese (89 mg/L) is recorded only in Crespino site during the flood of 

November 2010 (Q= 6050 m3/s), whereas arsenic is generally high (15-21 µg/L) 

throughout the whole sample population. Note that in Fig. 2 a) and b), Ch. 3 a significant 

Fe-Al correlation is observed among the samples collected in the summer season, and the 

sample collected at Crespino during the flood of November 2010 has the highest value 

registered.  
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Figure 2: Po river waters in the terminal part of the river a) binary diagram Fe vs Al; b) binary diagram 

Fe vs Mn. 

 

These waters have been also analysed by IRMS at the IGG-CNR of Pisa, under the 

supervision of Dr. Luigi Dallai to measure the isotopic composition oxygen and 

hydrogen. The data have been also useful to calibrate a new instrument that was 

acquired in that period at the Department of Physics and Earth Sciences of the 

University of Ferrara. This instrument is a Los Gatos, CRDS LWIA 24-d (Fig 3 a and 

b. Ch. 3). 

 

 

Figure 3: a) The Los Gatos CRDS LWIA 24-d liquid-water stable isotope instrument; b) vacuum pump, 

drierite column are shown in the background. 
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Fig. 4:  Technical Overview Off-Axis Integrated Cavity Output Spectroscopy 

 

I actively contributed to the set up of this instrument that allows an innovative quick 

and cost effective method to analyse isotopic composition of waters alternative to the 

more established IRMS technique. 

The Off-axis integrated cavity output spectroscopy (OA-ICOS) exploits Beer- 

Lambert’s law (Ricci et al., 1994) to relate the absorption of a laser light passing 

through a vaporized water sample to the isotopic composition of the sample (Fig. 4, 

Ch.3). Another important feature of this instrument is the simultaneous analysis of 2H 

and 18O for each injection of water, reducing time and operational expenses per 

measured sample. In addition, simultaneous measurements exclude the potential 

relative error of two separate measurements of hydrogen and oxygen isotopes at 

different times. 

A certificate attesting my experience and competence on this analytical technique is 

reported in the appendix A. 

It has to be noted that the cross-check between the oxygen and hydrogen isotopic 

composition obtained by IRMS and those obtained by CRDS Los Gatos LWIA-24d 

revealed a good precision and accuracy inn the order of 0,1‰ and 0,4 ‰ for δ18O and 
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δD, respectively. The data, reported in Table 2 and Fig. 3, represent the preliminary 

results of an hydro-archive on the Po river waters, that has been greatly improved in 

the subsequent years of the PhD project. 

 

 

Tabella 2: Hydrogen and oxygen isotope ratios in the Po river waters in the terminal part of the river. 

Data are expressed in ‰ respect to the SMOW standard.  

 

The recorded δ 18O values ranging between -10.8‰ and -8.6‰, and δ D values 

ranging between -69.4‰ and -62.5‰ are compared with the local groundwaters 

(Rapti Caputo and Martinelli, 2008), the Northern Italy Meteoric Water Line (Longinelli 

and Selmo, 2003) and the Global Meteoric Water Line (GMWL) from Craig (1961) in 

Fig. 5 Ch. 5. In spite of the sampling area is located in lower part of the river course 

(close to the Adriatic sea), the surface waters mainly reflect isotopic composition of 

precipitation in the Upper Part of the basin located in Piedmont region and reported in 

Longinelli and Selmo (2003; 2006).  
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Figure 5: δ18O - δD isotopic composition of Po river water for the sampling campaign of August 2010. 

Po river waters are represent with white circles, Meteoric water lines are also reported for comparison:  

the dotted line represents the global meteoric water line (GMWL; Craig 1961); the dashed line 

represents the local meteoric water line (LMWL), defined for Northern Italy (Longinelli and Selmo 

2003). The black cross represents sample collected in the Adige river in November 2011. 
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 4 ACTIVITY OF THE FIRST YEAR, BASED ON THE SAMPLING 
CAMPAIGNS 2012 
 

In this period I carried out the first systematic sampling of the whole river that was 

thoroughly investigated using the analytical facilities available at the University of Ferrara. 

The outcome of the activity of this year has been synthetized in a paper titled “The Po river 

water from the Alps to the Adriatic Sea (Italy): new insights from geochemical and isotopic 

(δ18O-δD) data” that is currently in press on “Environmental Sciences an Pollution 

Research” (Marchina et al., in press). 

 

4.1 Sampling strategies and analytical methods 
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Figure 1: a) Hillshade map of the Po river catchment (based on NASA SRTM data) reporting the sampling 

locations where Po river water samples have been collected. Distinct symbols have been used for water 

sampled at increasing distance from the source in the upper part (UP, black squares), middle part (MP, grey 

triangles), terminal part (TP, light grey circles) that typically display significant compositional changes. b) 

Average (2002-2010) monthly precipitation (grey histograms) and air temperature (black line) of the UP 

sector of the Po river basin (Fatichi et al., 2014); c) discharge (Q, m3/sec; black line) and water level height 

(grey line) of Po River in the section of Pontelagoscuro which is located at the boundary between the MP 

and UP sector delineated in this study. The values are specifically referred to the year 2012, and black 

arrows denote the sampling periods 
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In the first year two sampling campaigns were plan in order to investigate the runoff water 

of the Po river at basin scale. For this purpose 54 water samples were collected along the 

whole stream of the Po river, from its source (Pian del Re spring) to the deltaic area in 

distinct seasonal periods, mainly in April and August 2012 (Tab. 1, Ch. 4 and Fig.1 Ch. 4). 

The rationale behind the selection of sampling locations was to monitor the water 

geochemistry along the river profile, before/after the confluence of important tributaries, 

settlements and/or zones of important productive activities, but logistical criteria (i.e. easy 

site accessibility) were also taken into consideration. Each sampling location was geo-

referenced by a portable global positioning system (GPS), to locate the points and to set 

up future field surveys. Surface water was collected at 40-50 cm depth using a bucket, 

possibly far from the shore (using boats, piers, or sampling above bridges). Electrical 

conductivity (EC), pH and temperature were directly measured in the field (Tab. 1, Ch. 4), 

then water samples were filtered by 0.45 µm filters (Minisart® NML syringe cellulose 

acetate filters) and stored in two distinct 100 ml bottles, one for the analysis of anions and 

oxygen/hydrogen isotopes and a second (acidified with 0.5 mL of concentrated Suprapur 

HNO3) for the determination of cations and trace elements. 

Laboratory analyses were carried out at the Department of Physics and Earth Sciences of 

the University of Ferrara. Hydrogen and oxygen isotope ratios were determined using the 

CRDS LOS GATOS LWIA 24-d isotopic analyzer and reported in Tab. 2, Ch. 4. The 

isotopic ratios of 2H/1H and 18O/16O are expressed as δ notation [δ = (Rsample/Rstandard − 

1)*1000] with respect to the V-SMOW (Vienna Standard Mean Ocean Water) international 

standard. Four bracketing standards that cover the whole range of isotopic values of the 

Po river water were run throughout the analytical sessions. These standards, obtained 

from the Los Gatos Research Company, were calibrated with international standard such 

as V-SMOW and SLAP (Standard Light Antarctic Precipitation). Analytical precision and 

accuracy were better than 0.3‰ and 1.0‰ for δ18O and δD respectively. 

Major cations and trace elements were detected by inductively coupled plasma mass 

spectrometry (ICP-MS) using a Thermo-Scientific X Series instrument on samples 

previously diluted 1:10 by deionized Milli-Q water (resistivity of ca. 18.2 MΩ x cm), also 

introducing known amount of Re and Rh as internal standard; in each analytical session 

the analysis of samples was verified with that of the reference materials EU-L-1 and ES-L1 



! 16!

provided by SCP-Science (www.scpscience.com). The major anions were determined by 

ion chromatography using a DIONEX ICS-1000 calibrated using solutions obtained by 

different dilutions of the DIONEX “7-ion standard”. Accuracy and precision, based on the 

repeated analyses of samples and standards, were better than 10% for all the considered 

parameters. The mentioned analyses are reported in Tab. 3, Ch. 4. The coherence of 

chemical data has been verified checking the ionic balance, as the sum cations 

(expressed in meq/L) approaches that of anions with relative error, [(Σcations−Σanions)/ 

(Σcations+Σanions)]*100, which is generally minor than 5%.  

Geostatistical modelling has been carried out in order to visualize the spatial variation of 

the obtained geochemical data. Interpolated maps along the Po river geographical 

extension were produced in ArcGIS 9.3 (Geostatistical Analyst extension) at a resolution of 

170 m by generalized linear regression technique (ordinary kriging), using a spherical 

semivariogram model with nugget on log10 transformed data. Considering that I was 

interested in the reflection of large‐scale features (>10 km) of the river water composition, I 

chose to conduct the interpolation without the use of ancillary variables such as elevation 

(Bowen and Wilkinson 2002) that would introduce high amplitude variability in the 

interpolated surface over short length scales.  

 

4.2 Results and discussion 

 

pH, temperature and conductivity of Po river waters 

Parameters measured in-situ such as pH, temperature and conductivity of Po river water 

have been reported in Tab. 1, Ch. 4. To appreciate (physico-chemical) changes along the 

flow path the sample population has been geographically subdivided in three subsets 

corresponding to increasing distance from the river source, defined as UP (upper part), MP 

(middle part), TP (terminal part), and the related variability has been also evaluated in 

order to delineate spatial-temporal changes. 

pH was rather homogeneous, i.e. 7.8-8.9 in UP, 7.7-8.7 in MP, 7.5-8.5 in TP, without 

systematic trends in the distinct sampling periods. On the other hand, the water 

temperature shows significant spatial-temporal variation; in UP it varied between 6 °C 
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(locality Pian del Re, April 2012) to 21 °C (locality Carignano, August 2012); in MP it varied 

between 16 °C (April 2012) to 28 °C (August 2012); in TP it varied between 16 °C (in April 

2012) to 31°C (in August 2012). 

Water conductivity was also variable, increasing from UP (average 200 µS/cm) through 

MP (average 370 µS/cm), up to TP where samples were more heterogeneous (average 

410 µS/cm). Higher conductivity (up to 8,500 µS/cm) has been sporadically observed in 

some samples from the deltaic part of the river. This indicates progressively higher 

amounts of dissolved components moving from the UP, to the MP, and to the TP 

catchment areas. 
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 Table 1: Physico-chemical 

parameters measured in the 

field. According to the 

geographical distribution, the 

investigated samples have 

been subdivided in three 

distinct groups, 

representative of the UP 

(upper part), MP (middle 

part) and TP (terminal part) 

of the Po river course. This 

subdivision is reflected in 

distinct parameters, as 

emphasized by electrical 

conductivity progressively 

increasing from UP, to MP 

and TP water. Some 

important tributaries (Ticino, 

Adda, Mincio), sampled 

close to the confluence with 

Po river have been also 

taken into account.  

 

n. Name Data Latitude Longitude pH T (°C) EC (µS/cm )

Upper Part (UP) 

1 Pian del Re 04/2012 44°42' 04.00" 07° 05' 42.00" 8.9 6 80

2 08/2012 8.8 6 110

3 Sanfront 04/2012 44° 39' 03.89"        07° 19' 58.90" 8.2 9 120

4 08/2012 8.8 16 190

5 Carignano 04/2012 44° 54' 31.37"        07° 41' 29.93" 8.0 16 470

6 08/2012 7.8 21 510

Middle Part (MP)

7 Settimo Torinese 08/2012 45° 07' 29.63"     07° 46' 15.37" 8.6 24 540

8 Crescentino 04/2012 45° 10' 32.96"     08° 05' 55.61" 8.2 17 470

9 08/2012 8.2 23 566

10 Frassineto Po 04/2012 45° 08' 39.77"       08° 32' 27.29" 8.6 19 490

11 08/2012 8.5 28 450

12 Balossa Bigli 04/2012 45° 03' 58.00"        08° 54' 48.80"       8.0 18 380

13 08/2012 7.7 25 310

14 Rea 08/2012  45° 07' 27.90"  09° 09' 31.96" 8.0 26 200

15 Ticino river (Vaccarizza) 04/2012 45° 08' 40.88"         09° 13' 48.62" 8.2 16 230

16 08/2012 8.4 26 450

17 Senna Lodigiana 04/2012 45° 07' 46.41"            09° 38' 07.16" 8.0 18 370

18 08/2012 8.6 26 440

19 Adda river (Crotta d'Adda) 08/2012 45° 09' 18.97" 09° 51' 13.62" 8.0 25 500

20 Piacenza 08/2012 45° 03' 41.76" 09° 41' 53.51" 8.7 25 430

21 Cremona 04/2012 45° 07' 43.34"          09° 59' 45.93" 8.0 18 350

22 08/2012 8.7 26 430

23 Coltaro 04/2012 44° 59' 03.67"        10° 18' 27.70" 8.2 17 360

24 08/2012 7.8 27 420

25 Mincio river (Governolo) 08/2012 45° 05' 11.58" 10° 57' 43.99" 8.6 24 310

26 Revere 04/2012  45° 03' 27.46"        11° 07' 52.80'' 8.0 16 370

27 08/2012 7.8 27 420

Terminal Part (TP) 

28 Occhiobello 04/2012 44° 55' 04.78"                 11° 34' 46.10" 8.5 16 360

29 08/2012 8.0 27 480

30 Crespino 04/2012 44° 58' 37.64"  11° 52' 53.06" 8.2 17 400

31 08/2012 8.0 28 480

32 Bottrighe 04/2012 45° 01' 15.17"  12° 04' 44.24" 8.4 17 400

33 08/2012 7.6 29 460

34 Taglio di Po 04/2012 45° 00' 36.12"     12° 13' 09.12" 8.2 17 410

35 08/2012 7.5 30 450

36 Po di Levante (Porto Levante) 04/2012 45° 02' 43.00"     12° 19' 27.52" 8.0 19 1,010

37 08/2012 7.5 31 450

38 Po di Goro (mouth) 08/2012 44° 47' 36.80" 12° 23' 44.80" 7.9 28 8,500

39  Po di Goro (Gorino Veneto) 08/2012 44° 50' 15.54" 12° 20' 42.18" 7.8 29 5,700

40 Po di Gnocca (Santa Giulia) 08/2012 44° 50' 18.30'' 12° 22' 30.08'' 7.8 29 3,600

41 Po di Gnocca (Polesinino) 08/2012 44° 52' 28.70'' 12° 20' 27.60'' 7.7 29 1,780

42 Po di Gnocca (Donzella) 08/2012 44° 55' 54.10'' 12° 19' 31.40'' 7.7 30 450

43 Po di Venezia (Villa Regia) 08/2012 44° 57' 14.30'' 12° 17' 56.00'' 7.7 31 430

44 Po della Pila (Cà Zuliani) 08/2012 44° 57' 25.90'' 12° 25' 14.30'' 7.8 30 810

45 Po della Pila (near Pila) 08/2012 44° 57' 25.00'' 12° 27' 05.00'' 7.7 30 1,127

46 Busa Dritta (mouth) 08/2012 44° 58' 00.00'' 12° 31' 47.00'' 7.8 30 5,500

47  Po di Goro (Serravalle) 12/2011 44° 58' 09.85" 12° 03' 27.05" 7.9 6 470

48 08/2012 7.7 28 440

49 Po di Goro (Ariano) 12/2011 44° 56' 35.07" 12° 07' 23.17" 8.1 6 480

50 08/2012 7.7 28 440

51 Po di Goro (Mesola) 12/2011 44° 55' 27.29" 12° 13' 17.96" 8.4 6 460

52 08/2012 7.6 28 440

53 Po di Goro (S. Giustina) 12/2011 44° 53' 36.51" 12° 17' 03.35" 8.2 6 470

54 08/2012 7.6 28 1,160
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Isotopic composition of Po river waters 

The δD‰ and δ18O‰ isotopic ratios have been measured for Po river water sampled in 

distinct hydrological periods of the year 2012. δD‰ ranges from -92.0‰ to -48.0‰ in 

winter-spring and from -94.7‰ to -55.1‰ in summer, whereas δ18O‰ ranges from -13.1‰ 

to -7.0‰ in winter-spring and from -13.4‰ to -6.9‰ in summer. These data are plotted in 

Fig. 2a, Ch.4 together with the global (GMWL; Craig 1961) and local meteoric water lines 

(northern Italy; Longinelli and Selmo 2003; Longinelli et al. 2006); the presented data were 

also compared with the compositions of meteoric precipitation of prevalent Atlantic 

provenance (e.g. rain in Germany; Stumpp et al., 2014) and meteoric precipitation of 

prevalent Mediterranean provenance (e.g. rain in Greece; Dotsika et al., 2010) which can 

provide the isotopic fingerprint of vapour mass end-members potentially interesting in this 

study-area. The recorded isotopic compositions of hydrogen and oxygen in the Po river 

water mainly reflects the isotopic composition of the meteoric precipitations (rain, snow, 

glacier ice melting) in the drainage area which is in turn related to altitude and continental 

effects. Most Po river isotopic compositions conform to those of precipitations occurring at 

high altitudes in the north/northwestern-most part of the basin (UP), i.e. from high Alpine 

zones (Fig. 2b, Ch. 4 modified after Longinelli and Selmo 2003). Coherently, Montanari 

(2012) shows that the prevalent meteoric contribution (up to 1,600 mm/yr of precipitation) 

in the Po river basin is confined within the mountainous Alpine sectors, which collect most 

of the catchment precipitations. In particular: 

1) Samples from the upper part of the river (UP), located from the spring of Pian del Re 

downward to the locality of Carignano (before the town of Torino), display δ18O varying 

from -13.4‰ to -11.1‰ and δD varying from -94.7‰ to -75.3‰. The average δ18O 

recorded in April (-12.5‰) is slightly more negative than the average value observed in 

August (-12.2‰) whereas the average δD value are nearly constant in the two seasons.  

