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INTRODUCTION  

 

In the worldwide, sexual transmitted infections (STIs) represent an important public health 

problem with an estimated million of new cases of infections occurring each year. Young 

people account for only 25% of the sexually active population which accounts for almost 

50% of newly acquired STIs (Siracusano et al., 2014). These consist in bacterial, fungal 

and protozoal infections that can be treated with appropriate chemotherapeutic agents or, 

as reported, can trigger viruses often leading incurable STIs (Gewirtzman et al., 2011).  

Microorganisms causing chronic inflammatory diseases have become to be increasingly 

investigated in the last decade as possible cancer initiators/promoters (Idahl et al., 2011).  

So far, the most common STIs are those caused by Human papillomavirus (HPV) and 

Chlamydia trachomatis (CT). However, epidemiological data on CT prevalence and 

CT/HPV co-infection are not yet well defined in Italy (Bellaminutti et al. 2014, Panatto et 

al 2014; Seraceni et al. 2014). 

 

HUMAN PAPILLOMAVIRUS  

 

Characteristics 

Papillomavirus belong to the Papovaviridae family, which includes 16 different genera, 

five in humans (Alphapapillomavirus, Betapapillomavirus, Gammapapillomavirus, 

Mupapillomavirus, Nupapillomavirus), that have different types, life-cycle characteristics 

and disease associations, based on DNA sequence analysis. Of these, The Alpha genus 

contains the mucosal type viruses that cause genital warts or lesions associated with the 

development of cervical neoplasia and cancer at low-risk (LR-HPV) and high risk (HR-

HPV), respectively. The Beta genus, instead, contains those genotypes that are associated 

with the development of cutaneous cancers. Their possible role in cancer progression in the 

general population is currently unresolved (Bernard et al., 2013) (Figure 1).  
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Fig. 1: Evolutionary Relationship between Human Papillomaviruses. 

Human Papillomaviruses comprise five evolutionary groups with different epithelial tropisms and disease 

associations. (Modified and adapted from de Villers et al. 2004). http://www.bioafrica.net/rega-

genotype/html/subtypeprocesshpv.html  

 

These viruses contain a double strand DNA with 8000 pb approximately arranged in an 8 

well defined genes. All members of the HPV family have a typical genomic organization 

with 8 or 9 open reading frames (ORFs) on the same DNA strand. The HPV genome is 

divided into three regions: six early genes (E) are involved in virus expression, replication 

and survival and two other genes called late genes (L), are involved in virus assembly; 

finally, the long control region (LCR), which is localized between ORFs L1 and E6, 

contains most of the regulatory elements involved in viral DNA replication and 

transcription. The designations E and L refer to the phase in the viral life cycle when these 

proteins are first expressed (Figure 2). E2 regulates early gene promoter and together E1 

forms a heterodimer complex to control virus DNA replication. E4 may mediate the release 

of viral particles by destabilization of the cytokeratin network, whereas E5 stimulates 

mitogenic signals of growth factors. E6 and E7 are oncoproteines capable of deregulate 
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fundamental cellular events, such as cell cycle, DNA repair, senescence, apoptosis and 

differentiation, facilitating the accumulation of DNA damage and the progression towards 

malignancy. If the immune system can eliminate quickly the HPV-infected cells, E6 and 

E7 do not manage to accumulate chromosomal abnormalities and acquire a malignant 

phenotype, despite their transforming properties. Therefore, the establishment of a chronic 

infection is a fundamental and crucial event for the development of HPV-associated 

malignant diseases. Host and environmental factors significantly contribute to the 

chronicity of HPV infection, despite HR-HPV E6 and E7 target cellular pathways related 

to innate and adaptive immunity. L1 and L2 are major and minor capsid protein, 

respectively and L1 is the component of the HPV prophylactic vaccine. 

HPV infects the epithelium of the cervix and their replication is closely linked to the 

differentiation of the epithelium (Doorbar et al., 2012; Tommasino, 2014). 

 

 
Fig. 2: The genome organization of HPV16 is typical of the high-risk Alphapapillomaviruses (Agnes and 

Gunnar, 2008). http://.medscape.com. 
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These virus, of which have been identified more than 150 HPV genotypes, have selective 

tropism for cutaneous or mucosal epithelia and are divided into two groups: LR-HPV and 

HR-HPV, as previously described. LR-HPV that cause benign lesions asymptomatic that 

may resolve spontaneously in 3-4 months, are named papillomas (small wart-like 

neoplasias), which are due to sexual transmission of the virus, occur in 

male and female genitals, urethra, anus and perianal area and rarely lead to cancer. HPV6 

and HPV11, two among the most common LR-HPV, are associated with 90% of genital 

warts and recurrent respiratory papillomas. HR-HPV cause malignant cellular 

transformation and develop into large tumors, characterized by squamous intraepithelial 

lesion (SIL) that occur with rounded cells with nuclear and perinuclear (koilocytosis) 

atypia. Nuclear abnormalities, such as enlarged nuclei, hyperchromasia and mitotic cell 

features can also be found.  

HPV infections are also common in intraepithelial cervical neoplasia (CIN); these are 

characterized by the presence of koilocytosis and are divided into low-grade (LSIL) and 

high-grade (HSIL). According to the histological classification there are three degrees of 

CIN: CIN 1 (mild), corresponds to LSIL, CIN2 and CIN3 correspond to moderate and 

severe HSIL, respectively. HPV infection is the major cause of the CIN development. 

Despite women’s frequent exposure to HPV, the development of cervical cancer (CC) is 

relatively rare. Most low-grade cervical abnormalities, such as CIN1, are associated with 

benign viral replication, and spontaneously regress without requiring treatment (Martin et 

al., 2011). Studies in women have shown CIN1 regression rates of up to 70–80%; however, 

in adolescents and young women under 25 years, more than 90% show regression (Cox et 

al., 2003; Moscicki et al., 2004; 2010). In contrast, HSIL, specifically CIN3, has a much 

greater potential to progress to invasive cancer (progression rates of between 0.2–4% 

within 12 months) (Fearly et al., 2010). HR-HPV genotypes identified as causing CC 

belong to groups based on epidemiologic and mechanistic evidence of their carcinogenicity 

(Rosales and Rosales, 2014). Twelve HPV genotypes (HPV16,-18,-31,-33,-35,-39,-45,-

51,-52,-56,-58 and-59) are classified as “carcinogenic to humans” (Group 1), HPV68 as 

“probably carcinogenic” (Group 2A) whilst others seven HPV genotypes, as “possibly 

carcinogenic” HPV26,-53,-66,-67,-70,-73,-82 (Group 2B) (IARC, 2012) (Figure 3).  
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Fig. 3: The HR Alpha types have been clearly linked with the development of squamous cell carcinoma 

(SCC) and adenocarcinoma (AC) of the cervix. IARC category 1 and 2A HPV genotypes are classified 

(respectively) as carcinogenic and possibly-carcinogenic. Despite limited epidemiological data, the 2B 

classification is proposed for genotypes that are probably carcinogenic because of their close phylogenetic 

relationship with the established carcinogenic types. HPV genotypes in category 3 are considered non-

carcinogenic (Doorbar et al., 2012). 
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HPV infection and Life Cycle 

 

So far, most of the biological studies concerning the clear association of mucosal HR-HPV 

genotypes with human carcinogenesis (Zur Hausen, 2002), have been focused on these 

types. HPV infects the cells of the basal layer, where it is present at a relatively low copy 

number. The HR-HPV life cycle is tightly linked to the differentiation programme of 

stratified epithelia. HPV initiates the productive phase of its life cycle, that is characterized 

by vegetative viral DNA replication, when cells leave the basal layer of the epithelium. 

During this phase, the HPV genome is amplified to more than 1000 copies per cell and 

subsequently, the expression of late genes starts and viral particles are produced and 

released. In contrast to mucosal HPV types, nothing is known about the life cycle of the 

majority of HPV types that belong to the Beta and Gamma genera. Studies of mucosal 

HPV types have shown that the first step in HPV infection is the interaction of the viral 

capsid with the cytoplasmic membrane of cells at the basal layer of the epithelium 

(Tommasino, 2013). This event is mainly mediated by the major capsid protein, L1, which 

interacts with the cell surface via heparan sulfonated proteoglycan (HSPG) (Doobar et al., 

2012). It is also possible that the viral particles bind to another component of the cellular 

membrane, the integrin α6, proposed as a secondary cellular receptor for HPV particles 

(Evander et al., 1997) even if, the precise nature of the entry receptor remains somewhat 

controversial (Doobar et a., 2012; Tommasino, 2013).  

The internalization of HPV16 particles, after binding to the cellular membrane, is mediated 

by a clathrin-dependent endocytic pathway (Day et al., 2003). Additional findings indicate 

that other mucosal HPV types may use different endocytosis pathways (Bousarghin et 

al.,2003). It is also highly likely that the minor capsid protein, L2, plays a role in 

membrane binding and cellular internalization. In fact, in vitro assays anti-L2antibodies 

against specific linear epitopes are able to block the internalization of L1/L2 virus-like 

particles (Kawana et al., 2001; Gambhira et al., 2007) and the annexin A2 hetero tetramer 

contributes to HPV16 infection in an L2-dependent manner (Woodham et al., 2012). 

Recently, Surviladze and colleagues have presented evidence of a novel mechanism of 

viral entry, observing that HPV16 particles, after binding to the cell surface, are released as 

a soluble complex with HSPGs and growth factors. The growth factors mediate the 

interaction of the soluble complex with their cognate receptors, facilitating the 

internalization of the viral particles (Surviladze et al., 2012). 
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Natural history of HPV infection 
 

The HPV lifecycle is closely linked to stratified epithelium differentiation (Pyeon et al., 

2009). HPV virions infect the basal epithelium through micro-abrasions in the epidermis. 

The modality of virus invasion is still not fully understood, but several receptors, including 

heparan sulphate proteoglycans and alpha-6 integrin, have been associated with this 

process (Doobar, 2006). Upon migration to the basal cell nucleus, the viral genomes are 

established as episomes, the early promoter are activated and finally resulting in low levels 

of viral synthesis. During normal epithelium differentiation, the daughter cells migrate 

from the basal layer upwards and undergo terminal differentiation. Viruses finally reach 

the epithelial surface where they form a cornified layer of dead cells, which are eventually 

eliminated (Figure 4).  

 

 
Fig 4: The location in the squamous epithelium of the main stages of the papillomavirus life cycle. Cervical 

stratified squamous epithelial cell architecture and the expression of HPV proteins after infection. Daughter 

cells of epithelial stem cells divide along the basement membrane and then mature vertically through the 

epithelium without further division (right side). (Muñoz et al, 2006) 

http://www.nature.com/nri/journal/v4/n1/fig_tab/nri1260_F2.html  . 
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In HPV-infected differentiating cells, the late promoter is activated, leading to the 

vegetative state of the HPV lifecycle (Longworth et al., 2004). During this phase, high 

levels of viral DNA are replicated, enveloped into capsids and released from the cell. To 

maintain viral synthesis in the epithelium, the virus takes advantage of the host cell 

replication system. Consequently, the HPV oncoproteins E6 and E7 come into play, 

maintaining the cell cycle and preventing terminal differentiation. The HPV infected cells 

move up through the epithelium and the viral infected basal cell layer is maintained with a 

low level of viral DNA synthesis. This typically occurs in LSIL disease. HSIL lesions, 

such as CIN3, are typically associated with HPV DNA that has integrated into the host 

genome. Viral integration often occurs in the E1 and E2 regions downstream of the late 

genes. This can result in disruption and loss of these late genes, with subsequent loss of 

control of oncogene expression by the E2 viral gene (Woodman et al., 2007). To maintain 

the HPV infection, HR-HPV genotypes produce E6 and E7 oncogenes, which interfere 

with critical cell–cycle checkpoint pathways and proteins, namely p53 and retinoblastoma 

(Martin et al., 2011) (Fig. 5). 
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Fig. 5: A:  The cervical squamocolumnar junction. The basal cells rest on the basement membrane, which is 

supported by the dermis. Normal squamous epithelium differentiates as shown. The transformation zone is 

the most common site for the development of CC. Prophylactic vaccines induce L1- or L2-specific antibodies 

that neutralize the virus. B: After the HPV infection of basal keratinocytes, the early HPV genes E1, E2, E5, 

E6 and E7 are expressed (red nuclei) and the viral DNA replicates. LSILs support productive viral 

replication. In the upper layers of epithelium the viral genome is replicated further, and E4 (green 

cytoplasm), L1 and L2 (orange nuclei) are expressed. L1 and L2 encapsidate the viral genomes to form 

progeny virions in the nucleus. The shed virus then re-initiates infection. C: A significant fraction of HR-

HPV infections progress to HSILs, which show a lesser degree of differentiation. HSILs are effectively 

treated by loop electrosurgical excision (LEEP). Pap screening and HPV tests can be used to detect SILs. 

D:The progression of untreated lesions to micro invasive and frankly invasive cancer is associated with the 

integration of the HPV genome into the host chromosomes, loss of E2 and up-regulation of viral oncogene 

expression and genomic instability. These cancers are treated with surgery, chemotherapy or radiotherapy 

with limited success. Therapeutic vaccines and immune stimulants such as imiquimod can potentially induce 

an infiltration of T cells specific for the early viral antigens and clearance. (Roden and Wu, 2006). 
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Epidemiology 

 

The worldwide prevalence of HPV infection in women with normal cytology is around 11–

12%, with the majority prevalence in sub- Saharan Africa (24%), Eastern Europe (21%) 

and Latin America (16%) (Bruni et al, 2010). In women less than 25y, HPV prevalence has 

been observed highest, decreasing average with progression of age in many populations, 

some of which have a secondary peak in peri-menopausal or early menopausal time (Denis 

et al., 2008; Ali et al., 2013; Melo et al., 2014; Cuzicke et al., 2014). In China, the 

prevalence is instead relatively age independent. The explanation of these difference 

prevalence pattern and the clinical significance is not understood. Globally, the five most 

prevalent types are HPV16 (3.2%), HPV18 (1.4%), HPV52 (0.9%), HPV31 (0.8%) and 

HPV58 (0.7%) (Bruni et al, 2010). Prevalence increases in women with cytologic cervical 

pathology in direct proportion to the severity of the lesion, reaching around 90% in women 

with CIN3 and invasive CC. In fact, 100% of all CC has been found to be HPV positive. 

Of note, the proportion of HPV positive women in whom HPV16 is greatly detected, 

increases with lesion severity (Bosch et al., 2013). 

Infection with HR-HPV types is recognized as one of the major causes of infection-related 

cancer worldwide. A strong evidence for a causal etiology with HPV has been stated by the 

IARC for cancers of the cervix uteri, penis, vulva, vagina, anus and oropharynx (including 

base of the tongue and tonsils), which has estimated the overall number of cancers 

attributed to HPV and classified by geographic region.  

