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1 Introduction

Charles Darwin ignited a revolution in biological thought with the publication of

On the Origin of Species in 1859. The idea that plants and animals, as well as other

life forms, were not fixed in form and had, in fact, evolved from common ancestors

to fill various niches to which they were supremely adapted was a momentous

one; one that would shake up the scientific world in the years to come. Though

Darwin did not address human origins until publication of The Descent of Man in

1874, he portended what would come, writing that “[l]ight will be thrown on the

origin of man and his history.” Just as Darwin’s book had earlier revolutionized

biological thought, the advent of genetics and molecular technologies at the end of

the last century has revolutionized research into human origins. Genetic studies

have shown that humans share a common ancestor with chimpanzees, that all

human populations are descended from an ancestral population in East Africa,

and have enabled the reconstruction of a great deal of the evolutionary history of

the human species.

One of the more prolific areas of recent research in human population genetics

has been on the structure of human populations, which has seen great strides made

in the last few years due to extensive collection of DNA samples from worldwide

populations, both at the global [1,2], continental [3–5], and fine scale or geograph-

ically limited [6,7] levels, and from the generation of large amounts of data using

high-throughput technologies [8–10]. Studies of genetic structure, the observation

that populations are not genetically homogenous, are important in disease-gene

association studies, conservation genetics, and anthropological research.

1.1 Genetic Variation

1.1.1 Genetic Structure

The study of genetic variation has done much to inform us of human origins and

relationships. Furthermore, interest in studies of genetic variation have proven

applicable to the medical field, particularly in association studies, where cryptic

population structure may flummox attempts at discovering genetic variants asso-

ciated with susceptibility to complex disease. Genetic structure is the observation

that populations are not genetically homogenous, that is, that they can be divided,
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genetically, into subpopulations or groups of subpopulations. This results when

some sort of barrier (e.g., geographic, linguistic, cultural), or adequate distance,

results in isolation between a set of populations [11]. Consequently, isolation cre-

ates drift within populations, resulting in the differential distribution of alleles

between and among populations, which, over time, results in differences in allele

frequencies among them [12]. The subsequent divergence between populations is

referred to as structure.

1.1.2 Genetic Drift

Genetic drift is a function of finite sampling: random gametes are sampled from a

limited gene pool during reproduction to be represented in the next generation. As

a result, some alleles tend to be overrepresented in different populations in the next

generation, some underrepresented, and some may disappear completely. Over

time, this continuous, cumulative random selection of gametes, known as genetic

drift, results in differential distribution of alleles between and among populations,

which is seen as differences in gene frequencies. Genetic drift, and thus genetic

structure, is affected by a number of important evolutionary processes, including

effective size, divergence time, and gene flow. Effective size (Ne) refers to the

size (i.e., number of breeding individuals) of the optimum population showing

allelic frequencies similar to the one being considered with the same degree of

inbreeding, which is in Hardy-Weinberg equilibrium. Effective size is often smaller

than census size. Decreasing the effective size within populations and increasing

the divergence time between populations results in increased genetic drift within

and between populations, thus resulting in greater genetic differentiation. To the

contrary, gene flow counteracts the effect of drift by breaking down differentiation

between populations, through transmission of new alleles into populations.

1.1.3 Coalescence

The coalescent is a stochastic process providing a backward-in-time approach for

reconstructing the evolutionary history of a set of DNA sequences or genomes [13].

Going back in time, lineages are randomly chosen and merged at each generation

until converging at the most recent common ancestor (MRCA) of all lineages [13].

Coalescent based simulations have proven useful in population genetic studies
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for their ability to reconstruct complex demographic scenarios, including bottle-

necks, founder effects, and population fissions and fusions, among others. Their

usefulness extends to testing hypotheses of human evolutionary models and differ-

entiating natural selection from neutral evolution [13]. Figure 1 shows a sample

coalescence for N=10 haploid individuals, without recombination or mutation. In

the absence of recombination, coalescent history will often be constructed first

and then mutations are placed along lineages descending from the MRCA. With

recombination in coalescent simulations, lineages bifurcate as well as coalesce.

As such, different pieces of DNA or different genomes will have slightly different

topologies. Topologies are essentially phylogenetic representations of evolution-

ary history. Thus, with recombination different evolutionary histories result from

different chromosomes or chromosomal pieces (see Figure 2). In a coalescent simu-

lation, diploid individuals will be modeled following 2N haploid individuals. Prior

to discovery of the coalescent, researchers used forward in time approaches, which

were very time and computationally intensive. The Coalescent is more efficient

because it only has to keep track of lineages that survive [13].

Figure 1: (a) Sample coalescent for 10 haploid individuals tracing back 8 generations.
The sub-genealogy for three single genomes that coalesce back to a single genome are
shown in (b), with blacks lines showing the coalescent lineages. Coalescent times for the
first and second coalescent events are indicated by T(3) and T(2), respectively [13].
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Figure 2: (a) Coalescent history for 20 haploid individuals tracing back 17 generations,
with (b) and (c) red lines showing the coalescent history for six individual genomes trac-
ing back to a single genome. (d) shows the coalescent history for a set of chromosomes
with recombination [14].

1.1.4 Markers

Genetic variation is studied using a number of genetic markers located in non-

coding (i.e., neutral) genomic regions. This is important because it ensures that

differences in allele frequencies among populations are due solely to the effects of

drift, mutation, and gene flow, and not to selective pressures. Single-nucleotide

polymorphisms (SNPs) are markers that are based on variation in the state of

nucleotides at a particular site and are often, though not always, biallelic. More

than two states may exist, but it is the exception not the rule. With SNPs, there

will often be a sequence of DNA that is mostly non-variant, that is, the DNA

sequence at most sites is the same in all individuals. However, at certain sites,

approximately once every 1500 nucleotides, there will be differences in the state of

the nucleotide among individuals. Though often occurring in neutral areas of the

genome, SNPs may also appear in genes and can affect regulation, if occurring in

the promoter region, or protein structure, if appearing in exons. Microsatellites,

or short tandem repeat polymorphisms (STRs or STRPs) are markers that show
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variation in the number or length of repeats of a two to six letter motif. These often

have higher mutation rates than SNPs, and are therefore useful in more recently

diverged species or populations, such as in the human species. As such, they were

the marker of choice for the CEPH HGDP [1,2], as well as extensions of the panel

in Native American [5], South Pacific [3], African [4], and South Asian populations

[15]. SNP markers, however, are more amendable to high-throughput genotyping

and have been the marker of choice for more recent analyses [6, 7, 10], including

the CEPH HGDP [16]. A number of models of microsatellite mutation have been

proposed. The more generally accepted one is the Single Stepwise Mutation Model

(SSM, or SMM), where addition or deletion of repeats is expected to occur in

single-steps [17]. Other models include a Generalized Stepwise Mutation Model,

GSM [18], whereby addition or deletion of repeats may be more than one repeat

according to a geometric probability distribution, and the Infinite Alleles Model

(IAM), where any repeat number can change to any other repeat number. That

is, any number of repeats may be added or deleted [19, 20]. The IAM is also the

accepted mutational model for SNPs and genes.

1.1.5 Metrics

F-statistics. Wrights F-statistics [21] is one of the more widely used methods de-

vised for analyses of population structure. F-statistics are measures of genetic vari-

ation within and between populations and regions. Essentially, they describe the

degree to which genetic variation amongst a set of populations may be attributed

to variation within a local population (that is, between individuals within a local

population), between populations within a region, and between regions. Another

way to look at them is as a measure of correlation between alleles randomly cho-

sen from one of these levels of apportionment [22]. One of the more widely used

measures is FST , which is the correlation between alleles chosen randomly from

within a subpopulation compared to the population as a whole [22]. It may also be

seen as the proportion of genetic variation that is attributed to genetic differences

between subpopulations [22]. As such, it may be used to measure differentia-

tion between or among populations, and can be considered a measure of genetic

distance between pairs of populations [22]. FST can be seen as a function of mi-

gration, effective size, and divergence times. As divergence times increase and
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effective population sizes decrease, genetic drift increases within populations, thus

increasing FST between and amongst them [11]. As well, reduced migration rates

also increase the effect of genetic drift, thus increasing FST . FST ranges from 0,

when subpopulations are completely identical, to 1, when all subpopulations are

fixed for different alleles [11].

Gene Identity [23]. Gene identity is the probability that two randomly sampled

copies of an allele, drawn from the same or different populations, are identical by

state. Gene identity is also a measure of heterozygosity. As gene identity increases,

heterozygosity decreases, and vice versa. We refer to gene identity using the

notation Jk,l, where k = l indicates gene identity taken from within the same local

populations, and k 6= l indicates gene identity taken from between two different

local populations. Gene identity is calculated from gene frequencies. If calculating

gene identity from within the same local population, we use the equation,

Jk,k =
∑
u

p2
ku

where pku is the frequency of the uth allele, with summation over all alleles.

Gene identity at a locus between two different local populations is calculated

using the equation,

Jk,l =
∑
u

pkuplu

where pku is the frequency of the uth allele in the kth population and plu is the

frequency of the uth allele in the lth population. As above, summation occurs over

all alleles. Other statistics, such as genetic distances or fixation indices, used in

population genetic studies can be seen as functions of gene identities. As such,

these statistics can be estimated from gene identities. However, the reverse is not

necessarily true.

In analyses, it is helpful to organize sets of gene identities for pairs of popu-

lations in a matrix, which we label J. Values on the diagonal correspond to gene

identities within populations, while values on the off diagonal correspond to gene

identities between populations. As long as populations in the matrix are orga-

nized according to their tree of descent, gene identities in these matrices will take

a block like pattern where populations sharing the same MRCA will be grouped
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together. In addition, gene identity between a pair of population will be equal to

the gene identity between their MRCA.

