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Abstract

The main topic of this work is the acoustical characterisation and the comparison calibration

of a new low cost prototype of a pressure-velocity probe based on MEMS and CMOS

technologies. The development during the last years of micro sensors using the double

hot-wire anemometric transduction principle, has permitted to directly measure the velocity

of the air particle, thus giving a fundamental contribution to the intensimetric measurements.

This in turn required a more deep study of the calibration techniques as at least two acoustical

signals (pressure and axial velocity) have to be processed simultaneously in order to obtain

precise and affordable measurements of energetic properties of sound. In particular this

work is devoted to the analysis and experimental validation of the "comparison calibration"

methodology when applied to pressure-velocity probes still in their early stage of prototypes.

After an introduction on the Acoustical Energetics, in which the main quantities are

described and simulated for a monochromatic field, the next chapters are dedicated to the

probe realised within the SIHT (Sogliano Industrial High Technology) project, which is

based on the collaboration between the Institute of Acoustics and Sensors Corbino-CNR,

of the CNR-IEIIT and of the Deltatech industry in Sogliano al Rubicone (FC, Italy). We

describe the different prototypes that have been realised and their relative characterization,

that have been useful to design new and improved prototypes. The particular geometry of the

prototypes has also required a new procedure of comparison calibration, in which the probe

under test is calibrated using a reference one, in a generic field.

The possible applications of the new probe are various, and go from audiometric field to

condition monitoring, and are investigated in the last chapter.
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Introduction

During the last decades a new kind of sound intensity probes has been developed based on the

direct measure of both the acoustic pressure and air particle velocity. This is mainly due to the

appearance of MEMS technologies which have permitted to fabricate acoustic velocimetric

microsensors, thus giving a fundamental contribution to the intensimetric measurements. In

fact at the beginning only standard intensimetric probes were available, and the velocity had

to be derived indirectly from the measurement of two in-phase pressure microphones.

The first producer in Europe of such probes is the Microflown Technologies, which

realised an anemometer based on the transduction principle of double heated wires. The

innovative nature of this probe goes with the necessity to find a new calibration method, and

at present there’s no a universally approved procedure.

Given the importance of the p-v probes, the CNR-IDASC at Ferrara, has realised the

SIHT (Sogliano Industrial High Technology) project, in collaboration with the Deltatech

industry in Sogliano al Rubicone and IEIIT at Pisa. Within this project a new p-v probe has

been realised. This work resumes the process of production, calibration and the applications

of such probe.

The first chapter is an introduction to the Acoustical Energetics, that is the discipline

studying the radiative and oscillatory fluxes of acoustic energy based on the four-dimensions

formulations of the energy momentum tensor of the acoustic field. After a theoretical

introduction, the acoustic energetic quantities are simulated for a monochromatic 1-D field.

The second chapter illustrates two methods of calibration of the p-v probes: the same

device, a Microflown match size, has been calibrated during an interlaboratory comparison

using the piston in a sphere method during my visit to Microflown (Arnhem, The Netherlands)

and using the progressive plane wave calibration developed at Ferrara University.

The next chapter is dedicated to the prototypes realised during the project. The new p-v

probe has been used for the realisation of a new kind of tympanometric probe: the relative

characterisation and the calibration are here described. In a second moment the probe has

been inserted in a carbon fibre horn that turned out to be a natural velocity amplifier. The
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effects of the geometry of the horn are studied through experimental measures and numerical

simulations.

The comparison calibration of the prototype is described in chapter 4: the Microflown

probe has been calibrated inside the Larix laboratory in Ferrara and has become the reference

probe on which we calibrated the prototype.

Finally, in the last chapter, a series of case studies are illustrated. The new prototype

in fact has been applied to many fields, from tympanometry to the railway safety, to the

condition monitoring.



Chapter 1

Simulation of acoustic energetic
quantities

The quasi-stationary plane wave is one of the most accepted models for the study of the

Acoustical Energetics, that is the theoretical-experimental discipline that studies the radiative

and oscillatory fluxes of acoustic energy based on the four-dimensional formulation of the

energy-momentum tensor of the acoustic field. The great importance of such model comes

from the necessity to quantitatively describe the phenomenon of reflection by considering

each energetic implication. To this aim the various energetic quantities for a quasi-stationary

plane wave have been numerically simulated and graphically visualized: in particular, we

start from the simplest case of a monochromatic wave, strictly applying the methods of

energetic acoustics in order to deduce conclusions which are useful for future developments.

1.1 The acousto-electro-mechanic analogy

Monochromatic plane-waves are made up of the superposition of two components, one

progressive and another regressive, which represent the incident and reflected wave with

the same direction but propagating in opposite ways, and with the same frequency [1]. In

[2] it is clearly stated that the purely reactive (imaginary) aspect of the complex acoustic

impedance is associated with the absence of net energy transport, so obtaining an image of

standing waves in which the energy is delimited between the nodes of pressure and velocity

into isolated cells with a back-and-forth movement. On the contrary the resistive (real) part

of impedance is associated with sound energy that passes by each point in space in a series

of pulses. This model has been generalised in [3] giving rise to a complete acousto-electro-

mechanic analogy, where the well known concept of power factor derived in the electric AC
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circuits analysis is extended to acoustics. In [3] the fundamental physical concept of energy

trajectory is assimilated to a continuous line network of electric circuits, and the complex

intensity vector field is defined by means of three spatial directions: the tangent, the principal

normal and the binormal direction at each point of any energy path.

1.2 Definition of the quantities in a general field

1.2.1 The four-dimensional energy-momentum tensor

In the unified space-time approach proposed in [4], similar to the relativistic formulation of

electromagnetism, a 4 x 4 acoustic energy-momentum tensor T is introduced:

T := [ρeφ μφ ν +gμνL]gμ ⊗gν ∈ M4 ⊗M4 (1.1)

and can be represented by the 4 x 4 matrix

A =

(
W t
t T

)
(1.2)

The component T00 is the acoustic energy density W, Ti0= T0i is the acoustic energy-flux

density j/c and T is the tensor represented by:

T = ρev⊗v−Le = ρe[v⊗v+
1

2
(p2/z2 −v2)e] (1.3)

The tensor T is denoted by [1] with -W and is called wave-stress tensor. One of the

properties of it is that the trace is equal to twice the Lagrangian density:

Tr(T ) := T μ
μ = ρeφ μφμ +gμ

μL = 2L (1.4)

Furthermore, the divergence of T vanishes identically. If we put φμν := ∂μ∂νφ , we find:

∂νT μν = ρe∂ν [φ μφ ν +gμνL] = ρe

[
φ μ

ν φ ν − 1

2
(φ νφ μ

ν +φ μ
ν φ ν)

]
≡ 0 (1.5)

The component μ = 0 represents the conservation law of acoustic energy and is expressed

as:

∂νT 0ν = ∂0T 00 +∂1T 01 +∂2T 02 +∂3T 03 =
1

c

(
∂W
∂ t

+∇ · j
)
= 0 (1.6)
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The components μ = i = 1, 2, 3 can be written as:

∂q(x, t)
∂ t

+∇ ·T (x, t) = 0, ∇ ·T := ei∂ jT i j (1.7)

Such equation represents the acoustic momentum conservation law, if the vector -∇·T is

seen as a force density.

1.2.2 Acoustic radiation pressure

Starting from equation 1.3, that is the wave momentum flux density, the quantity

s =−ρe

[
vn +

1

2

(
p2

z2
−v2

)
n
]

(1.8)

describes the acoustic radiation pressure, that is the density of the radiation force applied

on an arbitrary surface having normal n within the field itself.

The decomposition of T into irreducible parts gives:

T(0) =
1

2
ρe

(
p2

x2
− 1

3
v2

)
e,

T(1) = 0, (1.9)

T(2) = ρe

(
v⊗v− 1

3
v2e

)
.

Having the trace Tr(e) = 3 and Tr(v⊗v) = v2, it follows that Tr(T(0))=(1/2)ρ e(3p2/z2-v2)

and Tr(T(2)) = 0.

The radiation pressure of T(0) on the surface element with normal n, that is the isotropic
part, is

s(0) =−T(0) ·n =
1

2
ρe

(
1

3
v2 − p2

z2

)
n (1.10)

This part of s is called isotropic, since it has the direction of n and its modulus doesn’t

depend on n. From equation 1.10 it follows

s(0) ·n =
1

3
K−U =

1

3
(2L−W) (1.11)

It may be observed that the isotropic radiation acts as a compression if z2v2<3p2 and as an

expansion in the opposite case.
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1.2.3 Decomposition of the velocity

The author in [5] explains the decomposition of v into a component in phase and a component

in quadrature with the pressure p, but only for a monochromatic case. A description of such

components for general fields instead can be found in [6]. We can in fact decompose the

velocity v into the sum of a term vp with the same time dependence as p and another vq, such

that 〈pvq〉= 0. So we can write:

v(x, t) = vp +vq (1.12)

with

vp =
〈pv〉
〈p2〉 p; vq =

〈p2〉v−〈pv〉p
〈p2〉 (1.13)

The first of the equations 1.13 is the "pressure-in-phase" velocity, and has important

spatial and temporal properties. The spatial one regards the direction: vp is aligned as the

time-stationary averaged sound intensity; as regards the time property the vp components

reproduce the sametime history of the pressure signal but multiplied by the factor 〈 j〉/ 〈 p2 〉.
The second equation of 1.13 is the "pressure-in-quadrature" component, which is defined by

adding the velocity to the opposite of vp in order to have the condition 〈 vp vq 〉 = 0. In this

way, vp and vq can be considered as the projections over the directions of the Hilbert vector

p and the orthogonal one, of the velocity components vi (i=1,2,3). Finally, the instantaneous

intensity j(x,t) = pv, which can be decomposed in j = pvp+p vq. In this last expression we

introduced the active a:=pvp and the reactive r:=pvq:

a(x, t) =
〈pv〉p2

〈p2〉 , r(x, t) =
pv〈p2〉−〈pv〉p2

〈p2〉 (1.14)

whose averages are 〈a〉= 〈pv〉 and 〈r〉= 0.

It’s demonstrated in [3] that

〈pvp〉=
〈

p
pv
p2

p
〉
=

〈p2〉
p2

〈pv〉= 〈pv〉, (1.15)

〈pvq〉=
〈

p
〈p2〉v−〈pv〉p

p2

〉
=
〈〈p2〉〈pv〉p2

p2

〉
=

〈p2〉〈pv〉−〈pv〉〈p2〉
〈p2〉 = 0 (1.16)

so we can say that the following equalities are proved:

〈pvp〉 ≡ 〈pv〉; 〈pvq〉 ≡ 0. (1.17)
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1.2.4 The acoustic power factor

We will see in the plots of section 1.4 that the intensity I presents a bounding condition. In fact

given the equations in the previous section, we can express it as I2 = 〈p2〉〈v2
p〉. Considering

that 〈vpvq〉= 0, we obtain

I2 = 〈p2〉[〈v2〉−〈v2
q〉
]
, (1.18)

which shows that 0 ≤ I2 ≤ 〈p2〉〈v2〉 or

0 ≤ I ≤
√

〈p2〉〈v2〉 ≡ prmsvrms (1.19)

This equation allows to understand the physical meaning of the power factor Δφ . We

define the reactive intensity as:

Q =
√

〈p2〉〈v2
q〉 (1.20)

so we have:

I2 +Q2 = 〈p2〉〈v2〉 (1.21)

from which the power factor for general fields can be expressed as

cosΔφ =
I√

I2 +Q2
≡ ξ , −π

2
≤ Δφ ≤ π

2
(1.22)

The power factor is then the ratio of the active intensity at every field point to the

time-averaged total intensity ξ . On the other hand the reactive intensity is expressed as:

I(x) = (prmsvrmscosΔφ)t̂ (1.23)

We can insert the term Q in a complex quantity Ŝ called complex velocity and expressed

as Ŝ = I + iQ, that is a phase vector of magnitude
√

I2 +Q2 and angle Δφ = arccosξ .

1.2.5 Sound energy conductance and susceptance

To complete the acousto-electro-mechanic analogy, we introduce the concept of energy

susceptibility, and define the reactivity index μ as:

μ ≡ Q/cW (1.24)
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which is the imaginary part of the sound energy admittance σ

σ ≡ η + iμ (1.25)

The magnitude of the ρ0c-normalized sound energy admittance consists in the energy partition

index σ = 2WkWp/(Wk +Wp), i.e., the ratio of the geometric to arithmetic mean of the time-

averaged kinetic and potential densities Wk and Wp.

Finally, we introduce the energy resistance R and energy reactance X, that can be obtained

as the real and imaginary parts of the ρ0c-normalised energy impedance σ−1:

σ−1 =
1

η + iμ
=

η
σ2

− i
μ
σ2

≡ R+ iX (1.26)

1.3 Monochromatic case

Monochromatic plane-waves reflection is the simplest case of wave reflection phenomena:

the incident and the reflected waves have the same direction but propagate in opposite ways.

In these conditions the velocity potential φ (x,t) can be expressed as:

φ(x, t) = Ac[ei(kx−ωt) +Rei(kx+ωt+ϑ)] (1.27)

where A is the displacement amplitude, k = ω/c is the wave number, R is the scaling

factor of the reflected wave and θ is the phase shift between the incident and the reflected

wave. The solutions of pressure and velocity are derived by differentiating φ(x, t) and setting

z0 = ρ0c are:

p(x, t) =−ρ
∂φ
∂ t

= ℜ(Az0(iω)[ei(kx−ωt)−Rei(kx+ωt+ϑ)]), (1.28)

v(x, t) = ∇φ = ℜ(A(iω)[ei(kx−ωt) +Rei(kx+ωt+ϑ)]) (1.29)

where z0 = ρ0c is the characteristic impedance of air. It is known tat the combination

of the equations 1.28 and 1.29 contributes to the energy transport inside the acoustic field

described by the potential 1.27.

In order to calculate the energetic quantities, it’s necessary to define the averaging

operation 〈·〉 ≡ (2T )−1
T∫

−T
·dt over a complete cycle T = 2πω−1 where ω is the circular

frequency of the monochromatic wave. By applying the stationary average the analytic

expressions of the energetic quantities such as the active (or radiative) intensity A and the
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mean densities of potential wu and kinetic wk energy:

A = 〈pv〉= 1

2
z0(aω)2(1−R2) [W/m2] (1.30)

Wu =
1

2ρ0c2
〈p2〉= 1

2
ρ0(aω)2

[
1+R2

2
−Rcos(kx+θ)

]
[J/m3] (1.31)

Wk =
1

2
ρ0〈v2〉= 1

2
ρ0(aω)2

[
1+R2

2
+Rcos(kx+θ)

]
[J/m3] (1.32)

From equations 1.31 and 1.32 we can derive the expression of total energy:

Wtot =Wu +Wk =
1

2
ρ0(aω)2(1+R2) [J/m3] (1.33)

From Eq. 1.30,1.31 and 1.32 we can derive-by normalizing it with respect to c- the

conductance η , which is the velocity of the energy inside the wave field, and the acoustic

power factor ξ :

η =
A

c(Wu +Wk)
=

1
2(Aω)2z0(1−R2)

c
2(

〈p2〉
ρ0c2 +ρ0〈u2〉)

=
1
2(Aω)2z0(1−R2)

c
2

1
2(Aω)2ρ0(1+R2)

=
1−R2

1+R2
(1.34)

ξ =
A

2c
√

WuWk
=

1−R2√
(1+R2)2 −4R2cos2(2kx+θ)

(1.35)

Δϕ = cos−1(ξ ) (1.36)

where Δϕ is the phase shift between the pressure and the velocity wave.

The power factor ξ is then the ratio of the active intensity at every field point to the

time-averaged total intensity at the same point. The reflection coefficient can be expressed in

terms of normalized conductance as:

R =

√
1−η
1+η

(1.37)

We can conclude that starting from pressure and velocity measurements (acoustic ob-

servables) we can derive some quantities of the energetic acoustics. Starting from their

expressions in terms of R and θ we can realise the simulation of the sound field represented

by the potential. This method clearly allows a direct check of the simulated model with
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experimental data obtained with p-v intensimetry and gives at the same time a key to the

models of a quasi stationary wave fields directly based on the calculation of impedance.

In the next section, the just described quantities will be illustrated through a synoptic

visualization [7].

1.4 Synoptic visualization of the simulation results

The simulation has been realized using an algorithm written in Maple®, in which once

defined the principal parameters, the required energetic quantities are derived. The initial

parameters are: f= 429 Hz, c= 343.4 m/s, ρ0= 1.204 kg/m3, Lp= 95 dB. The pressure level,

here used to calculate the amplitude of kinetic potential using the expression a= pRMS /ωρ0c
with pRMS = p0 · 10Lp/20, arises from experimental data. With this premises a value of a=

1.0046 · 10−6 m is derived. The results of the simulations are resumed in figures from 1.1

to 1.10. The horizontal axes indicate the ratio x/λ , where λ is the wavelength and x is the

length.

Fig. 1.1 Trend of potential, kinetic and total energy with R=0.25 (left) and R=0.5 (right), for

θ=0.

The plots in figure 1.1 and 1.2 show the behaviour of the mean energy densities, wu,

wk and wtot for increasing R from 0.25 to 1 (stationary wave), with θ = 0. The increase

of the amplitude of the reflected wave emphasizes the maxima of the potential and of the

kinetic energy, and therefore enlarges the total energy density until the maximum value of

Wtot = a2ω2ρ0. Figures 1.3a and 1.3b illustrate the phase change of the potential and of

kinetic energy by varying the phase θ from 0 to 1, while in figure 1.4 the Lagrangian L for

different values of R is simulated. The oscillation of this quantity is maximum for a stationary
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Fig. 1.2 Trend of potential, kinetic and total energy with R=0.75 (left) and R=1 (right), for

θ=0.

wave, while in the opposite case of progressive wave the kinetic energy equals the potential

energy and the Lagrangian is null at each point.