The prevalence of HPV infection with specific genotypes differ by age and area. In 2008, 

there were estimated in the world 12.7 million new cancers, of which 700,000 with an 

HPV-associated cancer site. 610,000 of these were attributable to HPV only (Ferlay et al., 

2010) which alone represents 4.8% of the total burden of cancer worldwide that varies 

widely by geographic region, ranging from 1.2% in Australia and New Zealand to 14.2% 

in sub-Saharan Africa and 15.5% in India.  

Of note, 80.6% of the total number of cases attributable to HPV occurred in 

underdeveloped countries (6.9%) compared with 2.1% in more developed countries. In the 

world, CC resulted the third most common female cancer, (approximately 86% of these 

cases occurred in underdeveloped country), with a strong association between CC 

incidence and level of development.  

In underdeveloped countries, the incidence and mortality rates tend to be higher compared 

to developed and after 5-year relative survival, in these different conditions is observed a 

similar pattern 20% vs 65%, respectively. Global maps of CC rates show patterns of 
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variation largely consistent with level of develop. According to a meta-analysis regarding 

the prevalence of HPV genotypes in women with normal cytology, HR-HPV16, although 

high and variable across world regions, resulted the most prevalent genotype (22.5%). 

Others HPV genotypes highly prevalent resulted, HR-HPV18,-52-,31-58,-39,-51,-56 and 

LR-HPV6 (Bruni et al., 2010). 

Italy, mirrors the world trend, with a strong variability of HPV prevalence by age and area 

(Agarossi et al., 2009; Giorgi Rossi et al., 2010, Giuffrè et al., 2010; Bellaminutti et al., 

2014; Carrozzi et al., 2014). HPV16 resulted the most common genotype in our country 

(Giorgi et al., 2011; Bianchi et al., 2013; Carozzi et al., 2014).  

 

Immunopathogenesis of HPV  

 

The most frequent HPV infections recover spontaneously, within two years from infection 

and without any clinical manifestation by immune-competent individuals; consequently the 

immune system is able to effectively eliminate virus-infected cells. However, the natural 

immune response may be insufficient, not allowing the infection resolution. The virus does 

not cause viremia, or systemic infection. The virus absence in the blood and its 

characteristic intracellular replication and not accompanied by cell lysis, involves the 

inability of the immune system to mount a strong antibody response or to induce 

inflammation (Rosales and Rosales, 2014). 

The initial inflammatory response induced by tissue damage leads to infiltration of immune 

cells mainly neutrophils, followed by macrophages and later lymphocytes, that recognize 

“danger” viral molecules detected by pattern recognition receptor (PRR), such as Toll like 

receptors (TLR) (Kawai and Akira, 2011). The immune response innate induces the lysis 

of the infected cells and the production of cytokines pro-inflammatory such as IL-1β, IL-

6,IL-8, IL-12 and INF-α,-β,-γ, to activate natural killer cells (NK) and other immune cells 

(Woodworth, 2002).  

T cells, activated by recognition of viral proteins, induce the growth and maturation of B 

cells. These cells, together with the cell-mediated response, are necessary to ensure an 

effective protection against the virus. The induction of neutralizing antibodies specific for 

L1 and L2 proteins viral capsid, is critical to prevent the onset of symptoms and the 

entrance of the virus into cell. 

Infiltrations of CD4+ (Helper) and CD8+ (Cytotoxic) T cells that are absent in persistent 

lesions, has been detected in spontaneously regressing HPV-related lesions, indicating that 

the adaptive immune response against the virus is important and for the most cases 
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effective. This adaptive response comprises elements of humoral and cellular immunity 

(Stanley, 2006). 

The humoral immune response, in the majority of patients with HPV infections, is 

characterized, in the first stage of infection, by antibodies against different HPV proteins 

such as L1, E2, and E4 proteins. Antibodies against E6 and E7 oncoproteins can be 

detected in low- and high-grade lesions, when viral DNA gets integrated into cellular 

genome. However, this antibody response is usually weak and variable. It does not seem to 

protect from future re-infections (Tjiong et al., 2001) and the seropositivity seems 

depending on the site of the cancer around the anogenital area, indicating that cancer 

development may lead to changes in antibody responses in a site-specific fashion (Carter, 

2001). Thus, humoral responses are not enough efficient to eliminate established HPV 

lesions. In addition, antibody titers can persist for many years even after the virus is 

cleared, so seropositivity is a useful marker for past infection rather than current infection. 

Cell-mediated immune responses are more important in clearing HPV-related lesions. T 

cells HPV-specific are generated to fight and eliminate infected cells; thus both, CD4+ and 

CD8+ T cells and also responses that include HPV specific regulatory T cells (Treg) that 

inhibit cytotoxic activity (Welters et al., 2003), are important for elimination of HPV 

infection. In fact, T cell responses to viral proteins are present in patients who successfully 

eliminated previous HPV16 infections. Moreover, T cells, with a predominance of Th1 

cytokines, were observed in high ratio during regressing lesions. In contrast, in patients 

presenting CIN or CC, a deficient T cell response with a strong shift to Th-2 cytokine 

profile, are observed in persistent lesions. Thus, an efficient cytotoxic cell-mediated 

immune response is critical for elimination of HPV-related lesions. Unfortunately the virus 

has also evolved mechanisms to interfere with the immune response (Rosales and Rosales, 

2014). 

 

 

  



16 
 

HPV Strategies for Evading Host Immune Response 

 

HPV has evolved several mechanisms to evade the immune system. In the areas where 

HPV replication takes place, the immune surveillance is poor. In the stratified squamous 

epithelium of the uterine cervix, surveillance by dendritic cells (DCs) greatly declines 

towards the keratinized layers. 

The keratinocytes infected by HPV express a low load of viral proteins and thus, do not 

induce their lysis. Expression of viral gene products up-regulates progressively with 

differentiation and upward migration of keratinocytes Moreover, HPV down-regulates, by 

E6 and E7 oncoproteins, the expression of major histocompatibility complex (MHC) class 

I molecules, TLR9, and cytokines such as, interferon and interleukin (IL-8) (Stanley, 

2006). 

In this way, HPV late proteins, which are the most immunogenic, are expressed at areas of 

poor immune surveillance (Figure 5). In addition, new virions are released through the 

normal rupture of surface epithelium, reducing any possible inflammatory response and 

avoiding uptake by DCs. Therefore, HPV replication is a local phenomenon with minimal 

activation of the immune system. Moreover, a reduced inflammation state is found in 

persistent lesions and in tumors. This condition correlates with a change in the cytokine 

profile produced at the site of infection.  

A shift to Th2 cytokines is also common in persistent lesions (Bais et al., 2007; Rosenthal 

et al., 2012). This leads to an inhibitory state for helper CD4+ T cells. In addition, Tregs 

have been found infiltrating tumors, especially in the early stage of tumor progression 

(Piersma et al., 2008). Thus, any therapeutic approach must be able to induce a strong 

HPV-specific immune cell response that involves CD4+, CD8+ cells, and Th1 type 

cytokines. 

However, HPV has also evolved mechanisms to avoid both initial detection and to interfere 

with adaptive response, that allows the virus to persist and lesions to progress into cancer 

(Figure 6). 
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Fig. 6: HPV-mediated effects on the host immune response.  

A: Immune evasion mechanisms employed by a HPV-infected cell are polarization of T cell subtypes, 

inhibition of the CTL (C8+) response and modulation of APC trafficking.  

B: Immune evasion mechanisms of HPV-driven malignantly transformed cells include recruitment of 

immunosuppressive cells, leading to immunosuppressive cytokine production. (Grabowska et a., 2012). 

http://openi.nlm.nih.gov/ 

 

 

HPV infection and Cervical Cancer 

 

HPV is a sexually transmitted agent deemed a cause of CIN and invasive CC in worldwide. 

Currently it is widely accepted that specific genotypes of HPV are potentially oncogenic 

and are associated with virtually all cases of CC and, to a lesser extent, with cancers of the 

vagina, vulva, anus, penis, skin and oropharynx (Trottier et al., 2006; Parkin et al., 2006; 

Shukla et al., 2009; Moody et al., 2010).  

Over than 100 HPV types classified into HR-HPV are linked to both to tumor precursor 

lesions and to the progression of invasive CC (Simonetti et al., 2009), the second most 

common cancer among women (Arbyn et al., 2011) and the seventh in the world (Forman 

et al.,2012). Persistent infection with one of the oncogenic HPV genotypes is required to 

cause CC (Walboomers et al. 1999; Bosch et al., 2002). 
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HPV must be persistent within the host epithelial cells as a preliminary step toward 

advanced neoplastic changes. This process takes years, if not decades, to occur after initial 

HPV infection. Persistent infection, with HPV genotypes with high oncogenic potential, 

increases the probability of ICC following an extended period of latency. The integrity of 

the cell-mediated immune response against HPV is an important factor for healing and 

prevention of the reactivation of the latent infection (Fernandes et al., 2013; Stanley, 

2006). 

Recent studies seem to suggest that these changes may develop more quickly than 

previously thought. Winer et al., followed women after initial HPV infection for the 

development of CIN 2/3 and approximately 27% of women with an initial HPV16 or 18 

infection progressed to CIN 2/3 within 36 months (Winer et al., 2005). A second study, 

performed on a large health maintenance cohort, found that approximately 20% of women 

30y or older, who were initially infected with HPV16, developed CIN3 or CC within 120 

months, while women who had an initial HPV18 infection, had approximately a 15% risk 

(Khan et al., 2005). 

The strong correlation between infection with HR-HPV and LSIL, HSIL, and CC suggests 

that HPV DNA testing would be an useful tool for the management of women with 

abnormal Pap test results, especially in the case of those with equivocal test results. In the 

case of an equivocal Pap test result, HPV DNA testing can help determine whether the 

individual should be referred for colposcopic assessment (Cox et a., 2003). 

Accumulating evidence suggests that a combination of screening strategies is needed to 

detect as early as possible HPV induced lesions CC.  

Epidemiological studies in HPV infected females have provided important clues about a 

spectrum of cofactors that can increase the carcinogenic HPV potential. Presumably, 

cervical infections with other pathogens, exposure to physical and chemical agents, 

hormonal factors and Chlamydia trachomatis (CT) itself, as previously demonstrated 

(Smith et al, 2002; de Abreu et al., 2012). Notably, the infections caused by these two 

pathogens are often associated with an intense chronic inflammatory response and 

ulcerations in the cervical epithelium (Scott et al., 1999; Adefuye and Sales, 2012, Silva et 

al., 2014). 
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CHLAMYDIA TRACHOMATIS 

 

Characteristics  

 

The Chlamydiaceae are a family of ubiquitous gram-negative, aerobic, obligate 

intracellular bacteria present in the environment including aquatic.  

Once considered viruses, they grow in eukaryotic cells and are responsible of a wide range 

of diseases in human and animals. A recent revision has taxonomically re-classified the 

group in 4 distinct families (Chlamydiaceae, Simkaniaceae, Parachlamydiaceae and 

Waddliaceae) based on > 90% 16S rRNA identity and a single genus which include the 

different species. C. pneumoniae (CP) and C. trachomatis (CT) are common pathogens in 

humans, but the routes of transmission, susceptible populations and clinical presentations, 

differ markedly, although have a common developmental cycle (Contini and Seraceni, 

2012). Currently, there have been described 11 species of Chlamydia. Most are able to 

infect several host species and anatomical sites. CT, the most medically significant 

chlamydial species, is a human-specific microorganism capable of produce pulmonary, 

ocular and genital pathologies in either neonates or adults (Bachmann et al., 2014) (Figure 

7). 

 

 
Fig. 7: Phylogenetic reconstruction based on almost complete 16S rRNA genes from type strains of 

established Chlamydiaceae spp., including the recently proposed new species C. avium and C. gallinacea 

(Sachse et al. Systematic and Applied Microbiology, 2015). 
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Ocular infections caused by CT are the leading cause of preventable blindness (trachoma) 

(Lu et al., 2013) or lymphomas (Contini et al., 2009; Contini et al., 2013) whereas genital 

infections are known to have adverse effects on female reproduction (Shao et al., 2013).  

In women, due to the high frequency of the asymptomatic phase, CT can lead to pelvic 

inflammatory disease (PID), infertility, ectopic pregnancy and chronic pelvic pain. 

(Haggerty et al., 2010). Infections by CT are also known to facilitate rheumatic disease 

(Gerard et al., 2010; Carter et al., 2012; Zeidler and Hudson, 2014).  

CP is the other human chlamydial pathogen prevalently associated to respiratory infections 

as community-acquired pneumonia worldwide (10–20%) and asthma (Blasi et al., 2004; 

Stocks et al., 2004; Hahn et al. 2012; Asner et al., 2014). Moreover, evidence seems to 

suggest that CP is also linked to cardiovascular, rheumatic and neurologic disease 

(Witkiewicz et al., 2005; Fernandez et al., 2005; Contini et al.; 2010; Contini et al., 2011). 

The least five other Chlamydia species have a broad host-range in animals. Chlamydia 

psittaci is primarily a pathogen of avian species that causes respiratory diseases (interstitial 

pneumonia transmitted by birds) which usually occur through inhalation of the organism 

when it is dispersed in the air as fine droplets (aerosol) or dust particles (Moroney et al., 

1998; Van Droogenbroeck et al., 2009). 

CT have extremely small circular genome (1042 kbp), which contains also a cryptic 

plasmid (length 7500 bp) linked to virulence that can contribute, to the regulation of 

chlamydial chromosomal gene expression, by its transcriptional activity (Carlson et al., 

2008). A detection of cryptic plasmid’s nucleic acid, is utilized for diagnostic purposes 

(Ljubin-Sternak and Meštrović, 2014) and usually can detect all variants discovered such 

as Sweden mutation (Paavonen, 2012). 

CT has tropism for conjunctival and genitals mucous membranes, where can lead to 

diseases with chronic inflammation.  

According to different immunoreactivity, 19 human serotypes and related variants (A, 

B/Ba, C, D/Da, E, F, G, Ga, H, I/Ia, J, K, L1, L2, L2a and L3) have been identified by 

using mono or polyclonal antibodies directed against epitopes of the major outer protein 

membrane (MOMP). These serotypes are closely related to the genotype, which is based 

on the ompA gene (encoding the protein MOMP) (Wang et al., 1985; 1991; Hsu et al., 

2006) and can be divided into three serogroups: the B group (serotypes B, Ba, D, Da, E, 

L1, L2 and L2a); the intermediate (I) group (serotypes F, G and Ga); and the C group 

(serotypes I, Ia, J, K, C, A, H and L3) (Bax et al., 2013). In contrast with the individual 

serotypes, that possess a certain correlation with the disease and the affected tissues, the 

serogroups do not correlate with either tissue tropism or the biological properties of the 
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organism. Therefore, based on the pathogenic potential, serotypes A, B, Ba and C are 

commonly associated with the development of trachoma, chronic eye condition, while D to 

K serotypes, are responsible of urogenital infections as well as neonatal conjunctivitis and 

pneumonia. The serotypes of lymphogranuloma venereum (LGV), L1 to L3 and L2a, are 

responsible of most invasive urogenital diseases (Dean, 1997; Gomes et al., 2006). 