Kinship. Another way to measure relatedness between individuals is through

coefficients of relatedness measuring the probability of identity by descent, such

as estimated from pedigree data. This is usually seen as the proportion of an-

cestry shared between pairs of individuals. There are a number of approaches

for calculating kinship indices. The first, devised by Sewall Wright in 1922 [24],

is the path counting approach, which traces all possible pathways shared by two

individuals through common ancestors. Here, it is useful to think of relatedness

between individuals as a set of loops connecting them through common relatives,

and as a function of a hypothetical inbreeding coefficient in possible descendents,

which we would determine using the equation

Φjk = Fi = (
1

2
)K

with Φjk being the kinship between individuals j and k, and Fi being the inbreed-

ing coefficient in their hypothetical offspring, i, and where K is the number of

ancestors in the loop connecting one allele in the “offspring” to the other. The

calculation of kinship and inbreeding is additive across pathways. The coefficient

of kinship is the probability that two individuals share alleles identical by descent,

while the coefficient of inbreeding is the probability that two alleles within an

individual are identical by descent. More recently, recursive approaches that are

more computationally efficient have been devised [25] and implemented [26, 27],

which are useful when considering large pedigrees.

Clusteredness. Model-based clustering programs output membership coeffi-

cients that quantify a sample’s probability of belonging to a cluster or population

(another way of looking at it, is as the proportion of ancestry from each cluster).

These can be visually represented using a bar graph display as produced from the

distruct program [28] or implemented in the gui version of structure [29]. Though

this approach may be adequate when considering low numbers of experiments,

a quantitative approach for summarizing the data is needed for large numbers

of experiments. We chose clusteredness [30] as a metric for determining signifi-

cant differentiation between populations. Essentially, clusteredness is the average

membership coefficient for all sample individuals across all clusters, across all in-
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dividuals, standardized by the number of clusters K, as per the following equation,

G =
1

I

I∑
i=1

√√√√ K

K − 1

K∑
k=1

(qik − 1/K)2

where I = number of individuals, K = number of clusters, and qik = the mem-

bership coefficient of the ith individual to the kth cluster. Standardizing by the

number of clusters is important because it allows for comparison across different

numbers of K and is more intuitive to understand. Instead of average member-

ship coefficients running from 1/K, as an indication of no clustering, to 1.0, as

an indication of complete clustering, G runs from 0.0 to 1.0. Thus, also, one can

easily identify a minimum clusteredness as indicative of structure that applies to

all levels of K. For example, 0.5 corresponds to an average membership coefficient

of 0.75 (or 0.9, to 0.95).

Symmetric Similarity Coefficient. Model-based clustering algorithms may some-

times produce different outputs from the same data when using different starting

points (i.e., different random numbers). It is useful to consider the similarity

between runs to determine whether results are reliable. The following equation,

implemented in the clumpp software, has been devised for quantifying the extent

of similarity between pairs of runs,

SCC(Qi, Qj) = 1− min ‖Qi − P (Qj‖F√
‖Qi − S‖F‖Qj − S‖F

where Qi and Qj are I x K matrices of membership coefficients for runs i and j

and, with columns (K ) corresponding to clusters and rows (I ) corresponding to

individuals [31]. Each element is the membership coefficient of each individual to

each cluster. P is a permutation of the columns, with the minimum taken over

all permutations, for K permutations. F is the Frobenius matrix norm and S is

a probability matrix of K = (number of clusters) columns, with all elements =

1/K [2, 31]. Use of this equation assumes that comparisons are across runs that

have the same number of clusters, i. Rosenberg et al. [2], supplemental materials,

provides suggestions for the interpretation of results: values of 0.85-1.00, nearly

all individuals have nearly identical membership coefficients between runs; 0.4-

0.85, most, but not all, individuals have nearly identical membership coefficients

between runs; 0.1-0.4, some clusters have the same individuals but other clusters
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differ between runs; and <0.1, little to no similarities between clusters.

Genetic Distance. Another measure of difference between populations is ge-

netic distance, such as Nei’s minimum genetic distance. Nei’s distance measure is

a function of allele frequencies and can be calculated from the gene identity within

and between local populations using the equation,

D2
kl =

∑
(pki − pli)2 = Jkk + Jll − 2Jkl

where pki and pli are the ith allele frequencies in the kth and lth populations,

respectively, and Jkk, Jll, are gene identities within the kth and lth populations,

respectively, and Jkl, between the kth and lth populations.

1.1.6 Approaches to Studies of Genetic Structure

Traditional. Traditional approaches to the study of genetic structure often involve

apportioning genetic variation into three categories: between individuals within

local populations, between populations within a specific region or grouping, and

between regions (or other grouping) within the dataset as a whole. The proportion

of variation attributed to each category gives an indication of the genetic structure

between populations [12]. A similar approach, termed Analysis of Molecular Vari-

ance (AMOVA), essentially an extension of ANOVA, was proposed for analysis of

molecular data [32]. AMOVA has given some statistical standing to the study of

genetic apportioning by providing a method for determining significance. Most

estimates of genetic structure in human populations provide that 85% of genetic

variation is found within a population, with 15% left between populations, either

within the region or between regions [12]. The traditional approach contains an

inherent flaw in that it assumes division of populations neatly into regions, and

without regard to evolutionary or demographic history. As Long et al. [33] show,

discrete compartmentalization of human populations may be flawed in light of

human evolutionary history.

Model-Based Clustering. The development of model-based clustering methods

in recent years has revolutionized the study of genetic structure in human popu-

lations. Previously, analyses of genetic structure required pre-defined assignment

of samples into populations. This required the assumption that populations from

which individuals were sampled correspond to the actual population from which
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they originated. While this may sometimes be a valid assumption, particularly

in the case of isolated populations, large increases in migration between popu-

lations have occurred over the last 100 years, even in isolated populations (i.e.,

breakdown of isolates [34]). In our own sample populations from southern Italy,

we have found evidence of individuals being sampled from populations other than

the one into they were born. This was evidenced through comparison with par-

ents, or other relative, that were also sampled in our study. Also, some sample

individuals are descended from parents from two populations. Model-based clus-

tering approaches allow researchers to overcome limitations such as these by using

Bayesian [35], expectation-maximization [36], or maximum likelihood [37] methods

to determine the optimum distribution of sample individuals into a set of clusters

based on statistically optimized allele frequency distributions. In addition, these

methods can also group populations with other populations to which they are

more closely aligned genetically and, in the presence of admixture can determine

the probability of an individual belonging to a cluster or the proportion of their

genome having membership to a cluster.

In addition, output from model-based clustering programs, such as structure

[35], can help to identify the most likely number of clusters in the sample. One may

use the original approach suggested by Jonathan Pritchard of analyzing posterior

priors output by his program, structure, for a set of K number of clusters, from 1,

2, 3,. . . ,N, with N being the maximum number of clusters estimated [29]. However,

this approach sometimes fails to provide a definitive answer. Another approach,

suggested by Evanno [38], looks at the change in log likelihood as a guide. Finally,

an additional ad hoc approach more recently suggested by Pritchard is to examine

the membership coefficients estimated for the samples [29]. When individuals have

a tendency to be placed into a single cluster as opposed to being distributed across

a number of clusters, this may be considered to be the correct K.

The structure algorithm is a Markov Chain Monte Carlo method, which uses

burnin length and number of iterations following burnin to minimize the effect

of the starting configuration and optimize estimation of parameters, respectively

[29]. Burnin length and iterations following burnin are determined by the user.

Adequate length of burnin and number of iterations following burnin are important

in ensuring convergence of the MCMC chain [29]. These should be chosen so that

parameters converge, that is, reach an equilibrium, before data is collected.
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Generalized Hierarchical Modeling [23]. While clustering populations using

model-based clustering programs can be useful for identifying clusters of closely-

related populations, cryptic population structure, and inter-individual relatedness,

it may be useful to turn to other methods to test hypotheses on population struc-

ture and relatedness, methods that allow testing of complex scenarios of structure.

One such method is generalized hierarchical modeling (ghm), which may also be

termed generalized analyses of molecular variance, which provides for a structured

approach to testing hypotheses. Generalized hierarchical modeling uses a system

of equations developed by Anderson to fit models to data [39]. Application of

these systems of equations to genetic data were first adapted by Cavalli-Sforza

and Piazza in 1975 [40]. Models may include simple models, such as an island

model, whereby all populations originate from a single ancestral population at

one time and evolve independently, or more complex hierarchical models, whereby

each population or set of populations branches off from earlier populations. The

former model may also be called an independent regions model, while the latter

models may also be called, and more easily-understood as, ‘nested’ models. These

hierarchical models are assumed to be strictly nested, where the previous entry is

a superset and the next entry is a subset [41].

While fitting models to the data, ghm estimates two sets of the researchers

chosen metric, gene identity for example, for each model to be evaluated: expected

and realized. Realized gene identities are probably the most intuitive, they are

gene identities as measured from the data without regard to a particular model.

We may also call them raw gene identities. Expected gene identities are those

estimated from a given hierarchical model fitted to the gene identity matrix. To

test the fit of models, we use a likelihood ratio statistic, Cavalli-Sforza and Piazza’s

treeness statistic

Λ0Ω = v · (ln|det(Σ̂0| − ln|det(Ĵ |+ trĴΣ̂−1
0 − r)

which is distributed as a χ2 statistic with degrees of freedoms equal to (r(r+1)/2)

minus the number of parameters needed to fit the tree, where r is the number of

populations, to determine the fit of the model to the data. v is the number of

independent observations. An observation is an allele at a locus, and the number

of independent observations is equal to (number of alleles at all loci - number of
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loci - 1). This factor is most appropriate when allele frequencies are equal for

each marker. Ongoing research hints that a more appropriate determinant for

independent observations, when this requirement does not hold, is the number of

effective alleles. The number of effective alleles is the inverse of the homozygosity,

subtracting one and multiplying by the number of loci. In any case, the treeness

statistic is still useful for testing the fit of a model and comparing the fit between

models. Models can be ranked by their χ2 values, with lower values corresponding

to better fitting models [42]. Σ̂0 is the matrix of expected gene identities deter-

mined by the model and Ĵ is the matrix of observed gene identities. If the model

fits perfectly, that is, if the observed and expected gene identities differ by no more

than would be expected from genetic and statistical sampling, Λ will be equal to

the number of degrees of freedom [42]. Oftentimes, researchers will want to test

different models to determine which one fits the data the best. These may begin

as a parameter rich model that is subsequently reduced, as parameter poor models

to which higher level groupings are subsequently added, or as models with differ-

ent hierarchical structures that are independent of one another (such as models of

Native American language evolution, see [42]).

