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Introduction

Quandles are non-associative structures, which can be described as left-distributive
idempotent letf quasigroups, whose algebraic structure encapsulates the Reidemeister
moves and gives an important invariant of knots [Joy82a]. Besides, quandles have
emerged also in the classification of pointed Hopf algebras [AG03], in the study of
symmetric spaces [Loo67], of singularities of algebraic varieties [Bri88], of the solutions
of the braid equation [Dri92], as important examples of quasigroups [Smi92].

Their classification up to isomorphism seems, at the moment of writing the present
work, out of reach, so that, in the literature, it has been attacked by studying special
classes of quandles, starting with finite quandles.

Every quandle naturally decomposes in a disjoint union of subquandles stable under
left translations. In the case that no such proper subquandle exists the quandle is said
to be connected. Connected quandles are important because of their application in knot
theory [CESY14] and their classification is necessary for the more general classification
task since they are somehow ”building blocks” for general quandles.

In analogy with groups, connected quandles of order p and p2, where p is a prime,
have been studied and classified (by Etingof, Guralnick and Soloviev [ESG01] and Graña
[Gra04] respectively). In this thesis we are concerned with the study of connected
quandles of order p3. Every connected quandle can be represented as cosets of a group
while the rack operation depends on a choice of an automorphism of the group [Joy82a].
The chosen group can be the transvection group of the quandle, and in this case the
coset representation enjoys a condition of minimality [HSV14].

The existence of this minimal coset representation gives us a general strategy in
order to try to classify finite connected quandles. Given a quandle of order n find
an upper bound, m, for the possible order of its transvection group. Then you can
construct all the coset quandles Q (G,H, α) where G is a group such that n ≤ |G| ≤ m,
α is one of its automorphisms and H ≤ FixG (α) such that |G/H| = n. Since by
Theorem 3.19 every connected quandle of order n has a coset representation with a
group of order less or equal to m, then, by elimininating all the isomorphic ones, you
obtain a list of all connected quandles of order n up to isomorphism.

The new results that the reader can find in the present work are the following.

In Chapter 2, it is shown that the transvection group does not change when deform-
ing a rack and there is a criterion for the isomorphism of quandles (Proposition 2.18)
based on the existence of an isomorphism of their transvection groups. Finally, the
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0. INTRODUCTION

characterisation of the transvection group of a standard crossed set is given in terms of
subgroups of the group generated by the quandle (Proposition 2.34).

In Chapter 3, the relationships between quandle theoretic properties of coset quan-
dles and group theoretic properties of their defining groups and group automorphisms
are described, in particular an isomorphism criterion for coset quandles is given. Anal-
ogously, in the connected case, quandle theoretic properties are characterised by means
of properties of the transvection group, using the minimal coset representation. At
the end of the chapter we give a new characterisation of the automorphism group of a
connected quandle (Proposition 3.29) by means of the transvection group.

In Chapter 4, the correspondence between quandle quotients and subgroups of the
transvection group which are normal in the inner automorphism group is explored.
Various specific results are found when the normal subgroups are semiregular on the
quandle, like when the subgroup under consideration is the centre of the transvection
group.

In Chapter 5 a new classification strategy for connected quandles of prime power
order is devised. In Proposition 5.6 a criterion is given to obtain information on the
number of generators of the transvection group based on the number of generators of
possible quotients and of its centre. Using this criterion, a new proof is given of the fact
that connected quandles of order both p and p

2 are affine (5.13) and it is also proved
that the transvection group of connected quandles of order p3 has order at most p4. In
this way, using the minimal coset representation, we give a complete characterisation
of connected quandles of order p3 (5.17). In the Appendix A, two algorithms are given
to construct all isomorphism classes of connected quandles of order p2 and p

3.
All the results which are not attributed are claimed by the author as original. If a

proof for an attributed result is given, this means that either the proof was not given
in the original source or a certain degree of originality of the proof is claimed.
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Chapter 1

Racks and Quandles

In this chapter, for the reader’s convenience and ease of reference, we collect definitions,
notation and some basic results.

Generalities on Racks

Since in the literature the notation for racks varies wildly let us start by establishing
the notation we shall be using, mainly following the choices made by Andruskiewitsch
and Graña [AG03].

1.1 Definition ([FR92, Definition 1.1]). A rack is a set endowed with two binary
operations, ⊲, ⊲−1, which satisfy the following equations:

R1) ∀x, y, z,∈ X, x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (x ⊲ z) (left self-distributivity).

R2) ∀x, y, z,∈ X, x ⊲−1 (x ⊲ y) = x ⊲
(

x ⊲−1 y
)

= y (left translations are bijections).

A map ψ between two racks X and Y is a rack morphism if for every x1, x2 ∈ X we
have

ψ (x1 ⊲ x2) = ψ (x1) ⊲ ψ (x2) .

1.2 Remark. The rôle of the two operations of a rack, ⊲ and ⊲−1, is completely sym-
metric. In particular, ⊲−1 is left-self distributive and is preserved by rack morphisms.

The name (w)rack was introduced by Conway andWraith, in an unpublished private
correspondence, to recall the meaning of “destruction” to refer to the algebraic structure
you are left with when you discard the multiplication in a group and only retain the
conjugation [FR92, Introduction]. And indeed, conjugation in a group gives the more
important examples of racks and more precisely of a variety of racks, the quandles:

1.3 Definition ([Joy82a, Definition 1.1]). A quandle is a rack where every element is
idempotent, i.e. for every element x we have:

(R3) x ⊲ x = x

1



1. RACKS AND QUANDLES

1.4 Definition. Let G be a group. Consider the two binary operations ⊲ and ⊲−1

defined by setting:
g ⊲ h := ghg−1 , g ⊲−1 h := g−1hg

G endowed with these two operations is a quandle which will be called the conjugation

quandle on G.

More generally any subset of a group closed under conjugation is a quandle. In
particular

1.5 Definition ([AG03, Definition 1.1]). A standard crossed set is a quandle isomorphic
to a subrack of a group endowed with the structure of conjugation quandle.

Standard subsets satisfy an additional axiom. This prompted Andruskiewitsch and
Graña to introduce the following definition:

1.6 Definition ([AG03, Definition 1.1]). A crossed set is a quandle for which the
following condition holds true for all the couple of elements x, y:

(R4) x ⊲ y = y ⇐⇒ y ⊲ x = x

1.7 Remark ([Ven15]). A rack is a conjugation quandle if and only if it is injective (see
Definition 1.26), as can be deduced from the universal property of the enveloping group
of a rack (Theorem 1.25). In view of this, using the [GAP13] package [RIG], an example
of a crossed set that is not a conjugation quandle can be given. [RIG] maintains a
database of connected quandles. Each quandle is indicated by two numbers, Q (n,m),
where n is the order of the quandle, m is the place in the [RIG] list on connected
quandles of order n. The quandle Q (8, 1) is a crossed set which is not injective and
hence not a conjugation quandle. This example shows that the crossed set axiom (R4)
does not characterise conjugation quandles.

The axioms imply that for every x in a rack X, the function x⊲• is a permutation on
X (since it has a two sided inverse in x ⊲−1 •). Moreover, by the left self-distributivity
axiom the resulting permutation is an automorphism of X and shall be denoted by ϕx.

1.8 Definition ([Joy82a, Section 6]). Let X be a rack, x, y ∈ X. If, for every z ∈ X,
x ⊲ z = y ⊲ z (i.e. if ϕx = ϕy), x and y are said to be behaviourally equivalent.

Given a rack X we denote Aut⊲ (X), the group of rack automorphisms on X. The
assignment x 7→ ϕx defines a rack morphism ϕX : X −→ Aut⊲ (X) (or more simply
ϕ) where Aut⊲ (X) is endowed with the structure of conjugation quandle. For every
automorphism α on X the following equality holds [AG03, Equality 1.5], which ex-
presses the fact that ϕX is an equivariant Aut⊲ (X)-map when Aut⊲ (X) acts on X by
automorphisms in the natural way and on itself by conjugation:

ϕα(x) = αϕxα
−1 (1.1)

1.9 Definition ([AG03, Definition 1.11]). A rack X is faithful if ϕX is injective.

2



1.10 Definition ([AG03, Definition 1.3]). In analogy with groups, the subgroup of the
rack automorphism group generated by ϕX (X) is called the inner automorphism group

of the rack and is denoted by Inn⊲ (X).

1.11 Remark ([AG03, Remark 1.12]). Let X be a rack, Inn⊲ (X) its inner automor-
phism group. If X is faithful then Inn⊲ (X) is centreless.

The interaction between ϕ and any rack morphism ψ is described by the following
lemma.

1.12 Lemma. Let ψ : X −→ Y be a rack morphism. Then for every x and y in X

ψ
(

ϕ±1x (y)
)

= ϕ±1
ψ(x)ψ (y) (1.2)

Proof. We will prove the cases ϕx and ϕ−1x separately.
As for ϕx:

ψ (ϕx (y)) = ψ (x ⊲ y) = ψ (x) ⊲ ψ (y) = ϕψ(x)ψ (y) (1.3)

As for ϕ−1x :

ψ
(

ϕ−1x (y)
)

= ϕ−1
ψ(x)ψ (y) ⇐⇒ ϕψ(x)ψ

(

ϕ−1x (y)
)

= ψ (y)

(1.3)
⇐⇒ ψ

(

ϕxϕ
−1
x (y)

)

= ψ (y)

⇐⇒ ψ (y) = ψ (y)

Quandles are an important variety of racks not only for historical reasons and for
their importance in applications. There is also a structural reason for their centrality
in the theory of racks, which is illustrated by the next propositions. The first is a slight
generalization of a remark made by Brieskorn in [Bri88] after Proposition 2.1.

1.13 Lemma. Let X be a rack, α ∈ Aut⊲ (X). Define a new operation, ⊲±α, on X by

x ⊲±α y = (ϕxα)
±1 (y). (X, ⊲±α) is a rack if and only if α ∈ CAut⊲(X) (Inn⊲ (X)).

Proof. Since α is a permutation on X, (X, ⊲±α) being a rack is equivalent to the fact
that for every x, y, z ∈ X

x ⊲±α
(

y ⊲±α z
)

=
(

x ⊲±α y
)

⊲±α
(

x ⊲±α z
)

⇐⇒

(ϕxα)
±1 (ϕyα)

±1 =
(

ϕ(ϕxα)
±1(y)α

)±1
(ϕxα)

±1

Let us consider first the case ⊲α and proceed by equivalences:

∀x, y ∈ X ϕxαϕyα = ϕϕxα(y)αϕxα ⇐⇒

∀x, y ∈ X ϕxαϕy = ϕxαϕyα
−1ϕ−1x αϕx ⇐⇒

∀x ∈ X 1 = α−1ϕ−1x αϕx ⇐⇒

α ∈ CAut⊲(X) (Inn⊲ (X))

3



1. RACKS AND QUANDLES

Analogously in the case ⊲−α:

∀x, y ∈ X (ϕxα)
−1 (ϕyα)

−1 =
(

ϕ(ϕxα)
−1(y)α

)

−1
(ϕxα)

−1
⇐⇒

∀x, y ∈ X α−1ϕ−1x α−1ϕ−1y =
(

α−1ϕ−1x ϕyϕxαα
)

−1
α−1ϕ−1x ⇐⇒

∀x, y ∈ X α−1ϕ−1x α−1ϕ−1y = α−1α−1ϕ−1x ϕ−1y ϕxαα
−1ϕ−1x ⇐⇒

∀x ∈ X ϕ−1x α−1 = α−1ϕ−1x ⇐⇒

α ∈ CAut⊲(X) (Inn⊲ (X))

and we are done.

1.14 Definition. Let X be a rack. The association morphism of X, ιX , is defined by
setting ιX (x) = x ⊲−1 x. ιX is bijective and the following equality holds:

x ⊲ ιX (x) = x (1.4)

1.15 Proposition ([Bri88, Proposition 2.2]). Let X be a rack, x ∈ X and ι its asso-
ciation morphism. The following statements hold:

i) ι ∈ Z (Aut⊲ (X)).

ii) ι−1 (x) = x ⊲ x.

iii) ϕι(x) = ϕx.

1.16 Lemma ([Bri88, Section 2]). For any rack X and α ∈ CAut⊲(X) (Inn⊲ (X)) the
following statements hold:

i) X =
(

X, (⊲α)α
−1

)

ii) (X, ⊲ι) is a quandle.

1.17 Definition ([Bri88, Definition after Proposition 2.2]). For any rack X, the asso-
ciated quandle to X, ιX, is (X, ⊲ι).

The association from a rack X to the quandle ιX is functorial as the following
lemma shows.

1.18 Lemma ([AG03, Section 1.1.1]). Let ψ : X −→ Y be a morphism of racks. Then

ψιX = ιY ψ

In particular, Aut⊲ (X) ≤ Aut⊲ (
ιX)

Proof. We want to show that for all x ∈ X, ψιX (x) = ιY ψ (x).
By definition of ιY this is equivalent to show that

ψ (x) ⊲ ψιX (x) = ψ (x)

4



but
ψ (x) ⊲ ψιX (x) = ψ

(

x ⊲ ιX (x)
)

= ψ (x)

Let now α ∈ Aut⊲ (X), x1, x2 ∈ X. α is bijective and using the fact that αιX = ιXα

we obtain

α
(

x1 ⊲
ι
X x2

)

= α
(

x1 ⊲ ιX (x2)
)

= α (x1) ⊲ αιX (x2)

= α (x1) ⊲ ιXα (x2)

= α (x1) ⊲
ι
X α (x2)

so that α ∈ Aut⊲

(

ι
XX

)

.

1.19 Remark. We note that the equality Aut⊲ (X) = Aut⊲ (
ιX) claimed in [AG03,

Section 1.1.1] is not true in general. Take X a permutation rack (i.e. a rack where
ϕx = σ for every x ∈ X and for some σ ∈ SX) such that the defining permutation σ
is a cycle of length |X|. In this case, ι = σ−1 and ιX is the trivial quandle of order
|X|. Now Aut⊲ (

ιX) = SX and Aut⊲ (X) = 〈σ〉 and the inclusion is proper whenever
|X| > 2.

1.20 Remark ([Bri88, Remark after Proposition 2.2]). The covariant functor that asso-
ciates to every rackX the couple (ιXX, ιX) and to every morphism of racks ψ : X −→ Y

the morphism ψιX , is an isomorphism of categories between the category of racks and
the category of couples (Q,α) where Q is a quandle and α ∈ CAut⊲(Q) (Inn⊲ (Q)). The
inverse functor associates αQ to (Q,α) as shown in Lemma 2.16.

The following lemma describes what is possibly the best approximation of the con-
cept of a “normal” subrack.

1.21 Notation. From now on if π : X −→ Y is a rack morphism and y is in Y we
denote the fibre of y by π−1 (y) and by projection we will mean a surjective morphism.

1.22 Lemma ([Ryd93, Proposition 2.31]). Let π : X −→ Y be a morphism of racks,

x ∈ X. Then the fibre π−1 (π (x)) is a subquandle of ιX.

Proof. Let y, z ∈ π−1 (π (x)) then

π (y ⊲ι z) = π (y ⊲ ι (z))

= π (y) ⊲ π (ι (z))

1.18
= π (y) ⊲ ι (π (z))

= π (x) ⊲ ι (π (x))

= π (x)

5



1. RACKS AND QUANDLES

1.23 Definition ([Ryd93, Definition 2.30]). Let π : X −→ Y be a morphism of
racks, x ∈ X. Then the associated quandle of π at x, ιπ−1 (π (x)), is the subquandle
π−1 (π (x)) of ιX.

Notice that if X is a quandle the associated quandle of π at x is a subquandle while
if π (x) is idempotent then π−1 (π (x)) is also a subrack of X and the relation between
π−1 (π (x)) and ιπ−1 (π (x)) is the same as that between X and ιX.

Racks and Groups

Let us now recall some results on the interplay between racks and their automorphism
groups. First of all, let us introduce two more groups relevant to rack theory.

1.24 Definition. The enveloping group of a rack X ([Joy82a, Section 6]) is

GX :=
F (X)

〈xyx−1 = x ⊲ y, ∀x, y ∈ X〉

where F (X) is the free group generated by X.
If X is finite, the finite enveloping group ([GHV11, Definition before Lemma 2.19]) is

GX :=
GX

〈

x|ϕx|, ∀x ∈ X
〉

where |ϕx| is the order of ϕx.

In [GHV11, Lemma 2.19] Graña, Heckenberger and Vendramin prove that if X is
finite, indeed GX is finite as the name suggests.

The importance of the enveloping group of a rack is stressed by the following result.

1.25 Proposition (Universal Property of the Enveloping Group [FR92, Proposition
2.1]). Let X be a rack and let G be a group. Given any rack homomorphism ψ : X −→
G, where G is endowed with the structure of conjugation quandle, there exists a unique

group homomorphism ψ′ : GX −→ G which makes the following diagram commute:

X
η

//

ψ

��

	

GX

ψ′

��

G
id

G

where η is the structure morphism η (x) = x. Moreover any group with the same

universal property is isomorphic to GX .

1.26 Definition. Let X be a rack. If the structure morphism η : X −→ GX , defined
by η (x) = x, is injective, X is said to be injective.