In Fig. 1.6 are shown, on the left, the values of the active intensity for different values of R
(in [W/m2]), while on the right the relative values of the velocity of acoustic energy η in units

of c are displayed. The decreasing trend of the intensity indicates how the flux of the absorbed

energy (and therefore irradiated by the field) is maximum when the pressure-velocity wave

that transports the energy is totally progressive (R=0). This aspect is more easily explained

by the modulus of the energy velocity that-being normalised with c- is 1 when the energy

transport has the same velocity of the propagation of acoustic waves.

Figures 1.6 and 1.7 show respectively the behaviour of the power factor ξ , expressed in

1.35 and of the phase shift Δ ϕ of the p-v wave when the amplitude of the reflected wave

R (top) and the phase difference between the incident and the reflected wave are varied.

It’s clear how, by increasing R, the power factor of the wave diminishes: nevertheless it’s

extremely significant the fact that for all the values 0<R<1 the power factor reaches the

maximum with a period of λ /4. The effect of varying θ is a simply spatial shift of the highest

power points (where ξ =1).

In Fig. 1.8 and 1.9 are shown other energetic quantities with varying R: in the first one

we can see the behaviour of pvp and pvq, where vp and vq derive from the decomposition of

the air particle velocity v:

Figure 1.10 represents the isotropic component of the acoustic radiation pressure for

different values of R, which is described by the expression 1.11. Different values of the

radiation pressure correspond to an energetic compression state, so it’s evident from the plot

that the energy transported by the progressive plane wave is always compressed. In particular

at values or R ≤0.27 the pressure remains negative, oscillating around the constant value
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(a) Potential energy.

(b) Kinetic energy.

Fig. 1.3 Trend of potential (top) and kinetic (bottom) energy.

Fig. 1.4 Lagrangian for varying R.
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Fig. 1.5 Trend of active intensity A and of η varying R.

Fig. 1.6 Trend of ξ and of Δϕ with varying R, θ=0.

Fig. 1.7 Trend of ξ and of Δϕ with varying θ , R=0.9.
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Fig. 1.8 Trend of pvp and pvq with R.

Fig. 1.9 Trend of σ for different R.

Fig. 1.10 Isotropic radiation pressure for different R.
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given by the plane wave (R=0). During the simulations we have verified, as expected, that

the radiation pressure of a progressive plane wave is proportional to the value of the pressure

level Lp.





Chapter 2

Interlaboratory comparison of the
calibration of a commercial
pressure-velocity probe

In this chapter two methods of calibration are applied to the same probe and the results are

compared. The first one is the piston in a sphere method and is used at the Microflown

laboratory in Arnhem, while the second one is the plane wave progressive field and is adopted

at Ferrara, inside the Larix laboratory. A short digression in the first section introduces the

main techniques to calculate the impulse response of a system.

2.1 Identification of linear system: a qualitative review

There are several methods to caculate the impulse response of a system: a complete review

can be found in [8] or in [9]. The study of the acoustic phenomena can be described

considering the process as a dynamical system, dominated by a relationship of cause and

effect [10]. If the process depends only on a single variable, such as time, we can define

an operator that transforms an input function s(t) in an output funciton f(t). If the system is

linear (in which a combination of input signals produces the same combination of output

signals) and time-invariant, the impulse response can be described by the relation:

f (t) =
+∞∫

−∞

s(τ)h(t − τ)dτ (2.1)
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where h(t) is the response of the linear system and is called impulse response. In the

frequency domain the convolution can be expressed as:

F(ω) = S(ω) ·H(ω) (2.2)

with H the transfer function of the system. The sine sweep method has been developed

only in the second part of the last century, after quite a number of different ways to measure

the transfer function and its relative impulse response. Every method is based on an excitation

signal (stimulus) characterised by the frequencies of interest to feed the device under test [9].

Then the response of the device is compared with the original signal. The different methods

are listed hereinafter:

1. The level recorder: the logarithmic sweep generated by an analogue generator is fil-

tered through a low-pass filter. The voltage becomes the input to a differential amplifier

whose other input is linked to a writing pen after passing through a potentiometer. This

is one of the oldest methods and doesn’t give information on the phase.

2. Time delay spectrometry (TDS): this method is particularly used for the measure-

ment of loudspeakers, but is also applicable to room acoustics. The analyser consists

of a generator which produces a swept sine and a cosine. The firts signal goes to the

loudspeaker and its response is multiplied by both the input signals. The multiplier

outputs are filtered by a low-pass.

The reflections are controlled by the use of a linear sweep instead of a logarithmic

one, but there are various disadvantages, such as SNR at low frequencies, the necessity

to have a very long sweep because of the poor spectral energy distribution, and the

presence of ripples, especially at low frequencies.

3. Dual channel FFT analysis: such method captures both the input and the output signal

of the device under test, and the signal is cut in segments which are windowed and

transformed to the spectral domain via FFT. The two resulting spectra are then averaged

through three processes, two for the autospectra and one for the cross-spectrum.

The advantage of such method is the unique possibility to measure sound systems

unobtrusively during the performance.

4. Stepped sine: it consists in exciting the DUT step by step with pure tones of increasing

frequency. The response can be analysed by filtering and rectifying the fundamental,

or by performinf an FFT and alalysing the fundamental from the spectrum.
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5. Impulses: this method uses impulse as excitation signal. The impulse’s response by

the DUTis captured by a microphone, amplified and digitized by an AD converter, and

to increase the SNR, the pulse can be repeated periodically thus producing a periodic

IR (PIR) [11].

The averaging guarantees a reduction of uncorrelated noise, but this method requires

a low noise floor and doesn’t allow identifying distortion. On the contrary, it has the

advantage of being a very simple procedure which doesn’t require sophisticated signal

processing.

6. Maximum length sequences (MLS): this is the most popular method after the sine

sweep. It has got a discrete nature: the excitation signal is made up of a pseudo-casual

binary sequence with values 1 and 0, of length of L=2m - 1, transformed in signals

of amplitude ± V0. In this case the excitation signal corresponds to white noise, in a

way that the mutual correlation between input and output directly furnishes the system

impulse response.

The advantages in such method are the handiness of a deterministic creation of arbi-

trarily long sequences, the possibility of using very rapid cross-correlation algorithms

(such as the well-known fast Hadamard transform- FHT), and finally good results in

terms of signal to noise ratio. Despite the great success of this method, it presents

some drawbacks, such as the vulnerability to distortion and time variance.

7. Periodic signals: this method is more efficient than the MLS, because in this case

the excitation signal has 2N samples instead of 2N-1, and the DUT response can be

transformed directly to the spectral domain, omitting the FHT. Such a method is more

powerful and flexible, allowing the use of arbitrary signals of 2N , but, performing two

FFTs instead of one single FHT, it consumes more processing time. Here the spectrum

needs to be calculated only once and can be used in all subsequent measurements.

This makes a second channel no more necessary, or allows the analysis of two inputs

simultaneously.

8. Non periodic sweeps: this methiod is based on the fact that the spectrum of non-

repeated single sweep is almost identical to that of its periodic repetition, so it’s no

more necessary to repeat the signal two times to establish the final spectrum. In this

way the DUT’s response can be measured and elaborated immediately, so reducing the

duration of the measurement. Moreover, the harmonic distortion components can be

entirely isolated from the acquired IR.
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9. Sine sweep: This is the most important case of FT technique of measuring the impulse

response. The sine sweep is a sinusoidal signal of constant amplitude and time-varying

frequency, and can be described by the expression s(T) = sin [f(t)]. The most used kind

of sweeps are the linear and the logarithmic one [12]. In both cases the frequency is an

increasing function in time. For acoustic measurements, the used frequencies interval

is included in the audible range, and in our case we used the band from ω1=20 Hz to

ω2=20 KHz, with a T of few seconds. A linear sweep is defined by:

d f (t)
dt

= ω1 +
ω2 −ω1

T
t (2.3)

which gives

f (t) = ω1t +
ω2 −ω1

2T
t2 (2.4)

and

s(t) = sin
[

ω1t +
ω2 −ω1

2T
t2

]
(2.5)

The linear sweep is also called "time stretched pulse" ([13], [14]) because of the

constantly spread energy in each frequency band: i.e. the energy of the interval 100

Hz-200 Hz is the same as in 1000 Hz-1100 Hz. So we can say that:

t1+Δt∫
t1

s2(τ)dτ =

t2+Δt∫
t2

s2(τ)dτ (2.6)

or, similarly,

ω(t1+Δt∫
ω(t1)

S2(ω)dω =

ω(t2+Δt∫
ω(t2)

S2(ω)dω (2.7)

with S(ω) the Fourier transform of s(ω), and, being the sweep linear, we have ω(t1 +

Δt) - ω(t1) = ω(t2 + Δt) - ω(t2). The other type of sweep is the logarithmic one, and is

described in [8] as:

x(t) = sin
[
K
(

et/L −1
)]

(2.8)

Such signal has a starting frequency called ω1 and an ending frequency ω2, and a

duration of T seconds; the conditions are:

d
dt

[
K
(

et/L −1
)]∣∣∣∣

t=0

= ω1
d
dt

[
K
(

et/L −1
)]∣∣∣∣

t=T
= ω2 (2.9)
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After solving the previous, we have:

K =
T ω1

log(ω2/ω1)
L =

T
log(ω2/ω1)

(2.10)

therefore the final equation of the logarithmic sweep is:

s(t) = sin
[

T ω1

log(ω2/ω1)

(
e

t
T log(ω2

ω1
)−1

)]
(2.11)

In this case the energy is constant for bands of frequency of constant logarithmic length,

that is:

kt1∫
t1

s2(τ)dτ =

kt2∫
t2

s2(τ)dτ (2.12)

and in the frequency domain

ω(kt1)∫
ω(t1)

S2(ω)dω =

ω(kt2∫
ω(t2)

S2(ω)dω (2.13)

Finally, for the logarithmic sweep, we have ω(k·t1)/ω(t1) = ω (k·t 2) /ω(t2) The advan-

tage of such method is a higher SNR compared to the other ones. In fact a background

noise is always present in the measurement systems in the shape of environmental

background noise, or thermal, electronic noise. So the response is always affected by

casual biases, that are generally distributed throughout the frequencies, especially in

correspondence of the audible range. Even if it’s impossible to completely remove

the background noise from a measure, it has been observed how the high value of

SNR within the sine sweep method, guarantees optimal results just with one single

measure. Moreover, the longer is the sweep duration, the higher is the signal-to-noise

ratio, therefore if the background noise during a set of measures is high, it’s sufficient

to increase the sweep duration.

2.2 Calibration at the Microflown Lab in Arnhem: Piston
in a sphere method

A good review of the methods of calibration used at Microflown in Arnhem can be found in

[15]. First of all, a clarification on the measure units: the sensitivity of pressure microphones
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is usually expressed in mV/Pa, while for the velocity sensors we measure the output voltage

relative to the velocity of the air particles, and then we define the sensitivity in mV/(m/s).

Since 1 Pa corresponds to a level of 94 dBSPL, and 1m/s to 146 dBSPL, we deduce that the

two values are difficult to compare. Therefore a new unit has been defined: the Pa* is the

velocity that corresponds to a 1 Pa of pressure in a plane wave, that is 1 Pa*=1Pa/ρc=2.4

mm/s. The sensitivity of the velocity sensor will be expressed in mV/Pa*. This is due to the

fact that the calibration methods are based on the normalised specific acoustic impedance,

that is the real impedance divided by ρc, and the real value of the impedance is not known.

Among the various methods of calibration of a pressure-velocity probe, the Microflown

draws on two standard methods:

• a piston in a sphere method, in which the probe is put outside a spherical source, and

it’s calibrated in a free field through two steps for two different range of frequency;

• the short standing wave tube method, which is efficient only at low frequencies, in a

20 Hz-3.5 KHz bandwidth.

During my visit to Microflown I personally calibrated a match size p-v probe with the

piston in a sphere method, producing a calibration report that will be illustrated later. Jacobsen

demonstrated in [16] that it’s possible to calibrate a p-v sensor in free field conditions at high

frequencies by using the a-priori known impedance at a certain distance from a spherical

speaker, but such method is not feasible at lower frequencies because the velocity is no

longer derivable from the pressure and the impedance with good results. The authors in [17]

extended the method to low frequencies bandwidth by directly measure the acoustic pressure

inside the spherical source. At low frequencies the sound pressure inside the sphere is

proportional to the movement of the loudspeaker membrane, so by measuring the movement,

we the particle velocity in front of the loudspeaker can be derived.

The final step of the procedure consists in combining the low and high frequencies

measures so obtaining a full bandwidth calibration procedure whose results can be used in

free field conditions.

2.2.1 High frequency set up

The image in figure 2.1 shows the setup for the high frequency calibration: the Microflown

probe and the reference microphone with a known sensitivity (a G.R.A.S. 40AC with G.R.A.S.

26AF preamplifier) are positioned at a certain distance in front of the speaker, nearly at

the same position, as can be seen in the scheme 2.2. In this configuration the pressure

microphone can be calibrated in a range between 20 Hz and 10 KHz. We must say that
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Fig. 2.1 Piston in a sphere set up for the calibration at high frequencies.

Fig. 2.2 The piston in a sphere set up.
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the possible presence of background noise doesn’t invalidate the process, because both the

microphones are omnidirectional and therefore the input energy remains the same. In order

to calibrate the velocity sensor, a monopole as signal source is necessary, in order to have an

omnidirectional source in a large bandwidth. The source consists of a loudspeaker put inside

a spherical plastic sphere, which can be modeled as a sphere of radius a and an internal piston

of radius b. The impedance on the axis of the piston can be derived using the expression:

Zsphere(r) =−iρc
∑∞

m=0(Pm−1(cosα)) hm(kr)
h′m(ka)

∑∞
m=0(Pm−1(cosα))

h′m(kr)
h′m(ka)

(2.14)

where r is the distance from the centre of the sphere, a=arcsin(b/a), a is the radius of the

sphere, b is the radius of the loudspeaker and Pm is the Legendre function of the order m, hm

is the spherical Hankel function of the second kind and order m, h’m is its derivative, k is

the wave number. The term ρc is the acoustic specific impedance of air, which depends on

external conditions like temperature, atmospheric pressure and relative humidity. The last

values are integrated in the model calculated during the calibration.

Fig. 2.3 The ratio between the impedance of a piston in a sphere and of a monopole [15].

The different curves indicates distances from the front of the sphere with values from 15 to

75 cm.

The impedance in 2.14 is similar to the acoustic impedance of a monopole source, given

by:

Z(r) = ρc
ikr

1+ ikr
(2.15)
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The ratio of the normalised impedance of the piston in a sphere (equation 2.14) to the

impedance of a monopole (equation 2.15) is shown in figure 2.3 for different distances

between the microphone and the loudspeaker. It can be seen that the piston in a sphere model

becomes more similar to a monopole source model at higher frequencies, while for the lower

ones it will be necessary an additional step, that will be described in the next section. It has

been demonstrated that smaller spheres better follow the monopole model, besides being

more easy to transport, so the calibration has been conducted using a 9 cm sphere (figure 2.4).

Such setup has been modified so the probe to calibrate can easily be shifted from the high

frequency calibration position (far from the loudspeaker) to the low frequency calibration

position (close to the sphere).

Fig. 2.4 The setup used for the calibration during my visit at Microflown.

2.2.2 Low frequency setup

At low frequencies the calibration described in the previous section presents some problems.

In this bandwidth the background noise has higher pressure levels than the noise generated

by the source itself, in particular below 50 Hz. The ratio between the particle velocity and the

pressure increases in the near field, and it’s significant for low frequencies when the probe is

in front of the loudspeaker. On the contrary for the background noise, with the probe in the

far field, such ratio has almost the same values at all frequencies.

In an anechoic room, with no background noise, the previous method of calibration is

feasible down to 50 Hz, but in a common room, where the background noise is higher, the far
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Fig. 2.5 The setup used for the calibration at low frequencies.

field method starts working from 100 Hz to 200 Hz. Therefore when the background noise is

dominant, equation 2.14 is no longer usable, and a new approach must be followed.

Fig. 2.6 The scheme for the low frequencies calibration, with the reference microphone inside

the sphere.

Figures 2.5 and 2.6 show the setup for the low frequencies calibration: the reference

microphone is directly put inside the sphere through a hole, while the p-v probe under test

is positioned in front of the loudspeaker. The reference microphone directly measures the

pressure variations inside the sphere, and the relation between the internal pressure and the

particle velocity in front of the sphere is used for the calibration.

In fact the pressure inside the sphere is high enough to be measured at low frequencies

and the relation between the pressure and the velocity outside the speaker is linear. Moreover,

the particle velocity just in front of the speaker is similar to the velocity of the membrane,

thanks to the continuity condition.



2.2 Piston in a sphere 27

So the relation between the pressure inside the sphere and the velocity outside the sphere

is given by:

upiston =− iωV0

γA0 p0
pre f (2.16)

with ω the angular frequency, V0 the interior volume of the sphere, A0 is the surface area of

the moving piston, p0 the ambient pressure and γ the ratio of specific heats. We assume that

the compression and rarefaction of the air inside the sphere is an adiabatic process.

Fig. 2.7 The calibration set up: on the left the far field, on the right the near field.