1.2 Isolated Populations

Due to their expected genetic homogeneity and common environmental back-

ground, resulting from isolation, geographical isolates are prime subjects for inves-

tigating complex genetic traits and identifying common alleles involved in suscep-

tibility to complex diseases [43–46]. However, even in populations considered to

be particularly homogenous [47], the presence of undetected population stratifica-

tion may result in the presence of groups of closely-related individuals, considered

to be a major confounding factor in disease-gene association studies [48–50]. Un-

fortunately, lacking reconstruction of genealogical relationships, detection of pop-

ulation stratification, from the presence of inter-individual relatedness or cryptic

structure, is most difficult [51,52]. Most reconstructed pedigrees have been limited

in completeness, spanning at most a few generations. As such, researchers must

rely on indirect evidence of genealogical relatedness, such as through studies of

genetic variation. We felt it fruitful, therefore, to explore comparisons between

genetic and genealogical data.
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For isolated populations, in our work we used a set of closely-related popu-

lations from the Cilento National Park in southern Italy, Gioi and Cardile (Fig-

ure 3). Historical sources document that the village of Gioi was settled first in the

9th century by Greek immigrants, with a secondary settling of Cardile in the 18th

century through an exodus of Gioi residents. Though located approximately 6

km apart, the villages of Gioi and Cardile experienced high levels of reproductive

isolation until the 20th century. As in the case of many isolated villages around

Europe, a breakdown of isolates occurred following World War II that saw large

scale migration from the Cilento region.

Figure 3: Map showing location of Gioi and Cardile within the Cilento National Park
in southern Italy.

1.3 Study Design

1.3.1 Scantily-Differentiated Populations

Bayesian clustering algorithms have shown to be effective at identifying genetic

clusters in human populations [35,36,53]. Detection of differentiation and cluster-

ing with these methods may be affected by a number of factors, such as number of

markers considered and sample sizes [30,54], mutation rate [55], and geographical

dispersal of sample populations [30, 56]. The usefulness of model-based cluster-

ing methods in describing genetic structure has been demonstrated in studies
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of globally-distributed, genetically well-differentiated populations [2, 30, 54], as

well as in more closely-related, geographically-limited, but still genetically well-

differentiated [3–5], ones. However, their efficacy in highly closely-related, scantily-

differentiated populations has been limited to few studies involving real popula-

tions [6, 57], or to simulations of scantily-differentiated populations [58]. Nearly

all other previous studies have concentrated on populations among which genetic

differences are substantial. As such, their efficacy for the analysis of scantily-

differentiated populations is still an open question.

We used simulations to study the behavior of structure, one of the more exten-

sively used programs, in the presence of limited genetic differentiation. Here, we

varied effective size and divergence times, along with differences in sample sizes

and markers numbers. See Figure 4 for our model.

Figure 4: Diagram of model showing isolated population diverging from its original
source population.

1.3.2 Relatedness

Increased consanguinity is common in scantily-differentiated populations. Though

considered to be an important factor influencing inferences of genetic structure

[59], the effect of related individuals on the performance of model-based clustering

methods is not well documented, regardless of the existence of methods for esti-

mation [60,61]. In fact, a number of studies in human populations have taken care

to avoid including related individuals in order to limit the potential confounding
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effect of consanguinity [4, 5, 15, 62]. However, the performance of model-based

clustering methods, and the effects of study design, is largely unknown for con-

sanguineous populations. To the best of our knowledge, the only other study

to investigate the effect of consanguinity on clustering analyses was in rainbow

trout, a species that differs from human populations in being polyandrous, and

showing high fecundity and variance in reproductive success [63]. Further, their

study consisted of a single-family group consisting of siblings and half siblings plus

otherwise completely unrelated, or at least not obviously related, individuals, and

their simulations modeled similarly structured populations, rather than a number

of groups of related individuals with complex networks and varying degrees of

relatedness that we see in human populations. Here, we test model-based clus-

tering approaches in a set of consanguineous populations controlling for different

levels of relatedness. We make use of an extensive genealogical dataset dating

back three centuries to reconstruct genealogical links between sample individuals.

In this part of the study, we identified and removed consanguineous individuals

to investigate the effect of reducing relatedness in a sample on the performance of

structure.

1.3.3 Effect of Marker Numbers on the Detection of Structure

While the study by Vitart [57] showed differentiation amongst closely-related pop-

ulations among the Dalmatian islands, the observation of differentiation is weak

and mainly between villages that have approximately 0.02 or greater FST (paired

villages with lower FST values tend to cluster with other populations and do not

differentiate separately). Appropriately, Latch [58] showed that population iden-

tification by Bayesian methods breaks down amongst populations with FST below

0.02. However, conclusions from both these studies were based on just a handful

of markers—26 in the former and 10 in the latter—, which we have found may

be too low to detect clustering in scantily-differentiated populations. Analyses

of European populations, a lowly-differentiated group of populations with FST

<0.007 [2] documents a recognizable structure with 377 markers [2]. One may

conclude, therefore, that it is difficult to judge whether failure to identify struc-

ture in scantily-differentiated populations is due to either the prevalence of the

effects of gene flow over those of genetic drift, or to an inadequate number of
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markers in the analysis. However, even rather large numbers of markers may not

necessarily be adequate, as in the case of linguistically-differentiated populations

in India [15].

The question thus remains, is there a specific lower level of differentiation be-

yond which, barring highly related populations, genetic structure is undetectable

through model-based clustering methods? Or, is the detection of structure with

different levels of FST dependent on the number of markers available? Essentially,

would increasing the number of markers analyzed increase the possibility of ob-

serving structure in populations with lower differentiation? Bamshad et al. [54]

shows that the accuracy at which structure infers group membership for large-

scale (i.e., continental or geographical) groupings is indeed affected by marker

numbers, whereby increasing the numbers of markers analyzed increases correct

predictions of individuals into their sampled continental populations. Further,

Rosenberg et al. [30] shows a marker number effect on clusteredness, that is, the

degree to which populations cluster with one specific group, which we may also

refer to as the ability to detect structure, and demonstrated a contribution of

marker numbers to clustering success in the case of chicken breeds [64].

Recently, Morin [65] showed that the power to detect structure increases with

increasing number of markers analyzed in a data set, and that this observation

was affected by differentiation level. Both moderately (FST = 0.01) and scantily

differentiated populations (FST = 0.0025) show increasing power up to 75 markers.

However, high FST populations achieve high power approaching 75 markers (power

>0.9), while low FST populations do not even reach 50%. Increasing the number of

SNPs analyzed might have increased the observed power in scantily differentiated

populations. These authors also show that minor allele frequencies seem to have

no effect on results, indicating that SNP choice is not an issue. Although the

marker system studied here were SNPs, we expect a similar relationship with

microsatellites, our marker system of choice.

1.3.4 SNP Markers and the Detection of Structure

We focus on microsatellites in this study, as they have been one of the most com-

monly used markers systems, and are more useful in relatively recently diverged

populations (i.e., most human populations) because of their higher mutation rate.
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However, it may also be of interest to ask how marker choice affects our ability to

detect structure considering different numbers of markers. Lao et al. [8] suggests

that more STRP than SNP markers would be needed for detection of population

structure because of their high mutation rate. However, this is counter-intuitive;

one would assume that given the low mutation rate of SNPs, STRPs would be

more advantageous given the recent separation and shared ancestry of human

populations (particularly for closely-related populations). In fact, STRPs have

historically been used in studies of closely related populations because of their

high mutation rate and high degree of variability. Though, Lao et al. [8] was

referring to the case of using carefully ascertained SNPs.

1.3.5 Effect of Marker Choice on the Detection of Structure

Finally, Rosenberg et al. [66] showed that choice of markers, that is, choosing

markers that are more informative, can affect identification of population clus-

tering, whereby datasets of markers chosen to be informative are more useful in

identifying genetic structure than are datasets of randomly chosen markers, reduc-

ing the numbers of markers needed for structure analyses. As an aside, it would

be of interest to know whether informativeness of markers influences the ability

to detect differentiation between pairs of populations.

1.4 ALDH2

Acetaldehyde dehydrogenase 2 (ALDH2) is an enzyme involved in the alcohol

metabolism pathway, specifically converting acetaldehyde to acetate (see Figure 5,

top). A broken copy of the gene (see Figure 5, bottom), referred to as ALDH2*2,

has been identified that causes accumulation of acetaldehyde in carriers [67], re-

sulting in a flushing reaction in the face [68]. In addition to this flushing reac-

tion, which may reduce alcoholism because of its unpleasantness, accumulation of

acetaldehyde is also toxic and carcinogenic [69]. As a dominant acting allele het-

erozygotes are also affected. Interestingly, this allele is found only in East Asian

populations, and is a common allele in those populations [70]. We concern our-

selves that this allele may have been the subject of recent selection on the East

Asian branch. First, the high frequency of the allele indicates that it would have

to be an old allele, but old alleles tend to be more dispersed globally, and second,
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the negative effect of the allele would imply some counter advantage to it. Further,

genetic loci that are common in one population tend to also be found dispersed

amongst populations either because they are shared by descent or because they are

transferred between populations through gene flow. In addition, a second allele is

found only in populations on the OOA branch. Here, we explore the evidence for

natural selection of ALDH2*2 through simulation of genes with features similar

to ALDH2, comparing the distribution of alleles with frequencies similar to those

observed in ALDH2*2 and the OOA limited allele.

Figure 5: Ethanol metabolism pathway, showing the breakdown of ethanol to acetate,
through an acetylaldehyde intermediate (top). The ALDH2*2 allele causes the accumu-
lation of acetylaldehyde (bottom).

1.5 Models of Human Evolution

A number of models of human origins and evolutionary have been presented. These

can easily be tested against predictions of gene identity patterns.