Additionally, it seems that the infections with CT serovars G, I and D are associated with 

cervical squamous cell carcinoma and chronic infections with serotype K, in women, have 

been recognized as a cause of infertility (Marrazzo & Stamm, 1998; Koskela et al., 2000; 

Morre et al., 2000; Anttila et al., 2001). The CT serotypes most commonly isolated from 

patients are: E (50%), F (20%) and D (10%). According to recent findings, F serotype 

seems be responsible of more severe infections, whilst E of asymptomatic infections 

(Choroszy-Król et al, 2012). 

 

CT infection and Cell Cycle 

 

The intracellular growth cycle of the Chlamydiae is complex and several growth options 

are possible, depending on the host-cell type, the particular environmental conditions in the 

host cell and the nature of tissue that is being affected.  

Chlamydiae, have a characteristic biphasic growth cycle within a eukaryotic host cell, 

during which infectious, elementary bodies (EBs, 0.3–0.6 mm diameter) differentiate into 

the metabolically active but non infective reticulate bodies (RBs, 0.6–1 mm diameter), that 

divide by binary fission within the host, derived vacuoles named Chlamydial inclusions. 

After 48–72 h, RBs multiply by binary fission and reorganize into EB, which are released 

after host cell lysis. In vitro, this orderly alternation between EB and RB in life cycle 

development usually take place in 72 h, ranging from 36 to 96 h to complete, depending on 

each species and in the number of inclusions per host cell (from one in CT infected cell, to 

several inclusions for the others Chlamydiae). Under in vitro conditions with adverse 

factors, e.g., penicillins or INF-γ, RBs block division and maintain a stable association 

with the infected cell and become the aberrant or persistent bodies with enlarged forms, 

altered gene expression profile and multiple nucleoids, instead of undergoing rapid 

replication and differentiating into infectious EBs (Figure 8) (Contini and Seraceni, 2012). 

Although the life cycle of Chlamydiae is well characterized by microscopy, the signals that 

trigger interconversion of the morphologically distinct forms are not completely known 

(Beatty et al., 1994; Dautry-Varsat et al., 2005). However, EBs are no longer considered as 

inert organisms. The discovery that EBs can translocate stored proteins into the host under 
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distinct signaling pathways is further evidence that the entry process results from a 

dialogue between the bacteria and the host, although many features including EB protein 

attachment to target cells, remain to be clarified or discovered (Dautry-Varsat et al., 2005; 

Wuppermann et al., 2008). During chlamydial cell cycle, a stop in development may lead 

chronic infection, characterized by high transcriptional activity with aberrant bodies 

formation (Gerard et al., 2013). These events, reversible, constitute the basis of clinical 

persistence leading to chronic sequelae. 

Moreover, aberrant forms of RBs, with reduced MOMP and lipopolysaccharide (LPS) 

antigens, persist with high production of chlamydial heat shock protein 60 (Hsp60) can 

induce inflammation and scarring, classic characteristics of chronic infection (Malhotra et 

al., 2013). The virulence of these microorganisms is principally due to components of the 

outer membrane, inclusion proteins and polymorphic membrane proteins, (pmp) related to 

the third type secretion system (TTS), to different secretory proteins (e.g. 

glycosyltransferase), chromosomally encoded and especially to extrachromosomal factors, 

specifically plasmids (Pawlikowska-Warych et al., 2015), capable to define the outcome of 

infection and disease severity. Multiple types of genetic variation are found in CT that 

impact variability and expression of virulence factors, such as high degree of variability in 

the exposed portions of MOMP, polymorphic TTS effectors, and amino acid substitutions 

in pmp autotransporters (Abdelsamed et al., 2103). These strategies have been 

demonstrated to foster chlamydial intracellular survival, aid in the evasion of the host 

immune system, and form the basis for distinct chlamydial disease variations in host tissue 

tropism (Byrne, 2010). Host genetics also play a role in the disease severity. For example, 

women who carry specific HLA DQ and IL-10 promoter alleles that modify host immune 

response were found to develop TFI more frequent than control group (Kinnunen et al., 

2002). 
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Fig. 8: Chlamydia life cycle with main morphological and metabolic features of normal productive vs. 

persistent CT infection.  

A: schematic description of persistent life Chlamydia arrested at partially known state of the normal life 

cycle.  

B: the morphologies, the results of culture-based detection of Chlamydia, their metabolic state, their gene 

expression profiles, and energy supply of Chlamydia during productive infection and in a persistent state.  

+ indicates detection; −indicates lack of the corresponding messenger RNA (Zeidler and Hudson, 2013) 

 

 

Epidemiology 

 

The WHO estimates that, each year, CT infections are diagnosed over 90 million new 

cases (Kucinskiene et al., 2006). A 2012 report has revealed that in United States occur 

over 1 million new cases (rate 456.7 per 100,000 people) for year (CDC, 2012). In the 

developed countries, CT prevalence is high (3-6%) especially in health young heterosexual 

adults under 25y, especially those who are sexually active (Goulet et al., 2010; Eggleston 

et al., 2011). Urogenital chlamydial diseases are common in young population and tightly 

associated with sexual behavior. Other than age, other risk factors such as STDs co-

infection, new o multiple sexual partners, oral contraceptive use, are important in the 

pathogenesis of this pathology. CT prevalence in the world varies among different types of 

persons and depending on laboratory techniques used for microorganism detection. These 

differences could represent real differences in sexual behaviours patterns and CT control 

efforts, but might also result from different study design and participation rates. Paavonen 

(2012), in a review reported that European prevalence among asymptomatic women varies 

A A B  
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from 1.7% to 17%, while Ljubin-Sternak and Meštrović revealed a higher prevalence 

(35.3%), in symptomatic patients (18-25y) (Ljubin-Sternak and Meštrović .2014). A large 

meta-analysis from 11 EU/EEA countries and 14 studies from five other high income 

countries, reported on young women sexually active people (18–26y), a CT prevalence 

from 3.0–5.3% (Redmond et al., 2015). 

In Italy, Italian Institute of Health reported an overall prevalence in women of 2.3% which 

was estimated approximately highest in subjects less 25y compared to over 25 (7.9% vs 2.5 

%) (Salfa et al., 2014). 

 

Immunopathogenesis of CT infection 

 

CT causes clinically unapparent infections of the upper genital tract that may result in 

significant damage to the reproductive organs, such urethritis, mucopurulent cervicitis, 

plasma cell endometritis, salpingitis (Paaovonen, 2012). CT infections increase the risk for 

tubal factor infertility and can lead to pelvic inflammatory disease (PID), infertility, ectopic 

pregnancy and chronic pelvic pain (Haggerty et al., 2010) and have been also linked to 

other adverse pregnancy outcomes, including chorioamnionitis, placemtitis, premature 

rupture of membranes and preterm birth (Rours et al., 2011). Vertical transmission from 

the genital tract can cause conjunctivitis and pneumonitis in new-borns (Paaovonen, 2012). 

The clinical course is usually subacute and poorly symptomatic, but the microorganisms 

are rarely detected in patients without clinical signs of infection. In fact, most CT 

infections are symptom-free or paucisymptomatic, remaining undetected and thus 

untreated for a prolonged period with the possibility of developing chronic infections 

because of spreading via monocytes and can cause local and systemic infections. CT is 

also a potent immunogen, stimulating the immune processes of microorganisms. 

In the course of CT infection, the response mechanisms involved are: non-specific, 

specific, humoral and cellular. Chronic infection is characterized by maintenance of 

microorganisms in the host cell. Inflammation occurs in a less time period and with 

increased intensity and evokes a rapid immune response of lymphocytes, previously 

sensitized (Choroszy-Król et al., 2012) (Figure 9). 
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Fig 9: Immune protection against chlamydial infection in the female genital tract. Innate, humoral, and cell-

mediated immunity act in concert to protect against CT infection of non-immune host genital epithelial cells 

and local innate immune cells in the female genital tract (FGT). 

Innate: The epithelial barrier is relatively ineffective at protecting against Chlamydia as this mucosal 

pathogen has a myriad of mechanisms to evade barrier protection. A mucus layer containing a variety of 

antimicrobial factors and endogenous microbiota contributes towards regulating the pH of the FGT to protect 

against genital tract pathogens. Innate immune cells constitutively secrete an array of soluble antimicrobials, 

including secretory leukocyte protease inhibitor (SLPI), human β-defensin 2 (HBD2), lysozyme, lactoferrin, 

Elafin, cathelicidins. Chlamydial infection of columnar epithelial cells and local genital tract immune cells, 

including neutrophils, macrophages, and NK cells, produces soluble antimicrobials chemokines, and pro-

inflammatory cytokines that selectively prevent bacterial infection of target host cells. (e.g., IL-1 released 

from infected epithelial cells promotes Th17 differentiation). Recruitment and activation of adaptive immune 

cells (T and B cells) are also orchestrated by the release of these secreted soluble antimicrobial factors from 

epithelial cells, dendritic cells, and macrophages.  

Humoral: Antibodies potentially can prevent infection by Chlamydia. Immunoglobulin G (IgG) is the 

predominant antibody in the FGT. Antibodies released from plasma cells (IgG and IgA) inactivate 

extracellular chlamydial EB. 

Cell-mediated: CD4+, by IFN-γ production, contributes to host defence by inhibiting intracellular chlamydial 

replication, while CD8+ induces apoptosis of infected cells. 

CTL:CD8+; GM-CSF: granulocyte-macrophages colony-stimulating factor; MMP:  matrix metalloproteinase; GRO-α: growth related 

oncogene-α; TNF: tumor necrosis factor (Hafner et al., 2013). 

http://www.nature.com/mi/journal/v6/n5/full/mi201346a.html. 
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CT Strategies for Evading Host Immune Response 

 

CT pathogenesis depends on the cell population invaded, the initiation of the replicative 

genetic state of the pathogen and the efficiency of the release of effector molecules into the 

host cell. A number of mechanisms can be considered to explain the evasion of host 

immune response. As many other intracellular bacteria (Brinkmann et al., 1987), 

endocystosed Chlamydiae are in fact sequestered within a host derived phagosome during 

the intracellular phase of developmental cycle. Their intracellular location largely protects 

them from antibody and complement attack. Cell mediated immunity is the predominant 

component in controlling CT infection, even if Chlamydia antibodies may play a 

significant role in controlling the infection at a later stage of the disease (Zhong, 2009). 

Moreover, studies using animal models have shown that both the IgA secreting B cells and 

IFN-γ producing CD4+. Th1 T cells are the most important adaptive immunity mechanisms 

in course of infection, although other immune components also play some roles (Malhotra 

et al., 2013). Despite these powerful host defense mechanisms, acute infection (if not 

treated) can activate inflammation, inducing the production of a wide variety of 

inflammatory cytokines, (IL-1, IL-6, IL-8 and TN-α) and can persist in some infected hosts 

(Gottlieb et al, 2010). In fact, Chlamydia species have shown a tendency to cause 

persistent infections that may also play a role in oncogenesis. In this regard, the induced 

inflammatory responses cannot only fail to effectively clear the infection but also 

contribute to inflammatory pathologies (Stephens, 2003). The failure by the host to 

eradicate the disease involves the establishment of a state of chronic infection in which CT 

after internalization into mononuclear cells, enter into a state of quiescence (cryptic body) 

with intermittent periods of replication and characterized by antigenic variation, production 

of Hsps and pro-inflammatory cytokines (capable of evading host defenses) which trigger 

tissue damage (Stratton and Mitchell, 1997). In this regard, Hsp60, an ubiquitous and 

evolutionarily conserved chaperonin, normally sequestered inside the cell, particularly into 

mitochondria, can elicit an immune response in humans which although directed against 

the microbial molecule but also reacts with endogenous Hsp60 (Pockley, 2003). During 

cell stress conditions, as well as during carcinogenesis, this chaperonin becomes exposed 

on the cell surface and/or is secreted from cells into the extracellular space and circulation 

(Figure 10). 
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Fig. 10: Potential effects of anti-CT-Hsp60 antibodies. These antibodies recognize surface-Hsp60 onstressed 

or tumor cells, and consequently, they can lead to either damage and persistence of infection or cell lysis 

producing a regression of certain types of cancer. Immunocomplexes (CT-Hsp60 and anti-CT-Hsp60) can 

cause disease if they form deposits in the renal glomerulus (Mascellino et al., 2011). 
http://www.hindawi.com/journals/isrn/2011/436936/fig3/. 
 

 

Quantification of circulating Hsp60 has recently become a potential useful marker of 

infection for clinicians in patients affected by a variety of diseases. However, interpretation 

of its values should be carefully evaluated, as a correlation between chaperonin levels and 

disease is difficult to establish. Hsp60 is also a ligand of TLR and its expression on cell 

membrane surface’s correlates with apoptotic phenomena (Cappello et al., 2009). During 

CT invasion and intracellular growth, sensors of the host innate immunity (PRR) can detect 

the infection by recognizing microbial components (pathogen associated molecular 

patterns, PAMPs). Chlamydia PAMPs such as Hsp60 and Macrophage Infectivity 

Potentiator lipoprotein (MIP) are recognized by host PRR TLR4 and TLR2 respectively. 

These host receptors selectively recognize a broad spectrum of microbial components and 

endogenous molecules released by injured tissue (Bulut et al., 2002; Bas et al., 2008). In 

human cells, TLR4 recognizes CT LPS and Hsp60 and it is mainly expressed in the tubes 

and endometrium and little in endocervix, while TLR2 recognizes peptidoglycan and it is 

mainly expressed in the tubes and cervix (Mascellino et al., 2011) and appears to be the 

predominant receptor required for an inflammatory response to infection. Interestingly, 

TLR2 and its adaptor MyD88 localize to the periphery of the chlamydial inclusion during 

active infection, suggesting that may signal intracellularly during infection (Bastidas et al., 
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2013). MIP or other lipoproteins could be released from EB surface and RBs, and retain 

inside tissues where they might activate resident cells and perpetuate inflammatory 

response even after the eradication of live bacteria with antibiotic therapy (Bas et al., 

2008). In general, PRRs, upon ligand binding, can lead to activation of various 

inflammatory signaling pathways including NF-kB, NF-IL-6 and MAP kinases. 