2) Samples from the middle part of the river (MP), located between the localities of 

Frassineto Po and Revere, display δ18O varying from -12.5‰ to -8.4‰ and δD varying 

from -84.7‰ to -60.1‰. The average δ18O recorded in April (-9.8‰) is analogous to the 

average value observed in August (-9.8‰), and also the average δD values are nearly 

constant in the two seasons. 

3) Samples from the terminal part of the river (TP), also including the deltaic area, display 

δ18O varying from  -9.9‰ to -6.90‰ and δD varying from -65.1‰ to -48.0‰. The average 
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δ18O recorded in winter-spring (-9.1‰) is slightly more negative than the average value 

observed in summer (-8.1‰) whereas the average δD values are nearly constant in the 

two seasons 
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Table 2: Hydrogen and oxygen isotope 

ratios in the Po river waters. Some 

important tributaries (Ticino, Adda, 

Mincio), sampled close to the confluence 

with Po river have been also taken into 

account. Data are expressed in G‰ 

respect to the SMOW standard. na = not 

analyzed. 

n. Name Data δ18O (‰) δD (‰) d-exc (‰)

Upper Part (UP) 

1 Pian del Re 04/2012 -13.1 -92.0 14.4

2 08/2012 -13.4 -94.7 13.7

3 Sanfront 04/2012 -12.7 -82.9 19.8

4 08/2012 -12.1 -84.2 13.9

5 Carignano 04/2012 -11.6 -78.9 15.0

6 08/2012 -11.1 -75.3 14.6

Middle Part (MP) 

7 Settimo Torinese 08/2012 -10.7 -74.9 11.9

8 Crescentino 04/2012 -11.0 -71.6 17.8

9 08/2012 -10.6 -74.0 11.9

10 Frassineto Po 04/2012 -11.0 -75.4 14.0

11 08/2012 -10.4 -72.2 11.6

12 Balossa Bigli 04/2012 -9.7 -67.4 11.1

13 08/2012 -9.8 -69.4 10.3

14 Rea 08/2012 -9.8 -69.4 10.3

15 Ticino river (Vaccarizza) 04/2012 -9.1 -64.5 9.0

16 08/2012 -8.9 -62.8 9.6

17 Senna Lodigiana 04/2012 -9.5 -62.7 14.4

18 08/2012 -9.6 -60.4 17.6

19 Adda river (Crotta d'Adda) 08/2012 -9.2 -62.3 12.6

20 Piacenza 08/2012 -9.2 -62.8 11.9

21 Cremona 04/2012 -9.4 -63.8 12.4

22 08/2012 -9.2 -62.4 12.4

23 Coltaro 04/2012 -9.3 -61.1 14.0

24 08/2012 -9.3 -62.0 13.5

25 Mincio river (Governolo) 08/2012 -9.1 -62.3 11.3

26 Revere 04/2012 -8.9 -63.5 8.2

27 08/2012 -9.2 -60.6 14.3

Terminal Part (TP) 

28 Occhiobello 04/2012 -8.8 -58.0 12.9

29 08/2012 -8.7 -60.1 13.2

30 Crespino 04/2012 -9.6 -61.2 16.2

31 08/2012 -8.9 -60.9 12.8

32 Bottrighe 04/2012 -9.9 -59.4 21.0

33 08/2012 -9.1 -58.8 14.7

34 Taglio di Po 04/2012 -9.8 -59.6 19.8

35 08/2012 -9.0 -58.8 14.1

36 Po di Levante (Porto Levante) 04/2012 -7.0 -48.0 8.7

37 08/2012 -6.9 -55.1 0.6

38 Po di Goro (mouth) 08/2012 -7.8 -57.2 5.7

39  Po di Goro (Gorino Veneto) 08/2012 na na -

40 Po di Gnocca (Santa Giulia) 08/2012 na na -

41 Po di Gnocca (Polesinino) 08/2012 -7.3 -59.4 0.0

42 Po di Gnocca (Donzella) 08/2012 -7.4 -60.4 -0.4

43 Po di Venezia (Villa Regia) 08/2012 -7.5 -60.8 0.0

44 Po della Pila (Cà Zuliani) 08/2012 -7.3 -60.2 -1.0

45 Po della Pila (near Pila) 08/2012 na na -

46 Busa Dritta (mouth) 08/2012 -8.1 -58.6 6.9

47  Po di Goro (Serravalle) 12/2012 -9.3 -64.0 11.6

48 08/2012 -8.6 -61.7 7.9

49 Po di Goro (Ariano) 12/2012 -9.6 -62.1 15.7

50 08/2012 -8.7 -61.2 9.4

51 Po di Goro (Mesola) 12/2012 -9.3 -63.1 12.1

52 08/2012 -8.8 -61.2 9.8

53 Po di Goro (S. Giustina) 12/2012 -9.6 -61.6 16.3

54 08/2012 -8.5 -60.3 8.4
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Figure 2: a) G18O-GD isotopic composition of Po river water. Meteoric water lines are also reported for 

comparison: the dotted line represents the Global Meteoric Water Line (GMWL; Craig 1961); the 

dashed line represents the Local Meteoric Water Line, defined for Northern Italy (LMWL; Longinelli and 

Selmo 2003), together with compositional fields relative to meteoric precipitation of prevalent Atlantic 

provenance (e.g. rain in Germany; Stumpp et al., 2014) and meteoric precipitation of prevalent 

Mediterranean provenance (e.g. rain in Greece; Dotsika et al., 2010). Filled symbols (black square for 

UP, grey triangle for MP, light grey circle for TP) represent samples collected in winter-spring; open 

symbols (square for UP, triangle for MP, circle for TP) represent samples collected in summer. b) 

Contour lines reporting the geographical distribution of the oxygen isotopic composition of precipitation 

in Italy and the Po river course together with the more significant fluvial elements (modified after 

Longinelli and Selmo 2003; for interpretation refer to the colored web version of the paper). In this map 

the average isotopic composition of UP, MP, TP Po river water is also reported. See text for further 

explanation. 
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The isotopic variability observed along the river profile is presented in Fig. 3, Ch. 4 which 

reports the δ18O value as a function of the distance from the river source, also 

emphasizing relationships with the discharge of the main course and the principal 

tributaries. If we take into account the seasonal sampling of August in the UP and MP 

parts, a remarkable correlation can be observed between the distance (d) from the source 

(expressed in km) and both δ18O and δD (r2 better than 0.9). Distinctive d – δ‰ linear 

relationships characterize the UP and MP water, the former giving higher regression 

slopes (e.g. 3.5 and 0.5 respectively for δ18O). The mean UP-MP gradient observed from 

the source is 0.2‰ δ18O and 1.7‰ δD per 10 km. The trends recorded in Figs. 2 and 3 

can be referred to altitude variation of the meteoric recharge along the river course, as the 

water budget along the profile progressively integrate meteoric contributions related to 

lower altitudes. In particular, in the UP part the elevation of the sampling sites is negatively 

correlated with δ18O by a logarithmic relationship (r2 = 0.98), while in the MP a linear 

regression better describes the relations between these parameters (r2 = 0.90). The mean 

altitude gradient recorded along the UP and MP is -0.5‰ δ18O per 100 m rise, slightly 

higher than that defined for meteoric water of the area (-0.3‰ δ18O) by Zuppi and 

Bortolami (1982). The δ18O /100 m gradient defined in this study is also higher than the 

global gradient defined by Bowen and Wilkinson (2002), but it is comparable with that 

defined by precipitations occurring in Germany (Stumpp et al., 2014), possibly suggesting 

an origin from similar vapor masses of prevalent Atlantic provenance. These notable 

correlations describing the morphoclimatic effects in the UP and MP parts of the river do 

not characterize the TP part, which is plausibly influenced by local effects that disturb the 

original isotopic fingerprint of the meteoric water that feed the river. The relative isotopic 

consistency of Po river MP water samples irrespective to seasonal variability (δ18O ∼ -9.5 

‰) suggests that the associated riverine system integrate multiple contributions, which are 

mixed and homogenized. This indicates that significant water volumes, which buffer further 

variations, already characterize the MP sector of the river. Changes observed at the most 

important tributary confluence (Ticino river), progressively disappear after few kilometres 

being homogenized within the riverine water mass, whereas isotopic variations due to the 

confluence of Apennine tributaries (having δ18O ∼ -8.0 and -8.9 ‰; Iacumin et al. 2009) 

are not recorded in the main stream, due to their negligible contribution to the Po river 

water budget. 
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Figure 3: Variation of the G18O signature in function of the distance from the source of the Po river. The 

relation with the discharge of the main course and the principal tributaries is also reported. Filled symbols 

(black square for UP, grey triangle for MP, light grey circle for TP) for samples collected in April 2012; open 

symbols (square for UP, triangle for MP, circle for TP) for the samples collected in August 2012; Ô 

represents additional analyses of Po river water available in the literature, whereas + and x represent the 

right bank and left bank tributaries, respectively; (Zuppi and Bortolami 1982; Delconte et al. 2014; Iacumin et 

al. 2009; Rapti Caputo and Martinelli 2009). As concerns the TP deltaic sector, open circles are divided in 

two different size: big circles represent samples taken in Po di Venezia (the main distributary) whereas the 

small circles represent Po di Goro and Po di Gocca (minor/secondary branches). 

 

The presented data, including isotopic composition of river water sampled in distinct 

periods (April and August 2012) allow us to evaluate relationships between the δ‰ values 

and the temperature. From the data presented in Fig. 1b Ch. 4 (air temperature), Tab. 1, 

Ch. 4 (water temperature), and Tab. 2, Ch. 4 (isotopic values) it can be noted that limited 

isotopic variation is coupled with significant temperature changes of both water and air (in 

the order of 10 °C). This is reflected in a Δδ18O/T°C gradient of ∼ 0.1‰, which is scarcely 

significant. The lack of significant variation for water samples collected in distinct 

hydrological phases (peak discharge in April, drought in August) along the whole stream 

path is possibly due to: a) delayed effect of winter meteoric contributions caused by snow 

melt (and alpine glacier melting) that are slowly released in the summer period b) by sub-
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surface inflow which variously delay the meteoric contributions; c) by man-made dams 

which create reservoirs in which meteoric contribution of different seasons mix together. 

Noteworthy, the UP-MP Po river water displays remarkable δ18O-δD similarity to the 

groundwater from the first confined aquifer (depth of 20 to 50 m, in the Ferrara 

surroundings) of the alluvial plain, suggesting a common Alpine origin and/or repeated 

river-aquifers exchanges; on the contrary water of the shallow phreatic aquifers displays 

less depleted isotopic compositions more influenced by local precipitations, and is scarcely 

influenced by interaction with the Po river (Rapti-Caputo and Martinelli, 2009).  Particular 

emphasis has to be given to the isotopic composition of the TP, where the river develops a 

complex deltaic system. In this sector, the isotopic composition evolve toward less 

negative values, with δ18O up to -9.0‰ and δD up to -6.9‰, in relation to a more effective 

evaporation due to the reduction of the water flow velocity, and mixing with saline water. In 

Tab. 2, Ch. 4 it is also report the values of the deuterium excess calculated as: d-exc = 

δD-8*δ18O on the basis of the world meteorological water line as defined by Dansgaard 

(1964). This variable provides additional information on the prevailing moisture conditions 

at the source region but is also related to the temperature recorded at the precipitation site 

and to the evaporation effects, thus providing a further criterion in the distinction of waters 

having different origins. The UP samples are characterized by averages d-exc of 16.8‰ 

and 14.3‰ for April and August, respectively. This parameter is very constant in the MP 

samples with averages of 12.6‰ and 12.8‰, respectively. These d-exc values recorded in 

the UP and MP river sectors are intermediate between those recorded in north-European 

precipitations (e.g. in Germany, 6-12 ‰; Stumpp et al., 2014) and those of south-

Mediterranean precipitations (e.g. in Greece12.9-20‰; Dotsika et al., 2010). The d-exc is 

significantly lower in TP samples that are characterized by extremely heterogeneous 

values (down to negative values in the August period). This observation confirms the 

occurrence of a high evaporation rate only in the terminal part of the river.  

Summarizing, the compositions of the water from the first two groups (UP and MP) are 

roughly aligned along the above mentioned meteoric water lines, whereas water belonging 

to the third group (TP) shows a δ18O shift toward less negative compositions (Fig. 2a, Ch. 

4). The observed isotopic differences along the trunk of the Po river are emphasized in the 

Fig. 3, Ch. 4 where isotopic values are plotted along the riverine profile at increasing 

distance (km) from the source. Noteworthy, the more pronounced isotopic gradients are 

observed in the upper part (UP) and in the terminal part (TP) of the river, whereas the 
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middle part is characterized by slight, but systematic, variation. The isotopic fingerprint of 

the central part of the river, compared with the dataset of the meteoric compositions in 

northern Italy (Longinelli and Selmo 2003; Longinelli et al. 2006) indicates that most of the 

river recharge occurs in the north-western part of the basin, i.e. conveyed mainly from the 

Alpine highlands. It has to be noted that the isotopic composition of the river remained 

constant in the last years, as the δ18O value reported by Iacumin et al. (2009) for Po river 

close to Cremona is nearly identical to the values recorded by my survey in the same site.  

Dissolved components 

A detailed understanding of the processes controlling the water chemistry of a river is 

crucial to define geochemical cycles within a given catchment. Although natural studies of 

riverine chemistry at the global scale have been widely discussed (Gibbs 1970; Meybeck 

1987; Gaillardet et al. 1999; Gaillardet 2014; Viers et al. 2014), specific regional 

researches performed on the Po river catchment are rare. The amount of the dissolved 

species are related to the nature of lithologies outcropping in the catchment and the 

weathering processes typically occurring in the region (Voss et al. 2014 and references 

therein). Moreover, the anthropogenic contribution related to human activities cannot be 

neglected. The investigation has been refined taking into consideration the chemical 

analyses of the major cations and anions (Tab. 3, Ch. 4). 
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Table 3: Chemical composition of Po river waters. Some important tributaries (Ticino, Adda, Mincio), 

sampled close to the confluence with Po river have been also taken into account.. nd = not detected. 



 28 

 

 



 29 

The Total Dissolved Solids (TDS), calculated as a sum of the major chemical species, 

coherently increases from the upper part of the catchment where the UP samples have 

TDS < 100 mg/l, to the central part where the MP samples have a TDS between 250 and 

300 mg/l. Higher TDS values are generally observed in the deltaic samples (> 500 mg/l), 

with localized high saline samples (TDS up to 5,864 mg/l) which possibly result from 

effective mixing with sea water during momentary high tide influence. It is extremely 

interesting to note that the chemical variations along the river course, starting from the 

sources of Pian del Re, synthetized in the notional Gibbs diagram where TDS values (y-

axis) are plotted against the [Na+/(Na++Ca2+)] ratio (x-axis, Fig. 4, Ch. 4). 

 

 

Figure 4: Gibbs diagram: TDS vs >Na/(Na+Ca)@ reported in mg/L for the Po river water. Filled symbols (black 

square for UP, grey triangle for MP, light grey circle for TP) for samples collected in winter-spring; open 

symbols (square for UP, triangle for MP, circle for TP) for the samples collected in summer. 
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 It can be observed that the UP water, and in particular that from Pian del Re, already 

displays a significant degree of water-rock interaction. According to the Langelier 

Saturation Index the initial Po river water (close to the Pian del Re source) is calcite under-

saturated, but it quickly reached calcite saturation, being buffered from further interaction 

with the scarce carbonate lithologies outcropping in the basin. Conversely, reactions with 

silicate-rocks and their constituent minerals continue all along the river course explaining 

the comparatively higher TDS and [Na+/(Na++Ca2+)] ratios observed in the MP samples. 

More extreme [Na+/(Na++Ca2+)] ratios characterize the TP samples from the deltaic area, 

confirming the mixing with saline sea (and lagoon) water, as also evidenced by the isotopic 

signature of these samples. A more comprehensive examination is given by the Piper 

classification diagram of Fig. 5, Ch. 4 where it can be observed that Po river water mainly 

exhibits a bicarbonate-alkaline earth hydrochemical  

 

 

Figure 5: Piper classification diagram reporting composition of River Po water a) samples collected in 

winter-spring, b) samples collected in summer. 

 

facies, with slight but significant differences between the delineated UP, MP, TP groups of 

samples. Very few TP samples show a chloride-alkaline hydrochemical facies that indicate 

effective mixing with saline water. The calculation of a correlation matrix highlights 

coherent elemental relationships along the whole sample suite; in particular, Cl- positively 

correlates with Br- and SO4
2- but also with alkaline elements such as Na+, K+, and trace 
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element such as Li and Rb (r2 is better than 0.9 for all the mentioned elements ), whereas 

Ca2+ mainly correlates with Sr (r2=0.72). Elemental ratios have been also taken into 

account because they can highlight the different lithologies that have been weathered 

releasing chemical component in the interacting water (Viers et al. 2014; Voss et al. 2014). 