Independent Regions. Under the independent regions model, a set of modern

human populations split from a single ancestral population, with little to no subse-

quent gene flow between or among them, allowing them to evolve independently of
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one another. This is analogous to the multi-regional model of human origins, but

with modern human populations splitting from an ancestral modern population

rather than an ancestral archaic population. This may also be referred to as an is-

land model. We can also consider a nested independent regions model, where each

geographical region splits from a single ancestral population, and all populations

within the geographical region originate from that geographical population.This

model predicts highest gene identities within local populations, lower ones be-

tween populations within geographical regions, and lowest between populations in

different regions. Human genetic variation has been shown to be inconsistent with

the independent regions model [71].

Isolation by distance. Isolation by distance is a function of the interacting ef-

fects of drift and long-term gene flow with neighboring populations [11]. This

occurs when individuals have greater likelihood of mating with individuals in

neighboring populations than they do with ones located father away and results in

individuals having a greater probability of sharing relatives in neighboring popu-

lations and lower probability with populations located at greater distances, which

can be seen as a gradual decline in genetic relatedness with distance. Under this

model, we expect declining gene identities with geographical distance between

populations. Human genetic variation has been shown to be consistent with a

model of long-range and local gene flow amongst Eurasian populations [71].

Serial Founder Effects. Previous studies have shown human genetic diversity

to be consistent with a serial founder effects (SFE ) model [72]. Under the se-

rial founder effects model, we see a set of population fissions, whereby each new

population originates from a previous founding population and subsequently gives

rise to future populations. However, subsequent investigations show that human

genetic variation is better explained by a nested version of SFE model, where a

series of major founder effects marked by bottlenecks occurs in major geographical

regions, followed by a series of founder effects within regions [71]. Under the serial

founder effects model, we expect to see: 1) lowest gene identities in the original,

ancestral population (essentially, the root of the tree), 2) a sequential increase

in gene identities between regions with each subsequent founder population, 3) a

layered pattern of gene identity variation between regions and between popula-

tions within regions [71], and 4) equal or similar gene identity between all pairs of

populations that share the same MRCA. In addition, we expect a tree of descent
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according to the pattern of fissions and length of branches on the tree that are

proportional to the ratio of evolutionary time to effective size.

Though testing of hierarchical models show that human genetic variation is,

generally, consistent with predictions from the SFE model, there are still some de-

viations from the model that need to be accounted for. Specifically, non-African

populations show greater diversity than expected under the SFE, resulting in

greater than expected genetic distances between African and non-African popula-

tions. We predict that early modern humans leaving Africa interbred and admixed

with archaic populations that they encountered along the way, and that this in-

jection of new genetic variants resulted in the increased variation that we observe.

1.6 Archaic Admixture

One of the most fundamental and contentious issues in human evolutionary studies

has been the conflict between competing models of human origin. For years, the

two reigning theories have been Multiregional Evolution (MRE) and the Out-of-

Africa (OOA), or replacement, theories [73]. The MRE states that modern Homo

sapiens originated, from early hominids, separately in Europe, Africa, and Asia

and evolved independently in these regions, with subsequent gene flow between

regional populations [74]. In contrast to the MRE, the OOA theory posits that

all modern humans evolved from a single population in Africa, approximately

200,000 years ago, and then replaced existing Homo species in the rest of the Old

World as they left Africa [75]. Much of the genetic evidence has favored the OOA

theory to the detriment of the MRE theory. However, other theories, compromises

between MRE and OOA, have been presented in recent years. Many of these new

ideas are modified versions of OOA, with allowance for admixture [76]. Thus, the

question being asked now is not whether humans originated in one location (OOA)

or independently in the three main regions of the old world separately (MRE), but

whether there was admixture between the population of modern humans leaving

Africa 60,000 years ago and populations of archaic humans that they encountered

along the way.

Studies of Neanderthal mitochondrial DNA (mtDNA) unequivocally show no

evidence of admixture with modern humans [56, 77]. Comparisons of mtDNA se-

quences between modern human and Neanderthal mtDNA sequences showed that
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the genetic differences between Neanderthal and current modern humans were

significantly different than that between current modern human populations such

that there could have been no admixture [77]. Further, a comparison of Nean-

derthal and early modern human sequences found that the early modern human

mitochondria contained zero Neanderthal-like DNA [56]. Finally, mtDNA from

Cro-magnon fossils shows variation within the range of current modern humans

but distinct from that of Neanderthals [78]. Recent simulations also support an

African replacement model for human evolution [79].

However, mitochondrial DNA is only one locus, and therefore can only tell part

of the story [80]. If gene flow from Neanderthals into early modern humans were

purely paternal, it would not leave a signature on mtDNA. Further, even if gene

flow from Neanderthal were maternal, genetic drift could have removed all trace of

admixture from the mitochondrial portion of the human genome [81]. In addition,

we may expect that given the high mutation rate of mtDNA and length of time

since possible admixture events, mutation could have erased signals of admixture

as well. Of course, any possible signature on the modern human genome would

be dependent on the admixture rate [82]. If Neanderthals made a tiny genetic

contribution, there is a greater chance that those genes would be lost through

drift. Estimates of rates of admixture range from 15 [83, 84] to 25% [56], to less

than 0.1% [85]. Thus, if admixture rates were on the low end of the estimated

admixture spectrum (i.e., <0.1%), it is not likely that we would see its signature

in the modern human genome.

Recent technological advances have allowed amplification and sequencing of

Neanderthal autosomal DNA, analyses of which, in comparison with modern hu-

man DNA, have revealed evidence of admixture between archaic and modern hu-

mans [86]. Here, we show that evidence for archaic admixture with early modern

humans can be detected in modern human genomic diversity, which may explain

deviations from the SFE model.

1.7 Autocorrelation

Analyses of spatial autocorrelation, the dependence of values of a variable with

values at different, usually adjoining, locations [87], are informative of demographic

and evolutionary processes. Initially conceived by geographers and statisticians,
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spatial autocorrelation methods were readily adopted by biologists for the study

of genetic [88], morphometric [89], and ecological data [90]. However, the usage

of spatial autocorrelation was limited to allele frequencies of individual markers

or polymorphisms. Subsequently, Bertorelle and Barbujani [91] further adapted

these methods for use with molecular data, such as DNA sequences, which they

termed Autocorrelation Indices for DNA Analysis or AIDA. AIDA statistics II and

cc, modified forms of the spatial autocorrelation indices Moran’s I and Geary’s

c, respectively, measure sequence or haplotype similarity with distance [92]. Non-

AIDA spatial autocorrelation analyses for the study of genetic variation has been

likened a multivariable approach, because results from multiple analyses were often

compared, in contrast to multivariate approaches such as principal components

analysis (PCA) [93]; thus, AIDA can be viewed as an approach transforming

spatial autocorrelation analysis from a multivariable to a multivariate approach.

Demographic and evolutionary processes, such as genetic drift, gene flow, and

natural selection affect genetic variation generated by the action of mutation.

While the effects of selection may sometimes be of interest to researchers, it is

the patterns created by the opposing forces of drift and gene flow that are of

interest in the case of spatial autocorrelation analyses. While genetic variation

between and among populations is often thought of in discrete terms, and in fact

genetic variation may be observed as discontinuous and can therefore be studied

as such [35, 94], differences between and among populations may sometimes be

more subtle, exhibiting clinal or continuous, often geographically-based, variation

[87, 95]. Further, some evolutionary processes, such as isolation by distance, may

require approaches that take into account subtle genetic variation, methods that do

not require populations to be measured as completely distinct entities. Methods

such as spatial autocorrelation are useful in this regard. Indeed, since not all

genetic variation is discontinuous it would be inappropriate to treat all data as

such. In addition, while clinal patterns of variation are easily observed by locating

gene or haplotype frequencies on a map (using some graphical visualization), the

statistical significance of these patterns may be open to question. Autocorrelation

analyses may add statistical weight to these observed patterns.

In human populations, AIDA statistics have been mainly used to study Y-

chromosome single-nucleotide polymorphisms [96–103] and mtDNA [77, 92, 104–

107] data. In addition, limited usage has been done on X-chromosomal data [108]
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and coding sequences [109].

While an independent extension to AIDA for microsatellite data has been

available for a number of years [110], autocorrelation analyses on microsatellites

in humans have been limited to a few studies, using alleles at single markers

[111], haplotype frequencies associated with single, specific haplogroups [112], or

individual loci separately with AIDA [113], or haplogroups with [114] or without

[115] AIDA. As such, the full power of genetic variability associated with the rapid

mutation rate of Y chromosome microsatellites has not yet been realized. During

our recent update of AIDA into the python programming language, which was done

to increase the computational limit of AIDA (i.e., to free AIDA from limitations on

number and length of sequences associated with previous versions), we decided to

incorporate an option for microsatellite analyses into the new version. Along with

this decision, it was determined that autocorrelation analyses of Y-chromosome

microsatellites in European, both continental and regional, populations was long

overdue. This also allowed us to test our new version.
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2 SCOPE OF THE THESIS

a) To show that genealogical relationships within and between populations

are expressed in genetic data

b) To show how demographic history can affect the detection of clustering

in scantily-differentiated populations

c) To show how consanguinity affects the signal of structure in closely-

related populations

d) To show that the detection of differentiation between pairs of populations

is dependent on sample size and marker numbers considered

e) To show that the number of markers needed to identify differentiation

between pairs of populations is dependent on their level of divergence

f) To develop a new version of AIDA with increased computational power

and extended use for analyzing microsatellites

g) To show that modern human genetic variation is consistent with a serial

founder effect model, long-range gene flow between populations in different

regions of Eurasia, and introgression of archaic DNA into modern humans on

the OOA branch

h) To show that the limited distribution of a detrimental allele in Asian

populations is not consistent with neutral expectations
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3 MATERIALS AND METHODS

3.1 Datasets

3.1.1 Cilento

From southern Italy, we have data available on 1356 individuals from two villages,

Gioi (n = 882) and Cardile (n = 474), corresponding to nearly all current resi-

dents, located within the Cilento National Park. Two sets of data were collected

for these samples: genealogical and genetic. Our genealogical data is composed

of 20,383 birth records, also documenting mortality and parental relationships,

spanning the past four centuries, collected from registry office and parish archives.