6



The following theorem is well known and fundamental for the developing of rack
theory. Andruskiewitsch and Graña in [AG03, Lemma 1.8] give a (sketch of a) proof
only for the finite case, Bunch et alii in [BLRY10, Theorem 3.1] give a proof only in
the case of quandles and do not cite equality (1.5) of which we will make extensive use.

1.27 Theorem.

Let π : X −։ Y be a projection of racks. Then there is a unique surjective morphism

of groups, Inn⊲ (π), from Inn⊲ (X) to Inn⊲ (Y ) such that for every x in X

Inn⊲ (π) (ϕx) = ϕπ(x) (1.5)

Moreover if π is an isomorphism so is Inn⊲ (π).

Proof. Applying Proposition 1.25 twice, to ϕX and to ϕY π respectively, we obtain the
following commutative diagram:

X
ϕ
X

&&

η
//

π

��
��

	

	

GX

ϕ′

X

vvvv

(ϕY
π)

′

~~~~

Inn⊲ (X)

Inn⊲(π)

����

	

Y

ϕY

��

Inn⊲ (Y )

We observe that both ϕ′

X and (ϕY π)
′ are surjective since

Inn⊲ (X) = 〈ϕX (X)〉 =
〈

ϕ′

Xη (X)
〉

≤ ϕ′

X (GX)

and

Inn⊲ (Y ) =
〈

ϕY (Y )
〉

=
〈

ϕY π (X)
〉

=
〈

(

ϕY π
)

′

η (X)
〉

≤
(

ϕY π
)

′

(GX) .

Given that ϕ′

X and (ϕY π)
′ are surjective, in order to obtain a surjective group mor-

phism, Inn⊲ (π) : Inn⊲ (X) −։ Inn⊲ (Y ) which makes the diagram commute, it is nec-
essary and sufficient (by the third isomorphism theorem for groups) that ker (ϕ′

X) ≤
ker

(

(ϕY π)
′
)

. Let g ∈ ker (ϕ′

X), i.e. there are xi ∈ GX such that g =
∏

i xi and for
every x ∈ X

∏

i

ϕxi
(x) = x (1.6)
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1. RACKS AND QUANDLES

In order to show that g ∈ ker
(

(ϕY π)
′
)

we have to show that for every y ∈ Y ,
(

(ϕY π)
′ (g)

)

(y) = y. Since π is surjective there is xy ∈ X such that π (xy) = y,
and we can compute

(

(ϕY π)
′ (g)

)

(y) =

(

(ϕY π)
′

(

∏

i

xi

))

π (xy)

=

(

∏

i

(ϕY π)
′ (xi)

)

π (xy)

=

(

∏

i

(ϕY π)
′
η (xi)

)

π (xy)

=

(

∏

i

ϕY π (xi)

)

π (xy)

=

(

∏

i

ϕπ(xi)

)

π (xy)

(1.2)
= π

((

∏

i

ϕxi

)

(xy)

)

(1.6)
= π (xy)

= y

Since, by construction, the diagram is commutative we have that for every x ∈ X

Inn⊲ (π) (ϕx) = Inn⊲ (π)ϕX (x) = ϕY π (x) = ϕπ(x)

Lastly suppose that π is an isomorphism. We can apply the previous part of the proof
to π−1 and obtain a surjective group morphism Inn⊲

(

π−1
)

: Inn⊲ (Y ) −։ Inn⊲ (X)
such that

(

Inn⊲
(

π−1
))

(ϕy) = ϕπ−1(y) Now we have that

(

Inn⊲
(

π−1
)

Inn⊲ (π)
)

(ϕx) = ϕπ−1π(x) = ϕx

hence Inn⊲
(

π−1
)

is a left inverse of Inn⊲ (π) on a set of generators of Inn⊲ (X) and
then a left inverse tout court. Since we already know that Inn⊲ (π) is surjective we can
conclude that if π is an isomorphism so is Inn⊲ (π).

Let us state a couple of lemmas which clarify the interplay between rack epimor-
phisms and the automorphism groups action:

1.28 Lemma ([BLRY10, Lemma 5.3]). Let π : X −։ Y be a projection of racks. Then

for every α in Inn⊲ (X) and x in X

π (α (x)) = (Inn⊲ (π) (α)) (π (x)) (1.7)
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1.29 Notation. Throughout this work if g ∈ G is an element of a group G, by ĝ we
will mean the inner automorphism of G determined by the (left) conjugation by g, i.e.
ĝ (h) = ghg−1 for every h ∈ G. When possible without causing ambiguity, if H ≤ G is
a subgroup of G such that ĝ (H) = H we will continue to denote by ĝ the restriction
and corestriction of the conjugation by g to a subgroup H.

1.30 Lemma. Let π : X −։ Y be a projection of racks, x ∈ X. Then

Inn⊲ (π) ϕ̂x = ϕ̂
π(x) Inn⊲ (π) (1.8)

where ϕ̂x and ϕ̂
π(x) are the automorphism of Inn⊲ (X) induced by conjugation by ϕx

and the automorphism of Inn⊲ (Y ) induced by conjugation by ϕ
π(x) respectively.

Proof. Let α ∈ Inn⊲ (X) be an element. Let us proceed by equalities.

Inn⊲ (π) ϕ̂x (α) = Inn⊲ (π)
(
ϕ
x
αϕ−1

x

)

= Inn⊲ (π)
(
ϕ
x

)
Inn⊲ (π) (α) Inn⊲ (π)

(
ϕ−1
x

)

(1.5)
= ϕ

π(x) Inn⊲ (π) (α)ϕ
−1
π(x)

= ϕ̂
π(x) Inn⊲ (π) (α)

With the aid of Lemma 1.28 we can prove that automorphisms act on the fibres of
any projection of racks:

1.31 Proposition. Let π : X −։ Y be a projection of racks. Then for every α in

Inn⊲ (X) and x in X we have

α
(
π−1 (π (x))

)
= π−1 (π (α (x)))

Proof. Let w ∈ α
(
π−1 (π (x))

)
. Then there is z in X such that π (z) = π (x) and

α (z) = w. Using Lemma 1.28 we can compute

π (w) = π (α (z)) = (Inn⊲ (π) (α)) (π (z)) = (Inn⊲ (π) (α)) (π (x)) = π (α (x))

Hence w is in the fibre of π (α (x)) and

α
(
π−1 (π (x))

)
⊆ π−1 (π (α (x)))

If we now apply the same reasoning to the fibre of π (α (x)) and to the inner automor-
phism α−1 we have

α−1
(
π−1 (π (α (x)))

)
⊆ π−1

(
π
(
α−1 (α (x))

))
= π−1 (π (x))

and applying α to both sides we obtain

π−1 (π (α (x))) ⊆ α
(
π−1 (π (x))

)

and we are done.
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1. RACKS AND QUANDLES

An immediate consequence of Proposition 1.31 is the following

1.32 Definition ([Joy82b, Beginning of Section 2]). A projection is proper if it is not
an isomorphism nor a constant map. A rack without proper projections is called simple.

1.33 Corollary ([McC12]). If a transitive subgroup of Inn⊲ (X) acts primitively on a
rack X, then the rack is simple.

Proof. Proposition 1.31 shows that the fibres of any proper quotient are proper blocks
for the action of the inner automorphism group.

Connected Quandles

1.34 Definition. A rack X is homogeneous if Aut⊲ (X) acts transitively on it [Joy82a,
Section 7], and (algebraically) connected when Inn⊲ (X) acts transitively on it [Joy82a,
Section 8].

Every connected rack is homogeneous. The image of a connected rack is still con-
nected and the fact that fibres are blocks for Inn⊲ (X) (see Proposition 1.31) has the
following useful (for inductive arguments) consequence:

1.35 Proposition ([AG03, Lemma 1.21]). Let π : X −։ Y be a projection of racks
and let x be an element in X. If X is connected then the fibres of π have the same
cardinality and

|X| =
∣

∣π−1 (π (x))
∣

∣ |Y |

The following construction gives a way to obtain quandles starting with groups and
their automorphisms.

1.36 Definition ([Loo67, Proof of Satz 1.5]). Let G be a group, α an automorphism
on G and H a subgroup of the fixed points of α in G. If we consider the set of right
cosets G/H and define:

gH ⊲ fH := gα
(

g−1f
)

H , gH ⊲−1 fH := gα−1
(

g−1f
)

H,

the resulting structure is a quandle which we shall call the coset quandle G with respect
toH and α and we will denote it by Q (G,H, α).Notice that the operation is well defined
since if g1H = g2H and f1H = f2H we have that for some hg, hf ∈ H

g1H ⊲ f1H = g
1
α
(

g−1
1

f1
)

H

= g
2
hgα

(

(g2hg)
−1 f2hf

)

H

= g
2
α
(

hgh
−1

g g−1
2

f2
)

hfH

= g
2
α
(

g−1
2

f2
)

H

= g2H ⊲ f2H
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1.37 Example. Let D8 be the group of permutations generated by τ = (1, 3) and
ρ = (1, 2, 3, 4), the dihedral group of order eight.
Let σ be the outer automorphism defined by σ (ρ) = ρ, σ (τ) = τρ. We have that the
subgroup of fixed elements by σ in D8 is 〈ρ〉. Take H =

〈

ρ2
〉

.
Hence the set of elements of Q (D8, H, σ) is {H, τH, ρH, τρH}.
Some examples of computations of the rack operation are:

H ⊲ τH = σ (τ)H = τρH

τH ⊲ ρH = τσ (τρ)H = τσ (τ)σ (ρ)H = ττρρH = H

1.38 Definition ([AG03, Section 1.3.6]). A quandle is principal if it isomorphic to a
coset quandle

Q (G,α) := Q (G, {1} , α) .

A particular case of coset quandles which is important for its properties and which
is extensively studied in the literature, is when the group G is abelian. In this case the
quandle is called affine or Alexander. Affine quandles enjoy some specific properties:

1.39 Proposition ([AG03, Section 1.3.8]). A finite affine quandle is always principal

and it is faithful if and only if it is connected.

Every coset quandle is homogeneous (since left multiplication by an element of the
defining group is an isomorphism for the quandle). The following characterisation due
to Joyce tells us that the reverse is also true, i.e. that every homogeneous quandle (and
hence every connected quandle) has a coset representation:

1.40 Proposition ([Joy82a, Theorem 7.1]). A quandle Q is homogeneous if and only

if it is isomorphic to the coset quandle Q
(

Aut⊲ (Q) , StabAut⊲(Q) (x) , ϕ̂x

)

where x is

any element of Q and ϕ̂x the conjugation by ϕx.

In this way any question about connected quandles translates naturally in questions
about groups and their automorphisms.
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Chapter 2

The Transvection Group

Generalities on the Transvection Group

Let us introduce another group of automorphisms associated to a rack. A group which
will take centre stage in the course of the development of the present work.

2.1 Definition ([Joy82a]). The transvection group, Trans⊲ (X), of a rack X is the
subgroup of Inn⊲ (X) generated by the elements of type ϕyϕ

−1

x with x, y ∈ X.

Using equality (1.1) one sees that for any rack X, both Inn⊲ (X) and Trans⊲ (X)
are normal in Aut⊲ (X) and for every x ∈ X we have:

Inn⊲ (X) = Trans⊲ (X) 〈ϕx〉 (2.1)

In general nothing can be said about Trans⊲ (X) ∩ 〈ϕx〉.

2.2 Definition. A rack X is splitting if there is x ∈ X such that Trans⊲ (X)∩〈ϕx〉 = 1

2.3 Remark. A rack X is splitting if and only if there is x ∈ X such that

Inn⊲ (X) ∼= Trans⊲ (X) ⋊̇ 〈ϕx〉

where the semidirect product is internal.

From equality 2.1 it follows that the quotient Inn⊲ (X) /Trans⊲ (X) is always cyclic
and Trans⊲ (X) always contains [Inn⊲ (X), Inn⊲ (X)], the derived subgroup of Inn⊲ (X).
If the rack is connected then the reverse inclusion is also true.

2.4 Proposition ([Joy82b, stated in Section 1]). If X is a connected rack then

Trans⊲ (X) = [Inn⊲ (X), Inn⊲ (X)]

If the rack is a quandle something more can be said.

2.5 Proposition ([HSV14, Proposition 2.1]). For every quandle Q, Inn⊲ (Q) and

Trans⊲ (Q) have the same orbits in their natural action on Q. In particular, Q is

connected if and only if Trans⊲ (Q) is transitive on Q.
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2. THE TRANSVECTION GROUP

Proof. Let y ∈ xInn⊲(Q), i.e. there is α ∈ Inn⊲ (Q) and by equality (2.1) there is
τ ∈ Trans⊲ (Q) and n ∈ Z such that:

y = α (x) = τϕn
x (x) = τ (x)

The other inclusion is trivial.

In order to simplify our computations we observe that we have a smaller system of
generators for Trans⊲ (X):

2.6 Lemma. Let X be a rack, x ∈ X. Then
{

ϕyϕ
−1
x

}

y∈X
is a system of generators

for Trans⊲ (X).

Proof. Trans⊲ (X) is generated by the elements of the form ϕyϕ
−1
z with y and z in X.

But

ϕyϕ
−1
z = ϕyϕ

−1
x ϕxϕ

−1
z = ϕyϕ

−1
x

(

ϕzϕ
−1
x

)−1
∈

〈

{

ϕyϕ
−1
x

}

y∈X

〉

.

These generators are distinct if and only if the rack is faithful. Every projection of
racks induces a surjective morphism between the transvection groups as the following
proposition shows.

2.7 Proposition. Let π : X −։ Y be a projection of racks and Inn⊲ (π) the induced

group morphism from Inn⊲ (X) to Inn⊲ (Y ). Then Inn⊲ (π) (Trans⊲ (X)) = Trans⊲ (Y ).

Proof. Let y1 and y2 in Y . If π is a projection, y1 = π (x1) and y2 = π (x2) for some
x1 and x2 in X. We have

ϕy1
ϕ−1y2

= ϕπ(x1)
ϕ−1
π(x2)

= Inn⊲ (π) (ϕx1
) Inn⊲ (π) (ϕx2

)−1 = Inn⊲ (π)
(

ϕx1
ϕ−1x2

)

.

2.8 Notation. Let π : X −։ Y be a projection of racks and Inn⊲ (π) the induced
group morphism from Inn⊲ (X) to Inn⊲ (Y ). In view of Proposition 2.7, the restriction
and corestriction of Inn⊲ (π) to the transvection groups will be denoted by Trans⊲ (π).

2.9 Corollary. Let X and Y be racks. If π : X
∼
−−→ Y is an isomorphism then

Trans⊲ (π) : Trans⊲ (X)
∼
−−→ Trans⊲ (Y ) is an isomorphism too.

Proof. This follows from Proposition 2.7 and Proposition 1.27.

On the Transvection group of Deformation Racks

As observed by Brieskorn in [Bri88] ( see 1.16), every rack is associated, via its defor-
mation morphism, to a quandle. Let us start by a slight generalisation of his point of
view.
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2.10 Definition. Let X be a rack and α ∈ CAut⊲(X) (Inn⊲ (X)). The deformation of X
via ±α, ±αX, is the rack (X, ⊲±α) (see Proposition 1.13 for the definition of (X, ⊲±α)).

2.11 Definition. Let X,Y be racks. We say that X is a deformation of Y , Y  X if
there is α ∈ CAut⊲(Y ) (Inn⊲ (Y )) such that X ∼= ±αY

We now analyse the nature of the deformation relation between racks.

2.12 Lemma ([Bri88]). The deformation relation is symmetric and reflexive (i.e. it is
a tolerance relation).

Proof. The deformation relation is reflexive since X = idX and it is symmetric since
if Y ∼= αX thenX ∼= α−1

Y by Lemma 1.16, while if Y ∼= −αX let us show thatX ∼= −αY

by showing thatX = −α−αX. Let us start by showing that α ∈ CAut⊲(−αX) (Inn⊲ (
−αX)),

in fact it is a bijection and a morphism as the following equalities show

α
(

x ⊲−α y
)

= αϕ−1x α−1 (y) = ϕ−1
α(x)α

−1α (y) = α (x) ⊲−α α (y)

and centralises Inn⊲ (
−αX) as the following equalities show

x ⊲−α α (y) = ϕ−1x α−1α (y) = αϕ−1x α−1 (y) = α
(

x ⊲−α y
)

Lastly, let us show that X = −α−αX.

x
(

⊲−α
)−α

y =
((

ϕ
−αX (x)

)

α
)−1

(y) =
(

ϕ−1x α−1α
)−1

(y) = ϕx (y) = x ⊲ y

2.13 Lemma. Let X,Y be racks. If X is a deformation of Y then Trans⊲ (X) ∼=
Trans⊲ (Y ).

Proof. Since Trans⊲ (X) is an invariant for a rack up to isomorphism (by Proposition
2.7), it is not reductive to take X = ±αY . We have that

Trans⊲ (Y ) =
〈

ϕyϕ
−1
x

〉

y∈Y

while
Trans⊲

(

±αY
)

=
〈

(

ϕyα
)±1 (

ϕxα
)∓1

〉

y∈Y

