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ABSTRACT 

 

 

 

The tight interplay between endoplasmic reticulum (ER) and mitochondria is a key determinant of 

cell function and survival through the control of intracellular calcium (Ca
2+

) signalling. The 

physical platform for the association between the ER and mitochondria is a domain of the ER called 

the “mitochondria-associated membranes” (MAMs). MAMs are crucial for highly efficient 

transmission of Ca
2+

 from the ER to mitochondria, thus controlling fundamental processes involved 

in energy production and also determining cell fate by triggering or preventing apoptosis. 

In particular, we show that: i) despite different roles in cell survival, all three isoforms of the outer 

mitochondrial membrane protein voltage-dependent anion channels (VDAC) are equivalent in 

allowing mitochondrial Ca
2+

 loading upon agonist stimulation, vice versa VDAC1, by selectively 

interacting with the inositol trisphosphate receptors (IP3Rs) - an interaction that is further 

strengthened by apoptotic stimuli - is preferentially involved in the transmission of the low-

amplitude apoptotic Ca
2+

 signals to mitochondria, highlighting a non-redundant molecular route for 

transferring Ca
2+

 signals to mitochondria in apoptosis; ii) the promyelocytic leukemia (PML) tumor 

suppressor exerts its extranuclear proapoptotic action by its unexpected and fundamental role at 

MAMs, where PML was found in protein complexes with the type 3 IP3R, the protein kinase Akt 

and the phosphatase PP2a, which are essential for Akt- and PP2a-dependent modulation of IP3R 

phosphorylation and in turn for IP3R-mediated Ca
2+

 release from ER; iii) the PTEN (phosphatase 

and tensin homolog deleted on chromosome 10) tumor suppressor localizes at the ER and MAMs, 

and ER-localized PTEN is specifically involved in increasing both Ca
2+

 transfer from the ER to 

mitochondria and cell sensitivity to Ca
2+

-mediated apoptosis. 

The improved knowledge of the functioning of proteins involved in regulating Ca
2+

 signalling may 

reveal novel unexplored pharmacological targets, and help in treating cancer as well as other 

pathologies. 
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ABSTRACT (Italiano): 

 

 

 

L‟accoppiamento funzionale tra reticolo endoplasmatico (ER) e mitocondri è un fattore determinate 

per la funzionalità e la sopravvivenza cellulare, in quanto determina il controllo del segale calcio 

(Ca
2+

) intracellulare. Dal punto di vista fisico, la base per l‟associazione tra ER e mitocondri risiede 

in un dominio dell‟ER definito “membrane associate ai mitocondri” (MAMs). Le MAMs sono 

fondamentali per una trasmissione altamente efficiente degli ioni Ca
2+

 dall‟ER ai mitocondri, e per 

questo controllano processi indispensabili coinvolti nella produzione di energia, ed inoltre 

determinano il destino della cellula facilitando o ostacolando l‟apoptosi. 

Specificamente, abbiamo dimostrato che: i) nonostante svolgano diversi ruoli nella sopravvivenza 

cellulare, tutte e tre le isoforme del canale anionico voltaggio dipendente (VDAC, “voltage-

dependent anion channels”, una proteina della membrana mitocondriale esterna) hanno un ruolo 

equivalente nell‟accumulo mitocondriale di Ca
2+

 indotto da stimolazione con agonista, viceversa 

VDAC1, attraverso l‟intrerazione selettiva con i recettori dell‟inositolo trifosfato (IP3Rs) – 

un‟interazione ulteriormente rafforzata dagli stimoli apoptotici – è preferenzialmente coinvolto 

nella trasmissione ai mitocondri di stimoli apoptotici Ca
2+

 mediati che hanno entità inferiore, 

evidenziando un‟esclusiva via molecolare per il trasferimento del segnale Ca
2+

 ai mitocondri 

durante l‟apoptosi; ii) l‟oncosoppressore PML (leucemia promielocitica), quando localizzato al di 

fuori del nucleo, è comunque in grado di esercitare una funzione proapoptotica mediante la sua 

inaspettata localizzazione alle MAMs, dove PML è stato trovato in complessi proteici con i recettoti 

IP3R di tipo 3, la proteina chinasi Akt e la proteina fosfatasi PP2a, che sono essenziali per la 

modulazione dello stato di fosforilazione dell‟IP3R mediata da Akt e PP2a, e di conseguenza del 

rilascio di Ca
2+

 dall‟ER attraverso l‟IP3R; iii) l‟oncosoppressore PTEN (“phosphatase and tensin 

homolog deleted on chromosome 10”) localizza all‟ER e alle MAMs, e la quota di PTEN presente 

al reticolo è quella specificamente coinvolta nell‟aumento sia del trasferimento di Ca
2+

 dall‟ER ai 

mitocondri che nella suscettibilità a stimoli apoptotici mediati da Ca
2+

. 

L‟avanzamento nella conoscenza del funzionamento di proteine coinvolte nel segnale Ca
2+

 potrà 

rivelare nuovi inesplorati bersagli farmacologici ed aiutare nel trattamento del cancro ed altre 

patologie. 
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1. INTRODUCTION: 

 

 

 

Changes in the levels of intracellular calcium ions (Ca
2+

) provide dynamic and highly versatile 

signals that regulates several processes as diverse as energy transduction, fertilization, secretions, 

muscle contraction, chemotaxis and neuronal synaptic plasticity in learning and memory (1). 

However, under certain conditions increases in intracellular Ca
2+

 are cytotoxic and lead to apoptosis 

(programmed cell death). Consequently, Ca
2+

 needs to be used in an appropriate manner to 

determine cell fate; if this balancing act is compromised, pathology may ensue (2). 

Ca
2+

 signalling proteins and organelles are emerging as additional cellular targets of oncogenes and 

tumour suppressors. The Ca
2+

 signal has major roles in the regulation of processes relevant to 

tumorigenesis, including migration, invasion, proliferation, and apoptotic sensitivity (3). 

Intracellular Ca
2+

  homeostasis has been the focus of researchers characterizing changes in Ca
2+

 

signalling in cancer cells. In order for the cancer cells to proliferate at higher rates and still protect 

themselves from apoptosis, many cancer cells remodel the expression or activity of their Ca
2+

 

signalling machinery. Spatially restricted Ca
2+

 signalling within specific cellular compartments or 

discrete cytosolic domains provides an additional layer of complexity in the regulation of cellular 

processes important in tumorigenesis. . In normal cells, the Ca
2+

 signalling is highly regulated 

spatially such as between endoplasmic reticulum (ER) and mitochondria, two intracellular 

organelles which play crucial roles in Ca
2+

 signalling and may decide the ultimate fate of the cell. 

Indeed, by adjusting the load of Ca
2+

 imposed upon the mitochondrion, the same Ca
2+

 efflux from 

ER (the main intracellular Ca
2+

 store) that is responsible for regulating processes for maintaining 

life could also act as a death-inducing signal. 

Since ER and mitochondria play significant roles in the regulation of cell proliferation and 

apoptosis, the remodelling of Ca
2+

 signalling machinery in ER and mitochondria in cancer cells 

seems imminent during oncogenic transformation. Therefore, targeting of the Ca
2+

 signalling 

apparatus in cancer cells could specifically disrupt their Ca
2+

 homeostasis, and so decrease cancer 

cell proliferation and increase cancer cell apoptosis. Such novel and highly innovative strategies can 

provide rationale and approaches for the design and development of novel technologies based on 

Ca
2+

 waves for the diagnosis and treatment of cancer, as well as other disease. 
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1.1 The Ca
2+

-signalling toolkit 

 

At the beginning of life, Ca
2+

 mediates the process of fertilization and regulates the cell cycle events 

during the early developmental processes. Once the cells differentiate to perform specific functions, 

changes in the levels of intracellular Ca
2+

 provide dynamic and highly versatile signals that control 

a plethora of cellular processes, yet under certain conditions increases in intracellular Ca
2+

 are 

cytotoxic (4). For this reason, the intracellular concentration of Ca
2+

, [Ca
2+

]i, in resting cells is 

usually maintained very low, at ~100 nM. 

In cells, due to the presence of several charged molecules, the Ca
2+

 diffusion rates are slow. In order 

to utilize Ca
2+

 as a second messenger, cells have devised an ingenious mechanism of signalling that 

has overcome the inherent problems associated with lower diffusion rates and potential cytotoxicity 

of Ca
2+

, by presenting changes in Ca
2+

 concentration as brief spikes which are often organized as 

regenerative waves (1). The universality of Ca
2+

-based signalling depends on its enormous 

versatility in terms of amplitude, duration, frequency and localization. The formation of the correct 

spatio-temporal Ca
2+

 signals is dependent on an extensive cellular machinery named the Ca
2+

 

toolkit, which includes the various cellular Ca
2+

-binding and Ca
2+

-transporting proteins, present 

mainly in the cytosol, plasma membrane, ER and mitochondria (5). 

To provide for a very fast and effective Ca
2+

-signaling, the cells use a great amount of energy to 

maintain an almost 20 000-fold Ca
2+

-gradient between their intracellular (~100 nM free) and 

extracellular (~1 mM) Ca
2+

 concentrations. To maintain this Ca
2+

 gradient, the cells chelate, 

compartmentalize, or remove Ca
2+

 from the cytoplasm  through its active extrusion by the plasma 

membrane Ca
2+

 ATPase (PMCA) and the Na
+
/Ca

2+
 exchanger (NCX) (6, 7) 

The increase of intracellular [Ca
2+

] can be elicited by two fundamental mechanisms (or a 

combination of both). The first involves Ca
2+

 entry from the extracellular milieu, through the 

opening of plasma membrane Ca
2+

 channels (traditionally grouped into three classes: voltage 

operated Ca
2+

 channels (VOCs) (8), receptor operated Ca
2+

 channels (ROCs) (9) and second 

messenger operated Ca
2+

 channels (SMOCs) (10)). The second universal mechanism for Ca
2+

 

signaling is the release of Ca
2+

 from intracellular Ca
2+

 stores, mainly the ER and its specialized 

form in muscle, the sarcoplasmic reticulum (SR). In these intracellular stores, two main Ca
2+

-

release channels exist that, upon stimulation, release Ca
2+

 into the cytosol, thus triggering Ca
2+

 

signalling: the inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) and the ryanodine receptors 

(RyRs) (11, 12). IP3Rs are ligand-gated channels that function in releasing Ca
2+

 from ER Ca
2+

 

stores in response to IP3 generation. G protein coupled receptors (GPCRs) can activate 

phospholipase C β (PLCβ), and tyrosine-kinase receptors (TKR) can activate PLCγ, which then 



9 

 

cleave PIP2 into IP3 and diacylglycerol (DAG). IP3 binding to the IP3Rs that are present in the ER, 

causes efflux of Ca
2+

 from the ER to the cytoplasm resulting in increase in cytosolic Ca
2+

 

concentration ([Ca
2+

]c) from ~100 nM to ~1 M for several seconds (13, 14). This rise in [Ca
2+

]c 

results in various Ca
2+

-dependent intracellular events (Figure 1). A variety of cellular proteins with 

Ca
2+

-binding affinities ranging between nM to mM are utilized by the cells to buffer the cellular 

Ca
2+

 increase as well as to regulate cellular processes via Ca
2+

-signaling. The exact cellular 

outcome depends on the spatiotemporal characteristics of the generated Ca
2+

 signal (15).  

 

 

 

Figure 1. Regulation of multiple cellular processes by the IP3/Ca
2+

  signalling pathway. (figure from (16)) 

 

 

Once its downstream targets are activated, basal [Ca
2+

]c levels are regained by the combined 

activity of Ca
2+

 extrusion mechanisms, such as PMCA and NCX, and mechanisms that refill the 

intracellular stores, like sarco-endoplasmic reticulum Ca
2+

 ATPases (SERCAs) (6). Due to SERCA 

activity and  intraluminal Ca
2+

-binding proteins (CABPs), i.e., calnexin and calreticulin (17), the ER 

can accumulate Ca
2+

 more than a thousand-fold excess as compared to the cytosol. Given that 
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PMCAs pump Ca
2+

 out of the cell faster than it can be repleted, IP3R mediated efflux of Ca
2+

 from 

the ER in response to receptor activation empties the ER, thus  a Ca
2+

 entry mechanism is activated. 

This mechanism is called “Store-operated Ca
2+

 entry” (SOCE). The molecular determinants of 

SOCE have been identified in the very last few years and include the ER Ca
2+

 sensors STIM 

(stromal interaction molecule) 1 and  2, and the specialized plasma-membrane channels Orai1, 

Orai2 and Orai3 (for a recent review (18)). 

Although the ER (and its specialized form in muscle, the SR) is generally considered the main 

intracellular Ca
2+

 store, almost all other organelles play a role in Ca
2+

 signalling: mitochondria (see 

below) (19), the Golgi apparatus (20), secretory vesicles (21), lysosomes (22), endosomes (23) and 

peroxisomes (24, 25). 

Specificity in decoding Ca
2+

 signals can be provided by the affinity of Ca
2+

 sensor as well as its 

duration, amplitude and intracellular location: in this way a particular Ca
2+

 signal can specifically 

regulate many different cell functions (26). 

 

 

1.2 ER-mitochondria crosstalk: local microdomains support mitochondrial Ca
2+

 

uptake 

While the role of the ER as a physiologically important Ca
2+

 store has long been recognized, a 

similar role for mitochondria have seen a reappraisal only in the past two decades (27). The uptake 

of the Ca
2+

 ions into the mitochondrial matrix implies different transport systems responsible for the 

transfer of Ca
2+

 across the outer and the inner mitochondrial membrane (OMM and IMM 

respectively). It has long been known that mitochondria can rapidly accumulate Ca
2+

 down the large 

electrochemical gradient (mitochondrial membrane potential difference, m = -180 mV, negative 

inside) generated by the respiratory chain (28). Indeed, based on the chemiosmotic theory, the 

translocation by protein complexes of H
+
 across an ion-impermeable inner membrane generates a 

very large H
+
 electrochemical gradient and mitochondria employ the dissipation of this proton 

gradient not only to run the endoergonic reaction of ATP synthesis by the H
+
-ATPase, but also to 

accumulate cations into the matrix. 

For a long time, however, due to the low affinity of the mitochondrial Ca
2+

 uptake system under 

physiological conditions (an apparent Kd of 20 to 30 M under conditions thought to mimic the 

cytoplasm, estimated in the earlier work with isolated organelles) and the submicromolar global 

[Ca
2+

]c briefly reached after physiological stimulation (which rarely exceed 2-3 M), this process 

was considered to take place only in conditions of high-amplitude, prolonged [Ca
2+

]c increases, i.e. 
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in the Ca
2+

 overload that is observed in various pathological conditions (such as, for example, 

excitotoxic glutamate stimulation of neurons) (19). Mitochondrial Ca
2+

 returned to the limelight in 

1992 when Rizzuto, Pozzan and colleagues generated a novel, genetically encoded 

chemiluminescent indicator, aequorin. This probe, specifically targeted to the mitochondrial matrix, 

allowed dynamic, accurate and specific monitoring of the [Ca
2+

] within the matrix of mitochondria 

in living cells (29). With this new tool they could show that mitochondria in living cells undergo 

very fast and large increases in their matrix Ca
2+

 levels (mitochondrial Ca
2+

 concentration, [Ca
2+

]m) 

upon cell stimulation, reaching peaks similar or even larger than those in the cytoplasm, even for 

normal physiological cytoplasmic Ca
2+

 rises (30). Similar conclusions could be reached also with 

fluorescent indicators, such as the positively charged Ca
2+

 indicator rhod-2 (that accumulates within 

the organelle) (31) and the more recently developed GFP-based fluorescent indicators (32). 

While enlivening the interest in mitochondrial Ca
2+

 homeostasis, these data raised an apparent 

contradiction between the prompt response of the organelle (where [Ca
2+

]m rise, in a few seconds, to 

values above 10 M, and in some cell types up to 500 M) and the low affinity of the Ca
2+

 uptake 

system together with the low concentration of global Ca
2+

 signals observed in cytoplasm. Based on 

a large body of experimental evidence, it is now generally accepted that the key to the rapid Ca
2+

 

accumulation rests in the strategic location of a subset of mitochondria, close to the opening ER or 

plasma membrane Ca
2+

 channels (30, 31, 33). The hypothesis, called “microdomain hypothesis” 

(26), proposes that microdomains of high [Ca
2+

] (10-20 M) can be transiently formed in regions of 

close apposition between mitochondria and Ca
2+

 channels of the ER/SR or of the plasma membrane 

(33). These high Ca
2+

 microdomains rapidly dissipate (due to diffusion) insuring that mitochondria 

do not overload with Ca
2+

 (Figure 2). 

The “microdomain hypothesis” received a number of indirect confirmations in the last 20 years by 

different groups. More recently, such microdomains in selected regions of contact between ER and 

mitochondria were finally measured directly, by two complementary studies that demonstrated the 

existence and amplitude of high Ca
2+

 microdomains on the surface of mitochondria. Giacomello et 

al. (34) targeted a new generation of FRET-based Ca
2+

 sensors (35) to the OMM and, through a 

sophisticated statistical analysis of the images, revealed the existence of small OMM regions where 

[Ca
2+

] reaches values as high as 15-20 μM. The probe detected Ca
2+

 hotspots on about 10% of the 

OMM surface that were not observed in other parts of the cell. The Ca
2+

 hotspots were not uniform, 

and their frequency varied among mitochondria of the same cell. Moreover, classical 

epifluorescence and total internal reflection fluorescence (TIRF) microscopy experiments were 

combined in order to monitor the generation of high Ca
2+

 microdomains in mitochondria located 

near the plasma membrane. With this approach, it could be shown that Ca
2+

 hotspots on the surface 
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of mitochondria occur upon opening of VOCs, but not upon SOCE. Csordás et al. (36) used a 

complementary approach in which they generated genetically encoded bifunctional linkers 

consisting of OMM and ER targeting sequences connected through a fluorescent protein, including 

a low-Ca
2+

-affinity pericam, and coupled with the two components of the FKBP-FRB 

heterodimerization system (37), respectively. Using rapamycin-assembled heterodimerization of the 

FKBP-FRB-based linker, they detected ER/OMM and plasma membrane/OMM junctions (the latter 

at a much lower frequency). In addition, the recruited low-Ca
2+

-affinity pericam reported Ca
2+

 

concentrations as high as 25 M at the ER/OMM junctions in response to IP3-mediated Ca
2+

 

release, which is in excellent agreement with the values obtained by Giacomello et al.. 

 

 

 

Figure 2. Intracellular Ca
2+

 signalling. Schematic model of intracellular Ca2+ homeostasis. Plasma membrane G-

protein coupled receptors activate phospholipase C-β (PLC-β) to promote the generation of inositol 1,4,5-trisphosphate 

(IP3) and the release of Ca2+ from the endoplasmic reticulum (ER) into the cytosol. Mitochondrial surface directly 

interacts with the ER through contact sites defining hotspots Ca2+ signalling units. Ca2+ import across the outer 

mitochondrial membrane (OMM) occurs by the voltage-dependent anion channel (VDAC), and then enters the matrix 

through the mitochondrial Ca2++ uniporter (MCU), the main inner mitochondrial membrane (IMM) Ca2+-transport 

system (Ca2+ levels reached upon stimulation are indicated in square brackets). Mitochondrial Ca2+ exchangers present 

in the IMM export Ca2+ from the matrix once mitochondrial Ca2+ has carried its function; another mechanism for Ca2+ 

efflux from mitochondria is the permeability transition pore (PTP). Ca2+ levels return to resting conditions (indicated in 

round brackets) through the concerted action of cytosolic Ca2+ buffers, plasma membrane Ca2+-ATPase (PMCA) and 

the Na+/ Ca2+ exchanger (NCX) that permit the ion extrusion in the extracellular milieu. Sarco-endoplasmic reticulum 

Ca2+ ATPase (SERCA) restablishes basal Ca2+ levels in intracellular stores. ANT adenine nucleotide translocase, Cyp 

D cyclophilin D, DAG diacylglycerol, PIP2 phosphatidylinositol 4,5-bisphosphate. 
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While based on cell morphology the close proximity between the mitochondria and the ER is 

expected and indeed often observed, i.e. in neuronal prolongings, a close interaction between ER-

resident Ca
2+

 channels and mitochondria in non-excitable cells implies the assembly of a dedicated 

signaling unit at the organelle interphase (see section 1.7). 

 

 

1.3 Calcium release from cellular store: structure and function of the IP3R 

The ER is possibly the largest individual intracellular organelle comprising a three dimensional 

network of endomembranes arranged in a complex grid of microtubules and cisternae. It is made up 

of functionally and structurally distinct domains (reviewed extensively by a number of authors (38-

41), in relation to the variety of cellular functions played by the organelle, primarily concerning 

protein synthesis, maturation and delivery to their destination (42, 43). Moreover, the ER is a 

dynamic reservoir  of Ca
2+

 ions, which can be activated by both electrical and chemical cell 

stimulation (44, 45) making this organelle an indispensable component of Ca
2+

 signalling (46-48). 

Modern analysis methods enabled the determination of the molecular profile of the ER. This profile 

reflects the ER‟s role in signalling, as it comprises a number of components constituting the Ca
2+

 

signalling pathway. It contains IP3Rs, RyRs, SERCAs, and in addition to these release channels and 

pumps, there are buffers (calnexin, calreticulin) and a number of ancillary proteins (FK 506-binding 

proteins, sorcin, triadin, phosholamban) that contribute to the ER Ca
2+

 signalling system (49). 

Many extracellular stimuli, such as hormones, growth factors, neurotransmitters, neutrophins, 

odorants, and light, function generating IP3 through the phospholipase C isoforms, activated in 

different manners: G-protein coupled receptors (acting via PLC-β), tyrosine-kinase coupled 

receptors (PLC-γ), an increase in Ca
2+

 concentration (PLC-δ) or activated by Ras (PLC-ɛ) (50, 51). 