These data allowed us to reconstruct genealogical relationships between all pairs

of extant individuals. For genetic data, we obtained 1122 microsatellites, with

average marker spacing of 3.6 cM and mean marker heterozygosity of 0.70, from a

genome-wide scan performed by the DeCode genotyping service on DNA extracted

from peripheral blood. Genetic data was obtained from all study samples.

3.1.2 CEPH HGDP

Our primary dataset of worldwide populations is the CEPH Human Genome Di-

versity Panel (HGDP), which was initially a set of 1050 individuals distributed

amongst 52 world-wide populations [1, 2] originally typed on 377 microsatellites,

and subsequently extended to 783 microsatellites [30]. Subsequently, additional

samples and populations have been typed for many of these same markers in

Native American [5], South Asian [15], African [4], and South Pacific [3] popula-

tions. We term this the ‘extended’ CEPH HGDP (see Figure 6 for locations of

populations, black dots correspond to waypoints). This dataset contains 5179 in-

dividuals from 245 populations genotyped at 619 common microsatellite markers.

The original CEPH populations have also been typed for SNP markers [116]. For

our first project using the Cilento populations, comparing results from genealog-

ical and genetic analyses, we use European populations from the original CEPH

HGDP dataset, using a subset of 36 markers shared between that dataset and our

populations from Cilento. For the ALDH2 project, we use 16 populations from

the original CEPH dataset. For our project analyzing marker numbers needed
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to observe differentiation between populations with different levels of divergence,

we use the Wang et al. [5] dataset of original CEPH data plus additional Na-

tive American populations. For the archaic admixture project, we use subsamples

taken from the ‘extended’ CEPH HGDP. Geographical distances between popu-

lations are great circle distances calculated using the indicated waypoints taking

into account inferred directions of dispersal across land.

Figure 6: Map of world with locations of populations from extended CEPH HGDP.
Black dots indicate waypoints.

3.1.3 ALDH2

We obtained DNA samples from four populations each from four geographical re-

gions: Africa (Mbuti, 5; Biaka, 5; Nigerian, 8; and Kenyan, 8), Europe (Iberian, 9;

Southern Eussian, 9; Italian, 10; and Russians from Moscow, 10), Asia (Japanese,

10; Han Chinese, 10; Aboriginal Tiawanese, 10; and Southeast Asians, 10), and

America (Mexican Indians, 5; Mayans, 4; Surui, 5; and Karitiana, 5). These

DNA samples were obtained from The Coriell Institute for Biomedical Research

in Camden, NJ. Following PCR amplification, these 123 samples were sequenced

for 5387 base pairs in the ALDH2 gene. Primers for PCR and sequencing were de-

signed using the human references sequence from the July 2003 build (NCBI Build

34), accessed on the UCSC genome browser (http://genome.uscs.edu). Sequenc-

ing was done using dye-terminator sequencing at the University of Michigan DNA
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sequencing core facility with Applied Biosystems Big-Dye reagents on an Applied

Biosystems automated sequencer. Fourteen variable sites were identified. The

Seqman module in the DNASTAR package was used to analyze chromatograms

and perform alignments, and to assemble the ALDH2 segment for all individuals.

3.1.4 Y-STRP data

Four datasets were used in this study for testing this new version of AIDA: one

Europe-wide dataset [115] and three country-limited ones. Of the country-limited

datasets, Italy [117] contains samples found within the larger European dataset

though with some additional markers, while the other two, Finland [118] and the

United Kingdom [119], are completely independent. This gives us the opportunity

to test whether nested populations share similar patterns (that is, does the pat-

tern of the more locally focused population mirror that of the larger population

from which it is derived), plus two other independent populations for comparison.

Actually, the YBase dataset contains a single Finnish and three UK populations,

but the samples are completely different from the ones we study separately. In

addition, an additional dataset of mtDNA sequences from the UK from Sykes [119]

were included in this study since it includes the same populations as the Y-STRP

dataset and therefore allows us to examine autocorrelation patterns of Y-STRP

with an additional uniparental genetic system typed in the same populations, and

Y-SNPs from the same Finnish individuals were also analyzed to compare the

results of two uniparental genetic systems from the same chromosomes, but with

different mutation rates.

For the European sample, 90 out of 91 available populations were considered in

our analyses. One population, Turks from Bulgaria, were removed from analyses

because identification of the sampling location would be difficult. As such, 12,666

samples were analyzed here. Population samples are dispersed across Europe,

including those sampled from: Portugal (4), Spain (10), Netherlands (5), Germany

(14), Italy (10), Sweden (8), Norway (6), Poland (6), Austria (3), Estonia (2),

Russia (2), Switzerland (2), and France (3). The number of populations from

each country are in parentheses. Single populations are available from Albania,

Greece, Hungary, Bulgaria, Denmark, Finland, the Ukraine, Slovenia, England,

Latvia, Romania, Ireland, Lithuania, Croatia, Belgium, Belorussia, and Turkey. In
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addition, a reduced dataset of 7710 was considered, reducing population samples

to 100 individuals or less to enable calculation of confidence intervals for Europe

as the full dataset crashes the memory on one cluster we use, and takes too

much time to calculate on the other cluster (the cluster has a restriction on the

length of time each job can be run). Analyzing a reduced population also allows

us to reduce the potential effect of uneven sample sizes from some populations

containing larger samples (for example, some German populations contain 500+

samples, while some smaller ones only contain 40). Seven Y-STRs were available

for the European YBase dataset: DYS19, DYS389I, DYS389II, DYS390, DYS391,

DYS393, and DYS392.

The Italian dataset contains 1175 samples from the 10 Italian populations

considered in the European dataset. Sampling locations are distributed around

Italy: the Marches, Puglia, Tuscany, Liguria, Sicily, Lombardy, Emilia Romagna,

Veneto, Latvia, and Umbria. Nine Y-STRs were considered in our analyses of

Italy: the seven found in the larger European dataset as well as DYS385a and b.

Data for nine Finnish provinces were contained within the Finnish dataset: South-

ern Ostrobothnia, Häme, South-Western Finland, Swedish-Speaking Ostroboth-

nia, Satakunta, Northern Karelia, Southern Karelia, Northern Savo, and Northern

Ostrobothnia. Ten Y-STRs were considered for this analysis: The seven consid-

ered in the European dataset plus DYS385a and b, and DYS388. In addition,

12 biallelic SNPS were considered. For the United Kingdom analyses, 2425 sam-

ples from 18 populations sampled from around Great Britain were considered.

Populations were sampled from: Argyll, the Borders, Central England, East An-

glia, Grampian, the Hebrides, the Highlands, Ireland, Isle of Man, London, North

England, the Northern Isles, the Orkney Islands, Northumbria, South England,

South-west England, Strathclyde, Tayside & Fife, and Wales. The seven Y-STRs

found in the European dataset were considered. Sykes also considered 3 additional

markers, which we do not use here because not all individuals were typed for those

markers. As well, 3685 mtDNA sequences were also considered.

All analyses were done using both Infinite Alleles (IAM) and Stepwise Mutation

(SMM) models. For all populations, latitude and longitude data were taken from

publicly available data. For the Italian populations, exact sampling locations

were not given so individual major cities were chosen for coordinate locations.

Sampling locations reported for individuals in Sykes dataset were birthplaces of
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Table 1: Distribution of pedigrees in the genealogical dataset and kinship values of
sampled individuals for the whole genealogical dataset and largest pedigree in the dataset
[120]

Gioi-Cardile Gioi Cardile

W
H

O
L

E
D

A
T

A
S

E
T

individuals 5272 4190 2384

pedigrees 63 45 19

sampled individuals 1356 882 474

mean kinship for
sampled individuals 0.0030 ± 0.0147 0.0040 ± 0.0177 0.0086 ± 0.0235

(± s.d.) (max=0.292) (max=0.291) (max=0.292)

median kinship 0.000061 0.0065 0.0035
(25%-75% quartiles) (0.0000-0.0015) (0.0000-0.0023) (0.0006-0.0082)

L
A

R
G

E
S

T
P

E
D

IG
R

E
E

individuals 5165 4113 2354

pedigrees 1 1 1

sampled individuals 1274 828 446

mean kinship for
sampled individuals 0.0034 ± 0.0155 0.0045 ± 0.0188 0.0097 ± 0.0246

(± s.d.) (max=0.293) (max=0.291) (max=0.293)

median kinship 0.000197 0.000862 0.000862
(25%-75% quartiles) (0.0000-0.0019) (0.0000-0.0026) (0.0009-0.0088)

the paternal grandfather and maternal grandmother of the sampled individual for

Y and mtDNA data, respectively [119].

3.2 Genealogical analyses

From our genealogical pedigree data, we constructed pedigrees spanning 350 years

(15-17 generations), from which we calculated kinship coefficients Φij between

pairs of individuals, i and j, using Karigl’s method [25] implemented in the Kin-

InBCoeff module of the CC-QLS package [26]. Pedigrees for the whole dataset

and largest single pedigree are summarized in Table 1. We also used modules

from the PyPedal pedigree analysis package [27] to construct pedigrees and calcu-

late pedigree-based relationship coefficients, which were halved to obtain kinship

coefficients [24].
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3.3 Simulation and Sampling Schemes

All coalescent simulations were performed with SimCoal2 [121], version 2.1.1. For

all our simulations, we assume a generation time of 25 years [122], an instantaneous

growth model, that is, immediate change in population size, and 100% merging of

populations unless indicated.

3.3.1 Scantily-Differentiated Populations

In our simulations, we modeled an isolated population of varying effective size,

Ne = 500, 1000, or 2000 individuals diverging from a source population of fixed

effective size Ne = 20,000, at varying times in the past, tdiv = 250, 500, 750, 1000,

or 1250 years (see Figure 4). Here, we used a generalized stepwise mutational

model [18] with a mutation rate of µ = 7x10−4 [123]. For each set of divergence

time and effective size, we simulated 1000 microsatellite loci. Our sample output

for each population from SimCoal2 was equal to the effective size of the isolate.

From these master datasets, we assembled diploid datasets for further analyses

by randomly sampling with replacement pairs of haploid genotypes at m mark-

ers (m=20, 40, 80, or 200) for n diploid individuals (n=10, 20, or 50) for each

population.