In the case ⊲α we have

ϕyα (ϕxα)
−1 = ϕyαα

−1ϕ−1x = ϕyϕ
−1
x

In the case ⊲−α we have

(

ϕyα
)−1

ϕxα = α−1ϕ−1y ϕxα = ϕ−1y ϕx

where the last equality is true since α ∈ CAut⊲(Y ) (Inn⊲ (Y )). In both cases every
generator of Trans⊲ (X) is in Trans⊲ (Y ) and vice versa, hence Trans⊲ (X) = Trans⊲ (Y ).
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2. THE TRANSVECTION GROUP

The deformation relation is not an equivalence as the following example shows.

2.14 Example. Let X1 be a permutation rack with 5 elements, σ1 = (1, 2, 3, 4, 5)
its defining permutation, i.e. x ⊲ y = σ (y) and X2 another permutation rack with
elements {1, 2, 3, 4, 5} and σ2 = (2, 1, 3, 4, 5) its defining permutation. Now Aut⊲ (Xi) =
Inn⊲ (Xi) = CAut⊲(Xi) (Inn⊲ (Xi)) = 〈σi〉. X1 and X2 are both deformations of the
trivial rack of order 5, but are not one the deformation of the other since the intersection
of their automorphism groups is trivial, while if it was X1 = αX2, α would be in the
intersection of the automorphism groups of X1 and X2.

This prompts us to introduce the following definition:

2.15 Definition. Let X,Y be racks. We say that X and Y are associated, X ! Y ,
if ιXX ∼= ιY Y .

Being associated is an equivalence relation. We see now that to every rack X is
associated only one quandle (up to isomorphism) and the association morphism, ιX is
unique up to conjugation.

2.16 Lemma. Let Q be a quandle and α ∈ CAut⊲(Q) (Inn⊲ (Q)). If X = αQ then

ιX = α−1

Proof. By definition of association morphism (Definition 1.14) we have to show that
x ⊲α α−1 (x) = x. To this end we proceed by equalities.

x ⊲α α−1 (x) = x ⊲ αα−1 (x) = x ⊲ x = x

2.17 Lemma. Let Q1, Q2 be quandles and αi ∈ CAut⊲(Qi) (Inn⊲ (Qi)) for i = 1, 2 and

let β : Q1 −→ Q2 be a bijection. Then β : α1Q1
∼

−−→ α2Q2 is an isomorphism if and

only if β : Q1
∼

−−→ Q2 is an isomorphism and βα1 = α2β.

Proof. Suppose first that β is an isomorphism from α1Q1 to α2Q2. By Lemma 2.16 we
have that ι−1(α1Q1)

= α1 and ι−1(α2Q2)
= α2 and by Lemma 1.18:

βα−11 = α−12 β

so for every x, y ∈ Q1:

β (x ⊲ y) = β
(

x ⊲ α1α
−1
1 (y)

)

= β
(

x ⊲α1 α−11 (y)
)

= β (x) ⊲α2 βα−11 (y)

= β (x) ⊲ α2βα
−1
1 (y)

= β (x) ⊲ α2α
−1
2 β (y)

= β (x) ⊲ β (y)
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Suppose now that β is an isomorphism from Q1 to Q2 and that βα1 = α2β. Let us
compute:

β (x ⊲α1 y) = β (x ⊲ α1 (y))

= β (x) ⊲ βα1 (y)

= β (x) ⊲ α2β (y)

= β (x) ⊲α2 β (y)

The Isomorphism Problem

We will now be concerned in establishing a criterion for two quandles to be isomorphic .
We already know that every isomorphism of quandles induces an isomorphism between
their transvection groups, let us see to what extent the reverse is also true.

2.18 Proposition. Let Qj, j = 1, 2 be quandles, Trans⊲ (Qj) their transvection groups.
Suppose moreover that {xi,j}i∈I is a system of representatives for the orbits of Qj under
the action of Trans⊲ (Qj). The following statements are equivalent:

(i) There is an isomorphism of quandles, α : Q1
∼
−−→ Q2, such that α (xi,1) = xi,2.

(ii) There is a group isomorphism, ψ : Trans⊲ (Q1)
∼
−−→ Trans⊲ (Q2), such that

a) There is i0 ∈ I such that ψϕ̂xi0,1
ψ−1 = ϕ̂xi0,2

.

b) For every i ∈ I, ψ
(
StabTrans⊲(Q1) (xi,1)

)
= StabTrans⊲(Q2) (xi,2).

c) For every i ∈ I, ψ
(
ϕxi,1

ϕ−1xi0,1

)
= ϕxi,2

ϕ−1xi0,2
.

In particular, if the conditions are satisfied, ψ = Trans⊲ (α).

Proof. Suppose first that there exists α : Q1
∼
−−→ Q2, an isomorphism of quandles

such that α (xi,1) = xi,2. Then by Corollary 2.9 Trans⊲ (α) is an isomorphism from
Trans⊲ (Q1) to Trans⊲ (Q2). Let us define ψ := Trans⊲ (α). Let us verify that it satisfies
the required conditions.

ψϕ̂xi,1
= Trans⊲ (α) ϕ̂xi,1

(1.8)
= ϕ̂

α(xi,1)
Trans⊲ (α)

= ϕ̂xi,2
ψ
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Let τ ∈ Trans⊲ (Q1). Then

τ ∈ StabTrans⊲(Q1) (xi,1) ⇐⇒ τ (xi,1) = xi,1

⇐⇒ ατ (xi,1) = α (xi,1)

(1.7)
⇐⇒ (Trans⊲ (α) (τ))α (xi,1) = α (xi,1)

⇐⇒ (ψ (τ)) (xi,2) = xi,2

⇐⇒ ψ (τ) ∈ StabTrans⊲(Q2) (xi,2)

Since ψ is an isomorphism between Trans⊲ (Q1) and Trans⊲ (Q2), we have shown that
ψ
(

StabTrans⊲(Q1) (xi,1)
)

= StabTrans⊲(Q2) (xi,2).

Lastly, let us verify the third set of conditions.

ψ
(

ϕxi,1
ϕ−1xi0,1

)

= Trans⊲ (α)
(

ϕxi,1
ϕ−1xi0,1

)

(1.7)
= ϕ

α(xi,1)
ϕ−1
α(xi0,1)

= ϕxi,2
ϕ−1xi0,2

Suppose now that there exists an isomorphism ψ : Trans⊲ (Q1)
∼
−−→ Trans⊲ (Q2) sat-

isfying conditions a), b), c). Let us define α : Q1 −→ Q2 by setting for every
τ ∈ Trans⊲ (Q1)

ατ (xi,1) := ψ (τ) (xi,2) (2.2)

Since {xi,1}i∈I is a system of representatives for the orbits of Q1 under the action of
Trans⊲ (Q1), γ is defined for every z ∈ Q1. Let us see that the definition does not
depend on the choice of τ and that it is injective. Let τ1, τ2 ∈ Trans⊲ (Q1)

τ−11 τ2 ∈ StabTrans⊲(Q1) (xi,1) ⇐⇒ ψ
(

τ−11 τ2
)

∈ ψ
(

StabTrans⊲(Q1) (x)
)

b)
⇐⇒ ψ (τ1)

−1 ψ (τ2) ∈ StabTrans⊲(Q2) (xi,2)

Since {xi,2}i∈I is a system of representatives for the orbits of Q2 under the action of
Trans⊲ (Q2), α is surjective. We are left to verify that α is a rack morphism.
Let us begin establishing that the hypotheses afford a more general set of relations
between the orbit representatives, more precisely that for every j, k ∈ I and τ ∈
Trans⊲ (Q1)

ψ
(

ϕxj,1
τϕ−1xk,1

)

= ϕxj,2
ψ (τ)ϕ−1xj,2

(2.3)
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Let us proceed by equalities.

ψ
(
ϕxj,1τϕ

−1
xk,1

)
= ψ

(
ϕxj,1ϕ

−1
xi0,1

ϕxi0,1
τϕ−1xi0,1

ϕxi0,1
ϕ−1xk,1

)

= ψ
(
ϕxj,1ϕ

−1
xi0,1

)
ψ
(
ϕxi0,1

τϕ−1xi0,1

)
ψ
(
ϕxi0,1

ϕ−1xk,1

)

c)
= ϕxj,2ϕ

−1
xi0,2

(
ψϕ̂xi0,1 (τ)

)
ϕxi0,2

ϕ−1xk,2

a)
= ϕxj,2ϕ

−1
xi0,2

ϕ̂xi0,2ψ (τ)ϕxi0,2
ϕ−1xk,2

= ϕxj,2ψ (τ)ϕ−1xk,2

Let now y, z ∈ Q1 be elements. We want to establish the following equality.

ψ
(
ϕzϕ

−1
y

)
= ϕ

α(z)ϕ
−1
α(y) (2.4)

Since {xi,1}i∈I is a set of representatives for the orbits of Q1 under Trans⊲ (Q1) for
every z ∈ Q1, there are iz,1 ∈ I and τz,1 ∈ Trans⊲ (Q1) such that z = τz,1 (xiz ,1). Let
us proceed by equalities to prove equality (2.4).

ψ
(
ϕzϕ

−1
y

)
= ψ

(
ϕτz(xiz,1)

ϕ−1
τy(xiy,1)

)

(1.1)
= ψ

(
τzϕxiz,1τ

−1
z τyϕxiy,1

τ−1y

)

(2.3)
= ψ

(
τz

)
ϕxiz,2ψ

(
τ−1z τy

)
ϕ−1xiy,2

ψ
(
τ−1y

)

(1.1)
= ϕψ(τz)(xiz,2)ϕψ(τy)(xiy,2)

(2.2)
= ϕα(z)ϕ

−1
α(y)

We are finally ready to show that α is a rack morphism. Let y, z ∈ Q1 be elements.

α (y) ⊲ α (z) = ϕ
α(y)ϕ

−1
α(z) (α (z))

(2.4)
= ψ

(
ϕyϕ

−1
z

)
α (z)

(2.2)
= α

(
ϕyϕ

−1
z (z)

)

= α (y ⊲ z)

In particular for every y, z ∈ Q1

Trans⊲ (α)
(
ϕzϕ

−1
y

)
= ϕα(z)ϕ

−1
α(y)

(2.4)
= ψ

(
ϕzϕ

−1
y

)

and since they coincide on the generators of Trans⊲ (Q1), Trans⊲ (α) = ψ

If the quandle is connected, the preceding proposition simplifies as follows.
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2. THE TRANSVECTION GROUP

2.19 Corollary. Let Qj, j = 1, 2 be connected quandles, Trans⊲ (Qj) their transvection
groups, xj ∈ Qj. The following statements are equivalent:

(i) There is an isomorphism of quandles, α : Q1
∼

−−→ Q2, such that α (x1) = x2.

(ii) There is a group isomorphism, ψ : Trans⊲ (Q1)
∼

−−→ Trans⊲ (Q2), such that

a) ψϕ̂x1
ψ−1 = ϕ̂x2

.

b) ψ
(
StabTrans⊲(Q1) (x1)

)
= StabTrans⊲(Q2) (x2).

In particular, if the conditions are satisfied, we have ψ = Trans⊲ (α).

Proof. Apply 2.18, where the sets of representatives of the orbits under the transvection
groups reduce to xj in Qj .

In Proposition 2.18 to every isomorphism between quandles an isomorphism be-
tween the corresponding transvection groups is associated. In general, this association
is not injective. In the next results we will explore this correspondence between auto-
morphisms of a quandle and group automorphisms of its transvection group.

Given a rack automorphism α, the induced group automorphism Inn⊲ (α) which
is an element of Aut (Inn⊲ (X)), not only restricts to a group automorphism of the
tranvection group, but it also extends to a group automorphism of the automorphism
group Aut⊲ (X). Let us see how.

2.20 Lemma. Let X be a rack, α, β ∈ Aut⊲ (X). Then

Inn⊲ (α) Inn⊲ (β) = Inn⊲ (αβ) (2.5)

Proof. Since Inn⊲ (α) , Inn⊲ (β) , Inn⊲ (αβ) ∈ Aut (Inn⊲ (X)) let us verify the equality on
the generators of Inn⊲ (X).

Inn⊲ (α) Inn⊲ (β) (ϕx)
(1.5)
= Inn⊲ (α)

(
ϕβ(x)

) (1.5)
= ϕαβ(x)

(1.5)
= Inn⊲ (αβ) (ϕx)

The morphism described by Lemma 2.20 is nothing but the usual group morphism
between a group and its inner automorphism group.

2.21 Lemma. Let X be a rack, α ∈ Aut⊲ (X) an automorphism on X. Then Inn⊲ (α)
(the automorphism on Inn⊲ (X) induced by α) is equal to α̂ (the automorphism on
Inn⊲ (X) induced by the conjugation by α).

Proof. Let us show that the two automorphisms act in the same way on the generators
of Inn⊲ (X).

Inn⊲ (α) (ϕx)
(1.5)
= ϕα(x)

(1.1)
= αϕxα

−1 = α̂ (ϕx)

20



2.22 Proposition. Let X be a rack, α ∈ Aut⊲ (X) an automorphism on X. Then
Inn⊲ (α) extends to an internal automorphism on Aut⊲ (X), namely α̂.

Proof. By Lemma 2.21, α̂ restricted to Inn⊲ (X) is equal to Inn⊲ (α).

Since Trans⊲ (X) is a normal subgroup of Aut⊲ (X), every rack automorphism in-
duces by conjugation a group automorphism on Trans⊲ (X), which, by Lemma 2.21,
corresponds to the restriction to Trans⊲ (X) of the induced automorphism on Inn⊲ (X)
(and of Aut⊲ (X) by Proposition 2.22). Let us see which automorphisms of Trans⊲ (X)
arise in this way.

2.23 Proposition. Let Q be a quandle, Trans⊲ (Q) and Aut⊲ (Q) its transvection group
and automorphism group respectively, ψ ∈ Aut (Trans⊲ (Q)). Suppose moreover that
{xi}i∈I is a system of representatives for the orbits of Q under the action of Trans⊲ (Q).
The following statements are equivalent:

(i) There is α ∈ Aut⊲ (Q) such that ψ = α̂ (the conjugation by α).

(ii) There is a system of representatives for the orbits of Q under the action of
Trans⊲ (Q), {yi}i∈I , such that ψ

(
StabTrans⊲(Q) (xi)

)
= StabTrans⊲(Q) (yi) and there

is i0 ∈ I such that ψϕ̂xi0
ψ−1 = ϕ̂yi0

and for every i ∈ I ψ
(
ϕxi

ϕ−1xi0

)
= ϕyi

ϕ−1yi0
.

Proof. (i) ⇒ (ii) We apply Proposition 2.18 with Q1 = Q2 = Q, {xi,1}i∈I = {xi}i∈I ,
{xi,2}i∈I = {α (xi)}i∈I and (ii) follows immediately once we take yi = α (xi), observing
that Inn⊲ (α) = α̂ by Lemma 2.21. For the hypotheses of Proposition 2.18 to be
satisfied we have to verify only that {α (xi)}i∈I is a system of representatives for the
orbits of Q under the action of Trans⊲ (Q). Let z ∈ Q be an element. Since {xi}i∈I is a
system of representatives for the orbits of Q under the action of Trans⊲ (Q), there are
τz ∈ Trans⊲ (Q) and iz ∈ I such that α−1 (z) = τz (xiz) and we can compute

z = α (τz (xiz)) = ατzα
−1α (xiz)

= (ψ (τz)) (α (xiz))

So every element in Q is in α (xi)
Trans⊲(Q) for some i ∈ I. Suppose now that

α (xj)
Trans⊲(Q) = α (xk)

Trans⊲(Q)

for some k, j ∈ I. Then there is τ ∈ Trans⊲ (Q) such that α (xk) = τα (xj) and

xk = α−1 (τα (xj)) = ψ−1 (τ) (xj)

and j = k.
(ii) ⇒ (i) We apply Proposition 2.18 with Q1 = Q2 = Q, {xi,1}i∈I = {xi}i∈I ,

{xi,2}i∈I = {α (yi)}i∈I , observing that Inn⊲ (α) = α̂ by Lemma 2.21.

If the quandle is connected the statement of Proposition 2.23 simplifies in the fol-
lowing way.
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2. THE TRANSVECTION GROUP

2.24 Corollary. Let Q be a quandle, Trans⊲ (Q) and Aut⊲ (Q) its transvection group
and automorphism group respectively, ψ ∈ Aut (Trans⊲ (Q)), x, y ∈ Q. If Q is connected
the following statements are equivalent:

(i) There is α ∈ Aut⊲ (Q) such that ψ = α̂ (the conjugation by α) and α (x) = y.

(ii) ψ
(
StabTrans⊲(Q) (x)

)
= StabTrans⊲(Q) (y) and ψϕ̂xψ

−1 = ϕ̂y.

Proof. Take xi0 = x and yi0 = y in Proposition 2.23 (both x and y are system of
representatives for the orbits of Trans⊲ (Q) since by Proposition 2.5, Trans⊲ (Q) is
transitive). Notice that the third set of conditions on the orbit representatives is void
in the connected case.

Proposition 2.23 gives a criterion to recognise which automorphisms of Trans⊲ (Q)
are induced by conjugation by elements in Aut⊲ (Q). The next definition takes care of
giving a name and a notation to this group of automorphisms.

2.25 Definition. Let Q be a quandle. The induced automorphisms, Ind⊲ (Q) of Q are
the automorphisms ψ of Trans⊲ (Q) such that there is α ∈ Aut⊲ (Q) such that ψ = α̂.

Using Definition 2.25, Proposition 2.23 can be restated as follows.

2.26 Corollary. Let Q be a quandle. Then

Aut⊲ (Q)

CAut⊲(Q) (Trans⊲ (Q))
∼= Ind⊲ (Q) (2.6)

Proof. Since Trans⊲ (Q) is normal in Aut⊲ (Q) there is a natural group morphism from
Aut⊲ (Q) to Aut (Trans⊲ (Q)) which associates to every quandle automorphism α the
group automorphism α̂ : Trans⊲ (Q) −→ Trans⊲ (Q), defined by α̂ (τ) = ατα−1. The
kernel α̂ is CAut⊲(Q) (Trans⊲ (Q)) while the image, by Proposition 2.23, is Ind⊲ (Q).

2.27 Remark. In the more general situation of a rack X, the automorphisms of
Trans⊲ (X) induced by conjugation by an element in Aut⊲ (X) are in the intersec-
tion of the induced automorphism of the associated quandle ιX with the centraliser in
Aut⊲ (

ιX) of ι:
Ind⊲ (X) = Ind⊲ (

ιX) ∩ CAut⊲(ιX) (ι) (2.7)

Since our objective is to reconstruct information on the automorphism group of the
quandle using information on the automorphisms of the transvection group, it is useful

to observe that both extreme situations for the quotient
Aut⊲ (Q)

CAut⊲(Q) (Trans⊲ (Q))
can oc-

cur, i.e. it can happen that CAut⊲(Q) (Trans⊲ (Q)) = 1 and that CAut⊲(Q) (Trans⊲ (Q)) =