The final effector are the IP3Rs, nonselective cationic channels that conduct Ca
2+

. 

A functional IP3R Ca
2+

 channel is composed of tetramers with six transmembrane domains (of 

~3000 amino acids) that can be either homotetramers or, to a lesser extent, heterotetramers of 

different isoforms. From the structural point of view, several domains are recognized in the protein 

sequence, with different functions. These include the IP3-binding domain (IP3-BD), i.e. the 

minimal sequence sufficient for IP3 binding, located near the N-terminus of the protein (aa 226-

578). Interestingly, this protein domain contains armadillo-repeat protein structures that are engaged 

in protein-protein interactions, and mediates intramolecular interactions with other IP3R domains as 

well as the association with other regulatory proteins. N-terminally to the IP3-BD, i.e. within aa 1-

222, a suppressor region is located that inhibits ligand binding and thus lowers the global receptor 

IP3 affinity in the physiological range. The six transmembrane-spanning domain is at the very C-
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terminal end of each subunit, and, between them, an internal coupling domain assures the signal of 

IP3 binding is transferred to the channel-forming region, hence triggering its opening (52).  

Three isoforms of IP3R encoded by different genes have been identified with different agonist 

affinities and tissue distribution (53). Given that the affinity of the IP3-binding core to its ligand is 

similar for the three isoforms, the tuning of the whole receptor's affinity appears to be due to the 

isotype-specific properties of the N-terminal suppressor domain (54). 

The release of Ca
2+

 from the ER is a nonlinear, cooperative process wherein IP3 binds to four 

receptor sites on the IP3R, one on each subunit of the tetramer (52). IP3Rs are at first potentiated, 

then inhibited by Ca
2+

. Small perturbations in conditions, such as basal [Ca
2+

]i, [IP3], and various 

regulators can cause uncoordinated bursts of local release across a cell. The brief opening of IP3R 

channels gives rise to localized Ca
2+

 pulses, called “sparks” or “blips” and “puffs” (1). The smallest 

Ca
2+

 release events, “blips”, probably reflect random openings of single IP3R. Spontaneous 

clustering of IP3Rs (in particular of IP3R2, due to its higher IP3 affinity) have been proposed to be 

the underlying mechanism responsible for Ca
2+

 “puffs” observed in the cytoplasm (55). 

Recruitment of neighboring IP3Rs and combination of Ca
2+

 “puffs” results in Ca
2+

 waves, ensuring 

that the Ca
2+

 signal propagates to the entire cell (56), or remains confined to specific subcellular 

regions (57).  

Ca
2+

 oscillations, depend upon both the spatial organization of IP3Rs and their regulation by Ca
2+

, 

although the links between IP3R activities and Ca
2+

 oscillations are not fully understood. Ca
2+

 

regulates channel activity in a biphasic manner. Early studies demonstrated inhibition of IP3-

mediated Ca
2+

 mobilization by micromolar concentrations of Ca
2+

 (58). Lower concentrations were 

subsequently found to potentiate the effects of IP3 (59). In addition, also the ER Ca
2+

 content 

retains the capability to regulate the channel opening: in permeabilized hepatocytes, an increase in 

[Ca
2+

]er enhances the sensitivity of IP3R for its ligand, promoting also spontaneous Ca
2+

 release, but 

the nature of this direct regulation and the protein involved are still a matter of debate (60). In this 

context, the tight spatial relationship between ER and mitochondria, and the capacity of the latter to 

rapidly clear the high [Ca
2+

] microdomain generated at the mouth of the IP3R, makes mitochondria 

an active player in the control of IP3R function. The first clear demonstration of this concept came 

from the fine work of Lechleiter et al., who demonstrated that energized mitochondria, by 

regulating the kinetics of ER Ca
2+

 release, finely tune the spatio-temporal patterning of Ca
2+

 waves 

in Xenopus oocytes. Then, the observation that Ca
2+

 uptake by mitochondria controls the [Ca
2+

] 

microdomain at the ER/mitochondrial contacts and thus the kinetics of IP3R activation/inactivation 

was extended to a variety of mammalian cell lines, e.g. hepatocytes, astrocytes and BHK-21 cells, 

thus highlighting its general relevance (61). 
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Whereas IP3 and Ca
2+

 are essential for IP3R channel activation, other physiological ligands, such as 

ATP, are not necessary but can finely modulate the Ca
2+

-sensitivity of the channel (62). As for Ca
2+

, 

the modulation of IP3R by ATP is biphasic: at micromolar concentrations, ATP exerts a stimulatory 

effect, while inhibiting channel opening in the millimolar range (63, 64).  

Finally, in their coupling/suppressor domains, the IP3Rs possess consensus sequences for 

phosphorylation by numerous kinases; currently, at least 12 different protein kinases are known to 

directly phosphorylate the IP3R (65), among them: Akt (66), protein kinase A (cAMP-dependent) 

(67), protein kinase G (cGMPdependent) (68), calmodulin-dependent protein kinase II (CaMKII) 

(69), protein kinase C (PKC) (70), and various protein tyrosine kinases (71). 

 

 

1.4 Mitochondria: cell physiology and molecular nature of the mitochondrial 

Ca
2+

 uptake and release machinery 

 

Mitochondria: the basics 

The mitochondrion represents a unique organelle within the complex endomembrane systems that 

characterize any eukaryotic cell. Complex life on earth has been made possible through the 

“acquisition” of mitochondria which provide an adequate supply of substrates for energy-expensive 

tasks. The mitochondrion is a double membrane-bounded organelle thought to be derived from an 

-proteobacterium-like ancestor, presumably due to a single ancient invasion occurred more than 

1.5 billion years ago. The basic evidence of this endosymbiont theory (72) is the existence of the 

mitochondrial DNA (mtDNA), a 16.6 Kb circular double-stranded DNA molecule with structural 

and functional analogies to bacterial genomes (gene structure, ribosome). This mitochondrial 

genome encodes only 13 proteins (in addition to 22 tRNAs and 2 rRNAs necessary for their 

translation), all of which are components of the electron transport chain (mETC) complexes (I, III 

and IV), while the whole mitochondrial proteome consists of more than 1000 gene products. Thus, 

one critical step in the transition from autonomous endosymbiont to organelle has been the transfer 

of genes from the mtDNA to the nuclear genome. At the same time, eukaryotes had to evolve an 

efficient transport system to deliver nuclear-encoded peptides inside mitochondria: TIM 

(Transporters of the Inner Membrane), TOM (Transporters of the Outer Membrane) and 

mitochondrial chaperones (such as hsp60 and mthsp70) build up the molecular machinery that 

allows the newly-synthesized unfolded proteins to enter mitochondrial matrix (73). 
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Mitochondria are defined by two structurally and functionally different membranes: the plain outer 

membrane, mostly soluble to ions and metabolites up to 5000 Da, and the highly selective inner 

membrane, characterized by invaginations called cristae which enclose the mitochondria matrix. 

The space between these two structures is traditionally called intermembrane space (IMS), but 

recent advances in electron microscopy techniques shed new light on the complex topology of the 

inner membrane. Cristae indeed are not simply random folds but rather internal compartments 

formed by profound invaginations originating from very tiny “point-like structures” in the inner 

membrane (74). These narrow tubular structures, called cristae junctions, can limit the diffusion of 

molecule from the intra-cristae space towards the IMS, thus creating a micro-environment where 

mETC complexes (as well as other proteins) are hosted and protected from random diffusion. 

Mitochondria were identified as the powerhouse for energy production in eukaryotic cells thanks to 

decades of extensive biochemical work on carbohydrate metabolism and organelle morpho-

functional characterization, carried out in the first half of the 20th century by leading scientific 

figures such as Krebs, Corey, Claude, Palade and many others. Mitochondria are the main site of 

ATP production. When glucose is converted to pyruvate by glycolysis, only a small fraction of the 

available chemical energy has been stored in ATP molecules; the main enzymatic systems involved 

in this process are the tricarboxylic acid (TCA) cycle and the mETC. Products from glycolysis and 

fatty acid metabolism are converted to acetyl-CoA which enters the TCA cycle where it is fully 

degraded to CO2. More importantly, these enzymatic reactions generate NADH and FADH2 which 

provide reducing equivalents and trigger the electron transport chain. mETC consists of five 

different protein complexes: complex I (NADH dehydrogenase), complex II (succinate 

dehydrogenase), complex III (ubiquinol cytochrome c reductase), complex IV (cytochrome c 

oxidase) and complex V that constitutes the F1F0-ATP synthase. Electrons are transferred from 

NADH and FADH2 through these complexes in a stepwise fashion: as electrons move along the 

respiratory chain, energy is stored as an electrochemical H
+
 gradient across the inner membrane, 

thus creating a negative mitochondrial membrane potential (estimated around -180 mV against the 

cytosol). H
+
 are forced to reenter the matrix mainly through complex V which couples this proton 

driving force to the phosphorylation of ADP into ATP, according to the chemiosmotic principle. 

ATP is then released to IMS through the electrogenic Adenine Nucleotide Translocase (ANT) 

which exchange ATP with ADP to provide new substrate for ATP synthesis. Finally, ATP can 

easily escape the IMS thanks to the mitochondrial porin of the outer membrane, VDAC (voltage-

dependent anion channel). 

With the general acceptance of the chemiosmotic hypothesis, it has became clear that the  across 

the mitochondrial inner membrane is the driving force for mitochondrial Ca
2+

 accumulation (75). 
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Thus, Ca
2+

 enters the mitochondrial matrix down its electrochemical gradient, that can be generated 

either by the electron flow in the mETC or by reversal of the ATP synthase. Mitochondrial Ca
2+

 

accumulation plays a key role in the regulation of many cell functions, ranging from ATP 

production to cell death. Mitochondrial Ca
2+

 uptake and release is central not only for the regulation 

of cellular Ca
2+

 homeostasis, but is vital also for the regulation of intramitochondrial enzymes 

concerned with the utilization of oxidizable substrates. However, excess Ca
2+

 accumulation by 

mitochondria is a common event in the process of cell death, by both necrosis and apoptosis (76) 

(see , sections 1.5 and 1.6). 

Despite the basic mechanisms of mitochondrial Ca
2+

 homeostasis have been firmly established for 

decades, the molecular identities of the channels and transporters responsible for Ca
2+

 uptake and 

release (schematized in Figure 3) have remained mysterious until very recently. 

 

 

 

Figure 3. Schematic representation of the mitochondrial Ca
2+

, Na
+
 and H

+
 handling machinery. Ion fluxes are 

indicated by arrows. Red arrow, Ca2+; blue arrow, H+; green arrow, K+; yellow arrow, Na+. ETC, electron transport 

chain; Letm1, Leucine-zipper EF-hand containing transmembrane protein 1; MCU, mitochondrial Ca2+ uniporter; 

MICU1, mitochondrial calcium uptake 1; NCLX, Na+/Ca2+ exchanger; PTP, permeability transition pore; UCP2/3, 

uncoupling protein 2/3; VDAC, voltage-dependent anion channel (figure from (77)). See text for details. 

 

 

We and other groups extensively worked on this topic and what emerged was that the outer 

mitochondrial membrane (OMM, although traditionally considered freely permeable) is a critical 

determinant of the mitochondrial Ca
2+

 accumulation (78). Thus, the mitochondrial Ca
2+

 uptake 

machinery will be discussed, starting from the channels of the OMM, to the last identified 

components of the IMM. 
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Ca
2+

 transfer across the OMM 

The OMM was previously thought to be freely permeable for ions and small molecules, but now it 

is clear that the so-called voltage-dependent anion channels, VDAC, also reffered to as the 

mitochondrial porin, are major regulators of the various ion, nucleotide and molecule fluxes across 

this membrane, including the Ca
2+

 fluxes (79). 

Yeast possesses only one VDAC isoform (but has also another VDAC gene that correctly inserts 

into OMM showing no channel activity), while higher multicellular organisms and mammals have 

three distinct VDAC genes (VDAC1, VDAC2 and VDAC3), with VDAC1 representing the best 

characterized one. These three isoforms show a substantial sequence homology (from 65 to 75% in 

identity) and similar structure, with the only exception of VDAC2 that has a longer (11 aminoacids) 

N-terminal tail (80). Yeasts lacking VDAC gene cannot grow on non-fermentable medium, thus 

highlighting the relevance of this channel in mitochondrial function: reintroduction of any of the 

mammalian VDAC genes in this yeast strain can promptly restore growth defects (81, 82). 

VDAC can exist in multiple conformational states with different selectivity and permeability. This 

30-35 kDa protein, is traditionally considered as a large, high-conductance, weakly anion-selective 

channel, fully opened (pore diameter about 2.5 nm) at low potential (<20-30 mV), but switching to 

cation selectivity and lower conductance (the so-called “closed” state, with a smaller pore diameter 

of about 1.8 nm) at higher potentials (both positive and negative). When reconstituted into 

liposomes, each isoform induced a permeability with a similar molecular weight cut-off (between 

3400 and 6800 Da based on permeability to polyethylene glycol). Its structure, as determined by 

NMR and X-ray crystallography, consists of a 19-stranded β-barrel forming a pore with an inner 

diameter of about 1.5×1 nm and an N-terminal α-helix domain residing inside the pore: this 

segment most likely represents the voltage sensor since it is ideally positioned to regulate the 

conductance of ions and metabolites passing through the VDAC pore (83-85). As the main function 

of VDAC is assumed to be the gateway for ATP and metabolites, its “open” or “closed” states are 

defined with respect to those molecules (80, 86). However, the physiological relevance of the 

voltage gating properties of VDAC is still obscure and a matter of debate, since it requires the 

existence of a potential across the OMM. The existence of any membrane potential across the 

OMM has never been directly demonstrated (although some have assumed such a potential is not 

possible, others have proposed several clues in support of this hypothesis, as discussed in (87)). 

Despite this, a number of reports show that numerous cytosolic components can significantly 

modulate VDAC gating properties, including NADH (88), members of Bcl-2 protein family (89), 

metabolic enzymes (90), chaperones (91) and cytoskeletal elements (92). 
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A recent work by Tan and Colombini describes the higher permeability of VDAC to Ca
2+

 in the 

closed states (with low permeability to anionic metabolites), rather than the opened state. So VDAC 

closure seems to promote Ca
2+

 flux into mitochondria, with consequent permeability transition and 

cell death (see section 1.5), accordingly with previous observations that VDAC closure is a pro-

apoptotic signal (93, 94). These notions have a direct impact on mitochondrial Ca
2+

 transport, as 

variations in OMM permeability to Ca
2+

 can represent a bottleneck for the efficient ion transfer 

from the high [Ca
2+

] microdomain generated by the opening of the IP3R to the intermembrane 

space. Indeed, transient expression of VDAC in various cell types enhanced the amplitude of the 

agonist-dependent increases in mitochondrial matrix Ca
2+

 concentration by allowing the fast 

diffusion of Ca
2+

 from ER release sites to the inner mitochondrial membrane (78). As to the 

functional consequences, VDAC overexpressing cells are more susceptible to ceramide-induced cell 

death, thus confirming that mitochondrial Ca
2+

 uptake has a key function in the process of 

apoptosis. 

VDAC has been considered a master regulator of the apoptotic process: on one hand it was thought 

to be one of the main component of the permeability transition pore (PTP), the megachannel 

mediating the collapse of mitochondrial membrane potential during apoptosis; on the other side it 

has long been believed a key mediator of Bax-mediated release of cytochrome c (see sections 1.5 

and 1.6). However, despite the huge amount of work carried out on this protein, several recent 

papers (95-97) have raised serious doubt about our functional understandings of this channel. 

Indeed, new approaches mainly based on mice knockout models failed to clearly confirm any of the 

above mentioned functions and rather suggest that a substantial rethinking of VDAC roles is 

needed. 

 

Ca
2+

 transfer across the IMM 

Many attempts were made to identify the molecular nature of the mitochondrial Ca
2+

 uniporter 

(MCU), starting in the early 1970s, that is, soon after the discovery of mitochondrial Ca
2+

 function. 

MCU has always been described as an highly selective ion channel located in the IMM, with a 

dissociation constant 2 nM over monovalent cations, reaching saturation only at 

supraphysiological [Ca
2+

]c. Also Sr
2+

 and Mn
2+

 are conducted by MCU and the relative ion 

conductance is: Ca
2+
Sr

2+
Mn

2+
Ba

2+
. Studies performed on isolated mitochondria allowed the 

identification of some regulatory molecules acting on MCU, in particular the most effective 

inhibitors are the hexavalent cation Rutenium Red (RuR) and its related compound RuR360; MCU 

is also modulated by aliphatic polyamines, such as spermine and aminoglycosides, and by the 

adenine nucleotides, in the order of effectiveness ATP>ADP>AMP (whereas the nucleoside 
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adenosine is ineffective) (98) as well as several plant-derived flavonoids (99). Another important 

regulator of MCU is Ca
2+

 itself. The apparent affinity of the MCU for Ca
2+

, under physiological 

conditions (i.e. 1 mM Mg
2+

), is very low (apparent Kd of 20-30 M) and the influx rate only 

becomes substantial when the extramitochondrial [Ca
2+

] reaches values above 5-10 M. As 

demonstrated by Moreau and its group (99), in fact, MCU has a biphasic dependence on [Ca
2+

]c 

increase, that can both activate or inactivate mitochondrial Ca
2+

 uptake. This mechanism allows the 

mitochondrial Ca
2+

 oscillation, but it prevents an excessive mitochondrial Ca
2+

 accumulation when 

intracellular Ca
2+

 elevation is prolonged. 

The MCU has been molecularly identified only very recently, preceded by the discovery of 

mitochondrial calcium uptake 1 (MICU1), an uniporter regulator which appears essential for 

mitochondrial Ca
2+

 uptake (100).  

The identification of MICU1 came from the establishment of the so-called MitoCarta database in 

which about 1000 proteins, specifically present in mitochondria, have been identified (many of 

them with unknown functions) (101). MICU1 is a 54-kDa protein, with only one putative 

transmembrane domain, which makes it unlikely that it can function as a Ca
2+

 channel, so it is not 

known whether it actually forms (part of) a Ca
2+

 channel, or functions as Ca
2+

 buffer, or as a Ca
2+

-

dependent regulatory protein acting as a Ca
2+

 sensor (it has a pair of Ca
2+

-binding EF-hand 

domains, the mutation of which eliminates the mitochondrial Ca
2+

 uptake). Taken together the 

above-mentioned characteristics suggest that MICU1 is not the channel-forming subunit of MCU 

itself, but rather an associated key subunit. 

Finally, last year, two indipendent papers identified the same protein, termed CCDC109A (coiled-

coil domaincontaining protein 109A) and renamed MCU, that possesses all the characteristics 

expected by the elusive Ca
2+

 uniporter of the IMM (102, 103). MCU is a 40-kDa protein  

ubiquitously expressed in all mammalian tissues and in most eukaryotes, but missing a yeast 

orthologue. MCU possesses two transmembrane domains and this characteristic makes it reasonable 

that it forms (through oligomerization) a gated ion channel. Downregulation of MCU drastically 

reduces mitochondrial Ca
2+

 uptake whereas transfection with the native channel rescues the 

phenotype of the specific siRNA-treated cells. Moreover, the other classical properties of 

mitochondria (that is, organelle shape and ER-mitochondrial interactions, O2 consumption, ATP 

synthesis and ) are not affected by MCU down-regulation. Just the protein‟s orientation is the 

mainly discrepancy between the two papers, one affirming a C-terminus localization in the 

intermembrane space (102), the other in the matrix (103). Importantly, thanks to the molecular 
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identification of the MCU, we can now expect a strong acceleration in the search for the functional 

role of this property of mitochondria, in both physiology and physiopathology. 

In the IMM are also present the mitochondrial Na
+
/Ca

2+
 exchanger (mNCX) and the H

+
/Ca

2+
 

exchanger (mHCX). Their main function is probably to export Ca
2+

 from the matrix once 

mitochondrial Ca
2+

 has carried out its function, to reestablish resting conditions (104). In spite of a 

few remarkable reports identifying the stoichiometry of the Na
+
/ Ca

2+
 exchanger (3 or 4 Na

+
 ions 

per Ca
2+

) (105), their molecular identity remained, until very recently, completely mysterious. They 

have yet to be identified, although recently strong evidence has been provided that the Na
+
/Ca

2+
 

exchanger isoform NCLX (until then considered an isoform of the PM Na
+
/ Ca

2+
 exchanger family) 

fulfils the criteria to be the elusive mitochondrial Na
+
-dependent Ca

2+
 efflux (106). They showed 

that practically all endogenous NCLX localizes in the mitochondrial fraction and knockout of 

NCLX drastically reduced Na
+
-dependent Ca

2+
 efflux in isolated mitochondria; moreover it is 

sensitive to the classical mitochondrial Na
+
/ Ca

2+
 exchanger inhibitor CGP-37157.  

Finally, the low conductance mode of the PTP, a channel of still debated nature localized in the 

IMM (107), can be also considered as a non-saturating mechanism for Ca
2+

 efflux from 

mitochondria. When open, PTP allows the passage of ions and molecules with a molecular weight 

up to 1.5 kDa, including Ca
2+

. Short-time openings may have a physiological function but its long-

time activation leads to the demise of the cell, either by apoptosis or by necrosis, depending on 

whether PTP opening occurs in only a small fraction of the mitochondria or in all of them (see the 

following section and references (108, 109)). 