3.3.2 Family group analyses

Using inferred genealogical relationships, we created 8 kin-groups of samples de-

fined by restricted relatedness (Table 2). Kin-group zero is the most inclusive,

including all pairs of individuals, while kin-group 7 is the most exclusive, including

only unrelated, or apparently unrelated, individuals. That is, estimated kinship

between all pairs of individuals in this kin-group are zero. For all other kin-groups,

we restrict access to the group according to relatedness thresholds as defined in

Table 2. Here, we analyzed all pairs of individuals and removed one element of

the pair when their kinship is greater than the degree of allowed relatedness.

3.3.3 Marker Numbers

Our approach for studying the effect of numbers of markers on the performance

of structure was to create a set of natural experiments by analyzing pairs of pop-
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Table 2: Features and number of individuals for kin-groups

KIN-GROUP ALLOWED RELATEDNESS GIOI CARDILE

0 All 897 492
1 Up to Sibling 450 227
2 Up to Half-Sibling 245 118
3 Up to 1st Cousin 187 88
4 Up to 2nd Cousin 137 58
5 Up to 3rd Cousin 134 51
6 Up to 4th Cousin 127 51
7 None 129 50

ulations from publicly-available data sets of human populations. For the initial

analysis, we considered the dataset of Wang et al. [5], which is comprised of the

original CEPH HGDP populations with an additional 24 Native American popu-

lations, herein referred to as the ‘STR678’ dataset. In total, this dataset contains

78 populations, giving us a possible 3003 population pairs, typed at 678 autosomal

microsatellites. For comparison to another commonly used genetic marker system,

we used the dataset of Conrad et al. [116], herein referred to as the ‘SNP’ dataset.

This dataset contains 53 (reported as 52, but Han is divided into “Han” and “Han-

NChina”) populations typed at 2834 single-nucleotide polymorphisms, giving us

1378 possible population pairs. For the testing of informativeness of markers, we

considered the original 377 autosomal microsatellite dataset of Rosenberg et al. [2],

herein referred to as the ‘CEPH377’ dataset. This dataset was used because it is

the dataset in which Rosenberg [66] identified informativeness of markers. Here

we have 52 populations, giving us 1326 possible population pairs. Datasets are

summarized in Table 3.

Table 3: Datasets included in this study, showing number of populations (Npops),
number of markers (Nmarkers), marker types (MarkerType), and number of possible
population pairs considered (PopPairs)

Dataset Npops Nmarkers MarkerType PopPairs Citation

Wang 78 678 Microsat 3003 Wang et al. (2007)
CEPH377 52 377 Microsat 1326 Rosenberg et al. (2003)

SNP 43 2834 SNP 1378 Conrad et al. (2006)

Pairs of populations in each dataset were divided according to their pairwise
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FST into mildly- to highly-differentiated (FST ≥ 0.01) and scantily differentiated

(FST <0.01) populations. Though FST determined by structure output was used

in clustering analyses, we used Arlequin [124] for initial calculation of FST .

3.4 Clustering analyses

Genetic structure was analyzed using the structure software package [35], under as-

sumptions of admixture, correlated allele frequencies (the F model), and no prior

population information [35, 125]. We use the F model because it has improved

capability of differentiating similar, that is, with very low FST , but distinct pop-

ulations. This was useful for us, because we were either investigating a set of

populations with known low FST , or studying a range of populations, including

ones with low FST . Each study followed different study designs for structure as

follows:

3.4.1 Comparison of Genealogical versus Genetic data

For K clusters from 1 to 8, we performed 50 runs of structure with a burnin length

of 20,000 followed by 10,000 iterations. For each K, we determined the posterior

probability of clustering using the average logarithmic probability of data across

runs. However, this approach was inconclusive in identifying the number of clus-

ters in our data. Thus, we used Evanno’s [38] method of using the second order

rate of change to identify the optimal number of clusters in the data. Finally,

we input resulting matrices of membership coefficients into clumpp [126], using

the LargeKGreedy algorithm, to look for possible multimodality or label switch-

ing. We find no obvious multimodality among runs, with average similarity (G′

values) of 0.99, 0.79, and 0.89 for K =2, 3, and 4 respectively. Distruct [28] was

used to graph membership coefficients quantifying the probability of each sample

individual belonging to each cluster. We performed two sets of runs using the

above conditions. First, we analyzed Gioi and Cardile alone at 239 loci for all

1356 individuals. Second, we analyzed Gioi and Cardile with the 161 European

samples available in the CEPH HGDP, using subsets of 37 and 22 individuals from

Gioi and Cardile, respectively, at 36 markers shared between the two datasets.
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3.4.2 Scantily-differentiated populations

For this project, we used structure, version 2.3 [127]. Usually, researchers run

structure for a set K clusters and then determine the optimum number of clusters

in the data from comparisons across results from different K values. However,

since we already knew how many independent populations were in our data, we

only used K =2 for our analyses. As in the previous study, we used a burnin length

of 20,000 followed by 10,000 iterations. In addition, we assessed convergence by

comparing results from different runs under the same conditions, using higher

numbers of iterations following burnin. We found no difference in our results.

From our simulated populations, we randomly sampled n=10, 20, or 50 diploid

individuals, at m=20, 40, 80, or 200 markers, for all combinations of tdiv and Ne

for clustering analyses. We conducted 100 replicates of each simulation, giving us

18,000 experiments across all combinations of variables.

3.4.3 Consanguineous populations

For each of our kin-groups defined in Table 3, we randomly sampled n=10, 25, or 50

individuals from each village, considering their genotypes at m=20, 40, 80, or 200

randomly chosen loci, from the 1122 microsatellite markers available in our total

dataset, for clustering analyses. For each kin-group and each n, all individuals

are considered at the same randomly chosen markers. Here, we conducted 50

replicates for each of 96 combinations of kin-group, sample size, and number of

markers, giving us a total of 4200 structure runs. As shown in Table 3, the

numbers of individuals in each kin-group diminishes with increasing threshold of

relatedness. Hence, we have an increased chance of sampling the same individuals

since the pools we are sampling from decrease in size with increasing relatedness.

3.4.4 Marker Numbers

For all analyses, 10 runs were performed using a burnin length of 5000 followed by

1000 iterations. For a limited number of experiments to determine the adequacy

of burnin length and iterations, membership coefficients generated by structure

were input into clumpp and analysed using the LargeKGreedy algorithm [126].

Output from clump provides estimation of similarity between runs.
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As per Rosenberg et al. [30], we tested a few subsamples of population pairs for

different burnin length and iteration combinations to determine whether increased

burnin length and/or iterations following would have a significant effect on results,

using similarity coefficients (SCP) calculated with clump [30]. Considering Rosen-

berg’s suggestion for similarity of membership coefficients between runs of 0.85 -

1.0 indicating high similarity ( [2], supplemental material), we find no significant

difference using burnin lengths of 5000 and iterations following burnin of 1000, and

any other increased burnin/iteration combinations that we tried. This indicated

to us that a 5000 burnin length and 1000 iterations for each run were adequate

for convergence. This was important to us because of the large number of experi-

ments that we were considering; a shorter running length makes the experiments

faster. For example, for the Wang populations we ran 229,830 structure runs, and

so choosing a burnin length of 1000 instead of 5000 reduced by almost one billion

the number of simulation cycles we had to run.

For clustering analyses, we chose to analyze subsets of the data comprising

from five to the maximum number of markers available, in increments of five,

for mildly- to highly-differentiated populations, and from 25 to the maximum

number of markers, in increments of 25, for scantily-differentiated populations.

The maximum number of markers for each dataset was considered as the number

of markers in the full dataset that is a multiple of five (e.g., a maximum of 675

markers is found among 678 markers in the STR678 dataset).

For the Wang and SNP datasets, markers were randomly chosen, so some

markers may not be shared across marker sets, but all population pairs were

analyzed with the same markers for all marker number sets at which they are

analyzed. To test for informativeness, markers were chosen as the top (i.e., most

informative) m, with m=5, 10, 15,. . . ,M, where M = maximum number of markers

in the dataset that is a multiple of 5, informative markers in the World-52 dataset

[66]. As such, markers found within lower marker number datasets are also found

in upper marker number datasets (that is, lower marker number datasets are

nested within upper marker number datasets).
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3.5 Analytical Approaches

3.5.1 Genealogical versus genetic data

In addition to cluster inference and determination of the optimum placement of

samples into inferred clusters, structure and other model-based clustering algo-

rithms also output, when using admixture models, membership coefficients of in-

dividuals to each inferred cluster to which the individual has some affinity. Mem-

bership coefficients may be seen as the probability that an individual belongs to

a particular cluster, or the proportion of their genome derived from each clus-

ter. First, we took a majority takes all approach, where we placed samples into

clusters with which they share 50% of their membership. This is referred to as

the 0.50 threshold to the cluster. Then, we compared the average membership

of individuals with their average kinship with all other members of the cluster.

Membership coefficient is for each individual, versus the average kinship of each

individual to other individuals placed within that cluster by the 0.50 threshold

requirement. This was done only for K =2. Pearson correlations were performed

within each cluster. Also, for K =2, 3, and 4, we grouped individuals within clus-

ters according to increasingly stringent threshold requirements of T =50, 75, 90,

and 95% membership. Here, we tested the average kinships within each cluster

and FST between clusters for each of these threshold requirements.

3.5.2 Scantily-differentiated Populations

While the visual approach implemented in structure (the gui version) or dis-

tuct [28] may be adequate when considering one or just a few experiments, a

quantitative approach for summarizing the data is needed for large numbers of

experiments. Here, we use the clusteredness statistic (G), defined in the introduc-

tion, to quantify the extent to which individuals have their ancestry distributed

solely within one cluster, even across all clusters, or some intermediate degree be-

tween clusters. Thus, we measure the change in differentiation between clusters

when using different effective sizes, divergence times, marker numbers, and sample

sizes. We also used clusteredness in our family group analyses.
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3.5.3 Marker Numbers

In addition to using it to determine differences in differentiation between clusters,

we use clusteredness [30] as a metric for determining significant differentiation

between populations. Our choice in identifying sufficient numbers for identify-

ing structure for each pair of populations was to use an initial clusteredness (G)

threshold of 0.5, herein G50, followed by a more stringent threshold of 0.9, herein

G90. These clusteredness thresholds chosen for indication of significant clustered-

ness are based on Rosenberg’s standard of 75% membership coefficient for cluster

assignment [64], and for 95% confident assignment as per [128]. We also deter-

mine a maximum clusteredness for population pairs, i.e., the clusteredness at the

maximum number of markers (Gmax). This allows us to identify populations that

do not cluster at all in our analyses, even at the maximum number of markers.