Aut⊲ (Q), too.

2.28 Example. Let Q be a connected quandle of prime order. Even without mak-
ing reference to the (known) classification of connected quandles of prime order, one
knows that Trans⊲ (Q) is a transitive group of prime degree, hence primitive, hence
CSQ

(Trans⊲ (Q)) = 1 and a fortiori CAut⊲(Q) (Trans⊲ (Q)) = 1.
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2.29 Example. Let Q be a trivial quandle on order n, i.e. x ⊲ y = y for every
x, y ∈ Q. In this case Trans⊲ (Q) = 1 and Ind⊲ (Q) = 1. Notice that Aut⊲ (Q) (and
hence CAut⊲(Q) (Trans⊲ (Q))) is the whole of SQ.

We conclude this section with a result on the centraliser of the transvection group
in the automorphism group of a quandle.

2.30 Notation. Since it will be useful in the proof of the next lemma, and also later
on, let us introduce a notation that generalises the usual one for centralisers and com-
mutators in groups. Let G be a group, B ⊆ Aut (G) a set of automorphisms. From now
on the centraliser of a set of automorphisms in a group, CG (B), will be the subgroup
of G of elements fixed by every α ∈ B:

CG (B) := {g ∈ G | α (g) = g, ∀α ∈ B}

while the subgroup of commutators of a set of automorphisms in a group, [G,B] will
be the subgroup generated by elements of the form g−1α (g) with g ∈ G and α ∈ B:

[G,B] :=
〈{

g−1α (g) | α ∈ B, g ∈ G
}〉

Since we will be interested not only in the subgroup generated by the commutators with
automorphisms but also in the set of commutators itself, let us introduce the following,
less standard, notation:

Comm(G,B) :=
{
g−1α (g) | α ∈ B, g ∈ G

}

2.31 Proposition. Let Q be a quandle, Aut⊲ (Q) and Trans⊲ (Q) its automorphism

group and transvection group respectively. Then

CAut⊲(Q) (Trans⊲ (Q))

CAut⊲(Q) (Inn⊲ (Q))
−֒→ Z (Trans⊲ (Q)) (2.8)

while if Trans⊲ (Q) is centreless

CAut⊲(Q) (Trans⊲ (Q)) = CAut⊲(Q) (Inn⊲ (Q)) (2.9)

and if Q is faithful with centreless transvection group

CAut⊲(Q) (Trans⊲ (Q)) = 1 (2.10)

Proof. CAut⊲(Q) (Trans⊲ (Q)) is the centraliser of a normal subgroup, hence it is normal
itself (as shown for instance in [Hum96, Proposition 10.26]) and the function ∂ϕ̂x

from CAut⊲(Q) (Trans⊲ (Q)) to itself defined by ∂ϕ̂x (γ) := [γ, ϕx] = γϕxγ
−1ϕ−1x is well

defined.
We have that

∂ϕ̂x

(
CAut⊲(Q) (Trans⊲ (Q))

)
= Comm

(
CAut⊲(Q) (Trans⊲ (Q)) , ϕx

)

⊆ CAut⊲(Q) (Trans⊲ (Q)) ∩ [Aut⊲ (Q) , ϕx]

⊆ CAut⊲(Q) (Trans⊲ (Q)) ∩ Trans⊲ (Q)

= Z (Trans⊲ (Q))
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2. THE TRANSVECTION GROUP

Let us show that ∂ϕ̂x is a morphism. Let σ, τ ∈ CAut⊲(Q) (Trans⊲ (Q)).

∂ϕ̂x (στ) = στϕxτ
−1σ−1ϕ−1x

= σϕτ(x)ϕ
−1
x ϕxσ

−1ϕ−1x

= σϕxσ
−1ϕ−1x ϕτ(x)ϕ

−1
x

= ∂ϕ̂x (σ) ∂ϕ̂x (τ)

The kernel of ∂ϕ̂x is CAut⊲(Q) (Trans⊲ (Q)) ∩ CAut⊲(Q) (ϕx) = CAut⊲(Q) (Inn⊲ (Q)).
The last statements follow immediately from the fact that if Q is faithful then
CAut⊲(Q) (Inn⊲ (Q)) = 1.

Transvection Group of a Standard Crossed Set

2.32 Remark. If Q is a standard crossed set (see Definition 1.5) it is not reductive to
consider Q ⊆ G for some group G. In this case ϕx (y) = xyx−1 for every x, y ∈ Q and
ϕ can be extended from Q to G and it is both a rack and a group morphism from G

to Aut (G) whose kernel is Z (G).

2.33 Lemma ([AG03, Lemma 1.9]). If G is a group and Q ⊆ G is a standard crossed

set then

Inn⊲ (Q) ∼=
〈Q〉

Z (〈Q〉)
.

2.34 Proposition. Let G be a group, Q ⊆ G is a standard crossed set. Then

Trans⊲ (Q) ∼=

〈
QQ−1

〉

C〈QQ−1〉 (Q)

where C〈QQ−1〉 (Q) is the centraliser of Q in
〈
QQ−1

〉
.

Proof. Let t be in
〈
QQ−1

〉
, then t is of the form

∏
i xiy

−1
i for some xi, yi in Q and

ϕ (t) = ϕ

(
∏

i

xiy
−1
i

)
=
∏

i

ϕxi
ϕ−1yi

where ϕ associates to every element the automorphism determined by the conjugation
by that element and coincides with ϕQ on the elements of Q (Remark 2.32). The
second equality is justified by the fact that ϕ is a group morphism. This shows that
ϕ
(〈
QQ−1

〉)
⊆ Trans⊲ (Q). Conversely, if τ is in Trans⊲ (Q), it is of the form

∏
i ϕxi

ϕ−1yi
,

hence

τ = ϕ

(
∏

i

xiy
−1
i

)

where
∏

i xiy
−1
i is in

〈
QQ−1

〉
and ϕ

(〈
QQ−1

〉)
= Trans⊲ (Q). Finally, t ∈

〈
QQ−1

〉
∩

Ker (ϕ) if and only if t commutes with every x in Q, which are the generators of〈
QQ−1

〉
, hence the conclusion.
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A special case of this situation occurs when G is Inn⊲ (X) for some rack X, and the
standard subset taken into consideration is ϕ (X). In this case we have

2.35 Corollary. Let X be a rack. Then

Trans⊲ (ϕ (X)) ∼=
Trans⊲ (X)

Z (Inn⊲ (X)) ∩ Trans⊲ (X)

where with Z (Inn⊲ (X)) we denote the centre of Inn⊲ (X).

An application of this equality comes out when the rack is a connected quandle.

2.36 Proposition. Let Q be a connected quandle, x ∈ Q. If
∣

∣ϕ−1 (ϕx)
∣

∣ = i, K =
Z (Inn⊲ (Q)) ∩ Trans⊲ (Q) and |K| = k then k divides i and

i

k

∣

∣StabTrans⊲(Q) (x)
∣

∣ =
∣

∣StabTrans⊲(ϕ(Q)) (ϕx)
∣

∣ .

In particular, if StabTrans⊲(ϕ(Q)) (ϕx) = 1 then StabTrans⊲(Q) (x) = 1.

Proof. By Corollary 2.35, Trans⊲ (ϕ (Q)) is isomorphic to

Trans⊲ (Q)

Z (Inn⊲ (Q)) ∩ Trans⊲ (Q)

At the same time K is a subgroup of the centre of Trans⊲ (Q), and Trans⊲ (Q), being
Q a connected quandle, is transitive. In this case K is semiregular, i.e. for every x ∈ Q

StabK (x) = {1},and the orbits of K, xK , have all the cardinality of the group, k.
If we now take y = κ (x) for some κ ∈ K we have that

ϕy = ϕκ(x) = κϕxκ
−1 = ϕx

so that xK ⊆ ϕ−1 (ϕx) and ϕ−1 (ϕx) is partitioned in parts of size k, hence k divides i.
Moreover, since both Trans⊲ (Q) and Trans⊲ (ϕ (Q)) are transitive (on Q and ϕQ re-
spectively) and because of Corollary 2.35 we have that

|Q|
∣

∣StabTrans⊲(Q) (x)
∣

∣

|K|
= |ϕ (Q)|

∣

∣StabTrans⊲(ϕ(Q)) (ϕx)
∣

∣

Using Proposition 1.35 the equality becomes

|ϕ (Q)|
∣

∣ϕ−1 (ϕx)
∣

∣

∣

∣StabTrans⊲(Q) (x)
∣

∣

|K|
= |ϕ (Q)|

∣

∣StabTrans⊲(ϕ(Q)) (ϕx)
∣

∣

from which we obtain the desired

i

k

∣

∣StabTrans⊲(Q) (x)
∣

∣ =
∣

∣StabTrans⊲(ϕ(Q)) (ϕx)
∣

∣ .

In particular, if
∣

∣StabTrans⊲(ϕ(Q)) (ϕx)
∣

∣ = 1 and since
i

k
and

∣

∣StabTrans⊲(Q) (x)
∣

∣ are pos-

itive integers both k = i and
∣

∣StabTrans⊲(Q) (x)
∣

∣ = 1.
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2. THE TRANSVECTION GROUP

The last proposition gives us a bound for the order of the transvection group of
a finite connected quandle Q as function of the order of the transvection group of
ϕ (Q) and of the fibres ϕ−1 (ϕx). When Q is not faithful, ϕ (Q) is smaller than Q and
induction reasoning can be applied.

2.37 Corollary. Let Q be a connected quandle, x ∈ Q. Then the following inequality

holds:

|Trans⊲ (Q)| ≤ |Trans⊲ (ϕ (Q))|
∣

∣ϕ−1 (ϕx)
∣

∣
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Chapter 3

Homogeneous and Connected

Quandles

Coset Quandles

Using the coset quandle construction (Definition 1.36), given any group G, automor-
phism α ∈ Aut (G), and subgroup H ≤ G of elements fixed by α, we can construct
a homogeneous quandle whose elements are the right cosets G/H and whose order is
then the index of H in G. The first problem to address is that with many different
choices we obtain isomorphic quandles. Since we will consider left multiplications of
right cosets by elements of a group, let us introduce an appropriate notation.

3.1 Notation. Let G be a group, H ≤ G a subgroup, G/H the set of right cosets. For
every g ∈ G we can consider λg, the left multiplication of right cosets by g

λg (fH) := gfH (3.1)

The map g 7−→ λg defines a group morphism from G to SG/H which we denote by λG/H

λG/H (g) := λg (3.2)

3.2 Notation. Let ψ : G1 −→ G2 a group morphism and H ≤ G1. By ψG1/H we mean
the function from the set of right cosets G1/H to the set of right cosets G2/ψ (H)
determined by ψG/H (gH) = ψ (g)ψ (H).
We observe that in the specific case that α ∈ Aut (G1) (and then G1 = G2) and H is
α-admissible, i.e. α (H) = H, we have that αG1/H ∈ SG/H .

3.3 Lemma. Let Q = Q (G,H, α) be a coset quandle, and N ≤ H a subgroup of H.

If N EG then Q′ = Q

(

G

N
,
H

N
,αG/N

)

is a quandle and Q ∼= Q′.

Proof. Since N is composed of elements fixed by α, αG/N is an automorphism for
G

N
, and Q′ is well defined. Consider then the function πN : Q −→ Q′ defined by
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3. HOMOGENEOUS AND CONNECTED QUANDLES

πN (gH) = gNH/N .
πN is well defined and injective since

g−1
2

g
1
∈ H ⇐⇒ g−1

2
g
1
N ⊆ HN ⇐⇒ g−1

2
g
1
N ∈

HN

N
⇐⇒ g−1

2
g
1
N ∈

H

N

πN is also surjective. Let us show that it is a rack morphism.

πN (g1H ⊲ g2H) = πN
(

g1α
(

g−1
1

g2H
))

= g1α
(

g−1
1

g2
)

N
H

N
=

= g1Nα′
(

g−1
1

g2N
) H

N
= g1N

H

N
⊲ g2N

H

N
= πN (g1H) ⊲ πN (g2H)

Hence every normal (in G) subgroup of H gives a different coset representation for
Q (G,H, α). Since all such normal subgroups are contained in the normal G-core of H,
we are prompted to give the following definition.

3.4 Definition. A coset quandle Q = Q (G,H, α) is reduced if H is core free.

Let us now examine the relationship between the group G which a coset quandle is
constructed with and the automorphism group of the quandle.

3.5 Lemma. Let Q = Q (G,H, α) be a coset quandle and let g, f ∈ G. Then for each

g ∈ G the left translation λg (fH) = gfH is an automorphism of Q.

Proof. We already know that λg ∈ SG/H . Let us show that λg is a rack endomorphism.
Let g, f1, f2 ∈ G.

λg (f1H ⊲ f2H) = gf1α
(

f−1
1

f2
)

H = gf1α
(

f−1
1

g−1gf2
)

H = λg (f1H) ⊲ λg (f2H)

3.6 Lemma. Let Q = Q (G,H, α) be a coset quandle and let g ∈ G. Then the map

λG/H is a group morphism from G to Aut⊲ (Q).

Proof. Lemma 3.5 proves that λG/H can be corestricted to Aut⊲ (Q).

3.7 Lemma. Let Q = Q (G,H, α) be a coset quandle. λG/H embeds G in Aut⊲ (Q) if

and only if Q is reduced.

Proof. By Lemma 3.6 we have to show that Ker
(

λG/H

)

= CoreG (H). We proceed by
equivalences.

g ∈ Ker
(

λG/H

)

⇐⇒ ∀f ∈ G gfH = fH

⇐⇒ ∀f ∈ G g ∈ fHf−1

⇐⇒ g ∈ CoreG (H)

By Lemma 3.3, every coset quandle has a coset representation as a reduced coset
quandle, so it is appropriate, in order to study coset quandles, to consider only the
reduced ones which, by Lemma 3.7, is the same as requiring that the group is a group
of automorphisms for the quandle.
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Reduced Coset Quandles

In this section we try to translate rack properties of reduced coset quandles to group
properties.

3.8 Lemma. Let Q = Q (G,H, α) be a coset quandle. If F ≤ G is a subgroup

then λG/H (H ∩ F ) = StabλG/H(F ) (H). In particular, if Q is reduced, H ∩ F ∼=

StabλG/H(F ) (H).

Proof. We proceed by equivalences. For every f ∈ F

λf (H) = H ⇐⇒ fH = H ⇐⇒ f ∈ H

3.9 Proposition. Let Q = Q (G,H, α) be a reduced coset quandle. Q is faithful if and

only if H = CG (α).

Proof. We proceed by equivalences.

ϕg1H = ϕg2H ⇐⇒ ∀t ∈ G g1H ⊲ tH = g2H ⊲ tH

⇐⇒ ∀t ∈ G g1α
(

g−11 t
)

H = g2α
(

g−12 t
)

H

⇐⇒ ∀t ∈ Gα (t)−1 α (g2) g
−1
2 g1α

(

g−11

)

α (t) ∈ H

⇐⇒ ∀t ∈ G t−1α (g2) g
−1
2 g1α

(

g−11

)

t ∈ H

⇐⇒ α (g2) g
−1
2 g1α

(

g−11

)

∈ CoreG (H) = {1}

⇐⇒ g−12 g1 = α
(

g−12 g1
)

⇐⇒ g−12 g1 ∈ CG (α)

Q is faithful if and only if ∀g1, g2 ∈ G : ϕg1H = ϕg2H ⇐⇒ g−12 g1 ∈ H. By the
preceding equivalence ∀g1, g2 ∈ G ϕg1H = ϕg2H ⇐⇒ g−12 g1 ∈ CG (α). The conclusion
follows.

The following lemma shows that left multiplication permutation in a homogeneous
quandle shares the permutation structure of a group automorphism acting on right
cosets of (a subgroup of) its centraliser in the group. This fact puts a serious limitation
on the possible permutation structures on left multiplications of homogeneous quandles.

3.10 Lemma. Let Q = Q (G,H, α) be a coset quandle. Then for all g ∈ G

ϕ±1H (gH) = α±1 (g)H (3.3)

Proof. We proceed by equalities:

ϕ±1H (gH) = H ⊲±1 gH = α±1 (g)H
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We now give a characterisation of the transvection group of a reduced coset quandle.

3.11 Lemma. Let Q = Q (G,H, α) be a coset quandle, g0 ∈ G. Then for all g ∈ G

ϕg
0
Hϕ−1H (gH) =

[

g0, α
]

gH (3.4)

i.e. λG/H ([g, α]) = ϕ
g
0
H
ϕ−1H

Proof. We proceed by equalities:

ϕg
0
Hϕ−1H (gH)

(3.3)
= g0H ⊲ α−1 (g)H = g0α

(

g−10 α−1 (g)
)

H =
[

g0, α
]

gH (3.5)

3.12 Proposition. Let Q = Q (G,H, α) be a reduced coset quandle. Then

Trans⊲ (Q) ∼= [G,α]

More precisely, λG/H ([G,α]) = Trans⊲ (Q)

Proof. We already know (by Proposition 3.7) that λG/H is an isomorphism on its image.
But, by Lemma 3.11, we see that λG/H is a bijection between the generators of [G,α]
and those of Trans⊲ (Q), hence the conclusion.

Minimal Coset Representation for Connected Quandles

By Joyce’s result reported in Proposition 1.40, every homogeneous quandle has a repre-
sentation as a coset quandle. Connected quandles admit a minimal such representation
as cosets of the transvection group. The existence of this minimal coset representation
is proved in [HSV14, Theorem 3.5]. We give here a slightly different proof.

3.13 Proposition. Let Q be a homogeneous quandle, x ∈ Q, and let G be a transitive

group of automorphisms of Q, invariant under ϕ̂x, the conjugation by ϕx. Then Q ∼=
Q (G, StabG (x) , ϕ̂x).

Proof. Let us set StabG (x) = H and define π : Q (G,H, ϕ̂x) −→ Q by setting gH 7−→

g (x). The map is well defined and injective because g1H = g2H ⇐⇒ g−12 g1 ∈

StabG (x). It is surjective because G is transitive. Moreover, we have:

π (g1H ⊲ g2H) = π
(

g1ϕxg
