

 Università degli Studi di Ferrara

DOTTORATO DI RICERCA IN

SCIENZE DELL’INGEGNERIA

CICLO XXII

COORDINATORE Prof. Stefano Trillo

SISTEMI PER LA MOBILITÀ DEGLI UTENTI E DEGLI

APPLICATIVI IN RETI WIRED E WIRELESS

Settore Scientifico Disciplinare ING-INF/03

 Dottorando Tutore

 Dott. Bellettini Carlo Prof. Mazzini Gianluca

Anni 2007/2009

Contents

On the Concept of Mobility 9

I A Framework for Audio Fingerprinting 13

1 What is Audio Fingerprinting? 15

2 System Description 21

2.1 Feature Extractor . 22

2.2 Fingerprint Database . 25

2.3 Distance Metric . 26

2.4 Seeker . 27

3 Performance Improving 29

3.1 Indexing . 29

3.2 Pattern Hashing . 31

3.3 Caching . 33

3.4 Runs Filtering . 33

3.5 Database Partitioning . 36

3.6 Speech and Silence Detection . 38

3.7 Post-processing of Results . 39

4 Implementation and Preliminary Investigations 41

4.1 Testbed . 41

4.2 Effectiveness Investigations . 44

5 Addressing Pitch Distortions 47

5.1 An Alternative Search Strategy . 50

5.2 Error Rate . 54

5.3 Computed Distance . 55

6 Performance Under AWGN 57

i

ii CONTENTS

7 Timing Performance 61

7.1 Indexing . 61

7.2 Caching . 63

7.3 Comparison with brute-force approach 64

Conclusions 69

II User Allocation in Wireless Networks 71

8 User Mobility and Pricing Policy 73

8.1 IEEE 802.11 Distributed Coordination Function 74

8.2 The MEDUSA model . 77

8.2.1 A Preliminary Investigation . 80

8.3 Simulator . 81

8.3.1 Partial Overlap . 83

8.3.2 Complete Overlap . 86

8.3.3 Evaluating Users’ Reactions . 86

8.3.4 On the Validity of the Simulator 88

8.4 Results . 89

9 User Mobility and Cooperation 95

9.1 Scenario and Simulator Operation . 97

9.2 Cooperative Strategy . 100

9.3 Results . 105

Conclusions 109

Bibliography 111

List of Publications 119

List of Figures

1.1 What audio fingerprinting is . 16

2.1 Overview of the fingerprinting system 21

2.2 The fingerprint exractor . 22

2.3 The Short-Time Fourier Transform . 24

2.4 The exhaustive search . 27

2.5 Cross-correlations . 28

3.1 The indexing algorithm . 30

3.2 The pattern hashing algorithm . 31

3.3 Error rate and search time vs. cleared bits 32

3.4 The ring buffer . 34

3.5 Sample fingerprints with and without runs filtering 35

3.6 Database partitioning through beat classification 38

3.7 Recognizer history . 39

4.1 The off-line recognition process . 43

4.2 Impact of excerpt length . 44

5.1 How pitching affects a song spectrogram 48

5.2 Two choices for the sub-band division 50

5.3 Searching pitched excerpts . 51

5.4 Error rate vs. pitch-shift . 53

5.5 Error rate vs. pitch-shift . 53

5.6 Distance vs. pitch-shift . 56

5.7 Distance vs. pitch-shift . 56

6.1 Error rate vs. SNR . 59

6.2 Distance vs. SNR . 59

7.1 Search time vs. k . 62

7.2 Relative search time vs. k . 64

iii

iv LIST OF FIGURES

7.3 Cache efficiency . 65

7.4 Search time vs. database size . 65

7.5 Relative search time vs. database size 67

8.1 Simulator operation with partial overlap/1 84

8.2 Simulator operation with partial overlap/2 85

8.3 Simulator operation with partial overlap/2 85

8.4 Simulator operation with complete overlap 87

8.5 Basic cell throughput . 88

8.6 Admitted users vs. load . 90

8.7 Admission rate vs. load . 90

8.8 Network throughput vs. load . 91

8.9 Average rate vs. load . 91

8.10 Total revenue vs. load . 93

9.1 The affiliation strategy . 101

9.2 Node-RP communication model . 103

9.3 Cooperative strategy rationale . 104

9.4 Allocated users vs. AP visibility . 106

9.5 Allocated users vs. P . 107

9.6 Allocated users vs. mobility . 107

9.7 Allocated users vs. cooperation . 108

List of Tables

5.1 Pitching/frequency-displacement mapping 55

7.1 Index storage size and loading time . 63

8.1 Parameters for the MEDUSA model . 89

9.1 Parameters for the user cooperation model 97

v

On the Concept of Mobility

The words mobility and network are found together in many contexts. The issue alone

of modeling geographical user mobility in wireless networks has countless applications.

Just to name a few:

• resource allocation, typically bandwidth;

• pervasive computing, in a world where every object is a computing device that

can be of help for persons or other devices;

• service continuity: in the Internet realm, this is the case of the various mobile

IP solutions, but we can also focus on the lower-level issue of physical hand-off,

possibly between heterogeneous networks;

• location-aware services, from navigation, to advertising;

• disruption-tolerant networks, for example in vehicular, military, social, or coop-

erative applications.

Depending on one’s background, the concept is investigated with very different

tools and aims. Given also the huge number of works, therefore, it would simply not

be practical to cite the “most relevant” contributions to a “field” so difficult to define.

Nevertheless, for highlighting once more the broadness of the subject, let us cite [1],

where Nokia points out the scientific and commercial need of considering even cultural

factors when answering the “who is doing what and where” question.

It may seem that now there is not much to add to the concept of mobility, but it is

not so. Actually, the last decade saw also a growing interest in code mobility, i.e. the

9

10 ON THE CONCEPT OF MOBILITY

possibility for software applications (or parts thereof) to migrate and keeps working in

different devices and environments.

The usual idea is that of stateful agents, which can carry with them all the code

(i.e. the program itself) and the data they need. A notable real-life and success-

ful application is distributed computing, which under certain hypothesis can void the

need of expensive supercomputers. The general rationale is splitting a very demanding

computing task (as protein folding or integer factorization) into a large number of inde-

pendent sub-problems, each addressable by limited-power machines, weakly connected

(typically through the Internet, the quintessence of a wired network).

One of the most extreme visions, however, is probably ActiveNet [2], a replacement

for Internet. Not just a fancy name, but rather a thorough reworking of passive packet-

switched networks that would evolve packets into “capsules”, a sort of micro-agents.

Eventually, any participating node (from routers to user devices) would perform some

computation, according to the instructions embedded in the capsule received or relayed.

However appealing this proposal might be, we decided to concern ourselves with

present-day issues. In particular, we organized this thesis in two distinct and indepen-

dent parts. We of course refer the reader to the respective introductory sections for

the details, but let us anticipate that:

• Part I

deals with audio fingerprinting, and a special emphasis is put on the applica-

tion of broadcast monitoring and on the implementation aspects1. Although the

problem is tackled from many sides, one of the most prominent difficulties is

the high computing power required for the task. We thus devised and operated

a distributed-computing solution, which is described in detail. Tests were con-

ducted on the computing cluster available at the Department of Engineering of

the University of Ferrara.

1Part of this work is being used commercially.

11

• Part II

focuses instead on wireless networks. Even if the approach is quite general, the

stress is on WiFi networks. More specifically, we tried to evaluate how mobile-

users’ experience can be improved. Two tools are considered. In the first place,

we wrote a simulator and used it to estimate the impact of pricing strategies

in allocating the bandwidth resource, finding out the need for such solutions.

Secondly, we developed a high-level simulator that strongly advises to deepen

the topic of user cooperation for the selection of the “best” point of access, when

many are available. We also propose one such policy.

Part I

Mobility of Applications:

a Framework for

Audio Fingerprinting

13

Chapter 1

What is Audio Fingerprinting?

Besides the unquestionable scientific interest, the availability of vast, digital archives

of music and the related commercial interests are pushing many efforts into the field

of automatic audio recognition. The opportunity of exploiting more computing power,

and at steadily decreasing costs, certainly plays a key role as well. Indeed, chances

are that what a decade ago would have been practical only by means of specialized

hardware could now be accomplished in software (sometimes even on portable devices).

Though related to speech recognition, this truly multiform and demanding topic is

actually addressed in distinct ways. Audio recognition may aim to discern whether or

not two pieces are in fact the same, regardless of their outer appearance (i.e. coding,

distortions). More generally, it comes into play when we are interested in reliably

identifying an unknown excerpt of e.g. music, given a large set of references. A first

glimpse of its rationale and possible applications is given in Fig. 1.1.

The task of automated audio recognition used to be accomplished by using invasive

watermarking techniques. However, this requires either permanent human interven-

tion, or that a single watermarked source accounts for every possible instance of a

given pattern. Neither method is feasible: the former needs an active listener who

correctly marks pieces, whereas the latter is clearly not realistic. A different approach

is therefore needed.

A working, and actually very good, solution is the so-called audio fingerprinting

[3,4], known also as robust audio hashing. Its purpose is to allow electronic devices to

15

16 WHAT IS AUDIO FINGERPRINTING? 1.0

������������ �	�
� �
��������	�� ���

����	���� ���������� ���
�� 	��

!��� �	� �	����" �#� �� $���� �������%� ���� 	�� &�'� ��������� (�)�
Figure 1.1: A simplified overview of what audio fingerprinting is.

identify perceptual similarities between audio contents. The term “fingerprint” recalls

the fact that every piece of audio bears unique features, as detectable by listeners.

The usual system in which a fingerprinting algorithm operates, sees the building

of a large fingerprint database, used as a reference source for identifying unknown

fingerprints (compare also Fig. 2.1). Note that the search task is heavily demanding,

since we are supposed to find the most similar (not simply exact) match in a huge

amount of data (e.g. some 100 000 song fingerprints).

Such tight search time requirements (a gain factor of roughly 100, at least, should

generally be attained over real time) and its high complexity also led to putting consid-

erable effort into the matching problem. In [5], for example, gene-sequence matching

algorithms are borrowed from biology, allowing for a lightning-fast identification of an

event-based fingerprint, computable over the output of any feature extraction algo-

rithm.

1.0 17

On our side, we focused our attention on a simple yet very robust algorithm, whose

basic operation was first described by Haitsma et al. in [6]. The distinctive feature

it extracts is intimately related to the audio signal energy. More specifically, it takes

into account how the energy difference among a set of sub-bands varies in time. In

other words, it evaluates the second-order derivative of the energy spectrogram. The

reasons that drove our choice and the details of the algorithm are provided later in

2.1.

We analyze in this work many essential aspects of algorithm [7]. We chose it as the

core of a more general framework for audio fingerprinting, which we will describe in

detail. Focusing especially on the application of broadcast monitoring, we also provide

effective strategies for improving the overall system and discuss the results of plentiful

experiments, based on a database of approx. 100 000 songs. By broadcast monitoring

we mean the continuous tracking of an audio source such as a radio channel. Musical

TV and satellite channels may also be processed in a similar fashion, even if a combined

approach including their video component would probably be a better choice. But let’s

take a look at how audio fingerprinting has been performed so far.

As we pointed out, the interest in the field has been steadily growing in these years,

thus producing quite a large amount of good contributions. Significant reviews can be

found in the cited [3,4] and also in [8], but they date back to 2005 and cannot account

for the latest developments.

First of all, we stress that applications are really manifold. For example, copyright

issues could be easily addressed in p2p file-sharing networks or video sharing services,

while meta-data retrieval and broadcast monitoring [5, 9] can be achieved. A music

consumer could fast check whether his or her large collection already contains a given

song, too [10]. Another nice application is the so-called “query by humming” [11],

an early work in multimedia searching. A similar algorithm is now freely available

on-line [12].

According to the researchers background and goals, the topic can be addressed in

many different ways. The first step invariably involves isolating a sequence of these

18 WHAT IS AUDIO FINGERPRINTING? 1.0

“features” in the piece of audio, and the longer the piece of audio, the more the features.

This set of features is said to be the “fingerprint” of the piece.

Most of all, the fingerprint must be sufficiently distinguishable, so that two finger-

prints can be reliably told apart or regarded as similar [13]. Along with the retrieving

technique, it must prove also robust, i.e. exhibit high reliability even when various

kinds of distortions occur, such as equalizing, white noise, pitching and so on. Finally,

it must be fast to compute from e.g. a PCM (Pulse Code Modulation) signal, and also

achieve a significant reduction factor in size, with respect to the original PCM samples.

On the basis of these considerations, we can also speak of “robust hashing” since,

similarly to standard hashing techniques, audio fingerprinting aims to produce a com-

pact and fast-to-check-and-retrieve representation of a complex audio signal. Usually,

as in our case, there is the need to work only on the waveform representation of the

audio signal, with no further semantic aid (as a score would be). Needless to say,

regular hash functions cannot be employed, since they rely on the precise bit sequence

of the particular digitalization of the audio signal.

A large selection of different audio features can be extracted, usually chosen on

the basis of heuristic considerations, with a few exceptions [14]. It is also possible to

combine more of them into one single identification model [15], aiming to mutually

compensate eventual weaknesses. However, this can be computationally expensive, if

not prohibitive beyond small databases. Other less common approaches include Prin-

cipal Component Analysis (PCA), as in [16] and [17], or statistical modeling combined

with Hidden Markov Models (HMMs), for example [18]. Although effective, it is often

difficult to render them efficient enough for real-time employment.

The usual feature extracting technique involves a combined time-frequency analy-

sis, mainly performed through Fourier transforms. A few works propose instead wavelet

transforms, which may be a more rewarding choice [19–21]. A combination of both a

FFT and a DCT is then employed in [22]. This paper is particularly interesting since

it builds on [6], as our approach does, but introduces a further processing stage (which

involves the DCT), in order to improve the indexed search reliability. The technique

1.0 19

is especially effective when the audio query is rather distorted. However, it is not clear

to what extent this extra stage elongates processing time. Moreover, since we focus

on broadcast monitoring, the added complexity would not pay off, given the relatively

mild distortions broadcast audio usually faces, for which the solutions we suggest in 3

prove very effective.

On the retrieval problems, we point out the contributions [23–25], which mathe-

matically argument effective strategies. In particular, the first two borrow respectively

from classical full-text indexing and coding theory. As far as the latter is concerned,

we stress that its applicability in some contexts is limited by the use of short clip

fingerprints, instead of whole songs, and in this respect it is not trivial to foresee its

possible efficiency, when extended. A second drawback is that, at its present state,

it is not able to track an audio stream (e.g. to evaluate the duration of a broadcast

song), since the scheme is inherently incapable of handling cropping. For this reason,

there are even cases in which two different songs could be regarded as identical, for

example when their fingerprinted excerpts are a same musical section, while the sung

parts differ (i.e. different performers).

This first part of the thesis is organized as follows. In the next chapter, we discuss

the main points behind audio fingerprinting and a broad selection of existing works.

The system is detailed in chapter 2, while in 3 we introduce strategies for improving

its performance, both in speed and reliability (the latter with particular regards to the

broadcast monitoring application). In chapters 4 to 6, we present our scalable testbed,

a viable solution to the pitch-shift distortion and the robustness of the algorithm to

thermal noise. Some further scalability issues are addressed in 7 and we draw our

conclusions in 7.3.

Chapter 2

System Description

As previously hinted, our system follows the usual architecture of three blocks (see

Fig. 2.1): the feature extractor, the fingerprint database and the seeker. The extractor

must be fed with some audio input, while the seeker produces a match. Such match

can be found by comparing against the reference database.

Though sufficient for evaluation purpose, these blocks fall short in real-world appli-

cations. For example, we may be interested in processing the output of a microphone

or of a radio receiver. Therefore, a transcoder must be used to properly format the

input. Our implementation takes audio files as input, handling a variety of compressed

and non-compressed formats, and then works on raw waveforms. In particular, MP3

files (or parts thereof) were used as input.

Post-processing is also needed, first of all to correctly interpret the outcome of the

seeker, say match a given id to the correct metadata. With the aid of Fig. 2.1, let’s

now examine in detail how things work.

Figure 2.1: Overview of the fingerprinting system.

21

22 SYSTEM DESCRIPTION 2.1

STFT

PCM
samples

Sub-bands
energy

computation

Bit
computation

N ⋅(b+1)

N

N⋅b

(b+1) sub-bands choice

...

F
0,0

...F
0,1

F
0,b�1

F
N�1,0

...F
N�1,1

F
N�1,b�1

Figure 2.2: The Streaming Audio Fingerprinting (SAF) algorithm.

2.1 Feature Extractor

The feature extractor is the most relevant block, since it greatly accounts for the

overall effectiveness of the system. On the other hand, a highly efficient seeker must

be implemented (see 2.4).

We recall that the feature extractor is an algorithm that must produce the fin-

gerprint of a piece of audio, by selecting some of its distinguishing characteristics.