We performed clustering analyses between population pairs at 5, 10, 15,. . . ,N,

where N is the maximum number of markers that is a multiple of 5 (or 25 for FST

<0.01), until they achieved clusteredness values at or above 0.9 for population

pairs that had a Gmax ≥ 0.9, and 0.5 for all other population pairs with Gmax ≥
0.5 but Gmax <0.9. Population pairs that have maximum clusteredness <0.5 were

not considered in our analyses. We took this approach because of the large number

of runs that we anticipated. For example, running 10 runs each for all pairs of

populations just for marker numbers from five to 100 in five marker increments

would need 600,000 runs. Marker numbers needed for differentiating population

pairs were determined to be the minimum number at which a population pair

had clusteredness values at or above the threshold levels of 0.5 or 0.9. In this

regard, we required that at least 60% of runs meet these thresholds with a range

of clusteredness values of 0.1 or less for ensuring consistency among runs, similar

to Tishkoff et al.’s [4] 60% standard for high stability of clustering across runs.

3.6 Generalized Hierarchical Modeling

Generalized hierarchical modeling [41] was used to fit a serial founder effects model

to observed microsatellite data from the extended CEPH HGDP. For our initial

analyses of human genetic variation, where we find evidence for archaic admix-

ture in the human genome, we fit a serial founder effects model to a subsample

of 100 worldwide populations. We then compared expected and realized, that is,

47



predicted and observed, respectively, gene identity coefficients using a ghm plot

(R code, available from Jeff Long). See Figure 7 for a hierarchical plot showing

these populations. Branch lengths are proportional to the change in gene iden-

tity along the branch. Our initial tree was determined using the neighbor joining

algorithm (NJ) [129] implemented in phylip [130] on genetic distances calculated

from gene identities between local populations. Subsequently, new internal nodes

were added and ghm was used to determine whether the addition of new inter-

nal nodes improved the fit of our model to the data. We used MEGA version

4.0 [131,132] for visualization of phylogenetic trees. Our metric here is Nei’s gene

identity [133]. We constructed matrices of gene identity averages across loci, with

the gene identity within local populations represented on the diagonal, and gene

identity between local populations on the off diagonals. Gene identities at nodes

are estimated from the gene identities between populations sharing a MRCA rep-

resented by the node. The root of our tree was determined to be the node with the

lowest gene identity calculated between populations showing a MRCA represented

by the node. Ghm uses numerical approximation procedures to identify maximum

likelihood solutions for fitting models to observed data [134]. To determine fit, we

use the likelihood ratio statistic discussed in the introductory section. Fit can

also be inspected visually using a scatter plot of expected versus realized genetic

distances, calculated from the gene identities, between pairs of populations. These

would be expected to assume a cigar-shaped distribution [42]. However, this vi-

sual approach does not provide for a useful procedure for deciding between better

fitting models. Better fitting models are expected to produce a lower Λ. One

surprising observation on the tree in Figure 2 is that a model placing Oceanian

populations with Cambodia, determined by the NJ algorithm, provides a better

fit than when placed with other South Pacific island populations. An incorrect

tree can results when deviations from treeness are present [134], which is predicted

to occur amongst South Pacific island populations.

For our ALDH2 and archaic admixture simulations, ghm was also used to

find the most likely demographic history for a subset of 16 populations from this

dataset. We chose four populations from each of four geographical regions, Asia,

America, Europe, and Africa. This larger dataset includes South Pacific popu-

lations [3], but they were not included in our simulations. See Figure 8 for the

phylogenetic tree showing these populations, with an included archaic outgroup.
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Figure 7: Hierarchical plot fit to the data from 614 STR loci for 100 populations. The
x axis scale corresponds to gene identity, which is proportional to t/Ne, where t is the
generation time along the branch (one generation = 25 years) and Ne is the effective
size along the branch.
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We initially chose populations for which we had adequate knowledge of ALDH2*2

frequency to match to populations that were typed for ALDH2. These popula-

tions were subsequently used in our admixture simulations. We included the same

number of populations from each geographical region to avoid an unbalanced rep-

resentation of genetic variation. Output from ghm provided us with estimates of

gene identities within and between populations, which we use to estimate demo-

graphic parameters. As for the 100 population subsample, here we first determined

the most likely branching pattern using the neighbor joining algorithm [129] as

implemented in phylip [130] on genetic distances calculated from gene identities

between local populations, and then fit this hierarchy to the data using generalized

hierarchical modeling [41, 71]. Again, the root of our tree was determined to be

the node with the lowest gene identity calculated between populations showing a

MRCA represented by the node.

3.7 Estimation of Demographic Parameters

Taking a given evolutionary tree for a set of populations, we set out to estimate the

parameters t/Ne (for 2N - 1 branches, with N = the number of populations) and

mutation rate, µ, that would generate this tree in simulations. We assume that

evolution is independent on each branch in the tree. From this assumption, we can

further assume that gene identity between pairs of populations sharing a MRCA

is the same for all pairs. In the absence of mutation, the gene identity between

pairs of populations is the gene identity within the population of the MRCA;

with mutation, the gene identity between populations is the gene identity within

the population of the MRCA increased by mutations along branches separating

the populations. Thus, we assume that JMRCA,X&Y ≤ JXY . Branch lengths are

proportional to t/Ne in the absence of mutation. However, mutation has the effect

of decreasing branch length. Thus, we assume that branch lengths ≤ t/Ne.

We obtained our initial estimate of the stepwise mutation rate, µ, of 2.2 ∗ 10−4

from the mutation/drift equilibrium formula [135],

J∞ = 1/
√

1 + 8Nµ

with a basal effective population sizes for modern humans, Ne, of 12500 and gene
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Figure 8: Hierarchical plot fit to the data from 614 STR loci for 16 populations, plus an
archaic outgroup. The x axis scale corresponds to gene identities, which are proportional
to t/Ne, where t is the generation time along the branch (one generation = 25 years)
and Ne is the effective size along the branch. The red dotted line and arrow indicates
the point of archaic contribution to the Out-of-Africa (OOA) branch, with m indicating
the proportion of the modern human genome on the OOA branch contributed by the
archaic lineage. t at the base indicates divergence times between archaic and modern
humans.

identity at the root of 0.209—which was estimated from the data. However, in

our simulations this mutation rate resulted in a gene identity coefficient at the

base that was lower than expected (J[E] = 0.209) with an effective size of 12500

individuals. Decreasing the mutation rate to 9 ∗ 10−5 returned our expected gene

identity at the basal node as estimated from the data.

Initial effective population sizes of internal and terminal branches were esti-

mated using gene identity coefficients obtained from ghm along with rough diver-

gence times, using the equation,

2Ne = −t/ log(
1− Jt
1− J0

)

where t is the number of generations between the beginning and end of branches,

where one generation was considered to be 25 years, J0 is the gene identity at the
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beginning of the branch, and Jt is the gene identity at the end of the branch. 2Ne

is the haploid effective size. Effective size estimates ranged from a few hundred in

the Brazilian populations to over 100,000 on some internal branches.

As in the case of the basal node, simulated gene identity coefficients on in-

ternal nodes and tips were also lower than those estimated from the data. In

addition, differences between observed and simulated gene identity coefficients

were generally greater in nodes further from the root. This resulted in shorter

than expected branches. This was likely the result of cumulative deviations from

lower branches. Since branch length is influenced by the parameter t/Ne, we ad-

justed gene identity coefficients on nodes at the ends of branches in the equation

above to estimate new effective population sizes to calibrate simulations to our

observed tree (that is, the tree fitted to our data). Inserting these new, adjusted

effective sizes into our simulations returned gene identity coefficients and branch

lengths more closely approximating what we observe in the tree fitted to the data.

Keeping divergence time as set, we increased gene identity coefficients on nodes

at the ends of branches by 0.01, thereby decreasing our estimated effective size

along the branch, until simulated and observed gene identity coefficients differed

by 0.005 or lower. This was done successively beginning with the basal node and

continued until all nodes returned their gene identities as estimated from the data.

Changes on lower level nodes also affected gene identities on upper level ones. As

effective sizes on lower nodes were adjusted to return proper gene identities, higher

nodes returned gene identities closer to those estimated from the data. Internal

nodes leading to all regions needed adjustment, but nodes within regions did not.

In addition, nodes in extant OOA populations required no changes, while a few

in extant African populations did. Adjusting gene identities on nodes to those

estimated from the data returned estimated branch lengths as well. We feel our

estimates of effective size calibrated by crude archaeological estimates are robust

to the true history of these populations. Any change in divergence times will result

in a concomitant change in effective size to maintain a level of drift to produce

the observed gene identity at each node. In Table 4 we present adjusted effective

sizes and divergence times for terminal populations and internal nodes.
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Table 4: Demographic parameters for 16 population simulation. Branch and node refers
to the numbers of the populations (i.e., terminal end of the branch) and connecting
nodes (i.e. internal node of the branch), respectively, on the phylogenetic tree, and
PopulationName refers to either the name of the population, in the case of extant
populations (first 16 are extant populations) or populations joined by the connecting
node. AdjNe are effective sizes calculated from rough divergence times (in generations),
tDiv, adjusted to return gene identities estimated for the node.