In the Po river water: Ca2+/Na+ (molar) is 21.6-6.4 and 3.8-2.3 for UP and MP, 

respectively; Mg2+/Na+ (molar) is 5.3-2 and 1.4-0.7 for UP and MP, respectively. These 

values have been compared with those provided by Meybeck (2003) for water of mono-

lithological basins which interacted with distinct carbonate and plutonic/metamorphic 

silicate rocks; the comparison reveals that the UP water preferentially dissolves carbonate 

components, whereas the MP water is progressively influenced by silicate rocks (igneous 

and metamorphic) components, which are particularly abundant in the catchment. The 

trace element ratio could provide further useful information; according to the findings 

provided by Natale et al (2013), who analysed little mono-lithological alpine catchments, 

the rubidium/strontium ratio can highlight if the weathered rocks are mainly composed by 

carbonates (low Rb/Sr) or silicates (high Rb/Sr). It has to be noted that the Po river water 

is usually characterized by Rb/Sr between 0.004 and 0.009, values suggesting prevalent 

interaction with silicate rocks that predominate in the highlands of the catchment, and only 

a subordinate interaction with carbonate lithologies. In general, the more extreme 

variations are observed in the terminal part of the river, where evident mixing trends can 

be observed in the bi-variate diagrams of Fig. 6, Ch. 4 which are based on the more 

conservative elements (Cl- vs Br-, SO4
2-, Na+, Li, B). In these diagrams, the real TP 

compositions compared with theoretical mixing lines with seawater indicate that up to 20 % 

of marine influence could affect the river waters. Other less conservative elements, if 

plotted and compared with the theoretical sea water mixing lines, show that the mixing 

process is largely not ideal and not conservative, possibly as result of ion-exchange 

processes with suspended solid particles (Bianchini et al. 2005).  
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Figure 6:  Scatter diagrams reporting compositions of 
the more conservative ions (Cl, Na, Li, Br, SO4). 
Emphasis is given to the TP water of Po river collected 
in August (circles), which are variously affected by 
mixing with seawater and salinization, whereas the 
remaining UP and MP samples are grouped within a 
compositional field. Note that real TP compositions are 
compared with theoretical seawater mixing trends, 
showing that the more saline TP samples correspond 
to ≈ 20% of mixing with seawater. 
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Anthropogenic contributions are superimposed on the geochemical fingerprint, as indicated 

by the concentration of nitrate (Fig. 7a, Ch. 4) that reaches the highest values in the MP 

samples (12 mg/L). It is interesting to note that in the MP of the river the dissolved NO3
- is 

systematically higher in winter-spring than in summer, whereas in the TP of the river NO3
- 

becomes preponderant in the summer period, possibly suggesting a diverse origin in the two 

zones. The precise origin of NO3
- in water from the Po plain was recently investigated by 

Sacchi et al. (2013) that evidenced: a) diffuse contamination related to the agricultural 

activities that use abundant nitrogen-bearing fertilizers, b) punctual (direct) pollution from 

(zootechnical) activities that produce nitrogen rich manure, c) sewers from densely inhabited 

lower Po plain settlements. In particular, the higher nitrate concentration has been detected 

close to the city of Parma and Piacenza where agricultural breeding practices are widely 

developed. The obtained results also complement the studies of the Po river solid load (Cozzi 

and Giani 2011), suggesting the first order role of Po river in regulating the nitrogen budget of 

the Adriatic Sea.  
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Figure 7:  a) Histograms representing the NO3
- dissolved in different Po river sites in distinct hydrological 

periods (expressed in mg/L; white color, winter-spring; black color, summer). b) arsenic concentration 

(expressed in μg/L) along the Po river profile (white squares, winter-spring; black squares, summer). 
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Emphasis is also given to elements that are potentially toxic and hazardous in water for 

drinking purposes (e.g.: As, Ni, Cr; Tab. 3, Ch. 4). For example, arsenic (Fig. 7b, Ch. 4) is 

generally high throughout the whole sample population and often exceeds the tolerance limits 

for drinkable water defined by the European Council Directive 98/83/EC (on the quality of 

water for human consumption) and by the World Health Organization (10 μg/L). Attention also 

has to be paid to nickel and chromium that are known to be enriched in the alluvial sediments 

of the area due to widespread outcrop of ophiolite ultramafic rocks in the Po river catchment 

(Bianchini et al. 2012; 2013; 2014). The analyses (Tab. 3, Ch. 4) reveal that the mobility of 

chromium is limited (probably due to the Eh and pH conditions of the studied waters), as 

indicated by concentration <10 μg/l in the natural water of the area, i.e. significantly lower 

than the European drinking standards (20 and 50 μg/l for Ni and Cr, respectively). Nickel 

displays a higher mobility, possibly because it is associated with serpentine that is a 

metastable mineral phase (Kierczak et al. 2007). Coherently the Cr/Ni is always higher than 

one in the Po river sediments, whereas it is always lower than one in the studied waters; 

therefore, the high bio-accessibility of nickel represents a potential geochemical risk for the 

area and has to be carefully monitored (Cempel and Nikel 2005).  

Spatial variability of water isotopes and chloride 

Geochemical maps are a useful tool to describe the state of environmental resources of a 

territory. In this light, interpolation of point measurements using geostatistical techniques can 

be used to estimate values in the neighbours, i.e. to extend predictions to non-sampled 

locations. The geostatistic approach is based on the spatial autocorrelation concept defining 

that nearby objects are more related than distant objects. It has been traditionally applied to 

emphasize geochemical backgrounds and anomalies of soils (Goovaerts 1998) but is also 

useful, and progressively more used, for hydrological applications (Dutton et al. 2005; Bowen 

2010; Timsic and Patterson 2014).  
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Figure 8: Geochemical map showing the GD (‰) spatial variation along the geographical extent of Po river. For 

interpretation refer to the colored web version of the paper. 

 

In this study, spatial interpolation techniques have been used to define the geochemical 

variability of Po river waters along its main channel, also considering the potential contribution 

of some alpine and apennine tributaries (additional data from Iacumin et al. 2009; Delconte et 

al. 2014). The goal is to visualize geochemical changes within the riverine system, providing a 

spatial snapshot of the summer conditions, which may represent a tool to understand ongoing 

processes. The most appropriate method of spatial interpolation to map the isotopic and 

geochemical variability of the Po river is the “kriging” algorithm in which the weights assigned 

to nearby data during the interpolation process are determined by a model of the covariance 

structure of the observational data (Isaaks and Srivastava 1990). A spherical semivariogram 

model has been fitted by automatic calculation of its parameter by the Geostatistical Analysis 
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tool (ArcGis 9.3) in which anisotropy has been also considered evaluating its significant 

directional differences. 

 

 

Figure 9: Geochemical maps focused on the deltaic part of the Po river showing a) the GD (‰) and b) the 

chloride (mg/l) spatial variation, respectively. For interpretation refer to the colored web version of the paper. 

 

Interpolation models reveal that the Po riverine distribution of both δ18O and δD delineates a 

rough but systematic isotopic gradient, with values that become less negative as the water 

reaches the lowlands along the river course. This “weighting” trend is particularly evident for 

hydrogen isotopes and is depicted by the thematic map of Fig. 8, Ch. 4 which allows the 

definition of a precise δD gradient obtained by an interpolation algorithm relating the 

geographical distance with the considered parameter. This is particularly evident in the UP 

and MP parts, reflecting the mean elevation of the relative sub basins and the isotopic 

composition of the associated meteoric waters (Dutton et al. 2005; Kendall and Coplen 2001). 

The δD spatial distribution indicates that the Po river isotopic fingerprint acquired in the MP is 

buffered and maintained irrespective to the confluence of the tributaries having distinct 

compositions, only varying with the distance from the source.  

In particular, the geostatistical approach is extremely useful in the deltaic sector where the 

river is subdivided in several branches. Accordingly, emphasis is given to the TP of the river 

in order to highlight geochemical variation related to mixing processes with marine water; in 



 38 

Fig. 9a, Ch. 4 it can be observed that the main deltaic branch (Po di Venezia) nearly 

preserves the unaltered original composition, whereas waters of the second order (outer) 

branches such as Po di Levante, Po di Maistra, Po di Gnocca, Po di Tolle, Po di Goro) display 

a more marked δD “positivization”; this observation is plausibly due to their lower discharge 

and flow velocity which make them more sensitive to seawater intrusion. This hypothesis is 

supported by the geochemical map of Fig. 9b, Ch. 4 which reports the chloride spatial 

variation in the same TP sector. Further constraints would require the preparation of 

analogous geochemical maps taking also into consideration the tidal characteristics, which 

could influence the mixing between river and marine water. The spatial correlation of the d-

excess, which amplifies small differences between the observed δD and δ18O parameters, 

has been also taken into consideration in order to identify the ultimate origin of the vapour air 

masses circulating within and around the Po river basin. The ordinary kriging interpolation of 

this parameter along with the Po river highlights an initial d-exc composition around +14‰ 

which conforms with the fingerprint of precipitations of Atlantic provenance; d-exc gradually 

decreases to ca. +10 ‰ down flow to the confluence of Ticino River and is followed by a re-

increase up to +17,6 ‰ in the, MP, which plausibly reflects meteoric contribution from both 

Atlantic and Mediterranean (d-exc up to +27‰; Cruz-San Julian et al. 1992; Lambs et al. 

2013) provenance. The prediction map finally exhibits a sharp d-exc decrease (down to 

negative values) in the deltaic portion of TP, where evaporation and mixing processes have 

been described above. 
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5 ACTIVITY OF THE SECOND YEAR, BASED ON THE SAMPLING 
CAMPAIGNS 2013 
 

The activity of the second year started with other two sampling campaigns (March 

2013, May 2013) in which samples have been collected in the same sites 

delineate in the previous chapter. The related samples have been investigated to 

carry out major ions as well as oxygen and hydrogen isotopes. In addition, this 

chapter presents the analyses of other isotopic tracers such as carbon, sulphur 

and nitrogen (δ13C, δ34S, δ15N) that provide further information to understand the 

river geochemical cycles and its dynamics. Furthermore, the current chapter 

reports the analyses of suspended matter collected during the same year in the Po 

river water. The presented data implement the discussion of the previous chapters 

in order to discriminate natural compositions and superimposed anthropogenic 

components. In fact, as widely described in the literature (Mook, 2005; Garrels et 

al, 1973; Schulte et al. 2011) the riverine geochemistry gives first-order constraints 

on the processes affecting the continental surface (weathering of rocks, erosion 

and dissolution as well as human pollution) in turn resulting on the amount and 

nature of geochemical components transferred to the sea. A manuscript containing 

the outcome of this chapter has been already submitted to the Journal 

“Environmental Monitoring and assessment”. 
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5.1 Sampling strategies and analytical methods 

 

 

Figure 1:  a) Po river catchment area (based on NASA SRTM data) and relative sampling stations 

Distinct symbols have been used for water sampled at increasing distance from the source in the 

upper part (UP, black squares), middle part (MP, grey triangles), and terminal part (TP, light grey 

circles); b)  Monthly precipitation (2013) in the Upper Part of the Po river catchment (data provided 

by ARPA PIEMONTE);  c) Po river discharge (Q, m3/s) in the section of Pontelagoscuro which is 

located at the boundary between the MP and UP sector delineated in this study; the values are 

specifically referred to the year 2013 (data provided by ARPA EMILIA ROMAGNA). 

 

In this year 36 water samples were collected along the whole stream of the Po 

river (Fig. 1, Ch. 5) from its source (Pian del Re spring) to the deltaic area in 

March and May 2013. As described before, the rationale behind the selection of 

sampling locations was to monitor the water geochemistry along the river profile, 

before/after the confluence of important tributaries, settlements and/or zones of 

important productive activities, but logistical criteria (i.e. easy site accessibility) 

were also taken into consideration. Each sampling location was geo-referenced by 

a portable global positioning system (GPS), to locate the points and to set up 

future field surveys.  

Surface water was collected at 40-50 cm depth using a bucket, possibly far from 

the shore (using boats, piers, or sampling from bridges). Electrical conductivity 



 41 

(EC), pH and temperature were directly measured in the field, then water samples 

were filtered by 0.45 µm filters (Minisart® NML syringe cellulose acetate filters) 

and stored in distinct 100 ml bottles; one for the analysis of anions and 

oxygen/hydrogen isotopes, one acidified with 0.5 mL of concentrated Suprapur 

HNO3 for the determination of cations, and additional two bottles for the 

measurement of carbon, nitrogen and sulphur isotopes (δ13C-δ18O; δ15N- δ18O; 

δ34S- δ18O).  

Analyses were carried out at the Department of Physics and Earth Sciences of the 

University of Ferrara (Italy). As described above cations were measured by 

inductively coupled plasma mass spectrometry (ICP-MS) using a Thermo-

Scientific X Series instrument on samples previously diluted 1:10 by deionized 

Milli-Q water (resistivity of ca. 18.2 MΩ x cm), introducing known amount of Re 

and Rh as internal standard; in each analytical session the analysis of samples 

was verified with that of the reference materials EU-L-1 and ES-L1 provided by 

SCP-Science (www.scpscience.com). The anions were determined by ion 

chromatography using a DIONEX ICS-1000 calibrated using solutions obtained by 

different dilutions of the DIONEX “7-ion standard”. Accuracy and precision, based 

on the repeated analyses of samples and standards, were better than 10% for all 

the considered parameters.  

Hydrogen and oxygen isotope ratios were determined using the CRDS LOS 
GATOS LWIA 24-d isotopic analyzer and reported in Table 2, Ch. 5. The isotopic 

ratios of 2H/1H and 18O/16O are expressed as δ notation [δ = (Rsample/Rstandard − 

1)*1000] with respect to the V-SMOW (Vienna Standard Mean Ocean Water) 

international standard. Four bracketing standards covering the whole range of 

isotopic values of the Po river water were run throughout the analytical sessions. 

These standards, obtained from the Los Gatos Research company, were 

calibrated with international standards such as V-SMOW and SLAP (Standard 

Light Antarctic Precipitation). Analytical precision and accuracy were better than 

0.3‰ and 1.0‰ for G18O and GD respectively. A cross check of the obtained δ18O - 

δD values have been done re-analysing a data subset with a PICARRO L2120-i 

water isotope analyser (Fig. 2, Ch. 5) at Helmholtz Centre for Environmental 

Research (UFZ) in Halle (Germany).  
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Figure 2: PICARRO L2120-i water isotope analyser at 

Helmholtz Centre for Environmental Research (UFZ) in 

Halle (Germany).  

 

The isotopic analyses of carbon, sulphur and nitrogen were carried out in the Po 

river water sampled in March and May 2013, as well as on some samples 

collected in the year 2012 previously studied by Marchina et al. (2014). These 

isotopic analyses were preformed in the laboratories of the Helmholtz-Zentrum für 

Umweltforschung (UFZ) of Leipzig/Halle (Germany). Most of the lab-activities have 

been carried out by myself during the “Erasmus Placement program” (as attested 

by the relative certificate; Appendix B). 

Carbon (and associated oxygen) isotopic analyses have been carried out on 

Dissolved Inorganic Component (DIC) using the method described in Atekwana et 

al., 1998. The technique uses evacuated glass septum tubes pre-loaded with 

phosphoric acid and a magnetic stir bar. Water samples are injected into these 

septum tubes and transferred to the vacuum line during the DIC extraction. 13C/12C 

isotope ratios are reported as δ notation with respect to the PDB (Pee Dee 

Belemnite) international standard. The associated 18O/16O  ratios are reported as δ 

notation with respect to the SMOW international standard. Repeated analyses of 

standards (NBS-19) and samples reveal δ13C precision and accuracy of 0.1‰. 

Sulphur (and associated oxygen) isotopic analyses have been carried out on 

sulphate recovered using the method described in Knöller et al (2005), where 

BaSO4 precipitation is induced at 70°C after the pH of the solution was adjusted to 
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2.5 (Fig. 3, Ch. 5). Subsequentely, isotopic measurements were performed after 

conversion of BaSO4 to SO2 using the continuous flow combustion technique 

coupled with an isotope-ratio mass spectrometry (delta S, Finnigan MAT). 34S/32S 

and and associated 18O/16O isotope ratios are reported as δ notation with respect 

to the VCDT (Vienna Canion Diablo Troilite) and SMOW, respectively. Analyses of 

δ34SSO4 were corrected using international sulphur isotopic standards NBS 127 

(BaSO4) and IAEA-S1 (Ag2S). Analytical accuracy and precision was generally 

0.3‰ and 0.5‰ for δ34S and δ18O respectively. 

 

 

Figure 3: BaSO4 precipitation for the analyses of the dissolved sulphate 

 

Nitrogen (and associated oxygen) isotopic analyses have been carried out on 

Dissolved Inorganic Nitrogen (DIN) using the bacteria denitrification method  (Fig.  

4, Ch. 5) described by Sigman et al. (2001) and Casciotti et al. (2002). This is a 

method that involves the use of bacteria to transform NO3
- in N2O. 15N/14N and 

associated 18O/16O isotope ratios are reported as δ notation with respect to the 

AIR and SMOW international standards, respectively. Analyses of δ15NNO3 were 

corrected using international nitrogen isotopic standards IAEA: USGS-32, USGS-

34 (KNO3 δ15N = -1.8‰), USGS-35 (NaNO3), NO2-1 (KNO2), NO2-2 NaNO2. 

Analyses of δ18ONO3 were corrected respect to international nitrate isotopic 

standards USGS-34 (δ18O = -27.9‰) and USGS-35 (δ18O = +57.5‰) (Bölke et al. 

2003). Analytical accuracy and precision was generally 0.2‰ for δ15N and 0.7‰ 

for δ18O.  
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 Denitrified Method 

 

 

Figure 4: Sample preparation for the analyses of nitrogen isotopes using the bacteria 

Pseudomonas chlororaphis (ATCC #13985) (Helmholtz-Zentrum für Umweltforschung 

(UFZ) of Leipzig/Halle, Germany 

 

The denitrifier method is based on the isotope ratio analysis of nitrous oxide generated 

from sample nitrate by denitrifying bacteria. In particular it provides additional issues 

associated with 18O/16O analysis of nitrate. It is interesting to note that is the first method 

tested for 18O/16O analysis of nitrate in seawater.  

Respect to other methods, this approach has higher sensitivity, lack of interference by 

other solutes, and ease of sample preparation. 

The denitrifier method for 15N/14N analysis of nitrate, described also by Sigman et al., is 

based on bacterial conversion of nitrate to N2O and, therefore, can also offer oxygen 

isotope information.  The degree of exchange varies greatly among bacterial strains and 

may be related to the biochemistry of nitrite reduction. Bacteria possessing the heme-type 

nitrite reductase (as Pseudomonas chlororaphis does) were shown to catalyze a relatively 
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large amount of exchange (39-76%), while Pseudomonas aureofaciens, known to 

possess the copper-type nitrite reductase, was shown to cause relatively little 

incorporation of oxygen atoms from water into N2O (6%).  

 

5.2 Hydrochemistry 

 

Physico-chemical parameters measured in-situ such as pH, temperature and 

conductivity of Po river water are reported in Table 1, Ch. 5. Note that the sample 

population has been geographically subdivided in three subsets according to 

Marchina et al. (2015): Upper Part (UP), Middle Part (MP), Terminal Part (TP) of 

the river. Few anomalous samples (or values) have been evidenced in italic font. 