TTS apparatus is another mechanism which seems central to the biology of the 

Chlamydiae, as it mediates the translocation of bacterial toxins to the cytosol of infected 

cells. It is present in several important gram-negative bacterial pathogens (Peters et al., 

2007). It consists in a molecular injection system protruding from the outer membrane, that 

appears to be expressed and functional in acute as well as in chronic infection and may 

represent a prominent virulence factor. A major role of T3S may also be involved, ensuring 

growth and development of the pathogen by modifying apoptosis signals or some other 

transcriptional regulation important for Chlamydia survival. 

 

CT Persistence and Chronic Infection 

 

The exact role of persistent stage in the CT developmental cycle as well as the molecular 

mechanisms allowing persistence remains to be elucidated. In vivo studies of 

microorganism persistence are hampered by genotype definition and viability of organism. 

However, characterization of in vitro persistent phase of pathogen and multiple lines of in 

vivo evidence, suggest that CT persists in an altered form during chronic disease (Hogan et 

al., 2004). 

Persistence has long been recognized as a major factor in the pathogenesis of CT disease. It 

has been described as a viable but non-cultivable growth stage resulting in a long-term 

relationship with the infected host cell that may not necessarily manifest as clinically 

recognizable disease. 

It is distinct from unapparent infections, which may or may not involve evident CT growth 

and refers to an atypical, intracellular and metabolically less active state that is difficult to 

resolve not only by the host-defense system, but also by antibiotic therapy. 

Unlike the re-infections believed to be the result of exposure to a CT serotype different 

from the initial, persistent infections are due to the same type of pathogen genotype entered 

into a metabolic quiescent and non-infectious form and responsible of three to ten 

recurrences which can last many years (Dean and Powers, 2001). 
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In vitro studies have shown that several factors including nutrient depletion, cytokines, iron 

restriction, amino acids, Ca++  and certain antibiotics can favor the Chlamydial persistent 

stage (Beatty et al., 1994 ; Raulston ,1997; Dreses- Werringloer et al., 2000). 

IFN-γ is considered a primary host protective cytokine against endocervical CT infections. 

This directly inhibits bacterial growth through the depletion of cellular tryptophan (TRP) 

by indolamine-2,3-dioxygenase (IDO) (Aiyar, 2014), which can stop the expression of late 

proteins, such as MOMP, that in turn stop the progress of RB division and RB conversion 

into EBs leading to aberrant Chlamydial RBs (Sardinia et al., 1988; Beatty et al., 1994). 

A failed or weak Th1 response will allow CT RBs to respond to immune challenge by 

converting into a non-replicating but revivable persistent state (Debattista et al., 2003; 

Leonhardt et al., 2007). CT, in this persistent state, is able to survive and still allows for 

antigen-presentation (Rey-Ladino et al., 2007). A direct consequence of this prolonged 

infection is antibody or Th2-mediated hypersensitivity (Debattista et al., 2003).Moreover, 

an over-stimulated Th1 response will lead to delayed-type hypersensitivity and an 

increased risk of IFN-γ-mediated tissue damage, that is likely a consequence of an initially 

dominant Th2 response. Infected cells increase through new infections and decrease by cell 

death and clearance by host immune responses; nevertheless, antibiotic treatment, reduces 

the number of infected cells by eradicating CT; depletion of infected cells further, removes 

the antigen that is reflected on the immune system. As a direct result, the arrested 

immunity hypothesis underscores the importance of gaining a better understanding of the 

interplay between the immune biology of infection and the use of antibiotics (Gottlieb et 

al., 2010). This hypothesis suggests that early antibiotic treatment effectively attenuates the 

optimal development of protective immunity, leaving individuals as susceptible as before 

to reinfection with the same or a new serovar. Therefore the treatment may attenuate 

protective immunity in some persons and conversely that natural immunity may protect 

against reinfection (Marrazzo and Suchland, 2014).  

In this context, a complete transcriptome analysis of CT serovar D growth in HeLa cells 

exposed to IFN-γ, demonstrated the up-regulation of many genes involved in active 

metabolic processes in the aberrant RBs, including those involved in DNA repair and 

recombination, protein translation, and phospholipid utilization (Belland et al. 2003). 

Moreover, separate studies at transcriptional level have demonstrated a down-regulation of 

CT MOMP in HeLa cells and an up-regulation of CP MOMP in response to IFN-γ 

stimulation (Mathews et al. 2001; Molestina et al. 2002). This underlines the different roles 

played by MOMP in the two species. Also, Hsp60–1/groEL was found to be expressed 

predominantly during acute phase growth of CT serovar K and that the Hsp60-copy2/Ct-
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604 gene transcript/protein was increased in iron-induced persistent cultures (Gérard et al. 

2004). 

Antibiotics such as penicillin and quinolones (such as ciprofloxacin and ofloxacin) have 

shown to favor persistence instead of resolving infection because of inducing aberrant but 

viable particles which may explain therapy failure (Dreses-Werringloer et al. 2000). CT 

exposure to penicillin leads to enlarged and aberrant RBs, the so called “penicillin forms” 

that return to normal growth after penicillin removal. On the other hand, although 

Chlamydial RBs are killed by macrolide treatment (azithromycin), residual antigens can 

persist for more than 28 days continuing to harbour inflammatory responses (Wyrick and 

Knight 2004). 

In vivo studies have shown that the presence of Chlamydial antigens and nucleic acids even 

in absence of cultivable organisms is indicative of persisting organisms probably as result 

of immunologic stimulation during chronic disease. Chlamydia rRNA demonstration may 

provide evidence for in-apparent Chlamydial infections (Beagley et al., 2009). 

All different species of Chlamydia have tendency to cause persistent infections that may 

play a role in chronic diseases (inflammation and scarring with significant damage to the 

host) and oncogenesis. 

Previous studies have also revealed that in CT infection, the cytosolic levels of Hsp60 in 

vivo gradually increase during carcinogenetic steps, from normal tissue to dysplasia to 

fully developed carcinoma in various organs (Cappello et al., 2009). 

 

CT and Apoptosis 

 

Cell death by apoptosis is an active and important defense mechanism against invading 

pathogens. Apoptosis has a direct role in many infectious diseases, especially those caused 

by viruses, intracellular protozoans and intracellular bacteria (Byrne and Ojcius, 2004). For 

many of these pathogens, the apoptotic signaling starts from the pathogen and not by the 

host cell. In this regard, Chlamydia inhibits apoptotic signalling cascades during 

productive growth as part of its intracellular survival strategy (Miyairi and Byrne, 2006) in 

order to maintain the integrity of the host cell for the completion of its intracellular growth 

(Zhong, 2009). This is in part due to the proteolysis of host proteins for ensuring its own 

intracellular replication while maintaining the integrity of the infected host cells for long 

periods of time. CT also inhibits apoptosis during persistent growth or in phagocytes, but 

induces apoptosis in T cells, which suggests that apoptosis has an immunomodulatory role 

in Chlamydial infections. The anti-apoptotic activity has shown to be prolonged during CT 
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persistence. This strengthens the hypothesis that active CT metabolism maintains host cell 

integrity and contributes to intracellular survival (Bastidas et al., 2013). 

The circumstances that dictate whether the Chlamydiae inhibit or activate host cell death 

reflect important pathogenic considerations, including whether if an acute or chronic 

infection is in progress and whether intracellular Chlamydia growth is programmed to go 

through a productive infectious cycle or is stalled under non-productive growth conditions. 

It is possible that apoptotic activity is controlled to some extent by the intracellular growth 

status of the Chlamydiae, which can be influenced by any or all of these considerations 

(Byrne and Ojcius 2004) and by strain. While for CP, active inhibition of apoptosis occurs 

in epithelial cells, macrophages and neutrophils, for CT and C. psittaci, the anti-apoptotic 

activity has been demonstrated mainly in epithelial cells later in their developmental cycle 

(Miyairi and Byrne, 2006; van Zandbergen et al., 2004 ). It is not known exactly how pro-

apoptotic and antiapoptotic effects correlate with the wide spectrum of clinical 

manifestations and Chlamydial diseases. A Chlamydia induced apoptotic activity has been 

hypothesized during acute manifestation of disease, whereas inhibition of apoptosis, in 

chronic disease states (Byrne and Ojcius 2004). Chronic infection and clinical persistence 

are closely related. Inhibition of apoptosis could represent a mechanism that has evolved to 

establish a chronic infection. Several lines of evidence suggest that to provoke chronic 

infection, CT could adopt several strategies. One of these consists of being silent, resulting 

in asymptomatic infections that cannot be diagnosed at that time. This promotes bacterial 

progression, even to the most internal tissues. In addition, CT MOMP displays variable 

immunodominant antigenic epitopes. Variations in these epitopes explain the absence of 

strain specific immunity and multiple re-infections by different serovars or by the same 

mutated serovar are still possible (Millman et al. 2001). For these reasons, even if the 

initial infection is resolved, re-infections are possible and can lead to auto-pathological 

immune response induction (Beatty et al.1994). Although re-infections occur, the 

refinement of Chlamydial diagnostic methods will allow us to establish whether CT can 

persist. 
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Interaction between CT and HPV 

 

Infectious agents play an important role in the aetiology of certain human malignancies, 

and are thought to be responsible for around 20% of the worldwide cancer burden (Parkin, 

2001). Much of the burden of cancer incidence, morbidity, and mortality occurs in the 

developing world (up to 27%), with a large body of evidence regarding the role of viruses 

such as human papilloma virus (HPV), hepatitis B virus (HBV) and Epstein-Barr virus 

(EBV) in the complex processes of carcinogenesis of the cervix, stomach and liver (Jemal 

et al., 2010). In addition to viral agents implicated in carcinogenesis, a theory of possible 

association between bacterial infection and cancer has been proposed in early nineteenth 

century (Lax, 2005). Moreover, many bacteria that cause persistent infections produce 

toxins that disrupt cellular signaling, alter the regulation of cell growth, induce 

inflammation or directly damage DNA. Toxins may also mimic carcinogens and tumor 

promoters and might represent a paradigm for bacterially induced carcinogenesis. The 

question however remains quite controversial especially with regard to certain species of 

bacteria for oncogenic properties. 

Some authors have suggested that exposure to CT-Hsp60 may be a risk factor for 

development of cancer (Di Felice et al., 2005), while the development of anti-CT-Hsp60 is 

also proposed to protect against malignancy (Cappello et al., 2009). Chronic persistent 

infection with CT to the upper genital tract is able to incur significant damage to the 

reproductive tract and proposed to induce ovarian cancer (Quirk & Kupinski, 2001). 

Although epidemiological data have not yet provided consistent evidence about a real 

implication of CT in cervical cancer, the co-infection with Human papillomavirus (HPV), 

sharing the transmission route and the same risk factors, have been recently highlighted 

(Simonetti et al., 2009; Vaccarella et al.,2010; Paavonen, 2012). A role for CT as cofactor 

was suggested, since it seems to facilitate the penetration of HPV and the progress of 

cervical lesions interfering in the immunological response (Deluca et al., 2011). Moreover, 

some authors recently detected a high-risk for the development of cervical cancer in 

patients with HPV infection and history of CT (Jensen et al., 2014). Nevertheless, the 

prevalence and distribution of HPV genotypes associated to CT infection and its clinical 

persistence are poorly explored. On this basis, the characterization of HPV infection in 

women suffering from CT could be important in generating hypotheses regarding the 

possible synergism of these pathogens in cervical malignancy (Bathla et al., 2013; Silva et 

al., 2014; Tavares et al., 2014; Shew et al., 2013). Recently, a case-control study showed 

that CT is not able to modify the risk of progression to a high-grade lesion of HPV-positive 
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women but can increase the susceptibility of the cervical epithelium to further HPV 

infection and its persistence (Safaeian et al., 2010) Specifically young age (less than 25y) 

is related to an increased risk of both HPV and CT infection (Silva et al., 2013). 

Furthermore, the role of CT chronic infection in promoting HPV susceptibility has been 

evaluated. In some cases this infection has been associated with cervical atypia and/or 

metaplasia, which in turn, may increase the risk of neoplasia (Luostarinen et al., 2013). 

In this setting, to investigate a pathogen as CT potentially implicated as oncogenic for its 

tendency to cause chronic and persistent infections, together with HPV co-infection, could 

have a great importance for the public health. 
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OBJECTIVES OF THE STUDY 

 

As described previously, HPV and CT are STIs with significant implications for global 

health. In a large series (2009-2014) of women from the North-Eastern Italian area, we 

aimed to: 

• highlight, by molecular techniques, the overall prevalence of HPV and CT 

infections in cervical swabs (CS) specimen of women that perform these types of 

investigations. 

• highlight the overall prevalence of CT/HPV co-infections. 

• highlight the prevalence of CT chronic infections and its performance in the context 

of HPV co-infections 

• evaluate the distribution of HPV genotypes in CT/HPV co-infections, compared to 

women infected with HPV only 

• examine the prevalence of single or multiple HPV infections in the setting of 

CT/HPV co-infections compared to women infected with HPV only. 
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MATERIALS AND METHODS 

 

Clinical Specimens 

 

A retrospective study was conducted on a large cohort of 7135 consecutive cytology 

samples collected starting January 2009 to December 2014 during gynecological health 

checks from immunocompetent women in Trieste, Italy.  

Of this series, 6214 cervical swabs (CS) were collected from women at risk for C. 

trachomatis infection of which 5481 from Outpatients (mean age 35 ± 10y) asymptomatic 

women, 733 were from symptomatic women attending Sexually Transmitted Infection 

(STI) clinic (mean age 33 ± 10y) while 921 (mean age 43 ± 10y) samples were from 

women at risk for HPV infection attending as outpatients a second level centre for Cervical 

Cancer prevention.  

CS were collected using a 200 mm polyethylene Cervex brush device (Rovers Medical 

Devices B.V., The Netherlands) and suspended in 1.5 ml of TE buffer. The top portion 

uses a soft, flexible brush to obtain cell samples, while the shape allows the top edges to 

follow the contours of the cervix. The longer middle bristles reach deep into the 

endocervical canal while the shorter bristles touch both the ectocervical area (external os) 

and the transformation zone (T-zone). The sample was divided into 3 aliquots of 500 µl 

each and stored at -80°C until analysis.  

No informed consent or any action of the patient was required for this study because the 

anonymity of the patients was guaranteed. The analysis on this series of samples was 

conducted blinded. 

 

Isolation of DNA from cervical cells 

 

DNA isolation was performed within 24 hours after the collection of the samples. After 

specimen centrifugation, 500 µl of each sample was extracted using the NucliSENS® 

EasyMAG® automated system for total nucleic acid extraction (Biomérieux S.p.a. 