Among the many methods investigated in the last years, we selected that proposed

by Philips in 2001, in its revised and extended version [7]. Beyond its experimented

effectiveness, we mainly based our choice on its great flexibility. According to its orig-

inal proposers [26], we will denote the feature extractor algorithm as Streaming Audio

Fingerprinting (SAF), but it is also known in the literature as Philips Robust Hash

(PRH).

The Philips approach provides a convenient and easy-to-handle output (a bit ma-

trix), and ample opportunity of customization. Moreover, its simple steps allow some

kind of statistical modeling, though only approximated [27,28].

Let’s follow Fig. 2.2. The input is constituted by raw PCM samples, whose fre-

quency must be 44 100 Hz, with a quantization level of 16 bit/sample1. A stereophonic

input is immediately converted to monophonic by averaging the two channels.

Since the subsequent processing discards much of the original bandwidth, the input

1We observe that these limitations can be easily circumvented by the pre-processing stage, before
feeding the feature extractor.

2.1 FEATURE EXTRACTOR 23

is downsampled to 5 kHz by a low-pass filter and a decimator. Its integer period

varies so to have, on average, the correct downsampling ratio. In the present case of

PCM samples extracted from MP3 files, we verified that a rough equiripple 16-tap

FIR filter (designed with Parks-McClellan algorithm) gives the same results as a more

refined 41-tap filter, which should be the minimum order for the required specifications.

Therefore, we used the faster 16-tap filter.

As is often the case in the audio analysis field [29], the algorithm works on the

input spectrogram. It can be obtained by taking first a Short-Time Fourier Transform

(STFT) of the audio samples, and then the squared modulus of the transform (energy).

This gives N frames in the frequency domain, where N is linearly proportional to the

length of the input.

The three steps for the STFT are summarized in Fig. 2.3:

1. input segmentation into N overlapping frames;

2. windowing of each frame according to a convenient function;

3. discrete Fourier transform by means of a FFT (Fast Fourier Transform) algo-

rithm.

Here, the length of each frame is 16 384 samples (or approximately 0.37 s), while

the overlap leaves out only 512 samples, or 1
32 of the frame length. These parameters

lead to a good trade-off between frequency and time resolution. Such a large overlap

is crucial in the further step of recognizing unknown excerpts. Not only does it allow a

comparison between misaligned framing structures, but it also makes the system more

robust to distortions: a good algorithm should always produce fingerprints that look

very much alike, regardless of the particular framing offset.

The window function considerably smooths the frame to be transformed and al-

leviates the problem of the spectral bias in the spectrogram. As in [7], the choice

fell on the Hann window, which has been proved to be nearly optimal as to its bias

characteristics in this context.

24 SYSTEM DESCRIPTION 2.1

Framing Windowing

FFT

Figure 2.3: Rationale of the Short-Time Fourier Transform.

As a further step, each transformed frame is sliced into b + 1 bands. Differently

from the original paper, we used as reference the usual 12-TET tuning system, keeping

frequencies up to about 1976 Hz and setting the lower bound l as a function of b, given

the constraints imposed by the musical scale. In particular, its value in Hz is given by

l = 440 · 2 26−b
12 .

This division is beneficial since it allows to successfully combat the pitch distortion,

an intrinsic weakness of the original system. The bandwidth kept depends on the

particular value of b. The details are presented in chapter 5.

The distinguishing feature considered by the algorithm is the energy difference of

sub-bands, both among them and in time. By summing every relevant sample, the

energy of each sub-band is computed as a contribution En,m where 0 ≤ m ≤ b is the

sub-band index and 0 ≤ n ≤ N − 1 is the frame index. A value FP(n,m) is finally

obtained according to the rule

FPn,m =

1 if αn,m − αn−1,m > 0

0 otherwise
,

where FPn,m (for which 0 ≤ m ≤ b − 1) is the m-th bit relative to frame n and α is

the energy difference among contiguous sub-bands, namely

αn,m = En,m − En,m+1 .

We highlight that there has been at least one proposal to improve the binarization [30],

but at some more computational expense. Note that, for a given n, FP(n, ·) is a b-bit

2.3 FINGERPRINT DATABASE 25

vector spanning the considered bandwidth and representative of a very tiny fraction of

the whole song. Conversely, when m is fixed, FP(·,m) is a N -bit vector which roughly

gives the energy variation trend in a sub-band. The sequence of the N b-bit vectors,

obtained from the N temporal frames, is the fingerprint of the input piece of audio.

An example is depicted in Fig. 3.5a, where the patterns are stacked vertically and the

frequency dimension is horizontal.

It is worth noting that, given the length L in seconds of an excerpt (sampled at a

sample frequency fs), the number N of patterns (lines) extracted as fingerprint may

be easily computed as

N = bL · fs − frame length

skip
c+ 1 .

2.2 Fingerprint Database

The database is basically an archive of song fingerprints. As we have seen in the

introduction, many different approaches can be exploited to manage and search the

database, also depending on the particular representation of the extracted features.

Here, the database is a collection of binary files, possibly organized in distinct folders,

each representing a single and whole song. It currently holds 100 000 entries, highly

differentiated in genre and mostly of western origin. Its actual organization is detailed

in 4.1.

Normally, no extra-processing is performed over the extracted fingerprints, though

a further layer could be easily inserted here to provide additional functionalities. For

example, it would make the database either more compact, to save storage space, or

more convenient, to save search time and to be more reliable or robust in seeking. An

example is introduced in 3.4.

26 SYSTEM DESCRIPTION 2.3

2.3 Distance Metric

Regardless of the particular method employed for searching, a distance metric must be

defined between the fingerprintX of an unknown excerpt and a fingerprintR referenced

in the database. In practice, being R typically much longer than X, we define

d(X,R) = argmin
R̃

d(X, R̃) ,

where R̃ is a fraction of R as long as X. How do we define d(X, R̃)? The binary

representation induces to use as metric the normalized Hamming distance, i.e. the

number of different bits between X and R̃, divided by the total number of bits of X

(or of R̃, since they are the same). That is:

d(X, R̃) =
1

N · b
N−1∑

n=0

b−1∑

m=0

Xn,m ⊕ R̃n,m ,

where ⊕ denotes the bitwise exclusive OR. One or more thresholds on the value of

d(X, R̃) can be chosen, so to provide a hard indication of the similarity between the

two excerpts. On the basis of our experiments, good-quality excerpts give always a

correct match when d(·) is below 0.30.

However, distortions (such as recordings in harsh environments) tend to signifi-

cantly increase the acceptable threshold value. Prior knowledge on the quality of the

input may be of help in setting the threshold. Clear examples of this phenomenon

are shown later in 5.3 and 6. Our proposal there to tune the threshold according to

the devised task, tries actually to heuristically address the “metric learning” problem,

very recently investigated in [31].

In general, d will always be greater than zero, even if X and R̃ come from the same

non-distorted song, due to the non-synchronized framing. If we were to exhaustively

search the database, we would adopt a minimum distance approach, taking as a match

2.4 SEEKER 27

xx
xx
xx
xx
xx
xx
xxR2

xx
xx
xx
xx
xx
xx
xx
xx
xxR3

R
1

xx
xx
xx
xx
xx
xx
xx

X

b
����� ��� ��	
	
��� 5

�
Figure 2.4: The exhaustive search, where X is the short, unknown audio
chunk, while Ri are the fingerprints of the reference songs stored in the
database.

for X a region R̂ such that

R̂ = argmin
R̃

d(X, R̃) ,

where the search is extended to the whole database. If this value is above the reference

threshold, we can safely conclude that no match was found.

2.4 Seeker

Given the fingerprint of an unknown excerpt, the seeker has the role of either finding

the best match in the database, or declaring that the excerpt has no match. As a

corollary application for the seeker, we observe that it can be a precious help also in

updating the database. Consider the following scenario: a fairly large database as

ours, of roughly 100 000 entries, is currently available. Every week or so, there’s the

need to enlarge it, in order to comprise recent acquisitions: the availability of a reliable

seeker can successfully avoid adding duplicates [10], which could lead to troubles.

The näıve searching method requires an exhaustive comparison (i.e. linear scan)

against the whole database, but this becomes rapidly unfeasible as the database grows,

28 SYSTEM DESCRIPTION 2.4

2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

(a)

2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

(b)

Figure 2.5: Cross-correlations between an unknown excerpt and the match-
ing reference fingerprint. In case (a) the excerpt is undistorted and the
synchronization point is easily detectable in correspondence of the high
peak. On the other hand, in (b) the test excerpt is corrupted by white
noise (SNR of 5 dB), which impairs the peak detection.

even with a careful implementation. Fig. 2.4 depicts this basic search approach. On

the basis of our experience and for good-quality songs, some computation may be saved

reducing by an integer factor 2÷ 10 the alignments tried, relying on the large overlap

in the STFT block. However, brute-force is highly inefficient.

A possible work-around, which scans anyway every database entry, is described

in [32]. There, we compute the distance only on promising regions, whose locations

are determined by the peaks of the cross-correlation between X and each possible R.

The cross-correlation is performed along the time dimension and averaging along the

frequency axis. An example is reported in Fig. 2.5. Nevertheless, also this approach

requires too much time for being used in practice, even if it can be taken into consid-

eration when careful investigations must be carried out. Indexing (3.1) is probably the

best choice.

Chapter 3

Performance Improving

This chapter proposes a number of strategies for improving the reliability or the speed

performance of the system, with special emphasis on issues connected to the broadcast

monitoring application. Some of them are later discussed and evaluated in more detail.

3.1 Indexing

Following the rationale suggested in [7], we implemented our seeker on the basis of

a simple, yet effective, method. A lookup-table (in fact, a chain hash table) acts as

an index to quickly retrieve all the locations of a given pattern in the database. By

“pattern” we denote any of the possible b-bit binary vectors, as those computed by

the feature extractor, and by “location” we mean the song and the relevant offset, or

an equivalent information.

When a match does exist, if we suppose that the unknown fingerprint and its

matching reference both exhibit at least one feature vector exactly alike, then the index

may be indeed effective. Querying it for the patterns computed from the unknown

excerpt will give a number of promising alignments, thus dramatically reducing the

number of comparisons needed, in the same fashion of the cross-correlation method.

Moreover, look-ups are thousands of times faster (the exact ratio depending on the

parameters used, compare chapter 7) than linear scan.

Ideally, the index would list all possible patterns, but this is not always feasible

or advisable. Memory constraints may render impossible handling a 2b-entry look-up

29

30 PERFORMANCE IMPROVING 3.1

w
1
~

w
2
~

w
0
~

w
N�1
~

0

2

1

2
k
�1

locations listslook-up tableX

...

R1 R2

...

...

...

...

...

...

...

...

...

...

...

L
 s

e
c
o
n

d
s

pattern

hashing

b bits

b
k

Figure 3.1: The indexing algorithm for fast retrieval of promising align-
ments between the unknown excerpt and the reference database. The gray
block corresponds to the hashing algorithm of Fig. 3.2.

table (and permanent storage would be too slow), and excessively distributing the

patterns in too many bins may lead to missing the correct synchronization points, as

we verified. We thus propose to:

1. hash each b-bit pattern w in the database according to some convenient function

h(·), giving a k-bit word w̃ = h(w), where k ≤ b;

2. update entry w̃-th of the look-up table with the location (song and offset) of w,

possibly chaining it to the existing ones (separate chaining collision resolution

method, by means of a linked list).

This rationale can be readily understood by looking at Fig. 3.1.

3.2 PATTERN HASHING 31

The hash function carries out two roles. Firstly, it is needed to reduce the pat-

tern space from 2b to 2k, so that standard amounts of memory (e.g. 4 GiB) become

acceptable. Secondly, it greatly helps in equalizing performance. In this respect, it

should be noted that the pattern distribution in the database is highly uneven, and in

real-world application it is important to precisely foresee, and take into account, the

time required for a search task.

Conversely, we point out here, and numerically justify in 7, the need of a large

enough k: too small a value, actually, would lead to a small number of large buckets in

which patterns are collected, so that the search time could still be unacceptably long.

Let’s now dive into the details of our implementation.

3.2 Pattern Hashing

We understand that the unstated hypothesis of having at least one exact match in the

look-ups is quite strong. However, we propose the following pattern hashing method,

which greatly relaxes this constraint and achieves very good results, as will be imme-

diately cleared.

The overall hashing process is summarized in Fig. 3.2, where the dashed frame

encloses the rationale just devised. In implementing the look-up table, the choice

of a good hash function h(·) must not be underestimated. Apart from distributing

the patterns as evenly as possible, it must also be very fast to compute. Two good

algorithms with these properties may be found at [33] and [34]. Both were carefully

evaluated and compared, giving similar results, and we chose the former.

mask h(⋅)

b

w

b b

w~

k

(2k 1)

Figure 3.2: Scheme of the algorithm that transforms each single feature
vectors from b into k ≤ b bits. The transformed vectors then populate the
hash table used for efficient pattern look-ups.

32 PERFORMANCE IMPROVING 3.2

0 4 8
0

0.01

0.02

0.03

0.04

0.05

Number of cleared bits prior to indexing

E
rr

or
 r

at
e

0

0.01

0.02

0.03

0.04

0.05

A
bs

ol
ut

e
se

ar
ch

 ti
m

e
(s

ec
on

ds
)

Error rate
Search time

Figure 3.3: Impact of clearing bits in the computed patterns.

Since it realizes a 32-to-32-bit transformation, we kept a number k of the least

significant bits of the hashed pattern as the search key. In other words, the key used

for building and then querying the index is actually computed as h(w)⊗(2k−1), where

h is the hash function, x the input pattern and ⊗ denotes the bitwise AND operator.

Values from k = 16 through k = 26 at steps of 2 have been tested.

When the indexing technique is used, we also observed a significant improvement in

the recognition error rate if some bits of the patterns are cleared prior to the hashing.

This means replacing w → w ⊗ mask, where mask is a convenient b-bit value. The

dimensionality reduction of the pattern space spreads the patterns in a lower number

of bins in the hash function target space, so the increased search time must be properly

taken into account.

Fig. 3.3 clearly highlights this dependence, for some special cases and b = 32. In

particular, we represent mask = 0x0FFFFFFF as an example of clearing 4 bits and

mask = 0x00FFFFFF for 8 bits, when the duration of the excerpt is 5 seconds.

On the basis of many trials, when b = 32, we experimentally found the best results

3.4 CACHING 33

by setting mask = 0x00FFFFFF, which leads to acceptable search times. We believe

that this choice is rewarding because of the high variability and inherent weakness

of the particular bits involved. In our implementation, they are representative of

the lower frequencies. Since it is not possible to exhaustively try the whole range of

possibilities, further investigation may be required at this stage. We also point out

that this approach is related to the bit-toggling solution illustrated in [7].

3.3 Caching

The computer volatile memory is typically orders of magnitude faster than ordinary

storage (i.e. the hard disk). To better drive implementation decisions, a variable-size

cache was thus implemented in RAM, with respect to the fingerprint archive. Although

there may exist more refined replacement policies, we used a FIFO (First In, First Out)

ring buffer. The rationale is represented in Fig. 3.4.

Whenever part of an entry (reference fingerprint) is needed, the database entry is

loaded in its entirety in the first available bin, for future reference. In many cases, as

when tracking an audio broadcast, it is reasonable to assume that many excerpts from

the same song will be present. When there are no free bins, then the oldest one is

replaced. The size of the cache has been varied from 0% to 100% of the database size,

at steps of 10%.

3.4 Runs Filtering

In Fig. 3.5a we report a sample, short fingerprint. Because of the high temporal

correlation between the overlapping segments of the input, the bit matrix is mainly

constituted by runs of 0s and 1s. We note anyway some “undecided” regions, where

0s and 1s tend to alternate. The negative impact on the overall system, in the long

run, is twofold: not only does it lead to an increased distance between excerpts and

possibly matching references, but also limits the robustness in case, for example, of

pitch-shifted audio (5).

34 PERFORMANCE IMPROVING 3.4

existing data

FIFO buffer

next writing
position

Figure 3.4: The ring buffer used for evaluating the impact of caching the
fingerprint database in the computer memory.

These thoughts suggested us to add little processing to both the unknown and the

reference fingerprints, in order to keep only runs of a minimum configurable length

δ, as depicted in Fig. 3.5b for δ = 3. After this extra stage, the operation follows

as usual with the eventual look-up of promising locations and then distance metric

computation. We will show that this precaution (i.e. the runs filtering) allows, to a

certain degree, to obtain an average smaller distance in case of match. At the same

time, it does not reduce too much the distance with respect to non-matching entries.

Finally, we point out that it does not cause the database to be rebuilt and can be

easily done on the fly at the time of loading.

3.4 RUNS FILTERING 35

Frequency

T
im
e

(a)

Frequency

T
im
e

(b)

Figure 3.5: Sample fingerprints (a) before and (b) after filtering with δ = 3.
256 32-bit patterns, each representative of a time frame, are vertically
stacked, thus spanning the frequency dimension horizontally. The duration
of the chunk is about 3 s. δ denotes the magnitude of the runs filtering
described in 3.4.