These outliers are referred to samples collected in March 2013 in the UP at 

Carignano (intensive vineyard production), in the MP at Torino  (important urban 

settlement), Crescentino (rice paddies activites) and Balossa Bigli (multiple agro-

zoothecnical activities). An additional outlier is represented by the sample of Porto 

Levante, last site in the TP, possibly interested by mixing with seawater. 

The value of pH varies in the three distinct parts of the river between 8.1 and 9.0, 

with the lowest value in Porto Levante and the higher value in Pian del Re 

(Spring). This variation doesn’t show a systematic trend and is in the same range 

of that recorded from Marchina et al. (2015). Water temperature shows significant 

spatial-temporal variation; in UP it varied between 5 °C (locality Pian del Re, 

March 2013) to 13 °C (locality Carignano, May 2013); in MP it varied between 9 °C 

(March 2013) to 16 °C (May 2013); in TP it varied between 10 °C (in March 2013) 

to 17°C (in May 2013). 

Water conductivity was also variable, increasing from UP (average 137±45 µS/cm) 

through MP (average 335±62 µS/cm), up to TP where samples were more 

heterogeneous (average 430±9 µS/cm). The highest value was recorded seaward 

at Porto Levante (1,280 µS/cm). These values were compared with water 

conductivity of the previous sampling campaigns (of the year 2012; Marchina et 

al., 2015) and evidence nearly constant values in particular for UP and MP 

samples (170±45 µS/cm and 350±25 µS/cm respectively). Chemical analyses of 
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the major cations and anions are also reported in Table 1, Ch. 5. These data, 

especially the concentration of Ca2+, HCO3
-, SO4

2- and NO3
-, will help in 

constraining carbon, nitrogen and sulphur isotope data presented in the next 

sections.  



 
47

 

N
am

e
D

at
e

L
at

itu
de

L
on

gi
tu

de
pH

T
 (°

C
)

E
C

 (µ
S/

cm
)

N
a+

M
g2+

K
+

C
a2+

C
l-

N
O

3
-

SO
42-

H
C

O
3-

T
D

S

U
pp

er
 P

ar
t (

U
P)

 
Pi

an
 d

el
 R

e
03

/2
01

3
44

° 
42

' 0
4.

00
"

07
° 

05
' 4

2.
00

"
9

5
11

0
0.

79
3.

95
0.

07
8.

81
0.

63
0.

85
6.

25
45

66
05

 2
01

3
8.

2
6

90
44

C
ri

ss
ol

o
05

 2
01

3
44

° 
41

' 5
2.

38
"

07
° 

09
' 3

3.
9"

8.
4

9
15

0
58

Sa
nf

ro
nt

03
/2

01
3

44
° 

39
' 0

3.
89

"
07

° 
19

' 5
8.

90
"

8.
7

9
16

0
3.

23
5.

45
0.

70
9.

74
3.

35
4.

38
11

.9
60

99
05

 2
01

3
8.

7
9

10
0

45
C

ar
ig

na
no

03
/2

01
3

44
° 

54
' 3

1.
37

"
07

° 
41

' 2
9.

93
"

8.
4

10
56

0
10

.2
21

.0
1.

73
64

.3
13

.0
18

.0
46

.4
13

5
31

0
05

 2
01

3
7.

3
13

21
0

1.
97

4.
95

1.
62

22
.1

3.
28

5.
20

12
.6

75
12

7
M

id
dl

e 
Pa

rt
 (M

P)
To

ri
no

03
/2

01
3

45
° 

04
' 1

2.
20

"
07

° 
43

' 1
2.

15
"

8.
5

10
55

0
11

.8
18

.7
2.

55
42

.2
19

.2
4.

03
47

.8
16

5
31

1
05

 2
01

3
7.

5
13

21
0

0.
85

1.
72

0.
44

9.
03

4.
63

6.
75

13
.4

60
97

C
as

al
e 

M
on

fe
rr

at
o

05
 2

01
3

45
° 

08
' 3

0.
79

"
08

° 
26

' 5
1.

07
"

8.
2

14
18

0
2.

08
4.

01
0.

60
13

.5
3.

86
4.

52
12

.3
90

13
1

C
re

sc
en

tin
o

03
/2

01
3

45
° 

10
' 3

2.
96

" 
 

08
° 

05
' 5

5.
61

"
8.

5
9

51
0

13
.5

17
.0

2.
00

27
.2

20
.4

13
.7

51
.2

13
5

28
0

Ba
lo

ss
a 

Bi
gl

i
03

/2
01

3
45

° 
03

' 5
8.

00
" 

 
08

° 
54

' 4
8.

80
"

8.
5

9
40

0
18

.1
15

.7
2.

31
30

.1
20

.6
31

.4
35

.4
13

5
28

9
Re

a
05

 2
01

3
45

° 
07

' 2
7.

90
"

 0
9°

 0
9'

 3
1.

96
"

8.
00

15
20

0
2.

65
4.

01
1.

32
17

.6
4.

79
4.

49
13

.5
90

13
8

Ti
ci

no
 R

iv
er

03
/2

01
3

45
° 

08
' 4

0.
88

" 
 

09
° 

13
' 4

8.
62

"
8.

7
10

31
0

12
.5

8.
20

1.
65

19
.3

11
.9

8.
27

26
.1

16
5

23
5

05
 2

01
3

8.
00

14
17

0
7.

03
3.

88
26

.1
45

Se
nn

a 
Lo

di
gi

an
a

05
 2

01
3

45
° 

07
' 4

6.
41

" 
 

09
° 

38
' 0

7.
16

"
8.

00
14

23
0

11
.3

4.
98

35
.7

90
Ad

da
 r

iv
er

05
 2

01
3

45
° 

09
' 1

8.
97

"
09

° 
51

' 1
3.

62
"

8.
3

13
26

0
10

.7
5.

80
35

.0
10

5
Pi

ac
en

za
03

/2
01

3
45

° 
03

' 4
1.

76
"

09
° 

41
' 5

3.
51

"
9.

00
9

39
0

11
.1

10
.8

1.
26

30
.0

15
.0

6.
95

28
.1

nd
05

 2
01

3
8.

5
10

39
0

12
.9

4.
56

26
.1

12
0

C
re

m
on

a
03

/2
01

3
45

° 
07

' 4
3.

34
" 

  
09

° 
59

' 4
5.

93
"

8.
5

9
44

0
15

.9
15

.5
1.

99
32

.0
17

.5
8.

88
31

.1
16

5
28

8
05

 2
01

3
8.

2
15

26
0

13
.2

5.
79

30
.4

60
C

ol
ta

ro
03

/2
01

3
44

° 
59

' 0
3.

67
" 

 
10

° 
18

' 2
7.

70
"

8.
8

8
42

0
13

.6
17

.6
2.

14
54

.4
13

.6
8.

31
25

.0
19

5
33

0
05

 2
01

3
8.

3
14

26
0

12
.4

6.
01

26
.5

75
Bo

re
tto

03
/2

01
3

44
° 

54
' 2

4.
67

" 
 

10
° 

33
' 2

5.
50

"
9.

00
9

44
0

15
.2

17
,1

2.
10

59
.0

16
.1

10
.4

28
.5

16
5

31
4

05
 2

01
3

8.
3

14
25

0
12

.6
5.

97
31

.9
10

5
Re

ve
re

03
/2

01
3

45
° 

03
' 2

7.
46

" 
   

 
11

° 
07

' 5
2.

80
''

8.
5

10
52

0
16

.8
16

.6
2.

10
64

.0
20

.7
12

.0
39

.9
14

4
31

6
05

 2
01

3
8.

2
15

31
0

13
.0

7.
32

38
.2

12
0

Te
rm

in
al

 P
ar

t (
T

P)
 

O
cc

hi
ob

el
lo

03
/2

01
3

44
° 

55
' 0

4.
78

" 
   

   
   

   
   

 
11

° 
34

' 4
6.

10
"

8.
5

10
52

0
16

.8
16

.5
2.

41
63

.7
19

.2
11

.4
38

.2
13

5
30

3
05

 2
01

3
8.

2
16

35
0

12
.7

13
.3

2.
93

33
.5

14
.3

7.
01

40
.0

12
0

24
4

C
re

sp
in

o
03

/2
01

3
44

° 
58

' 3
7.

64
" 

 
11

° 
52

' 5
3.

06
"

8.
7

10
49

0
18

.4
20

.8
3.

79
82

.5
18

.0
8.

86
33

.9
16

5
35

1
05

 2
01

3
8.

3
17

36
0

15
.4

15
.6

2.
81

52
.4

13
.8

6.
74

35
.3

12
0

26
1

Bo
ttr

ig
he

03
/2

01
3

45
° 

01
' 1

5.
17

" 
 

12
° 

04
' 4

4.
24

"
8.

3
10

50
0

12
.7

6.
15

40
.1

15
0

05
 2

01
3

8.
2

17
36

0
25

.4
24

.5
5.

99
66

.8
12

.1
6.

27
39

.2
15

0
33

0
Ta

gl
io

 d
i P

o
03

/2
01

3
45

° 
00

' 3
6.

12
" 

   
 

12
° 

13
' 0

9.
12

"
8.

4
10

50
0

18
.7

10
.6

42
.7

18
0

05
 2

01
3

8.
2

17
36

0
15

.2
7.

91
45

.6
15

0
Po

 d
i L

ev
an

te
 (P

or
to

 
Le

va
nt

e)
03

/2
01

3
45

° 
02

' 4
3.

00
" 

   
 

12
° 

19
' 2

7.
52

"
8.

1
12

1,
28

0
89

.6
44

.1
7.

24
97

.8
16

4
29

.9
10

8
27

0
81

1

Po
le

se
lla

 
03

/1
96

9
7.

4
9

14
.3

33
.0

4.
65

19
2

03
/1

96
9

7.
5

9
14

.8
30

.4
4.

6
18

7
04

/1
96

9
7.

3
13

16
.8

28
.0

4.
30

17
7

04
/1

96
9

17
13

.9
33

.0
4.

32
19

3
05

/1
96

9
19

9.
20

24
.0

3.
30

13
7

02
/1

95
9

7.
3

40
9

17
.0

12
.9

2.
20

60
.6

19
.8

ab
se

nt
53

.1
18

7
05

/1
95

9
7.

7
22

5
7.

00
8.

40
1.

80
33

.6
9.

00
on

ly
 tr

ac
es

29
.1

10
8

H
is

to
ri

ca
l s

am
pl

es
 b

y 
Fo

ss
at

o 
(1

97
1)

; G
he

ra
rd

el
li 

an
d 

C
an

al
i (

19
60

)

 

Ta
bl

e 
1:

 P
hy

si
co

-c
he

m
ic

al
 p

ar
am

et
er

s 
m

ea
su

re
d 

in
 th

e 
fie

ld
 a

nd
 C

he
m

ic
al

 c
om

po
si

tio
n 

of
 P

o 
riv

er
 w

at
er

s.
 S

om
e 

im
po

rta
nt

 tr
ib

ut
ar

ie
s 

(T
ic

in
o,

 A
dd

a,
 M

in
ci

o)
, 

sa
m

pl
ed

 c
lo

se
 to

 th
e 

co
nf

lu
en

ce
 w

ith
 P

o 
riv

er
 h

av
e 

be
en

 a
ls

o 
ta

ke
n 

in
to

 a
cc

ou
nt

. 



 48 

 

Total Dissolved Solids (TDS) coherently increases from the upper part of the 

catchment, where the UP samples have TDS average of 97 (±30) mg/L, to the 

central part where the MP samples have a TDS average of 250 (±85) mg/L. In 

particular, Ca2+ varies between 9 mg/L (Pian del Re, UP) and 98 mg/L (Porto 
Levante, TP), with average values of 14 (±7) mg/L, 34 (±18) mg/L, 60 (±18) mg/L 

in UP, MP and TP respectively. HCO3
-
 varies between 45 mg/L to 135 in the UP 

samples, becomes more homogeneous in the MP and TP waters (average 143±25 

mg/L) and increases seaward in the locality of Porto Levante (270 mg/L).  

It is interesting to note that the chemical variations along the river course observed 

for the year 2013, (synthetized in the notional Gibbs diagram; Fig. 5 Ch. 5), are 

quite similar to those recorded in the year 2012 (Marchina et al. 2015); the UP 

water rapidly evolves and then reaches a notable constancy which is maintained in 

most of the river course up to the terminal part. The Piper classification diagram 

(not shown) indicates that the ubiquitous hydrochemical facies of these waters is 

bicarbonate-alkaline earth. 

Sulphate concentration increases in the UP water from 6 mg/L to 12 mg/L) and 

then became more stable in MP and TP with an average value of 30 (±7) mg/L, 

except for the last sample, influenced by mixing process with seawater). It is 

interesting to note that sulphate evidences a positive spike at Carignano (UP, 

March 2013), with a notable value of 46 mg/L, probably due to agricultural 

practices specifically used for vineyards. High SO4 values are also recorded in 

March 2013 at Torino and Crescentino site. 

Nitrate concentration is extremely variable throughout the main course of the river; 

it is less than 1 mg/L at the spring (Pian del Re) but suddenly increase in 

Carignano (last sample of the UP) reaching the extreme value of 18 mg/L in March 

2013. Down-stream, the MP samples are characterized by an average 

composition of 9 mg/L, with two anomalous samples collected in March 2013 at 

Torino and Balossa Bigli, having 14 mg/L and 31 mg/L respectively. NO3 values 

recorded in March 2013 are in general higher respect to the values recorded in 

May 2013 and also respect to those recorded in April 2012 (Marchina et al. 2015). 

Therefore nitrate concentrations along the river course are heterogeneous and 
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plausibly related to anthropogenic inputs that are spatially and temporally variable. 

The data above described are also compared with past compositions recorded in 

Po river water since ca. 50 years ago, when human impacts were less 

pronounced. Useful literature data, provided by Gherardelli and Canali (1960) and 

Fossato (1971), report temperature, pH, HCO3
-, Ca2+, Mg2+ and NO3

- values for Po 

river water collected at the boundary of MP and TP during the years 1959 and 

1968 – 1969. I noted that the values of conductivity, HCO3
-, Ca2+ and Mg2+ (and 

Mg/Ca ratio) are comparable with those recorded nowadays, whereas NO3
-

concentration has an average value of 2 mg/L in the fifties and 4 mg/L in the 

sixties, reaching in the eighties concentrations up to 10 mg/L, and then finally 

declining to the current values (data ARPA VENETO). The same temporal trend 

has been envisaged by the data compilation reported by Viaroli et al. 2013.  

 

 

 

 

 

 

Figure 5: Gibbs diagram. TDS vs 

[Na+/(Na++Ca2+)] reported in 

milligrams/liter for the Po river water. Filled 

symbols (black square for UP, grey triangle 

for MP, light grey circle for TP) for samples 

collected in the years 2012 and 2013. 

White diamonds report chemical 

composition of the Po river waters in the 

year 1959 (Gherardelli et al., 1959). 
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5.3 Oxygen and Hydrogen isotopes in Po river waters 
 

The δD‰ and δ18O‰ isotopic ratios have been measured on Po river water in 

March and May 2013. Results are presented in Table 2, Ch. 5 and reported in Fig. 

6, Ch. 5. δD‰ ranges from -86.8‰ to -59.0‰ in March and from -88.8‰ to -

65.7‰ in May, whereas δ18O‰ ranges from -12.5‰ to -8.6‰ in March and from -

12.9‰ to -9.7‰ in May. The isotopic values recorded in May are slightly more 

negative, possibly in relation to the contribution of snow-melt that becomes 

preponderant in the late spring. In Fig. 6a, Ch. 5 the new δ18O values presented in 

this paper are compared with those recorded in Po river during the year 2012 

(Marchina et al. 2015). The isotopic differences recorded in each site, during 

distinct periods are quite limited. In particular, in the UP waters the temporal δ18O 

differences are in the order of 0.6‰, whereas in the MP waters temporal δ18O 

differences are slightly higher in the order of 1‰. Therefore, it appears that 

isotopic differences along the river profile are more significant than those recorded 

locally (i.e. in the same site) in distinct seasons (±0.5‰ at Pontelagoscuro in the 

period 2005-2007; Martinelli et al. 2014); for this reason in the δ18O – δD diagram 

(Fig. 6b, Ch. 5) the data are simply presented with distinct symbols for the three 

river sectors, highlighting a progressive shift towards less negative composition 

from the UP to the TP. 
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Name Date δD‰ δ18O‰
Upper Part (UP) 

Pian del Re 03/2013 -86.8 -12.5
05/2013 -88.8 -12.9

Crissolo 05/2013 -86.9 -12.6
Sanfront 03/2013 -82.0 -11.9

05/2013 -84.2 -12.2
Carignano 03/2013 -81.2 -11.7

05/2013 -76.8 -11.2
Middle Part (MP)

Torino 03/2013 -81.9 -11.6
05/2013 -71.8 -10.5

Casale Monferrato 05/2013 -69.5 -10.3
Crescentino 03/2013 -77.5 -11.2

05/2013 -69.9 -10.2
Balossa Bigli 03/2013 -74.5 -10.8

Rea 05/2013 -67.4 -10.1
Ticino River 03/2013 -66.1 -9.7

05/2013 -63.5 -9.4
Adda river 05/2013 -66.2 -9.8

Piacenza 03/2013 -71.2 -10.4
05/2013 -66.6 -9.8

Cremona 03/2013 -70.2 -10.1
05/2013 -66.6 -9.9

Coltaro 03/2013 -72.0 -10.5
05/2013 -66.6 -9.9

Boretto 03/2013 -71.2 -10.4
05/2013 -66.6 -10.0

Revere 03/2013 -68.1 -9.9
05/2013 -67.8 -10.3

Terminal Part (TP) 
Occhiobello 03/2013 -67.6 -9.9

05/2013 -66.3 -9.9
Crespino 03/2013 -71.0 -10.4

05/2013 -66.9 -10.1
Bottrighe 03/2013 -70.8 -10.2

05/2013 -65.7 -9.8
Taglio di Po 03/2013 -70.5 -10.4

05/2013 -65.9 -9.7
Po di Levante 

(Porto Levante) 03/2013
-59.0 -8.6

 

Table 2: Hydrogen and oxygen isotope ratios in the Po river waters. Some important tributaries 

(Ticino, Adda, Mincio), sampled close to the confluence with Po river have been also taken into 

account. Data are expressed in G‰ respect to the SMOW standard.  
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Noteworthy, most Po river isotopic compositions conform to those of precipitations 

occurring at high altitudes in the north/northwestern-most part of the basin (UP), 

i.e. from high Alpine zones (Longinelli and Selmo 2003) and the gradual increase 

along the river course is due to the progressive contribution of meteoric 

components from lower altitudes.  