Figure 2.7 shows the two set up for the calibration in the far (left) and in the near (right)

field. Being known the acoustic field around the sphere, it’s possible to derive the particle

velocity at a certain distance from the sphere from the velocity in front of the piston. Such

quantity is then related to the pressure inside the sphere.

The relation between the particle velocity in front of the speaker un and the velocity at a

certain distance r from the centre of the sphere is given by:

u(r) =−un

2

∞

∑
m=0

(Pm−1(cosα)−Pm+1(cosα))
h′m(kr)
h′m(ka)

(2.17)

where r is the distance from the speaker membrane and the other parameters have already

been described for the equation 2.14. The relation between the particle velocity at position r

and the pressure inside the sphere is given by combining eq.2.16 and 2.17:

u(r)
pre f

=
jωV0

2γA0 p0
·

∞

∑
m=0

(Pm−1(cosα)−Pm+1(cosα))
h′m(kr)
h′m(ka)

(2.18)
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2.2.3 Combination of the two steps

We have seen how Microflown uses a two steps method to calibrate its p-v probe, one for

high frequencies (far field), and another for low frequencies (near field, with the microphone

inside the speaker). The final step is to determine a full bandwidth sensitivity by combining

the results of the previous phases. There are similar results with the two methods at central

frequencies, around 300 Hz, so the two curves will be connected within this bandwidth.

The first step consists in measuring the transfer functions between the sensors in far field

configuration, with the reference microphone and the probe under test nearly in the same

position along the axis in front of the speaker, at a known distance. The sensitivity Sp of the

pressure sensor is calculated from the reference microphone output (in Volts) and the output

of the pressure sensor (in Volts):

Sp

[
mV
Pa

]
=

p
pre f

[
V
V

]
·Sre f

[
mV
Pa

]
(2.19)

where Sre f is the sensitivity of the reference microphone, that is known from the data

sheet and is considered independent of frequency.

The sensitivity of the velocity sensor is derived from the model of a piston in a sphere

through

Su

[
mV
Pa∗

]
=

u
pre f

[
V
V

]
·Zsphere

[
Pa
Pa∗

]
·Sre f

[
mV
Pa

]
(2.20)

While the sensitivity found for the pressure sensor is working in the full bandwidth, it’s

necessary to calculate the sensitivity of the velocity sensor for low frequencies, by inserting

the reference microphone directly inside the spherical loudspeaker and the probe under test

in front of the membrane. White noise is emitted from the source and the transfer functions

are measured; the particle velocity sensitivity is then calculated substituting in 2.19 the term

Zsphere.

Su

[
mV
Pa∗

]
=

u
Pre f

[
V
V

]
· un

u

[
Pa∗
Pa∗

]
· pre f

un

[
Pa
Pa∗

]
·Sre f

[
mV
Pa

]
= (2.21)

=
u

pre f

[
V
V

]
· pre f

u(r)

[
Pa
Pa∗

]
·Sre f

[
mV
Pa

]
(2.22)

Finally, the sensitivity curves are smoothed through a moving average filter, and the low

frequencies one is vertically shifted until the two curves coincide around 300 Hz. This is the

final sensitivity curve that will be used for the calibration.
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2.2.4 The Microflown model

Fig. 2.8 Electrical model of the behaviour of a Microflown probe [15].

Although as it has been said before, the sensitivity is independent from the frequency

for pressure, this is not true for velocity sensors. That’s why Microflown has developed a

model which includes the effect of the frequency, by introducing the parameters called corner
frequencies. Such parameters are strictly connected to the electrical model of the probes

(Fig. 2.8), which includes three filters: R1C1 is a high pass filter with a corner frequency

around 100 Hz, R2C2 depends on the volumetric heat capacity [18], while R3C3 marks the

thermal mass of the wires in the velocimeter. The last two are low pass filters, with corner

frequencies respectively in the order of 1 KHz and of 10 KHz.

The model that describes the sensitivity behaviour of the pressure sensor is:

Sp[mV/Pa] = Sp@1KHz

√
1+

(
f

fc3p

)2

√
1+

(
fc1p

f

)2
√

1+
(

fc2p
2

)2
(2.23)

The phase of the pressure microphone is:

ϕp[deg] = arctan
(

C1p

f

)
+arctan

(
C2p

f

)
+arctan

(
f

C3p

)
+180 (2.24)

The sensitivity of the velocity in uncorrected mode is described by the model:

Su[V/(m/s)] =
Su@250Hz√

1+
(

fc1u
f

)2
√

1+
(

f
fc2u

)2
√

1+
(

f
fc3u

)2
√

1+
(

fc4u
f

)2
(2.25)
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and the phase is:

ϕu[deg] = arctan
(

C1u

f

)
−arctan

(
f

C2u

)
−arctan

(
f

C3u

)
+arctan

(
C4u

f

)
(2.26)

If the velocity signal is equalised in amplitude and phase (corrected mode), the pressure

and the velocity have the same phase. In this case the velocity model is described by:

Su[V/(m/s)] =
Su@250Hz√

1+
(

fc1u
f

)2
√

1+
(

fc4u
f

)2
(2.27)

The phase of the velocity sensor in corrected mode is:

ϕu[deg] = arctan
(

C1u

f

)
+arctan

(
C4u

f

)
(2.28)

The previous model is then fit on the calibration curve, then finding the values of the

corner frequencies relative to the probe under test.

The results of the calibration process are collected in a report which is supplied with

the probe. The following tables summarise the parameters obtained during the calibration

realised at Microflown.

Table 2.1 Calibration of the pressure microphone

Parameters pressure equations

Sensitivity
Sp @ 1 KHz 61.9 [mV/Pa]

Sensitivity corner frequencies
fc1p = 52 [Hz]

fc2p = 1 [Hz]

fc3p = 100000 [Hz]

Phase corner frequencies
C1p = 35 [Hz]

C2p = 30 [Hz]

C3p = 57658 [Hz]

Figures 2.9 and 2.10 show the result of the fitting or the calibration curve to the model.

In section 2.4 these models will be the reference curves for the data collected inside the

Larix laboratory in Ferrara.
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Fig. 2.9 Microphone model: amplitude (blue, continuous line) and phase (green, dotted line).

Table 2.2 Calibration of the velocity sensor

Parameters velocity equations

Sensitivity in high gain
Su @ 250 Hz 25.1 [V/(m/s)]

Sensitivity in low gain
Su @ 250 Hz 0.251 [V/(m/s)]

Sensitivity corner frequencies
fc1u = 137 [Hz]

fc2u = 554 [Hz]

fc3u = 5069 [Hz]

fc4u = 1 [Hz]

Phase corner frequencies
C1u = 125 [Hz]

C2u = 480 [Hz]

C3u = 55856 [Hz]

C4u = 1 [Hz]
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Fig. 2.10 Velocity model: amplitude in blue (continuous= uncorrected mode, dotted= cor-

rected mode) and phase in green (continuous= uncorrected moed, dotted= corrected mode).

Fig. 2.11 The pressure velocity probe which has been calibrated at Microflown and at Ferrara.



2.3 Progressive plane wave calibration 33

2.3 Progressive plane wave calibration at the Larix Lab in
Ferrara

A description of the procedure used at Ferrara for calibrating pressure-velocity (p-v) probes

can be found in [17] and in [19]. This procedure is based on a progressive plane wave as

reference field generated by a loudspeaker in the range 20 Hz-20 KHz through an impedance

adaptor. For the calibration process we used a linear sweep generated by a Matlab algorithm.

The development of new kind of pressure-velocity probes has required the design of new

calibration methods, in order to reach a standardization in the measures of energetic acoustic

quantities. A new method of calibration has been realised at the University of Ferrara: it

differs from the other techniques because it’s independent from the point of measurement and

allows good results in just one set of measurement in wide band. Such a field is generated

inside the Larix laboratory, in a 36 m tube with a diameter of 1.8 cm which will described in

the next section.

The terms g(t) and gm(t) represent the input and the output of the measuring apparatus, in

this case the p-v probe which is characterised by the impulse response m(t). These elements

are linked by the correlation:

gm(t) = (m∗g)(t) =:

+∞∫
−∞

m(τ)g(t − τ)dτ (2.29)

which, given a link between g and gm continuous, linear and invariant under time

translations, can be expressed through the Fourier-transformed quantities

Gm(ω) = M(ω)G(ω) (2.30)

However the connection between g and gm is characterised by a transduction process, so

the dimensions of the two quantities are not the same. It’s necessary a parameter called S,

sensitivity, which allows one to read a measurement in Pascals from a scale expressed in

Volts.

So, distinguishing between the acoustic input p(t)=p̂(t) Pa and the electric output p̃(t) =
˜̂p(t) V, equation 2.30 becomes

p̃(t) = (m∗ p)(t) =
+∞∫

−∞

m(τ)p(t − τ)dτ (2.31)
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Substituting in 2.31 p(t-τ)=P0 δ (t- τ), we derive the impulse response m(t):

m(t) =
˜̂p(t)
P̂0

V
Pas

(2.32)

with P0 is a constant whose determination corresponds to the calibration of the micro-

phone. In fact by defining

S =
1

P̂0

+∞∫
−∞

˜̂p(t)dt
V
Pa

(2.33)

one obtains

p(t) = S−1 p̃(t)⇐⇒ p̂(t)Pa = Ŝ−1 Pa
V

˜̂p(t)V (2.34)

The term P̂0 is determined by simply reading the output [p̃] corresponding to a 1 Pa

sample of sound pressure, usually expressed in millivolts. Since in acoustics 1 Pa corresponds

to 94 dB SPL (sound pressure level), it’s necessary to calculate the root mean square of

the input during calibration, through a factor 1/
√

2. The sensitivity can be determined

through an absolute primary calibration, or by comparing the readings of the instrument

under calibration with those measured by a pre-calibrated instrument: the last one is called

comparison calibration. However this procedure can only be applied to pressure microphones,

while the calibration of the velocity sensors is still complicated because no pre-calibrated

velocity sensors are available. To calibrate the velocity sensors it’s necessary to impose a

relation between the pressure sensor and the velocity one: this is done by putting the probe

under test in a sound reference field of a priori known impedance, and it’s called relative
calibration.

A pressure-velocity probe is clearly made up of two different sensors, a pressure and

a velocity one, with their characteristic sensitivities. If both the sensors would be ideal,

there would be a simple relation between the two measures, and the calibration would be

accomplished by simply putting S2 = [ṽ][p]−1ρ0c , where S2 is the sensitivity of the velocity

sensor 1. However, the sensitivity of a sensor is dependent from the frequency, and a relative

calibration is necessary. This procedure is based on two steps:

• comparison calibration of the microphone under test with a reference pressure micro-

phone;

1The symbol ˆ refers to the quantities expressed in Volts. The symbol ˜ means the numerical (a-dimensional)

value in a certain system of units [19]. In this case Ŝ refers to [V/ms−1]
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• correction of the velocity transfer function (magnitude and phase) over the calibrated

pressure.

The second step is done by calculating the correction function Γ, which is linked to the

velocity sensitivity S2 through:

S2(ω) =
Ŝ1(ω)

|Γ̂(ω)|V m−1s (2.35)

Equation 2.31 can be generalised into the equation

xm(t) =
+∞∫

−∞

x(τ)k(t − τ)dτ (2.36)

which expresses the relation between the true signals under measurement and its recorded

value, where k is the response of the instrument which only depends on the characteristics of

the instrument. We can call p0
v(t) and v 0

v(t) the true values in the reference field, and p0
m (t)

and v0
m (t) the measured values, so the quantities are linked by the expressions

p0
m(t) = (u∗ p0

v)(t), v0
m(t) = (r ∗ v0

v)(t) (2.37)

that can be rewritten as:

P0
m(ω) =U(ω)P0

v (ω), V 0
m(ω) = R(ω)V 0

v (ω) (2.38)

from which the transfer functions of pressure and velocity can be derived:

U(ω) =

(
P0

m
P0

v

)
(ω), R(ω) =

(
V 0

m
V 0

v

)
(ω) (2.39)

Due to the reference field conditions we can say that 2.39 only depend on the intrinsic

characteristics of the sensors, then in a general field we can express the previous equation in

a more general form:

Pm(ω) =U(ω)Pv(ω) Vm(ω) = R(ω)Vv(ω) (2.40)
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where the superscript 0 has been dropped just to indicate that the measurement is done in

general filed conditions. Therefore the true values of pressure and velocity can be found in

any point of any unknown sound field using:

Pv =
Pm

U
= Pm

P0
v

P0
m

Vv =
V 0

v
V 0

m
Vm (2.41)

The two quantities p and v are correlated through the Euler equation in a single expression,

that is the admittance operator Y(ω):

Yv(ω)≡ Vv

Pv
=

(
V 0

v
V 0

m

P0
m

P0
v

)
Vm

Pm
→ Y (x) =

Y 0

Y 0
m

Ym(x) (2.42)

Equation 2.42 means that the true admittance is to the measured one in a general acoustic

field, as the true admittance is to the one measured in a reference field. The relative calibration

ends by applying the true admittance Y(ω)= Γ Ym(ω) to the true pressure signal P(ω),

therefore obtaining the complex velocity signal

V (x,ω) = Y (ω)P(x,ω) (2.43)

The Larix tube represents the most simple kind of acoustic field, that is the progressive

plane wave. As it’s said before, in a progressive plane wave field, the value of impedance

remains the same at each point, then simplifying the calibration of the device. In this field

the true acoustic admittance corresponds to a real constant equal to the reciprocal of the

characteristic impedance of the medium z0:

Y 0
v (ω) =

V 0
v

P0
v
= z−1

0 =
1

ρ0c
(2.44)

with ρ0 the density of the air and c the velocity of the sound. The correction curve in this

reference field assumes the value:

Γ0(ω) =
Z0

m
ρ0c

(2.45)

where Z0
m is the wave impedance measured in the calibration field, and z0 = ρc is the

characteristic impedance of the air in a progressive plane wave field.

Equation 2.45 can be expressed in a generic field as it follows [20]:

Γ(ω) =
Z0

m

Z0
M

(2.46)
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where Z0
M is the impedance measured with a reference probe.

After defining the sensitivity of the pressure channel

Sp =
Pm

PM
(2.47)

with Pm and PM respectively the pressure measured with the probe under calibration and the

reference one, we can derive the sensitivity of the velocity channel:

Sv =
Sp

Γ
(2.48)

2.3.1 Progressive plane wave calibration set up

Fig. 2.12 Progressive plane wave set up: the tube.

As we said before, the comparison calibration must be done in a reference field whose

impedance is known a-priori from a physical model.. The most simple model of a known

impedance is the progressive plane wave field. This field has been realised inside the Larix

laboratory: an underground corridor 100 m long at the University of Ferrara.

The calibration environment is represented in figure 2.12: it consists of a 36 m long,

1.8 cm wide alluminum tube, coupled at one end with a Tannoy biconical loudspeaker. A

modified trombone bell, used as an impedance adaptor, grants an optimal excitation of

the air column. The geometric characteristics of the wave guide guarantee the internal

acoustic field to be a progressive plane wave until 10 KHz. The Larix corridor provides

a good homogeneity of environmental conditions, such as humidity and temperature. The
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Fig. 2.13 Set up for the calibration inside Larix.
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electroacoustic measurement chain is illustrated in figure 2.13 and consists of a personal

computer equipped with a National Instruments®I/O USB data acquisition device (DAQ)

and a power amplifier for signals driving the loudspeaker. The probe under test is the same

Microflown p-v match size I calibrated during my visit in Arnhem. Digital signal processing

and the dual channel fast Fourier transform (FFT) were made with dedicated Matlab routines.

For the relative calibration of the pressure channel, a 1/4 in. B&K type 4939 pressure

microphone powered by a B&K Nexus conditioning amplifier was used. The first step of the

calibration required the use of a B&K pistonphone (type 4231), whose nominal accuracy is

±0.2 dB.

2.4 Comparison between the calibrations

The calibration has been made with two different approaches. In the first set of measures the

excitation signal was a single sine sweep of initial frequency of 20 Hz, and final frequency

of 20 KHz. In order to improve the SNR, we decided to divide the measurement in three

frequency bands: the first from 20 Hz to 1200 Hz, the second from 900 Hz to 2200 Hz and

the last from 2 KHz to 15 KHz. For each band we raised the amplifier gain until a limit value

in which the tube started vibrating. In this way each band could have the highest possible

SNR.

The three bands are illustrated in figure 2.14: 20 Hz to 1200 Hz in red, dashed line; 900

Hz to 2000 Hz in green, continuous line and 2 KHz to 15 KHz in blue, dotted line. Therefore,

after calibrating the pressure channel with the reference B&K microphone, we have joined

the three curves by reciprocally normalising them, in order to have one single, ideal, curve.

The Matlab algorithms written for the calibration and the fitting of the correction curves

can be found in appendix B, and are:

1. imp_cat.m: this algorithm reads the sweeps relative to the three bands of frequency

(high, medium, low), it normalises and it connects them into a single sweep;

2. calculation_of _Sp.m: it calculates the correction curve Γ starting from the single or

triple sweep recorded inside Larix. This quantity can be simply evaluated, from the

experimental point of view, operating with the FFT algorithm over the synchronised

responses of PV and VT [19];

3. fitting.m: this algorithm compare the experimental correction curve found within the

previous step with the correction curve of the Microflown model, illustrated in section

2.2.4, best fitting the two curves through a number of iterations.
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Fig. 2.14 The three bands used for the calibration of the probe: 20 Hz 1200 Hz (red, dashed

line), 900 Hz - 2200 Hz (green, continuous line), 2 KHz - 15 KHz (blue, dotted line).