 

 

1.5 Mitochondrial Ca
2+

 function 

 

Physiological functions of Ca
2+

 uptake in the mitochondria 

The first role assigned to the Ca
2+

 ions taken up into the mitochondrial matrix was the stimulation 

of the mitochondrial ATP production since important metabolic enzymes localized in the matrix, 

the pyruvate-, α-ketoglutarate- and isocitrate-dehydrogenases are activated by Ca
2+

, with different 

mechanisms: the first through a Ca
2+

-dependent dephosphorylation step, the others via direct 

binding to a regulatory site (110, 111). Those three enzymes represent rate-limiting steps of the 

Krebs cycle thus controlling the feeding of electrons into the respiratory chain and the generation of 

the proton gradient across the inner membrane, in turn necessary for ATP production through 

oxidative phosphorylation (OXPHOS). These events were directly visualized in intact, living cells 

using a molecularly engineered luciferase probe, which revealed an increase in the [ATP] of the 
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mitochondrial matrix following agonist stimulation and mitochondrial Ca
2+

 uptake (112). As the 

ATP produced by mitochondria is subsequently transferred to the cytosol, mechanisms that control 

ATP production will not only affect overall cell life but, more specifically, will regulate the activity 

of ATP-sensitive proteins localized in the close vicinity of mitochondria, such as IP3Rs and 

SERCA, which are stimulated by ATP (113, 114). The bidirectional relation between Ca
2+

 release 

and ATP production allows for a positive feedback regulation between ER and mitochondria during 

increased energetic demand (115). 

The uptake of Ca
2+

 in mitochondria will also affect Ca
2+

 signalling at both the local and the global 

level. Assuming the microdomain concept (30, 33), the local [Ca
2+

] will depend on both the amount 

of Ca
2+

 released by IP3Rs and that taken up by mitochondria. Since both SERCA pumps and IP3Rs 

are also regulated by Ca
2+

, the local [Ca
2+

] in the vicinity of mitochondria will determine the 

refilling of the ER and eventually the spatiotemporal characteristics of the subsequent Ca
2+

 signals 

(116). This will in turn depend on the exact subcellular localization of mitochondria, as well as the 

efficiency of the coupling between the ER and the mitochondrial network (117). In some 

conditions, the presence of mitochondria can completely block the further propagation of a Ca
2+

 

signal through the cytoplasm. In pancreatic acinar cells, the mitochondria serve as efficient 

firewalls, absorbing cytosolic Ca
2+

 signals. As a result, the propagation of the Ca
2+

 signal will be 

limited to the apical pole of the cell and will be prohibited from entering the nucleus (117). The 

local Ca
2+

 concentration can also affect mitochondrial motility and ER-mitochondria associations in 

various ways, hence the connection between mitochondria and the ER can be highly dynamic (118). 

Proteins involved in mitochondrial movement along microtubules, dynein and kinesin, are prone to 

high [Ca
2+

]c mediated by a Ca
2+

 sensor. As the mitochondrial motility is inhibited by Ca
2+

 levels in 

the low micromolar range, it means that mitochondria will be trapped in the neighbourhood of 

active Ca
2+

-release sites allowing for a more efficient Ca
2+

 uptake (119, 120). Apart from organelles 

movement, mitochondria also continuously remodel their shape. Many of the gene products 

mediating the fission and fusion processes have been identified in yeast screens, and most are 

conserved in mammals, including the fission mediators dynamin-related protein 1 (Drp1, Dnm1 in 

yeast) and Fis1 (Fission 1 homologue), as well as the fusion mediators mitofusins (Mfn) 1 and 2 

(Fzo1 in yeast) and optic atrophy 1 (OPA1, Mgm1 in yeast) (121). Several previous studies have 

indicated that elevation of [Ca
2+

]c perturbs mitochondrial dynamics (122), and more recent works 

have clearly demonstrated that mitochondrial shape can be controlled by an ER-dependent 

signalling pathway (123, 124). Mitochondria also undergo a more „macroscopic‟ remodelling of 

their shape during programmed cell death: after apoptosis induction, mitochondria become largely 

fragmented, resulting in small, rounded and numerous organelles. However, the relationship 
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between mitochondrial fusion/fission and apoptosis is complex and mitochondrial fragmentation is 

not necessarily related to apoptosis (125).  

Finally, mitochondria may play an even more active part in Ca
2+

 signaling since the ions can 

propagate through the mitochondrial network, allowing for mitochondrial release of Ca
2+

 at a 

distance of the original uptake site (126). 

 

Mitochondrial Ca
2+

 overload 

Although Ca
2+

 uptake in the mitochondria is crucial for vital cell functions, there exists a risk of 

mitochondrial Ca
2+

 overload, which may result in the induction of cell death (Figure 4). There are 

two pathways that can lead to apoptosis, the death receptor pathway (extrinsic apoptotic pathways) 

and the mitochondrial pathway (intrinsic apoptotic pathways), both converging on the activation of 

the executioner caspases (127). 

The mitochondrial IMS contains many pro-apoptotic factors such as cytochrome c, apoptosis-

inducing factor (AIF), Smac/Diablo, HtrA2/Omi and endonuclease G (EndoG). These are released 

from mitochondria to the cytosol in response to apoptotic signals (for a review see (128)). Released 

pro-apoptotic proteins can initiate three signalling cascades leading to apoptosis: i) released 

cytochrome c, together with pre-existing cytosolic apoptosis protease activating factor 1 (APAF-1) 

forms the “apoptosome”, which results in the activation of procaspase-9 and in turn activation of 

effector caspases (caspases-3, -6, and -7), the primarily responsible for the cleavage of cellular 

proteins leading to the biochemical and morphological characteristics of apoptosis; ii) released 

Smac/DIABLO and Omi/HtrA2 favour caspase activation by antagonizing the endogenous inhibitor 

of apoptosis (IAP) proteins in the cytosol; and iii) released AIF and EndoG favour DNA 

fragmentation and chromatin condensation.  

The release of pro-apoptotic factors is preceded by the OMM permeabilization, a crucial step in 

apoptosis. However, the exact mechanism of mitochondrial OMM permeabilization is not yet clear 

(129). Ca
2+ 

is a critical sensitizing signal in the pro-apoptotic transition of mitochondria, that plays a 

key role in the regulation of cell death. At a high concentration, mitochondrial Ca
2+

 stimulates 

drastic changes in mitochondrial morphology and functional activity due to the opening of a non-

specific pore, commonly known as the PTP, a mitochondrial megachannel likely to be located in the 

inner-outer contact sites of the mitochondrial membranes (108). This event, also known as 

mitochondrial permeability transition (MPT), leads to osmotic swelling of the mitochondria, loss of 

their membrane potential, and rupture of the OMM, causing the release of IMS proteins, including 

cytochrome c, into the cytosol (129, 130). This process can be facilitated by inorganic phosphate, 

oxidation of pyridine nucleotides, ATP depletion, low pH, and ROS. The PTP is generally believed 
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to be a multimeric complex, composed of VDAC in the OMM, ANT in the IMM, and a matrix 

protein, cyclophilin D (CypD). Ca
2+

 binding to cyclophilin D positively regulates PTP opening and 

in turn cell death (131). However, the molecular nature of the PTP is still unresolved (108). An 

important point hereby was the demonstration that the MPT was not affected by the genetic ablation 

of any or all of the 3 VDAC isoforms (95). PTP opening may ultimately also lead to necrosis, if 

MPT and subsequent uncoupling of mitochondria occur in a large subpopulation of these 

organelles; indeed the border between apoptotic and necrotic cell death is quite diffuse. 

Mitochondrial membrane permeabilization can also result from a distinct, yet partially overlapping 

process known as mitochondrial outer membrane permeabilization (MOMP) (128). In MOMP, pro-

apoptotic members of the B-cell CLL/lymphoma-2 (Bcl-2)-protein family may form protein-

permeable pores in the OMM (for example, by binding to the VDAC channels and regulating their 

properties or by forming multimeric channel complexes (132)), causing the release of IMS proteins 

into the cytosol. Moreover, Bcl-2 family members function as regulators of Ca
2+

 signalling; this 

important aspect will be discussed in the following section (the interested reader should also refer to 

(133)).  

 

 

1.6 Remodelling ER-mitochondria Ca
2+

 transfer in cell survival and death 

ER and mitochondria functions are intimately connected. A major area of functional interaction 

between the ER and mitochondria is the control of Ca
2+

 signalling, that is a topic of major interest 

in physiology and pathology. These two organelles form a highly dynamic interconnected network 

within which they cooperate to generate Ca
2+

 signals. The mitochondria play an important role in 

shaping the Ca
2+

 signal released from the ER. During normal signalling, there is a continuous flow 

of Ca
2+

 between these two organelles. The normal situation is for most of the Ca
2+

 to reside within 

the lumen of the ER except during Ca
2+

 signalling when a small bolus is periodically released to the 

cytoplasm and is then re-sequestered with a proportion passing through the mitochondria. At 

equilibrium, therefore, the bulk of internal Ca
2+

 is in the ER where it not only functions as a 

reservoir of signal Ca
2+

 but it also plays an essential role in maintaining the activity of the 

chaperones responsible for protein processing (26). However, despite controlling many processes 

essential for life, Ca
2+

 arising from the ER can be a potent death-inducing signal (134, 135). 

The release of Ca
2+

 from ER stores by IP3Rs has been implicated in multiple models of apoptosis as 

being directly responsible for massive and/or a prolonged mitochondrial Ca
2+

 overload. The 

requirement of IP3Rs for Ca
2+

-dependent cell death is exemplified by the resistance to apoptosis of 

cells in which InsP3R expression has been ablated or reduced (136, 137). Mitochondria seem to be 
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the downstream effectors of this pathway, as KO of IP3R3 significantly decreased agonist-induced 

mitochondrial Ca
2+

 uptake (138). In this picture, the three isoforms of the IP3R appear to play 

distinct roles. IP3R3 seems to play a selective role in the induction of apoptosis by preferentially 

transmitting apoptotic Ca
2+

 signals into mitochondria, whereas IP3R1 predominantly mediates 

cytosolic Ca
2+

 mobilization (139, 140). However, other studies have shown that the type 1 isoform 

can also mediate apoptosis (141). 

Several observations underline the significance of the role of the ER-mitochondrial Ca
2+

 flux in 

stimulating apoptosis. Indeed, a wide number of apoptotic stimuli, such as ceramide, arachinodic 

acid, and oxidative stress induced by H2O2 or menadione, trigger both a progressive release of Ca
2+

 

from the ER and an activation of the capacitative Ca
2+

 influx (142, 143). This sustained ER Ca
2+

 

release, in turn, induced a mitochondrial Ca
2+

 overload with a consequent release of mitochondrial 

proteins involved in the apoptotic process (Figure 4). 

 

 

 

Figure 4. Differential decoding of Ca
2+

-linked stimuli evoking the activation of cell metabolism or apoptosis. (figure 

modified from (135) 

 

 

Since ER and mitochondria play significant roles in the regulation of cell proliferation and 

apoptosis, the remodeling of Ca
2+

 signaling machinery in ER and mitochondria of cancer cells 

seems imminent during oncogenic transformation, to limit death-inducing Ca
2+

 signals during 
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cancer. The first indication came from the observation that in cancer cells the increased expression 

of anti-apoptotic members of the Bcl-2 family of proteins (Bcl-2 and Bcl-XL), or decreased 

expression of the pro-apoptotic BH3-only proteins (Bax or Bak) can protect these cells from 

apoptosis by modulating intracellular Ca
2+

 signals. These proteins reside in the ER, cytosol and 

mitochondria as homo o heterodimers. Of interest, the proapoptotic protein Bcl-2 affects ER-

mitochondrial Ca
2+

 crosstalk, as the over-expression of Bcl-2 reduces the Ca
2+

 content of the ER 

(144) making the cells resistant to apoptosis. Similarly, genetic ablation of the proapoptotic proteins 

Bax and Bak that drastically increases the resistance to death signals also results in a dramatic 

reduction in ER Ca
2+

 content, and consequently in a reduction of the Ca
2+

 that can be transferred to 

mitochondria (143). The use of a Bax/Bak double-knockout model system demonstrated that Bcl-2 

forms a macromolecular complex with the IP3Rs. The decreased level of Bax and Bak hereby 

correlated inversely with the amount of Bcl-2 bound to the IP3R, the phosphorylation status of the 

IP3R and the Ca
2+

 leak from the ER, leading to the conclusion that Bcl-2 regulated ER Ca
2+

-store 

content by regulating the phosphorylation status and the activity of the IP3R. The phosphorylation 

of IP3R1 was proposed to be due to protein kinase A, but the role of other kinases could not be 

dismissed (145). 

IP3R phosphorylation appears to be a key common feature for modulation of channel function and, 

as consequence, apoptotic signalling. IP3Rs possess consensus sequences for phosphorylation by 

numerous kinases, including the pro-survival protein kinase Akt. The consensus site for 

phosphorylation by Akt has been identified at the carboxyl terminus (serine 2618) of all three 

mammalian IP3R isoforms and is conserved from mammals to flies (66). This phosphorylation 

event decreases IP3-stimulated Ca
2+

 release from the ER and so diminishes flux of Ca
2+

 to the 

mitochondria following stimulation with pro-apoptotic agonists, thereby reducing apoptosis (146, 

147). This is an interesting observation, because in some cancer cells in which Akt is constitutively 

active (e.g. prostatic carcinoma cells), IP3Rs are hyper-phosphorylated (66). These data suggest that 

this functional interaction between Akt and IP3Rs is retained in tumour cells, endowing them with a 

significant survival advantage by limiting Ca
2+

-dependent death signalling. 

ER-mitochondria Ca
2+

 transfer appears to be a key sensitizing in various apoptotic routes. Hence, 

therapeutic modulation of targets that regulate [Ca
2+

]er and/or ER-mitochondrial Ca
2+

 transfer may 

be able to augment apoptosis in cancer cells without disrupting global Ca
2+

 homeostasis. However, 

the precise molecular definition of this process still awaits a fine clarification of the macromolecular 

complex assembled at the interphase between the two organelles. As will be discussed shortly, 

significant research efforts have been made to shed some light on this signalling pathway, and this 

was also the main aim of this thesis project. 
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1.7 Mitochondria-associated membranes: role of structural and regulatory 

proteins in the control of Ca
2+

 transfer between ER and mitochondria 

The association between ER and mitochondria was first described by Copeland and Dalton over 50 

years ago in pseudobranch gland cells (148). By the beginning of the 70s, the contacts between 

mitochondria and ER had been visualized by several groups (149, 150). Electron micrograph 

images of quickly frozen samples (151) and experiments in living cells with the two organelles 

labelled by means of targeted spectral variants of GFP (mtBFP and erGFP) (33), demonstrated 

conclusively that such physical interactions between the two organelles indeed exist. These latter 

experiments revealed the presence of overlapping regions of the two organelles and allowed to 

estimate the area of the contact sites as 5-20% of the total mitochondrial surface (Figure 5). The 

distance between the ER and the OMM was originally estimated to be approximately 100 nm (152, 

153). More detailed morphological studies, carried out by Achleitner et al. in 1999, indicated that 

the distance between the ER and mitochondria in the areas of interaction varied between 10 and 60 

nm (154). Importantly, a direct fusion between membranes of the ER and mitochondria was not 

observed in any case, and the membranes invariably maintained their separate structures. The 

authors of this pioneering paper proposed that a distance of less than 30 nm between the two 

organelles could be considered as an association. More recently, electron tomography techniques 

allowed to estimate that the minimum distance is even shorter (e.g., 10-25 nm) (155). This distance 

thus enables ER proteins to associate directly with proteins and lipids of the OMM. Further 

development of microscopic techniques enabled detailed analysis of such contacts with high 

resolution in three dimensions (156). 

The interactions between ER and mitochondria at the contact sites are so tight and strong, that upon 

subcellular fractionation (at the step of mitochondria purification), a unique fraction, originally 

named „mitochondria-associated membranes” (MAMs), can be isolated (157, 158). More recently, 

the isolation procedures was improved and adapted to isolate the MAMs fraction from yeast, 

different organs, tissues, and various cell lines (154, 159, 160). The molecular analysis of both 

“crude” mitochondria and MAMs fractions demonstrated that, apart from specific ER and 

mitochondrial proteins, they also contain proteins which are abundant in the plasma membrane. 

However, research on the morphological organization of mitochondria and ER with respect to the 

plasma membrane is much less extensive. Modifications in the subcellular fractionation procedure 

enabled the isolation of the “plasma membrane associated membranes” (PAMs) fraction. In general, 

PAMs fractions have been described as the center of interactions between plasma membrane and 
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the ER (161, 162), but the presence of mitochondrial proteins in these fractions indicates that 

mitochondria interact actively also with the plasma membrane (163, 164). 

 

 

 

Figure 5. High-resolution 3D imaging of ER-mitochondria contact sites.  Combined 3D imaging of mitochondria and 

ER in a HeLa cell transiently expressing mtGFP(Y66H,Y145F) and erGFP(S65T). The mitochondrial and ER images 

are represented in red and green, respectively; the overlaps of the two images are white. On the bottom, a detail of the 

main image (80-nm pixel) (figure from (33)  

 

The MAMs have a pivotal role in several cellular functions related to bioenergetics and cell 

survival. MAMs have been originally shown to be enriched in enzymes involved in lipid synthesis 

and trafficking between ER and mitochondrial membranes, including long-chain fatty acid-CoA 

ligase type 4 (FACL4) and phosphatidylserine synthase-1 (PSS-1) (158, 165, 166). The MAMs 
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have since been shown to be enriched in functionally diverse enzymes involved not only in lipid 

metabolism but also in glucose metabolism (for recent reviews, see (167, 168)). 

More recently, the same subcellular fraction has been shown to contain Ca
2+

-sensing ER chaperones 

and oxidoreductases, as well as key Ca
2+

 handling proteins of both organelles (169, 170). Together, 

these data have led to the conclusion that the MAMs are not only a site of lipid synthesis and 

transfer, but also function as a fundamental hub of cellular signalling that controls a growing 

number of processes associated with both organelles, ranging from ER chaperone-assisted folding 

of newly synthesized proteins to the fine-tuning of physiological and pathological Ca
2+

 signals from 

ER to mitochondria. 

Ca
2+

-handling proteins such as IP3Rs (especially type 3 IP3Rs) and VDAC are highly 

compartmentalized at MAMs (139), identifying these zones as „hotspots‟ of Ca
2+

 transfer from the 

ER to the closely adjacent mitochondrial network (31, 33). Ca
2+

 signals arising from the ER are 

vital for regulating Ca
2+

 levels in mitochondria, and so the activation of cell metabolism or 

apoptosis. Therefore, ER Ca
2+

 handling at MAMs acts as a double-edged sword, suggesting the 

existence of still not fully elucidated regulatory mechanisms, that are capable of discriminating 

between signals of life or death.  

Several proteins may participate in the stabilization of MAMs and, in this way, affect Ca
2+

 transfer 

between ER and mitochondria, while other proteins may be directly involved in regulating Ca
2+

-

transport proteins. During the last years, research has focused on the identification of connecting 

structures between the ER and mitochondria at the MAMs, revealing that the interactions between 

the two organelles seem to be modulated both by a family of chaperone proteins and by a family of 

“mitochondria-shaping proteins”. One of the first advances was made in 2006, when Csordás et al. 

showed by electron tomography that ER and mitochondria are adjoined by tethers seemingly 

composed of proteins, since the in vitro incubation with proteinase not only detached the ER from 

mitochondria, but also disrupted Ca
2+

 transfer. Tightening of the connections sensitized 

mitochondria to Ca
2+

 overloading, ensuing permeability transition, and seemed relevant for several 

mechanisms of cell death. Thus, these results revealed an unexpected dependence of cell function 

and survival on the maintenance of a proper spacing between the ER and mitochondria (155). 

At the same time, Szabadkai et al. found that the mitochondrial chaperone grp75 (glucose-regulated 

protein 75) mediates the molecular interaction of VDAC with the ER Ca
2+

-release channel IP3R. It 

was demonstrated that grp75 not only induces a chaperone-mediated conformational coupling of the 

proteins, but also allowed for a better transfer of the Ca
2+

 ions from the ER to the mitochondrial 

matrix (171). In support of this view, we previously demonstrated that the overexpression of VDAC 

enhances Ca
2+

 signal propagation into the mitochondria, increasing the extent of mitochondrial Ca
2+
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uptake (also leading to a higher susceptibility for ceramide-induced cell death), acting at the ER-

mitochondria contact sites (78). Moreover, one aim of my PhD Programme was the analysis of the 

contribution of the different VDAC isoforms to global cellular Ca
2+

 homeostasis, in order to 

establish the role of this non-redundant molecular route in transferring Ca
2+

 signals to mitochondria 

in apoptosis. The results (presented in section 3.1 and in Reference (172)) demonstrate that 

VDAC1, but not VDAC2 and VDAC3 isoforms, selectively interacts with IP3Rs; this interaction is 

further strengthened by apoptotic stimuli and thus VDAC1 is preferentially involved in the 

transmission of the low-amplitude apoptotic Ca
2+

 signals to mitochondria (172). 

Also, ER chaperones, particularly the Ca
2+

-binding chaperones calnexin, calreticulin, Sigma-1 

receptor (Sig-1R) and Binding immunoglobulin Protein (BiP, also known as the glucose-regulated 

protein GRP78), have been found to be compartmentalized at the MAMs, yielding a new picture 

whereby chaperone machineries at both ER and mitochondria orchestrate the regulation of Ca
2+

 

signalling between these two organelles. For instance, calnexin reversibly interacts with SERCA2b 

to block Ca
2+

 import (173). Similarly, calreticulin inhibits Ca
2+

 uptake by inhibiting its affinity for 

the SERCA2b pump, but also regulates IP3-induced Ca
2+

 release (17, 174). In vivo, these functions 

of calreticulin may be more crucial for survival than its chaperone activity, since calreticulin-

deficient cells have impaired Ca
2+

 homoeostasis (175, 176). 