36 PERFORMANCE IMPROVING 3.5

3.5 Database Partitioning

It is intuitively clear that the search time is inherently related to the size of the

database, as we will see in detail in section 7.3. Therefore, finding a way of parti-

tioning the database could be a practical way to reduce search times and complexity,

beyond increasing scalability.

A first approach could be that of determining the genre of a song, e.g. following [35],

which is also a good review of some relevant works, or [36]. Unfortunately, there is no

expressed agreement on the definition of “genre” and if it were, it would change over

time, along with the common perception of music. Moreover, its evaluation is usually

computationally expensive. We thus propose to classify songs on the basis of their

tempo (or beats per minute, bpm), which in many cases can be objectively measured

with a good accuracy. An additional bin may be considered for all those songs whose

tempo is unclear, irregular, or anyway needs human supervision for being estimated.

Tempo can be described as the rhythm pattern of a piece of music and characterize

especially western music. If the beats per second are constant along a song, then we

can compute them from each song and partition the database into sections, each of

them including a specific beat range, possibly non-overlapping.

On the other hand, song beat may differ in different parts of a song, e.g. between

verse and chorus. In that case, the database sections may overlap and the same song

may be assigned to more than one group. This leads to a loss of efficiency, but does

not impair the correctness, as long as the beat estimation is correct.

Many approaches for beat estimation have been proposed, and even a contest

was held for finding good algorithms [37]. We also propose the following, which is

straightforward and gave good results on many songs taken from a commercial radio

broadcast. Assuming that the song exhibits energy peaks on beats, we compute the

temporal cross-correlation between its PCM samples and a number of impulse trains of

convenient period. We then take as beat reference the train with the highest correlation

with the song. In order to reduce the complexity, the song may be also downsampled,

3.5 DATABASE PARTITIONING 37

and possibly segmented in order to take variations into account.

The periods of the impulse trains may be chosen among a wide range or it may be

limited by prior information. The impulse is bell-shaped, with a duration of 100 ms.

For efficiency, the impulse trains should be generated just once and then retrieved

when needed.

When the song presents a distinct rhythm pattern given by a drum or a similar

instrument – as is the case of many rock and pop songs –, our approach yields typically

little or no errors, at most within a few bpm of what a human experimenter would feel

right. However, it is unable to produce meaningful results when no rhythm patterns

is clearly perceptible (e.g. melodic and classical music).

Given the size of the database, the number of segments and the computational

burden required by the beat estimation, it will be possible to evaluate the trade-off

between the effort needed to estimate the tempo and the advantage derived from the

database partitioning. Although the database can be partitioned off-line, we stress the

need for a fast beat estimation algorithm, in order to actually have an overall processing

gain, since the beats per minute must be estimated on the input chunks as well. This

constraint may be lifted only if we can rely on prior tempo information. We currently

do not have an implementation efficient enough to prove useful, but according to [37],

the beat estimation could take as low as 0.02 times the excerpt length.

It is worth noting that the beat estimation may impose some constraints on the

minimum excerpt length. However, encouraged by our tests, we believe that a value of

5 seconds, adopted and justified in the following sections, should be enough for most

cases.

38 PERFORMANCE IMPROVING 3.6

a
d
d

input matchFeature
extractor

Seeker
search

DB#1
DB#2

DB#3

bps

Beat classifier

Figure 3.6: Database partitioning through beat classification, with possibly
overlapping sections.

3.6 Speech and Silence Detection

In the view of broadcast monitoring and tracking, a mechanism of speech detection may

prove really profitable. On the other hand, we are aware there are notable applications

which would not benefit from it, like the addressing of copyright infringement issues

in file-sharing networks. Nevertheless, we believe it is worth discussing.

First of all, speech detection can be implemented by pre-processing the audio prior

to the fingerprinting, thus allowing to discard non-musical sections and achieve a better

efficiency. Secondly, it could also occur at the output of system, trying to analyze what

has not been recognized, along with other blocks, such as a recognizer that operates

on the whole database instead of on just the group determined by the estimated beat.

As in other relevant works [38], our approach to speech/music separation exploits

a well-known feature, the zero-crossing rate (ZCR). It can be computed directly on

temporal frames and gives a rough indication of the frequency range in which most of

the energy lies. Since the human speech is bounded up to a few hundreds hertz and

music usually involves also much higher frequencies, the ZCR allows to discriminate

the two cases.

Of course, since this method has no real understanding of the content of the even-

tual speech detected, it is not able to tell apart an actual speech from a rap excerpt or

a sung part with little or no music. It can also be tricked by loud background music.

3.7 POST-PROCESSING OF RESULTS 39

By considering the frequencies of human speech, we enhanced this method by

computing the fractional residual energy outside this band. Combining the ZCR and

the residual energy indicator, we have very good estimation results, tested on many

real radio recordings. The exact parameters can be tuned according to the particular

context, so to allow for a flexible tolerance.

Similarly to the beat recognition case, the speech detection algorithm is imple-

mented off-line and is not part of the audio recognizing system. Moreover, it constrains

the excerpt length, though a few seconds are enough for a reliable speech detection.

We conclude this section by noting that it is also important to discriminate silent

inputs, as they easily match randomly against the database and lead to false positives.

We do take into account this case by making sure that the total energy of the processed

excerpt is above a threshold, which was heuristically tuned. In particular, we evaluate

whether more than 40% of the waveform samples (normalized in the range [−1, 1])

have an absolute value greater than 0.02.

3.7 Post-processing of Results

When analysis is made to carefully track the content of an audio stream, as in the

broadcast monitoring application, the reliability of the audio recognizer can be greatly

increased by taking into account the analysis history. That is, those excerpts difficult

Figure 3.7: A possible inference thanks to the recognizer history. We
depict here a sequence of two songs, colored respectively in green and red.
A fraction of the green song was not recognized, but can be safely inferred.

40 PERFORMANCE IMPROVING 3.7

to recognize can be handled by looking at the matches previously found. Even better,

in most situations it is possible to take advantage of future matches as well.

We point out that the duration of the excerpts in the stream to track must be

carefully chosen. Since each excerpt will provide one and only one match, it cannot be

too long, otherwise we will easily mix different songs. On the other hand, too short

an excerpt won’t provide enough information for a reliable matching. On the basis

of our experiments and previous works, we suggest excerpts of 3.3 to 5 seconds each.

Fig. 4.2), commented in section 4.2, reports

Once the stream, or a sufficiently large part of it, has been processed, our algorithm

verifies whether some excerpts could not be recognized. Unknown excerpts surrounded

by long enough segments of a same song, are assigned to it as well (an example is

depicted in Fig 3.7). The particular values to use highly depend on the context and

cannot be determined once for all. By this strategy, however, we were able to correctly

and precisely track ambient recordings made in a very noisy discotheque, under the

hypotheses of a minimum duration for each song.

As a corollary of this application, in the case of broadcast monitoring it would also

be natural – instead of blindly looking up promising alignments all over the database –

to first check whether the current chunk is simply a further chunk of a same song. The

saving in computation would be particularly significant for very large databases. How-

ever, also for easier comparison with other fingerprinting systems, we do not consider

here this enhancement.

Chapter 4

Implementation and

Preliminary Investigations

We first present our testbed and then, through the remaining chapters, we discuss

the outcomes of ample experiments on SAF, the fingerprint algorithm detailed in 2.1.

For reasons of efficiency, our implementation is written entirely in (portable) C++.

Tests were run on 32-bit middle-end desktop PCs, with 3.00 GHz CPUs, and 3.5 GiB

of available RAM. If not stated otherwise, tests were carried out on excerpts whose

duration is 5 s, corresponding to N = 399 b-bit vectors with the parameters given in

2.1, where b = 32 and the band division is 12-TET.

4.1 Testbed

With the proposed parameters, we extract about 5168 4-byte feature vectors per play-

ing minute. Since the average song length in our 100 000-song database1 in MM:SS is

4:18, we have a total storage of 8460 MiB, or 87 KiB per track, with 2.22 · 109 feature

vectors stored.

We highlighted in 3 the strong need for both indexing and operating in the RAM

memory. Even leaving out the size of the index, however, the size of the database

alone rendered this task unfeasible to the machines available to us. We thus devised

and operated the following solution:

1We are very grateful to Knowmark s.r.l. for their support at this stage.

41

42 IMPLEMENTATION AND PRELIMINARY INVESTIGATIONS 4.1

1. we evenly split the database into 10 sub-databases, each assigned to an inde-

pendent instance of the recognizer. To be precise, we used 10 sub-databases of

10 000 entries each, but on average, this is the same as evenly dividing the total

database size, which linearly depends on the duration of the songs;

2. each of the 10 independent recognizers is then fed with the same audio excerpt,

randomly extracted from those existing in the database2;

3. we finally merge the results, taking into account the smallest distance among the

10 distances independently computed across the 10 sub-databases. Decisions on

the acceptability of such a distance follows as previously described.

On the positive side, we highlight that the instances of the recognizer may safely be

separate processes, since each will deal with just a tenth (or a fraction, in any case) of

the whole database, independently. The same rationale can also be easily customized

and tailored to one’s needs and resources (e.g. some machines are faster than others).

If we stick to an on-line recognition task, the main drawback is the need for either

10 rather modest machines (which is our case and it is cheap), or for one or more

powerful ones (e.g., a 16 GB RAM machine would be able to handle approx. 60 000

to 70, 000 fingerprints, if we include the indexing structure). Moreover, Loading a

sub-database from disk induces some temporal overhead, but this is acceptable if the

audio stream is long enough (see also table 7.1). The good gain of processing time

over real time must be also considered (compare section 7). Post-processing, on the

other hand, is not an issue, since it can be done on the fly (given suitable inter-process

mechanisms) and requires practically no time.

Nevertheless, for the sake of easiness of implementation, we performed off-line the

merging step, which is indeed realistic for broadcast monitoring. We can better follow

the steps of the recognition process with the aid of Fig. 4.1, which is simplified to just

3 sub-databases.

2The issue of false positives has been addressed in [7], and in our experience we honestly never
found none.

4.1 TESTBED 43

main DB

sub-DB 3

sub-DB 2

fingerprint

extractor

machine 2

machine 3

match 2

MATCH

sub-DB 1

machine 1

match 1

match 3

fingerprint

extractor

fingerprint

extractor

choose

the best

input waveform (e.g. 5 s)

Figure 4.1: Overview of the off-line recognition process, as per the strategy
described in section 4.1, in order to overcome memory limitations. For
clarity, only 3 sub-databases are depicted here.

44 IMPLEMENTATION AND PRELIMINARY INVESTIGATIONS 4.2

3.333 5 7.5 10
0

0.002

0.004

0.006

0.008

0.01

Excerpt length (s)

E
rr

or
 r

at
e

0

0.05

0.1

0.15

0.2

0.25

A
bs

ol
ut

e
se

ar
ch

 ti
m

e
(s

ec
on

ds
)

Error rate
Search time

Figure 4.2: Impact of the excerpt length on the error rate and on the
search time (k = 24).

We also stress that in the context of broadcast monitoring and all others which do

not require an immediate answer to an audio query, part of the audio stream can be

processed multiple times, sequentially, by a same machine, which iterates through the

sub-databases.

We finally observe that the blind database partitioning just discussed is instrumen-

tal to allow a certain degree of scalability, and is logically orthogonal to the tempo-

based partition suggested in 3.5. The two approaches can thus be profitably combined,

or even introduced at different times into an existing architecture.

4.2 Effectiveness Investigations

We speak of “success” when the system gives as match the correct reference. The

“error rate” is thus computed as the one’s complement of the success rate, obtained

by averaging over a very large number of independent trials, in a Monte Carlo fashion.

While the error rate figure is given by comparing against the whole 100 000-entry

4.2 EFFECTIVENESS INVESTIGATIONS 45

database, we point out that all the timing results presented in later sections are related

to the single sub-databases of size 10 000: the sub-databases are in fact approximately

homogeneous and browsed concurrently, and we can safely neglect the post-processing

time.

First of all, we verified through brute-force search that the fingerprint algorithm

under analysis is thoroughly effective on undistorted excerpts. In this case, the error

rate is exactly 0, even for very short excerpts of just 3.3 seconds.

According to 3.1 and 3.2, indexing and pattern masking are then introduced. We

report in Fig. 4.2 the trade-off between accuracy of the match and search time required

per each excerpt, with respect to its duration. While we observe a significant drop-

off in the error rate switching from 3.3- to 5-second excerpts, the improvement is less

noticeable if we further increase its duration. Thus, we chose 5 seconds as the reference

duration for excerpts.

Chapter 5

Addressing Pitch Distortions

The SAF algorithm proves highly reliable with respect to a large number of signal

degradations [7], as we also experimented. However, due to its inherent characteristics,

this holds as long as the frequency and time texture of the song are not significantly

altered. As reported in [26] and [39], even a moderate time- or frequency-scaling voids

the effectiveness of the system.

By “pitch distortion” we denote a lowering or a raising in pitch of an audio sig-

nal, without affecting the tempo (time scale), i.e. the time length of the excerpt is

unchanged. Note that this is first of all a frequency shifting, but it also involves

a dilation in the frequency domain, in order to preserve the musical relationship of

the harmonics [40]. This phenomenon can be clearly seen from the spectrograms1 of

Fig. 5.1.

As with any other distortion, a trivial approach is trying to restore (e.g. “de-pitch”)

an excerpt before taking its fingerprint. If correctly carried on, this is always successful,

but most probably unfeasible, as seen later on.

As hinted in 2.2, we could also combat these weaknesses by re-encoding each fin-

gerprint, e.g. as a sequence of symbols, untying this new fingerprint from the original

song structure and allowing for a more tolerant search. An example was cited in the

introduction [5]. Both time- and frequency-scale distortions could be successfully ad-

1Picture adapted from the output of the freeware program Spectrogram 4.1.2, by R.S. Horne. The
STFT used has a frequency resolution of about 21.5 Hz and a time step of 12 ms. Only the left channel
is considered.

47

48 ADDRESSING PITCH DISTORTIONS 5.0

(a)

(b)

Figure 5.1: These spectrograms represent a few seconds of Anne Browne’s
Summertime, which we have available in MP3 format. The time dimension
is horizontal, while the vertical dimension is the frequency. While in (a)
the song is undistorted, in (b) we have the same excerpt raised in pitch by
5 semitones (same duration). Both frequency translation (towards higher
frequencies) and dilation can be clearly seen.

5.1 49

dressed, with the great benefit of building over the existing database, and with no need

to switch to a different fingerprinting algorithm.

However, this approach can be overkill for most of the applications. Then, it would

be interesting to exploit the existing data without considerable modifications. We thus

propose a simpler method, which can successfully address very high pitch distortions,

giving at the same time very good results.

The band division introduced in 2.1 exploits quite an often used tuning system, at

least as far as the western world is concerned: equal temperament, or 12-TET. Leaving

out the historical reasons which drove his adoption, we only point out that it is built

from a basic tone in the neighborhood of 440 Hz (called A4 or La4). In our case, this

exact value was used. Each of the 12 available notes is then obtained by multiplying

(or dividing) the frequency of the adjacent tone by a factor of 2
1
12 (as seen in 2.1).

This interval is called a “semitone”.

The iterated procedure leads to the musical scale (C, C], D, . . . B) or (Do, Do],

Re, . . . Ti), probably known to the reader, where C] and D[(and so on for analogue

couples) have actually the same frequency. The interval between a tone and its doubled-

frequency counterpart is called “octave”, and is such that we perceive two sounds an

octave apart as having the same pitch. In conclusion, 12-TET is a tuning system where

we can perceive as much as 12 unique pitches. Note that 12-TET is not related to the

Bark scale.

For the sake of comparison, we built an additional database, so to evaluate the

response of the system with respect to two different band quantization choices. The

most straightforward approach is to log-equally divide a meaningful bandwidth, jus-

tified by the fact that the human ear has an approximate logarithmic response. The

base used for the logarithm is 10 and the performed subdivision will be denoted by

EQL. We report in Fig. 5.2 a comparison between the two schemes, 12-TET and EQL,

for the cases b = 16 and b = 32. The former case leads to a lower bound of l = 784 Hz,

whereas the second to l = 311 Hz. This last is very similar to the 300 ÷ 2000 Hz

bandwidth suggested in [7].

50 ADDRESSING PITCH DISTORTIONS 5.1

300 440 775 2000
Frequency (Hz)

(a)

300 440 775 2000
Frequency (Hz)

(b)

Figure 5.2: Comparison between 12-TET (dashed) and EQL sub-bands,
in linear scale. (a) b = 16 (b) b = 32

5.1 An Alternative Search Strategy

Thanks to the 12-TET band division, it is possible to conceive an alternative search

strategy. Taking up the picture of the unknown fingerprint slid along the time dimen-

sion of the database, we propose to extend the search to the frequency dimension, thus

shifting by one or more bits the fingerprint of the excerpt prior to the comparison.

The idea is depicted in Fig. 5.3.