Figures from 2.15 to 2.17 show the results for the single sweep measurement, while

figures from 2.18 to 2.20 refer to the three bands measurement.

The plots show the comparison of the fitting of correction curve with the Microflown

model: blue, dashed lines are the experimental data; red, dotted lines are the Microflown

models and black, continuous lines are the optimised filters by best-fitting experimental data

with the analytical model curve. It can be seen that the amplitude of the experimental curve

is more linear in the three sweeps measurement than in the one with a single sweep. That is

because, as explained earlier, we increased the gain for each band so improving the SNR.

The nominal and the best fitted curves have a quite similar behaviour diverging at most

by 10 dB at lower frequencies, where the Microflown model is less precise and there’s the

influence of electro acoustic shortage.
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Fig. 2.15 Fitting of the pressure model, with one single sweep, amplitude.

Fig. 2.16 Fitting of the pressure model, with one single sweep, phase.
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Fig. 2.17 Fitting of the velocity model, with one single sweep.

Fig. 2.18 Fitting of the pressure model, with three sweeps, amplitude.
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Fig. 2.19 Fitting of the pressure model, with three sweeps, phase.

Fig. 2.20 Fitting of the velocity model, with three sweeps.





Chapter 3

The SIHT probe prototypes

The present chapter illustrates the prototypes realised during the SIHT project. The first sec-

tion is dedicated to the pressure-velocity sensor and its geometry; the second one introduces

the tests held at the laboratory of Ferrara to study its acoustic properties and to design an

improved version of the prototype, which is described in section 3.3. The last prototype is

based on a carbon fibre horn and is introduced in section 3.4.

3.1 The SIHT pressure-velocity sensor

The specific acoustic impedance is defined as the ratio between the sound pressure, p, and

the acoustic particle velocity, v, at a given point. Its measurement is important to characterise

the local behaviour of any acoustic system, like wind instruments, human hear and absorbing

material. Different methods make possible an impedance measurement [21], [22], but the

most direct way is to directly and simultaneously detect pressure and velocity in a point, by

means of a p-v probe.

Fig. 3.1 Details of the SIHT n°1 CMOS-compatible microprobe. From left to right: veloci-

metric sensor, miniature Knowles microphone, the assembled p-v probe.

While the pressure is simply measured using a traditional microphone, the direct mea-

surement of the particle velocity is more difficult because of the lack of compact sensors



46 The SIHT probe prototypes

with a good resolution. The velocity is therefore usually derived by a pressure gradient mea-

surement. The development of micromachining technologies have permitted the fabrication

of thermal flow meters suitable for the measurement of acoustical particle velocity (APV).

Within the SIHT project (Sogliano Industrial High Technology), a new pressure-velocity

probe has been designed and fabricated assembling a commercial MEMS microphone, a

micromachined acoustic particle velocity sensor (APV) and an electronic readout interface

(Fig. 3.1). The velocity sensor is based on the variation of the heat exchange between two

heaters (Fig. 3.5) caused by the flown of the air, and therefore its velocity. The heaters

are two silicided n-polysilicon wires placed over suspended silicon dioxide membranes, as

can be seen in figure 3.3. The wires are divided into smaller segments in order to facilitate

fabrication and improve robustness, and their temperature coefficient of resistance (TCR) is

used to convert the heater temperature oscillations caused by the acoustic flow into voltage

variations.

The chip was designed with the BCD6s process of STMicroelectronics and included two

orthogonal sensors (SX and SY, in figure 3.4). In order to thermally insulate the wires from

the silicon substrate, a small amount of silicon has been removed from the front side of the

chip during post-processing.

A more detailed description of the fabrication of the sensor can be found in [23]. Briefly,

dielectric layers have been successively removed through a photolithographic procedure

followed by a standard carbon tetrafluoride (CF4) plasma RIE (Reactive Ion Etching). Then,

the bare silicon is etched with a TMAH solution. Figure 3.5 shows the optical enlargement

of the two wires, RW1 and RW2, after the silicon removal.

Fig. 3.2 Circuit used to bias the velocity sensor and filter and amplify the signal.

The electronic circuit of the velocimeter is showed in figure 3.2: the two sensing wires,

indicated with RW1 and RW2, form a Wheatstone bridge with two constant resistors, RB1 and

RB2. A differential high pass filter is determined by the capacitors (CH) and by the resistors

(RH), in order to prevent DC voltages from saturating the amplifier as a consequence of

bridge unbalances. While the roll-off frequency given by the CHRH filters is around 10 Hz,

the capacitor and the resistors form a low pass filter with a roll-off frequency of 30 KHz.
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Fig. 3.3 Perspective view of part of the velocimeter.

Fig. 3.4 Optical micrograph of the two orthogonal sensors prior to micromaching.

Fig. 3.5 SEM micrograph showing the five sections of the wires.
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3.2 The SIHT prototype � 0

The first prototype, here called "prototype � 0", consists of a thermoresistant acousto-

velocimetric sensor based on a CMOS-compatible technology, and has been developed

by the CNR-IEIIT group of Pisa. The group of IDASC in Ferrara provided in studying the

acoustic properties of this sensor [24], and this information has been used during the design

and the development of the following version of the prototype (see section 3.3). For such

purpose we used as a reference sensor the velocimeter included in the Microflown p-v match

size and implemented the following procedure:

• preliminary tests to understand the behaviour of the electric components (i.e. amplifier,

connections, stabiliser;

• comparison of the frequency responses of the prototype velocimeter with the reference

one in a general environment;

• comparison of the two sensors in a controlled environment at different frequencies.

Fig. 3.6 Photo of the prototype � 0 with its signal conditioner.

A first test consists in measuring the selfnoise of the prototype at different voltages.

The sensor must be powered by a continuous-two poles voltage (15 ± 0.5 V). Despite

the presence of a stabiliser, we can see from figure 3.8 how the decreasing of the voltage

generates harmonic components due to the electrical power source.

After we set the ideal voltage at 15 V, the second phase consisted in comparing the

frequency responses of the prototype velocimeter with the Microflown one. A first test

has been conducted in a generic 3D environment, the laboratory of the IDASC at Ferrara

University, a 100 m3 room. The source is a sweep signal of initial frequency 20 Hz and final

frequency 20 KHz generated by a Technics loudspeaker 1 m far from the sensors, placed

nearly in the same position.
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Fig. 3.7 Photo of the prototype � 0 and measure environment.

Fig. 3.8 Selfnoise of the SIHT prototype � 0 relative to the frequency and voltage power

supply.
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The result of this test is showed in figure 3.9: the response curve is similar for the two

sensors in the range of 80 to 2000 Hz, but above this limit the prototype doesn’t work because

of the high selfnoise.

Fig. 3.9 Spectral densities of the prototype � 0 and of the reference velocimeter.

The second comparison between the sensors has been conducted inside a well defined

environment: a plexiglas waveguide of dimensions (0.28 x 0.28 x 4) m3 (see figure 3.7 on

the right). This time the source signal was limited to 4 KHz, because in the previous test we

concluded that above that frequency the sensor is no longer sensitive. The test was conducted

in two successive steps: in the first one we used as a source the mid-range loudspeaker

(f<2KHz), while in the second one we used the tweeter (1.5 KHz<f<4 KHz).

The results are illustrated in figure 3.10: on the left the frequency response of the

prototype, on the right the response of the Microflown velocimeter. The measures using

the prototype confirm a high selfnoise, associated to a progressive loss of sensitivity with

increasing frequencies.
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Fig. 3.10 Frequency response of the prototype � 0 and of the reference velocimeter: low

frequencies in black, high frequencies in blue and selfnoise in red.

3.3 The SIHT prototype � 1: tympanometric p-v probe

The audiometric field has been the first application of the SIHT prototype (see section 5.1).

The velocimeter has been mounted on a PCB together with a Knowles Electronics EK-23133-

C36 microphone in order to build up a pressure-velocity probe. The new p-v probe has been

inserted into a hollow cylinder which is used for the measurement of the acoustic immittance

of the ear (Fig. 3.11). The inner diameter of such cylinder is 11 mm. The cylinder is a

modified tympanometric probe, which originally hosted a miniaturised source and a tube

linked to a pump, responsible for the static pressure variation [25].

Fig. 3.11 Photo of the prototype � 1.

A similar device has been realised by inserting a Microflown p-v match size probe inside

a second cylinder (Fig. 3.12). This second device will be the used as the reference probe for

the functional comparison of the SIHT tympanometric probe [24],[25].
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Fig. 3.12 Photo of the prototype based on Microflown technology. On the right it’s possible

to see the in-ear phone which works as sound source.

3.3.1 Functional characterisation of a p-v tympanometric probe

Traditional tympanometry, used at present for diagnosis, limits its working range between

100 and 1200 Hz. So we concentrated our measures within this range.The particular shape of

the probes required a comparison calibration, in order to cancel both the different geometries

inside the cylinders and the intrinsic characteristics of the compared sensors.

Comparison test

Fig. 3.13 The experimental set up for the functional comparison test. From left to right: the

dodecahedral acoustic source and the tripod; the SIHT �1 prototype and the Microflown p-v

probes; the same probes in reverse configuration.

A first test was made by comparing the Microflown and the SIHT probe. Figure 3.13

shows the experimental set up for the comparison test: it’s been realised inside the laboratory

of IDASC, in Ferrara, in a 100 m3 room. It consists of a dodecahedral acoustic source

and a tripod supporting the microprobes under test. The probes are located at the jamb of

an open-window exposed to background noise so stressing the robustness of the collected

experimental data, and exposed to a logaritmic sine sweep from 100 Hz to 1200 Hz. In order

to prove the invariance of the test to the probe’s position, two configurations have been tested:
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the first one with the SIHT � 1 probe on the left and the Microflown one on the right (fig.

3.13 in the center) and the other with a reverse orientation (fig. 3.13 on the right).

Fig. 3.14 Signal to noise ratio (SNR) of pressure (left) and velocity (right) measured with the

SIHT � 1 p-v probe.

Fig. 3.15 Signal to noise ratio (SNR) of pressure (left) and velocity (right) measured with the

Microflown � 1 p-v probe .

Due to the importance of the admittance response in any p-v probe, a direct comparison

of the signal to noise ratio for pressure and velocity of the two probes has been done. The

comparison was limited to the range [10, 1200] Hz, in order to check the feasibility of the

prototype as a functional device for specific acoustic admittance measurements. The results

showed an invariance to the reversal test, and proved that, despite the low signal-to-noise

ratio of the prototype v-sensor (SNR ≈ 20 dB), the correct calibration of the SIHT � 1 p-v

probe prototype in the range of interest of the functional device is anyway possible (see

figures 3.14 and 3.15). The comparison between the admittances measured with the SIHT

and Microflown probe shows the feasibility of applying a calibration process to the prototype

probe in the range 100-1200 Hz.
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Fig. 3.16 Admittance amplitude (left) and phase (right) obtained from measures with the

prototype probe (blue) and the Microflown one (red).

Calibration of the tympanometric probes using a 0.2 cm3 volume

We considered three different standard volumes used nowadays for the calibration of the

traditional impedance probes: the volumes are respectively of 0.2, 2 and 4 cm3 (Fig. 3.17),

and the relative impedances have been measured earlier with the reference probe. The three

volumes present a discontinuity in the impedance value at a frequency which directly depends

on the volume: we can see in figure 3.19 that this behaviour corresponds to 500-850 Hz

for the 4 cm3 volume, to 700-1000 Hz for the 2 cm3 and to 1800-2000 Hz for the 0.2 cm3

volume. So we chose to complete the calibration with the last one volume, because it doesn’t

have any resonance within the range of interest.

Fig. 3.17 Volumes for the calibration of the tympanometric probes, here used for the calibra-

tion of the prototype.
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The first results of the comparison calibration using the 0.2 cm3 volume are resumed

in figure 3.18: the pressure is on the left and the velocity is on the right. Blue lines refers

to the reference probe, while the red ones refers to the prototype under calibration. The

wide frequency range highlights the presence of a resonance frequency between 1.5 and 2

KHz; such characteristic doesn’t represent a problem, being outside the functional range for

tympanometry (as we said before, between 100 and 1200 Hz).

Fig. 3.18 Pressure and velocity responses of the tympanometric probes with the 0.2 cm3

volume.

Figures 3.19 and 3.20 illustrate the comparison of the specific admittance Y(ω)= F (v)/F (p)
between the two probes: the amplitude on the left and the phase on the right. The difference

between the values depends on the unit of measure: on one side the dB level of the reference

probe is expressed with respect to the value z0∼400 Pa/ms−1, while the curve obtained with

the SIHT prototype is simply obtained as the logarithm of the ratio of the velocity (Volts) to

pressure (measured by the Knowles microphone). The same comparison with the same units

is shown in figure 3.21, where the velocity signal of the prototype has been multiplied by a

factor 1/z0 with the consequence of an intersection at 800 Hz.

The phase of the admittance in figure 3.20, on the right, is included in the range [200°-

240°]: such difference can be reduced through the calibration of the probe.

A fully detailed explanation of the calibration procedure can be found in section 2.3

or in [19]. We remind that the correction curve Γ(ω) for calibrating any p-v probe can be

calculated as the ratio of the reference admittance and the rough admittance measured with

the probe under test. Plots in figure 3.22 compare results obtained with the prototype (in

red) and the reference one (in blue), dashed lines represent data obtained with the calinrated

probe. The test was made using the 2 cm3 volume, and shows good results up to 700 Hz:

above this limits the curves can’t be compared.
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Fig. 3.19 Specific admittance measured with the tympanometric probe inside the three

different volumes.

Fig. 3.20 Specific admittance (amplitude and phase) measured with the reference probe (blue)

and with the tympanometric prototype (red) in a 0.2 cm3 volume.
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Fig. 3.21 Amplitude of the admittance measured with the two probes.

This behaviour can be explained by the different geometry of the probes (see Fig. 3.23,

and in particular it depends on the big difference of the inner volumes.

Fig. 3.22 Specific admittance measured with the prototype and its equalisation by applying

the filters obtained by the comparison with the reference sensor.
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Fig. 3.23 The two tympanometric probes pulled alongside: on the left the reference tympano-

metric probe, including the Microflown p-v match size; on the right the CMOS prototype

under test.

3.4 The SIHT prototype � 2: horn-shaped p-v probe

Horns are useful devices which improve the performance of various acoustical systems.

Nowadays they are used as impedance matching devices to facilitate the power transfer from

a source to the receiver [26], but in the first half of the last century they were extensively used

for sound reception amplifiers, both for civil and military purposes. In fact, these devices

were not only used in telephony technology or for direct acoustic sensing, but they were

fundamental in the detection of war planes before the invention of the RADAR (Fig. 3.24).

Fig. 3.24 Acoustic horns used for military purposes before the invention of the RADAR.
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The horns were abandoned during the abrupt advances in electronics that resulted in

higher sensitive microphones which didn’t require additional amplification, but they have

recently found a renewed interest after the development of velocimetric sensors [27]. In fact,

thanks to their acoustic-fluid-dynamics properties, the particular boundary conditions of such

devices give rise to a particle velocity amplification of the order of 20 dB just with horns

measuring few centimetres in length.

While the fast progress in electronics and precision manufacturing resulted in highly

sensitive microphone, on the other hand, the velocimetric sensors have not reached such

degree of audio fidelity, then the amplification provided by the horns is fundamental. This

fact has raised the interest on the study of the amplification effects both on pressure and

velocity sensors so that also intensimetric measurements can take advantage on these devices,

in particular under conditions when the particle velocity signal is very unbalanced compared

to the pressure one.

In order to experimentally verify the effectiveness of such devices and in particular their

amplification on the velocity signal, we have built and tested some conical horns made of

carbon fibre. The following results show the effects of the application of the horns to a

pressure-velocity Microflown match-size probe and the comparison of the laboratory test

with the COMSOL-based numerical analysis.

On the basis of these results a horn-shaped p-v probe based on the SIHT low-cost sensor

technology has been assembled and used for testing the comparison calibration procedure as

detailed in chapter 4.

3.4.1 Theory of the horns: the Webster equation

Horn theory is described by Webster’s equation, published in 1919 by Webster [28] and still

used to analyse the operating principles of acoustic horns. The problem of sound propagation

in horns is quite complicated, and is based on a series of assumptions and simplifications, and

has not been completely solved analytically [29]. A third dimensional problem is simplified

by Webster in a one-dimensional problem, assuming that the sound energy was uniformly

distributed over a plane wave front perpendicular to the horn axis. The wave equation for

three dimensions is described by:

∂ 2φ
∂ t2

− c2

(
∂ 2φ
∂x2

+
∂ 2φ
∂y2

+
∂ 2φ
∂ z2

)
= 0 (3.1)
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which, in one dimension, becomes:

∂ 2φ
∂x2

+
∂ lnS(x)

∂x
∂φ
∂x

− 1

c2
0

∂ 2φ
∂ t2

= 0 (3.2)

where x is the axial coordinate, φ is the velocity potential, c0 is the speed of sound, and S(x)
is the horn’s cross-sectional area at position x.