−1
1 g2ϕ

−1
x H

)

= g1ϕxg
−1
1 g2ϕ

−1
x (x) =

= ϕg1(x)g2 (x) = g1 (x) ⊲ g2 (x) = π (g1) ⊲ π (g2)

and π is a rack morphism.

3.14 Lemma. Let Q be an homogeneous quandle, x ∈ Q, and let G be a transitive group

of automorphisms of Q, invariant under ϕ̂x, the conjugation by ϕx. Then Trans⊲ (Q) ≤
G.
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Proof. Let y ∈ Q. Then there is g ∈ G such that y = g (x) and

ϕyϕ
−1
x = gϕxg

−1ϕ−1x ∈ G

Hence every generator of Trans⊲ (Q) is in G and the conclusion follows.

3.15 Lemma. Let Q = Q (G,H, α) be a coset quandle. Then

ϕ̂HλG/H = λG/Hα (3.6)

where λG/H is defined in Notation 3.1 and ϕ̂H is the conjugation by ϕH .

Proof. For every f, g ∈ G

ϕHλgϕ
−1
H (fH) = α

(

gα−1 (f)
)

H = λα(g) (fH) .

Hence, for every g ∈ G, ϕ̂HλG/H (g) = λG/Hα (g) and we are done.

3.16 Lemma. Let Q = Q (G,H, α) be a coset quandle. Then λG/H (G) is transitive

and invariant under ϕ̂H , the conjugation by ϕH .

Proof. Let f1H, f2H ∈ Q and λ
f2f

−1

1

∈ λG/H (G) the left multiplication by f2f
−1
1 .

Then f2H = λ
f2f

−1

1

(f1H) hence λG/H (G) is transitive. Moreover for every g ∈ G by

Lemma 3.15
ϕ̂HλG/H (g) = λG/Hα (g)

hence λG/H (G) is invariant under ϕ̂H .

3.17 Corollary. Let Q = Q (G,H, α) be a coset quandle. Then Trans⊲ (Q) ≤ λG/H (G).

Proof. Put together Lemma 3.16 and Lemma 3.14.

3.18 Corollary. Let G be a finite group and Q := Q (G,H, α) a coset quandle. If

|G| = |Trans⊲ (Q)| then G ∼= Trans⊲ (Q) and Q is connected.

Proof. By Corollary 3.17, Trans⊲ (Q) embeds in a quotient of G. But if they are both
finite and of the same order they must be isomorphic. And since G is transitive on Q,
so is Trans⊲ (Q), and Q is connected.

We are now ready to prove the following

3.19 Theorem (Minimal coset representation of a connected quandle [HSV14, Theo-
rem 3.10]).
Let Q be a connected quandle, x ∈ Q. Then

Q ∼= Q
(

Trans⊲ (Q) , StabTrans⊲(Q) (x) , ϕ̂x

)

where ϕ̂x is the conjugation by ϕx. Moreover, if Q is isomorphic to some coset quandle

Q (G,H, a) then Trans⊲ (Q) embeds in some quotient of G.

31
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Proof. Trans⊲ (Q) is transitive on Q (by Proposition 2.5) and, since it is normal in
Inn⊲ (Q), it is invariant under ϕ̂x, hence by Proposition 3.13

Q ∼= Q
(
Trans⊲ (Q) , StabTrans⊲(Q) (x) , ϕ̂x

)

Moreover, if we set Q1 = Q (G,H, α), by Corollary 3.17 and since the transvection
group is an invariant for a rack (see Corollary 2.9), we have Trans⊲ (Q) ∼= Trans⊲ (Q1) ≤
λα,H (G).

Some consequences of the minimality of this coset representation are the following.

3.20 Corollary. A finite connected quandle Q is principal if and only if

|Q| = |Trans⊲ (Q)| .

Proof. If Q is principal then there is a group G with an automorphism α such that
Q ∼= Q (G,α), in particular |Q| = |G|. By Theorem 3.19, |G| ≥ |Trans⊲ (Q)| and since
Trans⊲ (Q) is transitive on Q, |Q| ≤ |Trans⊲ (Q)|, hence |Q| = |Trans⊲ (Q)|.

Suppose now that |Q| = |Trans⊲ (Q)|. For every x ∈ Q, by Theorem 3.19 |Q| =∣∣Trans⊲ (Q) / StabTrans⊲(Q) (x)
∣∣. If Q is finite we can conclude that StabTrans⊲(Q) (x) =

{1} and Q is principal.

3.21 Corollary ([HSV14, Theorem 5.3]). A connected quandle Q is affine if and only

if Trans⊲ (Q) is abelian.

Proof. If Q is affine then Q ∼= Q (A,α) with A an abelian group. By Theorem 3.19
Trans⊲ (Q) embeds in a quotient of A and hence it is abelian.
Vice versa, again by Theorem 3.19, Q ∼= Q

(
Trans⊲ (Q) , StabTrans⊲(Q) (x) , ϕ̂x

)
and if

Trans⊲ (Q) is abelian, by definition, Q is affine.

The Isomorphism Problem for Connected Coset Quandles

We now study the isomorphism problem for connected coset quandles. The following
Proposition is a generalisation of what Andruskiewitsch and Graña described in [AG03,
Lemma 1.23] for connected affine quandles.

3.22 Proposition. Let Q1 = Q (G1, H1, α1) and Q2 = Q (G2, H2, α2) be reduced

connected coset quandles. Then Q1
∼= Q2 if and only if there is an isomorphism β :

[G1, α1]
∼

−−→ [G2, α2] such that β (H1 ∩ [G1, α1]) = H2 ∩ [G2, α2] and βα1 = α2β.

Proof. Suppose that there is an isomorphism γ : Q1
∼

−−→ Q2. Without loss of generality
we can suppose that γ (H1) = H2. Suppose in fact that γ (H1) 6= H2. Since Q2 is
connected, there is τ ∈ Trans⊲ (Q2) such that τγ (H1) = H2 and we can consider the
isomorphism τγ : Q1

∼

−−→ Q2 which has the required property. Then, by Proposition
2.19, there is an isomorphism ψ : Trans⊲ (Q1)

∼

−−→ Trans⊲ (Q2) such that

a) ψϕ̂H1
a−1 = ϕ̂H2

.
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b) ψ
(
StabTrans⊲(Q1) (H1)

)
= StabTrans⊲(Q2) (H2).

By Proposition 3.12, λGj/Hj
: [Gj , αj ]

∼

−−→ Trans⊲ (Qj), j = 1, 2 is an isomorphism and

we can define β : [G1, α1]
∼

−−→ [G2, α2] by β := λ−1G2/H2

ψλG1/H1
. Let us verify that β

satisfies the required properties.

β (H1 ∩ [G1, α1]) = λ−1G2/H2

aλG1/H1
(H1 ∩ [G1, α1])

3.8
= λ−1G2/H2

ψ
(
StabλG/H([G1,α1]) (H1)

)

3.12
= λ−1G2/H2

ψ
(
StabTrans⊲(Q1) (H1)

)

b)
= λ−1G2/H2

(
StabTrans⊲(Q2) (H2)

)

3.12
= λ−1G2/H2

(
StabλG/H([G2,α2]) (H2)

)

3.8
= H2 ∩ [G2, α2]

and

βα1 = λ−1G2/H2

ψλG1/H1
α1

(3.6)
= λ−1G2/H2

aϕ̂H1
λG1/H1

a)
= λ−1G2/H2

ϕ̂H2
ψλG1/H1

(3.6)
= α2λ

−1
G2/H2

aλG1/H1

= α2β

Suppose now that there is an isomorphism β : [G1, α1]
∼

−−→ [G2, α2] such that β(H1 ∩

[G1, α1]) = H2∩[G2, α2] and βα1 = α2β. We can define ψ : Trans⊲ (Q1)
∼

−−→ Trans⊲ (Q2)
by ψ := λG2/H2

βλ−1G1/H1

. With computations analogous to those used for the other

implication it can be shown that ψ satisfies the properties a) and b) and that, by
Proposition 2.19, Q1 and Q2 are isomorphic.

We restate the previous result adding, to the hypotheses, that we have two coset
quandles built starting with the same group, isomorphic to the transvection group (i.e.
two minimal coset representations). We obtain in this way an isomorphism criterion
useful when constructing new connected quandles starting with groups.

3.23 Lemma. Let Q = Q (G,H, α) be a reduced coset quandle. If G = [G,α] then Q
is connected.

Proof. Since G = [G,α], we have that λG/H ([G,α]) is transitive and since Q is reduced,
by Proposition 3.12 also Trans⊲ (Q) is transitive, hence Q is connected.
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3.24 Remark. Whilst, in general, [G,α] is a proper normal subgroup of G, it may
well happen that [G,α] = G. If G is simple, for instance, being [G,α] normal, the
equality is necessary, for every automorphism α. Another source of examples are racks
themselves. If Q is a connected finite quandle, by Theorem 3.19,

Q ∼= Q
(
Trans⊲ (Q) , StabTrans⊲(Q) (ϕ̂x)

)

, and by Proposition 3.12, Trans⊲ (Q) ∼= [Trans⊲ (Q) , ϕ̂x], which in turn, in the finite
context, is sufficient to prove equality.

3.25 Corollary. Let Q1 = Q (G,H1, α1) and Q2 = Q (G,H2, α2) be two reduced coset

quandles. If G = [G,α1] = [G,α2] then Q1
∼= Q2 if and only if there is a group

automorphism γ of G such that α1 = γα2γ
−1 and γ (H2) = H1.

Proof. Apply Proposition 3.22 with G = G1 = G2, knowing that by Lemma 3.23, Q1

and Q2 are connected.

If we consider as subgroup of fixed points the whole group of fixed points the
statement simplifies as follows.

3.26 Corollary. Let Q1 = Q (G,CG (α1) , α1) and Q2 = Q (G,CG (α2) , α2) be two

reduced coset quandles. If G = [G,α1] = [G,α2] then Q1
∼= Q2 if and only if there is a

group automorphism γ of G such that α1 = γα2γ
−1.

Proof. By Proposition 3.25, we have only to check that if g ∈ CG (α2) then γ (g) ∈
CG (α1). Let us compute

α1γ (g) = γα2 (g) = γ (g)

and we are done.

The Automorphism Group of a Connected Quandle

In this section we aim at giving a description of the automorphism group of a connected
quandle by means of its transvection group. This is done also in [HSV14, Proposition
4.8] where the rôle of the transvection group is played by the inner automorphism
group.
Let us state what happens if we restrict the isomorphism (2.6) to the stabiliser of an
element of the quandle in the automorphism group Aut⊲ (Q).

3.27 Proposition. Let Q be a quandle. Then

StabAut⊲(Q) (x)

StabAut⊲(Q) (x) ∩ CAut⊲(Q) (Trans⊲ (Q))

is isomorphic to

CAut(Trans⊲(Q)) (ϕ̂x) ∩ StabAut(Trans⊲(Q))

(
StabTrans⊲(Q) (x)

)
∩ Ind⊲ (Q)

where StabAut(Trans⊲(Q))

(
StabTrans⊲(Q) (x)

)
is the set-wise stabiliser, i.e.it is

{
β ∈ Aut (Trans⊲ (Q)) | β

(
StabTrans⊲(Q) (x)

)
= StabTrans⊲(Q) (x)

}
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Proof. If we restrict the morphism from Aut⊲ (Q) to Aut (Trans⊲ (Q)), given by conju-
gation, to StabAut⊲(Q) (x), under the conditions listed in Proposition 2.23, we can take
xi0 = yi0 = x. Among the conditions for an automorphism ψ of Trans⊲ (Q) to be an
image of an element of the stabiliser of x, there are

i) ψ
(
StabTrans⊲(Q) (x)

)
= StabTrans⊲(Q) (x),

i.e. ψ ∈ StabAut(Trans⊲(Q))

(
StabTrans⊲(Q) (x)

)
.

ii) ψϕ̂xψ
−1 = ϕ̂x i.e. ψ ∈ CAut(Trans⊲(Q)) (ϕ̂x).

The conclusion follows from the isomorphism theorems.

3.28 Proposition. Let Q be a quandle. If Q is connected then

StabAut⊲(Q) (x) ∼= CAut(Trans⊲(Q)) (ϕ̂x) ∩ StabAut(Trans⊲(Q))

(
StabTrans⊲(Q) (x)

)
(3.7)

If moreover Q is faithful then

StabAut⊲(Q) (x) ∼= CAut(Trans⊲(Q)) (ϕ̂x) (3.8)

Proof. By Proposition 3.27, we need to show that, under the hypothesis that Q is
connected,

StabAut⊲(Q) (x) ∩ CAut⊲(Q) (Trans⊲ (Q)) = {1} (3.9)

and that

CAut(Trans⊲(Q)) (ϕ̂x) ∩ StabAut(Trans⊲(Q))

(
StabTrans⊲(Q) (x)

)
⊆ Ind⊲ (Q) (3.10)

Since Q is connected, Trans⊲ (Q) is transitive (by 2.5), hence the centraliser of a transi-
tive subgroup must be semiregular, which is the same as (3.9). To prove (3.10) we have
to show that if ψ ∈ CAut(Trans⊲(Q)) (ϕ̂x)∩StabAut(Trans⊲(Q)) (x) it satisfies the conditions
to be in Ind⊲ (Q). But in the connected case the set of representatives for the orbits of
Q under Trans⊲ (Q) reduces to x, so all the conditions are satisfied by ψ.
If moreover Q is faithful then

ψ (x) = x ⇐⇒ ψϕxψ
−1 = ϕx ⇐⇒ ϕ̂x (ψ) = ψ

hence StabTrans⊲(Q) (x) = CTrans⊲(Q) (ϕ̂x).
If β ∈ CAut(Trans⊲(Q)) (ϕ̂x) and h ∈ CTrans⊲(Q) (ϕ̂x)

ϕ̂x (β (h)) = β (ϕ̂x (h)) = β (h)

hence β
(
CTrans⊲(Q) (ϕ̂x)

)
⊆ CTrans⊲(Q) (ϕ̂x) and since β is an automorphism

β
(
CTrans⊲(Q) (ϕ̂x)

)
= CTrans⊲(Q) (ϕ̂x)

hence CAut(Trans⊲(Q)) (ϕ̂x) ⊆ StabAut(Trans⊲(Q))

(
StabTrans⊲(Q) (x)

)
and

CAut(Trans⊲(Q)) (ϕ̂x) ∩ StabAut(Trans⊲(Q))

(
StabTrans⊲(Q) (x)

)
= CAut(Trans⊲(Q)) (ϕ̂x)
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Proposition 3.28 gives us a way to describe the automorphism group of a connected
quandle by means of its transvection group. This is done also in [HSV14, Proposition
4.8] where the rôle of the transvection group is played by the inner automorphism
group.

3.29 Proposition. Let Q be a connected quandle, Aut⊲ (Q) and Trans⊲ (Q) its auto-

morphism group and transvection group respectively. Let moreover

A := CAut(Trans⊲(Q)) (ϕ̂x) ∩ StabAut(Trans⊲(Q))

(
StabTrans⊲(Q) (x)

)

and

T := {τ ∈ Trans⊲ (Q) | τ̂ ∈ A}

Then

Aut⊲ (Q) ∼=
Trans⊲ (Q)⋊A

{(τ, τ̂) |τ ∈ T}
(3.11)

If Q is faithful the isomorphism becomes

Aut⊲ (Q) ∼=
Trans⊲ (Q)⋊ CAut(Trans⊲(Q)) (ϕ̂x)

{(τ, τ̂) |τ ∈ T}
(3.12)

Proof. By Proposition 3.28, A is isomorphic to StabAut⊲(Q) (x). If ψ ∈ A let us call

ψ′ ∈ StabAut⊲(Q) (x) such that ψ = ψ̂′. Let us define Ψ : Trans⊲ (Q) ⋊ A −→ Aut⊲ (Q)
by Ψ (τ, ψ) = τψ′. Let us show that Ψ is a morphism.

Ψ ((τ1, ψ1) (τ2, ψ2)) = Ψ (τ1ψ1 (τ2) , ψ1ψ2)

= τ1ψ1 (τ2) (ψ1ψ2)
′

= τ1ψ1 (τ2)ψ
′

1ψ
′

2

= τ1ψ
′

1ψ̂
′−1
1 (ψ1 (τ2))ψ

′

2

= τ1ψ
′

1τ2ψ
′

2

= Ψ(τ1, ψ1)Ψ (τ2, ψ2)

Since Trans⊲ (Q) is transitive, Ψ is surjective and

Ψ (τ, ψ) = 1 ⇐⇒ τ = ψ′−1

⇐⇒ τ̂ = ψ−1

⇐⇒ τ̂ ∈ A

The second statement follows in the same way substituting everywhere A with
CAut(Trans⊲(Q)) (ϕ̂x).
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The Derived Subgroup Lemma

We end this chapter with a lemma which, under suitable hypotheses, gives us an upper
bound for the stabiliser of a point in the transvection group of a connected quandle.

3.30 Lemma. Let G be a finite group, α ∈ Aut (G) one of its automorphisms. If

G = [G,α] then CG (α) ≤ [G,G].

Proof. Let A = G/ [G,G] be the abelianisation of G. Since [G,G] is characteristic in
G, it is invariant under α so that α becomes an automorphism of A, which, by abuse
of notation, we continue to denote with α. Let now us define

∂α: A −→ A
a 7−→ aα

(
a−1

)

Since A is commutative and α is an endomorphism of A, ∂α is an endomorphism of A
too. Notice that if a = g [G,G] for some g ∈ G

∂α (a) = aα
(
a−1

)

= g [G,G]α (g [G,G])

= gα
(
g−1

)
[G,G]

where in the last term α is the automorphism of G and not its restriction to A as in
the definition of ∂α. Since G = [G,α] we have

A =
〈
gα

(
g−1

)
[G,G]

〉
g∈G

= 〈∂α (g [G,G])〉g∈G

= ∂α (A)

i.e. ∂α is surjective. In the finite setting this means that ∂α is also injective and then
an automorphism.
Let now h be an element of CG (α). We have

∂α (h [G,G]) = hα
(
h−1

)
[G,G] = [G,G]

Thus h [G,G] ∈ Ker (∂α) = {[G,G]}. We can then conclude that h [G,G] = [G,G] and
h is in [G,G].

3.31 Proposition. If X is a finite rack with a transitive transvection group, Trans⊲ (Q),
then, for each x in X, StabTrans⊲(Q) (x) ≤ [Trans⊲ (Q),Trans⊲ (Q)].

Proof. Let ϕ̂x be the automorphism of Trans⊲ (Q) induced by conjugation by ϕx. We
have that

[Trans⊲ (Q) , ϕ̂x] =
〈
τϕxτ

−1ϕ−1x |τ ∈ Trans⊲ (Q)
〉

=
〈
ϕτ(x)ϕ

−1
x |τ ∈ Trans⊲ (Q)

〉

=
〈
ϕyϕ

−1
x |y ∈ X

〉

= Trans⊲ (Q)