Back in 2005, Simmen et al. reported the identification of a multifunctional cytosolic sorting 

protein, PACS-2 (phosphofurin acidic cluster sorting protein 2), that partially resides in the MAMs 

and maintains their integrity (177). PACS-2 depletion induces mitochondria fragmentation and 

uncouples these organelles from the ER, raising the possibility that, in addition to mediating MAMs 

formation, PACS-2 might also influence Ca
2+

 homeostasis and apoptosis. Indeed, it has been shown 

that IP3Rs (and RyRs) possess potential PACS-2-binding sites (178); hence, disruption of PACS-2 

may cause mislocalization of IP3Rs, resulting in reduced Ca
2+

 transfer from the ER to 

mitochondria. Moreover, in response to apoptotic stimuli, PACS-2 has been demonstrated to be 

capable of inducing Bid recruitment to mitochondria, an event that leads to cytochrome c release 

and caspase 3 activation (177). PACS-2 also interacts with and regulates the distribution and 

activity of calnexin. Under control conditions, >80% of calnexin localizes to the ER, mainly at the 

MAMs. However, through a protein-protein interaction, PACS-2 causes calnexin to distribute 

between the ER and the plasma membrane, affecting ER Ca
2+

 homeostasis (179). PACS-2 and 

calnexin also interact with the MAMs-resident ER cargo receptor Bap31 (B-cell receptor-associated 

protein 31) and regulate its cleavage during the triggering of apoptosis (180). Despite these 

observations, the exact role of PACS-2 in the regulation of Ca
2+

 transfer from the ER to the 

mitochondria remains to be further investigated. 
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Recently, Simmen‟s group have also shown that the GTPase Rab32, a member of the Ras-related 

protein family of Rab, localizes to the ER and mitochondria and identified this protein as a regulator 

of MAMs properties. Its activity levels control MAMs composition, destroying the specific 

enrichment of calnexin at the MAMs, and consequently ER calcium handling. Furthermore, as a 

PKA-anchoring protein, Rab32 determines the targeting of PKA to mitochondrial and ER 

membranes, resulting in modulated PKA signalling. Together, these functions result in a delayed 

apoptosis onset with high Rab32 levels and, conversely, accelerated apoptosis with low Rab32 

levels, explaining the possible mechanism by which it could act as an oncogene (181). 

Also Sig-1R, an ER chaperone serendipitously identified in cellular distribution studies by Hayashi 

and Su, is enriched in the MAMs and seems to be involved in Ca
2+

-mediated stabilization of IP3Rs 

(138). Under normal conditions in which the ER luminal Ca
2+

 concentration is at 0.5-1.0 mM, it 

selectively resides at the MAMs and forms complexes with the ER Ca
2+

-binding chaperone BiP. 

Upon the activation of IP3Rs, which causes the decrease of the Ca
2+

 concentration at the MAMs, 

Sig-1R dissociates from BiP to chaperone IP3R, which would otherwise be degraded by 

proteasomes. Thus, Sig-1R appears to be involved in maintaining, on the ER luminal side, the 

integrity of the ER-mitochondrial Ca
2+

 cross-talk, as demonstrated by the fact that its silencing 

leads to impaired ER-mitochondrial Ca
2+

 transfer. Sig-1R has been implicated in several neuronal 

and non-neuronal pathological conditions (182),  and is also upregulated in a wide variety of tumour 

cell lines (183). Therefore, degenerative neurons or tissue might benefit by Sig-1R agonists which 

promote cell survival (184, 185); conversely, its antagonists inhibit tumour-cell proliferation (186). 

Another example of a folding enzyme regulating ER Ca
2+

 content is the oxidoreductase ERp44 

(endoplasmic reticulum resident protein 44) that interacts with cysteines of the type 1 IP3R, thereby 

inhibiting Ca
2+

 transfer to mitochondria when ER conditions are reducing (187). Recent results 

suggest that another oxidoreductase, Ero1α, might also perform such a function, since Ero1α 

interacts with the IP3R and potentiates the release of Ca
2+

 during ER stress (188). This function of 

Ero1α could impact the induction of apoptosis that critically depends on ER-mitochondria Ca
2+

 

communication (139, 189). Gilady et al. showed that, despite Ero1α being an ER luminal protein, 

the targeting of Ero1α to the MAMs is quite stringent (>75%), consistent with its role in the 

regulation of Ca
2+

 homeostasis. Moreover, they found that localization of Ero1α on the MAMs is 

dependent on oxidizing conditions within the ER; indeed, hypoxia leads to a rapid and eventually 

complete depletion of Ero1α from the MAMs (190). 

In the increasingly clear but complex picture that is emerging for MAMs, also the mitochondrial 

fusion protein Mfn2 has been shown to be enriched at contact sites between the ER and 

mitochondria. Mfn2 on the ER appeared to link the two organelles together: the connection 
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depended on the interaction of the ER Mfn2 with either Mfn1 or Mfn2 on the OMM (156). 

Moreover, its absence changes not only the morphology of the ER but also decreased by 40% the 

interactions between ER and mitochondria, thus affecting the transfer of Ca
2+

 signals to 

mitochondria. This may contribute to the Charcot-Marie-Tooth neuropathy type 2a in which 

missense mutations occur in Mfn2 (191). A too strong ER-mitochondria interaction, and the 

concomitant improved Ca
2+

 transfer between the two organelles, may also be detrimental as 

overexpression of Mfn2 led to apoptosis in vascular smooth-muscle cells (192). A recent report also 

propose the keratin-binding protein Trichoplein/mitostatin (TpMs), often downregulated in 

epithelial cancers (193), as a new regulator of mitochondria-ER juxtaposition in a Mfn2-dependent 

manner (194). 

Also the mitochondrial fission protein Fis1 has been involved in ER-mitochondria coupling. Fis1 

physically interacts with Bap31, an integral membrane protein expressed ubiquitously and highly 

enriched at the outer ER membrane, to bridge the mitochondria and the ER, setting up a platform 

for apoptosis induction. It appeared that the Fis1-Bap31 complex is required for the activation of 

procaspase-8. Importantly, as this signalling pathway can be initiated by Fis1, the Fis1-Bap31 

complex establishes a feedback loop by releasing Ca
2+

 from the ER that is able to transmit an 

apoptosis signal from the mitochondria to the ER (195). 

Apoptosis is a process of major biomedical interest, since its deregulation is involved in the 

pathogenesis of a broad variety of disorders (neoplasia, autoimmune disorders, viral and 

neurodegenerative diseases, to name a few). The key process connecting apoptosis to ER-

mitochondria interactions is an alteration in Ca
2+

 homeostatic mechanisms that results in massive 

and/or a prolonged mitochondrial Ca
2+

 overload (Figure 6).  

Mitochondrial Ca
2+

 is therefore a central player in multiple neurodegenerative diseases such as 

Alzheimer's disease (AD), Parkinson's disease and Huntington's disease (196). It is noteworthy that 

alteration in Ca
2+

 homeostasis in sporadic AD patients started being reported in the middle of the 

1980s, albeit in contrasting ways. Interestingly, very recent data have revealed that presenilin-1 

(PS1) and presenilin-2 (PS2), two proteins that, when mutated, cause familial AD (FAD), have a 

strong effect on Ca
2+

 signalling (sometimes yielding contradictory experimental findings, as 

recently reviewed in (197)). Of particular interest on this topic, is the report that MAMs are the 

predominant subcellular location for PS1 and PS2, and for γ-secretase activity (198). Moreover, it 

has recently been found that PS2 over-expression increases the interaction between ER and 

mitochondria and consequently Ca
2+

 transfer between these two organelles, an effect that is greater 

in FAD variants (199). It is possible to speculate that this favoured interaction could potentially 

result in a toxic mitochondrial Ca
2+

 overload. A defect in Ca
2+

 signalling due to altered MAMs 
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function could explain the well-known disturbances in Ca
2+

 homeostasis in AD (200, 201). It also 

opens the door to new ways of thinking about complementary treatment; in addition, it may be 

possible to exploit aberrant MAMs function as a useful marker for the development of a diagnostic 

tool for AD (202). 

Sano et al. also demonstrated that in GM1-gangliosidosis, a neurodegenerative disease, GM1-

ganglioside (GM1) accumulates in brain within the MAMs, where it specifically interacts with 

phosphorylated IP3R1, influencing its activity (203). GM1 has been previously shown to modulate 

intracellular Ca
2+

 flux (204, 205). As such, the recent discovery that MAMs are the sites where 

GM1 accumulates and influences ER-to-mitochondria Ca
2+

 flux, leading to Ca
2+

 overload and 

activation of the mitochondrial apoptotic pathway, explains the neuronal apoptosis and 

neurodegeneration that occurs in patients with GM1-gangliosidosis (203). These findings may have 

important implications for targeting checkpoints of the GM1-mediated apoptotic cascade in the 

treatment of this catastrophic disease. 

Modulation of the progression of cell death may therapeutically be very important also for the 

inhibition of tumour growth. A tumour cell must harness the Ca
2+

 signalling machinery to promote 

proliferation yet protect itself from apoptosis. Owing to their principal roles in the control of cell 

death and Ca
2+

 signalling, the ER and mitochondria are at the frontline of this battle during 

oncogenic transformation, and are thus sites where significant remodelling of Ca
2+

 signalling 

apparatus occurs to limit death-inducing Ca
2+

 signals during cancer. Specific stimulation of the Ca
2+

 

transfer between the IP3R and mitochondria could specifically destabilize Ca
2+

 homeostasis in 

cancer cells and sensitize mitochondria towards apoptosis. Treating both normal and cancer cells 

with an agent that disrupts these pathways may kill the cancer cell, owing to the loss of redundancy. 

Such novel and highly innovative strategies can provide rationale and approaches for the design and 

development of novel technologies based on ER-mitochondria Ca
2+

 transfer for the diagnosis and 

treatment of cancer. 

During my PhD Programme, we have found that the tumor suppressor promyelocytic leukemia 

protein (PML) modulates the ER-mitochondria Ca
2+

-dependent cross-talk due to its unexpected and 

fundamental role at MAMs, highlighting a new extra-nuclear PML function critical for regulation of 

cell survival. This was demonstrated to be mediated by a specific multi-protein complex, localized 

at MAMs, including PML, IP3R3, the protein phosphatase PP2a, and Akt. Our results (presented in 

section 3.2 and in Reference (206)) show that PML mediates PP2a retention in the MAMs, which 

dephosphorylates and inactivates Akt. Thus, in the absence of PML, the unopposed action of Akt at 

the ER, due to an impaired PP2a activity, leads to a hyperphosphorylation of IP3R3 and in turn a 
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reduced Ca
2+

 flux from ER to mitochondria, rendering cells resistant to apoptotic Ca
2+

-dependent 

stimuli (Figure 6). 

 

 

 

Figure 6. Representation of MAMs proteins involved in ER-mitochondria Ca
2+

 cross-talk and perturbations 

implicated in cell survival and cell death. Ca2+ release from the ER results in high-Ca2+ hot spots at the mitochondrial 

surface to allow efficient Ca2+ uptake through VDAC - which is coupled to the IP3R by the chaperone grp75 - and the 

MCU. Mitochondrial Ca2+ activates organelle metabolism and ATP synthesis but also, when in excess, triggers 

apoptosis. Apoptosis deregulation is involved in the pathogenesis of neurodegenerative diseases as well as tumors 

development. Presenelin-1 (PS1) and Presenelin-2 (PS2), two proteins that when mutated cause familial Alzheimer’s 

disease (AD), have been recently found at MAMs, and familial AD (FAD) variants of PS2 (PS2FAD) seem to increase ER 

and mitochondria interaction; this could result in mitochondrial Ca2+ overload and subsequent excessive apoptosis. In 

addition, controlled apoptosis is likely to be important to eliminate cells, thereby avoiding tumor genesis. In this 

process the tumor suppressor PML localized at ER/MAMs and plays a crucial role as it promotes IP3R-mediated Ca2+ 

transfer from ER into mitochondria. While Akt is known to suppress IP3R-channel activity by its phosphorylation, the 

recruitment of protein phosphatase PP2a via PML in a specific multi-protein complex (comprising PML, IP3R-3, PP2a, 

and Akt), dephosphorylates and inactivates Akt. This suppresses Akt-dependent phosphorylation of IP3R-3 and thus 

promotes Ca2+ release through this channel and Ca2+ transfer into the mitochondria. In cancer cells, where PML is 

often missing, IP3R3 are hyper-phosphorylated due to an impaired PP2a activity, as a result the Ca2+ flux from ER to 

mitochondria is reduced and cells become resistant to apoptosis. 

 

 

Interestingly, the 66-kDa isoform of the growth factor adapter shc (p66shc) (207), a cytosolic 

adaptor protein which is involved in the cellular response to oxidative stress, has been recently 

found also in the MAMs fraction. In particular, the level of p66Shc in MAMs fraction is age-

dependent and corresponds well to the mitochondrial ROS production which is found to increase 
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with age (208). p66shc is one of the key regulators of ROS production, mitochondrial dysfunction, 

and ageing. The mechanisms by which p66shc increases intracellular ROS levels, inducing 

apoptosis and the deleterious effects of ageing have recently been clarified by our group. Once 

imported into mitochondria, p66Shc causes alterations of organelle Ca
2+

 responses and three-

dimensional structure, thus inducing apoptosis (209). 

Finally, the functional significance of MAMs resident proteins in the regulation of ER-

mitochondrial cross-talk is further supported by the finding that several viral proteins, such as the 

human cytomegalovirus vMIA (210), as well as the p7 and NS5B proteins of hepatitis C virus 

(211), are targeted to the MAMs and exert anti- or pro-apoptotic effects, respectively. 

 

 

Figure 7. Schematic view of the interorganelle interactions and protein composition of the membranes contact sites. 

Possible contact sites between organelles are marked in dotted brown line. 

ER, endoplasmic reticulum; ER lumen, endoplasmic reticulum lumen; IMM, inner mitochondrial membrane; MAMs, 

mitochondria-associated membranes; OMM, outer mitochondrial membrane; PAMs plasma membrane associated 

membranes; PM, plasma membrane. 

The color indicates the function/role of the protein.  

Akt, the serine-threonine protein kinase Akt; ANT, adenine nucleotide translocase; Bap31, B-cell receptor-associated 

protein 31 (or endoplasmic reticulum resident cargo receptor); Calr, carleticulin; CRAC, Ca2+ release-activated 

calcium channel; Cyp D, cyclophilin D; cyt. c, cytochrome c; ERp44, endoplasmic reticulum resident protein 44; 

grp75, glucose-regulated protein 75 (or mortalin); BiP, Binding immunoglobulin Protein (or 78 kDa glucose-regulated 

protein (GRP78)); IP3R, inositol 1,4,5-triphosphate receptor; MCU, mitochondrial calcium uniporter; Mfn1/2 

mitofusin-1/2; Ora i, ORAI calcium release-activated calcium modulator; OSBP, oxysterol binding protein; p66Shc, 

66-kDa isoform of the growth factor adapter shc; PACS-2, phosphofurin acidic cluster sorting protein 2; PEMT2, 

phosphatidylethanolamine N-methyltransferase 2; PP2a, protein phosphatase 2a; PML, promyelocytic leukemia 

protein; PS1/2, presenilin-1/2; PSS-1a, phosphatidylserine synthase-1a; SERCA2b, sarco-endoplasmic reticulum 

calcium ATPase 2b; Sig-1R, Sigma-1 receptor; STIM1, stromal-interacting molecule 1; Stt4p, phosphatidylinositol-4-

kinase; t SERCA1, truncated sarco-endoplasmic reticulum Ca2+ ATPase; VDAC, voltage-dependent anion channel; ?, 

unknown protein. 
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The deeper understanding at the molecular level of the structural and functional links that are 

established at MAMs and the possibility to modulate them may in the future be of great importance 

in the treatment of many different human pathologies. 

To summarize, a schematic representation of the ER-mitochondria interactions and some of MAM 

proteins with the assigned functions is presented in figure 7. 
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2.AIMS: 

 

 

 

The communication between the ER and mitochondria is important for bioenergetics and cellular 

survival. The ER supplies Ca
2+

 directly to mitochondria via IP3Rs at close contacts between the two 

organelles referred to as MAMs. The disruption of these contact sites has profound consequences 

for cellular function, such as imbalances of intracellular Ca
2+

 signalling and disrupted apoptosis 

progression. However, the precise molecular definition of the physical and functional interaction 

between ER and mitochondria still awaits a fine clarification of the macromolecular complexes 

assembled at the interphase between the two organelles. This project propose to investigate the 

molecular aspects that control the dynamics of the organelle-organelle interaction and their 

relationship with Ca
2+

 signals and control of apoptosis. 

The Voltage-dependent anion channel (VDAC), the most abundant protein of the OMM, is in a 

crucial position in the cell where it forms an important interface between ER and mitochondria. 

VDAC has been identified at the MAMs and is deeply involved in  efficient delivery of Ca
2+

 from 

the ER to mitochondria. Strikingly, VDAC1 is a pro-apoptotic protein while VDAC2 exert a 

protective effect. Therefore we analysed the contribution of the different VDAC isoforms to global 

cellular Ca
2+

 homeostasis, in order to establish the role of this non-redundant molecular route in 

transferring Ca
2+

 signals to mitochondria in apoptosis 

Ca
2+

 signalling proteins and organelles are also emerging as additional cellular targets of oncogenes 

and tumour suppressors. The ER-to-mitochondria Ca
2+

 transfer is often remodelled or deregulated 

in tumour cells to sustain proliferation and avoid cell death. The PML and PTEN tumour 

suppressors have been demonstrated to display uncanonical and different subcellular localization as 

well as a broad and fundamental role in apoptosis. Therefore we analyzed the role of PML and 

PTEN in the control of ER-mitochondria Ca
2+

 cross-talk and in induction of apoptosis. 

In particular we took advantage from the long standing experience of our group in the analysis of 

cellular Ca
2+

 signalling, cell fractionation and use of fluorescent probes, in order to precisely 

characterize the contribution of these proteins to global cellular Ca
2+

 homeostasis and apoptosis. 
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3.RESULTS: 

 

 

 

3.1 VDAC1 selectively transfers apoptotic Ca
2+

 signals to mitochondria 

 

Introduction 

VDACs, the most abundant proteins of the OMM, mediate the exchange of ions and metabolites 

between the cytoplasm and mitochondria, and are key factors in many cellular processes, ranging 

from metabolism regulation to cell death. Multicellular organisms and mammals have three distinct 

VDAC genes (VDAC1, VDAC2 and VDAC3), with high sequence homology and similar structure 

(see Introduction, section 1.4).  

Besides its fundamental role as metabolite exchanger, the pleiotropic role of VDACs appears to rely 

on their ability to engage protein-protein interactions with different partners. Indeed, VDACs have 

been shown to interact with cytoskeletal elements such as actin and tubulin (212, 213), metabolic 

enzymes (90), Bcl2-family members including Bak (214), Bad (215), tBid (216) and Bcl-XL (89), 

or other channels such as ANT (217), or the IP3R (171, 203). This scenario is further complicated 

by evidence showing that VDAC contribution to cell death can be isoform and stimulus dependent. 

Given that VDAC exists in three different isoforms that share similar electrophysiological 

properties (molecular weight cutoff, voltage dependence, etc., ) (82), one would expect that all three 

isoforms exert the same effect on apoptosis, i.e. enhancing cell death by increasing mitochondrial 

Ca
2+

 uptake. Unfortunately, this simple model is contradicted by previous work: indeed, Cheng and 

colleagues demonstrate that VDAC2 is a potent anti-apoptotic protein, and proposed a molecular 

mechanism where VDAC2 prevents Bak activation by inhibiting its oligomerization and OMM 

permeabilisation (218). Thus, two different VDAC isoforms are reported to act on apoptosis in the 

opposite direction: VDAC1 acts predominantly as a pro-apoptotic protein (78, 219) whereas 

VDAC2 exerts a protective role against cell death (218). 

The notion that these different isoforms are not simply redundant but could potentially being 

involved in radical different functions is supported by some observations. First of all, the presence 

of one single archetypical mitochondrial porin in simpler organisms (such as yeasts or Neurospora 

Crassa) and several different isoforms in more complex organisms (ranging from plants to 

mammals) suggests that gene duplication and divergent evolution likely occurred, conferring 
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specific functions to different isoforms. Moreover, gene ablation of the different isoforms in mice 

lead to different phenotypes. VDAC1, VDAC3 KO, as well as VDAC1/3 DKO, are viable but with 

variable defects (KO of VDAC1 reduces respiratory capacity (81), KO of VDAC3 causes male 

sterility (220), VDAC1- and VDAC3-KO show deficits in learning behavior and synaptic plasticity 

(221) and the lack of both VDAC1 and VDAC3 causes growth retardation (220)), while the ablation 

of VDAC2 is embryonic lethal (81). In any case, apart from these clues, a serious and rigorous 

assessment of the role of the different VDAC isoforms was still missing. 

Given the relevance that mitochondrial Ca
2+

 plays in triggering apoptosis we test whether these 

differences are due to a diverse channeling capacities toward this cation in living cells. Indeed, 

mitochondrial Ca
2+

 accumulation acts as a „priming signal‟ sensitizing the organelle and promoting 

the release of caspase cofactors, both in isolated mitochondria as well as in intact cells (189, 222). 

In this context, ER-mitochondria contacts mediate the tight and efficient Ca
2+

 transmission between 

the two organelles and thus could represent a potential regulatory site for cell death signals. Here 

we investigate the role of the different VDAC isoforms in the context of cell sensitivity to apoptosis 

and their role in regulating ER-mitochondrial Ca
2+

 signals transmission, and demonstrated that 

VDAC1, by selectively interacting with the IP3Rs, is preferentially involved in the transmission of 

the low-amplitude apoptotic Ca
2+

 signals to mitochondria. 