The hydrogen and oxygen isotopic ratios are dependent on the temperature of 

water condensation, (Dansgaard 1964), and give therefore a snapshot of the 

current climatic conditions that concur to create a hydro-archive useful to 

evaluate climatic changes (Rozansky 1985; Zuppi and Sacchi 2004; Henderson 

and Shuman 2010). For this reason it is extremely interesting to compare current 

meteoric components that dominate surface water bodies with groundwater of 

the same region, because aquifers have longer residing times and contain paleo-

meteoric waters that were influenced by climatic condition at the time of recharge 

(Fontes et al. 1993).   
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Figure 6: a) Variation of the δ18O signature in function of the distance from the source of the Po 

river fro three different sampling campaign (April 2012 from Marchina et al., 2014; March and May 

2013); b) δ18O-δD isotopic composition of Po river water. Meteoric water lines are also reported for 

comparison: the black line represents the global meteoric water line (GMWL; Craig 1961); the red 

line represents the local meteoric water line (LMWL), defined for Northern Italy (Longinelli and 

Selmo 2003), together with compositional fields relative to confined and unconfined aquifer in lower 

Padanian Plain (Rapti Caputo et al., 2009) and meteoric precipitation in the area of Ferrara.  

 

Confined aquifers of the Padanian plain represent suitable hydro-archives being 

characterized by steady-state flow regime and hydraulic continuity (Zuppi and 

Sacchi 2004). In this view, Fig. 6b, Ch. 5 shows the isotopic fingerprint of aquifers 

in the MP and TP sectors (Rapti Caputo and Martinelli 2009; Martinelli et al. 

2014), and deep aquifer (100 m depth; authors’ unpublished data) located close 

to Ferrara, compared to the Po river water. 
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Based on radiocarbon data, Martinelli et al. (2014) recently proposed ages from 

594 to the 35,000 yr for the Padanian plain groundwater of Alpine provenance 

hosted at depths ranging from 60 to 237 meters. The groundwater investigated in 

this study has and average 14C age of 23,750 yr that is associated with an δ18O 

average value of -10.2‰ (±0.5; n=21) that is very similar to that reported for 

Holocene groundwater by Zuppi and Sacchi (2004). These values are very close 

to the δ18O isotopic fingerprint of Po river water at Pontelagoscuro (which is 

located in the lower reach of the river, right upstream of the deltaic system) that 

was -10.0‰ in the seventies (Zuppi and Bortolami 1982), -9.8‰ in the years 

2005-2007, -9.9‰ in the year 2013. This slight difference between river and 

groundwater disappears if we consider as representative of the Po river the MP 

sector which has an average δ18O value of -10.2‰. Groundwater δ18O values 

down to -11.5‰, proxies of colder climatic condition, have been mentioned by 

Zuppi and Sacchi (2004) but have not been confirmed by more recent 

investigation. Analogous consideration could be obtained if we take into 

consideration the associated δD parameters, and in any case we don’t observed 

the δD shift of +12‰ that should reflect an important warming trend occurred 

during the Holocene, as suggested by Rozansky (1985).  

Coherently, calculation of d-excess (from data reported in Table 2, Ch. 5, using the 

equation: d-exc= δD – 8*δ18O) indicates values ranging between 11.8‰ and 

13.6‰, in the MP Po river water. These values overlap with those recorded in 

groundwater (ranging between 11‰ and 14‰; Martinelli et al. 2014), suggesting a 

quite constant relative humidity conditions over the source areas in the last 

millennia.  

Based on the above considerations, additional information concerning 

groundwater isotopic composition and dating are needed to constrain the debate 

on climatic changes, avoiding speculation. At this preliminary stage, it can be 

suggested that the present day Po river waters (MP sector) show a remarkable 

analogy with the composition of groundwater of the Padanian plain confined 

aquifers defined as paleoarchives; this analogy, in my view, precludes that 

significant climatic warming occurred at least during the last thousands years. 
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5.4 Carbon, Sulphur and Nitrogen isotopic composition of dissolved 
components  

 

In Table 3, Ch. 5 are reported the C-N-S isotopic composition of the Po river 

waters in distinct periods of the year 2013 (and subordinately of the year 2012). 

These parameters, as far as I know, were never analysed systematically in Po 

River water. 

δ13CDIC isotopic compositions of Po river water collected in March 2013 are 

reported in Fig. 7a, Ch. 5 in order to highlight compositional variation along the 

river course. It can be noted that a sharp variation trend can be observed in the 

UP samples where we recorded a δ13CDIC value of -4.4‰ in the river source of 

Pian del Re, a value of -6.7‰ in Sanfront (14 km from the source) and a value of -

9.8‰ at Carignano (85 km from the source). Downflow in most samples of MP we 

noted a remarkable isotopic homogeneity in the range δ13CDIC (-10.5‰ ±0.4). The 

δ13CDIC isotopic trend along the Po river course is congruent with that observed in 

other riverine systems such as the Rhone river, where starting from the source 

area progressively more negative isotopic values are observed downstream, until 

more evolved waters attain an isotopic homogeneity (Telmer and Veizer 1999; 

Mook 2005). The δ13CDIC evolution is at first dominated by isotopic exchange with 

atmospheric CO2, and then progressively increasing water-rock interaction and 

biochemical activities (i.e. photosynthesis).  

The observed δ13CDIC range of the Po river water is partially overlapped with that 

typical of groundwater of the Padanian plain that displays δ13CDIC between -12.7‰ 

and -9.4‰ (Pilla and Sacchi 2006). The shift toward more negative δ13CDIC 

composition observed in groundwater may reflect a more effective interaction with 

sediment/soils and their organic components. 

Furthermore, it is interesting to note that the average δ13CDIC value is very similar 

to that recorded in the particles suspended in the Po river waters, where δ13C 

range from -11.4‰ to -9.9‰ (authors’ unpublished data). This compositional 

analogy suggests that the carbon associated to the suspended solid particles has 
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the same origin and is affected by the same processes that influence the dissolved 

inorganic carbon.  

Relatively homogeneous isotopic values are maintained in the MP sector of the 

river and significantly change only in the TP, where mixing with seawater induces 

a trend toward less negative δ13CDIC isotopic values. Fig. 4b emphasizes that the 

carbon isotopic evolution is coupled with significant variation of HCO3
-, as also 

observed in other important rivers originating from the Alps (i.e. Rhone river; Mook 

2005). Fig. 4 also resumes the δ13CDIC signature expected for distinct processes 

occurring in river systems (Barth et al. 2003); on this basis, the HCO3 dissolved in 

the river Po appears equilibrated with CO2 of air (especially in the UP waters) and 

subsequently reflects nonequilibrium dissolution of carbonates, whereas HCO3 

deriving from weathering of silicate lithologies and dissolution of soil organic 

components (usually characterized by extremely negative δ13C) seems 

subordinate.  

Although carbonate bearing lithologies are subordinate in the upper part of the 

catchment, calcite is observed in sporadic marble outcrops (having δ13C 0-2‰, 

Baker 1988) that are included in the crystalline basement. Further carbon can be 

released in the river waters by interaction with carbonate sedimentary rocks, 

having Permian – Triassic ages, which are characterized by δ13CDIC varying 

between  -3.7 and 4.1 (Newton at al. 2004). The outcrops of these sedimentary 

rocks become more significant at the border between the UP and MP sectors of 

the river, in particular in the Ticino and Adda sub-basins. 

Moreover it has to be noted that a very good relation is observed between the 

isotopic composition of the oxygen that is associated to carbon (δ18ODIC) and that 

recorded in the water molecules (δ18OH2O):  

δ18ODIC = 1,52·δ18OH2O + 5,56 (R2 = 0.9) 

thus suggesting an attainment of an isotopic equilibrium between the dissolved 

inorganic carbon and the water solvent. This relationship could be interesting 

because isotope fractionation between carbonate and water is temperature and 

dependent and may, in principle, be used as a further climatic proxy (Beck et al. 

2005; Affek et al. 2013).  
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The sulphur isotopic compositions (δ34SSO4) of Po river water, available only for 

MP and TP samples collected in May 2013, are reported in Table 3 and Fig. 5a in 

order to observe compositional variation along the river course. It can be noted 

that a sharp variation trend can be observed in the first part of MP where it is 

recorded a value of 4.2‰ in the Rea locality, before the Ticino river confluence 

(11.0‰), whereas the highest values for the Po river were measured in Cremona 

(8.0‰), and after the Adda river junction (9.0‰). This variation marks a 

progressively more relevant contribution from sedimentary rocks of Permian-

Triassic age that includes sulphate-bearing horizons (Cortecci et al. 1981; Newton 

et al. 2004). Downstream both MP and TP waters maintain a remarkable isotopic 

homogeneity in the δ34SSO4 range of 7.3‰ ±0.7 that persists along the entire river 

course. Additional charts are used to delineate the origin of sulphate in riverine 

waters: in Fig. 5b sulphur isotopic composition plotted vs SO4
2- concentration, 

shows a rough correlation and an evolution trend. In particular, MP waters are 

divided in two different groups: 1) waters collected before the Ticino river 

confluence are characterized by low SO4
2 concentration (average 13 mg/L) and 

δ34SSO4 (average 4.7‰); 2) waters collected after the Ticino river confluence have 

higher SO4
2- concentration (average 34 mg/L) and δ34SSO4 (average 7.3‰).  

Further information can be extrapolated from Fig. 5c, where sulphur isotopic 

composition is compared with the associated oxygen isotopic composition 

(δ18OSO4, varying from 5.3‰ to 8.4‰.). In this diagram the compositions of the Po 

river water are compared with those that characterize sulphur bearing lithologies 

existing within the Po river basin, such as a) the metamorphic and igneous rocks 

of the basement that contains accessory sulphides (having δ34S approaching 0‰) 

and b) sedimentary rocks of Permian-Triassic ages often containing sulphate-

bearing horizons (having δ34SSO4 approaching > 10‰). The latter become more 

widespread starting from the sub-basins of Ticino and Adda tributaries. The 

involvement anthropogenic contributions to the sulphur budget, e.g. equilibration 

with atmospheric gases and/or deposition of atmospheric particles (Mayer 2005; 

Panettiere et al. 2000) cannot be excluded a priori, but are not highlighted by the 

observed geochemical trends. In other words, although we cannot exclude a minor 

contribution from antropogenic sources which are pronounced in the 

urbanized/industrialized sector of the plain (Panettiere et al. 2000), I emphasize 
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that the isotopic compositions observed in the Po river waters recall those of the 

mentioned lithologies and don’t highlight clear pollutions, thus suggesting that the 

sulphur isotopic signature is mainly geogenic. The definition of the anthropogenic 

δ34SSO4 fingerprint should be investigated collecting samples during a drought 

period, possibly in the sites where we recorded anomalous SO4
2- concentrations. 

Note that a relation (although characterized only by R2 = 0.5) can be observed 

between δ18OSO4 and δ18OH2O, thus suggesting significant interaction between the 

water solvent and the sulphur bearing lithologies.  

δ15NNO3 isotopic compositions of Po river water are reported in Fig. 6a in order to 

bring out compositional variation along the river course. In this case, I observed a 

systematic isotopic variation in the two investigated periods of the year 2013 

(March and May). These temporal differences in the nitrogen isotopic composition 

are limited in the initial UP close to the source of the river (in the order of 2‰), but 

become greater at ca. 80 km from the source, from the site of Carignano that is 

characterized by a remarkable isotopic spike toward heavy δ15NNO3. In March the 

initial UP waters have δ15NNO3 varying from -2.2‰ at Pian del Re to 1.8‰ at 

Sanfront and then it remains relatively homogeneous for the rest of the river 

course with an average composition of 7.7‰. In May the initial UP waters have 

δ15N varying from -1.7‰ at Pian del Re to -0.1‰ at Sanfront, and then it shows a 

progressive - systematic - downflow increase up to 8.2‰ in the locality of 

Occhiobello remaining relatively homogeneous within the TP waters. It is 

interesting to note that this value is very similar to those recorded in the particles 

suspended in the Po river waters that are characterized by δ15N ranging from 

7.3‰ to 8.6‰. This compositional analogy suggests that nitrogen associated to 

the suspended solid particles has the same origin and is affected by the same 

processes of the dissolved inorganic nitrogen.  

In the MP samples, the δ15N distribution observed in March is quite fluctuating 

around an average value of (δ15N 7.7‰) with significant oscillation of ± 2.9‰, 

whereas the distribution observed in May is more regular and characterized by a 

lower average value (3.9‰) and a systematic smooth increase. This systematic 

δ15N differences observed in May could be related to the combined effect of 

dilution and concomitant fertilization practices that employ chemical compounds 

having δ15N approaching 0‰, that usually occur at the begin of the spring season. 
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Nitrogen isotopic compositions of the Po river waters are plotted vs NO3
- in Fig. 7a 

and compared with the groundwater collected in the MP area (Lombardy plain) 

from Sacchi et al. (2013) and Delconte et al. (2014). In spite of lower concentration 

of nitrate, the δ15NNO3 signature of the Po river is comparable with that of the 

aquifers, suggesting a common origin. More detailed information on the nitrogen 

sources are given in Fig. 7b  (δ15NNO3 vs δ18O) in which the isotopic composition of 

the Po waters are further compared with the typical ranges of synthetic fertilizers, 

animal manure, sewage wastewaters and soil organic matter (Clark and Fritz 

1997) in order to provided specific information about natural/anthropogenic 

sources of dissolved nitrate. 

It can be observed that the observed isotopic signature of Po river water conforms 

to those of soil organic matter and manure, also suggesting an incipient 

denitrification trend that seems to be more effective in the TP waters. Although 

denitrification is scarcely documented in riverine systems, it has to be noted that 

analogous trends were also observed in the Oglio river by Bartoli et al. (2012). 

Accordingly, during denitrification the δ15NNO3 and δ18O(NO3) values of the 

remaining nitrate increase; coherently, in the TP samples collected in March 2013 

a rough positive correlation (R2 = 0.6) is observed between δ18O(NO3) and δ18O(H2O) 

as expected during denitrification processes (Lee et al. 2008). This relation 

suggests that the δ18O(NO3) values are significantly controlled by the δ18O(H2O) 

values in the river during microbial activity (Kroopnick and Craig, 1972; Kumar et 

al., 1983; Hollocher, 1984). 
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 Table 3: Stable isotopes  
(δ13C, δ15N, δ14S and the 

relative oxygen) for the Po 

river waters. Data are 

expressed in ‰ respect to 

the PDB standard for 

δ13C, AIR standard for 

δ15N and VCDT for δ14S. 

The δ18O is expressed in 

‰ respect to the SMOW 

for carbon, nitrogen and 

sulphur isotopes. 

Name Date δ13CDIC‰ δ18ODIC‰ δ15NNO3‰ δ18ONO3‰ δ34SSO4‰ δ18OSO4‰
Upper Part (UP) 

Pian del Re 04/2012 -8.5 -13.8 -2.0 4.4
08/2012 -5.9 -15.6 -4.1 -7.0
03/2013 -4.4 -13.6 -2.2 6.4
05/2013 -1.7 4.5

Crissolo 05/2013 -1.6 -36.0
Sanfront 04/2012 -8.7 -13.4 4.6 10.1

08/2012 -9.2 -14.5 18.6 -2.4
03/2013 -6.7 -12.7 1.8 0.1
05/2013 -0.1 3.5

Carignano 04/2012 -9.7 -11.1
08/2012 -11.0 -12.2
03/2013 -9.8 -11.5 9.5 14.8
05/2013 5 6.6

Middle Part (MP)
Settimo Torinese 08/2012 -10.6 -12.8

Torino 03/2013 -10.2 -11.6 7.4 -0.2
05/2013 1.9 7

Casale 05 2013 3.4 6.4 5.2 nd
Crescentino 04/2012 -10.9 -11.3

08/2012 -11.2 -11.9
03/2013 -10.4 -10.8 8.7 11.4
05/2013

Balossa Bigli 04/2012 -11.4 -10.6
08/2012
03 2013 -10.8 -10.6 7.1 8.8

Rea 08/2012 5.4 8.8
05 2013 3.3 5.6 4.2 nd

Ticino River 04/2012 -9.7 -10.3 6.5 7.5
08/2012 -10.6 -10.8
03/2013 -11.5 -9.8 7.1 5.9
05/2013 3.2 3.1 11 9.5

Senna Lodigiana 04/2012 10 1.4
08/2012 3.5 -8.5
05/2013 4.1 4.6 8.0 8.4

Adda river 05/2013 5 4.2 9.0 7
Piacenza 08/2012 -10.9 -10.3 8.2 2.2

03/2013 -10.4 -10.5 5.5 4.9
05/2013 4.6 4.3 7.2 6.1

Cremona 04/2012 -10.5 -10.9
08/2012 -11.3 -10.9 8.4 7.6
03/2013 -10.3 -10.4 8.4 9.2
05/2013 5 3.9 8.0 7.3

Coltaro 04/2012 -11.0 -10 8 -10.1
08/2012 -11.0 -11.4
03/2013 -10.7 -10.7 6.2 6.2
05/2013 5.3 2.2 6.7 nd

Boretto 03/2013 -10.9 -10.6 9.5 14.9
05/2013 6 4.6

Revere 04/2012 -9.8 -9.7 9.5 2.6
08/2012
03/2013 -9.7 -9.8 8.8 3.3
05/2013 6.8 4.3 6.29 5.3

Terminal Part (TP) 
Occhiobello 04/2012 -10.3 -9.9

08/2012
03/2013 -9.8 -9.6 11.5 14.6
05/2013 8.2 5.2 7.3 6.3

Crespino 04/2012 -10.3 -10 8.7 1.7
08/2012
03/2013 -10.8 -10.2 8.3 11.1
05/2013 7.3 7.7

Bottrighe 04/2012 -10.5 -10.6 12.1 12.3
08/2012
03/2013 -10.6 -9.6 7.3 10.2
05/2013 8.3 5.3 7.5 6.9

Taglio di Po 04/2012 -8.0 -9.1
08/2012
03/2013 -10.3 -10.1 8.9 11.1
05/2013 8.2 4.4 7.5 6.3

Po di Levante 
(Porto Levante) 04/2012 -7.5 -6.7

08/2012
03/2013 -8.7 -6.3 11.6 14.6
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Figure 7: a) Variation of the δ13CDIC signature in function of the distance from the source for Po 

river waters collected in March 2013; b) HCO3
- vs δ13CDIC, also reporting the δ13C values expected 

for dissolved carbon having distinct origin (Barth et al. 2003). The δ13CDIC typically recorded in Po 

river water is intermediate between that expected for an open system equilibrium between DIC and 

CO2 of air and that expected for nonequilibrium dissolution of carbonates; Note that nonequilibrium 

dissolution of silicates would give extremely negative δ13C (down to - 22‰) that are not recorded in 

the studied water. 
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Figure 8: a) Variation of the δ34SSO4 signature in function of the distance from the source of the Po 

river. Two main tributaries of the Po river (Ticino and Adda) are also represented; b) SO4
2- vs 

δ34SSO4; c) δ34S SO4 vs δ18O(SO4) isotopic composition of the Po river and its two main tributaries 

(Ticino and Adda). Arrows delineating possible geogenic sources are taken from Nordstrom et al. 