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We also know that if ξ ∈ StabTrans⊲(Q) (x) we have ϕ̂x (ξ) = ξ, hence StabTrans⊲(Q) (x) ∈
CTrans⊲(Q) (ϕ̂x).
We conclude using Lemma 3.30 with G = Trans⊲ (Q) and α = ϕ̂x.
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Chapter 4

Rack Quotients

A Connection for Rack Projections

Given a projection of racks π : X −։ Y there is an induced projection, Inn⊲ (π),
between their inner automorphism groups and, by restriction and corestriction, between
their transvection groups (see Proposition 2.7). In this section we investigate to what
extent we are able to associate to a projection of the transvection group a projection
of the rack. A first observation is that, for a normal subgroup of Trans⊲ (X) to be
the kernel of an induced projection Trans⊲ (π), it is necessary that it is normal also in
Inn⊲ (X), being Trans⊲ (π) a restriction of Inn⊲ (π). This fact prompts us to give the
following definition.

4.1 Definition. Let X be a rack. A subgroup N of Trans⊲ (X) is admissible if N is
normal in Inn⊲ (X).

Note that all characteristic subgroups of the transvection group are admissible,
since a characteristic sugroup of a normal subgroup is itself normal. Let us give a
characterisation of admissible subgroups of the transvection group which will let us
simplify some proofs.

4.2 Lemma. Let X be a rack, x ∈ X. A subgroup N of Trans⊲ (X) is normal in

Inn⊲ (X) if and only if it is normal in Trans⊲ (X) and invariant under ϕ̂x, i.e.

ϕ̂x (N) = ϕxNϕ−1
x

= N

Proof. One implication is trivial. As for the other, let α ∈ Inn⊲ (X). By definition of
Trans⊲ (X), there are τ ∈ Trans⊲ (X) and n ∈ N such that α = τϕn

x
. Suppose then that

N is normal in Trans⊲ (X) and invariant under ϕ̂x. We have that

αNα−1 = τϕn

x
Nϕ−n

x
τ−1 = τNτ−1 = N
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One may wonder if this condition (of being admissible) is also sufficient for a normal
subgroup of the transvection group to be the kernel of an induced projection of racks,
Inn⊲ (π). In general this is not the case, not even for connected quandles.

4.3 Example. Let us consider the small quandle Q := Q27,7 (the numeration is as
indicated in the database of connected quandles of [RIG], a package of the Computer
Algebra System [GAP13], and is analogous to that one for small groups). Using the
functions of RIG it can be computed that |Trans⊲ (Q)| = 81 and that |Z (Trans⊲ (Q))| =
3. Since Z (Trans⊲ (Q)) is characteristic in Trans⊲ (Q), it is a normal subgroup of
Inn⊲ (Q). Let π : Q −։ Q′ be a projection of racks such that ker (π) = Z (Trans⊲ (Q)).
By Proposition 1.35, the order of Q′ is either 27, 9, 3 or 1. Let us see that in each case
Kπ := ker (π) ∩ Trans⊲ (Q) 6= Z (Trans⊲ (Q)).
If |Q′| = 27 then π is an isomorphism and 1 = Kπ 6= Z (Trans⊲ (Q)).
If |Q′| = 1 then Trans⊲ (Q) = Kπ 6= Z (Trans⊲ (Q)).
If |Q′| = 9 or 3 then, by the known classification of connected quandles of order p or
p2, for any prime p (see Theorem 5.11 and Theorem 5.13), in either case Q′ is affine.
This implies, by Proposition 1.39, that Q′ is principal and that, by Corollary 3.20,
that |Trans⊲ (Q

′)| = |Q′|. This last fact implies that when |Q′| = 9 or 3, |Kπ| = 9
or 27 respectively. In both case Kπ 6= Z (Trans⊲ (Q)). Since for every projection π,
Z (Trans⊲ (Q)) 6= ker (π) ∩ Trans⊲ (Q), we deduce that that there is no projection π

such that ker (π) = Z (Trans⊲ (Q)).

Let us give a characterisation of the elements in the kernel of an induced projection.

4.4 Lemma. Let π : X −։ Y be a projection of racks, Inn⊲ (π) : Inn⊲ (X) −։ Inn⊲ (Y )
the induced projection between the inner automorphism groups. Then

α ∈ Ker (Inn⊲ (π)) ⇐⇒ ∀x ∈ X : πα (x) = π (x) (4.1)

Proof. We proceed by equivalences.

α ∈ Ker (Inn⊲ (π)) ⇐⇒ ∀x ∈ X : Inn⊲ (π) (α) (π (x)) = π (x)

1.28
⇐⇒ ∀x ∈ X : πα (x) = π (x)

On the other hand, every admissible subgroup of the transvection group determines
a quotient of racks that factorises through the structural morphism ϕ.

4.5 Notation. Let G be a group N EG, S ⊆ G. From now on

SN

N
:= {gN : g ∈ S}

Note that if S is a group the notation coincides with the usual notation for quotient
groups.
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4.6 Proposition. If X is a rack, and N is a normal subgroup of Inn⊲ (X), then

ϕ (X)N/N has a structure of rack given by

ϕxN ⊲ ϕyN = ϕx⊲yN

Proof. ϕ (X)N/N is the image of X under πNϕ (where πN is the canonical projection
from Inn⊲ (X) to Inn⊲ (X) /N) and every morphism of groups is a morphism between
the corresponding conjugation quandles.

4.7 Definition. Let X be a rack and N E Inn⊲ (X). ϕ (X)N/N endowed with the
operation defined by

ϕxN ⊲ ϕyN = ϕx⊲yN

is the quotient quandle of X by N and will be denoted by X/N .

4.8 Notation. Let X be a rack, N a normal subgroup of Inn⊲ (X). From now on

ϕN := πNϕ

where πN is the canonical projection of Inn⊲ (X) onto Inn⊲ (X) /N . Note that, when
N = 1, ϕN = ϕ, the structural morphism of X.

We verify next that the structure of the quotient quandle defined by a normal
subgroup N of Inn⊲ (X) is completely determined by the intersection of N with the
transvection subgroup Trans⊲ (X), so that in investigating the quotients determined by
normal subgroups of Inn⊲ (X), we can limit ourselves to considering only the admissible
subgroups of Trans⊲ (X).

4.9 Proposition. Let X be a rack and M and N normal subgroups of Inn⊲ (X). If

M ∩ Trans⊲ (X) = N ∩ Trans⊲ (X) then ϕ (X)M/M is isomorphic to ϕ (X)N/N .

Proof. If M ∩ Trans⊲ (X) = N ∩ Trans⊲ (X), define χ from ϕ (X)M/M to ϕ (X)N/N
by χ (ϕxM) = ϕxN . Since

ϕxM = ϕyM ⇔ ϕxϕ
−1

y ∈ M ∩ Trans⊲ (X)

⇔ ϕxϕ
−1

y ∈ N ∩ Trans⊲ (X)

⇔ ϕxN = ϕyN

⇔ χ (ϕxM) = χ (ϕyM)

we know that χ is well-defined and injective. Surjectivity and the fact that it is a
quandle morphism are clear.

We can then iterate the process (of going to and fro between projections and ad-
missible subsets) and consider the induced projection Inn⊲ (ϕN ) and its kernel. The
next lemma gives a characterisation of the kernel of Inn⊲ (ϕN ).
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4. RACK QUOTIENTS

4.10 Lemma. Let X be a rack, N an admissible subgroup of Trans⊲ (X). Then

α ∈ Ker (Inn⊲ (ϕN )) ⇐⇒ αN ∈ Z

(

Inn⊲ (X)

N

)

(4.2)

In particular N ≤ Ker (Inn⊲ (ϕN )).

Proof. We proceed by equivalences.

α ∈ Ker (Inn⊲ (ϕN ))
(4.1)
⇐⇒ ∀x ∈ X : πNϕα (x) = πNϕ (x)

1.1
⇐⇒ ∀x ∈ X : αϕxα

−1N = ϕxN

⇐⇒ ∀β ∈ Inn⊲ (X) : αβα−1N = βN

⇐⇒ αN ∈ Z

(

Inn⊲ (X)

N

)

4.11 Remark. Let us fix a rack X. The set of isomorphism classes ofrack projections
originating from X is a poset (the order is given by π|π′ ⇐⇒ ∃ψ : π′ = ψπ) and so
is the set of admissible subgroups of Trans⊲ (X) (by inclusion). The maps L (N) = ϕN

and R (π) = Ker (Inn⊲ (π)) are indeed order preserving maps between the two posets
but the connection fails to be (monotonic) Galois because while N ⊂ RL (N) we have
π|LR (π) and not LR (π) |π as it would be required by the definition.

The fact that the connection between projections of a rack and the admissible
subgroups of its transvection group is not Galois hampers the research of a closure (in
the order-theoretic sense) for the order relation between admissible subgroups. It is
nonetheless possible to find a group-theoretic criterion for it, based on Lemma 4.10.

4.12 Proposition. Let X be a rack, N an admissible subgroup of Trans⊲ (X). Then

Ker
(

Inn⊲
(

ϕN

))

= N ⇐⇒ Z

(

Inn⊲ (X)

N

)

= {N}

In particular, if Kπ = Ker (Inn⊲ (π)) ∩ Trans⊲ (X), for some rack projection π : X −։

Y , and Y is faithful then Ker
(

Inn⊲ (ϕKπ
)

)

= Kπ.

Proof. The first statement is an immediate consequence of Lemma 4.10. The second
follows from the fact that by Remark 1.11 if Y is faithful then

Inn⊲ (Y ) ∼= Inn⊲ (X) /Ker (Inn⊲ (π))

is centreless.
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On the Kernel of Projections by Admissible Subgroups

We now turn our attention to Trans⊲ (ϕN ) as a projection of Trans⊲ (X).

4.13 Notation. Let π : X −։ Y be a projection of racks and Trans⊲ (π) : Trans⊲ (X)
−։ Trans⊲ (Y ) the induced projection between the transvection groups. From now on
the kernel of Trans⊲ (π) will be denoted by Kπ.

Kπ := Ker (Inn⊲ (π)) ∩ Trans⊲ (X) (4.3)

In the special case that π = ϕN , for some admissible subgroup of Trans⊲ (X), we will
use KN := Kϕ

N

as an additional simplification of the notation.

We have that

Trans⊲

(
X

N

)
∼=

Trans⊲ (X)

KN

(4.4)

4.14 Definition ([Bae45, Definition after Lemma 1]). Let S and T be subsets of a
group G. The commutator quotient of S and T in G, S ÷ T is the subset

S ÷ T = {g ∈ G | [T, g] ⊆ S}

4.15 Lemma ([Bae45, stated after Lemma 2]). Let G be a group, N a normal subgroup
of G. Then

N ÷G

N
= Z

(
G

N

)

4.16 Lemma. Let X be a rack and N an admissible subgroup of Trans⊲ (X). Then
KN = N ÷ Inn⊲ (X). In particular, for any x ∈ X, [KN , ϕ̂x] ≤ N .

Proof. By Lemma 4.10, KN is the intersection of the preimage of the centre of
Inn⊲ (X)

N
with Trans⊲ (X).

4.17 Lemma. Let X be a rack and N an admissible subgroup of Trans⊲ (X). Then
N ≤ KN .

Proof. By Lemma 4.10 N ≤ Ker (Inn⊲ (ϕN )), at the same time N is in Trans⊲ (X) so
that N ≤ Ker (Inn⊲ (ϕN )) ∩ Trans⊲ (X) = KN .

4.18 Lemma. Let X be a connected rack, x ∈ X and N a normal subgroup of Inn⊲ (X).
If Trans⊲ (X) is transitive (this hypothesis in verified, in particular, if X is a quandle)
then

ϕN
−1 (ϕxN) = xM (4.5)

where

M = π−1N


CTrans⊲ (X)

N

(ϕ̂x)


 =

{
τ ∈ Trans⊲ (X) | τϕxτ

−1ϕ−1x ∈ N
}
= N ÷ {ϕ̂x}
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4. RACK QUOTIENTS

Proof. We proceed by equivalences. Let y ∈ X be an element.

y ∈ ϕN
−1 (ϕxN) ⇐⇒ ϕyϕ

−1
x ∈ N

⇐⇒ ∃ν ∈ N ∃τ ∈ Trans⊲ (X) : ϕτ(x)ϕ
−1
x = ν

1.1
⇐⇒ ∃ν ∈ N ∃τ ∈ Trans⊲ (X) : τϕxτ

−1ϕ−1x = ν

⇐⇒ ∃τ ∈ M : y = τ (x)

4.19 Lemma. Let X be a connected rack, x ∈ X and N a normal subgroup of Inn⊲ (X).
If Trans⊲ (X) is transitive (hence, in particular, if X is a quandle) then

xN ⊆ ϕN
−1 (ϕxN) (4.6)

and, in particular if X is finite then
∣

∣xN
∣

∣ divides
∣

∣ϕN
−1 (ϕxN)

∣

∣.

Proof. The first statement follows from Lemma 4.18 and the fact that N ≤ M where
M is defined as in the abovementioned lemma. The second statement follows from the
fact that N being normal in a transitive group is half-transitive, hence the orbits of N
form a partition of the fibre in parts of equal size.

The following proposition is essential for induction arguments based on the order
of a rack and of its quotients.

4.20 Proposition. Let X be a finite connected rack, x ∈ X and N an admissible
subgroup of Trans⊲ (X). If N is a non-trivial subgroup of Trans⊲ (X) then X/N is a
non-trivial quotient of X.

Proof. Suppose that X and X/N are isomorphic. By Proposition 2.9, Trans⊲ (X) is
isomorphic to Trans⊲ (X/N) which is isomorphic to Trans⊲ (X) /KN and, as observed
in Lemma 4.17, KN contains N . Hence it follows that N ≤ KN = {1}, contradiction.
Suppose that X/N is the trivial quandle. Since X is connected so must be X/N , so
X/N must have only one element. Then ϕxN = ϕyN , i.e. ϕ−1y ϕx ∈ N for every x and
y in X, but this means that N = Trans⊲ (X), contradiction.

A consequence of Proposition 4.20 is the following result.

4.21 Corollary. Let X be a finite connected rack and N a normal subgroup of Inn⊲ (X).
Then the intersection of N with Trans⊲ (X) is not trivial if and only if the intersection
of N with ϕ (X)ϕ (X)−1 is not trivial.

Proof. Suppose that N has a non trivial intersection M with Trans⊲ (X). By Proposi-
tion 4.20, ϕ (X)M/M is a proper projection of X and there are x and y in X, distinct,
such that ϕxM = ϕyM , that is ϕxϕ

−1
y is not the unity and is in M and N has non-

trivial intersection with ϕ (X)ϕ (X)−1.
Since ϕ (X)ϕ (X)−1, is included in Trans⊲ (X) the other implication is immediate.
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4.22 Lemma. Let π : X −։ Y be a projection of racks, x, y ∈ X. If π (x) = π (y)
then ϕyϕ

−1
x ∈ Kπ

Proof.

π (y) = π (x) =⇒ϕπ(y) = ϕπ(x)

2.20
⇐⇒ Inn⊲ (π) (ϕy) = Inn⊲ (π) (ϕx)

⇐⇒ϕyϕ
−1
x ∈ Kπ

In order to gain information on the structure (and in particular on the order, in the
finite case) of Kπ we can consider its action on the elements of a fibre π−1 (π (x)).

4.23 Lemma. Let π : X −։ Y be a projection of racks, x ∈ X. Then Kπ

(

π−1 (π (x))
)

=
π−1 (π (x)) and the restriction and corestriction of the elements of Kπ to the elements

of π−1 (π (x)) gives a group morphism from Kπ to Sπ−1(π(x)) whose kernel is

CKπ

(

π−1 (π (x))
)

=
⋂

y∈π−1(π(x))

StabKπ
(y)

Proof. Let y ∈ π−1 (π (x)) and κ ∈ Kπ ⊆ Ker (Inn⊲ (π))

πκ (y)
4.4
= π (y) = π (x)

hence κ (y) ∈ π−1 (π (x)). The bijectivity is assured by the fact that κ−1 ∈ Kπ also.

The group morphism introduced in Lemma 4.23 can be better described as a group
morphism between rack automorphisms as soon as we consider that the fibre of a rack
morphism is endowed with a quandle structure, as described by Lemma 1.22.

4.24 Lemma. Let π : X −։ Y be a projection of racks, x ∈ X. Then there is a

group morphism σπ(x) : Kπ −→ Aut⊲
(

ιπ−1 (π (x))
)

such that Trans⊲
(

ιπ−1 (π (x))
)

≤
σπ(x) (Kπ)

Proof. Let us consider σπ(x) the group morphism defined in Lemma 4.23, which sends
every κ ∈ Kπ to its restriction and corestriction on ιπ−1 (π (x)). Since

κ ∈ Aut⊲ (X)
1.18
⊆ Aut⊲ (

ιX) ,

σπ(x) (κ) is an automorphism of ιπ−1 (π (x)). As for the last statement, we have that,