Such equation can be used to understand the phenomena inside the horn, neglecting

higher order effects; the assumptions which is based on are:

1. Infinitesimal amplitude: the sound pressure amplitude is negligible respect to the

steady air pressure;

2. The medium is considered a uniform fluid;

3. Viscosity and friction are neglected;

4. No external forces (i.e. gravity) act on the medium;

5. The motion is assumed irrotational;

6. The walls of the horn are perfectly rigid and smooth;

7. The pressure is uniform along the wave front.

The solutions of the wave equations depends on the horn’s geometry. For example, for a

straight pipe, with S(x)=const:

φ pipe = Ae j(ωt−kx) +Be j(ωt+kx), (3.3)

for a conical horn, with S(x)∼x2, we have:

φ cone =
A
x

e j(ωt−kx) +
B
x

e j(ωt+kx) (3.4)

and for the exponential horn, where S(x)∼emx, with m the flaring rate, the solution is

φ exp = e(−mx)/2[Ae j(ωt−kx) +Be j(ωt+kx] (3.5)

where

constants A and B are determined by the boundary conditions;

ω is the circular frequency [Hz];

k is the wave number [m−1];
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t is time [s];

i is the imaginary unit.

The simplifications introduced in 3.2don’t take into account neither the directional effects

nor the inevitable diffractions that appear when the wavelengths of the incident sound become

comparable to the geometric dimensions of the horns. That’s the reason why our work has

been extended with numerical simulations.

As clearly stated in [26] and [30], when the acoustic horn is used as a pressure amplifier,

its size has to be large compared to the sound wavelength and the throat impedance needs to

be as large as possible, so the ideal horn has a closed throat. On the contrary, the velocimetric

horns must be open at the throat, because the amplification factor is proportional to K=R2/R1,

being R2 and R2 the radius of the mouth and the throat respectively.

3.4.2 Effects of the geometry on the horns

Three independent geometrical parameters can influence a horn’s performance: the length l,

the throat radius R1 and the mouth to throat ratio K=R2/R1. Such parameters are illustrated

in figure 3.25.

Fig. 3.25 Geometrical parameters of the horns: radius (left), length (center), ratio of the radii

K (right) [26].

Figure 3.26 shows the amplification factors relative to the geometrical variations of every

parameter. From this figure we can see that increasing the length of a conical horn, for fixed

K ratios and a given throat radius, increases amplification. At a fixed length, amplification

decreases with increasing throat diameter, because of the increased reflection inside the horn.

Finally, we can say that the horn amplification is always greater for smaller throat radii and

then increases with increasing mouth-to-throat radii ratios, K.

Figures 3.27 show the axial velocity amplification for different types of horns. The first

plot illustrates a comparison between exponential, single conical and double conical horns:
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Fig. 3.26 Effects of varying the geometrical parameters on the amplification factor of the

horns: radius (left), length (center), K (right) [26].

it’s evident how the conical horn guarantees a greater amplification than the exponential one,

moreover, the double conical horn has the greatest amplification factor.

The plot on the right shows highlights another advantage in the double conical horn: the

symmetrical distribution of axial velocity, and a greater amplification outside the resonance

frequency.

Fig. 3.27 Velocity amplification for different types of horns: on the left conical, exponential

and double conical horns; on the right single and double conical horns [26].

3.4.3 Materials and methods

With these preconditions the Deltatech company in Sogliano al Rubicone (FC) collaborating

with the CNR-IDASC research section of Ferrara, has built a carbon fibre conical horn 75

mm long, with a mouth radius of 30 mm and a throat radius of 6 mm 3.28. The results

are presented in [31] and in [27]. In the future we have planned to improve the device by

realising a double conical horn, which the authors in [26] and in [30] have demonstrated

to be the best shape in terms of velocity amplification. While the cited authors studied the

effects of the horns in water, we analysed the amplification effects in air.
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Fig. 3.28 Horn made of carbon fibre applied to the p-v Microflown probe.

As a consequence of the chosen dimensions, the first resonance frequency is 1825 Hz as

given in:

f horn
res =

c
2(l +0.613R1 +0.613R2)

(3.6)

where:

l is the length of the horn [m];

R1 is the radius of the throat [m];

R2 is the radius of the mouth [m].

In order to verify the effect of the horn on the probe, we have compared the pressure and

velocity signals measured with and without horn. A first set of tests has been arranged by

measuring the pressure and velocity signals generated by pure tones emitted by the source, a

Technics SB7000 loudspeakers system, while keeping the horn a m far from the speaker. In

order to reduce the high measured variability, we have built a 1 m3 noise-insulating chamber

(Fig. 3.29) surrounding the probe and we have placed the source outside at a distance of

4 m. In this way the signal reaching the horn could be approximated to an homogeneous

wavefront with little background noise. The measurement set up has allowed us to verify the

amplification factor of the velocity signal and to establish the better position of the probe

inside the horn, that is the one in which the sensor is nearest to the horn’s mouth.

The test consisted in the emission of three different kinds of signals: pure tones at the

central frequencies of the reference octave bands (31- 63- 125- 250- 500- 1000- 2000- 4000-

8000 Hz) and white noise filtered both in octave and third octave bands.

The following plots (figures 3.30 to 3.34) resume the obtained results relative to the

amplification factor. In particular we have calculated the gain in dB of the probe+horn system

compared to the probe without the conical horn.

Figure 3.30 shows the amplification factor of the pressure (blue, continuous line) and of

the velocity (red, dotted line) signals for the pure tones stimulus, while figure 3.31 and 3.32
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Fig. 3.29 Noise-insulating 1 m3 chamber .

show the same measures but for white noise filtered in octave and third octave bands. The

sounds were generated by the loudspeaker facing a window of the noise-insulating chamber.

Fig. 3.30 Amplification factor for pure tones: pressure in blue, continuous line; velocity in

red, dashed line.

Fig. 3.31 Amplification factor for octave bands.

A preliminary analysis points out a peak in the amplification factor both for pressure

and velocity, which presumably correspond to a resonance frequency in the pure tone
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Fig. 3.32 Amplification factor for octave bands.

measurements. The same behaviour is confirmed by the measures with the filtered white

noise for the pressure (Fig. 3.31), while the velocity presents a more stable gain in the 2 KHz

region, followed by an increase at higher frequencies.

Figures 3.33 and 3.34 resume the results of the amplification factors for pressure and

velocity respectively. The plots clearly illustrate how the pressure amplitude is not altered by

the presence of the horn except in correspondance of the resonance frequency. This result

confirms the theory of the authors in [26] according to which the throat affects the velocity

but not the pressure.

In confirmation of this we can observe how velocity is amplified by more than 5 dB at al

frequencies: the effect appears more evident when using pure tones, where the gain factor

reaches a value of 20 dB (at 2 KHz).

Fig. 3.33 Amplification factor of the pressure signal: pure tones in blue, continuous line;

third octaves in green, dotted, line and octave in red, dash-dotted line.

In order to verify the experimental results and to study the effect of the geometry of the

horn on the amplification factor, we computed a simulation using COMSOL 4.4 aeroacoustic

model; in particular we used the linearised potential flow module in frequency domain, where

the wave equation, expressed in the coordinate system moving with the fluid (air) at velocity
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Fig. 3.34 Amplification factor of the velocity signal: pure tones in blue, continuous line;

third octaves in green, dotted, line and octave in red, dash-dotted line.

v, is given in terms of the velocity potential φ as:

− ρ
c2

m f
(iωφ +v ·∇φ)+∇ ·

(
ρ∇φ − ρ

c2
m f

(iωφ +v ·∇φ)v

)
= 0 (3.7)

with:

ρ the density of the air [kg/m3];

cm f the velocity of the sound in the material (air) [m/s].

In order to simplify the simulation, we set the velocity v=0.

The fluid is assumed compressible, inviscid, perfectly isentropic and irrotational [32].

With these conditions, we can describe the pressure field p(v,t) and the velocity field v(r,t),

in terms of the potential φ :

v(v, t) = ∇φ , p(r, t) =−ρ
∂φ
∂ t

(3.8)

In order to simplify the model and to reduce the computation time, we adopted a two-

dimensional axisymmetrical geometry, with all the surfaces assumed to be acoustically rigid,

and with values of air density and speed of sound of 1.2 Kg/m3 and 343 m/s.

The simulated sound field was a 94 dB SPL plane progressive wave incident at the horn’s

mouth. Figure 3.35 illustrates the results of the simulation. Here are reported the RMS values

of the particle velocity for octave bands central frequencies: the amplification effect of the

throat compared to the mouth is evident, so confirming the experimental results.

Table 3.1 and figure 3.36 resume the comparison between the amplification factors of

velocity found through measurements and numerical simulation. It can be noticed that

the resonance peak is shifted to higher frequencies in the simulation plot, but the overall

amplification of the velocity signal is still confirmed. The systematic higher values found
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Fig. 3.35 COMSOL modeled particle velocity (RMS) within a horn with the same dimensions

of the one used for the measures, scaling different for each frequency.

during the COMSOL simulation find an explanation in the different environmental conditions:

a plane progressive wave field has been used during the simulation, an ideal condition which

is unlikely to have been satisfied by the experimental set up.

Table 3.1 Experimental and simulated amplification factors

Frequency Gv pure tones Gv octave Gv third octave Gv COMSOL
[Hz] [dB] [dB] [dB] [dB]
31 5.8 5.3 5.3 0.67

63 5.9 6 6.9 7.59

125 4.9 6.7 7.04 12.63

250 3.9 5.02 5.15 13.73

500 10.6 5.33 5.15 13.38

1000 8.7 6.11 6.15 18.22

2000 20.1 5.19 6.4 10.72

4000 13.8 7.15 8.9 8.65

8000 1.2 5.6 4.42 12.19
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Fig. 3.36 Amplification factor of the velocity signal: pure tones in blue, continuous line;

third octaves in green, dotted, line and octave in red, dash-dotted line. In dotted, pink line the

simulation results.



Chapter 4

Comparison calibration of p-v probes
prototypes

The methods of calibration of the p-v probes has some disadvantages, in fact they requires

particular reference fields that can be reproduced using bulky devices: i.e. an anechoic room

[16], a stationary wave tube or a piston in a sphere (see section 2.2 or [15]), or a progressive

plane wave tube like in Larix (see section 2.3). It’s evident the benefit to extend the method

of calibration used for pressure microphones to the p-v probes, this is especially useful when

a p-v probe is still in a prototypical stage.

It is clear that any comparison calibration procedure requires a pressure-velocity reference

probe, pre-calibrated in one of the previous reference fields: this can be done by using a

reference velocimeter, in our case the Microflown one. In this way the reference field is now

substituted by a reference probe.

The theory of the comparison calibration is derived from the procedure described in

chapter 2, where to the a-priori known impedance of the reference field (in the case of Larix

ρc), we substitute the impedance measured with the pre-calibrated reference probe in a

generic field where the calibration is made.

This chapter describes in detail the procedure for the comparison calibration of p-v

probes.

4.1 Methodology and instrumentation

4.1.1 Calibration of the measurement system

In order to arrange a comparison calibration, first of all it’s necessary to calibrate the measure

system, starting from the sound card. For our measurements it’s been used the MOTU 896HD
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Fig. 4.1 Scheme for the calibration of the sound card following [11].

audio interface, directly connected to the laboratoty PC via FireWire, and the software ARTA.

The reference microphone for this first step was a Bruel & Kjaer 1/8 inch microphone, and

the measures were performed inside the laboratory in Ferrara.

As proposed in [11] the calibration of the sound card can be executed as shown in

figure 4.1 and consists of three stages: the output calibration, the input calibration and the

microphone calibration. In the output calibration, the electronic voltmeter is connected to

the left line output channel and a 400 Hz signal is generated. The measured value in Volt

has to be entered in the box, while the estimated value will be shown in the relative box.

Once satisfied with the measurement, it’s possible to accept the value and it will become

the current value of the "LineOut Sensitivity", and it will be entered as a value for the next

step, the input channel calibration. After connecting the left output to the left line input, we

generate a 400 Hz sine and enter the value of signal generator voltage in the edit box, then

the max input is estimated and if its value is satisfying, we accept it and such value will

become the current value of the "LineIn sensitivity". This procedure has to be repeated for

the right input channel. Finally, for the calibration of the microphone it’s necessary to use

an external generator, such as a pistonphone. This acoustical calibrator emits a sine tone of

1 KHz of 94 dB and is used to calibrate every channel of the sound card. After connecting

the microphone preamplifier to the soundcard input we enter the preamplifier gain, attach

the calibrator on the Bruel & Kjaer microphone and press "Estimate mic sensitivity". If the

measured value is satisfying, we press the button "Accept".
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Fig. 4.2 Window of the ARTA software to calibrate the sound card.

Once calibrated the sound card, it’s necessary to calibrate the whole system, including the

probes. This procedure is showed in figure 4.3 and is limited to 1 KHz: first the gain knobs

of the sound card are put to zero, and the response to a 1 KHz signal is measured with the

reference microphone. Then the same signal is measured with the probe to calibrate, and the

gain is modified, by rotating the knobs, until the same value as the reference one is obtained.

4.1.2 Pre-calibration of the reference p-v probe (Microflown) inside
Larix

After calibrating the system, it’s necessary to calibrate the reference p-v probe (in our case a

Microflown match-size probe) inside Larix, in order to use it for impedance measurement as

described in section 4.1.3.

A first test consists in measuring the background noise of the complete measurement

system, in order to verify and eventually correct any disturbances (fig. 4.5).

The next step is to insert the Bruel & Kjaer microphone in the last hole of the pipe (see

Fig. 4.4), at 10.80 m from the source (a dual cone loudspeaker), and to measure the RMS of

a sine signal of 1 KHz using a previously calibrated input channel (channel 7 in our case),

whose result is in Fig. 4.6.

The measured RMS value becomes the target for the reference probe: after inserting

it into the same hole, we measure the 1 KHz signal with the Microflown probe, and we

modify the preamplification gain in the calibration set up in order to reach the same value

measured with the reference microphone, both for pressure and for velocity channel (fig.
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Fig. 4.3 Scheme for the calibration of the system, which consists in the MOTU sound card,

the reference microphone and the probe to calibrate.
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Fig. 4.4 The progressive plane wave tube inside Larix, which has been modified in order to

insert the probe at different points through a series of holes: on the right the last hole, 10,8 m

far from the source, used for the calibration.

Fig. 4.5 Background noise measured inside larix tube with Bruel & Kjaer microphone.
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Fig. 4.6 1 KHz sine signal measured with Bruel& inside larix tube.

4.7). In particular figure 4.7b highlights the importance of insulating the probe from the tube,

through insulating tape: the signal measured before this procedure (in yellow) shows an high

background noise and many spikes.

The new values of preamplification are shown in figure 4.8.

(a) Pressure channel. (b) Velocity channel.

Fig. 4.7 Calibration of Microflown probe in Larix: on the left the pressure signal, on the right

the velocity. In yellow the measures of the velocity channel with the probe not isolated from

the tube
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Fig. 4.8 The new values of preamplification found comparing the Microflown probe to the

reference microphone at 1 KHz.

Now that the Microflown probe is calibrated at 1 KHz, it’s possible to measure the

impedance Z0(ω) as a function of frequency from 20 Hz to 10 KHz inside the tube. Such

curve will be the wide band compensation to be used for any impedance measurement with

the Microflown probe (see fig. 4.9).

In fact introducing the correction curve shown in figure 4.9 as a compensation to the

ARTA software, the impedance measured in the Larix tube will be displayed as a flat curve

approximating the zero value at each frequency. This is clearly a correct readout given that in

the Larix tube a plane progressive wave field is generated having a known a-priori impedance

equal to ρc for any frequency.

Fig. 4.9 Impedance measured inside Larix with the Microflown probe calibrated only at 1

KHz, but not at wide band.
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4.1.3 Comparison calibration of SIHT in the laboratory

After the pre-calibration of the Microflown pressure-velocity probe inside the Larix tube,

the further step consists in the proper comparison calibration: a new procedure devised

to calibrate any p-v probe even at the protypical stage and in particular, in our case, the

SIHT prototype � 3. In fact because of the particular shape of the probe (see Fig. 3.11), the

calibration inside the Larix tube is not feasible. The solution is to choose a probe similar to

the prototype as a reference one; in this case we have put the Microflown p-v probe inside an

horn of the same dimensions as the SIHT prototype (see Fig. 3.28).

Fig. 4.10 Set up for the comparison calibration in the laboratory.

The scheme in figure 4.10 shows the laboratory setup: the electroacoustic measurement

chain is based on a portable personal computer (PC) equipped with a MOTU I/O external

board and a power amplifier for signals driving the loudspeaker (a Technics SB-7000). Three

probes are connected to the MOTU sound card: the Bruel & Kjaer 1/8 inch microphone,

the Microflown match size p-v probe inside the horn, and the SIHT prototype � 3. As a

precaution, in order to reduce the ambient noise, the loudspeaker is placed inside a 1 m3

phono-insulating chamber, and the probes are mounted on a tripod facing the loudspeaker

(see fig. 4.11). The first step is to measure a signal, in our case a 1 KHz sine, with the
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Bruel & Kjaer microphone, and to set the preamplification factor of the channel relative to

the pressure measured by Microflown inside the horn in order to measure exactly the same

value. The same thing has to be done by measuring the signal through the SIHT pressure

sensor. Thereafter the Microflown probe will become the reference one: we measure the

spectrum magnitude (dB rel. to 20 μPa) of white noise in third octave bands and we adjust

the preamplification factors both for pressure and velocity in order to measure respectively

the same value at 1 KHz with the two probes. Finally, it’s possible to measure the impedance

with Microflown calibrated and compensated inside Larix: this is the target curve for SIHT

impedance, so it will be necessary to create the compensation for the SIHT probe (the probe

under calibration) both in magnitude and phase.

In order to have more precise results, it’s better to put the probes in the same position and

do the measurements in two consecutive moments.

Fig. 4.11 Tripod holding the probes for comparison calibration.