(2007). Note that within the Po river basin sulphide-bearing lithologies are observed in the 

metamorphic and igneous rocks of the basement (Garuti et al. 1986; Fantone et al. 2014; 
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Giacometti et al. 2014), whereas sulphates are observed in Permian-Triassic sedimentary 

sequences (Cortecci et al. 1981; Newton et al. 2004). 

 

Figure 9 Variation of the δ15N signature in function of the distance from the source of the Po river 

in a) March 2013 and b) May 2013. Grey dotted line represents NO3
- variation along the river 

course. 
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Figure 10: a) NO3
- vs δ15NNO3 in the three distinct sectors of the river compared to the isotopic 

range typical of groundwater in the Lombardia plain; b) δ15NNO3 - δ 18O(NO3) of the Po river waters 

compared to the isotopic composition of groundwater (Sacchi et al. 2013) and the potential sources 

of nitrate (after Clark and Friz 1997): synthetic fertilizers; anthropogenic organic matter (sewage 

and manure); soil organic matter and contamination from mixed sources. Evolution trends during 

nitrification and denitrification are also reported. 
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5.5 Carbon and nitrogen isotopic composition of suspended matter 

 

In the Po river site of Occhiobello, which is the located before the beginning of the 

deltaic sector of the river, the suspended matter was also sampled in three distinct 

periods (October 2013, January and February 2014). For this purpose, solid 

particles were recovered settling 10 litres of water in suitable buckets, extracting 

the water and then drying the precipitated particles. 

The particles suspended in the Po river water were investigated using a new 

instrument that is operative at the Department of Physics and Earth Sciences 

since June 2013. Note that I actively contributed to the set up of the system during 

the installation and the training phases with the technicians of the producing 

company (See the certificate reported as Appendix C). The analytical system 

consist of an Elemental Vario Micro Cube elemental analyser in line with an 

ISOPRIME 100 Isotopic Ratio Mass Spectrometer operating in continuous-flow 

mode. (Fig. 10, Ch. 5).  

 

Figure 11: Elemental vario MICRO cube analyser and the IRMS Isoprime100 for the measurement 

of the elemental composition of carbon and nitrogen and relative isotopes (δ13C and δ15N) 

 

Powdered samples are introduced in tin capsules that are wrapped and weighed; 

these capsules, that allow to load up to 40 mg of sample, are subsequently 

introduced in the Vario Micro Cube autosampler to be analyzed. Flash combustion 
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at 950 °C takes place in a sealed quartz tube filled with copper oxide grains 

(padded with corundum balls and quartz wool) which acts as catalyst, in excess of 

high purity (6 grade purity) O2 gas. Freed gaseous species are transferred through 

a reduction quartz tube (at 550°C) filled with metallic copper wires that reduce the 

nitrogen oxides (NOx) to N2. The formed analyte gases (N2, H2O and CO2), 

carried by dry He (5 grade purity) gas, pass through a water-trap filled with 

sicapent ensuring complete removal of moisture, are sequentially separated by a 

temperature programmable desorption column (TPD) and quantitatively 

determined on a thermo-conductivity detector (TCD). Sample N2 goes directly to 

the interfaced IRMS for isotopic composition determination, while CO2 is held by 

the TPD column, kept at room temperatures 20–25°C. When N2 isotopic analysis 

is over, CO2 is desorbed from the TPD column raising the temperature to 210°C, 

and finally reaches the IRMS compartment for the determination of carbon isotopic 

ratios. The detection of the distinct isotopic masses of the sample are sandwiched 

between those of reference N2 and CO2 (5 grade purity) gases, which have been 

calibrated using a series of reference materials, in turn calibrated against IAEA 

international standards, such as the limestone JLs-1, the peach leaves NIST 

SRM1547, the Carrara Marble (calibrated at the Institute of Geoscience and 

Georesources of the National Council of Researches of Pisa), and the synthetic 

sulfanilamide provided by Isoprime Ltd. Mass peaks were recalculated as isotopic 

ratios by the Ion Vantage software package. Reference and carrier gases of 

certified purity were provided by SIAD Ltd. The elemental precision estimated by 

repeated standard analyses, and accuracy estimated by the comparison between 

reference and measured values, were in the order of 5% of the absolute measured 

value. Uncertainties, increase for contents approaching the detection limit (0.001 

wt %). Carbon and nitrogen sotope ratios are expressed in the standard (δ) 

notation in per mil (‰) relative to the notional standards that are the Vienna Pee 

Dee Belemnite (V-PDB) and Air, respectively. δ13C and δ15C values were 

characterized by an average standard deviation of ±0.1‰ and ±0.2‰, defined by 

repeated analyses of the above mentioned standards. 
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Figure 12: δ13C - δ15N isotopic composition of the dissolved components in the Po river waters and 

in the suspended matter collected in three different sampling campaign in the Occhiobello site (the 

first sample of the TP). Isotopic composition of the suspended matter is similar to the dissolved 

components in the same site, suggesting an equilibrium system between the different solutions. 

 

The data, reported in Table 4, Ch. 5, are referred to three distinct periods in which 

waters have been collected from the same site of Occhiobello. These sampling 

periods were characterized by distinct discharge that is reflected in different solid 

load contents, varying from 70 mg/L in October 2013, 80 mg/L in January 2014 

and 280 mg/L in February 2014. 

These solid particles contain a carbon concentration varying from 4.9% to 5.1%, 

and a δ13C ranging from -11.4‰ to -9.9‰. The same particles have nitrogen 

concentration varying from 0.3% to 0.6%, and δ15N ranging from 7.3‰ to 8.6‰. 

The δ13C and δ15N isotopic data, plotted in Fig. 11, Ch. 5, shows a remarkable 

similarity with the isotopic fingerprint recorded in the dissolved components 

described above. This compositional analogy suggest that the carbon – nitrogen 

associated to the suspended solid particles has the same origin and is affected by 

the same processes that were described in the previous chapter.  

Considering that the activity of dissolved carbon species are strictly influenced by 

complex equilibria, in turn related to the temperature and the atmospheric CO2 

content, the presented data represent a snapshot of the current environmental 

condition and could be taken into account by future investigations to evaluate 
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possible on-going changes. Total suspended material (TSM) data of the three 

distinct periods were also presented in Table 4, Ch. 5  together with the daily 

discharge. The Po River discharge (~ 1500 m3/s) alone accounts for about 60% of 

the total freshwater inflow into the study area, and it is also the major source of 

nutrients (Degobbis & Gilmartin, 1990,  Justić et al. 1995). It is evident that the 

value of the TSM recorded in this study overlap the value reported in Tesi et al. 

(2013) in a period characterized by an average discharge less than 1500 m3/s. 

The weight (%) of carbon and nitrogen are also comparable and reported in Table 

4, Ch. 5. Total carbon (TC) of each sample range from 3036 µg/L to 13244 µg/L 

whereas the total nitrogen (TN) ranges from 256 µg/L to 896 µg/L.  

Elemental composition of carbon and nitrogen in the suspended matter could be 

useful to refine the estimate of the geochemical fluxes toward the Adriatic Sea. 

Considering an average discharge of 1500 m3/s and a consequent volume of 47,3 

km3, it is possible to calculate the volume of total carbon and nitrogen transferred 

from the Po river to the Sea (318,000 t/yr and 24,000 t/yr for C and N 

respectively). 

Nitrogen amount in the suspended matter was finally compared with that of the 

dissolved components, calculated considering that a NO3
- concentration in riverine 

waters is around 98% respect to NO2 and NH3 (Tesi et al., 2013). The data, 

reported in Table 4, Ch. 5, suggest that dissolved nitrogen in the Po river waters is 

nearly 4 times grater that that transported by suspended matter. 
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5.6 Synthesis and considerations on geochemical and isotopic data  

The chemical and isotopic analyses of the Po river water presented in this chapter 

properly compared with data referred to previous periods, allow the following 

conclusion: 

 - River geochemistry remained remarkably homogeneous from the end of the 

fifties respect to the main water components; on the contrary nitrate drastically 

increases from less than 1 mg/L in the sixties to more than 10 mg/L in the eighties, 

and then stabilized around 9 mg/L in the last years. This observation suggests 

that, although the main hydrochemical facies is geogenic (derived by natural 

processes), anthropogenic contributions are also influencing the river water. The 

slight decrease of NO3
- in Po river water recorded after the eighties, possibly 

reflects the effects of environmental policy and governance which imposed the 

treatment of waste water (s.l.) and a more sustainable (i.e. limited) use of fertilizers 

(Bouraoui and Grizzetti 2011).  

- Carbon, sulphur and nitrogen isotopic signatures, systematically investigated for 

the first time are compatible with the weathering and non-equilibrium dissolution of 

lithologies outcropping in the basin (4.4‰ <δ13CDIC< -11.0‰; 4.2‰ <δ34SSO4 

<8.0‰), whereas δ15NNO3 (between -4.1‰ and 18.0‰) confirms urban (sewage 

waste waters), agricultural and zoo-technical contributions (fertilizers, animal 

manure) (Sacchi et al. 2013). The data also highlight reactivity of the dissolved 

nitrogen species that, in the deltaic part of the river, are affected by denitrification 

processes. 

It is interesting to note that the aquifers of the Padanian plain have the same 

nitrogen isotopic signature of the Po river, but are characterized by significantly 

higher concentration (Sacchi et al. 2013). This is probably due to a higher 

interaction of groundwater with soils that are interested by agricultural practices. 

This suggests that the severe pollution of the aquifers is not ascribed to inflow of 

current river water. Noteworthy, the attenuation of the nitrogen load recorded in 

the river is not observed in groundwater, where NO3
- continued to increase in the 

first years of the new millennium reaching a peak in the years 2007-2008 (Sacchi 

et al. 2013), due to lower resilience, i.e. longer residing times of groundwater and 

associated longer periods to recover from contamination. 
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Considering that the outflow of the Po river provides over 50% of the freshwater 

budget into the Adriatic sea (Pettine et al. 1998), the presented data can contribute 

to calculate nutrient fluxes by the river to northern Adriatic basin. Calculation 

should consider updated river discharge (that in the last years is higher than the 

historical average value of 1,500 m3/s), chemical composition recalculated 

considering that NO3
- concentration in riverine waters is around 98% of the total 

nitrogen budget (Tesi et al. 2013), and speciation between dissolved and 

suspended components.  

The data presented in this chapter allow to calculate fluxes in two distinct 

hydrological periods of the year 2013: in March 2013 we recorded higher average 

NO3
- concentration respect to May 2013 (10.6 mg/L and 6 mg/L, respectively), but 

the monthly discharge was decidedly lower in March respect to May 2013 (2,110 

m3/s and 4,450 m3/s respectively). As result the nitrogen flux from the river to the 

sea was 426 t/day and 521 t/day in March and May respectively. These balances 

calculated on annual basis show that the sight NO3
- decrease respect to the 

eighties is counterbalanced by an anomalous high average discharge (1,830 m3/s) 

that characterized the year 2013. The calculation indicates that the total amount of 

dissolved nitrogen conveyed by the Po river to the Adriatic sea in the year 2013 

was 10.7*104 t/yr. According to the preliminary investigation on the suspended 

particles this estimation should be increased by ca 25% if we take into 

consideration also the suspended load. The new flux calculation is slightly lower 

than previous estimates of the total dissolved nitrogen flux that are in the order of 

13 – 16 *104 (Pettine et al. 1998). These estimations contribute to define more 

detailed models that investigate the nutrient loads in the Adriatic costal ecosystem 

that is affected by frequent eutrophication processes (Artioli et al. 2005; Palmeri et 

al. 2005; Viaroli et al. 2013). 

Concerning the oxygen-hydrogen stable isotopes (proxies of climatic conditions 

influencing the hydrological cycle), it is extremely interesting the comparison 

between the Po river that can be considered a megascale pluviometer recording 

the current meteoric contribution and the Padanian plain aquifers that are a hydro-

archive that store paleo-waters recharged in the last millennia. In this view, the 

striking δ18O-δD analogies between the riverine water in the middle part of its 

course (δ18O between -11.6‰ and -9.9‰; δD between -81.9‰ and -68.1‰) and 
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groundwater of Alpine provenance in confined aquifers of the Padanian plain (δ18O 

between -11.4‰ and -9.6‰;  δD between -78.8‰ and -63.7‰), seems to preclude 

that significant climatic warming occurred, in the studied region, during in the last 

thousands of years.  

I emphasize that the current data represent a snapshot of the nowadays river 

condition, and that future monitoring are useful to highlight a) progressive 

involvement of further anthropogenic components and b) on-going environmental 

(climatic) changes. 

More in general, the presented data also contribute to integrate the GLObal River 

Chemistry (GLORICH) database (Hartmann et al. 2014) which is a useful tool to 

monitor earth surface processes at extensive scales and high resolution, and also 

to implement existing isotopic hydro-archives that provide additional information 

that cannot routinely be recovered from elementary chemistry alone (Bowen et al. 

2009). 
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6 ACTIVITY OF THE THIRD YEAR, BASED ON THE SAMPLING 
CAMPAIGNS 2013-2014 
 

Analysis of Sr isotopes by TIMS at IGG-CNR (Pisa) and by MC – 
ICP – MS at the University of New Hampshire 

The begin of the third year has been devoted to the analyses of the strontium 

isotopic composition of the Po river waters performed at the IGG-CNR of Pisa 

under the supervision of Dr. Maddalena Pennisi.  

Isotopic analyses of 87Sr/86Sr have been carried out on samples collected in 

August 2010 and 2012 in the MP and TP section respectively. The relative major 

and trace elements related to this study are reported in the Chapter 4. 

Strontium isotopic composition is an important geochemical tracer. It is used in a 

wide range of applications, including rock dating (Rb–Sr geochronological system), 

understanding of petrological processes (Faure 1978; Faure, 1986; Hoefs, 2009), 

understanding of sedimentary processes (Jenkins et al.1995). 

The natural variation in the 87Sr/86Sr ratio is derived from the radioactive decay of 
87Rb to 87Sr. In magmatic and metamorphic rocks, the ratio is a function of the 

geological age and composition; in terrigenous (i.e. silico-clastic) sedimentary 

rocks Sr isotopes are strictly related to the composition of the mother rocks from 

which the particles derived, whereas in marine carbonate rocks 87Sr/86Sr reflects 

the isotopic composition of seawater from which they were precipitated. Over 

geological history the isotopic composition of seawater has varied considerably 

and, thus, the isotopic composition of Sr in carbonates is a useful tool in the 

reconstruction of the geological history. Morover, strontium isotopic composition is 

an important tool also in hydrology and hydrogeology, enabling tracing of 

groundwater flow and water mixing. However, in order to use this isotopic tracer, 

high precision isotopic measurement (better than 0.005%) is required. 

In natural waters, the geochemistry of dissolved Sr is very similar to that of Ca. 

The Sr isotope fractionations in geochemical processes are considered negligible, 
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and the 87Sr/86Sr variations in natural systems are mainly controlled by geological 

age and Rb/Sr ratio (Pennisi.et al. 2006).  It is important to remember that the 

isotopic composition of Sr is constant in present-day seawater, with 87Sr/86Sr = 

0.7091 (Goldstein and Jacobsen, 1987), whereas published studies of the isotopic 

composition of Sr in some major rivers (Brass, 1976) support a global average 

value of 87Sr/86Sr for rivers of ~ 0.711. Coherently, in recent years, riverine Sr 

isotopic compositions have been widely used as a tracer to reveal chemical 

weathering in the drainage basin, fluxes variation of dissolved load into the oceans 

and their contributions to seawater 87Sr/86Sr ratio change (Wu et al, 2009; Yongbin 

et al, 2011). Furthermore, in fluvial environment strontium isotopic composition is a 

useful geo-indicator to investigate: (i) groundwater inflow; (ii) origin of salinity and 

(iii) mixing processes (Faure, 1978; Brass, 1975; Faure, 1986; Negrel and Roy, 

1998; Aubert et al., 2002; Drouet et al., 2005; Rose and Fullagar, 2005). 