Florence, Italy), according to the manufacturer’s instructions.  
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HPV detection and characterization 

 

HPV was detected in CS samples by the bead-based Luminex suspension array technology 

(Luminex Corporation, Austin, TX). HPV genotyping was performed using the type 

specific E7 polymerase chain reaction bead-based multiplex assay (TS-E7-MPG, IARC, 

Lyon, France) able to identify 27 HPV types ( HR-HPV types HPV16-18-31-33-35-39-45-

51-52-56-58-59-66-68-73-cp108, pHR-HPV types HPV26-53-67-69-82 and LR-HPV 

types HPV6-11-55, -81, -83, -84 and the β-globin gene as internal positive control. Viral 

genomes detected by this assay ranged from 10 to 1,000 copies (Comar et al, 2012; 

Bellaminutti et al., 2014). Briefly, HPV genotypes were detected as the median 

fluorescence intensity (MFI) of at least 100 beads per bead set. The background value for 

each probe was considered the MFI value, resulted from hybridization mixture without the 

addition PCR product. The cut-off was computed by adding 5 MFI to 1.1 the median 

background value.  

An additional set of HPV types including LR-HPV40,-42-43-44-54-61-70 was identified 

by the Anyplex™ II HPV Detection assay (Seegene Inc., Arrow diagnostics, Italy) using 

the CFX96 ™ Real-time PCR System (Bio-rad, France) as indicated by the supplier. This 

assay is based on a new developed TOCE™ technology, that can perform multiplex 

examination by either End point-CMTA (end point-Catcher Melting Temperature 

Analysis) or Cyclic-CMTA (Cyclic-Catcher Melting Temperature Analysis) method. 

Cyclic-CMTA method can discriminate major pathogens in the co-infected samples. It is a 

multiplex Rt-PCR assay that permits the simultaneous amplification, detection and 

differentiation of target DNA of 19 HR-HPV types and 9 LR-HPV types. A human 

housekeeping gene was utilized as an endogenous internal control ensuring DNA 

purification, PCR reaction and specimen quality . 

 

CT detection  

 

Real Time PCR (RT-PCR) for CT DNA detection was performed with a commercial kit 

(CTDNA, Dia.Pro, Italia) using the ABI Prism 7900 Sequence Detection system (Applied 

Biosystems, Italy) following manufacturer’s protocol. The reproducibility detection limit 

of the assay was 5 copy/µl.  
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CT HSp60 Real Time PCR detection 

 

Total RNA was extracted using 500 µl of a stored aliquot, by RNeasy Mini kit (Qiagen 

GmbH, Hilden, Germany). In order to avoid DNA genomic contaminations, RNA final 

concentration (25 µg/ml) was treated with Dnase I (RNase-Free DNase Set, Qiagen 

GmbH, Hilden, Germany) and eluted in 50 µl of distilled water. cDNA was synthesized 

using the SuperScript VILO™ cDNA Synthesis Kit (Invitrogen, Carlsbad, CA, USA).  

A quantitative Real Time PCR (qPCR) was performed for the quantification of the 

transcription level of Hsp60 gene (Ct604) as previously described (Contini et al., 2012;  

Seraceni et al., 2014). Briefly, PCR reaction, in a final volume of 20 µl, contained: 5 µl of 

cDNA, 2 µl LC FastStart DNA Master SYBR Green I (Roche Molecular Biochemicals, 

Germany), 5 mM MgCl2 and 0.8 µM each primer. The thermocycling condition was: 95 °C 

at 10 min followed by 40 cycles of 15 s at 95 °C and 1 min at 63 °C. To avoid false 

positive results a serial standard curve, a negative control with PCR-grade water and a 

positive control (CT strain-TW-3) were included in the assay.  

The concentration of unknown clinical samples based on their Ct values was determined 

with analytical software (Software SDS 2.4; Applied Biosystems) (Brankatschk et al., 

2012) while the specificity of the reaction was further confirmed by agarose gel 

electrophoresis analysis, which showed the expected amplification product of 161 bp in 

length.  

The sensitivity of each run was determined to be the lowest dilution of DNA (2 10-4 ng/ml 

corresponding to one genome copies/µl) that can be detected to 7900HT instrument 

(Applied Biosystems, Italy). The standard curve equations were used to calculate the 

absolute copy number of gene mRNA. Results were expressed as mRNA CT genome 

copies/µl found inside each clinical sample. 

 

CT genotyping  

 

OmpA gene was employed for CT genotyping; positive amplicons were purified, 

sequenced and analyzed with BLAST program (http://www.ncbi.nlm.nih.gov/BLAST) as 

previously described (Contini et al., 2013). 
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Statistical Analysis  

 

All statistical analyses were performed using the IBM SPSS Statistics 20 statistical 

program. Chi Square Test was used to compare frequencies of discrete variables. Fisher 

Exact Test was applied when necessary. P value ≤ 0.05 was considered as the threshold of 

statistical significance for all tests.  
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RESULTS 

 

HPV infection 

 

Table 1 described the characteristic of HPV infection stratified according to age (clinical 

recommended cut-off 25 years). The age, usually referred to a cut-off of 25y, represented 

the most important predictor factor for CT infection (Eggleston et al., 2011) and was 

included as a criterium in the prevention guidelines by the Centre for Disease Control and 

Prevention (Workowski and Berman, 2011). Health authorities in some European and 

other high income countries recommend screening in this age group to allow both early 

treatment of asymptomatic infection and the prevention of long term complications 

(National Chlamydia Screening Programme Standards, 2012) and half an HPV infections, 

who represent only 25% of the sexually experienced population, occur in young people 

(15-24y) (CDC, 2014). 

In both groups the prevalence of HPV tested at 39% (59/153 ≤25y and 300/768 in > 25y).  

Among HPV infections, the 60% (216/921) was represented as single HPV genotype: 53% 

(31/59) in women ≤ 25y and 62% (185/300) in women > 25y. Multiple genotypes were 

detected in 40% (143/921) of the samples: 47% (28/153) in women aged ≤ 25y and 38% 

(115/300) in women > 25y. These data showed a high frequency of multiple infections in a 

cohort of younger women with a trend of prevalence similar to that recovered for single 

infection. All these women tested negative for co-infection with CT. 

 

CT infection  

 

In this series, the overall prevalence of CT infection was tested at 4%. A statistically 

significant high frequency of infection was found in women with ≤ 25 y, tested at 14% 

(127/885) (p < 0.0001), of specimens while in women > 25y, CT was detected in 2% 

(124/5329). 

CT chronic infection, determined through the quantification of Hsp60 expression, showed 

a prevalence of 57% (144/251) with a higher frequency in younger women which was 

found in 69% (88/127) (Table 2). 
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CT and HPV co-infection and HPV genotypes distribution 

 

CT/HPV co-infection was present in 58% (145/251) of samples resulted positive for CT. 

The distribution of co-infection was of 68% (86/127) in women with less than 25y and of 

48% (59/124) in women over 25y. HPV was present as single or multiple genotypes in 

32% and in 68% of the overall samples, respectively. Interesting, HPV multiple infections, 

according to age, were highly expressed in both cohorts, when compared to older women 

(Table 2). Figure 11, describes the overall view of the genotypes distribution in women 

with CT/HPV co-infection compared to women positive for HPV. 

In CT/HPV co-infected women, the distribution of HPV as single and multiple genotypes 

accounted for 32% and of 68%, respectively, as for women exclusively infected by HPV 

only.  

The overall genotypes distribution of HPV in women diagnosed with CT/HPV compared 

to women with single HPV infection is described in Figure 12. A large number of HPV 

genotypes including high, intermediate and low risk genotypes, has been detected at high 

frequency: HPV31 (28%), HPV42 (23%), HPV66 (18%), HPV51 (16%), HPV6,-56,-73 

(15%) and HPV16 (14%). Of interest, the LR type, HPV44 (12%) was detected in this 

group of women only. Conversely, in women showing HPV only, the HR-HPV16 

represented the one most frequently detected genotype (33%) followed by HPV31 (16%) 

and HPV62 (12%). Interesting, HPV55,-61,-62,-81,-82,-83,-84,-cp108 were exclusively 

detected in these women. 

 

HPV genotypes distribution in single and multiple infections from CT/HPV and HPV 

women. 

 

The distribution of HPV genotypes in single and multiple infections independently of the 

presence of CT is resumed in Figure 13. A different distribution pattern was particularly 

found in CT/HPV co-infected women where each genotype was detected with higher 

prevalence in multiple infections. HPV31 (23%), HPV 42 (19%), HPV56,-66 (15%), 

HPV6,-51 (14%), HPV73 (13%), HPV16,-59 (12%) were the main genotypes identified. In 

addition, HPV 31 (5%), HPV42 (4%), HPV39,-66 (3%) were the most prevalent genotypes 

detected as single infection in CT/HPV co-infected women.  

In CT/HPV multiple infection, the association between specific HPV genotypes was 

highlighted. In fact HPV6,-51,-59,-66 were detected together in 19% of the samples while 



41 
 

HPV31-56 and HPV51-66 in 8% in 6%, respectively. Moreover, a high percentage of LR-

HPV genotypes generally not detected in this area, has been recovered exclusively in 

CT/HPV multiple co-infection.  

Of note, HPV16 was the most representative genotype (21%) in women with a single 

infection while in those with multiple HPV infections, the prevalence of HPV61-62, was 

higher (8% and 10%) with respect to the single infection (2%). HR-HPV52 (6%) was 

presented exclusively in this group. 

 

CT Hsp60 chronic infection and HPV infections 

 

CT chronic infection was diagnosed in 57% (144/251) of women. The mRNA expression 

of CT-Hsp60 gene was positively associated with HPV co-infection, with an overall 

frequency of 68% (98/144). Specifically, age distribution analysis showed that in young 

women the 72% (63/88) of CT/HPV co-infection was due to a chronic status (Table 3). 

Regarding, HPV genotypes distribution, HPV single infection was represented in 31% 

(30/98) in contrast with multiple infection which accounted for 69% (68/98) of women. In 

particular, 78% (49/63) (p < 0.0221) of younger women presented multiple infections 

compared to 54% (19/35) of older women. On the contrary, in older women the prevalence 

of HPV single infection were higher 46% (16/35) than in younger women, 22% (14/63). 

The level of CT-Hsp60 expression was confirmed, significantly lower (± 805 copy/µl) in 

CT/HPV co-infected women compared to women with only CT infection (± 1993 copy/µl). 

CT serotyping confirmed the trend obtained in our previous study, with high frequency of 

F serotype. 
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Table 1: Total prevalence of HPV infection in women (2009-2014) according to age cohorts (clinical cut-off 

25 years of age). 

 
Age 

Samples 
n. (%) 

 
HPV- 

 
HPV+ 

 
Genotypes 

 

   Single Multiple  

 
≤ 25 

153 (17) 
 

 
94 (61) 

 
59 (39) 

 
31 (53) 

 
28 (47) 

>25 
768 (83) 

 

468 (61) 300 (39) 185 (62) 115 (38) 

921 564 (61) 359 (39) 216 (60) 143 (40) 
     

 

 
Table 2: Total prevalence of CT infection in women (2009-2014) according to age cohorts (clinical cut-off 

25 years of age). 

 
Age 

Samples 
n. (%) 

 
CT- 

 
CT+ 

 
CT+/HPV+ 

 
Genotypes 

 
 

Single           Multiple 

 
HSP60+ 

 
≤ 25 

885 (14) 

 
758 (86) 

 
127 (14) 

 
86 (68) 

 
20 (23) 

 
66 (77) 

 
88 (69) 

 
>25 

5329 (86) 
 

 
5205 (98) 

 
124 (2) 

 
59 (48) 

 
27 (46) 

 
32 (54) 

 
56 (45) 

6214 5963 (96) 251 (4) 145 (58) 47 (32) 98 (68) 144 (57) 
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DISCUSSION 

 

In our previous pilot study conducted on CS from 1071 women, a high prevalence of CT/ 

HPV co-infection was documented in 60.4% of tested samples. Of interest, the 62.5% of 

co-infection included multiple HPV genotypes and was associated to a CT chronic status. 

(p < 0.001) (Seraceni et al., 2014). 

In order to corroborate this result, we performed a large retrospective study on 7135 CS 

samples from females (range age from 14y to 85y) with particular attention to the 

association between CT positivity and the characteristic of HPV co-infection, including 

genotypes distribution in single and in multiple infection.  

In the present study, HPV was present in 39% (359/921) of women (mean age 39y) with 

clinical indication for HPV infection, while CT infection was detected in 4% (251/6214) of 

women (mean age 29y) considered a risk for CT.  

The CT chronic status, through Hsp60 expression, was documented in 57% (144/251) of 

CT positive women (mean age 26y). The CT/HPV co-infection tested at 58% (145/251) 

(mean age 28y) of which 68% was chronic infection. 

As previously described, the age represents an important predictor factor in STIs infection. 

European survey, in asymptomatic women, reported a prevalence of CT infection ranging 

between 1.7% and 17% depending on social–economical context (Paavonen, 2012), while 

in a new systematic meta-analysis from 11 EU/EEA Member States, one non-EU/EEA 

European countries and four other high income countries, chlamydia prevalence resulted 

low in ≤ 26y people sexually active and very heterogeneous, compared to women ≤ 25y, 

ranging from 0.6-10.7% in (Redmond et al., 2015).  

In the last report (2009-2012) from Italian Institute of Health, the overall CT prevalence 

resulted of more 3.2% than women (2.3%) (Salfa et al., 2014), placing Italy among the 

countries with a low endemicity for this infection (Marcone et al, 2012).  

In contrast with the national data, in our series, the prevalence of CT infection confirmed 

to be at 4%, with the highest rate of infection (14%) in young women (≤25y) confirming 

age as an important risk factor. In addition, our large study showed a high prevalence of 

CT/HPV co-infection (58%) mostly in younger women (68%).  

On the contrary, recent investigation in young women (16-26y) from different Italian areas 

reported a CT prevalence of 5.8% and a CT/HPV co-infection of 2.7% (Panatto et al., 

2015). The above discordancy, compared to our data could be due to the molecular assay 
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typology used to test both CT and HPV, or to the different geographic areas (3 cities in 

northern Italy) or to the specific young women cohort examined (16-26y).  

 

Of note, CT infection was associated to HPV multiple genotypes in 78% of the analyzed 

cases suggesting a strong susceptibility of these women in acquiring multiple HPV 

infections or, as recently demonstrated, a role of CT in type-specific HPV re-detection due 

to reactivation of a low level of persistent oncogenic HPV (Shew, 2013).  

Several epidemiological data suggested that CT may play a role in cervical carcinogenesis 

(Sillins et al., 2005) although the question of how CT synergize with HPV in this 

transforming process is still debated (Idahl et al., 2010). CT/HPV co-presence was found in 

cervical precancerous lesions, and in HPV positive patients were recovered IgG antibodies 

or CT DNA (Paavonen, 2012; Silva et al., 2014; Tavares at al., 2014).  