4.1.4 Results

The correction curve Γ is calculated as the difference from the impedance magnitude mea-

sured with the SIHT probe and the reference one, mounting the Microflown p-v probe (see

Fig. 4.11), and all the measures are expressed in dB. Such difference may be easily calculated

using for instance the Sigview software, and is shown in figure 4.12, or post-processed by a

dedicated Matlab routine. The application of such curve to the next measurement using the
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SIHT probe will supply calibrated measures with reference to the pre-calibrated Microflown

prototype.

Fig. 4.12 Compensation curve obtained as the difference between the impedance of the SIHT

probe and the Microflown reference prototype.

The correction of the phase of the SIHT probe consists in substituting the raw phase

measured with the uncalibrated probe (Fig. 4.13) with the phase measured with the pre-

calibrated Microflown probe (Fig. 4.14).

Fig. 4.13 Phase of the uncorrected SIHT probe.

Fig. 4.14 Phase of the compensated SIHT probe.

Figure 4.15 shows the impedance of the reference probe (Microflown) compensated

with the impedance measured inside tha Larix laboratory: in yellow the magnitude of the

uncalibrated SIHT impedance, in green the compensated Microflown curve, in white the

phase and in red the coherence. In particular this last curve gives a linearity check between
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the pressure and velocity signals, having characterised the reference field as a progressive

plane wave [19].

The coherence is defined as:

γ(ω) =

√
|SPV (ω)|2

SPP(ω)SVV (ω)
(4.1)

where SPV (ω)is the cross-spectrum of pressure and velocity signals and SPP(ω), SVV (ω)

are the respective autospectra. The more this function is similar to 1, the greater linearity

between pressure and velocity is present.

In this case we can appreciate a good linearity in the Microflown probe compensated.

Fig. 4.15 Larix compensated impedance of the reference probe (Microflown): in green

the compensated magnitude, in white the phase and in red the coherence. In yellow the

uncalibrated magnitude of the SIHT probe.

Figure 4.16 represents the raw impedance and the coherence measured with the SIHT

prototype inside the laboratory. This figure has to be compared to the next one, Fig. 4.17,

which resumes the compensated impedance of SIHT (magnitude in green and phase in white),

compared with the Microflown reference probe. The difference between the magnitudes is

shown in light yellow: the values near to zero highlight the perfect compensation of the SIHT

impedance, so revealing the effectiveness of the comparison calibration method.

Figures from 4.18 to 4.21 show the results of the comparison calibration of the SIHT

prototype with respect to the probe mounting the Microflown and taken as reference one. In

this case the measures have been taken inside the Laboratory, with the caution of placing
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Fig. 4.16 Impedance (magnitude in green, phase in white) and coherence in red of the SIHT

prototype calculated from raw data inside the laboratory.

Fig. 4.17 SIHT � 3 compensated impedance (magnitude in green and phase in white) com-

pared with the Microflown reference probe (yellow). The difference between magnitudes is

in light yellow.
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the probes exactly at the same point during the two successive measures. The first plot

is calculated following equation 2.45 as the ratio between the admittance measured with

the SIHT probe and the one measured with Microflown. The data have been smoothed

using the Sigview software, and then they are post-processed using Matlab. We selected the

values relative to the centre of the octave bands and finally the fitting of the curve has been

calculated. By applying the Γ curve to the impedance measured with the SIHT probe, it’s

possible to derive the calibrated values. The phase of the Γ shows constant values up to 1

KHz, so highlighting a good behaviour of the probe within such values.

Fig. 4.18 Magnitude of Γ of the SIHT prototype (blue, continuous line) and quadratic fitting

(red, dashed line).

Fig. 4.19 Phase of Γ of the SIHT prototype (blue, continuous line) and spline fitting (red,

dashed line).

The sensitivity of the pressure channel Sp (Fig. 4.20), calculated as the ratio between the

pressure measured with the probe under test and the pressure measured with the reference

probe, confirms the goodness of the SIHT probe in particular for frequencies lower than 1
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KHz. The last figure shows the sensitivity of the velocity channel calculated as in equation

2.48, and the relative fitting corresponding to a 5th degree polynomial.

Fig. 4.20 Sensitivity of the pressure channel (blue, continuous line).

Fig. 4.21 Sensitivity of the velocity channel (blue, continuous line) and 5th degree fitting

(red, dashed line).



Chapter 5

Case studies

This chapter resumes some of the case-studies realised with the prototypes mounting the

Microflown p-v probe, with the aim of arranging possible applications of the SIHT prototype.

5.1 Tympanometry

One of the first applications of the SIHT probe is in the audiometric field. Tympanometry

is a technique which has been used in audiometry since 1970, and contributes, in battery

with other tests, in finding the presence of pathologies in the middle ear and in the tympanic

membrane, by measuring the acoutic admittance of the external ear [33],[34].

Collected data are resumed as plots, called tympanograms, that show the acoustic ad-

mittance as a function of the variation of static pressure ΔP between the medium and the

external ear. Such pressure difference is obtained by sealing and pumping the air volume

inside the ear canal, in a range of [-600, +400] daPa and with a stimulus of 226 Hz. Figure

5.1 shows a standard tympanometric probe sealed to the ear canal through a rubber tip.

The obtained values of admittance are measured in mmho on a pre-calibrated scale over

a 2 cc rigid volume filled with air in standard pressure conditions. The measure of the

admittance is so reduced to an equivalent volume measure starting from the hypothesis of the

validity of compliance: as a consequence of such a condition the tympanogram could also be

expressed in terms of cc values of equivalent acoustic volume instead of mmho’s.

It is known from literature [33] that a differential in pressure of +200 daPa is sufficient

to stretch and move the tympanic membrane to the medium ear and then the admittance is

0. In these conditions in fact the only energy absorbance depends on the compliance of the

air included in the external ear duct. That’s why the admittance in audiometry is always

referred to the level measured at ΔP = +200 daPa. From the admittance is possible to obtain
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Fig. 5.1 Scheme of a standard tympanometric probe. On the top the miniature speaker that

generates the 226 Hz stimulus, on the bottom the pressure microphone that registers the

response and in the center the air pump to change the pressure in the external ear canal.

the values of the effective air volume of the ear duct: normal values are included between 0.3

and 0.9 cc for children and between 1.3 and 1.5 cc for adults.

The traditional tympanometric test can be completed by measuring the admittance with

other single frequency stimuli at 678, 800 and 1000 Hz (a technique called "multi-tone"

tympanometry). Such measures can be useful to detect eventual absorbances in the middle

ear, but to this day the results are still difficult to interpret, therefore there’s a diffused interest

in new techniques which use wide band measurements instead of single tones [35].

The recent development of p-v probes has represented the possibility to improve the

audiometric tests by directly measuring the immittance of the ear [36], [37]. Such probes

represent a new approach in measuring the characteristic of the ear and are the key to discover

a new horizon in energetic audiometry, but the first step is to identify the relationship between

the results obtained with the two techniques, the traditional and the impedentiometric one.

A first set of audiometric tests with a p-v probe has been made directly using a Microflown

p-v match size probe facing the ear of the volunteer (Fig. 5.2): the results are well described

in [3] and in [38]. The ideal model of p-v fields inside the ear canal can be described by

considering the velocity v(x,y,z,t) depending on just one direction, because of the canal

ear structure. This consideration simplifies the measures: only 2 signals (p,v) have to be

measured in order to perform aural immittance measurements.

The frequency dependent specific acoustic immittance of sound inside the ear canal is

obtained by:

Y (x,ω) :=
F(v)
F(p)

= G(ω)+ iB(ω) = |Y (ω)|eiΔω(ω) (5.1)
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where |Y| is the magnitude of the admittance, depending on both the acoustic conductance

G and the susceptance B, and Δ is the phase lag of the pressure signal with respect to the

velocity.

The author in [35] has introduced a new quantity, called Energy Absorbance, expressed

as:

EA = 1− 1−η
1+η

(5.2)

where η is the energy conductance, that is the real part of the energy current immittance

σ :

σ = η + iμ (5.3)

Equations 5.1, 5.2 and 5.3 all represent directly measurable quantities with a calibrated

p-v probe.

One of the results during the first test is shown in figure 5.3: the plot represents the energy

absorbance in 1/12 octave bands in the range [20- 9000 Hz] (left scale) and its overall value

for a normal ear (right scale).

Fig. 5.2 Set up of the first tympanometric test with a p-v commercial microprobe.

Such a method has some disadvantages: the probes used for the tests are very delicate

and easy to break and the external stimulus generates a bad SNR. In order to solve these

problems, we have realised a first prototype of p-v tympanometric probe starting from a

standard one, extensively described in section 3.3.

The Microflown p-v sensor has been inserted in a standard probe; a common in-ear

headphone has been used as stimulus at the rear of the probe, while its front was terminated

with a rubber tip in order to easily plug the probe into the ear canal entrance (Fig. 5.7).

Data acquisition and analysis were carried out by a National Instruments I/O interface (NI

USB-4431) and a laptop running Matlab routines. We used the tympanometric prototype
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Fig. 5.3 1/12 octave band distribution of energy absorbance [3].

to directly record the pressure and velocity responses to a wide frequency range stimulus, a

swept sine of initial frequency of 20 Hz and final frequency of 8000 Hz. The p-v responses

are then convoluted with the inverse stimulus so obtaining the pressure and velocity impulse

responses, from which other quantities such as the immittance (eq. 5.1), energy absorbance

(eq. 5.2) and immittance (eq. 5.3) are derived.

In order to have comparable measures it’s necessary to establish a baseline, like in stan-

dard tympanometry. This task has been accomplished by measuring the acoustic admittance

with the prototype plugged up. The next measures will be evaluated with respect to such

value, using the expression:

L|Y | = 20log
|Y (ω)|

|Y (ω)|plugged
dB (5.4)

with |Y (ω)|Plugged the reference admittance.

Figures 5.4 and 5.5 show the graph of |Y(ω)|Plugged and of |Y(ω | measured in a 2 cc rigid

volume, where to the 226 Hz frequency corresponds a value of -6.7 dB.

The comparison of the two tympanometric tests have been done during a unique set of

measures on a population of 13 volunteers, aged between 20 and 30 years old, with normal

hearing capacity, that first have undergone a traditional test with an Amplaid model 728

Tympanometer (see figure 5.6), and secondly to the wide band tympanometry using the p-v

prototype (figure 5.7). Such research has been conducted in collaboration with Sant’Anna

Hospital in Ferrara thanks to the help of Silvano Prosser MD.

The obtained results are reported in figure 5.8. It’s evident how the 26 plots (13 for right

ears, and 13 for left ears), converge in correspondence of the frequency of 226 Hz, also used

for single tone traditional tympanometry. Table 5.1 resumes the comparison of L|Y | obtained

with p-v tympanometry, with the equivalent volume EV and peak compensated static acoustic
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Fig. 5.4 Specific admittance measured when the probe is plugged up [37].

Fig. 5.5 Admittance of a 2 cc volume.

Fig. 5.6 Photo of a standard clinic tympanometer and an example of "type B" tympanogram

measured on a 2 cc cavity.
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Fig. 5.7 The prototype probe for p-v tympanometry is fitted inside the ear canal at normal

pressure conditions.

admittance Ypeak measured with the traditional one. Such values are also resumed in figures

5.9 and 5.10: the regression shows a good agreement between the results of the two tests.

Fig. 5.8 Specific admittance measured with the p-v tympanometric prototype. The plot shows

the results of the tests on 13 subjects for a total of 26 tympanograms.
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Table 5.1 Measured immittance levels L|Y | obtained with p-v tympanometric probe, peak

condensated static acoustic admittance Ypeak and equivalent volume EV measured with the

standard system.

1 2 3 4 5 6 7 8 9 10 11 12 13
Ly (dB) -13.2 -13.8 -14.0 -9.4 -11.9 -11.3 -12.8 -12.5 -12.2 -4.2 -17.0 -8.2 -12.7

Ypeak(cc) 0.61 1.02 0.62 0.47 1.04 1.04 / 1.00 2.86 2.07 0.23 0.26 0.76

EC (cc) 1.00 1.08 0.71 0.63 1.16 1.09 / 0.85 0.75 0.62 0.36 0.39 1.13

14 15 16 17 18 19 20 21 22 23 24 25 26 Mean
-12.7 -12.7 -12.4 -9.3 -10.9 -11.6 -13.7 -11.9 -11.3 -11.3 -13 -13.6 -17.1 -

12±2.5

0.70 1.23 1.70 1.09 0.86 0.82 0.76 0.72 0.66 0.89 0.73 1.09 1.051 1.1±0.7

0.94 1.23 1.70 1.09 0.86 0.82 0.76 0.72 0.66 0.89 0.73 1.09 1.051 0.9±0.3

Fig. 5.9 Summary of the results of the specific admittance collected from the 13 volunteers

vs the equivalent volumes in cc measured with a traditional tympanometer.

Fig. 5.10 Summary of the results of the specific admittance collected from the 13 volunteers

vs the peak compensated static acoustic admittance.
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A clarification is now necessary: the two procedures, because of the different measuring

principles, produces two distinct physical quantities: on one hand the admittance Y of

standard tympanometry is the ratio between the volume velocity and the acoustic pressure,

while the specific admittance Ys measured with our new method is the ratio between the air

particle velocity and the pressure. That is:

Y =
V
p
=

Sv
p

[
cm5

dyne · s =: mmho
]

(5.5)

and

Ys =
v
p

[ m
Pa · s

]
(5.6)

So the two expressions are comparable except for a factor proportional to a surface, that is

the effective area of acoustic energy absorbance.

Table 5.2 resumes the data obtained with the two procedures, while in table 5.3 we see

the derived results of equivalent area of absorbance and the diameter of the duct-tympanum

system.

Table 5.2 Admittance and specific admittance measures of the patients

Right ear Left ear
Y (ΔP = 0 daPa) Ys Y (ΔP = 0 daPa) Ys

S-01 1.60e+00 1.74e-04 1.89e+00 1.90e-04

S-02 1.08e+00 1.58e-04 8.83e-01 2.26e-04

S-03 2.03e+00 2.02e-04 1.89e+00 2.09e-04

S-04 n.d. 1.82e-04 1.46e+00 2.02e-04

S-05 2.82e+00 1.94e-04 1.90e+00 2.15e-04

S-06 4.98e-01 1.12e-04 6.30e-01 1.10e-04

S-07 1.76e+00 1.83e-04 1.46e+00 1.63e-04

S-08 2.93e+00 2.69e-04 3.46e+00 1.96e-04

S-09 2.10e+00 2.16e-04 1.65e+00 3.21e-04

S-10 1.38e+00 1.88e-04 1.12e+00 3.32e-04

S-11 1.15e+01 4.90e-04 1.21e+00 7.12e-05

S-12 3.32e+00 3.09e-04 1.82e+00 2.08e-04

S-13 4.16e-01 1.83e-04 1.56e+00 5.93e-04

The application of the p-v prototype to audiological tests represents an important contri-

bution to the understanding of the ear. The advantages are the possibility of a new wide range

tympanometry that doesn’t require the pressure differential inside the ear duct, so making

the tests less invasive, especially for the younger patients. Another advantage lies in the

possibility of directly measuring pressure and velocity of the ear with a single measure: in
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Table 5.3 Equivalent area and diameter

Right ear Left ear
S [cm2] D [cm] S [cm2] D [cm]

S-01 9.19e-01 1.18e+00 9.97e-01 1.13e+00

S-02 6.86e-01 9.35e-01 3.91e-01 7.06e-01

S-03 1.00e+00 1.13e+00 9.03e-01 1.07e+00

S-04 n.d. n.d. 7.25e-01 9.61e-01

S-05 1.45e+00 1.36e+00 8.85e-01 1.06e+00

S-06 4.43e-01 7.52e-01 5.70e-01 8.52e-01

S-07 9.59e-01 1.11e+00 8.94e-01 1.07e+00

S-08 1.09e+00 1.18e+00 1.76e+00 1.50e+00

S-09 9.73e-01 1.11e+00 5.14e-01 8.09e-01

S-10 7.33e-01 9.66e-01 3.36e-01 6.54e-01

S-11 2.35e+00 1.73e+00 1.70e+00 1.47e+00

S-12 1.07e+00 1.17e+00 8.75e-01 1.06e+00

S-13 2.27e-01 5.38e-01 2.62e-01 5.78e-01

this way new physical quantities can be obtained, such as the energetic absorbance and the

immittance.
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5.2 Monitoring of the filling of pharmaceutical capsules

Another important application of the tympanometric prototype regards the condition monitor-

ing in pharmaceutical industry and has been presented in [39]. In particular we studied the

filling of hard gelatine capsule, trying to detect their content through acoustic measurements.

The weighting method of capsules is quite a big issue for pharmaceutical industries,

because it’s not possible to directly measure each single capsule. The capsules are filled by a

packing machine with a specified amount of drug: the capacity of the machine is of 5-10

pieces per second, therefore the amount of medicine inside each capsule may deviate from

target specification. An error in drug dosing could be toxic or dangerous. At present it’s not

possible to control the weight of each capsule, but some of them are sampled from a batch of

production and then mechanically weighed. However, it would be necessary to weigh each

single capsule in order to eliminate over or under dosages.

In literature just few alternative methods of weighing are proposed: a method based

on the travelling time of the capsule within a vertical tube for a given pressure difference

between the ends is proposed in [40], but it’s still under research.