 

 

Results 

 

Silencing of the three VDAC isoforms differentially regulate cellular sensitivity to apoptotic stimuli 

In this part of the PhD project, we aimed to correlate the Ca
2+

 channelling properties of the VDAC 

isoforms with their effects on cell death. We first downregulated the individual isoforms by RNAi 

silencing (Figure 8c). The siRNA of interest was cotransfected with a GFP reporter, and the effect 

on cell fate was evaluated by applying an apoptotic challenge (C2-ceramide or H2O2) and 

comparing the survival of transfected and non-transfected cells. In these experiments, the siRNA of 

interest was co-transfected with a GFP reporter and the percentage of GFP-positive cells was 

calculated before and after applying an apoptotic stimulus (C2-ceramide or H2O2). In mock-

transfected cells, although the total number of cells is reduced after cell death induction, the 

apparent transfection efficiency was maintained (i.e. transfected and non-transfected cells have the 

same sensitivity to the apoptotic stimulus and thus die to the same extent). However, when GFP-

positive cells are co-transfected with a construct influencing their sensitivity to apoptosis, this will 

be reflected by a change in the fraction of fluorescent cells, that is, in the „apparent‟ transfection 
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efficiency. Thus, protection from apoptosis results into an apparent increase of transfection, 

whereas a decrease reflects a higher sensitivity to apoptosis. The results of the experiment are 

shown in Figure 8. 

 

 

Figure 8. Sensitivity to apoptotic challenges 

of VDAC-silenced cells. Cells were co-

transfected with a fluorescent marker (GFP) 

and the siRNA of interest. The graph bar 

shows the change in percentage of 

fluorescent cells before the treatment with 

100 M H2O2 for 2 h ((a) control -3.75.2%; 

siRNA-hVDAC1 204.1%; siRNA-hVDAC2 -

44.46.8%; siRNA-hVDAC3 +4.73.1%) 

and 30 M C2-ceramide for 2 h ((b) control 

-45.3%; siRNA-hVDAC1 +24.35.1%; 

siRNA-hVDAC2 -50.16.8%; siRNA-

hVDAC3 +7.12.5%). (c) HeLa cells were 

transfected for 48 h with control or siRNA-

hVDAC encoding plasmid. Cells were 

harvested, total protein was extracted and 

subjected to western blotting analysis with 

antibodies anti-β-tubulin as loading control 

and anti-VDAC specific antibodies as 

indicated 

 

 

 

 

 

 

 

 

 

 

 

 

Mocktransfected cells show no difference in the percentage of fluorescent cells after H2O2 treatment 

(-3.75.2%), whereas in the same conditions VDAC1-, VDAC2- and VDAC3-silenced GFP-

positive cells were varied by 204.1%, -44.4±6.8% and 4.73.1%, respectively (Figure 8a). Similar 

results were obtained with C2-ceramide (Figure 8b). This confirms the notion that VDAC1 is pro-
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apoptotic and, among the various reported effects of VDAC2, the pro-survival role is prevailing in 

HeLa cells. Finally, VDAC3 shows no significant effect on apoptosis. 

 

All VDAC isoforms enhance mitochondrial Ca
2+

 

Considering that the enhancement of mitochondrial Ca
2+

 uptake generally correlates with increased 

sensitivity to apoptosis and that VDAC1 has been shown to be a regulator of OMM permeability to 

Ca
2+

 , we wondered whether isoform specificity could rely on different Ca
2+

 channeling properties 

of the VDACs. The individual VDAC siRNAs were thus co-transfected with a mitochondrial Ca
2+

-

probe (mtAEQmut). After aequorin reconstitution with the cofactor coelenterazine, cells were 

challenged with 100 M histamine, and luminescence was measured and converted to Ca
2+

, as 

described in the Materials and Methods section. VDAC1 silencing significantly reduced the 

histamine-induced [Ca
2+

]m peak (Figures 9a and c, [Ca
2+

]m peak values: control, 88.62.7 M; 

siRNA-hVDAC1, 75.63.2 M; siRNA-hVDAC2, 64.93.5 M; siRNA-hVDAC3, 693.8 M). 

Interestingly, VDAC2 and VDAC3 silencing had the same effect, if anything greater. To confirm 

this notion, we carried out overexpression experiments, and, also in this case, VDAC1 showed an 

enhancement of mitochondrial Ca
2+

 uptake, in agreement with previous data (78). The effect was 

comparable, if not smaller, than that observed upon overexpression of VDAC2 and VDAC3 

(Figures 9b and c, [Ca
2+

]m peak values: hVDAC1-EYFP, 97.73.3 M; hVDAC2-EYFP, 102.74.2 

M; hVDAC3-EYFP, 112.85.5 M). 

 

 

 

 

 

Figure 9. Effect of VDAC isoform silencing or overexpression on mitochondrial Ca
2+

 uptake. [Ca2+]m increase 

evoked by histamine stimulation in VDAC-silenced (a and c) or VDAC-overexpressing (b and c) cells ([Ca2+]m peak 

values: control, 88.62.7 M; siRNA-hVDAC1, 75.63.2 M; siRNA-hVDAC2, 64.93.5 M; siRNAhVDAC3, 693.8 

M; hVDAC1-EYFP, 97.73.3 M; hVDAC2-EYFP, 102.74.2 M; hVDAC3-EYFP, 112.85.5 M). (a and b) 

Representative traces, (c) bar graph of the average [Ca2+]m peak. The traces are representative of >12 experiments that 

gave similar results. The bar graphs are the average of all experiments performed 
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All VDACs do not affect ER Ca
2+

 content and cytosolic Ca
2+

 transients 

To rule out a confounding effect on cytosolic Ca
2+

 signaling, we measured ER and cytosolic [Ca
2+

] 

with the appropriate aequorin chimeras. Silencing or overexpression of the three VDAC isoforms 

did not alter significantly the state of filling of the ER store (Figure 10a), nor of its release kinetics 

(data not shown). Accordingly, the cytosolic [Ca
2+

] transient evoked by histamine stimulation was 

not significantly affected when any isoform were silenced (Figure 10b) or overexpressed (Figure 

10c). Finally, mtGFP imaging and mitochondrial loading with the potential sensitive dye 

tetramethylrhodamine methyl ester (TMRM) showed that the effect was not due to changes in 

mitochondrial morphology or significant reduction of mitochondrial membrane potential (data not 

shown).  

 

 

 

 

Figure 10. Effect of VDAC isoform silencing or overexpression on ER and cytosolic [Ca
2+

]. (a) Effect of the 

overexpression, or silencing, of individual VDAC isoforms on [Ca2+]er steady-state levels (control, 360.110.5 M; 

siRNA-hVDAC1, 351.910.6 M; siRNA-hVDAC2, 352.312.3 M; siRNA-hVDAC3, 346.515.1 M; hVDAC1-EYFP, 

36815.6 M; hVDAC2-EYFP, 364.514.4 M and hVDAC3-EYFP, 353.616.6 M). Transfection with the 

appropriate aequorin probe, reconstitution and [Ca2+] measurements were carried out as detailed in the methods 

section. When indicated, the cells were challenged with 100 M histamine. erAEQ transfection and [Ca2+]er 

measurements, after ER Ca2+ depletion, aequorin reconstitution and ER refilling were carried out as detailed in the 

methods section. (b and c) Representative traces of cytosolic Ca2+ transients evoked by 100 M histamine in VDAC-

silenced (b) and overexpressing (c) cells ([Ca2+]c peak values: control, 3.060.05 M; siRNA-hVDAC1, 2.850.06 M; 

siRNA-hVDAC2, 2.810.07 M; siRNA-hVDAC3, 2.980.06 M; hVDAC1-EYFP, 2.940.06 M; hVDAC2-EYFP, 

2.970.07 M and hVDAC3-EYFP, 3.080.04 M). The traces and graph bars of this figure are representatives of >12 

experiments that gave similar results 

 

 

Altogether, these data, while showing a clear effect of VDAC silencing or overexpression on 

mitochondrial Ca
2+

 handling, argue against the possibility that the pro-apoptotic effect of VDAC1 

depends on a greater Ca
2+

 conductance of this isoform. Rather, the data may suggest a preferential 

role of the VDAC2 and VDAC3 isoforms in Ca
2+

 transport (also considering their lower expression 

levels (223)), although the real significance of this observation could be hampered by differences in 

protein stability or trafficking to the OMM. 
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VDAC1 specific coupling to ER Ca
2+

 releasing channels 

The pro-apoptotic activity of VDAC1 thus appears either totally independent of Ca
2+

, or due to the 

fine tuning of Ca
2+

 signals in specialized microdomains that may be overlooked in bulk cytosolic 

measurements (34). We followed the latter possibility, based on growing evidence demonstrating 

that the mitochondria-ER crosstalk is not merely the consequence of physical neighborhood but 

relies on the existence of macromolecular complexes linking the two organelles (see Introduction, 

section 1.7). Specifically, during massive Ca
2+

 release upon maximal agonist stimulation, the 

existence of discrete signaling units could be overwhelmed and masked by the robustness of the 

response. Conversely, when an apoptotic stimulus causes a small, sustained Ca
2+

 release the 

existence of preferential channelling routes could become relevant. Based on previous data, 

showing the interaction of the IP3R with VDAC mediated by the grp75 chaperone (171), we 

investigated whether IP3Rs and grp75 preferentially interact with VDAC1, forming privileged 

signaling units. 

We first performed co-immunoprecipitation experiments using the highly expressed IP3R3 as bait. 

Strikingly, Figure 11a shows that VDAC1 is the only isoform bound to the IP3R in stringent 

conditions: no VDAC2 or VDAC 3 could be detected, also in long-term exposures. Neither actin, 

nor hexokinase-I, a known interactor of VDAC1, were co-immunoprecipitated in the assay, whereas 

the grp75 chaperone did. To confirm the specificity of the interaction, we also carried out the 

reverse experiment, by immunoprecipitating VDAC1 and revealing the presence of grp75 and 

IP3R3 in the precipitate. In these experiments, the cells were transfected with an HA-tagged 

VDAC1 fusion protein, and immunoprecipitation was carried out with anti-HA antibodies. The 

results, shown in Figure 11b, demonstrate that both IP3R3 and grp75 co-immunoprecipitate with 

VDAC1 (similarly to previous data with the IP3R1 (171), and see also Figure 12c). 

 

Apoptotic treatment enhances VDAC1 specific coupling to IP3Rs 

We then investigated whether the VDAC1-IP3Rs interaction is altered in apoptotic conditions. We 

thus performed coimmunoprecipitations in cells challenged with H2O2 using grp75 or VDAC1-HA 

as bait. VDAC1 pull-down in H2O2-treated cells resulted in a significantly greater amount of both 

grp75 and IP3R in the immunoprecipitate (Figure 12a), and the relative amount of IP3R co-

immunoprecipitating with grp75 was significantly greater in H2O2-treated cells (Figure 12b). 

Moreover, we performed co-immunoprecipitation experiments also with IP3R type 1: as shown in 

Figure 12c, similarly to IP3R3, also IP3R1 interacts with VDAC1 but not with VDAC2, and H2O2 

treatment enhance this interaction (although the effect seems weaker than with IP3R3). 
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Figure 11. Co-immunoprecipitations of VDAC1 with 

IP3R3. Co-immunoprecipitations using IP3R3 (a) and 

VDAC1-HA (b) as baits. HeLa cells were grown in 10-

cm Petri dishes until full confluence. For VDAC1-HA 

immunoprecipitation, cells were transfected 48 h 

before experiment. Cells were then detached by 

scraping, harvested and proteins were extracted in 

non-denaturing conditions as indicated in the methods 

section. After protein quantification, 700 g were 

incubated overnight at 4 °C with the 3 g of the 

indicated antibody. The immunocomplex was then 

isolated by adding protein G-coated sepharose beads 

for 2 h at 4 °C. The purified immunocomplex was then 

washed three times with lysis buffer. Indicated 

fractions were then subjected to SDS-PAGE and 

western blotting, and probed with the indicated 

antibodies 

 

 

 

 

 

 

 

 

 

 

Figure 12. Co-immunoprecipitations of VDAC1 with 

IP3R3 after H2O2 treatment. Co-immunoprecipitations 

using VDAC1-HA (a), grp75 (b) and IP3R-1 (c) as 

baits. HeLa cells were grown in 10-cm Petri dishes 

until full confluence. For VDAC1-HA 

immunoprecipitation, cells were transfected 48 h 

before experiment. Cells were then detached by 

scraping, harvested, incubated for 10 min with vehicle 

or 1 mM H2O2 and proteins were extracted in non-

denaturing conditions as indicated in the methods 

section. After protein quantification, 700 g were 

incubated overnight at 4 °C with the 3 g of the 

indicated antibody. The immunocomplex was then 

isolated by adding protein G- (for anti-HA) or A- (for 

anti-IP3R-1 and grp75) coated sepharose beads for 2 h 

at 4 °C. The purified immunocomplex was then washed 

three times with lysis buffer. Indicated fractions were 

then subjected to SDS-PAGE and western blotting, and 

probed with the indicated antibodies 
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VDAC1 selectively transfers apoptotic Ca
2+

 signals to mitochondria. 

In order to test whether the interaction of VDAC1 and IP3Rs is involved in apoptotic signaling, we 

investigated the Ca
2+

 transients evoked by apoptotic stimuli in VDAC-silenced cells. We applied an 

oxidative stress, that is, treated the cells acutely with 1 mM H2O2. As previously reported (222), the 

addition of H2O2 caused a [Ca
2+

]c increase that is much smaller and more sustained than that evoked 

by histamine (Figures 13a and b). Under those conditions, mitochondria also undergo a small 

increase (peak value <1 M). VDAC1 silencing decreased mitochondrial Ca
2+

 accumulation, while 

the knock-down of the other isoforms was indistinguishable from controls. We then titrated the 

histamine concentration in order to elicit a small Ca
2+

 response, comparable to that evoked by H2O2 

by applying a 0.5 M histamine challenge. Under those conditions, no difference among the 

different VDAC isoforms could be revealed (Figure 13c), thus suggesting that besides the slow 

kinetics the strengthening of the physical coupling of the IP3R and VDAC1 channels by apoptotic 

challenges may have an important role in the potentiation of mitochondrial Ca
2+

 signals and the 

induction of cell death. 

 

 

 

Figure 13. VDAC1 selectively transfers apoptotic Ca
2+

 signals to mitochondria. Representative traces (a) and 

statistics (b) of [Ca2+]m evoked by the acute administration of 1 mM H2O2 ([Ca2+]m peak values: control, 0.6170.015 

M; siRNA-hVDAC1, 0.4690.025 M; siRNA-hVDAC2, 0.6320.016 M; siRNA-hVDAC3, 0.6440.016 M). (c) 

[Ca2+]m increases evoked by 0.5 M histamine. All other conditions as in Figure 9 

 

 

Discussion 

 

Several observations support the notion that VDAC can finely tune cellular processes in an isoform-

specific way: (i) selective genetic ablation of the three VDAC genes exhibits different phenotypes 

(224) (ii) VDAC1 and VDAC2 exert diametrically opposite effects on apoptosis (78, 218, 225) and 
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a compound acting through VDAC2, erastin, is effective in tumors harboring Ras mutations (226); 

(iii) apoptotic challenges (227) and genomic programs, such as the PGC1- pathway (De Stefani 

and Rizzuto, unpublished), differentially regulate the expression of VDAC isoforms; and (iv) the 

three isoforms are localized to different sub-domains of the OMM (228). We thus investigated in 

greater detail the molecular mechanism underlying the different role of VDAC isoforms in 

apoptosis. 

The first, obvious explanation of this diversity relied on different Ca
2+

 channelling capacities, given 

the sensitizing role of Ca
2+

 in the release of caspase activators. Our results ruled out the possibility, 

by showing relatively minor differences in Ca
2+

 channelling that cannot account for their 

differential cell death regulation. These minor differences could potentially be due to small 

variations in Ca
2+

 transport capacities. However, as in situ VDAC levels after overexpression or 

gene silencing are quite difficult to rigorously assess, this conclusion is risky. These data simply 

support the notion that all VDAC isoforms can similarly transport Ca
2+

 in living cells, and this is 

not correlated with their effect on apoptosis. 

How can we then solve the discrepancy between mitochondrial Ca
2+

 transport and apoptosis 

regulation? An obvious conclusion is the denial (or, at least the reconsideration) of the classic 

paradigm linking mitochondrial Ca
2+

 to apoptosis. However, this notion is now supported by broad 

evidence showing that mitochondrial Ca
2+

 loading favors cell death and signalling molecules 

reducing or increasing Ca
2+

 signals protect from or enhance apoptosis, respectively (135). Ca
2+

 in 

mitochondria, however, is an intrinsically pleiotropic signal, and the final outcome varies widely 

depending on both the nature of the stimulus (and hence the „Ca
2+

 signature‟) and concomitant 

signalling pathways. Indeed, while physiological stimuli cause the rapid release of Ca
2+

 from 

internal stores, and thus a large and transient mitochondrial Ca
2+

 uptake, cell death signals have 

been shown to induce only a modest (even if sustained) [Ca
2+

]m increase (222). This latter event has 

been proposed to represent a sort of priming signal that conditions and sensitizes mitochondria to 

otherwise non-lethal stimuli. In this context, the local coupling between ER and mitochondrial Ca
2+

 

channels becomes critically relevant: small Ca
2+

 microdomains elicited by apoptotic stimuli such as 

C2-ceramide strongly relies on the existence of a preferential route transmitting the signal from the 

ER to the mitochondrion; on the other side, during physiological signals large Ca
2+

 microdomains 

are generated and this fine channel coupling could be potentially overwhelmed by the vigorous ER 

Ca
2+

 release. On the ER side, the notion that the accurate discrimination of Ca
2+

 signals mediating 

diverse effects relies on highly specialized molecular determinants was associated to the 

observation that the selective knockdown of IP3R3 impairs cell death signals transmission whereas 
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the silencing of the other two isoforms had almost no effect (139, 140). On the mitochondrial side, 

we wondered whether a similar selectivity could be associated to the mitochondrial channel 

repertoire at ER-mitochondria contact sites. The results clearly confirmed this possibility, by 

demonstrating that VDAC1 is preferentially involved in the transfer of apoptotic stimuli (such as 

those induced by H2O2) rather than physiological responses to agonists. Strikingly, our co-

immunoprecipitation studies showed that IP3R selectively interacts with VDAC1, providing a 

molecular route for the higher sensitivity of the Ca
2+

 transfers. Moreover, this selective interaction 

appears not static but finely tuned by cellular conditions, as demonstrated by the fact that H2O2 

strengthens the coupling between the ER and mitochondrial Ca
2+

 channels, and by the selective 

involvement of VDAC1 in the transmission of apoptotic stimuli. 

Overall, these data reveal a complex molecular organization underlying VDAC Ca
2+

 channelling 

properties, and allowing VDAC1 to exert its pro-apoptotic activity. The emerging picture reveals 

that VDACs represent a fundamental factor in mitochondria physiology, with similar channelling 

properties shared among its different variants, but also mediating diverse effects through isoform-

specific protein-protein interactions and the assembly of highly specialized, higher-order protein 

complexes. This view accounts for most of experimental data available and finally reconciles 

apparently contrasting evidence, allowing a deeper insight on mitochondrial regulation of cell life 

and death. 
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3.2 PML regulates apoptosis at endoplasmic reticulum by modulating calcium 

release 

 

Introduction 

The promyelocytic leukemia (PML) protein is a tumor suppressor frequently lost or aberrant in 

hematopoietic malignancies and human solid tumors (229, 230). Its gene was originally identified at 

the break point of the t(15;17) chromosomal translocation of acute promyelocytic leukemia (APL), 

a distinct subtype of acute myeloid leukemia. As a consequence of this translocation, PML fuses to 

the retinoic acid (RA) receptor alpha (RAR) gene. Two fusion genes are generated encoding 

PML-RAR and RAR-PML fusion proteins, which coexist in the leukemic cells, blocking 

heamatopoietic differentiation. PML has, therefore, become the object of intense research on the 

basis of this premise. Since then, PML has been shown to regulate diverse cellular functions, such 

as transcriptional regulation, DNA-damage response, sumoylation process, cellular senescence, 

neoangiogenesis, and apoptosis (231). 

PML belongs to a large family of proteins harboring a tripartite structure that contains a zinc-finger 

called the RING motif (R) located N-terminally followed by two additional zincfingers motifs (B-

boxes; B) and an -helical coiled-coil domain (CC), collectively referred to as the RBCC domain. 

The RBCC domain mediates protein-protein interactions and is responsible for PML 

multimerization and the formation of macromolecular complexes. The C-terminal region of PML is 

less structured and varies between PML isoforms. Alternative splicing of C-terminal exons is 

responsible for the existence of at least seven PML isoforms characterized by different C-terminal 

regions and functional specificity (232). 

PML is typically concentrated in subnuclear macromolecular structures termed PML-nuclear bodies 

(PML-NBs), of which PML is the essential component. PML-NBs have a diameter of 0.2-1 m and 

the shape of a doughnut. PML-NBs are multiprotein dynamic structures that undergo significant 

changes in number, size, and position, particularly in response to cellular stress (233). They 

critically depend on PML to be correctly assembled (234). PML functionally interacts with a large 

number of proteins within PML-NBs. Some are in direct physical contact with PML, while others 

are not (235). PML SUMOylation and noncovalent binding of PML to SUMOylated PML through 

the SUMO-binding motif constitutes the nucleation event for subsequent recruitment of 

SUMOylated proteins and/or proteins containing SUMO-binding motifs to the PML-NBs (234). In 
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the APL blasts, PML-RAR associates physically with PML and causes its delocalization into 

microspeckled nuclear structures with consequent disruption of the PML-NBs (236). 