Regarding the characteristic of HPV infection among infected women, the presence of 

single or multiple infections showed an interesting distribution. HPV single infection was 

highly detected (60%) in women infected solely with HPV, while, in CT/HPV co-infected 

women, multiple infections were found prevalent (68%). Moreover, HPV genotypes 

distribution resulted extremely different. These findings seem to reinforce previous 

published data (Carozzi et al., 2014) which suggest that the HPV genotypes variability 

seems to depend on the local dynamics of transmission and local type mix, a phenomenon 

also reported in different Italian geographic area (Agarossi et al., 2009; Giorgi Rossi et al., 

2010, Giuffrè et al., 2010; Bellaminutti et al. 2014). 

In a worldwide meta-analysis on prevalence of HPV in women with normal cytology, 

although it was high and variable across world regions, HR-HPV16 (22.5%) followed by 

HR-HPV18,-52-,31-58,-39,-51,-56 and LR-HPV6, were the most common genotypes 

detected (Bruni et al., 2010). In Italy, various authors detected HPV16 (Giorgi et al., 2011; 

Bianchi et al., 2013; Carozzi et al., 2014) or HPV belonging to groups 1, 2A or 2B, among 

subject with CT/HPV co-infection, (Panatto et al., 2015) as the most prevalent types. 

Interestingly, in our study, HPV16 resulted the most representative genotype in women 

infected by HPV only (overall 33%, 21% in single HPV infection), followed by HPV31 

(17%). Moreover, some viral genotypes were recognized as the most representative 

genotypes exclusively in this group of women showing HPV61,-62 and HPV52. 

While HPV61 and 62 were detected in Italy below 5% (Giuffrè et al., 2010), HPV52 seems 

one of the most common genotypes detected in Korea and Asian patients associated to 

invasive cancer and HSIL (Cho et al., 2015, Wang et al, 2015), whereas in Italy its 

prevalence was heterogenic between various centers (1.9-7.1%) (Carozzi et al., 2014).  



49 
 

 

Sammarco et al., 2013, found that almost half of women with HR-HPV present a persistent 

HPV31,-39,-73 infection, whereas the most frequently detected HPV genotypes were 

HPV16,-31 (common at the follow-up) and HPV52,-53. The authors in these women 

detected a low presence of CT and Mycoplasma spp infection, in agreement with our 

results whilst, in women infected with HPV, CT was not present, thus reinforcing our 

hypothesis that a primary HPV infection could reduce subsequent CT penetration and 

consequently the infection. Tavares at al., 2014, based on their collected data, have 

suggested that CT infection may play an important role in the natural history of HPV, thus 

suggesting  that the HPV and CT association seems more related with potentiating mutual 

than with common way of transmission. Moreover, studies in vitro on CT immunological 

response have demonstrated that INF-γ can inhibit CT development (Shemer and Sarov, 

1985; Wyrick, 2010), while in HPV infection, INF-γ increases its expression (Scott et al., 

1999). In a recent study (Colín-Ferreyra et al., 2015) a high expression level of INF-γ was 

demonstrated in women co-infected with CT/HPV, promoting the CC development.  

The association between CT and HPV genotypes at high risk of cancer development has 

been previously described. Panatto et al., 2015, by examining a regression analysis, found 

in co-infected women with CT a significantly higher odds of infection of single HR-HPV 

or combinations of multiple HPV genotypes with at least one HR-HPV type. This finding 

is of particular importance for the primary prevention of CC, since concurrent CT infection 

has been found to be associated with the persistence of HR and multiple HPV genotypes in 

female adolescents (Samoff et al., 2005). In turn, the persistence of HR-HPV genotypes 

among cytologically normal women leads to a greatly increased risk of CC (Chen et al., 

2011). By contrast, the HPV pattern distribution that we observed in our study in CT/HPV 

co-infected women, demonstrated a high frequency of HPV genotypes usually lower, 

compared to HPV Italian screening (Giorgi et al., 2011; Carozzi et al., 2014). Among 

these, HPV31 and HPV42 were detected both in multiple (23%, 19%) and in single 

infections (5%, 4%) respectively. In CT/HPV co-infected women, the association between 

specific HPV genotypes was emphasized. HPV6,-51,-59,-66 were detected together in 19% 

of the samples, HPV31-56 in 8% and HPV51-66 in 6%.  

In Italy, HPV56 was identified between the most frequent genotypes (Carozzi et al., 2014), 

associated to multiple infection together also to HSP51 (Agarossi et al. 2009), that in North 

Sardinia, which was unusually found high in invasive cervical neoplasia (Piana et al., 

2013). Moreover, we recovered a high percentage of LR-HPV genotypes (HPV40,-42,-43,-
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44) exclusively in CT/HPV multiple co-infections, which were not generally detected in 

this specific area. 

An interesting finding of our study was the analysis of the presence of CT chronic 

infection. The CT-Hsp60 gene expression, linked to CT chronic status, was found 

positively associated with HPV co-infection in 68% of women and particularly in 72% of 

young women, confirming our previously data. Of note, 78% of younger women presented 

multiple infections compared to 54% of older women. On the contrary, in older women, 

the prevalence of HPV single infection was higher than that recovered in younger women 

(46% vs 22%). Moreover, the expression of Hsp60 gene has been found significantly lower 

in HPV co-infected women compared to women infected with CT only. 

A discussion of this finding can be merely speculative, suggesting that the maintenance of 

a steady-state level of transcription of Hsp60 gene could favor a balance between the 

Hsp60 induced pro-inflammatory microenvironment and HPV coexistence (Silva et al., 

2014). The chronic inflammation caused by CT increases oxidative stress proteins that 

seem to trigger HPV cell entrance and replication or enhance DNA breaks that may 

promote viral integration (Deluca et al., 2011; Silva et al., 2014; Tavares at al., 2014). 

Although it has been suggested that the concomitant presence of HPV viral oncoproteins 

during Hsp60 expression may lead to the ability to survive apoptotic stimuli, uncontrolled 

proliferation and, finally neoplastic transformation, in this study, specific HPV multiple 

genotypes were found associated to CT chronic status, independently of the risk attributed 

to each genotypes (Dean et al., 2008; Cappello et al., 2009). 
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CONCLUSIONS 

 

The results of this large study confirmed that a high prevalence of multiple HPV infections 

has been associated with CT chronic infection in young women without cervical lesions. 

Of remarkable interest, specific HPV genotypes seem to be more frequently associated to 

CT co-infection. These data may deserve further consideration, owing to the accumulated 

evidence that the chlamydial chronic status could contribute to favor specific HPV 

genotypes representing possible implications for the prevention of cervical cancer. 

Moreover, CT/HPV co-infection associated to young age support the possibility that CT 

could increase the risk for pre-cancer lesions in asymptomatic young women, in line with 

the active role of CT in favoring cells chromosome instability and cervical precancer 

(Grieshaber et al., 2006; Knowlton et al., 2011).  

Even if CT is not present in cervical adenocarcinomas (Quint et al., 2009), its ability to 

cause a local inflammatory process in the upper genital tract facilitates HR-HPV cell 

transformation during carcinogenesis. It is worth nothing that CT/HPV co-infection, due to 

the same modality of transmission, is increasing in sexually active young women and 

therefore early diagnosis and treatment of infected individuals is required to prevent the 

spread of the disease and severe sequelae (Verteramo et al., 2009).  

Collectively taken, data from this study emphasized the need of a screening program for 

CT in young women that could be associated to HPV. HPV testing can thus identify 

women at risk of cervical cancer, reducing cervical cancer incidence in a cost-effective 

manner in the developed world. HR-HPV types infection has been found in all cervical 

carcinomas and the persistent infection with the same genotype, strongly increases the risk 

of developing high-grade pre invasive disease. Although HPV infection is spread among 

young populations worldwide, the cervical cancer screening program in Italy, covered 

from Public Health System, is addressed to women over the age of 25 only, independently 

from their clinical history and the age of the first intercourse, in contrast with other 

European nations and the USA.  

In conclusion this study adds new findings regarding the epidemiology of HPV and CT 

distribution in young asymptomatic women from North-Eastern Italian area and highlights 

both the high frequency of CT and CT/HPV co-infection detection in comparison to the 

National data. The high risk associated with concomitant CT and multiple HR-HPV 

infections in young women suggests that early prophylactic HPV vaccination and a 

screening program for CT/HPV co-infection could play a significant role in cervical cancer 

prevention.  
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Chlamydia trachomatis causing chronic inflam-
matory diseases has investigated as possible
human papillomavirus (HPV) cofactor in cervi-
cal cancer. The aim of this study is to evaluate
the prevalence of Chlamydia trachomatis and
HPV co-infection in different cohorts of asymp-
tomatic women from a Northern Italy area at
high incidence for cervical cancer. Cervical
samples from 441 females were collected from
Cervical Cancer Screening Program, Sexually
Transmitted Infectious and Assisted Reproduc-
tive Technology centres. HPV and Chlamydia
trachomatis were detected simultaneously and
genotyped using a highly sensitive bead based
assay. The overall prevalence of Chlamydia
trachomatis was estimated 9.7%, in contrast
with the reported national data of 2.3%, and
co-infection with HPV was diagnosed in the
17% of the samples. In females � 25 years of
age, the infection reached a peak of 22% and
co-infection with HPV of 45.8% (P< 0.001). Of
note, in young females diagnosed with low
grade cervical lesions, no significant difference
between Chlamydia trachomatis and HPV dis-
tribution was observed, while differently, HPV
co-infection was found significantly associated
to the presence of intraepithelial lesions when
compared to older females (20% vs. 1%;
P< 0.001). In this study, the use of a high
sensitive molecular technique exhibited higher
analytical sensitivity than the referred assays
for the diagnosis of Chlamydia trachomatis
and HPV co-infection in asymptomatic females,
leading to reduction of the potential to identify
incorrectly the infection status. An active
screening for timely treatment of Chlamydia
trachomatis infection is suggested in young
females to evaluate a possible decrease in
incidence of pre-cancer intraepithelial lesions.
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INTRODUCTION

Human Papillomavirus (HPV) and Chlamydia tra-
chomatis are considered among the most common
sexually transmitted infections worldwide [Bosch
et al., 2012; Forman et al., 2012; Fernández-Benı́tez
et al., 2013; Gottlieb et al., 2013].
A persistent infection with an oncogenic high risk-

HPV type is recognized as a crucial event for cervical
cancer development [Bosch et al., 2008]. Although
only a small number of females infected with HPV
develop cervical cancer, cervical precursor lesions
designed as squamous intraepithelial lesions are
frequently diagnosed, a process influenced highly by
the HPV genotype and by other factors.
There is a great body of evidence showing that

suboptimal host immune response could explain the
inter-individual differences in the outcome of HPV
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infection. Most of HPV infections acquired during
sexually active life are resolved, specifically in young
female, after a median follow-up of 6 months whereas
changes in the immunological response due to addi-
tional antigenic stimuli, such as a concurrent infec-
tion, may decrease the host ability to resolve HPV
[Mu~noz et al., 1996; Braaten and Laufer, 2008].
Microorganisms causing chronic inflammatory dis-

eases, such as Chlamydia trachomatis, have been
investigated in the last decade as associated possible
risk factor for HPV transmission and persistence
cooperating in the cervical carcinogenesis process
[Samoff et al., 2005; Silins et al., 2005; Luostarinen
et al., 2013; Shew et al., 2013].
Chlamydia trachomatis is a potent immunogen

that highly stimulates the chronic inflammation
pathway leading to a rapid immune response on the
part of lymphocytes activated previously [Choroszy-
Kro!l et al., 2012]. The clinical course is usually
subacute although, due to the high frequency of the
asymptomatic phase, Chlamydia trachomatis may
induce host chronic inflammation, epithelial tissue
damage and pelvic inflammatory disease. In some
cases, the infection has been associated with cervical
atypia and/or metaplasia, which in turn, may in-
crease the risk of neoplasia [Luostarinen et al., 2013].
European population-based studies reported that the
prevalence of Chlamydia trachomatis in asymptomat-
ic females ranges between 1.7% and 17% depending
on social–economical context [Plummer et al., 2003;
Cooksey et al., 2010], classifying Italy as a low
endemic area with an overall prevalence of 2.3%
[Wilson et al., 2002]. Many studies carried out on
Chlamydia trachomatis demographic distribution in a
wide range of different geographical settings sug-
gested that age, referred usually to a cut-off of
25 years, represented the most important predictor
factor, [Nelson and Helfand, 2001; Honey et al., 2002;
Simonetti et al., 2009; Haggerty et al., 2010] recently
included in the prevention guidelines by the Centre
for Disease Control and Prevention [Workowski and
Berman, 2011].
The aim of the present study was to assess the

prevalence of Chlamydia trachomatis and HPV co-
infection in different cohorts of asymptomatic females
from a hyperendemic area for cervical cancer, in
order to estimate the grade of spread of these
infections and the association with cervical lesions.
For this purpose, DNA extracted from cervical speci-
mens was analysed for the simultaneous detection of
Chlamydia trachomatis and HPV by a high sensitive
bead-based assay supported by the Luminex
technology.

MATERIALS AND METHODS

Specimens

Cervical samples were obtained over approximately
5 months in 2012, from a group of Italian females
recruited as outpatients attending the prevention

centre for Cervical Cancer Screening Program, the
Sexually Transmitted Infections clinic and the As-
sisted Reproductive Technology centre. Cervical sam-
ples were collected using a 200mm polyethylene
Cervex brush device (Rovers Medical Devices B.V.,
Oss, The Netherlands) in 500ml of TE buffer. The top
portion uses a soft, flexible brush to obtain cell
samples, while the shape allows the top edges to
follow the contours of the cervix. The longer middle
bristles reach deep into the endocervical canal while
the shorter bristles touch both the ectocervical area
(external os) and the transformation zone (T-zone).
The cytopathological classification was performed in
accordance with the diagnostic criteria for the Be-
thesda System 2001 [Solomon et al., 2002].
Specimens were collected anonymously, coded with

indication of age and stored at �80˚C at the Virology
laboratory of the Institute for Maternal and Child
Health (IRCCS) - “Burlo Garofolo” of Trieste, Italy.
Among the 441 recruited females, 305 (mean age
36 10 years) were included in group 1 (Cervical
Cancer Screening Program) 85 (mean age 28 10
years) in group 2 (Sexually Transmitted Infections)
and 51 (mean age 37 10 years) in group 3 (Assisted
Reproductive Technology) respectively. All females
were of Caucasian origin, living in the same geo-
graphic area, referred no previous history or symp-
toms of sexually transmitted infections and were
asymptomatic for Chlamydia trachomatis or other
genital infections at the time of sampling.
The study (R.C. n˚02/11) was approved by the

Institutional Scientific Board of the IRCCS “Burlo
Garofolo”–Trieste, Italy and informed written consent
was obtained from the participants.