The p-v micro-probe descripted in section 3.3 was mounted on a rack of a capsule filling

machine made by IMA Pharma (Fig. 5.11), and used to measure the p-v impulse responses of

each capsule under test. We had 15 different objects, varying both in quantity and aggregates

of the contained drug (powder, pellets, microtablets). Dosages and kind of filling inside the

different capsules are given in table 5.4.

Fig. 5.11 Experimental set up: the tympanometric prototype on the left, a particular of the

rack of a capsule filling machine on the right.

The results here reported are a mean of many impulse response measurements. The use

of a p-v probe guarantees the collection of different sound energetics quantities, but the

most representative are the specific and energetic admittance |Y(ω)| and σ , with particular

reference to its peak frequency, here called fpeak, and the magnitude of the energetic parameter
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Table 5.4 Capsule number, dosing and kind of aggregate

Capsule Dosing (mg) Aggregate
1 2.3 Micro-dosage

2 5.3 -

3 10.5 -

4 14.4 -

5 20.2 -

6 25.5 -

7 124.2 Macro-dosage

8 176.3 -

9 227.5 -

10 177.4 Pellets

11 228.2 -

12 281.4 -

13 62.3 Micro-tablets

14 113.4 -

15 165.4 -

called normalised admittance σ . We recall such quantities previously defined:

Y (ω) =
F (v)
F (p)

(5.7)

|σ |= 1

2
z0

√
〈p2〉〈v2〉〈p2〉+ z2

0〈v2〉 (5.8)

The specific admittance Y(ω) has been measured through the sine-sweep technique.

Figures 5.12 to 5.15 show the magnitude |Y(ω)| for capsules filled with the different kinds

of aggregates. It can be noticed that the peak frequencies (fpeak) of admittance become

more distinguishable when passing from micro-dosage powders (a few mg, Fig. 5.12) to

micro-tablets (about 50 mg, Fig. 5.15).

Fig. 5.12 |Y(ω)| calculated for micro-dosage.
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Fig. 5.13 |Y(ω)| calculated for macro-dosage.

Fig. 5.14 |Y(ω)| calculated for pellets.

Fig. 5.15 |Y(ω)| calculated for tablets.
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The trend of fpeak is resumed in the upper plots from figures 5.16 to 5.19, while the

bottom plots show the stationary values of the energetic admittance magnitude. The trend

clearly confirmed a correspondence between increments of fpeak and decrements of |σ | as a

function of dosage.

The tests revealed that the acoustic approach is still not useful for detecting lower dosages,

but it could be optimised for pellets and micro-tablets dosages.

Fig. 5.16 Peak frequency of |Y(ω)| (top) and values of |σ | for the micro dosage differences

(bottom).
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Fig. 5.17 Peak frequency of |Y(ω)| (top) and values of |σ | for the macro dosage differences

(bottom).

Fig. 5.18 Peak frequency of |Y(ω)| (top) and values of |σ | for the pellets differences (bottom).
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Fig. 5.19 Peak frequency of |Y(ω)| (top) and values of |σ | for the micro-tablets differences.

5.3 Railway noise project

An additional useful application of the tympanometric prototypes regards the rail work

security. We used the SIHT prototype and the prototype mounting the Microflown p-v probe

during a set of measures to evaluate the noise generated by approaching high speed trains.

Our aim is to understand if it’s possible, through acoustic measures along the railways, to

detect the arrival of the train with a sufficient forewarning. The objective is to detect the train

through acoustic measures at least at a distance of 3-5 Km. One of the proposed methods

for local detection of running trains is based on the operation of the sonar, by placing the

transmitter on the train and the receiver on the railways [41]. We decided to use the p-v

probes to directly the transmitted noise of the train along the railways [42].

The experimental set up consisted in:

• laptop for the acquisition and the analysis (Dell Inspiron);

• mechanical amplifier of the signal (stethoscope) and attachment system (plastic plate

and magnets). See figure 5.20;

• SIHT tympanometric prototype and relative power supply;

• Microflown p-v match size probe inside the second tympanometer and relative signal

conditioner;

• two plastic tubes, initially 5.25 m long and then reduced to 1.50 m;
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• National Instrument acquisition device (USB-4431).

Fig. 5.20 Stethoscope used for the railway project: the object has been attached to the railway

through some magnets.

Both the prototypes have been placed inside a box (Fig. 5.21) filled with phono absorbing

material, from which come out the tubes that connect the probes to the stethoscope. We

chose not to directly apply the probes to the railway because of the strong stress and electric

discharge during the transit of the train that could damage the devices.

Fig. 5.21 Box in which we have put the two tympanometric probes: the SIHT one and the

one mounting a Microflown p-v probe.

The data acquisition was done using the Sigview software, that is able to simultaneously

register the pressure and velocity signals of the two probes, for a total of four tracks. We

attached the stethoscopes on the external edge of the railway: in particular the measures were

done on the odd railway (on the left side respect to the travelling direction).

A first set of measures was done using two tubes 5.25 m long to connect the probes

to the stethoscope, but then we decided to reduce the length to 1.50 m, so improving the

Signal-to-Noise ratio (Fig. 5.22).

An extract of one of the measures is shown in figure 5.23: the system results sensible to

different sources of noise, such as background noise, the transit of an aeroplane (red frame)

or the transit of a train along a different railway from the one under test (blue frame).
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Fig. 5.22 Experimental set ups: on the left the first disposition, with long plastic tubes, and

the stethoscopes placed on the odd railway; on the right the reduced tubes.

Fig. 5.23 Fourth measure, pressure (top) and velocity (bottom). We registered three events:

the transit of an aeroplane, in the red frame; of a high speed train, in the yellow frame, and a

high speed train along the railway not under test, blue frame.
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From a spectral analysis of the time histories it’s not possible to identify a precursor that

announces the transit of the train except for few seconds before the event. Ten seconds before,

we can observe frequency components well distributed between 1.5 and 2 KHz, that decrease

very rapidly, in 2-3 s, after the transit. Figures from 5.24 to 5.27 resume the pressure and

velocity spectra up to 3 KHz during the pass of the train at various moments; to be more

precise:

• 9.5 s before the transit (Fig. 5.24): represents the last moment in which it’s not

possible to detect the train. The spectra only show low frequencies background noise;

• 8.5 s (Fig. 5.25): both the probes detect a peak in the frequency bands of [800-1200]

Hz and [1500-1900] Hz;

• 5.0 s (Fig. 5.26): the train is 320 m far from the measurement point and the components

found in the previous moment are higher than the background noise;

• 0.0 s (Fig. 5.27): during the pass of the train the registered signal is of wide band and

covers the whole spectrum.

Fig. 5.24 Spectra of pressure (top) and velocity (bottom) 9.5 s before the arrival of the train.

For the Fourier transformation we used a window of Δt = 0.1 s.

In order to confirm the results showed in the previous figures, it’s necessary to compare

the effective events with other measurements in which other signals are detected. A big

amount of measures would be necessary to this aim, but in this section two examples are

shown (figures 5.28 and 5.29). On one side the spectrum of the aeroplane is very different

from the one relative to the high speed train, on the other side the other event (train along the
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Fig. 5.25 Spectra of pressure (top) and velocity (bottom) 8.5 s before the arrival of the train.

For the Fourier transformation we used a window of Δt = 0.1 s.

Fig. 5.26 Spectra of pressure (top) and velocity (bottom) 5 s before the arrival of the train.

For the Fourier transformation we used a window of Δt = 0.1 s.
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Fig. 5.27 Spectra of pressure (top) and velocity (bottom) during the arrival of the train. For

the Fourier transformation we used a window of Δt = 0.1 s.

railway not under test) has the same frequency components at 1500 Hz and 1800 Hz, but

lower intensities. Therefore it will be necessary to establish a precise factor that identify the

transit of the train along the right railway: to do that we will need more set of measures.

Fig. 5.28 Spectra of pressure (top) and velocity (bottom) during the transit of an aeroplane.

For the Fourier transformation we used a window of Δt = 0.1 s.

The results have shown that it’s necessary to improve the system in order to increase the

advance warning: at the moment it’s of ten seconds, but the required time is at least of 30

seconds. Some possible improvements in the system are a better acoustic insulation of the

tubes (to increase the Signal to Noise ratio) and to enlarge the surface of contact between the

stethoscope and the railway. Finally, exploring the low frequency bands, in particular the

infrasounds, would contribute to significantly improve the detection of the trains.
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Fig. 5.29 Spectra of pressure (top) and velocity (bottom) during the transit of an aeroplane.

For the Fourier transformation we used a window of Δt = 0.1 s.

5.4 Condition monitoring of washing machines

One of the first applications of the acoustic horns described in section 3.4 is the condition

monitoring of household appliances. Here below a set of acoustic measures realised in

one of the main Italian appliances industries: in particular our aim was to detect, through

pressure-velocity measurements, eventual damages in a washing machine [43].

Being the data confidential and still under evaluation, I will limit myself to a qualitative

discussion of the first results, and the plots here presented will lack of the vertical axes.

The measures were made using the Microflown p-v match size probe inserted in the

carbon fibre horn and put close to the back of the washing machine under test (Fig. 5.30).

The acquisition and the successive analysis was held using the sofwtware Spectraplus, after

calibrating the data.

Three different washing machines were analysed, each one with various kind of damages:

• 1200 rpm machine: functioning, rotor issue and motor damaged;

• 1400 rpm machine: functioning and rotor issue;

• 1600 rpm machine: functioning, motor and belt damaged.

5.4.1 1200 rpm machine

Figures from 5.31 to 5.33 resume the impedance measured for three different conditions:functioning

machine, motor damaged and rotor issue. The second plot shows values of impedance 10 dB
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Fig. 5.30 The acoustic horn hosting the Microflown p-v match size probe, placed in the back

of the washing machine.

higher than the functioning case, but an unchanged curve shape. On the contrary the motor

damaged generates an increase in the impedance up to 1000 Hz, in particular in the range of

[150-300] Hz and [600-1000] Hz.

Fig. 5.31 Impedance of the functioning 1200 rpm washing machine. The data are confidential,
so the vertical scale has been omitted.
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Fig. 5.32 Impedance of the 1200 rpm washing machine with motor damaged. The data are
confidential, so the vertical scale has been omitted.

Fig. 5.33 Impedance of the 1200 rpm washing machine with rotor issue. The data are
confidential, so the vertical scale has been omitted.
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5.4.2 1400 rpm machine

The main results of tests on the 1400 rpm washing machine are resumed in figures 5.34 and

5.35. The first one shows the impedance of the functioning washing machine, while in figure

5.35 we can appreciate the comparison between the impedance of the rotor issue (in black)

and the same measurement with the 1200 rpm machine with rotor issue on the background.

It’s relevant how the trend of the impedance remains unvaried in the second case. Being the

impedance the ratio between pressure and velocity, we conclude that the introduction of an

external disturbance such as another washing machine in function is registered only as an

increment in pressure, thus revealing the importance of a pressure-velocity measure.

Fig. 5.34 Impedance of the functioning 1400 rpm washing machine. The data are confidential,
so the vertical scale has been omitted.

5.4.3 1600 rpm machine

Figures from 5.36 to 5.39 show the impedance measured with the 1600 rpm washing machine

with different kind of damages. The first one regards a functioning machine, then on the

same machine a damaged motor has been mounted: the resulting impedance is illustrated in

figure 5.37. The frames highlights the bands of greatest interest: the impedance has 10 dB

higher values than in the normal condition, but in particular an increased signal of pressure

(and hence of impedance) is localised around 300-500 Hz.

Figure 5.38 represents the measured impedance of a 1600 rpm machine with damaged

motor and belt (to simulate the belt damage, a piece of gum has been attached to it). In

order to better understand the effect of the belt damage, it’s useful to consider figure 5.39

that draws the difference between the machine with only damaged motor and the one with



5.4 Condition monitoring of washing machines 107

Fig. 5.35 Impedance of the 1400 rpm washing machine with rotor issue (black) and with the

1200 rpm machine working on the background (green). The data are confidential, so the
vertical scale has been omitted.

Fig. 5.36 Impedance of the functioning 1600 rpm washing machine. The data are confidential,
so the vertical scale has been omitted.
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Fig. 5.37 Impedance of the 1600 rpm washing machine with damaged motor. The data are
confidential, so the vertical scale has been omitted.

both damaged motor and belt. The green frame indicates the band frequency in wich the

difference is more evident, that is at middle frequencies (between 600 and 1000 Hz).

Fig. 5.38 Impedance of the 1600 rpm washing machine with damaged motor and belt. The
data are confidential, so the vertical scale has been omitted.

The present section has resumed the results of a first set of measures on washing machines

along the assembly line. We chose to analyse the impedance because such a quantity gives

information on eventual damages much more than the single pressure or velocity signal.
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Fig. 5.39 Difference of impedance between the 1600 rpm washing machine with damaged

motor and belt and the one with only damaged motor. The data are confidential, so the
vertical scale has been omitted.





Conclusions

The topic of this work is the realisation, the characterisation and the calibration of a new

kind of low-cost pressure-velocity probe. Such device has been realised under the general

coordination of the Institute CNR-IDASC at Ferrara within the SIHT (Sogliano Industrial

High Technology) project, in collaboration with CNR-IEIIT in Pisa and Deltatech Industry

(Sogliano al Rubicone). The development of a new intensimetric probe including an acoustic

velocimetric micro-sensor represents a key to the understanding of Acoustical Energetics,

and gives the possibility to measure the pressure and the velocity of the air particle at the

same time. This aspect represents an innovation in the study of Energetics, because it allows

to directly measure different quantities with just one set of measures.

After a theoretical introduction on the Acoustical Energetics, and the description of the

main energetic quantities supported by numerical simulations, this thesis gives a review

of the p-v micro-sensors, and illustrates a new method of calibration developed at Ferrara

Laboratory. In fact the particular geometry of the realised prototype, which has been inserted

in a tympanometric probe, has required the conception of a new method of calibration, the

pressure-velocity comparison calibration, that is based on the measurements of a reference

pre-calibrated probe (in our case mounting a Microflown p-v match size). The complexity

and the innovation of this procedure are described in chapter 4, where the good stability of

the measures and the simplicity of the post-processing are stressed.

This work has demonstrated the great reliability of the SIHT prototypes, and also their

versatility. Last chapter is in fact dedicated to some case studies which demonstrate the

various applications of such probes: first of all the audiometric field, where a probe of this

kind is used for the first time, and the interpretation of the results is still at the beginning.

Another important application regards the condition monitoring, which has brought good

results in the study of the damages in the washing machines.

The prototypes here described are a first generation of a new sensor that will be improved

and perfected in the future, thanks to the characterisation we have done in the laboratory of

Ferrara. The aim of the project in fact is to expand the production of such devices to few



112 Conclusions

dozen of samples, and in this way the research on characterisation and calibration has been

fundamental.



Appendix A

Appendix

The next appendices resume some of the algorithms realised during the research presented in

this thesis. The first one is dedicated to the simulation of Energetics Acoustics quantities

using Maple (see section 1.4).

The second one presents the three algorithms realised in Matlab for the calibration of the

Microflown p-v probe and the fitting of the relative correction curve (see section 2.4).



(3)(3)

(2)(2)

(1)(1)

Simulation of a 1-D quasi-stationary sound wave field
by M.Buiat, D.Stanzial @Fe, 31 Jul 2014.

Monochromatic wave

Definition of the procedure to calculate the stationary mean

Description: 
calculate the stationary time average z of a function defined as a global expression stain for each passed 
argument out

Definition of the potential field
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Simulation of a 1-D quasi stationary wave using Maple



(11)(11)

(8)(8)

(6)(6)

(10)(10)

(5)(5)

(9)(9)

(7)(7)

Derivation of the wave observables (pressure and velocity)
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(15)(15)

(19)(19)

(17)(17)

(13)(13)

(16)(16)

(14)(14)

(12)(12)

(18)(18)

Definition of the istantaneous energetic fields

Calcolo dei campi medi stazionari
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(21)(21)

(25)(25)

(22)(22)

(26)(26)

(20)(20)

(23)(23)

(24)(24)

(28)(28)

(27)(27)

differentiate w.r.t. x

Computation of the indicators and of the p-v phase

                                                                                        #conductance
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(31)(31)

(32)(32)

(33)(33)

(29)(29)

(30)(30)

                                                                                                 #acoustic power factor

1

p-v phase

#reactivity index

1

Sintropic quantities
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(34)(34)

(36)(36)

(35)(35)

Initialisation of the parameters

100.
0.01000000000

400.
628.3185308
1.570796327
4.000000000

1.204
0.000001004600000

1.047197551
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Appendix B

Matlab algorithms for the calibration
and fitting of the correction curve

B.1 Normalisation and union of the sweeps in the three
bands

1 %Algorithm to read the three wave files corresponding to the three bands

2 %and to create a single wave file.