Pml null mice and cells are protected from multiple and diverse apoptotic stimuli (237). A possible 

explanation for why Pml null cells are resistant to many apoptotic stimuli can be ascribed to the fact 

that PML can act as a pleiotropic factor in the functional regulation of several pro- and antiapoptotic 

pathways. Indeed, PML is functioning as part of a complex tumour-suppressive network. For 

instance, it is well established that PML is an important factor in the regulation of both p53-

dependent and -independent apoptotic pathways (238). Moreover, PML can act as a suppressor of 

other major oncogenic pathways, such as the PI3K/Akt pathway, through its ability to interact with 

the protein phosphatase 2a (PP2a) and inhibit the nuclear function of Akt, thus leading to 

suppression of its prosurvival and promitogenic functions (239). Finally, PML regulates the 

function of PTEN (phosphatase and tensin homolog deleted on chromosome 10), which is the main 

suppressor of the PI3K pathway (see Results, section 3.3). PML co-ordinate PTEN subcellular 

nuclear localization: this occurs through inhibition of PTEN de-ubiquitination by HAUSP 

(herpesvirus-associated ubiquitin-specific protease) and its nuclear retention. As a consequence, 

both in APL blasts and in PML-loss conditions, PTEN is excluded from the nucleus (240, 241). 

Despite PML protein has been recognized as a critical and essential regulator of multiple apoptotic 

response, no unified mechanism appeared to explain the global resistance of Pml null cells to 

apoptosis. How PML would exert such broad and fundamental role in apoptosis remained for long 

time a mystery. Interestingly, many, if not all, PML isoforms have shown both cytoplasmic and 

nuclear localization (242, 243). 

Therefore in this part of the PhD project, we aimed to understand how PML could regulate such 

broadly diverse apoptotic responses through its extranuclear localization. In particular, we analyzed 

PML intracellular localization by cell fractionation and found that extranuclear PML was 

specifically enriched at the ER and MAMs. So, we investigated the role of PML at MAMs in the 

control of the functional cross-talk between ER and mitochondria. We found PML in complexes of 

large molecular size with the IP3R, Akt and PP2a, and demonstrated that PML is essential for Akt- 

and PP2a-dependent modulation of IP3R phosphorylation and in turn for IP3R-mediated Ca
2+

 

release from the ER to the mitochondria. Our findings provide a mechanistic explanation for the 

elusive mechanism whereby the PML tumour suppressor exerts its essential role in apoptosis 

triggered by Ca
2+

-dependent stimuli and identify a novel unexplored pharmacological target for the 

modulation of Ca
2+

 signals and cell death. 
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Results 

 

PML localizes at ER and MAMs regions and mediates Ca
2+

-dependent apoptotic cell death 

We fractionated homogenates of primary mouse embryonic fibroblasts (MEFs) by 

ultracentrifugation, focusing on the mitochondria, ER and MAMs, the structures that contain sites 

where the ER contacts mitochondria. All fraction markers were enriched in their respective 

compartments (we used β-tubulin as a general cytosolic marker, IP3R as ER marker, VDAC as 

mitochondrial marker, and PCNA as nuclear marker); moreover, the close apposition between ER 

and mitochondrial membranes at MAMs explained the presence of both VDAC and IP3R in these 

microdomains (139, 171). PML localized both to the nucleus and the cytosol and appeared to 

localize also to the ER, MAM, and crude mitochondrial fractions but not to “pure” mitochondrial 

fraction free of ER and nuclear markers (Figure 14A). These results were confirmed by 

immunogold labeling of ultrathin cryosections showing that PML associates with the surface of the 

ER (Figure 14B, a and b) and in the proximity of the mitochondrial membrane at contact sites 

between the ER and mitochondria (Figure 14B, d to g). 

In view of the localization of PML at the ER and MAM, we investigated its requirement in 

apoptosis induced by ER stress (169). Matched wild-type (Pml
+/+

) and Pml
−/−

 MEFs were treated 

with ER stress inducers: H2O2 and menadione (MEN), two oxidizing agents that induce ER Ca
2+

 

release; tunicamycin (TN) or an inhibitor of protein N-glycosylation; and thapsigargin (TG), an 

inhibitor of the SERCA. After 12 hours of treatment, the percentage of apoptotic cells in Pml
−/−

 

MEFs was much lower than that observed in Pml
+/+

 MEFs under all treatment conditions (Figure 

14C). 

 

PML absence induces a smaller release of Ca
2+

 from ER, leading to reduced mitochondrial Ca
2+

 

uptake after agonist or apoptotic stimulation  

MAMs are specialized domains selectively enriched in critical Ca
2+

 signaling elements, which 

mediate Ca
2+

 transfer between ER and mitochondria, such as the IP3R (see Introduction, section 

1.7). Ca
2+

 signaling has a major role in the regulation of cell death. Release of the ER Ca
2+

 pool 

through the IP3R3 appears to induce a sensitization of cells to apoptotic stimuli (see Introduction, 

section 1.6). 
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Figure 14. Identification of PML at ER and MAM regions and Ca
2+

-mediated PML-dependent cell death. (A) 

Detection of PML by immunoblotting in Pml+/+ MEFs fractionation. IP3R, tubulin, proliferating cell nuclear antigen 

(PCNA), VDAC are used as markers. H: homogenate; Mc: crude mitochondria; Mp: pure mitochondria; ER; MAM; C: 

cytosol; N: nucleus. (B) Immunogold labeling of PML near the rough ER (r), mitochondria (m), and MAM 

(arrowheads) in Pml+/+ MEFs. Gold particles (15 nm) are mostly associated with the surface of the ER (7.07 gold 

particles/m2) and more occasionally with mitochondrial membranes (3.08 gold particles/m2) (a and b). Specificity of 

the antibodies is demonstrated by labelling of nuclear bodies (n) (c). Morphologically identified MAM often 

demonstrated labeling at contacts between ER and mitochondria [(d) to (g), and arrowheads in insets therein]. Insets 

correspond to boxed areas. Bar: (a) 360 nm; (b) 340 nm; (c) 370 nm; (d) 188 nm, inset 120 nm; (e) 260 nm, inset 190 

nm; (f) 340 nm, inset 180 nm; (g) 280 nm, inset 210 nm. (C) Apoptosis induced by 1 mM H2O2, 15 M menadione 

(MEN), 6 M tunicamycin (TN), 2 M thapsigargin (TG), or 50 M etoposide (ETO) in Pml+/+ or Pml−/− MEFs treated 

for 12 hours. Data represent the mean SD of five independent experiments. 

 

 

To investigate the role of PML in Ca
2+

 homeostasis, we used recombinant Ca
2+

-sensitive 

bioluminescent protein aequorin (244). In Pml
+/+

 MEFs, the [Ca
2+

] in the lumen of the ER ([Ca
2+

]er) 

at steady state was 450 M, whereas in Pml
−/−

 MEFs it was lower. When the cells were stimulated 

with ATP, the P2Y receptor agonist that causes release of Ca
2+

 from the ER, the decreases in the 

[Ca
2+

]er observed in Pml
+/+

 MEFs in quantitative and kinetic terms were larger and faster than in 

Pml
−/−

 MEFs, reflecting a more rapid flow of Ca
2+

 through the IP3R (Figure 15A). In turn, the 

[Ca
2+

] increases evoked by stimulation with ATP in the cytosol ([Ca
2+

]c) and mitochondria 

([Ca
2+

]m) were smaller in Pml
−/−

 than in Pml
+/+

 MEFs (Figure 15, B and C). 
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Figure 15. Intracellular Ca
2+

 homeostasis in Pml
+/+

 and Pml
−/−

 MEFs. (A to C) ER (A), cytosolic (B), and 

mitochondrial (C) Ca2+ homeostasis measurements with aequorins. Where indicated, cells were treated with 100 M 

ATP. Pml+/+: [Ca2+]er peak 448  32 M; [Ca2+]c peak 3.3  0.16 M; [Ca2+]m peak 138  14 M. Pml−/−: [Ca2+]er 

peak 386  42 M; [Ca2+]c peak 2.65  0.23 M; [Ca2+]m peak 78  10 M. n = 15 samples from five independent 

experiments, P < 0.01. (D) MEFs loaded with calcium-sensitive fluorescent dye Fura-2/AM were stimulated with 

menadione (MEN) or 

H2O2. The kinetic behaviour of the [Ca2+]c response is presented as the ratio of fluorescence at 340 nm/380 nm. The 

traces are representative of at least 10 single-cell responses from three independent experiments. (E) Analysis of 

[Ca2+]m during oxidative stress. Where indicated, cells were stimulated with 30 M MEN or 2 mM H2O2. n = 10 

samples from three independent experiments. 
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We then investigated whether the absence of Pml could alter the increases in [Ca
2+

]c and [Ca
2+

]m 

induced by apoptotic stimuli. In Pml
−/−

 MEFs, the increases in [Ca
2+

]c and Ca
2+

]m, evoked by the 

oxidative apoptotic stimuli, such as MEN and H2O2 that trigger both a progressive release of Ca
2+

 

from the ER and an activation of the capacitative Ca
2+

 influx (142), were smaller as mentioned 

above (Figure 15, D and E). 

 

The erPML chimera rescues Ca
2+

 homeostasis after physiological and apoptotic stimuli in Pml
−/−

 

MEFs 

To determine whether the effects of PML on regulation of Ca
2+

 homeostasis depend on its 

localization to the ER and MAMs, we generated a chimeric protein containing the entire PML 

protein that was targeted to the outer surface of the ER (245). 

This chimera, designated erPML, localized to the ER and MAMs in Pml
−/−

 MEFs, as revealed by 

immunocytochemical staining (Figure 16A). The introduction of erPML in Pml
−/−

 MEFs restored 

Ca
2+

 signals evoked by either agonist (Figure 16B) or apoptotic stimuli (MEN or H2O2) (Figure 

16C) to values comparable to those in Pml
+/+

 MEFs (Figure 15, C and D). 

This effect was associated with a re-established sensitivity to apoptosis induced by ER stress but did 

not restore the sensitivity to etoposide (ETO) (Figure 16D), a DNA-damaging agent that triggers 

apoptotic death by a Ca
2+

-independent process. 

Overall, these experiments indicate that the absence of Pml causes a reduction in the amplitude of 

Ca
2+

 signals induced by ATP, other agents, or apoptotic stimuli, and that forcing PML to the ER 

rescues these defects. A PML protein targeted to the nucleus restored the formation of NBs, but did 

not restore the Ca
2+

 responses and the sensitivity to ER stress-dependent cell death, although it 

restored response to other apoptotic stimuli such as ETO (data not shown). 

 

PML is essential for Akt- and PP2a-dependent modulation of IP3R phosphorylation and in turn for 

IP3R-mediated Ca
2+

 release from ER 

To investigate the mechanism underlying these activities of PML, we tested whether PML could 

functionally and physically interact with the IP3R3. Immunoprecipitation of IP3R3 led to the co-

precipitation of PML (Figure 17A) and vice versa (data not shown). Amounts of phosphorylated-

IP3R3 (p-IP3R3) were higher in Pml
−/−

 than in Pml
+/+

 MEFs (Figure 17A). 

Reduced cellular sensitivity to apoptotic stimuli was observed in cells with high activity of the 

protein kinase Akt, as a result of diminished Ca
2+

 flux from the ER through the IP3R (146, 147). 

The amount of phosphorylated Akt (pAkt) (that is, the active form of Akt) co-precipitated with  
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Figure 16. erPML chimera reestablishes the [Ca
2+

]m and apoptotic responses in Pml
−/−

 MEFs. (A) Schematic map of 

the erPML chimera and immunofluorescence image, stained with the antibody to PML, of Pml−/− MEFs expressing 

erPML. (B) erPML re-establishes the agonist-dependent [Ca2+]m response in Pml−/− MEFs ([Ca2+]m peak 135  12 M) 

to values comparable to those of Pml+/+ MEFs. (C) Pml−/− and Pml−/− MEFs expressing erPML previously incubated 

with Fura-2/AM were stimulated with menadione (MEN) or H2O2. The kinetic behaviour of the [Ca2+]c response is 

presented as the ratio of fluorescence at 340 nm/380 nm. The traces are representative of at least 10 single-cell 

responses from three independent experiments. (D) Representative microscopic fields of Pml−/− MEFs and Pml−/− 

expressing erPML before and after treatment with 1 mM H2O2, 15 M MEN, or 50 M etoposide (ETO) for 16 hours. 
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IP3R3 (Figure 17A) was higher in Pml
−/−

 than in Pml
+/+

 MEFs. Dephosphorylation of Akt at the 

MAM might occur through PML-mediated recruitment of the phosphatase PP2a. Indeed, PML 

interacts with PP2a in PML-NBs (239). Further, the amount of PP2a coprecipitated with IP3R3 

(Figure 17A) was diminished in Pml
−/−

 MEFs (Figure 17A). Thus, in the absence of Pml, reduced 

Ca
2+

 release could be caused by increased phosphorylation and activation of Akt at the ER due to an 

impaired PP2a activity, which in turn impair Ca
2+

 flux through the IP3R because of its 

hyperphosphorylated state. 

We also demonstrated the localization of all these proteins at the ER and MAM through 

immunocytochemical staining and subfractionation (Figure 17, B and C). 

We further investigated the correlation among PML, Akt, and PP2a at the ER and the regulation of 

the IP3R by a selective inhibition of either Akt or PP2a. Pretreatment of cells with okadaic acid 

(OA, a PP2a inhibitor) caused a reduction in [Ca
2+

]m responses to ATP stimulation and a reduced 

H2O2- or MEN-induced death in Pml
+/+

 MEFs (92  21 M vs 128  33 M in control cells, 

p<0.01) and in Pml
−/−

 MEFs expressing erPML (102  13 M vs. 135  17 M in control cells, 

p<0.05), but not in Pml
−/−

MEFs (73  22 M vs 78  14 M in control cells) (Figure 17, D and E), 

in which PP2a activity is impaired. LY294002 (an inhibitor of Akt) had no effect on the agonist-

dependent [Ca
2+

]m transients and on apoptosis in Pml
+/+

 (126  16 M vs 128  33 M in control 

cells) or Pml
−/−

 MEFs expressing erPML (124  13 M vs 132  18 M in control cells), whereas it 

increased agonist dependent [Ca
2+

]m responses and restored sensitivity to H2O2 or MEN (Figure 17, 

D and E) in Pml
−/−

 MEFs (112  15 M vs 78  14 M in control cells, p<0.01) (in which high 

levels of pAkt are observed; Figure 17A).  

 

 

Discussion 

 

The PML tumor suppressor is a critical and essential regulator of multiple apoptotic responses. 

While the reported role of PML in the modulation of p53 transcription could explain some of its 

pro-apoptotic functions, it failed to reconcile the fundamental role played by PML in the 

transcription-independent early apoptotic response. 
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Figure 17. Modulation of [Ca
2+

]m and apoptotic responses by PML through Akt- and PP2a-dependent 

phosphorylation of IP3R3. (A) Coimmunoprecipitation of IP3R3 with PML, Akt, and PP2a in Pml+/+ MEFs. In the 

same blot, the levels of p-IP3R3 and pAkt are shown. (B) Localization of PML (green) and PP2a (red) at ER and MAM 

sites in Pml+/+ MEFs analyzed by immunofluorescence. FACL was used as MAM marker. (C) Pml+/+ MEFs subcellular 

fractionation and identification of PP2a and Akt at ER and MAM fractions by immunoblot. (D) Effects of okadaic acid 

(OA, 1 M for 1 hour) and LY294002 (5 M for 30 min) on agonist-dependent [Ca2+]m responses in Pml+/+, Pml−/−, 

and Pml−/− MEFs expressing erPML. [Ca2+]m is represented as a percentage of the peak value of control cells. For all 

these experiments n  15 of at least five independent experiments. (E) Quantification of cell survival of Pml+/+, Pml−/−, 

and Pml−/− MEFs expressing erPML, control (CTR, untreated) and treated first with OA (1 M for 1 hour) or 

LY294002 (5 M for 30 min) and then H2O2 or menadione (MEN) for 16 hours. The data show the percentage of living 

cells in the whole-cell population negative for annexin-V-fluorescein isothiocyanate and propidium iodide staining, 

analyzed by flow cytometry. Data show the means SD from three independent experiments. 
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Here we elucidate, at list in part, the molecular basis for such a diverse proapoptotic role. By 

ultracentrifugation, immunogold labeling, and immunofluorescence, we revealed that extranuclear 

PML is specifically enriched at ER and at the MAMs, signaling domains involved in ER-to-

mitochondria Ca
2+

 transport and in induction of apoptosis, suggesting that PML might have 

additional and yet unidentified functions independent from the PML-NB. 

The most important molecular component of the Ca
2+

 handling machinery of the ER is represented 

by the IP3Rs. IP3Rs are ligand-gated channels that serve to discharge Ca
2+

 from ER stores in 

response to agonist stimulation. However, being directly responsible for mitochondrial Ca
2+

 

overload, the release of Ca
2+

 from ER stores by IP3Rs is linked to multiple models of apoptosis. 

Recent data showed that IP3R3, localized in the MAMs, has a selective role in the induction of 

apoptosis by preferentially transmitting apoptotic Ca
2+

 signals to mitochondria. Accordingly, 

siRNA silencing of IP3R3 blocked apoptosis (246) and KO of IP3R3 significantly decreased 

agonist induced mitochondrial Ca
2+

 uptake (138). IP3Rs possess consensus sequences for 

phosphorylation by numerous kinases, including Akt, which is constitutively active in some cancer 

cells. In turn, the hyper-phosphorylation of IP3Rs by Akt inhibits ER Ca
2+

 release and reduces 

significantly cellular sensitivity to Ca
2+

-mediated pro-apoptotic stimulation (146, 147). 

We found Pml to physically interact with IP3R3, modulating its phosphorylation state by 

controlling the activity of Akt through the recruitment of the PP2a phosphatase at the ER/MAMs. In 

so doing, PML is able to regulate Ca
2+

 mobilization into the mitochondrion, which then triggers the 

cell death program. Conversely, in the absence of PML, PP2a does not accumulate in the complexes 

with IP3R and Akt, and this results in an accumulation of activated Akt (phospho-Akt). Once 

activated Akt can hyper-phosphorylate IP3R thus inhibiting the ER Ca
2+

 release towards the 

mitochondria. This was demonstrated to be mediated by a specific multi-protein complex, localized 

at ER/MAMs contact sites, including PML, IP3R3, the protein phosphatase PP2a, and Akt. In 

particular, PML appeared to be essential for the binding of PP2a to the IP3R3, hence favoring 

IP3R3 de-phosphorylation (Figure 18). 

Strikingly, the final outcome of a PML functional loss at the cellular level is similar to the one 

observed in cells overexpressing Bcl-2 or lacking of Bax/Bak (albeit through a completely different 

molecular mechanism): a reduced mitochondrial Ca
2+

 overload upon pro-apoptotic stimuli that 

dramatically blunts the apoptotic response. 

Our data highlight an extranuclear, transcriptionindependent function of PML that regulates cell 

survival through changes in Ca
2+

 signaling in the ER, cytosol, and mitochondria. This effect appears 

to be specific to Ca
2+

-mediated apoptotic stimuli because alteration in Pml did not influence cell 
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death in cells treated with ETO, which activates the apoptotic pathway in a way largely independent 

of Ca
2+

. 

 

 

 

Figure 18. Schematic model of PML effects on Ca
2+

 homeostasis. PML localized at the ER and MAM, to the outer 

surface of the ER, interacts with IP3R3, Akt and PP2a. This interaction is fundamental for the modulation of IP3R3-

phosphorylation and in turn for IP3R dependent Ca2+ release 

 

This mechanism may explain how PML can so broadly regulate the early (and transcription 

independent) apoptotic response. This new apoptogenic mechanism, which appears to operate in 

parallel to those regulated at other sites such as the PML-NBs, demonstrates that the role of PML in 

apoptosis is broader than previously believed inasmuch as it does modulate apoptosis both in the 

nucleus as well as at the MAMs. Our findings may have implications in tumorigenesis where the 

function of PML is frequently lost, or in other pathophysiological conditions where PML is 

accumulated such as cell stress, or infection with viral or bacterial pathogens. 
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3.3 PTEN localization at the ER and MAMs regulates calcium signalling and 

apoptosis 

 

Introduction 

PTEN (phosphatase and tensin homolog deleted on chromosome 10) is among the most commonly 

lost or mutated tumour suppressors in human cancers (247, 248). PTEN acts as a haploinsufficient 

tumour suppressor, with somatic alterations of at least one allele frequently observed in glioma, 

breast, colon, lung and prostate tumours, whereas its complete loss occurs at highest frequency in 

glioblastoma and endometrial carcinomas, and is generally correlated with advanced cancer and 

metastases (249). Moreover, germline mutations of PTEN have been found in cancer-susceptibility 

syndromes (250). 

PTEN is a phosphatase that has both a lipid (251) and a dual-specificity protein phosphatase activity 

(252). It dephosphorylates the plasma membrane lipid phosphatidylinositol 3,4,5-trisphosphate 

(PIP3) to generate phosphatidylinositol 4,5-bisphosphate (PIP2), thereby directly antagonizing the 

phosphatidylinositol 3-kinase (PI3K)-Akt pathway that is crucial for maintaining tissue homeostasis 

(253, 254). Loss of PTEN leads to elevated levels of PIP3 and consequent Akt hyperactivation, 

which promotes cell growth, proliferation, survival and other cellular processes (255, 256). 