HPV Type-specific E7 PCR Bead-Based
Multiplex Genotyping and Chlamydia

Trachomatis Detection

DNA was extracted from 500ml of samples using a
commercial kit (High Pure PCR Template prepara-
tion Kit, Roche Applied Science, Mannheim,
Germany). The multiplex HPV type-specific E7 PCR
(IARC, Lyon, France) utilizes HPV type-specific pri-
mers targeting the E7 region for the detection of 12
high risk-HPV types (HPV-16,-18,-31,-33,-35,-39,-45,-
51,-52,-56,-58,-59), 7 possible or probable high risk-
HPV types (HPV-26,-53,-66,-68 (a and b),-70,-3,-82),
and 2 low risk-HPV types (HPV-6 and-11), with
detection limits ranging from 10 to 1,000 copies of
the viral genome. The amplicon size varies between
210 and 258 bp [Comar et al., 2012].
Two primers designed within a gene encoding for a

conserved hypothetical virulence plasmid protein
were additionally added for the amplification of
Chlamydia trachomatis. Moreover, primers for ampli-
fication of the B-globin gene were also included as
control for the quality of the template DNA. Follow-
ing PCR amplification, 10ml of each reaction mixture
was analysed by MPG using the Luminex technology
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(Luminex Corporation, Austin, TX) as described
previously.
In brief, HPV genotypes were detected as the

median fluorescence intensity (MFI) of at least 100
beads per bead set. The background value for each
probe was considered the MFI value resulted from
hybridization mixture without the addition PCR
product. The cut-off was computed by adding 5 MFI
to 1.1 the median background value. [Gheit et al.,
2006; Schmitt et al., 2010].

Real Time PCR for Chlamydia Trachomatis

DNA samples were further investigated by Real
Time PCR (RT-PCR) as confirmatory assay for Chla-
mydia trachomatis, detection limit of the test 10
copies/ml, using the commercial kit (CTDNA Dia.Pro,
Milan, Italia) following recommended protocol. Ampli-
fication and PCR product detection were performed
with the ABI Prism 7900 Sequence Detection system
(Applied Biosystems, Monza, Italy).

Statistical Analysis

Only cases with available and valid Chlamydia
trachomatis and HPV DNA laboratory results were
included in the present study. Statistical analyses
were performed using the IBM SPSS Statistics 20
statistical program. Age was reported as mean� stan-
dard deviation (s) and discrete variables as number
and percentages. The ANOVA (Analysis of variance)
Test was performed to compare mean age values
across groups and the Chi Square Test was calculat-
ed to compare frequencies of discrete variables. The
Fisher Exact Test was applied when necessary. A
value of P 0.05 was considered statistically signifi-
cant for all tests.

RESULTS

The analysis were restricted to cervical specimens,
corresponding to 441 samples, tested positive for the
globin gene using a bead-based multiplex PCR assay
for Chlamydia trachomatis/HPV co-detection (Fig. 1).
The performance of the assay has been evaluated by
testing DNA in cervical samples. The agreement was
almost perfect for both HPV (K coefficient: 0.71)
[Comar et al., 2012] and Chlamydia trachomatis (K
coefficient: 0.98) and the reference assays using for
validation, Linear Array for HPV and RT-PCR for
Chlamydia trachomatis, respectively.
The prevalence and distributions of Chlamydia

trachomatis and HPV infections were reassumed in
Table I. In brief, the overall prevalence of infections
showed that the 9.7% (43/441) of the tested samples
were positive for Chlamydia trachomatis and the
29% (127/441) for HPV as solitary infections, while
co-infections with the two microorganisms were de-
tected in 17% (75/441) of samples. Regarding the
distribution of infections by clinical departments, the
rate of Chlamydia trachomatis detection ranged from

6% to 26%, of HPV from 6% to 40% and of Chlamydia
trachomatis/HPV co-infection from 10% to 42%. Spe-
cifically, the frequency of Chlamydia trachomatis
infection was higher in samples from females attend-
ing the Sexually Transmitted Infections centre in
comparison to those from the Cervical Cancer Screen-
ing Program and Assisted Reproductive Technology
centres (P< 0.001). Conversely, HPV was found fre-
quently in samples from Cervical Cancer Screening
Program rather than in those from Sexually Trans-
mitted Infections and Assisted Reproductive Technol-
ogy (P< 0.001). In addition, the rate of co-infection
was higher in samples from women attending the
Sexually Transmitted Infections centre, showing a
statistically significant difference (P< 0.001).

Fig. 1. The Bioplex results window: a) The histogram plots
the number of events per channel number for the selected well,
analyte(s), and channel type. An event is generated when
particles such as a bead or aggregated beads pass through the
path of the lasers. During a reading, a doublet discriminator
(DD) channel measures the amount of light scatter from
particles that flow past the red laser. The light scatter is
directly proportional to particle size. b) Bead Map co-detection
of HPV and Chlamydia trachomatis. The white areas on the
map (arrow) indicate the expected regions of the selected
analytes. Each cluster of dots that falls within a white region
represents a unique bead set (analyte) within an assay.
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The age-standardize data (cut-off 25 years) referred
to the prevalence of the two pathogens was shown in
Table II. Although, the Assisted Reproductive Tech-
nology group has not been considered since no
females aged less than 25 years attended the centre
for infertility or reproduction defects, results from
this analysis highlighted that Chlamydia trachomatis
and Chlamydia trachomatis/HPV co-infection were
associated significantly to young females (< 25 years),
independently from clinical categories (P¼ 0.02;
P¼ 0.03, respectively).
In these series, oncogenic high risk-HPV types

were present in 100% of the infected females showing
that 57.5% of the infections were attributed to HPV-
16; 16.5% to HPV-31; 15% to HPV-33; 5.5% to HPV-
18 and 5.5% to other genotypes. Interesting, a high
rate of multiple HPV infections (2 to 5 HPV types)
was observed, showing an overall prevalence of 75.6%
(96/127) of which, 58.3% (56/96) was associated to
Chlamydia trachomatis infection.
The cytopathological report was available for 92%

(407/441) of the recruited females of which 43% (175/
407) showed cytological alterations classified as low
squamous intraepithelial lesions. Considering only
females with low squamous intraepithelial lesions, a
multivariate analysis including age (cut-off 25 years)
was performed, which results have been reported in
Table III. As expected, HPV was found associated to
cervical lesions in 61% of women, independently of
age (63% in females aged  25 years and 45% in

females aged ! 25 years). HPV-16 genotype was the
most prevalent (42%), found as solitary infection in
66.6% of cases.
In this group, Chlamydia trachomatis was found in

8% of the samples, which co-infection with HPV was
detected more frequently in females aged ! 25 years
(20% vs. 1%; P< 0.001).

DISCUSSION

In the developed world, HPV testing can identify
females at risk for cervical cancer reducing cervical
cancer incidence in a cost-effective manner. High
risk-HPV types have been demonstrated in almost
100% of cervical carcinomas and persistent infection
with the same genotype increases strongly the risk of
developing high-grade pre-invasive disease.
Nevertheless, there is epidemiologic data suggest-

ing that Chlamydia trachomatis may contribute in
cervical carcinogenesis [Silins et al., 2005] although
how it synergizes with HPV in the transforming
process is still debated [Idahl et al., 2010]. It is worth
noting that due to the same modality of transmission,
Chlamydia trachomatis and HPV co-infection, is
increasing in sexually active females and therefore
early diagnosis and treatment of infected subjects is
required to prevent the spread of the infections and
possible sequelae [Verteramo et al., 2009]. In this
context, the availability of a highly sensitive and
specific molecular technique could improve the

TABLE I. Demographic Characteristics of Enrolled Females and Prevalence of CT, HPV and CT/HPV Infections

Clinical Department

Infections n˚(%)

n˚ females Mean Age"s CT HPV CT/HPV

CCSP# 305 36"10 17 (6%) 122 (40%) 30 (10%)
STI## 85 28"10 22 (26%) 5 (6%) 36 (42%)
ART 51 37"10 4 (8%) 0 (0%) 9 (18%)
Total 441 33.8"10 43 (9.7%) 127 (29%) 75 (17%)

CCSP: Cervical Cancer ScreeningProgram; STI: Sexually Transmitted Infection; ART: Assisted Reproductive Technology; CT: Chlamydia
trachomatis; HPV: Human Papillomavirus; CT/HPV: Chlamydia trachomatis and Human Papillomavirus co-infection.
STI## versus CCSP and versus ART considering CT P< 0.001.
STI## versus CCSP and versus ART considering CT/HPV P< 0.001.
#CCSP versus STI and versus ART considering HPV P< 0.001.

TABLE II. Prevalence of HPV and CT Infections in Females According to Age Cohorts (Clinical Cut-off 25 Years of Age)
and to Clinical Department

Clinical Dep

Infections  25 years Infections !25 years

n˚ females CT n˚(%) HPV n˚(%) CT/HPV n˚(%) n˚ females CT n˚(%) HPV n˚(%) CT/HPV n˚(%)

CCSP 254 8(3%) 109(43%) 10(4%) 51 9(18%)# 13(26%) 20(39%)#

STI 40 10(25%) 3(8%) 12(30%) 45 12(27%) 2(4%) 24(53%)##

ART 51 4(8%) 0(0%) 9(18%) 0 NA NA NA
Total 345 22(6.4%) 112(38%) 31(8.9%) 96 21(22%) 15(15.6%) 44(45.8%)

CCSP: Cervical Cancer Screening Program; STI: Sexually Transmitted Infection; ART: Assisted Reproductive Technology; CT: Chlamydia
trachomatis; HPV: Human Papillomavirus; CT/HPV: Chlamydia trachomatis and Human Papillomavirus co-infection.
NA: not applicable.
#CCSP considering CT P< 0.001 and CT/HPV P< 0.02.
##STI considering CT/HPV P< 0.03.
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diagnosis of these pathogens, specifically when pres-
ent at very low copies in asymptomatic high-risk
females.
In this study, a better performance in the detection

rate of Chlamydia trachomatis and HPV infection
was obtained using a highly-sensitive bead-based
multiplex PCR assay. In this cohort, the prevalence
of Chlamydia trachomatis was of 9.7% in contrast
with the national data indicating a percentage of
2.3% using routine molecular techniques [Marcone
et al., 2012], suggesting that the prevalence of low-
copy-number infections may be underestimated, spe-
cifically in asymptomatic subjects, by other assay.
In agreement, the highest prevalence of Chlamydia

trachomatis was found in young females aged less
than 25 years old (22%) although a peak of co-
infection with HPV was reached in 45.8% of them,
confirming “age” as an important demographic risk
factor in the acquisition of these infections. Of note,
Chlamydia trachomatis was found associated, in
58.3% of the cases, with a high risk-HPV genotype
suggesting a role for Chlamydia trachomatis in type-
specific HPV redetection, probably due to reactivation
of a low level of persistent oncogenic HPV as recently
reported [Shew et al., 2013]. Moreover, in young
females with a referred low grade abnormal cytology,
Chlamydia trachomatis or co-infection with HPV was
found significantly associated to the cytological status
independently of others risk factors. These findings
seem to support a role for Chlamydia trachomatis in
cell transformation, probably acting as additional risk
factor, but in line with the exerted biological effect
favouring damage of the mucosal barrier, interfer-
ence in HPV viral clearance, cell chromosome insta-
bility and inflammatory process of the upper genital
tract. [Grieshaber et al., 2006; Knowlton et al., 2011].
Given our results, although the highly sensitive

multiplex assay used in this study appear to perform
better at the analytical level than other molecular
tests, the clinical benefit remains limited to Chlamyd-
ia trachomatis infection since it could contribute to

prevention of sequelae and to a possible decrease of
incidence of pre-cancer intraepithelial lesions.
In conclusion, this survey reported new findings

about the epidemiology of Chlamydia trachomatis
and HPV co-infection in young asymptomatic females
from a hyperendemic area for cervical cancer,
highlighting the high prevalence of infection and
the significantly association with cytological
abnormalities.
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Abstract

Background: Chlamydia trachomatis interaction with HR-HPV types has highlighted a central role in cervical cancer

development. The aim of this study was to investigate HPV prevalence and genotypes distribution in women at risk

for C. trachomatis infection and negative for intraepithelial lesion or malignancy.

Methods: 1071 cervical swabs were tested for C. trachomatis by Real Time PCR and genotyping by ompA gene

sequencing. Additionally, a quantitative Real time-PCR was performed to assess the expression of the C. trachomatis

Hsp60–encoding gene (Ct604 portion), linked to a persistent status of infection. HPV infection and genotypes was

investigated in C. trachomatis positive women using Luminex technology.

Results: C. trachomatis infection was detected in 53 out of 1071 (4.5%) samples, of which the 53% resulted positive

for Hsp60 gene expression. The overall prevalence of HPV infection in C. trachomatis positive samples was of 60.4%

(32/53): in 37.5% of samples was present a single genotype, while multiple genotypes infections were found in the

62.5% of them. Among women with a C. trachomatis chronic infection, 68% were HPV co-infected and the 79%

showed multiple genotypes. Should be noted that levels of C. trachomatis Hsp60 expression in HPV co-infected

women were significantly lower compared to women infected only with C. trachomatis. The C. trachomatis serotype

F was found in the majority of samples, independently of HPV infection.

Conclusions: A high prevalence of HPV multiple infections have been found in young women affected with a C.

trachomatis chronic infection. These observations suggested that the expression of CHSP60-1, interfering with both

apoptotic and cellular senescence pathways, may promote a favourable local microenvironment for HPV infection.

Keywords: Human papillomavirus, Chlamydia trachomatis, HPV multiple genotypes, Hsp60 RNA persistent infection

Background
Chlamydia trachomatis (C. trachomatis), an intracellular

bacteria characterized by a unique biphasic developmental

cycle, is the most common sexually transmitted pathogens

in women. Although C. trachomatis can cause pelvic in-

flammatory disease (PID), infertility, ectopic pregnancy,

the clinical course is usually sub-acute and poorly

symptomatic and the microorganism is rarely detected in

subjects without clinical signs of infection [1].

The ability of C. trachomatis to cause chronic persistent

infection, characterized by the permanence of microorgan-

isms in the host cells, can represent a common event [2].

During persistent status, C. trachomatis produces a large

quantity of Heat shock protein 60 (Hsp60) exhibited on the

host cell surface and released into the extracellular space

and in the bloodstream. This protein is considered a useful

marker during clinical complications since its expression

induce host chronic inflammation response [1,3,4]. Thus,

this microorganism is considered as a potent immunogen,

stimulating a rapid and intense inflammatory response in-

volving previously sensitized lymphocytes [5].
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Although epidemiological data have not yet provided

consistent evidence about a real implication of C. tra-

chomatis in cervical cancer, the co-infection with

Human papillomavirus (HPV), sharing the transmis-

sion route and the same risk factors, have recently

highlighted [6-8]. A role for C. trachomatis as cofactor

was suggested, since it seems to facilitate the penetra-

tion of HPV and the progress of cervical lesions inter-

fering in the immunological response [9]. Moreover,

some authors recently detected a high-risk for the de-

velopment of cervical cancer in patients with HPV

infection and history of C. trachomatis [10]. Neverthe-

less, the prevalence and distribution of HPV genotypes

associated to C. trachomatis infection and its clinical

persistence are poorly explored.