by Lemma 4.22, if y, z ∈ ιπ−1 (π (x)) then ϕyϕ

−1
z ∈ Kπ hence

Trans⊲
(

ιπ−1 (π (x))
)

=
〈

σ
(

ϕyϕ
−1
z

)

|y, z ∈ ιπ−1 (π (x))
〉

⊆ σπ(x) (Kπ)
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The following lemma and proposition state a generalisation of ideas presented in
the proof of Proposition 3.10 of [Gra04]. They give us an upper bound for the kernel
of the projection between the transvection groups induced by a projection of racks. If
we know a system of generators for the quotient of a rack we can construct a (usually
larger) system of generators for the rack itself.

4.25 Lemma. Let π : X −։ Y be a projection of racks. If {yi}i∈I is a system of

generators for Y , then
⋃

i∈I π
−1 (yi) is a system of generators for X.

Proof. Let x be an element in X. There is y in Y such that x ∈ π−1 (y). Since {yi}i∈I
is a system of generators for Y , we have y =

∏

j ϕyij
(yk) for some ij , k ∈ I. Let xi be

in π−1 (yi).

π−1 (y) = π−1









∏

j

ϕyij



 (yk)



 = π−1









∏

j

ϕ
π
(

xij

)



π (xk)





= π−1









∏

j

Inn⊲ (π)
(

ϕxij

)



π (xik)





1.28
= π−1



π





∏

j

ϕxij
(xik)









1.31
=

∏

j

ϕxij

(

π−1 (π (xik))
)

=
∏

j

ϕxij

(

π−1 (yik)
)

Since
∏

j ϕxij
is a bijection between π−1 (y) and π−1 (yik), there is z ∈ π−1 (yik) such

that x =
∏

j ϕxij
(z) and x ∈

〈
⋃

i∈I π
−1 (yi)

〉

.

4.26 Proposition. Let π : X −։ Y be a projection of racks. If {yi}i∈I is a system of

generators for Y , and {xi}i∈I is a system of representatives for the fibres π−1 (yi) then
there is a group injection σ : Kπ −֒→

∏

iAut⊲
(

ιπ−1 (π (xi))
)

.

Proof. Take σ = ∆σπ(xi), the diagonal morphism of
{

σπ(xi)

}

i∈I
where σπ(xi) : Kπ −→

Aut⊲
(

ιπ−1 (π (xi))
)

is the group morphism defined in Lemma 4.24. If σ (κ) = 1 this
means that σπ(xi) (κ) = 1 for every i ∈ I, i.e., by definition of σπ(xi), κ (x) = x for every
x ∈ π−1 (yi) and i ∈ I. Hence κ fixes

⋃

i∈I π
−1 (yi) which, by Lemma 4.25, is a system

of generators for X and then κ = 1 and σ is injective.

Quotient by a Semiregular Normal Subgroup

Let us now see some properties of the quotient quandle X/N when N is a semiregular
(i.e. all its elements apart from the identity are derangements) admissible subgroup of
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the transvection group. This special case is relevant when the transvection group is
nilpotent, in which case its centre, which, being characteristic, is admissible, is always
non-trivial. Let’s start with a lemma.

4.27 Lemma. Let G be a finite group and α a group automorphism of G. Then

|Comm(G,α)| =
|G|

|CG (α)|
(4.7)

where the centaliser of α in G, CG (α), and the set of commutators of α in G, Comm(G,α),
are defined in 2.30. In particular, if α is fixed point free, i.e. if CG (α) = 1, then the
map ∂α that sends an element g to gα

(
g−1

)
is a permutation of G.

Proof. Suppose that ∂α (g) = ∂α (h):

gα
(
g−1

)
= hα

(
h−1

)
⇔ h−1g = α

(
h−1g

)
⇔ h−1g = 1

Hence the image of ∂α is Comm(G,α) and the fibre of ∂α is a coset of CG (α) for every
element in the image. Since G is finite, the statements of the lemma follow.

We now assume additionally that Q is a faithful quandle, a case that often requires
to be treated in a special way.

4.28 Lemma. Let Q be a faithful finite quandle, x ∈ Q, N a normal subgroup of
Inn⊲ (Q). Assume N is semiregular on Q. Then for every y and x in Q, y is in the
same orbit of x under N (i.e. xN = yN ) if and only if ϕy is in the same coset of ϕx

with respect to N (i.e. ϕxN = ϕyN).

Proof.

xN = yN ⇔ ∃ν ∈ N : ν (x) = y

⇔ ∃ν ∈ N : ϕν(x) = ϕy

⇔ ∃ν ∈ N : νϕxν
−1 = ϕy

⇔ ∃ν ∈ N : νϕxν
−1ϕ−1x = ϕyϕ

−1
x (∗)

Now since N is normal

∃ν ∈ N : νϕxν
−1ϕ−1x = ϕyϕ

−1
x ⇒ ∃ν ∈ N : ν = ϕyϕ

−1
x .

On the other hand, let ϕ̂x be the conjugation by ϕx. Since N is normal, ϕ̂x is an
automorphism of N . Since N is semiregular, no element in N apart from the identity
fixes x and then no element commutes with ϕx, which means that ϕ̂x is an isomorphism
of N without fixed points. Applying Lemma 4.27 with G = N and α = ϕ̂x, the
conjugation by ϕx restricted to N , we have

∃ν ∈ N : ν = ϕyϕ
−1
x ⇒ ∃ν ∈ N : νϕxν

−1ϕ−1x = ϕyϕ
−1
x .
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We can then continue with the equivalences:

(∗) ⇔ ∃ν ∈ N : ν = ϕyϕ
−1
x

⇔ ϕxN = ϕyN.

A consequence of Lemma 4.28 is that

4.29 Corollary. Let Q be a faithful finite quandle, N a semiregular subgroup normal

in Inn⊲ (Q). Then xN is the fibre of ϕxN under ϕN .

Proof.

πNϕ (y) = ϕxN ⇐⇒ ϕyN = ϕxN

4.28
⇐⇒ xN = yN

⇐⇒ y ∈ xN

4.30 Proposition. Let Q be a faithful finite quandle, N a semiregular subgroup normal

in Inn⊲ (Q). Then

|Q| = |N | ·

∣

∣

∣

∣

Q

N

∣

∣

∣

∣

(4.8)

Proof. We proceed by equalities

|Q|
1.35
=

∣

∣ϕN
−1 (ϕxN)

∣

∣ ·

∣

∣

∣

∣

Q

N

∣

∣

∣

∣

4.29
=

∣

∣xN
∣

∣ ·

∣

∣

∣

∣

Q

N

∣

∣

∣

∣

= |N | ·

∣

∣

∣

∣

Q

N

∣

∣

∣

∣

where the last equality is justified by the fact that N is semiregular.

The next two propositions establish that if N is semiregular then KN is contained
in StabTrans⊲(Q) (x)N , giving us an upper bound for KN .

4.31 Proposition. Let Q be a faithful finite rack, x ∈ Q, N an admissible subgroup

of Trans⊲ (Q), KN the kernel of the morphism induced by ϕN between the transvection

groups. If N is semiregular then the orbit of x under KN is equal to its orbit under N ,

i.e. xKN = xN .
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Proof. N is a subgroup of KN (see Lemma 4.17), so one inclusion is trivial. As for the
other inclusion:

y ∈ xKN ⇐⇒ ∃κ ∈ KN : y = κ (x)

=⇒ ∃κ ∈ KN : πNϕ (y) = ϕN (κ (x))

(1.7)
⇐⇒ ∃κ ∈ KN : πNϕ (y) = (Trans⊲ (ϕN ) (κ)) (πNϕ (x))

⇐⇒ πNϕ (y) = πNϕ (x)

⇐⇒ ϕyN = ϕxN

4.28
⇐⇒ y ∈ xN

4.32 Proposition. Let Q be a faithful finite quandle, Trans⊲ (Q) its transvection

group, N an admissible subgroup of Trans⊲ (Q). If N is semiregular then KN ≤
StabTrans⊲(Q) (x)N .

Proof. Let κ ∈ KN . Then, by Proposition 4.31, there is ν ∈ N such that κ (x) = ν (x)
and hence ν−1κ ∈ StabTrans⊲(Q) (x) and κ ∈ StabTrans⊲(Q) (x)N .

In the same setting xN is a connected subquandle of Q and its transvection group
is N .

4.33 Proposition. Let Q be a faithful finite quandle, x any of its elements, Trans⊲ (Q)
its transvection group, N an admissible subgroup of Trans⊲ (Q). If N is semiregular

then the orbit of x in Q under N , xN , is a connected subquandle whose transvection

group is isomorphic to N .

Proof. Since, by Proposition 4.29, xN is the fibre of a projection on a quandle, by
Lemma 1.22 it is also a subquandle (since for a quandle ι = 1) and for every y in xN ,
ϕy

(

xN
)

= xN and ϕy can be restricted and corestricted to xN . If we denote by σ
xN (ϕy)

this restriction and corestriction to xN , we have that Inn⊲
(

xN
)

= 〈σxN (ϕy)〉y∈xN and

Trans⊲
(

xN
)

=
〈

σxN

(

ϕyϕ
−1
x

)〉

y∈xN
.

At the same time ϕyϕ
−1
x is in N (see Lemma 4.28) and, since Q is faithful, we have

∣

∣xN
∣

∣ such elements in N . But N , being semiregular, has the same number of elements
as any of its orbits, so it must be N =

{

ϕyϕ
−1
x : y ∈ xN

}

.
If we now consider the restriction morphism from N to Trans⊲

(

xN
)

, an element ν is in
the kernel if it fixes x, but this is true only for the unity, always since N is semiregular,
so σxN is an isomorphism.

Finally, since xTrans⊲(x
N) = xN , xN is connected.
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Chapter 5

Connected Quandles of Prime

Power Order

We now turn our attention to connected quandles Q of order a power of a prime.
They have a minimal coset representation as Q

(

Trans⊲ (Q) , StabTrans⊲(Q) (x) , ϕ̂x

)

(see
Theorem 3.19). First we observe that, in this case, Trans⊲ (Q) is a p-group. In order
to prove this, we need the following theorem due to Etingof, Soloviev and Guralnick
[ESG01]. It is maybe worth underlining that their proof of this theorem is, in turn,
dependent on the classification of finite simple groups. Recall that the p-core, Op, of a
group is the intersection of its p-Sylow subgroups or, equivalently, the largest normal
p-subgroup.

5.1 Theorem ([ESG01, Theorem A.2]).
Let G be a finite group and C a conjugacy class of G of order pn with p prime. Let

N = 〈C〉. Then N/Op (N) is abelian, where Op (N) is the p-core of N . In particular,

if G = N , then G/Op (G) is cyclic.

5.2 Corollary. Let X be a connected rack. If X has order a power of a prime then

Trans⊲ (Q) is a p-group.

Proof. IfX is connected and has order a power of a prime, by Proposition 2.4, Trans⊲ (X)
is the derived subgroup of Inn⊲ (X) and ϕ (X) is a conjugacy class of Inn⊲ (X) of order a
power of a prime (apply Proposition 1.35 to ϕ (X) as image of X trough ϕX) that gen-
erates Inn⊲ (X), so, by Theorem 5.1, Inn⊲ (X) /Op (Inn⊲ (X)) is cyclic and Op (Inn⊲ (X))
must include Trans⊲ (X) which must then be a p-group.

5.3 Remark. We will exploit the fact that every p-group has a non-trivial centre.
Since it will be quoted many times in this section, we will indicate the centre of
Trans⊲ (X) simply by Z. The key observation is that the centre of a transitive group is
always semiregular and moreover that Z, being characteristic in Trans⊲ (X), is normal
in Inn⊲ (X) and we can use all the results on semiregular normal subgroups of Inn⊲ (X)
contained in Trans⊲ (X) proved in the last section of the previous chapter.
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5. CONNECTED QUANDLES OF PRIME POWER ORDER

5.4 Remark (Classification strategy for connected quandles of order pn).
Let Q be a connected quandle of order pn, p a prime. By Corollary 5.2, Trans⊲ (Q)
is a p-group, its centre, Z, is a non-trivial semiregular admissible subgroup, hence its
order must divide pn and hence |Z| = pi with 1 ≤ i ≤ n. We can try to find the
order of Trans⊲ (Q) discussing the possible orders of Z. To this end, we observe that
if Z = Trans⊲ (Q) then, by Corollary 3.21, Q is affine and, by Proposition 1.39 and
Corollary 3.20, |Trans⊲ (Q)| = |Q|. If Z is a proper subgroup of Trans⊲ (Q) then by
Proposition 4.20, in the faithful case, the quotient quandle ϕ (Q) Z /Z (see Definition
4.7) is a proper quotient ofQ, hence, by Proposition 4.30, of order pn−i. By an induction
argument, we know the possible orders of Trans⊲ (Q/Z) and the problem is reduced
to deducing the order of Trans⊲ (Q) from that of Trans⊲ (Q/Z) and of Z. In the non-
faithful case we have a natural smaller quotient of order a power of a prime in ϕ (Q),
from which we can try to lift information to Q.

Let us see what happens when |Z| = |Q|.

5.5 Proposition. Let Q be a finite connected quandle and let Z = Z (Trans⊲ (Q)).
Then |Z| = |Q| if and only if Q is affine.

Proof. Since |Z| = |Q| and Z is semiregular, we have that Z is transitive and normal in
Inn⊲ (Q), hence, by Proposition 3.14, Trans⊲ (Q) ≤ Z. From this follows Z = Trans⊲ (Q)
and Trans⊲ (Q) is abelian hence, by Corollary 3.21, Q is affine.
If Q is affine then, by Corollary 3.21, Trans⊲ (Q) = Z. By Proposition 1.39, Q is also
principal and, by Corollary 3.20, we have |Q| = |Trans⊲ (Q)| = |Z|.

The following proposition gives us, in the faithful case, a way to obtain information
on the generators of the transvection group of a quandle, from information on the
generators of the transvection group of one of its quotients.
Recall that the Frattini subgroup, Φ, is the intersection of all the maximal subgroup of
a group G. It can be characterised as the subgroup whose elements are non-generators.
A non-generator is an element g of G such that, if S is any system of generators of G,
so is S \ {g} [KS04, 5.2.3].

5.6 Proposition. Let Q be a faithful, connected quandle of order a power of a prime,

Trans⊲ (Q) its transvection group, Z the centre of its transvection group and KZ the

kernel of the morphism induced by ϕZ between the respective transvection groups. If

ψ1KZ, . . . , ψnKZ is a system of generators for Trans⊲ (Q) /KZ and ζ1, . . . , ζt is a system

of generators for Z then ψ1, . . . , ψn, ζ1, . . . , ζt is a system of generators for Trans⊲ (Q).

Proof. Since Z is a semiregular admissible subgroup of Trans⊲ (Q), by Proposition 4.32
KZ ≤ StabTrans⊲(Q) (x) Z. If ξ1, . . . , ξm is a system of generators for StabTrans⊲(Q) (x)
then ψ1, . . . , ψn, ζ1, . . . , ζt, ξ1, . . . , ξm is a system of generators for Trans⊲ (Q). On
the other hand, Q, being a connected quandle, by Proposition 2.5, has a transi-
tive transvection group which implies, (see Proposition 3.31) that StabTrans⊲(Q) (x) ≤
[Trans⊲ (Q),Trans⊲ (Q)]. Now Trans⊲ (Q) is a p-group by Corollary 5.2, and hence
[Trans⊲ (Q),Trans⊲ (Q)] ≤ Φ (Trans⊲ (Q)) (the Frattini subgroup of Trans⊲ (Q)), so
that ξ1, . . . , ξm are non-generators for Trans⊲ (Q). The conclusion follows.
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5.7 Corollary. Let Q be a faithful connected quandle of order a power of a prime,

Trans⊲ (Q) its transvection group, Z the centre of Trans⊲ (Q) and KZ the kernel of the

morphism induced by ϕZ between the respective transvection groups. If Trans⊲ (Q) /KZ

is cyclic then Q is affine.

Proof. If Trans⊲ (Q) /KZ is cyclic, by Theorem 5.6, Trans⊲ (Q) is cyclic over its centre
and hence abelian. By Corollary 3.21, Q is affine.

Simple Quandles of Prime Power Order

Connected quandles of prime order have, by Proposition 2.5, transitive transvection
groups of prime degree, hence the transvection group acts primitively on the quandle