Depending on the expected magnitude and direction of the distortion, the search

should be appropriately limited, in order to save time. Since a frequency shifting

is involved in pitching, we will show that this method allows to greatly improve the

robustness of the recognizer, at least for not excessively strong distortions.

The major drawback is the impossibility to use the indexing technique described

in 3.1 with no modifications. Therefore, the time required by the tests presented here

5.1 AN ALTERNATIVE SEARCH STRATEGY 51

����� ������
�	
��	�������������

xx
xx
xx
xx
xx
xx
xx

X

R

Figure 5.3: The proposed search for combating pitching, where X is the
short, unknown audio chunk, while R is the fingerprint of a reference song.

is of the same order of magnitude of a brute-force approach (see also 7.3), with the

further multiplying factor of a frequency-wise shifting. At the moment, with realistic

database sizes, this can be acceptable only when a deep automatic analysis is required

or there are no strict time constraints. This can well be for certain off-line monitoring

tasks, as the processing of a relatively-short daily stream, or the analysis of a weekly

event.

Although the proposed 12-TET band division is based on a western convention,

we point out that the described search strategy holds regardless of the specific kind of

music being processed, save the limitations discussed in the following section (i.e. the

tailoring of the band division for combating a conceivable distortion granularity).

Recalling the “de-pitch” approach, it would naturally fall in the pre-processing

stage, or – more efficiently – just after the STFT computation, whose large time-

overlap parameter will greatly benefit the accuracy of the pitching operation [40].

On the positive side, this approach always compares full b-bit words, but in turn it

requires a complex, non-negligible computational effort, and almost always some trial-

and-error (since it looks improbable to know in advance the intensity and direction of

the distortion, even if just approximate). Conversely, performing a bit-shift operation

is simple and almost instantaneous, although the number of actually compared bits is

linearly reduced by the magnitude of the bit shift.

52 ADDRESSING PITCH DISTORTIONS 5.2

Another more subtle issue is due to the choice of the frequency domain quantization

in the fingerprint algorithm. At the fingerprint level, it actually maps a bit shift to a

fixed frequency shift, so it accounts for at least two major drawbacks in the fingerprint-

shift approach. Firstly, it allows to correctly handle pitch distortions only if their

magnitude falls about evenly on quantization boundaries and secondly, it poses a limit

on the maximum tolerable distortion. In other words, the bit shift cannot be too large,

in order to retain a significant fraction of the available information.

We conclude this section by noting that, if both the time and frequency scales are

linearly stretched up or down by a few percents, an effective workaround has been

presented in [26]. Its main advantage – in contrast to our approach – is a very good

handling of these distortions with a fine granularity, at least within its range of use.

Unfortunately, it has also many drawbacks. In the first place, it requires substan-

tial modification of the algorithm, rendering any existing databases completely useless,

which is unacceptable in many cases, e.g. because of the unavailability of the source

songs. Secondly, the running time of the new algorithm is appreciably longer, since

it requires – in addition – as much as two Fourier transforms (implementing auto-

correlation), a low-pass filter and a downsampling (this could not be an issue if the

constraints on the search time are not particularly tight).

The authors locate the need of their method especially in the recognizing of radio

broadcasts, where time constraints may indeed lead to speeding up songs. In these

cases, however, the speed up is limited and involves only the time scale, a situation

which is well handled by the large-overlap framing in the existing algorithm. We

conducted many experiments in radio broadcasts with results entirely comparable to

the non-distorted case (i.e. error-free). Nevertheless, the approach could prove useful

in certain contexts.

5.2 ERROR RATE 53

+0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +4.5 +5 +5.5 +6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pitch−shift magnitude (semitones)

E
rr

or
 r

at
e

b = 32, 12−TET
b = 32, EQL
b = 16, 12−TET
b = 16, EQL

Figure 5.4: Error rate as a function of the pitch-shift and for different
parameters.

+0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +4.5 +5 +5.5 +6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pitch−shift magnitude (semitones)

E
rr

or
 r

at
e

δ = 1
δ = 2
δ = 3

Figure 5.5: Error rate as a function of the pitch-shift and δ (b = 16).

54 ADDRESSING PITCH DISTORTIONS 5.2

5.2 Error Rate

A number of random songs was selected among those existing in the database and

manually pitched using the open source tool Audacity [41]. The magnitude of the

distortion varies from +0.5 to +6 semitones, with a step of 0.5 semitones, involving an

approximate percent frequency displacement summarized by table 5.1. On the basis

of our previous discussion, a 12-semitone pitch shift, i.e. an octave, would correspond

to a 100% frequency shift. For reasons of symmetry emerged in a previous work [39],

we do not consider here negative pitch shifts.

Let’s first focus on the fingerprint-shift search strategy. As we can see in Fig. 5.4,

a careful choice of the sub-bands may be essential, also depending on the particular

value of b used. For b = 16 and EQL, the behavior alternates between an excellent

success rate (around distortions of an even number of semitones) and a very poor one.

Similarly, its 12-TET counterpart is heavily troubled by half-semitone distortions.

When b = 32, the proposed search strategy is instead thoroughly effective, regardless

of the particular band division. The same can be observed in the following Fig. 5.7

On the contrary, if we had a viable “de-pitch” approach, it would lead to perfect

results in terms of success rate. This would be comparable to the undistorted case,

with the only drawback of a slightly increased distance. According to our tests, this

increase would be at most in the neighborhood of an additional 5÷ 6%.

If the exact pitch shift is not known or guessed, indeed, we are exactly in the same

case of having a pitch-shifted excerpt and employing the basic search strategy. That

is, without a very good estimation of the pitch shift involved, or without enough (and

computationally expensive) trials and errors, the “de-pitch” solution is quite useless.

A concerted strategy could be thought of, but at a great expense in terms of search

time. From now on, only the bit-shift approach will be brought into discussion.

When b = 16, it is possible to further reduce the error rate by employing the

strategy described in 3.4 and filtering out the shortest runs in the fingerprints, prior

to the distance computation. For clarity, we report here the results up to a value of

5.3 COMPUTED DISTANCE 55

+0.5 +1 +1.5 +2

+2.93% +5.95% +9.05% +12.24%

+2.5 +3 +3.5 +4

+15.54% +18.92% +22.41% +25.99%

+4.5 +5 +4.5 +6

+29.68% +33.48% +37.40% +41.42%

Table 5.1: Pitching/frequency-displacement approximate mapping.

δ = 3. As we can see from Fig. 5.5, δ = 2 appears a well-balanced choice, with respect

to the error rate metric.

5.3 Computed Distance

Since we use a threshold mechanism for telling correct matches apart, a most important

metric to investigate is the average distance computed in case of success or error.

Indeed, both can help in fixing (a) reliability threshold(s) and are a soft indication of

the overall robustness of the recognizer. In Figs. 5.6 for b = 16 and 5.7 for b = 32,

we observe that the distance in case of success tends to increase with the magnitude

of the distortion, with more or less a constant penalty when half-semitone distortions

occur. The lower values for the high pitch shift of +6 semitones may be due to the

particular distribution of most of the erroneous bits when pitch shifting is involved.

Introducing δ > 1 does help in lowering the evaluated distance with respect to the

correct match. This is already clear in the presented figures, so we did not report

the dependence of the metric from δ itself, which is constituted by slowly-decreasing,

quasi-parallel straight lines, as δ grows.

We point out that δ = 2 can be regarded as very appropriate, since it reduces both

the distance with respect to the match and the overall error rate. The only, minor

drawback is a slightly reduced distance in case of error (should they occur): this could

potentially lead the computed distance close to the threshold used for discriminating

whether or not we have a match.

56 ADDRESSING PITCH DISTORTIONS 5.3

+0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +4.5 +5 +5.5 +6
0.15

0.2

0.25

0.3

0.35

0.4

0.45

Pitch−shift magnitude (semitones)

D
is

ta
nc

e
w

rt
 m

at
ch

12−TET: δ = 1 12−TET: δ = 2 12−TET: δ = 3

Figure 5.6: Given b = 16, normalized Hamming distance against the cor-
rect match as a function of both the pitch-shift magnitude and δ. The
distances for +4.5 and +5.5 are missing because no success was recorded.

+0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +4.5 +5 +5.5 +6
0.15

0.2

0.25

0.3

0.35

0.4

0.45

Pitch−shift magnitude (semitones)

D
is

ta
nc

e
w

rt
 m

at
ch

12−TET: δ = 1 12−TET: δ = 2 12−TET: δ = 3 EQL: δ = 1

Figure 5.7: Given b = 32, normalized Hamming distance against the cor-
rect match as a function of both the pitch-shift magnitude and δ.

Chapter 6

Performance Under AWGN

Additive white gaussian noise (AWGN), or thermal noise, is very common and worth

investigating as far as the performance of the system is concerned. In a previous

work [32], we found that b = 16 could in this case lead to better results. However,

the database used was orders of magnitude smaller than the actual one, and the cross-

correlation search method described in 2.4 was employed.

Carrying on similar experiments on a much wider database and cautiously relying

on the brute-force search, we obtained the curves in Fig. 6.1, where we represent the

average error rate with respect to the Signal-to-Noise Ratio (SNR) of the excerpt.

The excerpts were randomly chosen from the whole database and then conveniently

corrupted on the fly.

The choice b = 16 may actually pay off in certain circumstances, but it emerges

that b = 32 is actually better in a wider range of cases. Moreover, as we will soon see

in the next section, b = 32 is almost a mandatory choice if we aim at reasonable search

times.

Nevertheless, it is interesting to note that b = 16 would lead to a noticeably smaller

distance between the unknown excerpt and its match, with respect to the case b = 32.

In addition, should matching errors occur, they will show up with a higher distance

than the case b = 32, as can be seen in Fig. 6.2. On the basis of these considerations,

we believe the choice b = 16 could be acceptable and rewarding, if search times are

not the primary concern.

57

58 PERFORMANCE UNDER AWGN 6.0

This last figure also suggests the possibility of increasing the tolerable threshold

for declaring a match, in order to adopt a more aggressive strategy and trying to avoid

false negatives. We believe that a more rewarding choice is instead adopting a two-

threshold mechanism, associating to them different reliability indicators. For example,

a distance metric below a threshold T1 = 0.30 can be taken as a safe match, while a

value between T1 and T2 = 0.35 should be considered less reliable. From this point of

view, the post-processing strategy described in 3.7 can be really of help, as well as the

tunable threshold hinted in 2.3.

6.0 59

2 3 5 10 20
0

0.002

0.004

0.006

0.008

0.01

SNR (dB)

E
rr

or
 r

at
e

b = 8
b = 16
b = 32

Figure 6.1: Error rate for three different choices of b.

2 3 5 10 20
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

SNR (dB)

D
is

ta
nc

e
w

rt
 m

at
ch

 (
er

ro
r)

b = 8
b = 16
b = 32

Figure 6.2: In the continuous lines, we depict the distance with respect to
match for three different choices of b. Their respective counterpart in case
of error, when errors occur, is represented by the dashed lines.

Chapter 7

Timing Performance

The results presented in the following sections, valid in accordance to the specifications

in 4, can be of great help when it comes to design the system. In particular, our

considerations investigate its scalability and definitely show the need of operating as

much as possible in RAM and having b = 32.

7.1 Indexing

First of all, let’s focus on Fig. 7.1, where we report both the absolute search time and

the number of comparisons effectively made (i.e. the number of alignment locations

tried in the database). Both non-cached and fully-cached indexing are reported, while

we discuss intermediate values later in 7.2. The most striking outcome is that a sub-

database fully loaded on memory (i.e. a 100% cache) leads to a search time which is

always well beyond an order of magnitude faster than the approach without cache,

ranging from 370 s to 2.1 s for k = 16 (gain of about 176), and from 2.92 s to less than

0.04 s for k = 26 (gain of about 73).

As expected, a smaller number of comparisons (from 1 000 000 for k = 16 to 20 000

for k = 26) leads to a significantly smaller computation time (roughly linear with it),

but it is interesting to note that only the full-cache approach can follow the trend of

the made comparisons. In particular, the decreasing trend of the no-cache curve soon

slows down, as enhanced by the logarithmic scale. This could be due to the constant

and unavoidable hard disk seeking time, whose impact is the more noticeable, the

61

62 TIMING PERFORMANCE 7.2

10
4

10
5

10
6

10
7

N
um

be
r

of
 c

om
pa

ris
on

s

16 18 20 22 24 26
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Index bits (k)

A
bs

ol
ut

e
se

ar
ch

 ti
m

e
(s

ec
on

ds
)

Time, no cache
Time, full cache
Comparisons

Figure 7.1: Absolute search time as a function of the index parameter k
and highlighting the number of actual comparisons made.

fewer readings are performed. The average number of comparisons is about the same

in both cases (i.e. with or without cache), with only tiny fluctuations.

From the presented results, it is clear that k = 16 does not lead to a very good

performance, in comparison with higher values, since the associated index still exhibits

too many candidate positions. Indeed, if we had a uniform pattern distribution in our

10 000-entry sub-databases, there would be about 2.22 · 108/2k candidate positions for

each feature vector of the unknown fingerprint, thus suggesting to take k as large as

possible. If we would have chosen b = 16, no value of k beyond 16 would have been

acceptable. Taking two feature vectors at a time did not prove reliable at all, while

an intermediate value of b between 16 and 32 would have lost the very practical 32-

bit alignment. We pay the doubling of b in terms of doubling not only the database

size, and this is generally not troublesome, but also the time required for a single

comparison. Nevertheless, the dramatic reduction in the number of comparisons is

enough to provide very good search times.

7.2 CACHING 63

k Storage (MiB) Loading time (s)

16 802 14.84

18 810 15.33

20 840 17.14

22 960 22.87

24 1440 39.86

26 3360 86.64

Table 7.1: Index requirements in terms of storage and loading time, as a
function of k. Note that the source database size is 846 MiB.

7.2 Caching

An important merit figure is the ratio between the actual playing time of the excerpt

and the search time, an essential parameter for an effective, real-time operation. We

report the results in Fig. 7.2, which is but 5 divided by the absolute times of Fig. 7.1.

In the case k = 24, we have a value of about 110 in the full-cache case, compared to a

bare 1.7 if we have to read every time from the storage disk. To be precise, the location

list is ordered, then we could benefit from a one-entry cache, if a pattern shows more

than once in a single entry, but the gain is really negligible.

For a more insightful discussion, table 7.1 shows the actual index sizes and their

associated loading time, for the tested values of k. Both measures linearly scales with

the sub-database size, but the index size may easily grow to 1.7 (k = 24) or even

4 (k = 26) times the associated sub-database. Given the actual cheap cost of data

storage, this should not be an issue. The loading time, also, is not worrisome, since it

must typically be performed only once, when the recognizing software is started. Note

also that, speaking of single sub-databases and without index, the size gain factor of

their 846 MiB over the corresponding PCM material (44 100 Hz, 16 bit, stereo) is 512,

which is not very high. If we add the size of the index built for k = 24, the gain

decreases to a mere 190 (we suppose that no compaction algorithm is applied). When

interested in mobile applications, we should be aware of this issue.

In Fig. 7.3 we report the impact of the cache size on the absolute and relative

search time. On the basis of the previous discussion, k is set to 24, so to allow also for

64 TIMING PERFORMANCE 7.3

16 18 20 22 24 26
10

−2

10
−1

10
0

10
1

10
2

10
3

Index bits (k)

P
la

yi
ng

 /
se

ar
ch

 ti
m

e
ra

tio

No cache
Full cache

Figure 7.2: Ratio between search time and playing time of the excerpt, as
a function of the index parameter k.

a fully-cached indexing. We see that the implemented cache must not be too small, in

order not to worsen the performance. On the contrary, it is beneficial if it can hold at

least half of the stored references. If the slow disk access is completely avoided, then –

as seen above – we achieve a good gain of more than 100 over real time. It is probably

possible to improve the implementation efficiency and/or the replacement policy, but

we would expect similar trends.

7.3 Comparison with brute-force approach

We highlight here the benefits, in terms of search time, of both indexing and then

caching over the trivial brute-force approach, as a function of the sub-database size,

thus providing scalability hints. For the stated reasons, we again set k = 24. The ex-

haustive search is performed after the sub-database is loaded in memory in its entirety,

and very long times (unreported here) are required if this condition is not met.

By looking at Fig. 7.4, we already notice a good improvement if we just index (thus

7.3 COMPARISON WITH BRUTE-FORCE APPROACH 65

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

FIFO cache size (in % of total database size)

A
bs

ol
ut

e
se

ar
ch

 ti
m

e
(s

ec
on

ds
)

10
0

10
1

10
2

10
3

P
la

yi
ng

 /
se

ar
ch

 ti
m

e
ra

tio

Time, some cache
Ratio

Figure 7.3: Efficiency of the cached indexing approach, in terms of absolute
and relative search time, as a function of the cache size.