HPVs are a family of DNA viruses that infect cutane-

ous epithelia, oral and genital mucosa. More than 100

different HPV types have been identified and charac-

terized in two risk classes on the basis of their onco-

genic potential: Low-risk (LR-HPV) types associated

with benign genital warts and High-risk (HR-HPV)

type considered the etiological agents of cervical can-

cer and other genital malignancies [11]. Approximately

15 HR-HPV genotypes are clearly associated with cer-

vical cancer of which HPV16 and HPV18 are the most

carcinogenic, since they are responsible for approxi-

mately 50% and 20% of all cervical cancers worldwide,

respectively. Multiple human papillomavirus genotypes

often coexist within cervical epithelia and are fre-

quently detected together in women with precancer

cervical lesions [12]. Nevertheless, although HPV is a

prerequisite for cervical cancer only a small number of

women exposed to this virus developed cancer, imply-

ing that other risk factors may be considered as cofac-

tors rather than independent factors. On this basis, the

characterization of HPV infection in women suffering

from C. trachomatis could be important in generating

hypotheses regarding the possible synergism of these

pathogens in cervical malignancy [13-16].

The aim of this study was to investigate HPV geno-

types distribution and the frequency of infection in

Italian women considered at risk for C. trachomatis in-

fection but negative for cervical lesions or malignancy.

Furthermore, the role of C. trachomatis chronic infection

in promoting HPV susceptibility has been evaluated.

Methods
Specimens

In 2013 year, cervical swabs (CS) specimen from 1071

women at risk for C. trachomatis infection were col-

lected at the Virology laboratory of the IRCCS-Burlo

Garofolo of Trieste, Italy, as part of C. trachomatis rou-

tine screening practices. Cervical samples were collected

using a 200 mm polyethylene Cervex brush device

(Rovers Medical Devices B.V., The Netherlands) in

500 μl of TE buffer. The study was approved by the

Institutional Scientific Board of the Institute for Mater-

nal and Child Health - IRCCS “Burlo Garofolo”–Trieste,

Italy and informed consent was obtained from each par-

ticipant in accordance with the principles outlined in the

Declaration of Helsinki.

C. trachomatis detection

Genomic DNA was extracted, after samples centrifuga-

tion, using the QIAamp DNA Blood miniKit (Qiagen,

GmbH, Germany) as indicated by the supplier, and then

stored at −80°C until analysis.

The presence of C. trachomatis DNA was detected by

Real Time PCR (RT-PCR), using a commercial kit

(CTDNA, Dia.Pro, Italia), detection limit of the assay was 1

copies/μl, to amplify a conserved region of the cryptic plas-

mid element of C. trachomatis, following recommended

protocol. The amplification and PCR product detection

were performed with the ABI Prism 7900 Sequence Detec-

tion system (Applied Biosystems, Italy).

HSp60 gene expression

C. trachomatis -RNA extraction and cDNA synthesis

An aliquot, from each CS fresh specimen (1 ml), was

centrifuged at 14.000 rpm for 15 min at 4°C and total

RNA was extracted to the pellet obtained by RNeasy

Mini kit (Qiagen GmbH, Hilden, Germany) in according

to the manufacturer’s instructions. The RNA final concen-

tration (25 μg/ml) eluted in 50 μl of distilled water, was

treated during sample processing with Dnase I (RNase-

Free DNase Set, Qiagen GmbH, Hilden, Germany), and

subsequently stored at −80, in order to avoid DNA gen-

omic contaminations.

cDNA synthesis was performed using kit SuperScript

VILO™ cDNA Synthesis Kit (Invitrogen, Carlsbad, CA,

USA), according to manufacturer’s instructions. Briefly,

14 μl of RNA were added to a mixture containing: 5X

VILO™ Reaction Mix10, 10X Superscript Enzyme Mix

and diethyl-pyro carbonate water (DEPC-treated) until

a final volume of 20 μl and subsequently incubated at

42°C for 60 minutes and then at 85°C for 5 minutes.

cDNA synthesized was employed for quantitative RT-

PCR (qPCR).

C. trachomatis-Hsp60 qPCR

To quantify the transcript level for the C. trachomatis

portion Hsp60 gene (Ct604) in specimen, a dedicated

qPCR was used as previously described [17,18]. The

sensitivity of each assay was determined to be the lowest

dilution of DNA (2 10−4 ng/ml corresponding to one gen-

ome copies/μl) and a standard curve equations were used

to calculate the absolute copy number of gene mRNA.
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In brief, the test included a serial standard curve,

negative control with PCR-grade water and a positive

control (C. trachomatis strain-TW-3). PCR reaction, in a

final volume of 20 μl, contained: 5 μl of cDNA, 2 μl LC

FastStart DNA Master SYBR Green I (Roche Molecular

Biochemicals, Germany), 5 mM MgCl2 and 0.8 μM each

primer. The thermocycling condition was: 95°C at

10 min followed by 40 cycles of 15 s at 95°C and 1 min

at 63°C. The amplification was carried out in an ABI

7900HT Fast Real Time PCR System (Applied Biosys-

tems, Italy). The concentration of unknown samples

based on their Ct values was determined with analytical

software (Software SDS 2.4; Applied Biosystems) [19].

The specificity of qPCR was further confirmed by agar-

ose gel electrophoresis analysis, which showed the ex-

pected amplification product of 161 bp in length.

C. trachomatis genotyping

C. trachomatis genotyping were performed by ompA

gene primers; positive PCR amplification products were

purified, sequenced and analysed with BLAST program

(http://www.ncbi.nlm.nih.gov/BLAST) as previously de-

scribed [20].

HPV detection and characterization

HPV was detected in CS specimens using molecular

assay supported by the Luminex technology (Luminex

Corporation, Austin, TX). HPV genotyping was per-

formed using the type specific E7 polymerase chain reac-

tion bead-based multiplex assay (TS-E7-MPG, IARC,

Lyon, France) as recently described [21]. The detection

limits of the assay ranged from 10 to 1,000 copies of the

viral genomes included in the analysis. In addition, the

β-globin gene was included, as internal positive control

[22]. To analyse a greater number of LR-HPV types,

(HPV-6,-11,-40,-42,-43,-44,-54,-61,-70), the Anyplex™ II

HPV Detection assay (Seegene Inc., Arrow diagnostics,

Italy) was additionally used in according to manufac-

turer’s instructions. A human housekeeping gene was

used as an endogenous internal control, which can en-

sure DNA purification, PCR reaction and specimen

quality (Anyplex™ user manual, Seegene 2012).

Statistical analysis

Chi Square Test was used to compare frequencies of

discrete variables: Fisher Exact Test was applied when

necessary. P value ≤ 0.05 was considered as the threshold

of statistical significance for all tests.

Results
During 2013 year, 1071 cervical swabs from women at

risk for C. trachomatis infection (mean age 35 ± 10 years;

range: from 15 to 72 years) were analysed at the Virology

laboratory of IRCCS-Burlo Garofolo, Trieste, Italy. Of

these, 829 included Outpatients (mean age 35 ± 10 years),

161 patients from Sexually Transmitted Infection centre

(STI) (mean age 30 ± 10 years) and 81 women from the

Assisted Reproductive Technology (ART) (mean age 37 ±

10 years) clinic. All women were asymptomatic for C. tra-

chomatis and other genital infections at the time of sam-

pling, with the exception of STI women showing

inflammatory symptoms. Moreover, all women were

negative for cytological alterations, in accordance with

Bethesda System 2001 diagnostic criteria [23].

In this study, as showed in Table 1, the overall preva-

lence of C. trachomatis infection was 4.5% (53/1071)

(mean age 35 years). As expected, C. trachomatis preva-

lence, stratified by the different clinical departments

and by age, was found statistically significant higher

(12.4%) in symptomatic women attending the STI cen-

ter, than in asymptomatic women from the other groups

(p < 0.001).

In women with a C. trachomatis infection the overall

prevalence of HPV was high, tested to 60.4% (32/53),

as shown in Table 2. Regarding the distribution of

HPV, the 37.5% (12/32) of the infections were consti-

tuted by a single genotype while the 62.5% (20/32) by

multiple genotypes (from 2 to 8 types), recovered more

frequently in younger women (mean age 24 years)

(Figure 1).

The analysis of HPV genotypes, reassumed in the

Figure 2, showed that HPV-42 and HPV-31 represented

the most frequently detected genotypes, standing at 28%

and 22%, respectively. Moreover, in these women, the

Table 1 Prevalence of CT distribution in women at risk of

infection by clinical department and mean age

Clinical Department n° women Mean Age ± ơ CT n° + (%)

Outpatients 829 35 ± 10 29 (3.5%)

STI 161 30 ± 10 20 (12.4%)

ART 81 37 ± 10 4 (4.9%)

Total 1071 35 ± 10 53 (4.5%)

STI: Sexually Transmitted Infection; ART: Assisted Reproductive Technology;

CT: C. trachomatis.

Table 2 HPV co-infection distribution in women with

CT infection

CT POS HPV HPV single
infection

HPV multiple
infections*

N° N°POS/TOT N°POS/TOT N°POS/TOT

(%) (%) (%)

53 32/53 12/53 20/53

(60.4) (22.6) (37.7)

*(from 2- to 8 genotypes); CT: C. trachomatis; HPV: Human papillomavirus.
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genotypes HPV-39,-53,-56,-58 were present only as single

infection while the genotypes HPV-6-51-59-66 were de-

tected together in 31% (10/32) of the recovered infections.

In order to characterize the chlamydial phase of in-

fection, the mRNA expression of the Hsp60 gene

showed that the 53% (28/53) of the women with C. tra-

chomatis were suffering from a chronic infection

(Table 3). Of these women (mean age 26 years), the 68%

(19/28) resulted co-infected with HPV. In particular, the

79% (15/19) presented multiple infections and the 21%

(4/19) single infections. Moreover, the level of Ct-Hsp60

expression was found significantly lower (±396 copy/μl)

in women co-infected with HPV compared to women

infected only with C. trachomatis (±862 copies/μl). The

evidence for viable organisms and not just residual

DNA from a previous infection was supported to high

correlation between DNA and RNA results (data not

shown), considering that, the expressed gene should be

linked to the C. trachomatis persistence.

The classification of C. trachomatis serotypes through

the ompA gene amplification and subsequent sequen-

cing, performed in available samples, had revealed a high

frequency of serotype F, independently of chlamydial

status or HPV infection.

Discussion
Several epidemiological studies have stated a positive asso-

ciation between C. trachomatis and HPV-related cervical

diseases. The co-presence of C. trachomatis and HPV was

reported in cervical precancerous lesions, and high levels

of specific IgG antibodies or DNA of C. trachomatis were

recovered in HPV positive patients [6,14,15]. However, the

exact relationship between C. trachomatis and HPV infec-

tion is still not completely understood.
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In the present analysis, we evaluated the distributions

of HPV DNA-positive infections analysing a large num-

ber of specimens collected as part of routine screening

practices for C. trachomatis prevention. For the first

time, estimates are provided on the prevalence of HPV

infections and about genotype distribution in women

with a chronic C. trachomatis infection; this work has

never been assessed before. Data from our study showed

that the 60.4% of women with a diagnosis of C. tracho-

matis infection and in absence of cervical lesions, re-

sulted co-infected with one or more HPV genotypes. To

note, the 53% of them showed a chronic infection and,

HPV was found more frequently associated (68%) to

this specific chlamydial status. Moreover, a consistent

portion of these women (79%) resulted to be infected

with multiple HPV genotypes. To note, HPV multiple

infections including specific genotypes such as HPV-6-

51-59-66, was reported in the 31% of these women sup-

porting evidence that the presence of one HPV type does

not increase the likelihood of acquiring further infections,

but that, HPV multiple infections might be the result of

the local immune system impairment [8,24-31]. In our

screening population, the median age of women with 2 to

8 HPV genotypes was 24 years, according to recent data

[32,33].

In our series, HPV-31 and HPV-42 represented the

genotypes more frequently detected, testing at 28% and

22%, respectively. The overall prevalence of these ge-

notypes, with a smaller estimated oncogenic poten-

tials than HPV-16, were usually lower in HPV

screening Italian women (13.8% and 0.3%,) [34,35].

While, conversely, HPV-16 (30.7%) [34] was found

only in the 9%.

In the natural history of C. trachomatis, a chronic

infection is referred as a stop in development of

chlamydial cycle, with aberrant bodies formation, and

this state is characterized by high transcriptional

activity [36].

In this study, the expression of Hsp60 gene, a marker

of chronic infection, has been found significantly lower

in HPV co-infected women compared to women in-

fected only with C. trachomatis. Discussion on this

finding can be merely speculative, suggesting that the

maintenance of a steady-state level of transcription of

Hsp60 gene could favour a balance between the Hsp60

induced pro-inflammatory microenvironment and HPV

coexistence [14].

The chronic inflammation caused by C. trachomatis

increases oxidative stress proteins that seem to trigger

HPV cell entrance, and replication or enhance DNA

breaks that may promote viral integration [9,14,16].

Although it has been suggested that the concomitant

presence of HPV viral oncoproteins during Hsp60

expression may lead to the ability to survive apoptotic

stimuli, uncontrolled proliferation and, finally neoplas-

tic transformation, in this study specific HPV multiple

genotypes were found associated to C. trachomatis

chronic status, independently of the genotypes risk

[37,38].

Conclusions
In conclusion, the results of the present investigation

provide evidence for the notion that a high prevalence of

multiple HPV infections has been associated with C. tra-

chomatis chronic infection in young women without cer-

vical lesions. In addition, specific HPV genotypes seem

to be more frequently associated to C. trachomatis. This

data may deserve further consideration, owing to accu-

mulate evidence that the chlamydial chronic status could

contribute to favour specific HPV genotypes represent-

ing possible implications for the prevention of cervical

cancer.
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Table 3 RNA expression of the CT-Hsp60 gene in relation

to the presence or absence of HPV infection

CT-Hsp60 RNA

(+) (−)

N°/TOT (%) 28/53 (53) 25/53 (47)

HPV + n° (%) 19/28 (68)* 13/25 (52)

HPV- n° (%) 9/28 (32) 12/25 (48)

*4/19 (21%) HPV single infection and 15/19 (79%) HPV multiple infections.

CT: C. trachomatis; Hsp60: Heat shock protein 60; HPV: Human papillomavirus.
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