Although the tumour-suppressive function of PTEN is mostly dependent on its PIP3 phosphatase 

activity, it has now been firmly established that PTEN also possesses additional novel biological 

functions that are independent of its lipid phosphatase activity (257-260). PTEN exerts such 

functions by its protein phosphatase activity and proposed non-enzymatic mechanisms, such as 

interaction with other proteins (261, 262). Recent advances have also proved that the cellular 

localization of PTEN plays a central role in its regulation (263). Several studies clearly demonstrate 

that nuclear PTEN has important tumour-suppressive functions (239, 264-266). Furthermore, PTEN 

has been found in mitochondria, in hippocampal neurons undergoing apoptosis (267) and in hearts 

exposed to ischemia-reperfusion (268), and has been proposed to be a crucial mediator of 

mitochondria-dependent apoptosis under certain circumstances.  

Mitochondria and the ER have emerged as cellular targets of oncogenes and tumour suppressors, as 

they are crucial nodes where significant remodelling of Ca
2+

 signalling occurs in tumour cells to 

sustain proliferation and avoid cell death (see Introduction, section 1.6). Indeed, despite controlling 

many processes essential for life, the ER-mitochondrial Ca
2+

 transmission can be a potent death-

inducing signal, since the enhancement of mitochondrial Ca
2+

-uptake generally correlates with 

increased sensitivity to apoptosis. The ER supplies Ca
2+

 directly to mitochondria via IP3Rs at close 
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contacts between the two organelles, referred to as MAMs. Ca
2+

-handling proteins of both 

organelles are highly compartmentalized at MAMs, providing a direct and proper mitochondrial 

Ca
2+

 signalling. Recently, numerous other proteins, including those involved in the pathogenesis of 

different disorders, have been characterized at MAMs, underling their importance for signalling cell 

fate choices (see Introduction, section 1.7). 

In this part of the PhD project, we identify a novel intracellular localization of PTEN at ER and 

MAMs. We evaluate the effect of PTEN silencing, overexpression, and ER-targeting, in regulating 

ER-mitochondrial Ca
2+

 signal transmission and in the induction of apoptosis. Taken together, the 

present data demonstrate that ER-localized PTEN is specifically involved in increasing both Ca
2+

 

transfer from the ER to mitochondria and cell sensitivity to Ca
2+

-mediated apoptosis, suggesting an 

additional mechanism of action of this important tumour suppressor. 

 

 

Results 

 

PTEN is localized in different intracellular compartments including ER and MAMs 

Besides the best-known cytoplasmic and nuclear pools, it has been reported that PTEN can 

accumulate in mitochondria. To further analyze the intracellular localization of PTEN, in particular 

its presence in the ER and MAMs, we performed detailed subcellular fractionation in HEK-293. 

We isolated crude mitochondria, nuclei and a cytosolic fraction containing lysosomes and 

microsomes. Subsequent ultracentrifugation of the cytosolic fraction results in the separation of ER 

and cytosol, whereas the crude mitochondria preparation were further fractionated on a Percoll 

gradient to obtain purified mitochondria and MAMs. We evaluated total homogenate, cytosol, ER 

and MAMs fractions by immunoblot analyses (Figure 19) using β-tubulin as a general cytosolic 

marker, IP3R3 as ER marker, FACL4 as MAMs marker, VDAC as mitochondrial marker, and 

lamin B1 as nuclear marker (to exclude nuclear contamination during fractionation); all markers 

were enriched in their respective compartments. Using this protocol, PTEN was found enriched in 

the cytosol, as expected, but we also revealed its presence in the ER and MAMs fractions. We also 

confirmed the previously described localization of Akt, the major downstream target of PTEN, at 

ER and MAMs in HEK-293 cells (206). The same results were obtained by subcellular fractionation 

of primary MEFs (Figure 20). Localization of PTEN in the ER was also verified by 

immunocytochemical staining (Figure 22a, A-A‟‟). 
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Figure 19. Identification of PTEN in ER and MAMs 

subcellular fractions. HEK-293 cells were fractionated 

into cytosol, ER and MAMs, and protein components of 

subcellular fractions were subjected to 

immunoblotting. The presence of PTEN was shown by 

using a specific monoclonal antibody. Marker proteins 

indicate ER (IP3R3), MAMs (FACL4), cytosol (β-

tubulin), mitochondria (panVDAC) and nucleus (lamin 

B1). VDAC and IP3R3 were both present in the MAMs, 

whereas all fractions were free of nuclear 

contamination. Akt presence was also verified in all 

fractions. H: homogenate; C: cytosol; ER; MAMs. 

Figure 20. Identification of PTEN in the ER and 

MAMs upon MEFs fractionation. Marker proteins 

indicate ER (IP3R3), MAMs (FACL4), cytosol (β-

tubulin), mitochondria (panVDAC) and nucleus (lamin 

B1). Akt presence was also confirmed in all fractions. 

H: homogenate; C: cytosol; ER; MAMs 

 

 

We thus demonstrate that although PTEN is mainly localised in the cytosol, the nucleus and, in a 

smaller proportion, in mitochondria (our nuclear and mitochondrial fractions contained PTEN as 

well, data not shown), a significant amount of PTEN is present in the ER and MAMs. 

 

PTEN silencing reduces ER Ca
2+

 release, thus impairing cytosolic and mitochondrial Ca
2+

 

transients elicited by agonist stimulation 

In view of the localization of PTEN at the ER and MAMs, we investigated whether it plays a role in 

regulating Ca
2+

 signalling between the ER and mitochondria. We analyzed intracellular Ca
2+

 

homeostasis after downregulation of PTEN expression by RNA interference (RNAi) silencing. Two 
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different small interfering RNAs (siRNAs), 

siRNA-PTEN(1049) and siRNA-PTEN(219), 

were generated and tested for specific 

silencing efficiency and ability to increase the 

levels of activated, Ser473-phosphorylated 

Akt (pAkt
Ser473

) (Figure 21a). 

Ca
2+

 measurements were then carried out in 

HEK-293 cells co-transfected with the PTEN 

siRNAs and specific organelle-targeted 

aequorin probes (244). Cells were stimulated 

with ATP, the P2Y receptor agonist that 

induces the generation of IP3, thus activating 

the IP3R channels and causing Ca
2+

 release 

from ER stores.  

 

Figure 21. Effect of PTEN silencing on intracellular 

Ca
2+

 homeostasis. (a) HEK-293 cells were transfected 

with siRNAs-PTEN encoding plasmid or mock 

transfected with empty vector (pSUPER) in control 

cells. Immunoblotting of total cell lysates shows that 

transfection with PTEN siRNAs effectively decreased 

PTEN protein levels and increased pAktS473 levels, 

reflecting an effective Akt activation without altering 

its expression. Numbers indicate densitometrically 

determined protein levels relative to actin for PTEN 

and to total Akt for pAktSer473. The traces (b, d, f, h) 

show representative [Ca2+] measurements performed 

in PTEN-silenced HEK-293 cells co-transfected with 

the appropriate aequorin (AEQ) chimera (erAEQmut, 

cytAEQ and mtAEQ for monitoring the ER, cytosol and 

mitochondria, respectively). Where indicated, cells 

were challenged with 100 M ATP to induce Ca2+ 

release from the ER. The bar graphs (c, e, g) are the 

average of all experiments performed. (b) [Ca2+]er 

steady-state levels. (c) Mean rate of Ca2+ release. (d) 

ER Ca2+ release kinetics. (e) Average [Ca2+]c peak. (f) 

Cytosolic Ca2+ transients. (g) Average [Ca2+]m peak. 

(h) Mitochondrial Ca2+ transients. Transfection, 

aequorin reconstitution and measurements of 

luminescence were carried out and calibrated into 

[Ca2+] values as described in the Materials and 

Methods section. The traces and bar graphs  of this 

figure are representatives of  10 samples from at least 

three independent experiments that yielded similar 

results. 
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The effect of PTEN silencing on ER Ca
2+

 handling was first investigated (see Materials and 

Methods section for details). Silencing of PTEN did not alter significantly the Ca
2+

 loading kinetics, 

nor the steady state [Ca
2+

] of the ER lumen ([Ca
2+

]er) (Figure 21b, [Ca
2+

]er: pSUPER, 321.1  27.30 

M; siRNA-PTEN(1049), 286.7  23.17 M; siRNA-PTEN(219) 293.9  27.59 M; n  10). 

However, upon ATP stimulation, Ca
2+

 release kinetics from the ER were slower in PTEN-silenced 

cells (Figures 21c and d, Vmax: pSUPER, 28.68  2.12 M/s; siRNA-PTEN(1049) 21.89  1.97 

M/s; siRNA-PTEN(219) 21.25  2.69 M/s; n  10, p < 0.05). Accordingly, ATP elicited a 

significantly smaller transient [Ca
2+

] rise in the cytosol ([Ca
2+

]c) and in the mitochondrial matrix 

([Ca
2+

]m) (Figures 21e and f, [Ca
2+

]c peak values: pSUPER, 1.29  0.04 M; siRNA-PTEN(1049) 

1.15  0.04 M; siRNA-PTEN(219) 1.16  0.03 M; n  30, p < 0.05; figures 21g and h, [Ca
2+

]m 

peak values: pSUPER, 2.17  0.14 M; siRNA-PTEN(1049) 1.64  0.13 M; siRNA-PTEN(219) 

1.74  0.14 M; n  18, p < 0.05). Taken together, these data show that downregulation of PTEN 

expression globally affects intracellular Ca
2+

 signalling acting on the ER Ca
2+

 release machinery. 

 

ER-localized PTEN, but not wild-type PTEN, enhances the agonist-dependent mitochondrial Ca
2+

 

response 

In order to test whether the effects of PTEN on regulation of Ca
2+

 homeostasis were specifically 

dependent on its localization in the ER and MAMs, we generated a chimeric protein, designated 

ER-PTEN, that targets the entire PTEN protein to the cytoplasmic surface of the ER membrane 

(Figure 22b). We verified the intracellular distributions of endogenous, recombinant and ER-

targeted PTEN in HEK-293 cells co-transfected with erGFP as a marker for the ER. 

Immunofluorescence analyses confirmed the presence of endogenous PTEN at the ER, where it 

slightly co-localize with erGFP (Figure 22a, A-A‟‟). When analyzing the transfected wild-type 

PTEN staining pattern, we found a higher overlap with the ER, but PTEN was also found diffusely 

accumulated in the nucleus (Figure 22a, B-B‟‟). Instead, ER-PTEN was predominantly localized in 

the ER and mostly excluded from the nucleus (Figure 22a, C-C‟‟). We also analysed recombinant 

PTEN and ER-PTEN chimera expression levels and effects on Akt phosphorylation (Figure 22c). 

We next determined whether overexpression of PTEN or ER-PTEN could differentially affect Ca
2+

 

handling of mitochondria, the main proximal target of Ca
2+

 signals arising from the ER. 

Surprisingly, ER-PTEN significantly enhanced mitochondrial Ca
2+

 uptake evoked by agonist 

stimulation, while wild-type PTEN was indistinguishable from controls (Figure 22d and e, [Ca
2+

]m: 
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pcDNA3, 3.17  0.19 M; PTEN, 3.37  0.22 M, n = 18, p  0.5; ER-PTEN 4.13  0.22 M, n = 

18, p < 0.01).  

 

 

 

Figure 22. PTEN and ER-PTEN differentially affect mitochondrial Ca
2+

 uptake. (a) Immunofluorescence to detect 

localization of PTEN and targeted ER-PTEN. HEK-293 cells transiently expressing empty vector (pcDNA3) (A), PTEN 

(B) or ER-PTEN (C), and co-transfected with erGFP (green images: A’-C’), were stained for PTEN (red images: A-C). 

Co-localisation of the green and red signals, yielding a yellow staining, is apparent in the merged images (merge: A’’- 

C’’). (b) Schematic map of the ER-PTEN chimera. (c) PTEN and ER-PTEN expression, and Akt phosphorylation were 

investigated by immunoblot of whole cell lysates using total and phospho-specific antibodies. Numbers indicate 

densitometrically determined protein levels relative to actin for PTEN and to total Akt for pAktSer473. (d) Bar graph of 

the average [Ca2+]m peak. (e) Mitochondrial Ca2+ homeostasis modulation after ER-PTEN overexpression. Traces and 

bar graphs  are representatives of  18 samples from at least three independent experiments that yielded similar results. 
 

 

The same [Ca
2+

]m increase was observed also using a different ER-targeting PTEN chimera (Figure 

23). Collectively, these data indicate that a subpopulation of cellular PTEN localized at the ER is 

specifically involved in the regulation of the agonist-induced Ca
2+

 fluxes from the ER to 

mitochondria. 
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Figure 23 Effect of Cb5-PTEN chimera 

overexpression on mitochondrial Ca
2+

 

uptake (a) Representative traces of 

mitochondrial Ca2+ transients evoked by 

100 M ATP in Cb5-PTEN-

overexpressing HEK-293 cells. (b) 

Average [Ca2+]m peak (pcDNA3, 2.66  

0.16 M; ER-PTEN 3.71  0.22 M, n = 

20, p < 0.01). 

 

 

 

 

Ca
2+

 mobilization from intracellular stores evoked by arachidonic acid is impaired when PTEN is 

silenced and increased through targeting of PTEN to the ER 

The transfer of Ca
2+

 from the ER to mitochondria not only controls a variety of physiological 

processes during cell activation, but can also be a potent death-inducing signal (135). In order to test 

whether PTEN is involved in remodelling ER-mitochondrial Ca
2+

 flux also during apoptosis-

inducing Ca
2+

 signals, we investigated Ca
2+

 dynamics in response to the lipid mediator arachidonic 

acid (ArA) (269) after PTEN silencing, overexpression or targeting to the ER. ArA is proposed to 

initiate apoptotic death through a Ca
2+

-controlled process: it progressively releases Ca
2+

 from 

intracellular stores, thereby directly causing a long-lasting [Ca
2+

]c rise that finally leads to the 

mitochondrial permeability transition and release of caspase cofactor (143, 147). In our 

experiments, we measured the release of Ca
2+

 from intracellular stores by monitoring cytosolic Ca
2+

 

responses over time with the dye Fura-2/AM (270). In order to identify transfected cells in single 

cell imaging experiments, HEK-293 cells were co-transfected with mtRFP; untransfected cells in 

the same sample were used to compare changes in the 340/380 Fura-2/AM ratio. Treatment of 

untransfected or mock-transfected cells with 80 M ArA caused a cytosolic Ca
2+

 elevation that 

gradually increased over time. Consistent with the impaired release of ER Ca
2+

 in response to 

agonists coupled to IP3 mobilization, the increase in cytosolic Ca
2+

 induced by ArA was markedly 

blunted in PTEN-silenced cells (Figures 24a and b). The overexpression of PTEN did not cause any 

difference in the release of Ca
2+

 evoked by ArA, while ER-PTEN significantly increased the 

cytosolic Ca
2+

 responses (Figures 24c and d). Overall, these experiments indicate that the absence 

of PTEN causes a reduction in the cytosolic Ca
2+

 rise elicited by the discharge of intracellular Ca
2+
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stores after apoptotic stimuli. Moreover, we confirmed that ER-localized PTEN can enhance the 

Ca
2+

-dependent death signalling. 

 

 

 

Figure 24. Effect of PTEN silencing or overexpression on cytosolic Ca
2+

 responses after exposure to 80 M 

arachidonic acid. HEK-293 cells were co-transfected with mtRFP and the indicated plasmid in a 1:1 ratio in order to 

distinguish transfected cells (positive). Untransfected cells (negative) were used to compare changes in the 340/380 

Fura-2/AM ratio on the same sample as detailed in Materials and Methods. After loading with the Ca2+ indicator Fura-

2/AM, cells were maintained in 1 mM Ca2+/KRB and, where indicated, challenged with 80 M ArA. The kinetics of the 

cytosolic Ca2+ response (a and c) are presented as the ratio of fluorescence at 340 nm/380 nm. In the bar graphs (b and 

d) every F340/F380 value is normalized to the start value; the average of normalized (F340/F380) over time in all the 

single cell imaging experiments performed was then calculated. (a) Representative traces of cytosolic Ca2+ responses in 

PTEN-silenced cells. (b) Statistics analysis of cytosolic Ca2+ increase in PTEN-silenced cells. Normalized (F340/F380): 

pSUPER [negative 31.66  5.94 (n=20 cells); positive 28.77  4.43 (n=33 cells)]; siPTEN(1049) [negative 31.65  

4.60 (n=31 cells); positive 16.71  2.51 (n=39 cells), p  0.05 compared to pSUPER]; siPTEN(219) [negative 31.75  

4.17 (n=44 cells); positive 17.66  1.62 (n=55 cells), p  0.05 compared to pSUPER]. (c) Representative traces of 

cytosolic Ca2+ responses in cells overexpressing PTEN or targeted ER-PTEN chimera. (d) Statistics of cytosolic Ca2+ 

increase in PTEN or ER-PTEN overexpressing cells. Normalized (F340/F380): pcDNA3 [negative 124.75  8.50 (n=20 

cells); positive 107.03  8.56 (n=25 cells)]; PTEN [negative 123.13  12.16 (n=18 cells); positive 123.01  11.15 

(n=24 cells)]; ER-PTEN [negative 123.62  7.84 (n=26 cells); positive 141.14  9.44 (n=36 cells), p  0.01 compared 

to pcDNA3]. The traces and bar graphs are representative of at least three independent experiments that yielded 

similar results. 
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Ca
2+

-mediated apoptosis is prevented by PTEN silencing and enhanced through overexpression of 

ER-PTEN 

ER-to-mitochondria Ca
2+

 transfer has been implicated in multiple models of apoptosis as being 

directly responsible for mitochondrial Ca
2+

 overload (142, 189), which sensitizes the organelle to 

apoptotic challenges and may result in the induction of cell death through PTP opening, 

mitochondria swelling and release of caspase cofactors (222). Previous studies have established that 

the reduction in the Ca
2+

 amount that can be released from the ER and accumulated in mitochondria 

decreases the probability of Ca
2+

-dependent apoptosis (147, 194, 203, 206). Here, we tested whether 

PTEN, by affecting ER-mitochondria Ca
2+

 flux, could influence the apoptotic response to death 

stimuli that requires Ca
2+

 transfer between the two organelles. We used ArA since it triggers or 

enhances the release of Ca
2+

 from the ER and activates the intrinsic apoptotic pathway (143, 147, 

269). The effects on cell fate were evaluated by monitoring the processing of effector caspase-3 into 

active cleaved caspase-3 fragments.  

Immunoblot results showed that after ArA treatment a smaller amount of cleaved caspase-3 is 

present in PTEN-silenced cells than in control (mock-transfected) cells (Figures 25a and c). This 

indicates that the reduction of ER Ca
2+

 release observed in PTEN-silenced cells increases the 

threshold for Ca
2+

-mediated apoptosis. After ArA treatment, cells also displayed a downregulation 

of PTEN expression in comparison to vehicle-treated cells, probably because during apoptotic cell 

death PTEN is cleaved by active caspase-3 (271, 272). We found a greater downregulation of PTEN 

expression in PTEN-silenced cells than in control cells, most likely due to their preferential survival 

(Figure 25b). Overexpression of wild type PTEN was unable to sensitize HEK-293 cells to 

ArA-induced apoptosis; indeed, the levels of cleaved caspase-3 were comparable to those observed 

in control cells (Figures 25d and f). Moreover, the reduction in PTEN protein levels is comparable 

to that observed in control cells (Figure 25e). Conversely, in cells overexpressing ER-PTEN, the 

sensitivity to apoptosis after ArA treatment was enhanced as indicated by the increased levels of 

cleaved caspase-3. These cells also displayed a greater reduction of PTEN levels, most likely due to 

increased apoptosis (Figures 25d-f). 

In conclusion, ER-localized PTEN sensitizes cells to apoptotic death by stimuli that require Ca
2+

 

transfer from ER to mitochondria. 
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Figure 25. Effect of PTEN silencing or overexpression on sensitivity to Ca
2+

-dependent apoptosis. HEK-293 cells 

were transfected with PTEN siRNAs,mPTEN, ER-PTEN or the respective empty vector; 36 h after transfection the cells 

were treated with 80 M arachidonic acid (ArA) or vehicle (EtOH) for 90 min; cell lysates were then prepared and 

analyzed by immunoblotting. Membranes were probed with antibodies against PTEN, actin and caspase-3 proteins. 

Representative immunoblots (a and d) from three independent experiments are shown. Numbers indicate 

densitometrically determined protein levels relative to actin for PTEN and to caspase-3 (35 kDa) for cleaved caspase-3 

(17 kDa). The bar graphs show mean ± s.e.m. from densitometric analysis of normalized PTEN (b and e) and cleaved 

caspase-3 (c and f) protein levels. (a) PTEN silencing reduces caspase-3 activation after ArA challenge. (b) Reduction 

in PTEN expression compared to vehicle, in PTEN-silenced cells. % PTEN/Actin: pSUPER 31.2  2.1%; siRNA-

PTEN(1049) 87.0  10.3%; siRNA-PTEN(219) 62.4  20.9%. (c) Caspase-3 activation expressed as percentage of 

control (mock-transfected) cells, after PTEN silencing. Cleaved caspase-3/caspase-3 band intensity: siRNA-

PTEN(1049) 64.3  6.7%, siRNA-PTEN(219) 63.0  7.9%, vs control cells 100%. (d) ER-PTEN enhanced caspase-3 

activation after ArA challenge. (e) Reduction in PTEN expression compared to vehicle, in cells overexpressing PTEN or 

ER-PTEN. % PTEN/Actin: pcDNA3 24.1  2.8%; PTEN 28.0  1.4%; ER-PTEN 43.6  4.3%. (f) Caspase-3 

activation expressed as percentage of control (mock-transfected) cells, after overexpression of PTEN or ER-PTEN. 