and, by Proposition 1.33, the quandle must be simple. Simple quandles are classified by
Andruskiewitsch and Graña in [AG03]. Let us give here a self-contained treatment in
the case of interest (i.e. simple quandles of order a power of a prime), using a different
approach, based on the analysis of the subgroups of Trans⊲ (Q) normal in Inn⊲ (Q).

5.8 Lemma ([Joy82b, Lemma 1]). A simple quandle is connected and faithful.

If it has order a power of a prime it is affine:

5.9 Proposition. Let Q be a simple quandle, x ∈ Q. If Q has order pn, p a prime, then

its transvection group is an elementary abelian p-group of rank n and the conjugation

by ϕx, ϕ̂x, has no invariant subgroups in Trans⊲ (Q).

Proof. If Q is simple then Trans⊲ (Q) is a minimal normal subgroup of Inn⊲ (Q), hence
it is elementary and, Trans⊲ (Q) being a p-group (by Corollary 5.2), must be elementary
abelian. Since it is abelian and transitive, it is regular and has order pn, and there-
fore has rank n. Finally, since all subgroups are normal in Trans⊲ (Q), no non-trivial
subgroup can be invariant under ϕ̂x, by Lemma 4.2.

5.10 Theorem (Classification of simple quandles of prime power order [AG03, Theo-
rem 3.9]).
Every simple quandle Q of order pn, p a prime, is isomorphic to an affine quandle

Q
(
F
n
p , α

)
where α is an irreducible automorphism of Fp

n.

Proof. By Proposition 3.19, Q ∼= Q
(
Trans⊲ (Q) , StabTrans⊲(Q) (x) , ϕ̂x

)
and, by Propo-

sition 5.9, Trans⊲ (Q) ∼= F
n
p and Trans⊲ (Q) has no non-trivial subgroups invariant under

ϕ̂x. In particular by Corollary 3.21 they are affine and, by Proposition 1.39, principal,
hence StabTrans⊲(Q) (x) = 1.

The classification of simple quandles of order a power of a prime yields immediately
a characterisation of connected quandles of prime order.

5.11 Theorem (Classification of connected quandles of prime order [ESG01, Lemma
3]).
Any connected quandle of prime order is affine. In particular, it is principal and faithful.
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5. CONNECTED QUANDLES OF PRIME POWER ORDER

Proof. The transvection group Trans⊲ (Q) of such a quandle Q is a transitive p-group
of prime degree hence it is primitive. By Corollary 1.33, Q is simple of order p and, by
Theorem 5.10, it is affine and principal and, by Proposition 1.39, it is faithful.

A consequence of this classification is the following proposition useful in a discussion
over the possible orders of Z:

5.12 Proposition. Let Q be a connected quandle of order pn, p a prime, Trans⊲ (Q)
its transvection group, Z the centre of Trans⊲ (Q). Then the order of Z is not pn−1.

Proof. Suppose that Z has order pn−1. By Proposition 5.5, Q is not affine and Z is
a proper subgroup of Trans⊲ (Q). By Lemma 4.19 and the fact that Z is semiregular,
it follows that |Z| divides |Q/Z| which, in turn, by Proposition 1.35, divides |Q| = pn

hence |Q/Z| = 1 or p. Since Z is a proper subgroup of Trans⊲ (Q), by Proposition
4.20, it must be |Q/Z| = p and xZ = ϕZ

−1 (ϕx Z) and in particular xKZ = xZ. This
last fact implies that KZ ≤ StabTrans⊲(Q) (x) Z. Reasoning as in Proposition 5.6, we
conclude that Trans⊲ (Q) is generated by the generators of Z and any set {ψi}i∈I such
that {ψiKZ}i∈I generates Trans⊲ (Q) (Q/Z). But, by Theorem 5.11, Trans⊲ (Q/Z) is
cyclic, and hence Trans⊲ (Q) is cyclic over its centre and then abelian, which entails,
by Corollary 3.21, that Q is affine, contradiction.

Connected Quandles of Prime Square Order

The classification of quandles of prime square order is similar to that of quandles of
prime order, in the sense that they are all affine.

5.13 Theorem (Classification of connected quandles of prime square order [Gra04,
Proposition 3.10]).
Connected quandles of prime square order are affine. In particular, they are principal

and faithful.

Proof. Let Q be a quandle of order p2, p a prime. Suppose first that Q is faithful.
By Proposition 4.30 and Proposition 5.12, Z has order p2 and by Proposition 5.5 it is
affine.
Suppose now that Q is not faithful. Then ϕ (Q) has order p and by Theorem 5.11
must be principal and by Proposition 2.36 so must be Q. But then, by Corollary 3.20,
Trans⊲ (Q) has order p2 and hence it is abelian and, by Corollary 3.21, Q is affine and
connected hence by Proposition 1.39 faithful, contradiction.

Connected Quandles of Prime Cube Order

For connected quandles of prime cube order the situation gets slightly more compli-
cated. Let Q be a faithful connected quandle of order a cube of a prime p. The centre
Z of its transvection group Trans⊲ (Q), as seen in Remark 5.4, may be of order p, p2 or
p3. By Proposition 5.12, it cannot be |Z| = p2. The case |Z| = p3 is clear.
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5.14 Lemma. Let Q be a connected quandle of order p3. If Z has order p3 then

Trans⊲ (Q) = Z and |Trans⊲ (Q)| = p3.

Proof. If Z has order p3, by Proposition 5.5, Q is affine and principal and, by Corollary
3.20, Trans⊲ (Q) has order p3, too.

In the analysis of the case |Z| = p we shall make us of the following proposition:

5.15 Proposition ([Sim94, Proposition 9.2.5]). If a group G is generated modulo G′ by

x1, ..., xn, then γ2 (G) /γ3 (G) is generated by the images of [xj , xi] with 1 ≤ i < j ≤ n,
where γi (G) is the i-th member of the lower central series of G.

5.16 Lemma. Let Q be a faithful connected quandle of order p3. If Z has order p then

Trans⊲ (Q) has order p3 or has order p4 and is of maximal nilpotency class.

Proof. If Z has order p by Proposition 4.30 Q/Z has order p2 and by Theorem 5.13
Q/Z is affine and principal hence by Corollary 3.20 Trans⊲ (Q/Z) has order p2 too.

In particular Trans⊲ (Q/Z) has one or two generators. We now show that Trans⊲ (Q/Z)
must have two generators. If Trans⊲ (Q/Z) is cyclic by Corollary 5.7 then Q is affine
and by Corollary 5.5 Z has order p3, contradiction.

Since Z has order p it is included in the Frattini subgroup of Trans⊲ (Q) and its
generator is a non generator for Trans⊲ (Q) hence by Proposition 5.6 Trans⊲ (Q) has
two generators too .

Let nowKZ be the kernel of Trans⊲ (ϕZ). We have by Proposition 2.7 that Trans⊲ (Q/Z) ∼=
Trans⊲ (Q) /KZ. Since Trans⊲ (Q) /KZ is abelian [Trans⊲ (Q),Trans⊲ (Q)] is contained
in KZ . At the same time by Proposition 4.32 and Proposition 3.31

KZ ≤ StabTrans⊲(Q) (x) Z ≤ [Trans⊲ (Q),Trans⊲ (Q)] Z ≤ [Trans⊲ (Q),Trans⊲ (Q)]

The last inclusion is because Z having order p is included in every normal subgroup
of Trans⊲ (Q). By the two inclusions we have that γ2 (Trans⊲ (Q)) = [Trans⊲ (Q),Trans⊲ (Q)] =
KZ .

Let τ1, τ2 be generators of Trans⊲ (Q), let κ = [τ1, τ2] and ζ a generator of Z. For
every x in Q, there is i such that κ (x) = ζi (x) (see Proposition 4.31). By induction,
using the fact that ζ is central, we have that κm (x) = ζim (x). In particular κp (x) =
ζip (x) = x for every x ∈ Q. Since κ 6= 1 we obtain that κ has order p.

By Remark 4.16 we have

γ3 (Trans⊲ (Q)) = [γ2 (Trans⊲ (Q)) ,Trans⊲ (Q)] ≤ [KZ, Inn⊲ (Q)] ≤ Z

and since Z has order p we can conclude that γ3 (Trans⊲ (Q)) = Z or γ3 (Trans⊲ (Q)) =
{1}.

We have now to distinguish two cases.
If γ3 (Trans⊲ (Q)) = {1} we have [Trans⊲ (Q),Trans⊲ (Q)] = KZ = Z hence Trans⊲ (Q)

has order p3 and it is non abelian, hence it is extraspecial and in particular of maximal
nilpotency class.
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If γ3 (Trans⊲ (Q)) = Z by Proposition 5.15 we obtain that [Trans⊲ (Q),Trans⊲ (Q)] =
〈κ, ζ〉. In particular κ 6∈ Z and [Trans⊲ (Q),Trans⊲ (Q)] = KZ

∼= Z
2
p hence Trans⊲ (Q)

has order p4. Moreover Trans⊲ (Q) / [Trans⊲ (Q),Trans⊲ (Q)] = Trans⊲ (Q) /KZ is ele-
mentary abelian we have Φ (Trans⊲ (Q)) = [Trans⊲ (Q),Trans⊲ (Q)]. This implies that,
in the case |Trans⊲ (Q)| = p4, we have a strict chain of characteristic subgroups

1 < Z < Φ < Trans⊲ (Q)

and Trans⊲ (Q) is again of maximal nilpotency class.

We are ready to prove a description of the possible transvection groups for a con-
nected quandle of order p3.

5.17 Theorem (Characterisation of connected quandles of prime cube order).
A connected quandle of order p3, p a prime, is either principal or isomorphic to a

minimal coset representation Q (G,H, α) where G has order p4 and is of maximal

nilpotency class and H = CG (α) has order p.

Proof. Let x ∈ Q. Suppose first that Q is faithful.
By Theorem 3.19, Q ∼= Q

(
Trans⊲ (Q) , StabTrans⊲(Q) (x) , ϕ̂x

)
. By Remark 4.30 and

Proposition 5.12, Z can be of order p3 or p.
If Z is of order p3, by Lemma 5.14 so has Z and we can apply Corollary 3.21 and

Corollary 3.20 to deduce that Q is affine and principal.
If Z is of order p, by Lemma 5.16, Trans⊲ (Q) is either of order p3 or p4 of maximal

nilpotency class. If Trans⊲ (Q) is of order p3, by Corollary 3.20, Q is principal. If
Trans⊲ (Q) is of order p4, we have that, since Q is connected, by Proposition 2.5,
Trans⊲ (Q) is transitive and

∣∣CTrans⊲(Q) (ϕ̂x)
∣∣ 3.9
=

∣∣StabTrans⊲(Q) (x)
∣∣ = |Trans⊲ (Q)|

|Q|
= p

Suppose now that Q is not faithful.
By Proposition 1.35, ϕ (Q) has order p or p2. By Theorem 5.11 and Theorem 5.13, in
both cases ϕ (Q) is principal and, by Proposition 2.36, so is Q.

An inspection of the isomorphism classes of connected quandles of order 33 using the
GAP [GAP13] package RIG [RIG] developed by Graña and Vendramin shows that all
the cases foreseen by Theorem 5.17 do occur. Connected quandles are numbered in the
same fashion as small groups in GAP. There are 65 isomorphism classes for connected
quandles of order 27, which we will indicate as Q27,i. All quandles from Q27,7 to Q27,13,
Q27,15, Q27,16, from Q27,35 to Q27,46 and from Q27,53 to Q27,61 are faithful and not
principal and their transvection group has order 81, quandles Q27,1, Q27,6, Q27,14 are
principal and not faithful while all the others are principal and faithful. We might
underline that the isomorphism classes of connected quandles of order 27 have been
computed with an algorithm based on the classification of transitive groups[Ven12,
Algorithm 1] independent from the results of the present work.
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Appendix A

Algorithmic Divertissement

The construction of new quandles of low order is a task well known in the literature (see
[Ven12]) not only to produce examples or counter-examples of quandles with required
properties, but also to be exploited for providing quandle colourings of knots (see
[CESY14]).
We give two algorithms for computing all the isomorphism classes of quandles of order
p2 and p3, based on the results of Graña [Gra04] and of the present work.

As for Algorithm 1, which computes all isomorphism classes of connected quandles
of order p2, by Theorem 5.13 we can limit ourselves to construct all coset quandles
Q = Q (G, {1} , α) where G has order p2 to obtain all the isomorphism classes. By
Proposition 3.25, it is sufficient to consider representatives of each conjugation class in
Aut (G)to be sure to obtain non-isomorphic quandles and check that |Trans⊲ (Q)| = |G|
to be sure, by Proposition 3.18, that they are all connected.

Algorithm 1: Connected quandles of size p2 up to isomorphism

Data: The list of all groups of order p2

Result: The list L of all non-isomorphic connected quandles of order p2

L←− ∅;
for all groups G of order p2 do

Compute A = Aut (G), the automorphism group of G;
Compute Rep (A), a set of representatives of the conjugacy classes of
Aut (G);
for all a ∈ Rep (A) do

Compute the coset quandle Q = Q(G, {1} , a);
if |Trans⊲ (Q)| = |G| then

Add the quandle Q to L;
end

end

end

return L
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A. ALGORITHMIC DIVERTISSEMENT

As for Algorithm 2, which computes all isomorphism classes of connected quandles
of order p3, by Theorem 3.19 and Theorem 5.17, we have to construct all coset quandles
Q = Q (G, {1} , α) where G has order p3 and all coset quandles Q = Q (G,FixG (α) , α)
where G has order p4 and is of maximal nilpotency class, CG (α) has order p, to ob-
tain all the isomorphism classes. By Proposition 3.25 in the case |G| = p3 and by
Proposition 3.26 in the case |G| = p4, it is sufficient to consider representatives of each
conjugation class in Aut (G) to be sure to obtain non-isomorphic quandles and check
that |Trans⊲ (Q)| = |G| to be sure, by Proposition 3.18, that they are all connected.

Algorithm 2: Connected quandles of size p3

Data: The list of all groups of order p3 and p4

Result: The list L of all non-isomorphic connected quandles of order p3

L←− ∅;
for all groups G of order p3 do

Compute A = Aut (G), the automorphism group of G;
Compute Rep (A), a set of representatives of the conjugacy classes of A;
for all a ∈ Rep (A) do

Compute the coset quandle Q = Q(G, {1} , a);
if |Trans⊲ (Q)| = |G| then

Add the quandle Q to L;
end

end

end

for all groups G of order p4 of maximal nilpotency class do

Compute A = Aut (G), the automorphism group of G;
Compute Rep (A), a set of representatives of the conjugacy classes of A;
for all a ∈ Rep (A) do

Compute H := CG (a) the subgroup of fixed points of a in G;
if the order of H is p then

Compute the coset quandle Q = Q(G,H, a);
if |Trans⊲ (Q)| = |G| then

Add the quandle Q to L;
end

end

end

end

return L

We have implemented both algorithms using the Computer Algebra System [GAP13]
and the package [RIG].
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