10 20 30 40 50 60 70 80 90 100
10

−3

10
−2

10
−1

10
0

10
1

10
2

Database size (%)

A
bs

ol
ut

e
se

ar
ch

 ti
m

e
(s

ec
on

ds
)

No index, cache
Index, no cache
Index, cache

Figure 7.4: Absolute search time as a function of the database size and
comparing exhaustive search (which has database on memory), indexing
and fully-cached indexing. The index parameter k is 24.

66 TIMING PERFORMANCE 7.3

accessing the disk at each comparison), with a time gain factor that ranges from about

21 for 1000 database entries, growing to over 25 when there are 10 000 of them. First

of all, as seen, indexing leads to a reduced number of comparisons, which is in the

order of 2 · 108 for brute force (this value is lower than the number of stored feature

vectors because some of alignments at the end of each entry are actually not tried,

since they would not allow a full distance evaluation with the unknown excerpt). In

the second place, we believe that the growing trend of the gain may be well justified

by the fact that fewer comparisons imply fewer disk accesses, which constitutes the

real bottleneck, so their impact is progressively reduced.

A further, and significant, performance boost can come from the use of caching. If

we load on memory all the entries that will be involved in comparisons, then the gain

factor over brute-force is constant for every database size and evaluated in over 1, 500.

The steadiness of the value well reflects the overcoming of the disk bottleneck and con-

stitutes a valid indication for evaluating the benefit of the presented indexing scheme.

On the other hand, the gain factor with the respect to the number of comparisons is

around 8, 500 (see again Fig. 7.1 when k = 24).

Finally, Fig. 7.5 focuses instead on the ratio between playing and search time. The

order of the curves is of course the opposite of that found in Fig. 7.4, and the full- and

no-cache approaches may be compared with Fig. 7.2 when k = 24. Considering the

whole sub-database, we observe a gain of almost 110 for the cached-index approach,

in comparison to a value of about 2 if no cache is present and less than 0.1 when no

index is present, i.e. the search time is a hundred times longer than the playing time.

7.3 COMPARISON WITH BRUTE-FORCE APPROACH 67

10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Database size (%)

P
la

yi
ng

 /
se

ar
ch

 ti
m

e
ra

tio

No index, cache
Index, no cache
Index, cache

Figure 7.5: Ratio between search time and playing time of the excerpt, as
a function of the database size and comparing exhaustive search (which
has database on memory), indexing and fully-cached indexing. The index
parameter k is 24.

Conclusions

Building on a well-known fingerprint algorithm [7], we developed and discussed a more

comprehensive framework for automatic audio recognition. We mainly supported our

considerations and suggestions on the basis of careful trials and experiments conducted

on real and ample data, i.e. a 100 000-entry fingerprint database.

We would like to stress that databases of this size are rarely seen in the scien-

tific literature, although there are notable exceptions in the commercial field, like the

popular Shazam (whose available resources are unknown to the author). A second im-

portant aspect is the efficiency of our implementation: although still quite demanding

in terms in computing power, it achieves an excellent performance, as discussed in the

past sections.

A number of effective, and possibly efficient, strategies for selecting good algorithm

parameters and for improving the overall performance of the system, has also been

proposed. Special emphasis is put on the broadcast monitoring application, which also

represents a growing market.

We believe the discussion we provided can help to a good extent not only the

understanding of the topic, but also the design and use of such systems. Further

improvements and refinements are yet needed for a less resource-demanding solution.

Part II

Mobility of Users:

User Allocation

in

Wireless Networks

71

Chapter 8

User Mobility and Pricing Policy

The economic aspects of resource allocation in wireless networks [42] – and especially

of radio resource management (RRM) – have a twofold, key effect on their real-life

implementation. On the first hand, the provider aims to achieve a high revenue. At

the same time, users try to afford the “best” possible service, from both an economical

and technical point of view.

The service price setup can then be effective in managing the constrained band-

width, allowing for a better coordination and a more efficient utilization. In other

words, price tuning can be seen as an implicit admission control or congestion control

mechanism [43–45]. Here, we concern ourselves with only the “rate” resource (i.e. the

maximum throughput allocated to a user), but we could proceed in a similar way for

other kinds of “resources”.

In this chapter, we first present a possible model for RRM in Wireless Local Area

Networks (WLANs), and then a detailed simulation study based on it. As seen in

many studies, operating conditions strongly affect the performance of the network.

Intuitively, according to the number of users existing in the network, the rate allocated

to a specific user can range from an upper bound given by its entire signaling rate, to a

rate almost equal to zero. The former is guaranteed to be assigned when there is only

one user in the network, whereas if more and more users are present, then congestion

will cause the traffic to be stuck by a huge amount of collisions.

The most difficult part in analyzing the multiplexing of the users on the shared

73

74 USER MOBILITY AND PRICING POLICY 8.1

radio resource is that the CSMA/CA (Carrier-Sense Multiple Access with Collision

Avoidance Medium Access Control) mechanism of IEEE 802.11x protocols intrinsically

does not allow easy and simple evaluations, and not even a closed expression.

As we will see in a later section, the impact of collisions and consequent intervals

spent by the terminal for backoffs and retransmissions may result in a considerable

difference for each terminal between the requested transmission rate and achieved

performance.

We then propose a simulation study which traces the outcome of packets by con-

sidering collisions and backoff intervals of a general CSMA/CA MAC. For the sake of

simplicity, we focus on the capacity constraints of a simple IEEE 802.11b hot-spot [46].

This model allows to study how the rates are affected by the CSMA/CA constraint

and which is the relationship between the requested rate and the actually allocated

rate. In accordance to the model, we also investigate the role of pricing in determining

resource usage.

We also point out that – in the same lines of thinking – the last years saw several

valid contributions. For example, an insightful study of resource allocation and pricing

strategies in multi-hop networks can be found in [47], while [48] focuses on mesh

networks, proposing pricing as an incentive mechanism for boosting collaboration. On

the other hand, the study [49] aims to model RRM and Quality of Service (QoS) from

a game-theoretic point of view.

8.1 IEEE 802.11 Distributed Coordination Function

WLANs have been deployed for many years and they are a widespread and consolidated

reality. They are often found in the form of hot-spots, where a central access point

is used as a gateway by a set of mobile terminals. This implementation is especially

suitable for the IEEE 802.11 protocol Distributed Coordination Function (DCF), a

MAC which implements a CSMA/CA policy and that we are going to briefly summarize

(with no reference to propagation issues like hidden and exposed terminal).

8.1 IEEE 802.11 DISTRIBUTED COORDINATION FUNCTION 75

While most of the public and private hot-spots are nowadays running the IEEE

802.11g protocol, the DCF protocol is basically the same with respect to the older,

but still used, IEEE 802.11b protocol, in order to allow for compatibility with legacy

devices. As previously stated, we will thus focus on IEEE 802.11b only.

In the OSI (Open System Interconnection) framework, the IEEE 802.11 protocol

specify both the PHY (physical) and MAC layer, i.e. layer 1 and lower layer 2. As far

as the PHY layer is concerned, we just point out the availability of different technolo-

gies, the most used being Direct Sequence Spread Spectrum (DSSS) and Orthogonal

Frequency Division Multiplexing (OFDM), with a variety of signaling rates.

The intrinsically broadcast nature of the radio channel is addressed by the MAC

layer through either a Distributed Coordination Function (DCF) or through a Point

Coordination Function (PCF). The latter is hardly ever supported by devices, which

justifies our focus on DCF.

The DCF may be implemented in wireless networks, regardless of the presence of

an Access Point (AP) and builds on the CSMA/CA protocol. Whenever a station, or

the AP itself, has a packet to send, it comes into play a two- or four-way handshake.

The former, said basic access, sees the simple sending of the packet, followed by

the recipient’s acknowledgment (ACK). Error detection is performed by means of a

32-bit Cyclic Redundancy Check (CRC).

Some details are now essential to understand the following sections. The channel

must be sensed idle (i.e. transmission-free, the CSMA part of the protocol) for at least

DIFS (DCF Interframe Spacing) before sending the data packet, while just for a SIFS

(Short IFS) interval in the case of the ACK frame (SIFS < DIFS always). In the

802.11b protocol, we have DIFS = 50µ and SIFS = 10µs. For comparison, a typical

propagation delay is in the order, at most, of 1µs.

To avoid the concurrent access of competing stations (CA part of the protocol),

each station waits an additional backoff time before any transmission (at least if the

station sensed the channel busy at least once, i.e. it is aware that the channel is really

76 USER MOBILITY AND PRICING POLICY 8.1

shared). Such interval is computed as:

backoff time = b24+i · Uc · slot time ,

where 1 ≤ i ≤ imax is the number of the retransmission and U is a random variable

uniformly distributed in [0, 1]; slot time is dependent upon the particular PHY layer,

approximately equal to 20 µs in the case of IEEE 802.11b.

An alternative formulation defines the backoff time as a uniform random variable

in [0, w − 1], where initially w = CWmin (Contention Window) and w is doubled at

each retransmission up to a value CWmax. In the case of IEEE 802.11b with DSSS,

CWmin = 32 and CWmax = 1024 (the unit of measure is the slot time). An appropriate

tuning of these parameters allows to dynamically improve the overall throughput, and

to implement priority classes.

In any case, the backoff time may be seen as a countdown which always follows

a DIFS period: it starts and keeps counting after the channel has been sensed free

for DIFS, stops when the channel is busy, resumes after a further transmission-free

DIFS. Each unsuccessful delivery attempt increases the backoff timer, and the packet

is discarded after too many attempts. As an extra safety measure, when the channel

is estimated as too heavily degraded or crowded (e.g. the station receives a corrupted

packet, as detected by the CRC) the backoff time is increased by EIFS (Extended IFS).

A second packet exchange method is four-way and includes an additional couple of

control messages, called Request To Send (RTS) and Clear To Send (CTS). Instead of

directly sending the data message after DIFS and backoff, a station sends first a RTS

packet. The recipient, after SIFS, replies with a CTS. The actual packet exchange

(which is acknowledged) then takes place as in the previous case.

The RTS and CTS signal all listening stations to defer their own transmissions, so

that collisions may happen only while RTS is being sent. Since RTS and CTS are very

short frames, the duration of the collision is greatly reduced, leading to significant

benefits for the overall system. There is in fact a better throughput and a notable

8.2 THE MEDUSA MODEL 77

saving in power consumption (especially important for portable devices). In some

cases, of course, the RTS/CTS overhead may be non-negligible. A trade-off analysis

may be found in [50].

8.2 The MEDUSA model

The MEDUSA (Micro-economic Elastic Decentralized Users’s Service Acceptance)

model was introduced several years ago [51] in order to jointly take into account not

only RRM and QoS, but also the price paid by the users for achieving a given service

level.

The model comprises microeconomics and game-theoretic elements: in fact, we can

see telecommunications networks as non-cooperative games, where each user is a player

who makes decisions on the basis of some utility function. Such utility functions are the

tool for modeling their preferences and perceived QoS. In our case, their preferences

are the desirable transmission rates to be granted by the AP.

In this scenario, each user can independently decide whether to join, stay in, or

leave the network. Moreover, the provider itself can be considered a player, whose goal

is maximizing its revenue. The model is therefore completely decentralized.

As previously stated, we consider here a simple system, with one AP and a number

of stations. It may be studied under different points of view, such as its total QoS

(estimated on the basis of each user’s figure), the number of admitted users, the total

allocated resource, or also the total revenue of the provider.

The MEDUSA model introduces a user utility function u(r), where r is a scalar,

continuous variable which represent the resource allocated to the user. The multi-

variate case can be seen as an easy extension, in which all components are treated one

at a time. We consider here the resource rate, i.e. the bandwidth (usually measured

in bits per second, bps) allocated to a user. This constrains of course the values for r.

78 USER MOBILITY AND PRICING POLICY 8.2

For example, in the IEEE 802.11b case, we have, at least approximately:

N∑

i=1

ri = 11 Mbps .

Utility functions are representative of user’s satisfaction and they customarily sat-

isfy to at least the following simple constraints:

du(r)

dr
≥ 0

lim
r→+∞

du(r)

dr
= 0 ,

which reflect the increasing of user’s perceived QoS (and then utility) with an increased

resource allocation, but also the progressive flatting in the increased satisfaction. In

other words, there is a threshold beyond which no relevant improvements in user

satisfaction are attained, even when significantly allocating more resource to the user.

If we assume a normalized upper limit for u(r), a possible choice for the utility

function is

u(r) =
(r/κ)ζ

1 + (r/κ)ζ
,

where ζ ≥ 2 and κ > 0 can be freely chosen in order to represent the different choices

of different users. This function is sigmoid-shaped, which is often used in these cases.

If r is the “rate” resource, we speak of elastic traffic when u′(r) is continuous for

every r. This assumption makes sense especially in soft-capacity systems, e.g. 802.11x

and 3G+ networks.

In a similar fashion, a reasonable pricing function p(r) must be such that, at least:

dp(r)

dr
≥ 0 ,

while other constraints may be freely chosen by the service provider. We recall that

price strategies must be decided in advance and have a decisive impact on the use of

8.2 THE MEDUSA MODEL 79

the service. Our choice is for a linear pricing function:

p(r) = αr ,

with α > 0, the same of every user.

Given u(r) and p(r), how do we actually put them into play? They must be linked

through a service acceptance probability function, which will be used to simulate user’s

decisions. Intuitively, this function must depend upon the utility and the price in an

increasing and decreasing fashion respectively:

∂A

∂u
≥ 0

∂A

∂p
≤ 0 .

A function that represents a probability (i.e. is valued in (0, 1)) and satisfy to these

constraints is:

A(u, p) = 1− e−kuµ(p/φ)−ε
,

where k, µ, ε are positive constants representing respectively a scaling factor, the sensi-

tivity to the utility, the sensitivity to the price. Also in this case, the parameters may

be conveniently adjusted to take into account different kinds of users. Further details

on the acceptance probability function may be found in [51].

The parameter φ is a convenient normalization factor, representing the price which

is considered fair by a fraction, say A0, of users when they get maximum utility, and

thus A(1, φ) = A0. This leads to having k = − log(1−A0).

The service provider revenue may be computed easily from the above definitions.

If N users are in the system, and user i is allocated a resource ri, it is possible to define

the system allocation vector r = {r1, r2, . . . rN} and the total revenue:

R(r) =
N∑

i=1

Ri =
N∑

i=1

piA(ui, pi) .

80 USER MOBILITY AND PRICING POLICY 8.2

Let us point out that the resource allocation is centralized in the AP, while it is up to

the user whether to accept or decline the service.

The allocation policy is described in the next section and, in general, may be

decided on the solution of some (constrained) optimization problem. The optimal

strategy should be tuned on the ui(r), and changed whenever some user leaves or

joins. This is usually unfeasible, first of all because users’ preferences are unknown.

8.2.1 A Preliminary Investigation

An immediate way to apply the MEDUSA framework is as follows. Firstly, we let each

user determine its most preferable transmission rate ri as:

ri = argmax
r

A(ui(r), p(r)) .

Then, we perform a feasibility check, i.e., we control whether the total requested rates

exceed the maximum capacity, say 11 Mbps. If this is the case, we assume that the

packets get lost and the rate of the owning user is decreased. In doing this, we adopt

a sequential approach which tries to capture the fact that in a real WLAN users are

allocated one at a time.

From an idealized point of view, the CSMA/CA capacity can be represented by

the fact that users can always be allocated until a saturation point is reached. If

the bandwidth allocation is perfectly elastic, when the new user’s request exceeds the

available bandwidth, the allocation vector is rescaled in order to satisfy the bandwidth

constraint (we can speak of a proportional reallocation).

This can lead to a rough evaluation of the capacity, quite correct from the qual-

itative point of view. The conclusions drawn from here are unfortunately way too

optimistic, since the throughput and all related metrics are highly overestimated. The

interested reader may found simulative results in [52].

The main problem in this kind of analysis, in fact, is that the overhead and the

consequent throughput decrease of the IEEE 802.11b MAC can not be taken into

8.3 SIMULATOR 81

account. To this end, we developed a more detailed simulator, which is explained in

the following section.

8.3 Simulator

We recall that the scenario is a hot-spot with a single AP. We are not concerned here

with the physical characteristics of the system, such as the geographical position of the

users, the size of the cell, or the propagation issues. We assume just that stations are

within mutual reach of the AP and put our focus on how the sharing of the CSMA/CA

DCF channel affect the QoS of each user, their decision whether to leave or stay, and

eventually the revenue of the provider.

Our simulator is Monte Carlo-like and takes into account a wide variety of the

parameters introduced in the previous section. We consider a discrete timeline of 10

seconds of transmission, where temporal intervals can be allocated to the users. In this

way, we try to capture the scheduling of time slots, where the exchange of signaling

and data packets is performed. On this basis, we evaluate carrier sensing, collisions

and consequent rescheduling of packet transmissions due to exponential backoff.

The simulator, written in MATLAB 1, works at packet level and is approximately

event-based. This allows us to actually count the collisions when they occur and to

track the actual rate experienced by users with a good approximation.