For running waters draining multi-lithological systems, solute chemistry and 

isotopic composition ratios in any water parcel can be regarded as a chemical 

mixture from several sources, and the discrimination of the contribution from each 

geological formation is a difficult task (Galy et al., 1999). In rivers, strontium 

derives from dissolution of Ca-bearing minerals, that are widely present in 

igneous, metamorphic and sedimentary rocks. During weathering reactions the 
87Sr/86Sr isotopic ratio in solution is the same of the source mineral since no 

isotopic fractionation occurs. Similarly, strontium isotopic fractionation is negligible 

when this element is removed from water by either mineral precipitation or cation 

exchange process (e.g. Bullen et al., 1996). As a consequence, Sr content and Sr 

isotope composition in river waters are mainly governed by both the lithological 

features of the catchment area and the weathering rate of the different rock-

forming minerals (Négrel, 1997; Négrel et al., 2000). 
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Figure 1: examples of a) theThermal Ionization Mass Spectrometer (TIMS) ; b) the “clean room” 

similar to those used at IGG-CNR Laboratories of Pisa  

 

From the practical point of view, these analyses require complex (and tedious) 

preliminary preparation of the samples to separate and concentrate the considered 

element by a chromatographic technique (Fig. 2a, Ch. 6). This procedure has to 

be carried out in a “clean room” which is a laboratory with an overpressure and a 

filtered air inside, where the operator can enter only without shoes and wearing a 

laboratory coat and gloves that do not generate particles; these particular 

practices, together with the use of ultrapure reagents, are necessary in order to do 

not contaminate the samples. For each sample 30 mL were dried and then re-

dissolved in 1 mL of HCl 2.5N and then loaded in the chromatographic columns of 

Fig. 2b, Ch. 6. The columns are subsequently eluted with 6 mL of HCl 2.5N in 

three steps that leach undesired elements that can create interference during the 

analyses. Subsequently, strontium is collected with additional 5 mL of HCl 2.5N 

and dried down. This fraction is re-taken with 2 µL of HNO3 and deposited on 

(handmade) tungsten filaments (FiG. 2c, Ch. 6) that are loaded to the TIMS 

(Thermal Ionization Mass Spectrometry) instrument (Fig. 1 Ch. 6). In particular, 

measurements were obtained by a Finnigan MAT 262 V multi-collector mass-

spectrometer. Measured 87Sr/86Sr ratios were normalized to 86Sr/88Sr = 0.1194. 

During the collection of isotopic data, replicate analyses of the Sr SRM-NIST 987 

(SrCO3) isotopic standard gave an average 86Sr/88Sr value of 0.710253 ± 13 (2σ, 

N = 30). 
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Figure 2: a) Example of chromatographic columns to separate and extract strontium; b) elution of 

the Sr columns; c) the sample is loaded on the tungsten filament   

 

Results are reported in Table 1 and Fig. 3. 

 

Name Date Sr (µg/L) 87Sr/86Sr
Rea 08/2012 287 0.709273
Ticino 08/2012 150 0.708850
Senna Lodigiana 08/2012 290 0.709110
Piacenza 08/2012 225 0.709122
Adda 08/2012 181 0.709683
Cremona 08/2012 200 0.709224
Coltaro 08/2012 218 0.709079
Mincio 08/2012 288 0.708649
Revere 08/2010 271 0.709220

08/2012 235 0.708980
Occhiobello 08/2012 239 0.708944
Crespino 08/2010 275 0.709157

08/2012 237 0.708923
Bottrighe 08/2010 307 0.709079

08/2012 234 0.708931
Taglio di Po 08/2010 288 0.709224

08/2012 237 0.708959  

Table 1: Strontium concentration (by ICP-MS) and the relative isotopic composition measured by 

TIMS at IGG-CNR on the Po river waters collected in August 2010 and August 2012.  Each sample 

is represented with the relative error.  
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The 87Sr/86Sr value of samples collected in the year 2010 range between 0.709079 

and 0.709224, whereas those collected in the year 2012 range between 0.708923 

and 0.709273.  

If we compare the 87Sr/86Sr ratio of samples collected in different years in the 

same site we observe a very limited variability. More in general, these values are 

quite similar to the unique value known for the Po river the in literature (87Sr/86Sr 

0.70917; Brass et al., 1976). The relative constancy of these isotopic values 

suggests that this isotopic fingerprint is a geogenic feature. The obtained 87Sr/86Sr 

analyses of the year 2012 are also plotted in Fig. 3, Ch. 6 that emphasizes the 

isotopic variation along the river course. In this diagram the composition of the Po 

river water is also compared with that of some important tributaries, such as Ticino 

and Adda rivers. The Fig. 3, Ch. 6 suggests that Po river in Lombardy display 

some 87Sr/86Sr variations in function of important confluences, whereas downflow 

in Emilia Romagna the river attains a more homogeneous 87Sr/86Sr composition 

that remains constant with an average value of 0.708948 ± 0.000026.  

It can be speculated that although subordinate, carbonatic lithologies are 

preferentially involved in the weathering processes inducing the typical Ca-HCO3 

hydrochemical facies and a specific strontium isotopic signature (87Sr/86Sr 

0.708923 – 0.709273) that is intermediate between that of Mesozoic carbonates 

(0.7070-0.7088; Faure, 1978) and that felsic igneous and metamorphic rocks (> 

0.70145; Voshage, 1987).  
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Figure 3: Isotopic variations of the 87Sr/86Sr measured by TIMS along the Po River in the MP and 

TP waters compared with the isotopic ratios of the Mesozoic carbonates (Faure et al. 1978) and 

metamorphic crystalline basement of the Alpine arc (Voshage et al., 1987). Left bank tributaries 

(Ticino, Adda and Mincio rivers) isotopic composition is also reported in order to compare and 

evidence the contribution of the isotopic fingerprint. 

 

The Sr isotope analyses carried out by TIMS at the CNR of Pisa have been 

implemented thanks to collaboration with Professor Julie Bryce of the New 

Hampshire University. This collaboration has been possible thanks to an addition 

scholarship, provided by the University of Ferrara, specifically dedicated for young 

researchers to spend a study period abroad.  In this framework I spent a three 

months research period (from July to September 2014) at the New Hampshire 

University (United States).  

In this Institution, the additional measurements of 87Sr/86Sr have been carried out 

by a brand new MC-ICP-MS instrument that has been installed in the year 2014 

(Fig. 4). Multi Collector ICP – MS that combines a plasma source, a magnetic 

separator and several Faraday cups. This new generation of instruments 

represents the new frontier of analytical geochemistry allowing a quicker 

determination of strontium isotopic ratios (respect to TIMS) that has been 

performed on a more systematic basis, analysing a higher number of samples. 
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Note that I have been present during the installation of the mentioned new 

instrument. This has been very important because I was able to understand the 

fundamental parts of the technique and I followed the relative training course 

under the supervision of technicians of the Nu Instrument Company. The set up of 

the instrument was quite complex, followed by a long period for the calibrations.  

 

 

Figure 4: The new MC – ICP – MS at the New Hampshire University 

 

It is important to note that a new sampling campaign has been carried out in May 

2014 in order to obtain water samples suitable to be investigated by MC-ICP-MS. 

Po river samples were collected in the same sites of the previous years. Additional 

samples were taken from some important tributaries from the right bank (Tanaro, 

Trebbia, Taro, Secchia and Panaro river) and from the left bank (Pellice, Sesia, 

Dora Baltea, Ticino, Lambro, Adda, Oglio and Mincio river). 

As explained in the previous chapters, sampling location was geo-referenced by a 

portable global positioning system (GPS), to locate the points and to set up future 

field surveys (Table 2). Surface water was collected at 40-50 cm depth using a 

bucket, possibly far from the shore (using boats, piers, or sampling above 

bridges). Electrical conductivity (EC), pH and temperature were directly measured 
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in the field, then water samples were filtered by 0.45 µm filters (Minisart® NML 

syringe cellulose acetate filters) and stored in two distinct 50 ml bottles, for the 

analysis of oxygen/hydrogen isotopes. These preliminary analyses analogous to 

those carried out in the previous years (2010 – 2013) are reported in Tab. 2, Ch. 6. 
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Parameters measured in-situ (pH, temperature and conductivity) during the 

sampling campaign carried out on May 2014 have been reported in Tab. 2, Ch. 6. 

The Po river water samples have been subdivided in UP, MP and TP as described 

in the Chapter 4 in order to delineate spatial-temporal changes. The main 

tributaries of the Po river have been subdivided in “Left Bank” – Pellice, Dora 

Baltea, Sesia, Ticino, Lambro, Adda, Oglio and Mincio – and “Right Bank” – 

Tanaro, Scrivia, Trebbia, Taro, Secchia, Panaro -. 

pH was rather homogeneous, i.e. 8.2 – 8.5 in UP, 8.4 - 8.7 in MP, 8.5-8.8 in TP, 

without a systematic trends along the river course. The main tributaries evidence 

similar pH values of the Po river nearby the confluence. Water conductivity was 

also variable, increasing from UP (from 60 µS/cm to 370 µS/cm) through MP (from 

340 µS/cm to 410 µS/cm), up to TP where samples reach the highest value of 

1,120 µS/cm). This indicates progressively higher amounts of dissolved 

components moving from the UP, to the MP, and to the TP catchment areas. The 

Po river water samples analysed in this new sampling campaign display a Ca–

HCO3 hydrological facies that perfectly fit with those of the previous years (2012 

and 2013) and described in Chapters 4 and 5.  

The Strontium concentration, crucial data to study the relative isotopic 

composition, is 24 μg/L at Pian del Re source and increase gradually throughout 

the riverine course (average value 292 μg/L ±37 in the MP) and reach in Porto 
Levante the highest value of 663 μg/L. Ca2+ varying between 9.81 mg/L and 69.5 

mg/L at the Pian del Re source to Porto Levante, respectively, with and average 

value of 40 mg/L (±4) for the MP samples.  

The tributaries of the Po river evidenced a marked variability in strontium 

concentration: In the left bank tributaries (of alpine provenance) the Pellice river, 

located in the UP sector of the basin, records a Sr concentration of 53 μg/L, 

whereas the Oglio river (MP area) can be considered anomalous, with a Sr 

concentration of 461 μg/L. The right bank tributaries (of apennine origin) record a 

higher strontium concentration ranging between 448 μg/L and 1117 μg/L. The 

Tanaro river, although is a tributary from the right part its source is in the Ligurian 

alps and has a strontium concentration of 310 μg. 
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The waters above described have been investigated at the Department of Earth 

Science of the New Hampshire University to obtain a more complete data set of Sr 

isotopic analyses. Samples were processed in their “clean room”, through  

chromatographic techniques similar to those described above, in order to separate 

strontium from the other elements (Fig. 5).   

 

Name Date Sr (µg/L) 87Sr/86Sr 2σ
Po river Upper Part (UP)
Pian della Re05/2014 23.7 0.709745 0.000006
Rio Martino (Grotte)05/2014
Crissolo
Sanfront 112 0.709601 0.000007
Carignano 309 0.709702 0.000009
Po river Middle Part (MP)
Settimo Torinese 410
Crescentino 360 0.709187 0.000009
Frassineto Po 345 0.709269 0.000009
Pieve al Cairo 272
Balossa Bigli 05/2014 259 0.709453 0.000010
Rea 310
Senna Lodigiana 287
Piacenza 287 0.709614 0.000010
Cremona 238 0.709154 0.000011
Coltaro 275 0.709148 0.000010
Revere 289 0.708957 0.000010
Po river Termina Part (TP) 0.000006
Occhiobello 286 0.708956 0.000008
Crespino 252 0.709185
Bottrighe 252
Taglio di Po 257 0.709172 0.000007
Po di Levante (Porto Levante)663 0.709267 0.000007
Po river Left Bank tributaries
Pellice 05/2014 53.7 0.712335 0.000008
Dora Baltea   215 0.708627 0.000009
Sesia 121 0.709998 0.000008
Ticino  05/2014 180 0.709055 0.000008
Lambro  272 0.708981 0.000009
Adda 230 0.709738 0.000006
Oglio 461 0.708765 0.000008
Mincio  134 0.708801 0.000007
Po river Right Bank tributaries
Tanaro 310 0.709258 0.000010
Scrivia 05/2014 675
Trebbia 448 0.708843 0.000007
Taro 543 0.708558 0.000008
Secchia 1117 0.708524 0.000010
Panaro 05/2014 481 0.709514 0.000007  

Table 3: Strontium concentration and the relative isotopic composition measured by MC – ICP – 

MS at the University of New Hampshire. Each samples is represented with the relative error.  

 

During the collection of isotopic data, the analysis of the Sr SRM-NIST 987 

standard gave a 86Sr/88Sr value of 0.710248± 0.000017. This value considered 
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with the associated error is comparable to that obtained on the same standard at 

the IGG-CNR of Pisa. For this reason the results obtained in the two laboratories 

can be compare.  

 

Figure 5: Chromatographic columns in the “Clean room” at the Department of Earth Sciences of 

the University of New Hampshire, USA. 

 

The strontium concentration and the relative isotopic composition of the Po river 

waters and its main tributaries carried out by MC-ICP-MS on Po river water 

collected in May 2014 are reported in Table 3 This wider data-set allows to 

recognise some trends along the riverine course. 

The higher value (0.709745) has been recorded at Pian del Re (source), and the 

lower at Occhiobello (0.708956). The UP samples have an isotopic signature 

slightly higher than MP samples, as evident in Fig. 6 and Fig. 7, Ch. 6.  

A marked spike toward less radiogenic values are observed in correspondence of 

Crescentino (MP, 0.709187). Then, samples of the MP are generally characterized 

by an increase of the Sr isotopic ratio along the riverine course up to Piacenza 

(0.709614) and finally decrease along terminal part of the river. The last samples 

of the terminal part evidence a further increase of the Sr isotopic ratio.
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Figure 6: Isotopic variation of 87Sr/86Sr measured by MC – ICP - MS along the Po river sampled in 

May 2014 from the source (Pian del Re) to the Adriatic sea. Istopic ration of the riverine waters are 

compared with the isotopic ranges of the Mesozoic carbonates (Faure et al. 1978) and 

metamorphic crystalline basement of the Alpine arc (Voshage et al. 1987). Isotopic signature of the 

main tribuataries (from the left and right banks) are also represents to evidence the contribution of 

the isotopic fingerprint.  

 

The tributary distributed in the whole catchment area reports marked variation: 

Pellice river, located in the Cozie alps in the UP sector reveal the highest value of 

the tributary of 0.712335. This value is in the range of the isotopic composition of 

the rocks in the crystalline basement (Fig. 6, Ch. 6). Similar isotopic compositions 

are evident also in the Sesia river (which flows from Mount Rosa) and Adda river 

(which flows from the Retic Alps). It is interesting to note that the prevalent 

lithologies in the catchments of these rivers pertain to the crystalline basement. 

The isotopic composition of Ticino and Tanaro river (which are the larger 

tributaries of the Po river with and average discharge of 290 m3/s and 116 m3/s) 

reveal an isotopic composition similar to most of the samples in the Po river. 

Among the left bank tributaries (of Alpine provenance) Dora Baltea is 

characterized by the lower Sr isotopic value, plausibly in connection with the 

widespread of ophiolites and calc-shists in its catchment (Garzanti et al., 2012). 

Furthermore, Oglio river evidences geochemical differences from the other Alpine 
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river, with an isotopic value of 0.708765, probably due to the carbonate lithologies 

outcropping in its basin (Mesozoic carbonates).  

 

 
 

Figure 7:  Binary diagram 1/Sr vs 87Sr/86Sr  of the Po river waters and the main tributaries. Light 

grey arrows are used to indicate isotopic trend from the UP waters to the MP and TP.  

 

The Appennine tributaries (i.e. Trebbia, Taro and Secchia) evidence a higher 

strontium concentration coupled with an isotopic range between 0.708843 and 

0.708524 that reveal a strong interaction with the carbonate lithologies prevalent in 

their catchments.  

The difference observed between the Sr isotopic data obtained by TIMS at the 

CNR of Pisa and those obtained by MC-ICP-MS at the University of New 
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Hamphire, in my view, are not related to analytical flaws. I think that the 87Sr/86Sr 

values of the Po river water are affected by slight variations in distinct hydrological 

periods. In this framework, I can state that the isotopic variability increases during 

a high discharge period such as the one in which samples have been collected in 

the year 2014 (May). I could assume that the average MP isotopic composition 

carried out at Pisa (0.709131) is representative of the river composition during the 

low discharge period, whereas the average MP isotopic composition carried out at 

the New Hampshire University (0.709255) is representative of the river 

composition during the high discharge period. 

 

Additional isotopic tracers that would be powerful to identify the lithologies that 

contribute to the Po river water chemistry could be the isotopes of neodymium 

(143Nd/144Nd). This element pertains to the rare earth element group (REE) and 

has been widely used to investigate petrological processes as well as to date 

rocks and minerals (Faure, 1986). Potentially the same tracers can be used also in 

hydrology and hydrogeology: the isotopic composition of waters reflects that of the 

interacting rocks without significant fractionations. Sr and Nd systematic in riverine 

water have been taken into consideration by Goldstein and Jacobsen, 1987 and 

1988, Palmenr and Edmond, 1992 for American rivers and by Frost 1986 for small 

catchment in Europe. Unfortunately the practical application for these tracers has 

been limited - and often related to the suspended loads/ bed sediments - due to 

the very low concentration usually recorded in natural waters. This limit is going to 

be bypassed by the new generation of mass spectrometers such as the MC-ICP-

MS that was available at the University of the New Hampshire. 