Cleaved caspase-3/caspase-3 band intensity: PTEN 104.5  11.2%, ER-PTEN 152.3  24.3%, vs control cells 100%. 
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Discussion 

 

PTEN is a phosphatase whose main tumour suppressor activity is likely to be caused by 

dephosphorylation of the lipid second messenger PIP3, which accumulates at the plasma membrane 

upon activation of PI3K (273). Even though PTEN has multiple domains for membrane association, 

in most mammalian cell types it does not show an obvious association with the plasma membrane 

(274). Differing results show PTEN localization distributed between cytosol and nucleus and there 

is evidence that it could operate as a tumour suppressor in both these compartments (275). PTEN 

could also accumulate in mitochondria in cells undergoing apoptosis and is implicated in the 

regulation of the intrinsic apoptotic pathway (267, 268). These findings highlight the importance of 

PTEN‟s subcellular localization in regulating its function and point out the possibility that different 

tumour-suppressive mechanisms of action may occur in well-defined cellular compartments. 

In this part of the PhD project, we investigated in greater detail the intracellular distribution of 

PTEN using an established fractionation protocol (160). Our results showed that, in addition to 

cytosolic, nuclear and mitochondrial pools, PTEN is also present in the ER and MAMs. Since a 

major area of functional interaction between the ER and mitochondria is the control of Ca
2+

 

signalling, and growing evidence indicates that the Ca
2+

 uptake into mitochondria is controlled by 

specific proteins residing at the ER and MAMs (see Introduction, section 1.7), our finding raises the 

possibility that PTEN could act as a tumour suppressor, at least in part, by modulating the 

transmission of Ca
2+

 from the ER to mitochondria. We confirm this possibility by showing a 

reduction in the kinetics of Ca
2+

 release from the ER in PTEN-silenced cells, that significantly 

blunted also the cytosolic and the mitochondrial Ca
2+

 responses. Previous experiments ruled out the 

possibility that our results could be a consequence of decreased production of IP3 on phospholipase 

C activation (276, 277). To outline the functional relevance of PTEN localization in the ER and 

MAMs in modulating Ca
2+

 signalling, we generated an ER-targeted PTEN chimera and 

demonstrated that its transient overexpression significantly increased the agonist-induced 

mitochondrial Ca
2+

 transient, which is a proximal sensor of Ca
2+

 release through IP3Rs (30), while 

wild-type PTEN overexpression had no effect. We concluded that PTEN‟s regulation of Ca
2+

 

homeostasis relied specifically on its localization in the ER and MAMs. 

Ca
2+

 signalling is an important regulator of both cell proliferation and apoptosis (5). Broad evidence 

has established that mitochondrial Ca
2+

 loading favours apoptosis; reducing or increasing the Ca
2+

 

amount that can be released from the ER to mitochondria protects from or enhances apoptosis, 

respectively (see Introduction, section 1.6). There is an increasing number of reports supporting the 
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role of Ca
2+

 signalling remodelling for cancer cell proliferation and survival (3). Our results confirm 

this possibility for PTEN, as decreased release of Ca
2+

 from the ER in PTEN-silenced cells accounts 

for reduced sensitivity to apoptosis. Moreover, we demonstrated that only ER-localized PTEN is 

able to increase ER Ca
2+

 release in response to ER death stimuli, in turn engaging mitochondria in a 

Ca
2+

-dependent apoptotic process. Therefore, PTEN in the ER and MAMs is critical for cell death 

regulation by this tumour suppressor, and loss of PTEN function could limit apoptosis-inducing 

Ca
2+

 signals during cancer. The tumour-suppressive function of PTEN at the ER and MAMs can 

also explain why the E307K mutation in MDA-MB-453 breast carcinoma cell line lead to higher 

PTEN plasma membrane localization which confers a greater ability in suppressing pAkt levels 

(278); it is possible that this mutation results in the inability of PTEN to be targeted to the ER and 

MAMs, and so limits Ca
2+

-dependent death signalling. 

At present, the precise molecular mechanism by which PTEN localizes to the ER and MAMs, and 

regulates ER-to-mitochondria Ca
2+

 transport remains unclear, but several possibilities exist (Figure 

26). The major site of PIP2 and PIP3 accumulation is the plasma membrane. Lindsay et al. 

estimated that intracellular membranes accounted for no more than 10-20% of total PIP3 and 

suggest that PTEN is only active as a lipid phosphatase when targeted to plasma membranes (279). 

However, both PIP2 (280, 281) and PIP3 (282) have been detected in intracellular organelles 

including the ER, and Sato emphasized how signalling pathways downstream of PIP3, including 

Akt, are activated at intracellular compartments remote from the plasma membrane. This could 

explain both recruitment and potential functional consequence of PTEN in the ER, since PTEN 

association with membranes depends on their composition, in particular on the presence of PIP2 

(283, 284). Since PTEN is known to be involved in forming gradients of PIP3 necessary for 

sustaining cell polarity during motility (285), our data suggests that it could function in a spatially 

restricted manner and regulate PIP2/PIP3 turnover for generating microdomains of activated Akt on 

the ER surface. In this way, PTEN may modulate Akt-dependent phosphorylation of IP3Rs, which 

reduced their Ca
2+

 release activity (66, 146, 147), through the efficient localization to specific ER 

and MAMs sites where its activity is needed. However, there are also other possibilities that we 

cannot exclude at present. PTEN also possesses multiple biological functions independent of its 

lipid phosphatase activity. It is likely that it exerts such functions by protein-protein interaction or 

by its protein phosphatase activity. A number of PTEN-interacting proteins are known (286), 

including PP2a (287), PML (241) and PP1 (288). All these proteins are also known interactors and 

functional modulators of IP3R phosphorylation and, in turn, regulate IP3R-mediated Ca
2+

 release 

from the ER (206, 289). Several possibilities exist regarding these PTEN-interacting proteins: (i) 
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they could associate with a subpopulation of PTEN to guide it to the ER and MAMs and thus to a 

specific target; (ii) they could regulate PTEN function, including its enzymatic activity, or 

conversely (iii) PTEN could regulate the function of this binding partners; (iv) moreover, since 

several substrates for PTEN‟s protein phosphatase activity have been proposed, it could also act in 

the ER and MAMs as a protein phosphatase on still unidentified substrates. Future experiments will 

be required to determine the precise molecular mechanism by which ER- and MAMs-localized 

PTEN controls Ca
2+

 flux from the ER to mitochondria. 

 

 

 

Figure 26. PTEN effects on Ca
2+

 homeostasis: schematic model of the possible molecular mechanisms.  

 

 

PTEN is a multifunctional protein that, in addition to its canonical PIP3 phosphatase-dependent 

functions, can exert multiple biological functions at the same time. Several findings suggest that the 

subcellular localization of PTEN may be a regulatory mechanism for separating certain specific 

functions simultaneously conducted in the same cells (263, 265). Overall, the data presented in this 

thesis reveal that a subpopulation of PTEN is localized at the ER-MAMs interface with 

mitochondria, where it regulates the ER-mitochondria interorganelle Ca
2+

 signalling and exerts a 
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pro-apoptotic activity. This novel function may integrate its previously reported roles in tumour 

suppression and serve as a novel strategy for targeted therapeutic intervention. 
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4.MATERIALS AND METHODS: 

 

 

 

Cells culture and Transfection  

HeLa and HEK-293 cells were grown in Dulbecco‟s modified Eagle‟s medium (DMEM) 

(Euroclone), supplemented with 10% fetal bovine serum (FBS). Primary MEFs were prepared from 

embryos at day 13.5 of development (E13.5). Early passage (P2–P5) MEFs were grown in DMEM 

supplemented with 10% FCS. HEK-293 cells were seeded 48 h before transfection onto glass 

coverslips coated with poly-L-lysine (Sigma), 13-mm in diameter for aequorin experiments, or 24-

mm for Fura-2/AM measurements and immunofluorescence. For immunoblot and cell death 

experiments, cells were seeded on 10-cm Petri dishes or 24-mm coverlip. 

HeLa and HEK-293 cells were allowed to grow to 50% confluence, transfected with a standard 

calcium-phosphate procedure and used in the experiments 36 h post-transfection. MEFs were 

transfected with different constructs using the MicroPorator (Digital Bio). 

 

Plasmid cloning 

For selective VDAC silencing several sequences were cloned and tested for specific silencing 

efficiency without upregulation of the other isoforms. The most effective sequences were: 50-

AAGCGGGAGCACATTAACCTG-30 for hVDAC1; 50-AAGGATGATCTCAACAAGAGC-30 

for hVDAC2; 50-AAGGGTGGCTTGCTGGCTATC-30 for hVDAC3. To silence PTEN specific 

siRNA were designed: siPTEN(1049): nucleotides 1049–1067 of the corresponding mRNA (5‟-

AGTAGAGGAGCCGTCAAAT-3‟); siPTEN(219): nucleotides 219–237 of the corresponding 

mRNA (5‟-AGACATTATGACACCGCCA-3‟). Oligonucleotides containing the selected 

sequences were purchased from Sigma-Aldrich and cloned into pSUPER (Oligoengine) according 

to the manufacturer‟s instructions.  

ErPML chimera was addressed to the external surface of ER by fusing sequence from the yeast 

UBC6  protein (245) to the C-terminal end of the human PML isoform IV. 

Human PTEN was cloned into pcDNA3 (Invitrogen) and PTEN chimeras were targeted to the 

external surface of the ER by fusing sequences from UBC6 (ER-PTEN) (245) or cytochrome b5 

(Cb5) (Cb5-PTEN) (290) to the N-terminus of PTEN. 
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Subcellular Fractionation 

Subcellular fractionation of cells and Percoll purification of MAMs were performed as described 

previously (160, 206). 

Briefly, cells (10
9
) were harvested, washed by centrifugation at 500 g for 5 min with PBS, 

resuspended in homogenization buffer (225 mM mannitol, 75 mM sucrose, 30 mM Tris-HCl pH 

7.4, 0.1 mM EGTA, and PMSF) and gently disrupted by dounce homogenisation. The homogenate 

was centrifuged twice at 600 g for 5min to remove nuclei and unbroken cells, and then the 

supernatant was centrifuged at 10,300 g for 10 min to pellet crude mitochondria. The resultant 

supernatant was centrifuged at 100,000 g for 90 min (70-Ti rotor, Beckman) at 4 °C to pellet the ER 

fraction. The crude mitochondrial fraction, resuspended in isolation buffer (250 mM mannitol, 5 

mM HEPES pH 7.4 and 0.5 mM EGTA ), was subjected to Percoll gradient centrifugation (Percoll 

medium: 225 mM mannitol, 25 mM HEPES pH 7.4, 1 mM EGTA and 30% vol/vol Percoll) in a 10-

ml polycarbonate ultracentrifuge tube. After centrifugation at 95,000 g for 30 min a dense band 

containing purified mitochondria was recovered approximately at the bottom of the gradient (and 

further processed as described in (160)), whereas MAMs was retrieved as a diffuse white band 

located above the mitochondria. MAMs were diluted in isolation buffer and centrifuged at 6,300 g 

for 10 min. To pellet the MAMs fraction the supernatant was centrifuged at 100,000 g for 90 min 

(70-Ti rotor, Beckman) at 4 °C. 

 

Co-immunoprecipitation 

Co-immunoprecipitations were carried out by using protein A- or protein G-coated sepharose beads 

(GE Healthcare) following manufacturer‟s instructions. Different protein extraction buffers were 

used in order to minimize non-specific binding while maximizing antigen extraction. IP3R3 and 

IP3R1 were extracted in a modified RIPA buffer (150mM NaCl, 1% NP-40, 0.05% SDS, Tris 50 

mM, pH=8) while HA and grp75 were purified in a NP-40 buffer (150mM NaCl, 1% NP-40, Tris 

50 mM, pH=8), all supplemented with proteases and phosphatases inhibitors (2 mM Na3VO4, 2 mM 

NaF, 1 mM PMSF and Protease Inhibitor Cocktail). Extracted proteins (700 g) were first 

precleared by incubating lysates with sepharose beads for 1 h at 4 °C and the supernatant (referred 

as Input) was incubated overnight with the antibody at 4 °C. Precipitation of the immune complexes 

was carried for 2 h at 4 °C and washed three times with the extraction buffer.  

Pml
+/+

 and Pml
-/-

 MEFs extracts were prepared using lysis buffer containing: 50 mM NaCl, 50 mM 

Tris-HCl pH 7.4, 0.1% NP-40 supplemented with 1 mM PMSF and proteases/phosphatases 

inhibitors. Protein extracts were pre-cleared with protein G/A beads (Pierce) than precipitated with 
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IP3R3, PML, Akt and PP2a antibodies overnight at 4°C. Protein G beads were added and rocked 5 

hours at 4°C. Afterwards, beads were washed with 50 mM NaCl, 50 mM Tris-HCl pH 7.4, 0.1% 

NP-40 4°C. 

Samples were proceed by SDS-PAGE and analyzed by standard mmunoblot technique. 

 

Immunoblot 

Total cell lysates were prepared in RIPA buffer (50 mM Tris-HCl pH 7.8, 150 mM NaCl, 1% 

IGEPAL CA-630, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM DTT) supplemented with 

proteases and phosphatases inhibitors (2 mM Na3VO4, 2 mM NaF, 1 mM PMSF and Protease 

Inhibitor Cocktail). Proteins (30 g) were quantified using the Bradford assay (Bio-Rad 

Laboratories), separated by SDS-PAGE and transferred to nitrocellulose membranes for standard 

western blotting. Antibodies were purchased from the following sources and used at the indicated 

dilutions: PTEN (1:1000), Akt (1:1000), pAkt
Ser473

 (1:500), Caspase-3 (1:250) and PARP (1:2000) 

from Cell Signaling; actin (1:5000), β–tubulin (1:3000) and HA (1:5000) from Sigma-Aldrich; 

IP3R3 (1:250) from BD Biosciences; FACL4 (1:250), HK-I (1:1000) and grp75 (1:10 000) from 

Santa Cruz; lamin B1 (1:1000), VDAC2 (1:1000), VDAC3 (1:1000) and IP3R1 (1:1000) from 

Abcam, VDAC1 (1:10 000) from Calbiochem, anti-hPML (1:1000), anti-PML (1:1000) from 

Chemicon. 

Densitometric analysis of protein levels were performed with ImageJ software . 

 

Immunofluorescence 

MEFs were fixed in 4% paraformaldehyde in PBS for 15 min, washed three times with PBS, 

permeabilized for 10 min with 0.1% Triton X-100 in PBS and blocked in PBS containing 1% BSA 

for 20 min. Cells were then incubated O/N at 4°C in a wet chamber with the following antibodies: 

anti-PML (H-238, Santa Cruz) for erPML, or with the anti-PML (for endogenous PML), anti-

FACL, anti-PP2a, dilute 1:100 with 2% BSA in PBS. Staining was then carried out with Alexa 488 

anti-rabbit for hPML (erPML), with Alexa 488 anti-mouse for Pml, with Alexa 543 anti-rabbit for 

PP2a and with Alexa 633 anti-goat for FACL secondary antibodies.  

HEK-293 cells were grown on 24-mm coverslips and co-transfected with 4 μg of the indicated 

plasmids and 4 μg of erGFP. After 36 h, cells were fixed, washed, permeabilized and blocked in 

PBS containing 1% BSA for 20 min (as described above). Cells were then incubated O/N at 4°C 

with the PTEN antibody (1:100), and subsequent staining was carried out with AlexaFluor-

conjugated 546 (Invitrogen). 
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After each antibody incubation, cells were washed three times with 0.1% Triton X-100 in PBS. 

Samples were mounted in ProLong Gold antifade (Invitrogen) and images were obtained by high-

speed confocal fluorescence microscopy (Nikon LiveScan Swept Field Confocal Microscope). 

 

Immunoelectron microscopy 

MEF cells are fixed with 2% paraformaldehyde and 0.2% glutaraldehyde in PBS, embedded in 12% 

gelatin, 2,3 M sucrose and frozen in liquid nitrogen. Ultrathin cryosections, obtained by a Reichert-

Jung Ultracut E with FC4E cryoattachment, were collected on copper-formvar-carbon-coated grids. 

Immunogold localization was revealed using the PML Chemicon antibody for endogenous mouse 

PML and PML (H-238) Santa Cruz for erPML chimera, and 10 nm proteinA-gold conjugated, 

according published protocols (291, 292). All samples were examined in a Philips CM10 or a FEI 

Tecnai 12G2 electron microscopes. 

 

Aequorin measurements 

Cells grown on 13-mm round glass coverslips were co-transfected with 1 μg of aequorin 

(erAEQmut, cytAEQ, or mtAEQ) and 3 μg of the indicated siRNA or plasmid. After 36 h, cells 

were reconstituted and placed in a perfused thermostated chamber where the light signal was 

collected in a purpose-built luminometer and calibrated into [Ca
2+

] values as previously described 

(244). For [Ca
2+

]er measurements in HeLa and MEF cells, erAEQmut-transfected cells were 

reconstituted with coelenterazine n, following ER Ca
2+

 depletion in a solution containing 0 [Ca
2+

], 

500 M EGTA, 1 M ionomycin, as previously described. After three washes with KRB 

supplemented with 2% BSA and 1 mM EGTA, cells were perfused with Krebs-Ringer buffer 

(KRB: 135 mM NaCl, 5 mM KCl, 1 mM MgSO4, 0.4 mM KH2PO4, 5.5 mM glucose, 20 mM 

HEPES, pH 7.4) containing 100 M EGTA. HEK-293 cells transfected with erAEQmut were 

reconstituted with coelenterazine n (Tebu-Bio), after ER Ca
2+

 depletion by incubating cells for 1 h 

at 4°C in KRB supplemented with 100 M EGTA, and 40 M tBHQ (2,5-Di-tert-

butylhydroquinone) (Sigma); cells were then washed with KRB supplemented with 2% BSA and 1 

mM EGTA. ER refilling was then triggered by perfusing KRB buffer supplemented with 1mM 

CaCl2 until equilibrium (steady state) was reached. Cells transfected with cytAEQ and mtAEQ were 

reconstituted with coelenterazine (Synchem) for 2 h in KRB supplemented with 1 mM CaCl2. All 

aequorin measurements were carried out in 1 mM Ca
2+

/KRB (cytAEQ and mtAEQ) or 100 μM 

EGTA/KRB (erAEQmut). Agonist was added to the same medium, as specified in the figures. The 
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experiments were concluded by lysing the cells with 100 M digitonin in a hypotonic Ca
2+

-rich 

solution (10 mM CaCl2 in H2O).  

 

Fura-2/AM measurements 

Cytosolic Ca
2+

 response was evaluated using the fluorescent Ca
2+

 indicator Fura-2/AM (Invitrogen). 

Cells were grown on 24-mm coverslips and co-transfected with 4 μg of the indicated siRNA or 

plasmid and 4 μg of mtRFP. After 36 h, cells were incubated at 37°C for 30 min in 1 mM 

Ca
2+

/KRB supplemented with 2.5 M Fura-2/AM, 0.02% Pluronic
 

F-68 (Sigma), 0.1 mM 

Sulfinpyrazone (Sigma). Cells were then washed and supplied with 1 mM Ca
2+

/KRB. To determine 

cytosolic Ca
2+

 response cells were placed in an open Leyden chamber on a 37°C thermostatted 

stage and exposed to 340/380 wavelength light using the Olympus xcellence multiple wavelength 

high-resolution fluorescence microscopy system. The fluorescence data collected were expressed as 

emission ratios. 

 

Induction of Apoptosis 

HeLa cells grown on 24-mm coverlip at 30% confluence were co-transfected with GFP and control 

or siRNA-hVDACs containing plasmids in a 1:1 ratio. The effect on cell fate was evaluated by 

applying an apoptotic challenge (20 M C2-ceramide or 100 M H2O2) and comparing the survival 

of transfected and non-transfected cells. In these experiments, the percentage of GFP-positive cells 

was calculated before and after applying an apoptotic stimulus (C2-ceramide or H2O2). In mock-

transfected cells, although the total number of cells is reduced after cell death induction, the 

apparent transfection efficiency was maintained (i.e., transfected and nontransfected cells have the 

same sensitivity to the apoptotic stimulus and thus die to the same extent). However, when cells are 

transfected with a construct influencing their sensitivity to apoptosis, this will be reflected by a 

change in the fraction of fluorescent cells, that is, in the „apparent‟ transfection efficiency. Thus, 

protection from apoptosis results into an apparent increase of transfection, whereas a decrease 

reflects a higher sensitivity to apoptosis. Data are reported as the mean percentage change in the 

apparent transfection efficiency after apoptotic challenge compared with vehicle-treated cells. Cells 

were extensively washed with PBS, stained with DAPI, and two images per field (blue and green 

fluorescence) were taken at  10 magnification (mean transfection efficiency were roughly 30% for 

all conditions). At least 10 fields per coverslip were randomly imaged and counted. Data presented 

are the sum of at least two different wells per experimental condition carried out in three different 

independent experiments. 
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MEFs Pml
+/+

 and Pml
-/-

 apoptosis was determined by FACS analysis of cells stained with Annexin-

V FITC/Propidium Iodide (BioVision). For cell death induction cells were treated as indicated in 

the text with 1 mM H2O2, 15 M MEN, 6 M TN, 2 M TG and 50 M ETO in DMEM, 

supplemented with 10% FCS. 

HEK-293 cells were grown on 10-cm Petri dishes and transfected with the indicated siRNA, 

plasmid or empty vector. After 36 h, cells were washed and growth media was replaced with 1 mM 

Ca
2+

/KRB containing 80 M arachidonic acid (ArA) (Santa Cruz) for 90 min. Cells in the media 

were retained and pooled with remaining adherent cells that were harvested by scraping, collected 

by centrifugation at 200 g for 5 min and lysed as described above. 

 

Statistical analyses 

Statistical analyses were performed using Student‟s t-test. A p-value ≤ 0.05 was considered 

significant. All data are reported as mean ± s.e.m., or means  SD where indicated. 
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