In particular, we lay down on the timeline, one user at a time, all the packets

she will send in the given 10 s. When a user is added to the system, we evaluate

her impact, in terms of QoS, on all the other users. The allocation algorithm mimics

the CSMA/CA rationale previously described. Since all the signaling packets (ACK,

RTS/CTS) are typically very small compared to data packets, they are neglected.

In detail, with reference to the Kendall notation, we assume an M/G/1 system,

that is:

• a Poisson generation process for packets to send. This means they have an

1Source code available upon request.

82 USER MOBILITY AND PRICING POLICY 8.3

exponential (memory-less) interarrival time with average 1/λ, where λ is the

packet generation rate in packets per second;

• a general service policy, which depends upon the simulator implementation (de-

tailed in the following paragraphs);

• a single server, which is constituted by the only channel taken into account.

In order to simulate different data rates, we chose to have a fixed data packet size of

8 KiB, hence the packet arrival rates λ are directly derived from the rates ri allocated

according to the MEDUSA model, as:

λi =
ri

packet size

In other words, the higher rate assigned to a user is simulated by sending more packets

from that user. The generation rate λ is then used to randomly draw the start of each

packet on the timeline (as a difference with respect to the previous arrival instant).

Each slot in the timeline represents both a certain amount of bits, and a corre-

sponding time fraction. To be precise, assuming the 802.11b rate of 11 Mbps and

slots of 1024 bits, we have exactly 112640 slots in our 10 s-timeline, each equal to

about 89 µs. Therefore, a packet of 8 KiB uses the channel for exactly 64 slots. A

higher accuracy may be attained by reducing the size of the slots, or increasing the

duration of the simulated period. According to the positions above, the starting slot of

the next packet is generated by first sampling an exponential distribution of appropri-

ate parameter lambda, and then by converting this continuous value into our discrete

timeline.

We allocate users sequentially (and their packets as well), to save computational

complexity, and only the currently considered user is simulated as “active”, i.e. able to

reschedule packets in case of collisions, as will be soon cleared. The data rate achieved

by user i is approximately equal to ri if its packets do not collide with others allocated

previously.

8.3 SIMULATOR 83

If the allocation of a new series of time intervals, corresponding to a new user

entering the network, overlaps with already allocated users, our simulator checks for

every overlap if it happens within an exposure time corresponding to one 64-th of the

packet (i.e. one slot, or 128 bytes, or 89 µs). Note that different values of the packet size

and the exposure time have also been tried, showing only small quantitative variations.

However, the approach can be tailored to the specific characteristics of a given IEEE

802.11x implementation.

Considering the discrete timeline, in allocating the time slots to the generated

packets, the following cases may arise (recall that all packets have the same size):

1. no overlap: in this case, the slots are simply marked as allocated to the current

(new) user;

2. partial overlap, and the new user’s packet starts after the start of an existing

packet;

3. partial overlap, and the new user’s packet starts before the start of an existing

packet;

4. complete overlap.

Let’s see how we worked out each of the non-trivial cases.

8.3.1 Partial Overlap

For every overlap of packets, if the transmission starting points are further than the

exposure time, the packet with the earlier transmission time is kept, whereas the other

one is rescheduled with an exponential backoff, if it belongs to the new user. This aims

at simulating that the second user has sensed the transmission of the first one and its

packet has been rescheduled.

In the discrete timeline, this translates in having two packets partially (but not

completely) overlapped. Fig. 8.1 depicts the case when the currently considered user

reschedules its transmission due to the busy channel. On the other hand, as in Fig. 8.2,

84 USER MOBILITY AND PRICING POLICY 8.3

user 1

user 2

packet arrival

packet rescheduling

user 1
2

0collisions

sent{ user 2
0

0collisions

sent{

user 1
2

0collisions

sent{ user 2
1

0collisions

sent{

user 1 user 1

user 2

user 2
backoff + reTX

Figure 8.1: An example of backoff rescheduling when the current user
senses a busy channel. For clarity, a packet is here only 4 slots long,
instead of 64.

if the current user’s packet temporally precedes an existing one, the former is kept,

while no backoff is considered for the latter, which is just lost and counted as a collision

(thus reducing its owner’s experienced rate).

As a third case of overlapping out of the exposure time, if both overlapping packets

correspond to a same user (i.e. the interarrival time is too short to fall after its own

previous packet), the second packet is simply postponed, as depicted in Fig. 8.3.

8.3 SIMULATOR 85

user 1

user 2

packet arrival

user 1
2

0collisions

sent{ user 2
0

0collisions

sent{

user 1
2

1collisions

sent{ user 2
2

0collisions

sent{

user 1 user 1

user 2 user 2

Figure 8.2: As an approximation, no backoff is considered if the converse
of Fig. 8.1 happens: here, the packet of the current user precedes that of
an existing user. The “X”s signal the removal of the packet (see section
8.3.2) from the simulated timeline.

user

packet arrival

user
2

0collisions

sent{
Figure 8.3: Postponing of next packet in case of short interarrival times.

86 USER MOBILITY AND PRICING POLICY 8.3

8.3.2 Complete Overlap

There is also the chance that overlap occurs within the exposure time: a collision

then arises, and both packets are lost. In an approximate way, and consistently with

a previous case, the backoff process is initiated for the second user only. This leads

to a slight underestimation of the actual rate experienced by the first user. In the

discrete timeline, this corresponds to having identical arrival slots for different users

(see Fig. 8.4).

We point out that every time a collision arises, in any way, one of the two users

does not have the opportunity to reschedule its packet. However, we also proceed

to remove the offending packet from the timeline, thus allowing future users, in our

accurate Monte Carlo approach, to compensate for that. All users have in fact the

same weight and the same parameters distribution.

8.3.3 Evaluating Users’ Reactions

After having added a new user and the evaluation time of the virtual 10 seconds, it is

possible to evaluate the rate actually achieved by each user, and to analyze a posteriori

the acceptance (stay/leave) of this value. In particular, the actual rate experienced by

user i is computed as:

ρi =
packets successfully sent

λi · simulation period
· ri ,

where ri is the initial allocation. It should be noted that even when no collisions occur,

ri 6= ρi in general, since the interarrival time is randomly computed.

Actually, dynamic allocation changes imply that users might be happy with the

initial allocation, but refuse the degradation in the service due to lower ri. For this

reason, after each allocation of a new user, we re-evaluate the acceptance probability

of all users with a conditional approach, according to the Bayes theorem. We assume

that if the users request is ri, a lower allocation ρi < ri is accepted, conditioned on

8.3 SIMULATOR 87

user 1
2

0collisions

sent{ user 2
0

0collisions

sent{

user 1
2

1collisions

sent{ user 2
1

0collisions

sent{

user 2
backoff + reTX

user 1

user 2

packet arrival

packet rescheduling

user 1 user 1

user 2

Figure 8.4: Collisions occur if two packets are scheduled the same start-
ing slot (mimicking the real-life exposure time). The backoff process is
initiated by the second user only.

the fact that ri is acceptable, with the following probability:

A(ρi|ri) =

A(ρi)
A(ri)

if A(ρi) ≤ A(ri)

1 if A(ρi) > A(ri)
,

where the first case accounts simply for the basic concept of conditional probability,

where the second considers that users will never refuse a service improvement.

Unsatisfied users are thus removed and another timeline of 10 seconds is considered,

where only the remaining users are allocated. This approach might be heavy from the

computational point of view, nevertheless it is also capable to obtain realistic values

for the rate allocation according to the IEEE 802.11 MAC.

The re-evaluation on the A(ρi|ri)’s of the users’ satisfaction might imply that al-

ready allocated users can leave the service, so that a certain amount of resource is freed

and could be iteratively re-allocated. However, for the sake of an easy computation,

the amount of freed resource is taken into account only in future allocations. This does

not introduce inconsistencies in the results, even though tiny oscillations of the curves

can be found. Actually, we highlight that the accurate Monte Carlo simulations allow

to greatly smooth and overcome this approximation.

88 USER MOBILITY AND PRICING POLICY 8.4

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of users

To
ta

l t
hr

ou
gh

pu
t (

no
rm

al
iz

ed
 to

 c
ap

ac
ity

)

Figure 8.5: Cell throughput in condition of saturation and in the hypoth-
esis of no users leaving the system.

8.3.4 On the Validity of the Simulator

Besides the meaningful results presented in the next section, a very good indication of

the well-behaving of our allocation algorithm design may be found if we consider the

following:

• all N users accept the service and join the hot-spot;

• no user leaves;

• each user is allocated a fixed rate r, such that the users can oversaturate the

system, i.e. N · r is greater than the hot-spot capacity.

In particular, for r = 1.6 and N = 50, the measured throughput in a 11 Mbps-cell

is depicted in Fig. 8.5. We can see that the system saturates at about 75%, which is

in good agreement with the theoretical studies [50,53].

8.4 RESULTS 89

Parameter Value

WLAN capacity 11 Mbps

ζ uniform in [2÷ 14]
κ uniform in [0.01÷ 0.125]

φ 1.0
µ 2.0
ε 4.0

Table 8.1: Parameters for the MEDUSA model.

8.4 Results

The simulation scenario consists of N potential users connected to an IEEE 802.11b

AP to simulate the WLAN hot-spot having a maximum capacity of 11 Mbps. We

assume that all users are covered by the same access point and multi-hop capability is

not present. Table 8.1 shows the parameters of the MEDUSA model to fully specify

the formulae presented in the previous sections. In these results, we always trace N on

the x-axis, i.e. we investigate how the performance is influenced by variations in the

number of potential users. Also, we consider different values of the price coefficient α

to study the effect of pricing.

Figure 8.6 shows the number of admitted users, i.e., the number of users who accept

the service conditions vs. the total number of users in the system. The acceptance

decreases as the price increases, but still we can observe an increasing behavior for all

curves, as more users are present. This implies that the IEEE 802.11b MAC protocol

is able to allocate users in an elastic manner.

Approximately, we observe a linear increase common to all price curves, then when

the capacity is saturated the slope decreases but the increase remains more or less

linear. The larger the price, the further the number of users at which the slope change

happens, and also the lower the final slope. The acceptance rate evaluation is better

emphasized in Figure 8.7, where the values of Figure 8.6 are represented as a fraction

of the potential users.

Figure 8.8 represents the total amount of allocated resource as a function of the

load. This can be seen as a throughput estimate, since the CSMA/CA capacity is

90 USER MOBILITY AND PRICING POLICY 8.4

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30

N
um

be
r

of
 a

dm
itt

ed
 u

se
rs

Number of users

price α=0.05
price α=0.1
price α=0.2
price α=0.4

Figure 8.6: Number of admitted users as a function of the load

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 10 15 20 25 30

P
er

ce
nt

ag
e

of
 u

se
rs

 a
cc

ep
tin

g
th

e
se

rv
ic

e

Number of users

 price α=0.05
 price α=0.1
 price α=0.2
 price α=0.4

Figure 8.7: Admission rate as a function of the load

8.4 RESULTS 91

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
bp

s)

Number of users

price α=0.05
price α=0.1
price α=0.2
price α=0.4

Figure 8.8: Network throughput as a function of the load

 0

 0.5

 1

 1.5

 2

 2.5

 5 10 15 20 25 30

A
ve

ra
ge

 r
at

e
al

lo
ca

te
d

to
 e

ac
h

ad
m

itt
ed

 u
se

r

Number of users

price α=0.05
price α=0.1
price α=0.2
price α=0.4

Figure 8.9: Average rate per user as a function of the load

92 USER MOBILITY AND PRICING POLICY 8.4

actually taken into account in neglecting collided packets or overhead in the sum of

the ri’s. It is highlighted that the throughput increases linearly at first in the number

of users, then it saturates to a value which is decreasing as the price increase. It is

also visible that the throughput saturation value can be significantly lower when the

price is high, and this is due not only to the presence of network protocol overhead,

but also to the fact that rate decreases implied by protocol inefficiencies cause the

non-satisfaction of more users.

In Figure 8.9, we represent the same situation, but considering the ratio to the

number of admitted users. With respect to Figure 8.8, here it is shown that the

average allocated rate tends to be more or less similar when the number of users is

sufficiently large. However, from the previous results it is also clear that the difference

is in the number of satisfied users vs. the total allocated resource, i.e. when the price

is high we allocate approximately the same rate to the users, but fewer users accept

and then the throughput is lower.

Finally, we consider the revenue in Figure 8.10, whose behavior follows the through-

put since the price is linear. However, the trend of the saturation value vs. the price

choice is the opposite of Figure 8.8. Since doubling the price does not mean a halved

throughput, the price increase improves the network management from the point of

view of achieving high revenues. This means that the price choice is not trivial, and

must be accurately checked according to the provider’s objective. In fact, contrasting

results can be found if the network management objective is either high resource allo-

cation or high revenue. In general, both goals present pros and cons, and cutting the

trade-off is needed.

As a general remark, we observe that the results are qualitatively similar to the

ones obtained through the more approximate method described in section 8.2.1. Thus,

we infer that for a simple qualitative analysis, a preliminary investigation, where the

inherent MAC characteristics are neglected, is sufficient. On the other hand, for a

more detailed analysis and also for a realistic numerical evaluation, the specific MAC

protocol must be taken into account in some way.

8.4 RESULTS 93

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5 10 15 20 25 30

R
ev

en
ue

Number of users

price α=0.05
price α=0.1
price α=0.2
price α=0.4

Figure 8.10: Total revenue as a function of the load

Chapter 9

User Mobility and Cooperation

In these years, given the always wider availability of high-capacity wireless networks

(like WiFi hot-spots and 3G+ cells), much effort has been put into investigating the is-

sue of selecting the best point of access in a multi-access and possibly multi-technology

scenario. For the sake of clarity, we focus on the problem of Access Point (AP) se-

lection in IEEE 802.11x wireless networks. However, we also provide discussion on

feasible extensions to more complex scenarios.

The aim of AP selection techniques is working out new strategies devoted to assist-

ing wireless devices in choosing the best AP among the many available, where “best”

may be differently interpreted, e.g. in terms of throughput, delay or price, possibly

summarized by some user-specific utility function. An application of utility functions

is presented in the next chapter 8. Thus, it is not simply a matter of finding the

strongest signal.

Even if widely used as a link quality estimator, RSSI (Received Signal Strength

Indicator) is indeed defective if used as the only metric, since many other issues may

arise (like congestion or service continuity). Actually, recent works invariably show the

limitations of RSSI-based metrics [54] and then introduce smarter decision schemes.

They achieve notable improvements by either deeply exploiting existing IEEE

802.11x protocols [55], or relying on minor extensions [56]. Real-life [57], experimental

or simulative tests prove the need and effectiveness of the approaches. However, none

of them consider the potential advantage given by user cooperation.

95

96 USER MOBILITY AND COOPERATION 9.0

Often associated to cognitive networks (as in [58]), cooperation in wireless networks

is quite an active research topic [59]. Because of its manifold nature, there is no single

definition for the term, which is relevant to different layers and entities. Our focus

is on the collective aspect of cooperation: “establishing and maintaining a network of

collaborating nodes aiming to a mutual benefit” [60].

Within the framework of AP selection, in order to improve users’ overall Quality of

Service (QoS), we propose a strategy of user cooperation and, by means of simulation,

show strong clues of its rewarding features. In our proposal, no backing from the

infrastructure is needed, and thus the APs need not to support new protocols or

signaling. Although we consider a number of parameters (like AP throughput and

delay), we are not concerned on how they are estimated: almost any of the cited

methods, and possibly others, may be employed.

This contribution may be better appreciated in the light of the Always Best Con-

nected networks (ABC) concept [61]. Fodor et al. propose mechanisms that will allow

users to always select the “best” network on the basis of their preferences. Their

comprehensive approach foresees a dense, multi-access environment which includes a

strong network support, as providing an end-to-end bearer service for QoS distribution.

However, at the present time, this architecture assumption cannot hold. Therefore, we

argue that a simpler and readily available technique is needed, in order to push users’

QoS beyond its present limits.

An advanced proposal, entirely user-based but not exploiting cooperation, is Bread-

Crumbs [62], whose basic idea is considering the “derivative of connectivity”. Users

build a history of the AP encountered along usual paths and optimize their QoS and

battery consumption by forecasting AP availability and their related connection qual-

ity. Each user works independently and about a week of training is required in order

to get some sensible improvements.

The problem of increasing users’ QoS may also be addressed by reducing the con-

gestion in the WiFi hot-spots and balancing the load among the available APs. [63–65]

all focus on this aspect and may be used in conjunction with our approach. They

9.1 SCENARIO AND SIMULATOR OPERATION 97

i AP (pi) STA (qi)

0 Residual capacity Bandwidth required
1 Packet delay Packet delay required
2 Service availability Services required
3 Price offered Price required

Table 9.1: Meaning of the parameters in the user cooperation model. Each
AP or STA is characterized by a set of four parameters, identified by pi or
qi respectively.

require an explicit support by the underlying networks, that may also work together in

a coordinated way. Users are directed to switch channel or network, if this can improve

the overall performance of the network without impairing them, and can negotiate a

QoS on the basis of some admission control protocols.