Thinking to the isotopic analysis of neodymium, in the sampling performed in May 

2014, in each site additional bottles characterized by significant volume (4 L) were 

taken in order to concentrate the total dissolved salts as well as to separate the 

suspended matter. After 4 days most part of the suspended particles were 

deposited on the bottom of the bottles, and was possible to separate the water 

column from the suspended particles using a syringe. Afterwards the sediment 

particles were dried down on the hot plate at 110 °C for 8 hours and the recovered 

water was evaporated on the hot plate at 110°C obtaining the dissolved salts. Both 

the dissolved salts (DS) and the suspended particles (Total Suspended Matter, 
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TSM) were weighed and expressed as total suspended matter available in the 4L 

(total amount) and the total suspended matter in 1L (mg/L). The data are 

presented in Table 4. 

 

PO RIVER - dry samples
 TSM  TSM DS DS

n. Location mg tot mg/L mg tot mg/L
1 Pian del Re na na 10,0 10,0
2 Sanfront na na 24,4 24,4
3 Carignano 48,2 19,3 97,9 97,9
4 Settimo Torinese 19,4 7,76 111 111
5 Crescentino 42,7 17,1 443 443
6 Frassineto Po 36,8 14,7 259 259
7 Pieve al Cairo 75,3 30,1 74,6 74,6
8 Balossa Bigli 136 49,5 90,8 90,8
9 Rea 120 47,8 114 114

10 Senna Lodigiana 92,4 33,6 85,0 85,0
11 Piacenza 66,2 26,5 56,7 56,7
12 Cremona 78,5 31,4 97,4 97,4
13 Coltaro 148 36,9 59,5 59,5
14 Revere 223 55,7 61,0 61,0
15 Occhiobello 136 33,9 72,6 72,6
16 Crespino 108 35,9 92,9 92,9
17 Bottrighe na na na na
18 Taglio di Po 21,9 14,6 91,6 91,6
19 Porto Levante 278 185 222 222

TRIBUTARIES OF THE PO RIVER
 TSM  TSM DS DS

n. Tributaries mg tot mg/L mg tot mg/L
1 Pellice nd 0 47,3 23,7
2 Dora Baltea 20,1 10,1 290 145
3 Sesia river 18,0 9,00 84,9 42,5
4 Ticino 12,1 6,05 98,9 49,4
5 Lambro 158 63,2 502 201
6 Adda 49,7 24,9 254 127
7 Oglio 267 133 243 121
8 Mincio 82,9 27,6 202 67,4
9 Tanaro 181 72,4 242 96,8

10 Scrivia 17,8 8,90 105 52,4
11 Trebbia 174 69,4 364 146
12 Taro 204 58,3 384 128
13 Secchia 464 133 547 156
14 Panaro 175 50,0 627 209  

Table 4: Total suspended matter (TSM) and dissolved component (DC) of the Po river waters (total amount 

and mg/L). TSM (mgtot) and DS mgtot) is related to the total amount available in 4L. 

 

These powders, representative of the dissolved and suspended matter will be 

investigated (hopefully) soon at the New Hampshire University, as they represent 

matrices in which both Sr and Nd isotopic ratios should be detectable. 
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7 INSIGHTS ON THE MORE SENSITIVE PO RIVER ECOSYSTEM: A 
FOCUS ON THE GEOCHEMISTRY OF PO DELTA WATERS 
 
 

 
 

Fig. 1: Po di Goro, in the “Delta del Po” area 

 

In this part I present the geochemical and isotopic results of Po river waters in its 

Delta (Figs. 1 and 2, Ch. 7) .The water of the terminal part of the river was 

monitored for 4 years, within the framework of several undergraduated theses that 

I co-supervised, and presented in this section in order to compare geochemical 

and isotopic data in different periods with different hydrological conditions. In 

particular the aim of this chapter is to study and compare the water chemistry in 

the different period of the year. It is also useful compare the data during summers 

of distinct years, in particular for the years 2012 and 2013 in which water samples 

were collected in all the branches of the delta using a boat. 

The results of this section were fundamentals for evidencing mixing processes 

with seawater as well as to investigate potential anthropogenic contribution that 

influence the freshwaters in this complex system. The Delta area, in fact can be 
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considered as a multicomponent sink that involve different biogeochemical 

processes.   

Parameters measured in situ, such as pH, temperature and conductivity of the Po 

river waters in the Delta del Po have been reported in Table 1. pH is moderately 

homogeneous and varying from 7,5 to 8,8. The highest value was registered in 

Occhiobello site during the flood in May 2014. 

Electrical conductivity (expressed in μS/cm) is extremely variable as long as the 

river course approach to the Adriatic sea and in the different branches. The 

highest value registered is 28000 μS/cm in August 2013 for the sample located at 

the Po di Tolle mouth, whereas Po di Venezia mouth a value of 6200 μS/cm is 

registered. TDS, calculated as the sum of the major chemical species, reveal that 

the highest values registered are 8198 mg/L and 24773 mg/L for August 2012 and 

August 2013, respectively. The investigated waters although generally maintaining 

a Ca-HCO3 hydrochemical facies, show a more marked variation respect to the 

other parts of the river. This statement is emphasized in the Gibbs diagram (Fig.2, 

Ch. 7) as well as in the Langelier diagram (Fig. 3, Ch. 7) that evidenced the 

occurrence of mixing processes with saline waters.  

 

 
Figure 2: Po river delta consisting of six major distributaries; from the main course the first 

diversion (southward) is represented by Po di Goro which drains ca. 15 % of the original flow. A 

second diversion (northward) is represented by Po di Levante, which is artificially regulated and 

separated from the main course which is known as Po di Venezia. The latter progressively 

distributes water to Po di Gnocca (southward; 13% of the flow) and Po di Maistra (northward; 2% of 

the flow) finally subdividing in Po di Tolle (15% of the flow) and Po di Pila (55% of the flow). 
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The isotopic values measured in the different branches of the deltaic part 

evidenced a remarkable/significant trend toward less negative value and, in 

particular for the samples collected in August, where evaporation effects are 

superimposed to the above mentioned mixing processes. These mixing processes 

are transient because they are strictly related with a) discharge of the riverine 

system that varies seasonally and b) the tide cycles that in turn influence the river 

flow into the sea. According to our data I envisaged up to 20% mixing with 

seawater in the Po di Venezia, that is the main branch of the Delta; whereas a 

50% mixing with seawater in the Po di Tolle  (one of the peripheral branches). In 

Fig. 4, Ch. 7 is reported Cl- vs Na+ in  the three  different summers (August 2010, 

2012 and 2013). The chloride content is extremely variable from the main channel 

to the peripheral branches where mixing processes are prominent.   

 

 
Fig. 4: Binary diagram Cl- vs Na+ of the terminal part of the Po river waters collected during August 

(drought period) in three years, 2010 – 2013. 

 

This observation reinforce the hypothesis that salinization become predominant in 

the outer branches respect to the main course where the discharge (and the flow) 

are more effective (Fig. 4, Ch. 7).  

The isotopic analyses corroborate the delineated hypothesis. The deltaic water 

became more variable than that of the other parts of the river with δ18O varying 

between -10,4‰ and 6,9‰ and δD varying from -71‰ to -55,1‰.  

Therefore, I emphasize that this part of the river is more sensitive to environmental 

changes respect of the other sectors of the river and has to be monitored with 

more attention.  
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Figure 3: a) Gibbs diagram (TDS vs [Na+/(Na++Ca2+)]) reported in mg/L for the Po river water; b) 

Ludwig – Langelier diagram where (Na++K+) = (ΣrNa+K/Σ R rcations)×50 and (HCO3)=rHCO3/Σranions)×50, 

where r is the mEq/L concentration of the constituents. 

 
In Fig. 5, Ch. 7 δ18O – δD isotopic composition of the Po river water, sampled in 

different periods, are plotted together with GMWL (Craig, 1961) and the local 

meteoric water line (LMWL) defined for Northern Italy (Longinelli and Selmo, 

2006). Different symbols were used to discriminate samples collected in different 

seasons.  
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Figure 5: δ18O – δD isotopic composition of the Po river waters in the Po river Delta in different 

seasons: black circle  samples collected in August 2010; black cross for sample collected in 

November 2011, black diamonds samples collected in February 2011; grey triangle for 

samples collected in December 2011, diamond for samples collected in April 2012, white 

circles for samples collected in August 2012, grey diamonds for samples collected in March and 

May 2013, grey circles for samples collected in August 2013 and light grey diamonds for samples 

collected in May 2014. The dotted line represents the global meteoric water line (GMWL; Craig, 

1961); dashed line represent the local meteoric water line (LMWL) defined for Northern Italy 

(Longinelli and Selmo, 2003).  

 

Considering that the river water is a dynamic multi-component system, whose bulk 

chemical composition varies as a function of time and distance from the source, 

the recorded composition provides a geochemical background that is useful for an 

environmental monitoring. In this view, the oxygen/hydrogen isotopes provide a 

snapshot of the current climatic conditions to be compared with the literature data 

and with the future composition to provide a hydro-archive that should be updated, 

as a proxy to evaluate on-going climatic changes (Zuppi and Sacchi, 2004). The 

recorded δ18O values are compared with the local groundwaters (Rapti Caputo 

and Martinelli) and with the Northern Italy Meteoric Water Line (Longinelli and 

Selmo, 2003). These isotopic data, compared with chemical analyses, could be 

useful to investigate and detect potential industrial, agricultural and urban 

contaminations, to define mixing processes with the connected alluvial aquifers, 

and to study the extent of sea-water intrusion and salinization in the terminal 

(delta) part of the river. 
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8 COMPARISON BETWEEN ANALYSES CARRIED OUT IN 
DIFFERENT YEARS AND COMPARISON WITH OTHER RIVERINE 
SYSTEMS  
 

Within this final chapter the data presented in the previous sections are discussed 

altogether in a coherent framework valid for the years 2010 – 2014. Isotopic data 

of the Po river waters at basin scale (from the Monviso to the delta) are registered 

for the years 2010, 2011, 2012, 2013 and 2014. This discussion is subsequently 

enriched by comparison with other (coeval) data carried out by myself on the 

second more important river of Northern Italy, i.e. Adige river. These additional 

data are included in several theses that I supervised in collaboration with Prof. 

Gianluca Bianchini, during my official activity of teaching assistance (Appendix D). 

 

Figure 1: a) Sketch map of the main outcropping lithology of the Northern Italy with Po and Adige 

river basins; b and c) location of the samples collected in river Adige. 
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The aim of this chapter is to make comparisons with the analyses of waters 

collected in several years during particular climatic condition and to evaluate the 

water chemistry in different fluvial systems. 

It is important to note that Po river waters record important evolution trends in the 

upper and in the terminal parts, whereas are strongly homogeneous in the middle 

part. In the Upper part the TDS is relatively low and water fingerprint still maintain 

the meteoric influence. Progressive interactions with the lithologies (Fig. 1 Ch. 8) 

ultimately lead to the main hydrochemical facies that remains relatively constant 

and homogeneous starting from the city of Torino to Revere (in the Mantova 

province). The variations of the terminal part are related to multiple processes, 

including a flow velocity reduction and a more significant inflow of groundwater to 

the river, more effective evaporation, and finally mixing with saline water. 

This means that the Po river, that already displays a significant degree of water 

rock interaction in the UP samples (evident in the Gibbs diagram, 2, Ch. 8), 

maintains a similar geochemical signature throughout the Padanian Plain for  ≈ 

450 km, with a TDS average of 275 mg/L, 309 mg/L and 254 mg/L for April 2012, 

August 2012 and March 2013 respectively. The terminal part (TP) widely 

discussed in the previous chapter reports a TDS variability in distinct branches of 

the delta, with a TDS that varies from 360 mg/L to 28000 mg/L.  

 

Figure 2: Gibbs diagram: TDS vs 

[Na+/(Na++ Ca2+)] reported in mg/L for the 

Po river together with compositional fields 

relative to the Adige river (sampling 

campaign 2013-2014) and to the Arno 

river (Nisi, 2008).  
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It is also important to note that the recorded values are very similar to those 

available for the Po river since fifty years ago (Gherardelli and Canali, 1960) and 

that only the nitrate concentration increased in the last decades. Compositional 

field of Adige and Arno river waters are also reported in Fig. 2, Ch.8 for the 

comparison. It is evident that the Adige runoff waters maintains a limited variation 

along the whole path, with HCO3
- from 54 to 126 mg/L; Na+/(Na++Ca2+) from 0,1 

from to 0,17; Na+ from 3,9 to 6,4 mg/L, Mg2+ from 8,5 to 12,7 mg/L, TDS from 110 

to 160 mg/L and generally reflects the interaction with the rocks of upper part of 

the basin. Arno river (Nisi et al. 2008) reveals a compositional field similar to the 

Po river, and a water – rock interaction evident since from the headwaters (Capo 

d’Arno). These estimates have important implications as they can give an idea of 

the amount of material transported by these rivers to the sea, that in turn reflect 

the degree of chemical weathering occurring within their hydrological basins. 

These considerations are very important because the Po river (and in minor 

amount the Adige river) represent the principal vector of freshwater in the whole 

Mediterranean basin (Bethoux et al. 1999; Struglia et al. 2004), thus explaining the 

geochemical features of the northern Adriatic sea that is characterized by relatively 

low salinity. Therefore the calculation reported in Chapter 5 of this thesis give 

valuable data to estimate geochemical fluxes toward the sea. The obtained results 

are on the same order of those calculated by other authors (Pettine et al. 1998) 

and are essential to understand the eutrophication processes occurring in the 

costal ecosystems. The same geochemical features, characterized by relatively 

low salinity and high amount of nutrients (Falcieri et al. 2014; Puddu et al. 1998; 

Justic et al. 1995, Degobbis et al. 1990) are important to understand the 

remarkable shellfish production, which characterized the northern Adriatic close to 

the Po river delta.  

Therefore the study of Po river water is essential to understand and monitor the 

coastal ecosystems. In the investigated years the Po river water shown for most 

elements a remarkable homogeneity, also attested by Sr isotopic ratios that are 

discussed in Chapter 6. In fact, the maturity of the Po river water in the MP is 

attested by 87Sr/86Sr that remained constant at cca  0.70913 – 0.70926 in distinct 

hydrological periods, irrespective to the variable inflow of the various tributaries. 
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Extremely interesting are also the reported isotopic composition of oxygen and 

hydrogen (Chapters 3, 4 and 5) that are parameters sensitive to climatic 

variations. A complete representation of isotopic data is reported in Fig. 3, Ch.8 

where δ18O and δD are plotted together with the global (GMWL; Craig 1961) and 

local meteoric water lines (northern Italy; Longinelli and Selmo 2003; Longinelli et 

al. 2006). Samples from UP collected in different periods registered an isotopic 

composition that reflects the influence of meteoric precipitations (rain, snow, 

glacier, snow melting) in the drainage zone; whereas the MP samples become 

quite homogeneous and remain similar throughout the riverine course (average 

value for the MP ≈ -12,5 ‰), varying only in the terminal part as observed for the 

chemical composition. 

 

 

Figure 3: δ18O – δD isotopic composition of Po river waters together with compositional field of 

Adige river and Arno river (Nisi et al. 2008). Meteoric water line are also reported for comparison: 

the dashed line represents the Local Meteoric Water Line, define for Northern Italy (LMWL; 

Longinelii and Selmo, 2003); the dotted line represent the Global Meteoric Water Line (GMWL; 

Craig,1961). 
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The data of the Po River are also compared with those of other important Italian 

Rivers. For example, I report a comparison with another important fluvial system, 

that is Adige river that, as mentioned, has been studied within the framework of a 

undergraduate thesis that I am co-supervising. Isotopic composition of these two 

riverine systems could be a useful tool in order understand processes in river with 

different characteristics. In particular Adige river is known as the second longest 

Italian river, showing an extremely differentiated stream flow which develops from 

the Alpine Italian/Austrian administrative boundary, through the eastern alps down 

to its flows into the Adriatic Sea. The differences and the extent of the 

morphoclimatic characteristics of the Adige river flowing path, represent therefore 

an ideal situation for the application of water isotope in hydrological studies, 

beside that a systematic geochemical and isotopic characterizations were never 

reported for the whole basin.  

Differing from the Po river, the Adige waters are characterized by strong seasonal 

variation. The samples collected in August are more negative than samples 

collected in May. The average composition of δD in the UP is 90.2‰ and -88.2‰ 

for August 2013 and May 2014 respectively, and δ18O average composition is -

12.6‰ and -12.4‰ for August 2013 and May 2014; for comparable periods in Po 

river; the average composition of δD in the MP is -86.0‰ and -84.1‰ for August 

2013 and May 2014 respectively, and δ18O average composition is -12,1‰ and -

11,8‰ for August 2013 and May 2014. These results for the Adige river indicate a 

more significant contribution of snowmelt and glacier melting that becomes evident 

due to the discharge of the river during the two different periods (in August Qm≈ 

172 m3/s) and the relative contribution of the main tributaries of the river. It is 

important to take into account that most of the tributaries of the Adige river are 

located in the alpine catchment and the small riverine system are strongly 

influenced by the seasonal variation. 

Geochemical data of the Adige river exhibit a limited variation compared to the Po 

river along the whole path and generally reflects the interaction with the rocks of 

upper part of the basin. Adige and Po river waters display a similar Ca–HCO3 

hydrochemical facies, maintaining these geochemical features for most of the river 

stream, only varying in the terminal part where they approach the Adriatic sea 

mixing with saline water, as evidenced by slightly higher TDS and chloride content. 
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If we consider rivers as natural regional-scale pluviometers the data of these two 

important rivers could be used to define un updated meteoric water line valid for 

northern Italy. 

Additional data could be taken from the literature for another important river, e.g. 

Arno which has been systematically studied within the framework of another PhD 

thesis (Nisi et al. 2008). This extended rivers dataset could be used to define 

some geochemical maps, referred as isotopic landscape in the literature (Bowen 

et al., 2003; Nisi et al. 2013) that can highlight ongoing environmental variations.  

In other words, as a synthesis of this thesis, I propose that the multi-proxies 

geochemical analysis of rivers coexisting in the same region is a key to monitor 

the environment and understand on-going natural and anthropogenic processes. 
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