3 refLev=40;

4

5 [yL,Fs]=wavread('ir_111_20-1200Hz.wav');

6 [yM,Fs]=wavread('ir_111_900-2200Hz.wav');

7 [yH,Fs]=wavread('ir_111_2000-15000Hz.wav');

8

9

10 pL=cumsum(flipud(yL).^2);

11 pM=cumsum(flipud(yM).^2);

12 pH=cumsum(flipud(yH).^2);

13 n(1)=find(flipud(10*log10(pL(:,1)/max(pL(:,1))))>-refLev,1,'last');

14 n(2)=find(flipud(10*log10(pL(:,2)/max(pL(:,2))))>-refLev,1,'last');

15 n(3)=find(flipud(10*log10(pM(:,1)/max(pM(:,1))))>-refLev,1,'last');

16 n(4)=find(flipud(10*log10(pM(:,2)/max(pM(:,2))))>-refLev,1,'last');

17 n(5)=find(flipud(10*log10(pH(:,1)/max(pH(:,1))))>-refLev,1,'last');

18 n(6)=find(flipud(10*log10(pH(:,2)/max(pH(:,2))))>-refLev,1,'last');

19

20

21 L=max(n);
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22 NFFT=2^nextpow2(L);

23

24 f = Fs/2*linspace(0,1,NFFT/2); %common frequency vector

25

26 f1=950; f2=2100;

27 u1=find(f<=f1);

28 u2=find((f>f1)&(f<=f2));

29 u3=find(f>f2);

30

31 YL=fft(yL(1:L,:),NFFT);

32 YM=fft(yM(1:L,:),NFFT);

33 YH=fft(yH(1:L,:),NFFT);

34

35 c1(1)=abs(YL(u1(end),1))./abs(YM(u2(1)-1,1));

36 c1(2)=abs(YL(u1(end),2))./abs(YM(u2(1)-1,2));

37 c2(1)=abs(YM(u2(end),1))./abs(YH(u3(1)-1,1));

38 c2(2)=abs(YM(u2(end),2))./abs(YH(u3(1)-1,2));

39 %

40 YT(:,1)=[YL(u1,1);c1(1)*YM(u2,1);c1(1)*c2(1)*[YH(u3,1);YH(u3(end)+1,1)];

c1(1)*c2(1)*conj(flipud(YH(u3,1)));c1(1)*conj(flipud(YM(u2,1)));conj(

flipud(YL(u1(2:end),1)))];

41 YT(:,2)=[YL(u1,2);c1(2)*YM(u2,2);c1(2)*c2(2)*[YH(u3,2);YH(u3(end)+1,2)];

c1(2)*c2(2)*conj(flipud(YH(u3,2)));c1(2)*conj(flipud(YM(u2,2)));conj(

flipud(YL(u1(2:end),2)))];

42

43 yt=real(ifft(YT,NFFT));

44

45 figure

46 plot(yt)

47 norm=1./max(abs(yt))

48 ynorm=[norm(1).*yt(:,1) norm(2).*yt(:,2)];

49 wavwrite(ynorm,48000,'ir-larix')

50 figure

51 loglog(f,abs(YT(1:NFFT/2,:)))

52 figure

53 plot(f,angle(YT(1:NFFT/2,:)))

54

55

56 Rcorr=abs(YT(:,1))-abs(YT(:,2));

57 Thetacorr=angle(YT(:,1))-angle(YT(:,2));

58

59 Ycorr=Rcorr.*exp(i*Thetacorr);

60

61 figure
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62 plot(f,Rcorr(1:NFFT/2))

63 figure

64 plot(f,Thetacorr(1:NFFT/2))

B.2 Calibration and normalisation of the larix measure-
ments

1 % %CALCULATION OF THE CORRECTION CURVE FOR PROGRESSIVE PLANE WAVE

REFERENCE FIELDS

2

3 %close all

4

5 %Reading and normalisation of the wav files: 1-sweep bruel 2-ir bruel 3-

ir

6 %probe under calibration

7 [ytnorm1,Fs,nbit,opts1]=wavread('sw_bruel_1.wav');

8 yt1=str2num(opts1.info.maxr)*ytnorm1(:,1);

9

10 [ytnorm2,Fs,nbit,opts2]=wavread('ir_bruel_1.wav');

11 yt2=str2num(opts2.info.maxr)*ytnorm2(:,1);

12

13 [ytnorm3,Fs,nbit,opts3]=wavread('ir-larix_3sw.wav');

14

15

16 yt3(:,1)=1.3839*ytnorm3(:,1);

17 yt3(:,2)=0.8449*ytnorm3(:,2);

18

19

20 [yt1kHz,Fs,nbit,calopts]=wavread('piston_BeK_1.wav'); %read the signal

from pistonphone @1KHz

21

22 L1=max(length(yt1));

23 L2=max(length(yt2));

24 L3=max(length(yt3));

25 L4=max(length(yt1kHz));

26

27 L=max([L1,L2,L3,L4]);

28

29 NFFT=2^nextpow2(L);

30

31 f = Fs/2*linspace(0,1,NFFT/2); %common frequency vector
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32

33 Yf1=fft(yt1(1:L1,1),NFFT); %fft sweep Bruel

34 Yf2=fft(yt2(1:L2,1),NFFT); %fft ir Bruel

35 Yf3=fft(yt3(1:L3,:),NFFT); %fft ir probe to calibrate

36 Yf1kHz=fft(yt1kHz(1:L4,1),NFFT); %fft of the signal from pistonphone

@1KHz

37

38 x1kHz=find((f>999.9)&(f<1000.1))

39 calnorm=max(abs(Yf1kHz(x1kHz)))

40

41 % SOLVE FOR 94 dB

42 pref=2*10^-5

43 r = 1.0024 %convert symbolic to numeric and get cal r=1.0024

44

45 cal=r/calnorm; %linear value corresponding to 94dB

46

47 Ycal1=cal*abs(Yf1); %common readout over 94dB B&K

48 Ycal2=cal*abs(Yf2);

49 Ycal3=cal*abs(Yf3);

50 C1kHz=cal*abs(Yf1kHz);

51

52

53 %Comparison Calibration to B&K sweep

54

55 x1norm=max(Ycal1(x1kHz))

56 x2norm=max(Ycal2(x1kHz))

57 x3normp=max(Ycal3(x1kHz,1))

58 x3normv=max(Ycal3(x1kHz,2))

59 xnorm3p=x1norm/x3normp

60 xnorm3v=x1norm/x3normv

61 xnorm2=x1norm/x2norm

62 Ycal3renorm=[xnorm3p*Ycal3(:,1) xnorm3v*Ycal3(:,2)];

63 Ycal2renorm=xnorm2*Ycal2;

64

65 YG2=10*log10(abs(Ycal2renorm(1:NFFT/2,:))/pref);

66 YG3=10*log10(abs(Ycal3renorm(1:NFFT/2,:))/pref);

67

68 figure

69 semilogx(f,YG2,'r',f,YG3,'g')

70

71 % Return to the time history

72

73 YpvirMf=[Ycal3renorm(:,1).*exp(1i*angle(Yf3(:,1))) Ycal3renorm(:,2).*exp

(1i*angle(Yf3(:,2)))] ;
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74 YpirBK=Ycal2.*exp(1i*angle(Yf2));

75 YpswrBK=Ycal1.*exp(1i*angle(Yf1));

76 YT3=[YpvirMf;conj(flipud(YpvirMf))];

77 YT2=[YpirBK;conj(flipud(YpirBK))];

78 YT1=[YpswrBK;conj(flipud(YpswrBK))];

79

80 yth3=real(ifft(YT3,NFFT));

81 yth2=real(ifft(YT2,NFFT));

82 yth1=real(ifft(YT1,NFFT));

83

84 yth3n=1./max(abs(yth3));

85 yth2n=1/max(abs(yth2));

86 yth1n=1/max(abs(yth1));

87

88 refLev=40;

89

90 y3th_=[yth3n(1)*yth3(:,1) yth3n(2)*yth3(:,2)];

91 y2th_=[yth2n*yth2 y3th_(:,1)];

92 y1th=yth1n*yth1;

93

94 %cut after 40dB p-irs decay

95 refLev=40;

96 y3th__=cumsum(flipud(y3th_(:,1)).^2);

97 y2th__=cumsum(flipud(y2th_(:,1)).^2);

98

99 n(1)=find(flipud(10*log10(y3th__/max(y3th__)))>-refLev,1,'last');

100 n(2)=find(flipud(10*log10(y2th__/max(y2th__)))>-refLev,1,'last');

101 Lt=max(n);

102

103 y3th=y3th_(1:Lt,:);

104 y2th=y2th_(1:Lt,:);

105

106

107 wavwrite(y1th,48000,'sw_bruel_cal.wav')

108 wavwrite(y2th,48000,'ir_bruel_1_cal.wav')

109 wavwrite(y3th,48000,'ir-larix_pvcal.wav')

110

111

112 % Computation of Sp and Gamma

113

114 Sp=tfestimate(y2th(:,1),y2th(:,2),[],[],NFFT,48000);

115

116 [Gamma,FF]=tfestimate(y3th(:,2),y3th(:,1),[],[],NFFT,48000); %Gamma

calculated with respect to Microflown
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117

118 [Gamma2,FF2]=tfestimate(y3th(:,2),y2th(:,1),[],[],NFFT,48000); % Gamma

calculated with respect to Bruel

119

120 SpG=abs(Sp(1:NFFT/2));

121 GammaGMag=20*log10(abs(Gamma(1:NFFT/2)));

122 GammaGPhase=angle(Gamma(1:NFFT/2))*180/pi;

123

124 GammaGMag2=20*log10(abs(Gamma2(1:NFFT/2)));

125 GammaGPhase2=angle(Gamma2(1:NFFT/2))*180/pi;

126

127 GGM=filter(ones(1,100)/100,1,GammaGMag);

128 GGM2=filter(ones(1,100)/100,1,GammaGMag2);

129

130 GGP=filter(ones(1,100)/100,1,GammaGPhase);

131 GGP2=filter(ones(1,100)/100,1,GammaGPhase2);

132

133 SPGM=filter(ones(1,256)/256,1,SpG);

134

135

136

137 % Computation of Sv

138

139 Spmeno1=tfestimate(y2th(:,2),y2th(:,1),[],[],NFFT,48000);

140 Gammameno1=tfestimate(y3th(:,1),y3th(:,2),[],[],NFFT,48000);

141

142

143

144 [mag_best curva]=fitting0411(f,f,SpG);

145 curva1=curva';

146 % Sv=abs(SpG)./abs(Gamma(1:262144)); %for sweep 3 and sw03cut

147

148 Sv=abs(SpG)./abs(Gamma(1:524288)); %for sweep 1

149

150 %Sv2=abs(SpG)./abs(Gamma2(1:262144)); %for sweep 3 and sw03cut

151 Sv2=abs(SpG)./abs(Gamma2(1:524288)); %for sweep 1

152

153 Sv_model=abs(curva1)./abs(Gamma(1:length(curva1)));

154 z=zeros(141995,1);

155 Sv_model_l=[Sv_model; z];

156

157

158 [mag_bestv curva_v]=fitting_velocita(f,f,Sv); %%correction of v

159
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160 [mag_bestph curva_ph]=fitting_velocita_FASE(f,f,GammaGPhase); %

correction of the v phase

B.3 Determination of the experimental calibration filter

1 %DETERMINATION OF THE EXPERIMENTAL CALIBRATION FILTER AND COMPARISON TO

THE

2 %NORMAL ONE

3

4 function [mag_bestcoeff, curva] = fitting(X , f , G )

5 % [mag_bestcoeff phi_bestcoeff] = fitting(X , f , G )

6 % X: frequency vector on wich the filter is evaluated

7 % f: frequency vector of the experimental curve

8 % G: experimental curve

9

10 %% constants

11

12 fmin = 50;

13 fMax = 5000;

14

15

16 G1 = G;

17

18 %%%%%%%%%%% preparation of experimental data for fit %%%%%%%%%%

19

20 % trasformation of data resolution: from fine band to twelfth-octave

21

22 % twelfth-octave frequencies vector

23 fc = 20;

24 a = 1;

25 while fc <=15000

26 R12(a,1) = fc;

27 fc = fc*2^(1/12);

28 a = a+1;

29 end

30

31 clear fc a;

32

33 % data filtering: rectangular windows are here used

34 G12 = zeros(length(R12),1);

35 for a = 1:length(R12)

36 % center frequency
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37 Fc = R12(a);

38 % lower limit

39 f1 = Fc/(2^(1/24));

40 % upper limit

41 f2 = Fc*(2^(1/24));

42 G12(a) = mean(G1(f > f1 & f < f2));

43 end

44 % loglog(f,abs(G)/0.053,f,abs(G1)*z0,R12,abs(G12)*z0)

45

46 %% Selection of the interval

47 fGood = R12(R12>fmin & R12<fMax);

48 yGood = G12(R12>fmin & R12<fMax);

49

50 %% Fit

51 %%%%% pressure corner frequencies of the loan probe

52

53 mag_coeff(1) = 61.9;

54 mag_coeff(2) = 52;

55 mag_coeff(3) = 1;

56 mag_coeff(4) = 100000;

57 %

58 %%%%% pressure corner frequencies od the probe mF03

59 % mag_coeff(1) = 37.4;

60 % mag_coeff(2) = 32;

61 % mag_coeff(3) = 44;

62 % mag_coeff(4) = 16946;

63

64

65 %% Correction function using the Microflown parameters

66

67 % 3 CORNER FREQUENCIES

68 [~, mag_ystart] = magfun(mag_coeff,X);

69

70 % Calculation of the parameters of the experimental curve

71 numiter = 500; % number of iterations for the fit

72 [mag_bestcoeff] = fminsearch(@magfun,mag_coeff,optimset('MaxFunEvals',

numiter),fGood,abs(yGood));

73

74 % Correction function with the found parameters

75 [~, mag_yfit] = magfun(mag_bestcoeff,X);

76

77 %% Creation of the pressure correction curve

78 a = length(X);

79
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80 if rem(a,2) == 0 % CASE 1: odd samples

81 Magstart = mag_ystart(1:a/2+1);

82 Mag1 = mag_yfit(1:a/2+1);

83 Mag = [Mag1 ; flipud(Mag1)];

84 Mag_start = [Magstart ; flipud(Magstart)];

85

86 else % CASE 2: even samples

87 Magstart = mag_ystart(1:(a+1)/2);

88 Mag1 = mag_yfit(1:(a+1)/2);

89 Mag = [Mag1 ; flipud(Mag1(2:end))];

90 Mag_start = [Magstart ; flipud(Magstart(2:end))];

91 end

92

93 %%Microflown filter

94 GStart = Mag_start;

95

96 %% Optimal filter

97 GModel = Mag;

98

99

100 modello250=20*log10(abs(GModel((X>249.9)&(X<250.1))))

101

102 mod250max=max(modello250)

103

104 mf250=20*log10(abs(GStart((X>249.9)&(X<250.1))))

105 mf250max=max(mf250)

106

107 diffmax=mf250max-mod250max

108

109

110 lin_mod250max=max(abs(GModel(250)))

111 lin_mf250max=max(abs(GStart(250)))

112

113 diff_lin=lin_mf250max-lin_mod250max

114

115 curva=20*log10(abs(GModel(X<11000)))+diffmax;

116 %% Plot curves

117

118 f1 = gcf;

119 set(f1,'Color',[1 1 1])

120 semilogx(R12,20*log10(abs(G12))+diffmax, 'LineStyle','--','

LineWidth',2,'Color',[0 0.749 0.749])

121

122 hold on
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123 semilogx(X(X<11000),20*log10(abs(GStart(X<11000))),'r','

LineStyle',':', 'LineWidth',2)

124 semilogx(X(X<11000), 20*log10(abs(GModel(X<11000)))+diffmax,'k',

'LineWidth',1);

125

126 hold off

127

128 h1 = gca;

129 xlim([20 10000])

130 set(h1,'XTickLabel',{'10','100','1000','10000'},...

131 'XTick',[10 100 1000 1e+004],...

132 'XScale','log',...

133 'XMinorTick','on',...

134 'XMinorGrid','off',...

135 'MinorGridLineStyle',':',...

136 'GridLineStyle','-',...

137 'FontSize',12);

138 box('on');

139 grid('on');

140 %%%%%%%%%%%%%%% Create labels and title

141 title('Correction curve of pressure','FontSize',18)

142 xlabel('Frequency [Hz]','FontSize',16);

143 ylabel('Amplitude [dB]','FontSize',16);

144

145 %plot of the linear curves

146 figure

147 f1 = gcf;

148 set(f1,'Color',[1 1 1])

149 plot(R12,((G12)), 'LineStyle','--','LineWidth',2,'Color',[0

0.749 0.749])

150

151 hold on

152

153 plot(X(X<11000),((GStart(X<11000))),'r','LineStyle',':', '

LineWidth',2)

154

155 plot(X(X<11000),((GModel(X<11000)+diff_lin)),'k', 'LineWidth

',1);

156

157 hold off

158 h1 = gca;

159 xlim([20 10000])

160 set(h1,'XTickLabel',{'10','100','1000','10000'},...

161 'XTick',[10 100 1000 1e+004],...
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162 'XScale','lin',...

163 'XMinorTick','on',...

164 'XMinorGrid','on',...

165 'MinorGridLineStyle',':',...

166 'GridLineStyle','-',...

167 'FontSize',12);

168 box('on');

169 grid('on');

170 %%%%%%%%%%%%%%% Create labels and title

171 title('Correzione curva di pressione sperimentale lineari')

172 xlabel('Frequency (Hz)','FontSize',12);

173 ylabel('dB','FontSize',12);

174

175

176

177

178 %% Function: pressure model

179 function [out, Y_fun] = magfun(coeff,X,Y) % Amplitude function

180

181 A = coeff(1)

182 fc1 = coeff(2)

183 fc2 = coeff(3)

184 fc3 = coeff(4)

185

186 % 3 CORNER FREQUENCIES

187 Y_fun = A*(sqrt(1+(X.^2)./fc3^2))./ ...

188 (sqrt(1+fc1^2./(X.^2)).* ...

189 sqrt(1+fc2^2./(X.^2)));

190

191 if nargin >= 3

192 DIFF = Y_fun - Y;

193 SQ_DIFF = DIFF.^2;

194

195 out = sum(SQ_DIFF);

196 else

197 out = ('funzione utilizzata solo per calcolare curva correzione'

);

198 end
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