Finally, from the game-theoretic point of view, the problem of designing distributed

QoS-improving techniques has been addressed in [66]. There, independent WLANs

act as players, whose interaction – but no explicit coordination – results in a better

spectrum usage. Different multi-stage strategies are evaluated, especially with the aim

of finding out whether and when they can pay off and their trade-offs with respect to

the additional resources needed for such algorithms.

9.1 Scenario and Simulator Operation

Our scenario is constituted by NAP APs and NU users (or nodes, or stations, STAs).

Each entity (AP or STA) is described by a set of four real parameters valued in [0, 1],

denoted by pi for APs, and by qi for users, 0 ≤ i ≤ 3.

These four parameters describe bandwidth, delay, openness and price. For an AP,

they are normalized quantities that respectively measure its current state in terms

of residual capacity, average delay experienced by packets, availability of services to

affiliated users (as open ports, static IP, . . .), potential fee for granting access or

traffic. For STAs, they instead represent the corresponding service level required,

where 1 means the highest importance and 0 is indifference. Table 9.1 summarizes the

meaning of these parameters. We select here a set of four relevant characteristics, but

98 USER MOBILITY AND COOPERATION 9.1

similar considerations may well hold for different choices.

We assume that any generic node u can completely estimate any AP it sees, i.e. all

of that AP parameters which interest the node. This is quite a reasonable assumption,

since u can passively monitor the radio environment [57] or temporarily associate with

the AP and then evaluate them [55]. Since we require pi ∈ [0, 1], user u must also

choose convenient normalization constants p̂i, as in

pi = max(
p̃i
p̂i
, 1) ,

where p̃i is the physically measured quantity. Normalization constants should be de-

termined by the particular scenario. For example, when i = 0 (rate) and we are in a

cloud of 802.11b hot-spots, then p̂i = 11 Mbps can be a good choice.

If an AP has p0 ≈ 1, it means the node estimates that the AP is more or less idle,

while a value of p0 = 0.5 means that the AP is using about half of its capacity. It is

clear that the AP estimation methods employed heavily impacts the effectiveness of

the solution we are proposing.

In addition, we assume a single cooperation pool C, to which a user may or may

not belong. In other words, users can be either cooperative or non-cooperative. Lastly,

other peculiar AP characteristics, though currently unused, are its SSID (Service Set

Identifier, broadcast by the AP in WiFi networks) and load estimate, both useful for

future model refinements.

A scenario is generated by completely specifying or randomly drawing all the four

parameters of each AP or user. Each user u is then assigned a non-empty random

set of visible APs, i.e. whose coverage area include user u. We denote such set with

AP(u). Obviously, 1 ≤ |AP(u)| ≤ NAP, though it will usually be much smaller than

its upper limit.

The simulator1 operates at high level, without taking into account the actual un-

derlying packet exchange. This results in extremely fast simulations (C++ implemen-

1Source code available upon request.

9.1 SCENARIO AND SIMULATOR OPERATION 99

tation). In particular, we employ a hard capacity constraint, which may not always

be realistic, but it is a good approximation in high-load conditions. A more pre-

cise approach could employ the Channel Utilization Estimate (CUE) proposed in [67],

where also the packet size, and not just a raw bandwidth consumption, is included in

computing the effective network usage. We also point out that our approach is not

concerned on physical details, like the propagation model, even though we do include

the possibility of incorrect packet reception, as explained later.

At the beginning, each user u is assigned a set of four normalized weights −1 ≤
wi(u) ≤ 1, which represent the priority given by the user to the i-th parameter. They

must be such that
3∑

i=0

|wi(u)| = 1 .

Typically, we set positive values for the weights related to bandwidth and openness,

since they are beneficial, while negative weights can well characterize undesirable quan-

tities like delay and price. We stress the dependence of wi(u) on user u.

Each station u then computes, for each AP j ∈ AP(u) (i.e. for each AP j visible

to u), a merit figure

ΓAP(u, j) =
3∑

i=0

pi(j)wi(u) + max(−wi(u), 0) ,

which is intended to be a measure of how much AP j is fit with respect to what user

u actually needs. Note in fact the dependence on j. In a similar fashion, user u also

evaluates

ΓU(u) =
3∑

i=0

qi(u)wi(u) + max(−wi(u), 0) ,

which summarizes its requirements. Note that our positions combined lead to having

0 ≤ ΓAP,U ≤ 1 even for negative weights (we recall that 0 ≤ pi, qi ≤ 1).

We admit that plainly mixing different physical quantities may be questionable,

but the rationale behind the merit figures accounts for it: STAs assess the suitability of

visible APs with respect to their own needs. In other words, a broad range of users and

100 USER MOBILITY AND COOPERATION 9.2

APs is fairly and homogeneously handled. By appropriately weighing their needs, or

sampling a suitable distribution, for example, we can simulate real-time or best-effort

users. In the same way, a wide variety of access points can be taken into account,

as low/high-rate, low/high-delay, cheap/expensive. The model can be further refined,

e.g. by adding some penalty due to AP load.

In order to clear the topic yet more, we highlight that ΓAP(u, j) is the measure

of the AP j suitability, tailored on user u’s priorities, as they are represented by the

weight distribution w(u). Being normalized, ΓAP is a proper metric for highly different

APs and even in the case of heterogeneous networks (see also the conclusions). On

the other hand, ΓU(u) measures the minimum user u’s requirements, on the basis of

the same weight distribution. Thus, ΓAP and ΓU are defined consistently and can be

compared.

Once ΓAP(j) and ΓU(u) are both available for every user u and for every j ∈ AP(u),

a single affiliation round follows. For every 0 ≤ u ≤ NU−1, node u selects and affiliates

to AP ̃, such that

̃ = argmin
j∈AP(u)

ΓAP(u, j)

and under the constraints ΓAP(u, ̃) ≥ ΓU(u) and that the candidate AP has enough

residual capacity, as estimated by the node. No affiliation takes place if no suitable

AP is found. Due to the bandwidth consumed by the new user u, and according to

the stated approximation, AP ̃ available bandwidth is decreased by the corresponding

amount, for example q0(u). A cooperative strategy comes now into play.

9.2 Cooperative Strategy

Let’s recall that the user population is parted in either cooperative (set C) or non-

cooperative users (set C), and that every STA is in coverage of at least one AP. In

general, due to limited resources, not all users could affiliate in the first round detailed

above. We denote with B ⊆ C the set of unaffiliated cooperative users at this stage.

Following Fig. 9.1, our proposal is that all nodes in B switch to a peek mode, by

9.2 COOPERATIVE STRATEGY 101

Figure 9.1: Flowchart of the affiliation strategy exploiting user cooper-
ation. Note that simulations currently do not include the dotted path,
reported here for completeness.

102 USER MOBILITY AND COOPERATION 9.2

setting their requested bandwidth to a very small value (such as 0.01 in normalized

units) and all others qi to their minimum (i.e. 0). Given these reduced requirements,

they may hope to find some AP to affiliate. They then proceed exactly as per the

previous section, that is, they evaluate various ΓAP (which will typically be changed,

due to to other nodes’ affiliation) and look for a suitable AP. Let’s denote with A ⊆ B
such accepted users.

We now introduce in the scenario a remote rendezvous point (RP), acting as an

information collector, which can be identified e.g. by its Internet address. Such address

must be known in advance by all nodes willing to exploit cooperation. The assumption

is reasonable, e.g. users may subscribe to this service.

All users in C which were able to affiliate either way (i.e. every u ∈ D, where

D = (C \ B) ∪ A) send RP all their measurement and visibility data. In particular,

they send RP a value ΓAP(u, j) for each j ∈ AP(u), along with j’s identifier. In the

simulator, the identifier is j itself, but in real-life it could be e.g. a combination of the

AP SSID and MAC address, or some other unique feature.

As far as the AP identification is concerned, we are aware that even combining

BSSID and MAC address may not give a worldwide unique identifier. Localizing

nodes can then be of help, but we cannot assume GPS availability. Thus, users may be

asked to manually identify their position, or they could pinpoint themselves by relying

on their public IP address or on traceroute output. Another interesting solution is

exchanging locally available information (such as AP visibility) among neighboring

nodes, in order to infer AP approximate location.

Going back to the allocation strategy, as a next step, affiliated peeking users (i.e.

those in A) acquire all data collected by the RP. In the basic hypothesis that they

are able to move in coverage of any AP, all u ∈ A quit peek mode by restoring their

former qi and a third affiliation round takes place in the same way as before. Note that,

differently from the former cases, users in A have now knowledge of other APs. The

whole information exchange is depicted in Fig. 9.2, while a clear view of the overall

rationale is depicted in Fig. 9.3.

9.3 COOPERATIVE STRATEGY 103

Figure 9.2: Communication model between nodes and the rendezvous point
RP. We recall that A is the set of peeking users, while D includes both A
and regularly affiliated users (i.e. C \ B).

Acknowledgments are presently left out, but can be easily added to the scheme and

would not constitute a significant overhead. We also observe that, since the size of the

data sent to and from the RP is quite small, it makes sense that the communication

can take place with a single packet and rely even on a very low-rate channel, as is the

case for the stations in peeking mode, which could be using a very bad channel.

In order to take into account more realistic conditions, we introduce:

• P as the probability of a correct packet exchange (i.e. the probability with which

a node correctly sends RP or obtains from RP the relevant data);

• m as the probability that a user can move in coverage of a given AP.

We are aware that this mobility model may not be adequate in some contexts, but

we believe it is nevertheless helpful in having a more insightful view of the topic.

Finally, we note that we are examining a best-case scenario, since we suppose

that information are retrieved from the RP after they have been submitted by all the

pertinent nodes. Should this be not the case, worse performances are to be expected.

104 USER MOBILITY AND COOPERATION 9.3

x
xx x��������

x
x

x
x

x

x
x

x
x

x
x

x
x

x

x

x
x x

x
x

x

x
x x

x
x

x

x
x x

x
x

x�x
x

x
x

x

x
x

x
x

x

x x
x

xx ��

x��	 x��

x���

x
x x

x
x

x

����

(a)

x
xx x��������

x
x

x
x

x

x
x

x
x

x
x

x
x

x

x

x
x x

x
x

x

x
x x

x
x

x

x
x x

x
x

x�
x

x x

x
x

x

x
x

x
x

x

x
x

x
x

x

x x
x

xx ��

x��	 x��

x���

(b)

Figure 9.3: In (a), the mobile device U is quite unlucky, since it finds
itself in a very crowded area, and can’t see AP3. (b) After exchanging
information with the rendezvous point RP, it discovers and access a new
hot-spot AP3, which provides a better service.

9.3 RESULTS 105

9.3 Results

Simulation results are currently constituted by the fraction of affiliated users, with

respect to their total number. We highlight that, according to our allocation policy,

affiliated users are only those completely satisfied. Due to the strong dependence on the

particular affiliation order, many simulations are carried on in a Monte Carlo fashion,

so to take into account a very large number of circumstances. The number of runs is

ten thousands for single outcome.

The cooperative strategy described above is applied for increasing levels of cooper-

ation, expressed as the fraction of cooperative users. Thus, no cooperation is exploited

when this value is zero. The scenario parameters are NAP = 60 and NU = 360. The

same results can be found by upscaling these figures, while smaller values may lead to

unreliable trends. Without loss of generality, the bandwidth parameters are the only

ones taken into consideration, with users requesting 0.15 and each AP offering 1 (all

expressed in normalized units). Up to 6 users may thus be allocated to a single AP,

allowing to completely saturate the system, should the optimal conditions occur.

Curves in Fig. 9.4 depend on the number of visible APs per user, ranging from 1 to

3 (uniform distribution), while P = 1 and m = 1. As expected, the availability of more

than one choice is significantly beneficial. Moreover, the proposed allocation strategy

for cooperative users looks suitable (monotonically increasing with the cooperation

level) and highly effective: it is possible to allocate all users in every case.

In Fig. 9.5, P = [0.5, 1] and the number of visible APs is 1 to 3, both uniformly

chosen, and again m = 1. Since P is the probability of a successful packet exchange,

and the proposed strategy involves two packet exchanges, cooperation is actually ex-

ploited only for a fraction P 2 of the cooperative users. It is interesting to note that

even when cooperation is very heavily impaired, it is anyway appreciably better than

no cooperation at all, though errors on the channel impose an upper bound to the

overall performance, as lower as the channel is more unreliable.

We investigate the effect of users’ mobility (parameterm) in Figs. 9.6 and 9.7. First

106 USER MOBILITY AND COOPERATION 9.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Cooperative users

A
llo

ca
te

d
us

er
s

1 visible AP
1 to 2
2
1 to 3
3

Figure 9.4: Impact of initial access points visibility on overall performance.

of all, the simulated scenario requires just a basic level of mobility for nodes in order

to fully exploit a given cooperation level (which may not be enough for saturating the

network). The only exception is when all nodes cooperate: in this case, the network

can be fully saturated (as possible for this level of cooperation) only if the users are

highly mobile.

The same conclusions may drawn by Fig. 9.7, where the focus is on the dependence

from the cooperation level. It is clear that the proposed strategy is greatly rewarding

even when the probability of moving in coverage of a given AP is as low as one tenth.

9.3 RESULTS 107

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Cooperative users

A
llo

ca
te

d
us

er
s

P = 0.25
P = 0.5
P = 0.75
P = 1

Figure 9.5: Performance as a function of transmission success probability.

0 0.2 0.4 0.6 0.8 1
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Mobility

A
llo

ca
te

d
us

er
s

coop = 0

coop = 0.2

coop = 0.4

coop = 0.6

coop = 0.8

coop = 1

Figure 9.6: Performance as a function of users’ mobility.

108 USER MOBILITY AND COOPERATION 9.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.85

0.9

0.95

1

Cooperative users

A
llo

ca
te

d
us

er
s

m = 0
m = 0.1
m = 0.33
m = 0.67
m = 1

Figure 9.7: The importance of users’ mobility for affiliating good APs.

Conclusions

In this second part of the thesis, we followed two lines of thought, both aimed at

improving the user’s service experience. As far as the pricing strategy is concerned,

we investigated the case of a WLAN hot-spot regulated by the CSMA/CA capacity

constraint, as in the IEEE 802.11b DCF standard. We applied to this scenario a

micro-economic model where users’ choices are tuned by means of two knobs: utility

and price. From our analysis, it emerges that both the price setting and the number of

potential users in the network have a strong impact, and they are also heavily related

and imply non-trivial effects, in particular on the throughput and on the total revenue

earned by the provider.

Indeed, the pricing policy plays a key role for the correct evaluation of the system

performance, since it can tune the number of users accepting the provided service,

but the users’ sensitivity to this phenomenon can be very high. Even if the number of

users is key in achieving an efficient performance, the CSMA/CA-based multiple access

exhibits good behavior in multiplexing users’ requests in an elastic manner. Further

research may be needed to optimize design choices on the basis of the many points of

trade-off identified.

More in general, there are inter-dependencies between economic parameters and

protocol efficiency, which can be studied through the presented model. A possible

application is then useful not only for measurement purposes, but also to search for

possible protocol improvements which can be achieved by exploiting economic knowl-

edge.

Shifting to the field of AP selection, our proposal gives good clues on the rewarding

109

110 USER MOBILITY AND COOPERATION

nature of user cooperation in wireless networks, with a particular stress on the WiFi

case. We point out the immediate applicability of the method, since it does not require

any modification on the AP side. However, it does need a remote information collector

(which we named rendezvous point, RP) that every cooperative node must know and

be able to reach. In our scenario, stations have also to carry on non-trivial estimations

and measurements on the AP and connection quality, but the cooperative strategy

may be applied regardless of how this information is obtained.

We believe the past sections show that our approach is quite general and could

be extended to multi-access networks. Indeed, we do not rely on any hypotheses

specifically related to IEEE 802.11x protocols. The only requirement, again, is the

availability of methods that allow users to estimate the network quality parameters

they are interested in. Points of access with different technologies can then be easily

modeled by appropriately setting their respective pi.

Recent works, like [68–70], investigated these hybrid scenarios, and in particular the

coexistence of WiFi and 3G networks. Many strategies for selecting the best association

are evaluated, either based on cooperative or non-cooperative principles, and working

in a centralized or in a partially distributed fashion. Some form of admission control

may be included (the price paid being one). However, in order to work, they have to

know the current network state (possibly on a local base) to a great extent, which is

not always realistic or feasible and requires special coordination at the infrastructure

level.

The underlying principles of our work can be well taken into consideration to deepen

the understanding of user cooperation in wireless networks. Further research may focus

on the non-trivial problem of unique identification of access points, and on considering

more realistic model for user mobility and localization or for resource allocation. Also

the limit of the single cooperation pool could be lifted and generalized. An interesting

question is whether the presented results can be regarded as universal, e.g. whether

they are always good approximations for a given congestion level.

Bibliography

[1] J. Blom, J. Chipchase, and J. Lehikoinen, “Contextual and cultural challenges for

user mobility research,” 2005.

[2] D. Tennenhouse and D. Wetherall, “Towards an active network architecture,”

ACM SIGCOMM Computer Communication Review, vol. 37, no. 5, p. 94, 2007.

[3] P. Cano, E. Batlle, T. Kalker, and J. Haitsma, “A review of audio fingerprinting,”

The Journal of VLSI Signal Processing, vol. 41, no. 3, pp. 271–284, 2005.

[4] R. Typke, F. Wiering, and R. Veltkamp, “A survey of music information retrieval

systems,” in Proceedings of the 6th International Conference on Music Informa-

tion Retrieval, 2005.

[5] P. Cano, E. Batlle, H. Mayer, and H. Neuschmied, “Robust sound modeling for

song detection in broadcast audio,” Proceedings of the 112th AES Convention,

pp. 1–7, 2002.

[6] J. Haitsma, T. Kalker, and J. Oostveen, “Robust audio hashing for content iden-

tification,” in International Workshop on Content-Based Multimedia Indexing.

Citeseer, 2001.

[7] J. Haitsma and T. Kalker, “A highly robust audio fingerprinting system with

an efficient search strategy,” Journal of New Music Research, vol. 32, no. 2, pp.

211–221, 2003.

[8] H. Özer, B. Sankur, N. Memon, and E. Anarim, “Perceptual audio hashing func-

tions,” EURASIP Journal on Applied Signal Processing, vol. 2005, no. 1, pp.

1780–1793, 2005.

[9] D. Jang, S. Lee, J. Lee, M. Jin, J. Seo, S. Lee, and C. Yoo, “Automatic Commercial

Monitoring for TV Broadcasting Using Audio Fingerprinting,” in Proceedings of

the 29th Audio Engineering Society Conference, 2006, pp. 38–43.

111

112 BIBLIOGRAPHY

[10] C. Burges, D. Plastina, J. Platt, E. Renshaw, and H. Malvar, “Using audio finger-

printing for duplicate detection and thumbnail generation,” in IEEE International

Conference on Acoustics, Speech, and Signal Processing, vol. 3, 2005.

[11] A. Ghias, J. Logan, D. Chamberlin, and B. Smith, “Query by humming: musical

information retrieval in an audio database,” in Proceedings of the third ACM

international conference on Multimedia. ACM New York, NY, USA, 1995, pp.

231–236.

[12] Melodis Corporation, “midomi,” http://www.midormi.com, 2008.

[13] V. Venkatachalam, L. Cazzanti, N. Dhillon, M. Wells, M. Inc, and W. Kirkland,

“Automatic identification of sound recordings,” IEEE Signal Processing Magazine,

vol. 21, no. 2, pp. 92–99, 2004.

[14] C. Burges, J. Platt, and S. Jana, “Extracting noise-robust features from audio

data,” in IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing, 2002, vol. 1. Citeseer, 2002.

[15] A. Ramalingam, “Gaussian mixture modeling of short-time Fourier transform

features for audio fingerprinting,” IEEE Transactions on Information Forensics

and Security, vol. 1, no. 4, pp. 457–463, 2006.

[16] C. Burges, J. Platt, and S. Jana, “Distortion discriminant analysis for audio

fingerprinting,” IEEE Transactions on Speech and Audio Processing, vol. 11, no. 3,

pp. 165–174, 2003.

[17] L. Shen, Y. Guan, Y. Wu, and Y. Zhao, “Fast audio fingerprint search strategy

for song identification,” Networking and Digital Society, International Conference

on, vol. 2, pp. 259–262, 2009.

[18] N. Orio, “Automatic identification of audio recordings based on statistical mod-

eling,” Signal Processing (Elsevier), 2010.

[19] S. Baluja and M. Covell, “Waveprint: Efficient wavelet-based audio fingerprint-

ing,” Pattern Recognition (Elsevier), vol. 41, no. 11, pp. 3467–3480, 2008.

[20] S. Sukittanon and L. Atlas, “Modulation frequency features for audio fingerprint-

ing,” in IEEE International Conference on Acoustics, Speech, and Signal Process-

ing, vol. 2, 2002.

[21] L. Ghouti and A. Bouridane, “A robust perceptual audio hashing using balanced

multiwavelets,” in IEEE International Conference on Acoustics, Speech and Signal

Processing, vol. 5, May 2006.

BIBLIOGRAPHY 113

[22] Y. Liu, K. Cho, H. S. Yun, J. W. Shin, and N. S. Kim, “Dct based multiple hash-

ing technique for robust audio fingerprinting,” IEEE International Conference on

Acoustics, Speech, and Signal Processing, vol. 0, pp. 61–64, 2009.

[23] F. Kurth and M. Clausen, “Full-text indexing of very large audio data bases,” in

Proceedings of the 110th AES Convention. Citeseer, 2001.

[24] F. Kurth, A. Ribbrock, and M. Clausen, “Identification of Highly Distorted Audio

Material for Querying Large Scale Data Bases,” in Proceedings of the 112th AES

Convention. Citeseer, 2002.

[25] J. Goldstein, J. Platt, and C. Burges, “Redundant bit vectors for quickly search-

ing high-dimensional regions,” Lecture notes in computer science (Springer), vol.

3635, p. 137, 2005.

[26] J. Haitsma and T. Kalker, “Speed-change resistant audio fingerprinting using

auto-correlation,” in IEEE International Conference on Acoustics, Speech, and

Signal Processing, vol. 4, 2003.

[27] F. Balado, N. Hurley, E. McCarthy, and G. Silvestre, “Performance analysis of

robust audio hashing,” IEEE Transactions on Information Forensics and Security,

vol. 2, no. 2, pp. 254–266, 2007.

[28] P. Doets and R. Lagendijk, “Distortion Estimation in Compressed Music Using

Only Audio Fingerprints,” IEEE Transactions on Audio Speech and Language

Processing, vol. 16, no. 2, p. 302, 2008.

[29] A. Wang, “An industrial strength audio search algorithm,” in Proceedings of the

4th International Conference on Music Information Retrieval, 2003.

[30] S. Kim and C. Yoo, “Boosted binary audio fingerprint based on spectral subband

moments,” in IEEE International Conference on Acoustics, Speech and Signal

Processing, vol. 1, April 2007, pp. I–241–I–244.

[31] D. Jang and C. D. Yoo, “Fingerprint matching based on distance metric learn-

ing,” IEEE International Conference on Acoustics, Speech, and Signal Processing,

vol. 0, pp. 1529–1532, 2009.

[32] C. Bellettini and G. Mazzini, “On audio recognition performance via robust hash-

ing,” in International Symposium on Intelligent Signal Processing and Communi-

cation Systems, 2007, pp. 20–23.

[33] T. Wang, “Integer hash function,”

http://burtleburtle.net/bob/hash/integer.html, March 2007.

114 BIBLIOGRAPHY

[34] R. Jenkins, “Hash table lookup,”

http://burtleburtle.net/bob/c/lookup3.c, May 2006.

[35] T. Li, M. Ogihara, and Q. Li, “A comparative study on content-based music genre

classification,” in Proceedings of the 26th International Conference on Research

and Development in Information Retrieval. ACM New York, NY, USA, 2003,

pp. 282–289.

[36] G. Tzanetakis and P. Cook, “Musical genre classification of audio signals,” IEEE

Transactions on speech and audio processing, vol. 10, no. 5, pp. 293–302, 2002.

[37] F. Gouyon, A. Klapuri, S. Dixon, M. Alonso, G. Tzanetakis, C. Uhle, and P. Cano,

“An experimental comparison of audio tempo induction algorithms,” IEEE Trans-

actions on Audio, Speech, and Language Processing, vol. 14, no. 5, pp. 1832–1844,

2006.

[38] C. Panagiotakis and G. Tziritas, “A speech/music discriminator based on RMS

and zero-crossings,” IEEE Transactions on Multimedia, vol. 7, no. 1, pp. 155–166,

2005.

[39] C. Bellettini and G. Mazzini, “Reliable Automatic Recognition for Pitch-Shifted

Audio,” in Proceedings of 17th International Conference on Computer Communi-

cations and Networks, 2008, pp. 1–6.

[40] Bernsee, “Pitch shifting using the fourier transform,”

http://www.dspdimension.com/admin/pitch-shifting-using-the-ft/,

May 2008.

[41] Audacity, http://audacity.sourceforge.net/.

[42] C. Luna, L. Kondi, and A. Katsaggelos, “Maximizing user utility in video stream-

ing applications,” IEEE Transactions on Circuits and Systems for Video Technol-

ogy, vol. 13, no. 2, pp. 141–148, 2003.

[43] M. Xiao, N. Shroff, and E. Chong, “Utility-based power control in cellular wireless

systems,” in IEEE INFOCOM, vol. 1. Citeseer, 2001, pp. 412–421.

[44] C. Saraydar, N. Mandayam, and D. Goodman, “Efficient power control via pricing

in wireless data networks,” IEEE Transactions on Communications, vol. 50, no. 2,

pp. 291–303, 2002.

[45] T. Heikkinen, “On congestion pricing in a wireless network,” Wireless Networks,

vol. 8, no. 4, pp. 347–354, 2002.

BIBLIOGRAPHY 115

[46] I. S. 802.11b, “Wireless lan medium access control (mac) and physical layer (phy)

specifications. higher-speed physical layer extension in the 2.4 ghz band,” in Sup-

plement to IEEE 802.11 Standard, 1999.

[47] Y. Xue, B. Li, and K. Nahrstedt, “Optimal resource allocation in wireless ad hoc

networks: A price-based approach,” IEEE Transactions on Mobile Computing,

vol. 5, no. 4, pp. 347–364, 2006.

[48] R. Lam, D. Chiu, and J. Lui, “On the access pricing and network scaling issues of

wireless mesh networks,” IEEE Transactions on Computers, pp. 1456–1469, 2007.

[49] F. Meshkati, H. Poor, and S. Schwartz, “Energy-efficient resource allocation in

wireless networks: An overview of game-theoretic approaches,” IEEE Signal Pro-

cessing Magazine, vol. 24, pp. 58–68, 2007.

[50] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination

function,” IEEE Journal on selected areas in communications, vol. 18, no. 3, pp.

535–547, 2000.

[51] L. Badia, M. Lindström, J. Zander, and M. Zorzi, “Demand and pricing effects

on the radio resource allocation of multimedia communication systems,” in Pro-

ceedings Globecom, vol. 7, December 2003.

[52] L. Badia and M. Zorzi, “A technical and micro-economic analysis of wireless

LANs,” in IEEE Wireless Communications and Networking Conference, vol. 3,

2005, pp. 1632–1637.

[53] F. Caĺı, M. Conti, E. Gregori et al., “IEEE 802.11 wireless LAN: capacity analysis

and protocol enhancement,” in IEEE INFOCOM, vol. 1. Citeseer, 1998, pp. 142–

149.

[54] G. Judd and P. Steenkiste, “Fixing 802.11 access point selection,” ACM SIG-

COMM Computer Communication Review, vol. 32, no. 3, p. 31, July 2002.

[55] S. Vasudevan, K. Papagiannaki, C. Diot, J. Kurose, and D. Towsley, “Facilitating

access point selection in IEEE 802.11 wireless networks,” in Proceedings of the

5th ACM SIGCOMM conference on Internet Measurement. Berkeley, CA, USA:

USENIX Association, October 2005, pp. 293–298.

[56] Y. Fukuda, A. Fujiwara, M. Tsuru, and Y. Oie, “Analysis of access point selection

strategy in wireless LAN,” in IEEE 62nd Vehicular Technology Conference, vol. 4.

Dallas, TX, USA: IEEE, September 2005, pp. 2532–2536.

116 BIBLIOGRAPHY

[57] A. Nicholson, Y. Chawathe, M. Chen, B. Noble, and D. Wetherall, “Improved

access point selection,” in Proceedings of the 4th international conference on Mo-

bile systems, applications and services. Uppsala, Sweden: ACM, June 2006, pp.

233–245.

[58] G. Ganesan and Y. Li, “Cooperative spectrum sensing in cognitive radio net-

works,” in First IEEE International Symposium on New Frontiers in Dynamic

Spectrum Access Networks. Baltimore, MD, USA: IEEE, November 2005, pp.

137–143.

[59] A. Nosratinia, T. Hunter, and A. Hedayat, “Cooperative communication in wire-

less networks,” IEEE Communications Magazine, vol. 42, no. 10, pp. 74–80, Oc-

tober 2004.

[60] F. Fitzek and M. Katz, Eds., Cooperation in Wireless Networks: Principles and

Applications. Dordrecht, The Netherlands: Springer, 2007.

[61] G. Fodor, A. Eriksson, and A. Tuoriniemi, “Providing quality of service in always

best connected networks,” Communications Magazine, IEEE, vol. 41, no. 7, pp.

154–163, July 2003.

[62] A. J. Nicholson and B. D. Noble, “BreadCrumbs: forecasting mobile connectivity,”

in MobiCom ’08: Proceedings of the 14th ACM international conference on Mobile

computing and networking. New York, NY, USA: ACM, 2008, pp. 46–57.

[63] A. Balachandran, P. Bahl, and G. Voelker, “Hot-spot congestion relief in public-

area wireless networks,” in Mobile Computing Systems and Applications, 2002.

Proceedings Fourth IEEE Workshop on, 2002, pp. 70–80.

[64] G. Sawma, R. Ben-El-Kezadri, I. Aib, and G. Pujolle, “Autonomic management

for capacity improvement in wireless networks,” in Consumer Communications

and Networking Conference, 2009. CCNC 2009. 6th IEEE, Jan. 2009, pp. 1–6.

[65] G. Sawma, R. Ben-El-Kezadri, I. Aib, G. Bezalel, and G. Pujolle, “Proactive traffic

engineering for IEEE 802.11 mobile wireless networks,” in IEEE 70th Vehicular

Technology Conference, Sep. 2009, to appear.

[66] L. Berlemann, G. Hiertz, B. Walke, and S. Mangold, “Strategies for distributed

qos support in radio spectrum sharing,” in Communications, 2005. ICC 2005.

2005 IEEE International Conference on, vol. 5, May 2005, pp. 3271–3277 Vol. 5.

[67] S. Garg and M. Kappes, “Admission control for voip traffic in ieee 802.11

networks,” in Global Telecommunications Conference, 2003. GLOBECOM ’03.

IEEE, vol. 6, Dec. 2003, pp. 3514–3518 vol.6.

BIBLIOGRAPHY 117

[68] D. Mariz, I. Cananea, D. Sadok, and G. Fodor, “Simulative analysis of access

selection algorithms for multi-access networks,” in WOWMOM ’06: Proceedings

of the 2006 International Symposium on on World of Wireless, Mobile and Mul-

timedia Networks. Washington, DC, USA: IEEE Computer Society, 2006, pp.

219–227.

[69] D. Kumar, E. Altman, and J.-M. Kelif, “User-network association in an 802.11

WLAN & 3G UMTS hybrid cell: Individual optimality,” in Sarnoff Symposium,

2007 IEEE, 30 2007-May 2 2007, pp. 1–6.

[70] K. Premkumar and A. Kumar, “Optimum association of mobile wireless devices

with a WLAN & 3G access network,” in Communications, 2006. ICC ’06. IEEE

International Conference on, vol. 5, June 2006, pp. 2002–2008.

List of Publications

C. Bellettini, G. Mazzini, “A Framework for Robust Audio Fingerprinting”, Journal

of Communications, special issue on Multimedia Computing and Communications,

Academy Publisher, 2010 (to appear).

C. Bellettini, G. Mazzini, “User Cooperation in Access Point Selection”, IEEE In-

ternational Conference on Software, Telecommunications & Computer Networks

(SoftCOM): Workshop on ICT, Split (Croatia), September 2009.

C. Bellettini, G. Mazzini, “Scalability Issues in Fingerprinted Audio Searching”, IEEE

International Symposium on Intelligent Signal Processing and Communication Sys-

tems (ISPACS), Bangkok (Thailand), February 2009.

C. Bellettini, G. Mazzini, “Reliable Automatic Recognition for Pitch-Shifted Audio”,

IEEE International Conference on Computer Communications and Networks (IC-

CCN): International Workshop on Multimedia Analysis and Processing (IMAP),

St. Thomas, Virgin Islands (USA), August 2008.

C. Bellettini, G. Mazzini, “On Audio Recognition Performance via Robust Hashing”,

IEEE International Symposium on Intelligent Signal Processing and Communica-

tion Systems (ISPACS), Xiamen (China), November 2007.

S. Blom, C. Bellettini, A. Sinigalliesi, L. Stabellini, M. Rossi, G. Mazzini, “Trans-

mission Power Measurements for Wireless Sensor Nodes and their Relationship to

the Battery Level”, IEEE International Symposium on Wireless Communication

Systems (ISWCS), Siena (Italy), September 2005.

L. Badia, C. Bellettini, M. Zorzi, “A Radio Resource Management Scheme Driven by

Users’ Preferences under the CSMA/CA Capacity Constraint”, IEEE Vehicular

Technology Conference (VTC), Stockholm (Sweden), May 2005.

119