Branch Node AdjNe tDiv PopulationName

1 17 31812 7800 San
2 18 89377 4000 Biaka
3 19 111827 3000 Yoruba
4 20 111827 2400 Maasai
5 22 91869 1960 Adygei
6 23 23610 400 Russian
7 24 20524 200 French
8 24 15341 200 Italian
9 26 7355 800 Pima
10 27 36233 400 Maya
11 28 398 40 Colombian
12 28 262 40 Karitiana
13 29 48467 1800 Yakut
14 30 12494 600 Cambodian
15 31 17768 300 Japanese
16 31 61592 300 Han

Internal nodes
17 root 25000 7800 root
18 17 99340 4000 Biaka
19 18 41431 3000 Yoruba
20 19 22126 2400 Massia
21 20 2619 2200 OOA
22 21 7434 1960 Europe
23 22 635398 400 Russian
24 23 59008 200 French/Italian
25 21 8029 1880 Asia/America
26 25 11096 800 America
27 26 61389 400 Maya
28 27 16978 40 Columbian/Karitiana
29 25 3271 1800 Asia
30 29 126376 600 Cambodian
31 30 111700 300 Japanese/Han
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3.8 Archaic Admixture Simulation and Analysis

We simulated 1000 completely unlinked microsatellites, using a single step mu-

tation model [136] (SMM), that is, insertion or deletion of one repeat unit per

mutational event, and limited the number of alleles to 35 for each marker. After

setting up and calibrating our tree with extant human populations, we added an

archaic admixture event on the OOA branch (see Figure 7). Effective sizes of ar-

chaic and ancestral (that is, the MRCA of archaic and modern humans) humans

were also set to 12,500 individuals. From our simulations, we sampled 20 haploid

genomes for all populations except archaics. At each historical event, 100% of the

source population was merged into the sink population and the effective size of the

sink population was converted to the effective size of the ancestral population on

the branch leading to the shared node. We chose an instantaneous growth model

for our populations for the change in effective population size at each historical

event. That is, all changes in population sizes occurred instantaneously at the time

of the historical event. In general, no gene flow is allowed between populations.

For our simulations with archaic admixture, we varied divergence times of

archaic and modern humans from 300,000 to 700,000, in 25,000 year intervals, and

archaic contribution to modern humans from 0 to 50% in 2.5% intervals. Archaic

contributions occurred in one shot at the beginning of the OOA branch (2400

generations). Since SimCoal2 is a backward in-time simulator, the movement

of migrants is actually from the OOA branch to the archaic branch, and the

contribution refers to the proportion of haploid genomes moved from the OOA

branch to the archaic branch.

For analyses, we calculated the differences between expected and realized gene

identities (that is Jd = Je - Jr). Our observed difference calculated from the

data is 0.02, which is the value to which we compare our results. Gene identity

differences were regressed on archaic contribution within divergence times using

quadratic regression and plotted on a contour map with archaic contribution and

divergence time on the X and Y axes, respectively. R [137] was used for production

of contour maps.

54



3.9 ALDH2 Simulation and Analysis

We simulated 20,000 chromosomes with features similar to ALDH2, DNA sequence

of length 5387 using an infinite sites model with a mutation rate of 1.2 ∗ 10−9,

following a demographic scenario of 16 populations, four each from four geographic

regions. We used the demographic history, that is, effective sizes and divergence

times, as determined from the microsatellite data in our simulations. We chose 16

populations from the CEPH HGDP that are the same or closely match those from

which we obtained ALDH2 sequences: Mbuti, Biaka, Kenya, and Yoruba from

Africa; Adygei, Russian, French, and Italian from Europe; Pima, Maya, Karitiana,

and Surui from America; and Yakut, Cambodian, Japanese, and Han from Asia.

Samples sizes of simulated populations match those of sequenced data. Following

simulations, we sampled alleles that had frequencies matching the ALDH2*2 allele,

6.9% worldwide and 22% in Asia. We also sampled alleles having frequencies

matching the OOA restricted allele, 33% worldwide and 42% on the OOA branch.

3.10 AIDA

As with the original version of AIDA, we calculate II and cc, analogous to Moran’s

I and Geary’s c, respectively. However, the current version also provides the op-

tion of choosing either II or cc to be calculated, which is an advantage for large

data sets as it reduces calculation time by approximately 50%. Indices are calcu-

lated per distance class, with comparisons between individuals located within a

pair of defined distances distance falling within the distance class.

Statistics

The revised AIDA equations are:

II =
n
∑S

k=1Wij
∑n−1

i=1

∑n
j>1(pik − p̄k(pjk − p̄k

W
∑n

i=1

∑S
k=1(pik − p̄k2

and

55



cc =
(n− 1)

∑S
k=1Wij

∑n−1
i=1

∑n
j>1(pik − p̄k2

2W
∑n

i=1

∑S
k=1(pik − p̄k2

where n is the sample size, W is the number of pairwise comparisons in the dis-

tance class of interest (essentially the sum of the matrix of weights), pik and pjk

are alleles at the kth site for the ith and jth individuals, respectively, and pk is the

average p value across all individuals for the kth site (or the kth value in the aver-

age vector). wik are weights: 1 if a pairwise comparison is found in the distance

class, 0 if otherwise. Wij is the matrix of weights. All weight values are placed

in a matrix with values on the ith row and jth column correspond to comparison

between the ith and jth individuals. Comparisons on the diagonal of the matrix

of weights (i.e., where i = j are always 0 and are never considered. Products,

for II, and squared differences, for cc, respectively, for all pairwise comparisons

for each k are calculated and weighted according to wi j, the weighting value for

the comparison between individuals i and j, then summed over n individuals in

the sample within k, and finally summed across S sites. Our calculations of II

and cc here differ from the old version of AIDA. We use NumPy [138] matrices

for calculations; as such, differences are calculated across individuals first for all

segregating sites prior to across segregating sites, as in the original version [91].

This change does not affect calculation of indices.

Significance

For significance testing, AIDA calculates empirical confidence limits based on

pseudo-indices generated by permutation of the dataset. Sequences are randomly

distributed among geographical sites, which each geographical site maintaining its

size, N1 number of times, pseudo-indices obtained on the randomized data, and

confidence limits defined for 95, 99, and 99.5 percent limits. Confidence limits

are the upper and lower values that define the confidence boundaries. Users may

choose for no confidence intervals, per distance-class, or one set for all distance

classes. The latter is recommended for large datasets as computation time is

reduced, though the confidence intervals are not as robust, while the first may be
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recommended for exploratory purposes.

In the case of per distance class confidence intervals, sample sizes per distance

class are retained per distance class. However, for a single set of confidence in-

tervals, sample size is set at the number (N2) of the distance class showing the

lowest number of comparisons. A set of N2 sequences are randomly chosen from

the initial set N1 times.

Implementation

Our updated Python-based version of AIDA makes extensive use of the NumPy

[138] package for the Python programming language. Linux and Windows versions

are available, with the Windows version available in command-line or GUI ver-

sions. Python is a high-level dynamic programming language, and unlike Pascal,

the original language of AIDA, python does not require pre-compilation decla-

ration of vectors and therefore is not constrained by sample size or number of

sites.

Data input may be Excel or Arlequin file format, and may be diploid, hap-

loid, or population frequency data. Also, DNA sequence, SNP, or RFLP data

is accommodated, along with the addition of microsatellite capability. Diploid

data is recommended only in the case that the possibility of recombination has

been eliminated as it can obscure the signal of autocorrelation. AIDA tests for

sequence similarity between sequences at different locations, therefore recombina-

tion may obscure the assessment of similarity [91]. For microsatellite analyses,

users have the option of choosing Infinite Alleles (IAM) or Stepwise Mutation

(SMM) Models. In addition, the original AIDA program only allowed for bial-

lelic data, so SNP markers with more than three states would have had to be

excluded from analyses. In the new AIDA version, these markers can be accom-

modated by using the Infinite Alleles (IAM) microsatellite option. Three options

are available for distance-classes: equal intervals (classes are equal width), equal

frequencies (approximately equal number of comparisons in each distance class),

and user-defined. AIDA takes as input (i.e., polar) or geographical (i.e., latitude,

longitude), from which distances between populations are determined. In the case

of Cartesian coordinates, distances are Euclidean, whereas great circle distances

are used for geographical coordinates. Users also have the option of inputting a
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user-defined distance matrix. Unfortunately, the usage of great circle or Euclidean

distances does not take into account geographical barriers, so this option provides

for this possibility through user-inclusion of waypoints in distance calculations. In

addition, users may want to use non-geographical distances (e.g., linguistic).

3.11 Correlation and Other Statistical Analyses

Correlation analyses were done using the R computing language, version 2.10.1

[137]. Fst values were calculated using the Arlequin software package, version 3.1

[124] and the arlsumstat module of Arlequin version 3.5 [139]. Other calculations

were performed using in-house scripts written in the python programming language

[140]. All figures except distruct output were produced in R, version 2.10.1 [137].
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4 RESULTS

4.1 Comparison of Genealogical and Genetic Data

4.1.1 Genetic clustering

When analyzed in the absence of the CEPH HGDP European populations, Gioi

and Cardile appear as two clusters roughly corresponding to the two villages, albeit

with a couple of outliers (see Figure 9). We define outliers to be individuals that

are sampled from one population but which cluster with another population. In

addition, we also observe samples that show some mixture between populations.

Since we sampled nearly all members of the villages, we were able to compare

villages of sampling between offspring and parents, which show, for some outlier

individuals, individuals that cluster with the population from which their parents

were sampled rather than the population from which they themselves were sam-

pled. Results from analyzing the distribution of logarithmic probability of the

data were inconclusive, showing no obvious peaks between consecutive values of

K (Figure 10a). As such, we did not compute the posterior probability of the

data to determine the most statistically likely number of clusters as initially sug-

gested by Pritchard [59] and instead used Evanno’s rate of change method [38].

This showed the most likely number of clusters in our data to be K =2 (see Fig-

ure 10b). Further, most individuals are clearly assigned to one of the two clusters,

with 78% showing membership coefficients 0.75, 55%, 0.9, and 37%, 0.95, fulfill-

ing Prichard’s more recent suggestion of looking at the distribution of individuals

into clusters for a guide in determining the number of clusters present in the data.

Analyzing our Cilento populations with the CEPH HGDP European popu-

lations, at 36 markers shared between datasets, erases the observed clustering

from our analyses (Figure 11). This was expected given the limited genetic dif-

ferentiation between our populations from Cilento and other populations within

Europe. Also, the number of markers shared between our dataset and the CEPH

HGDP are likely to be too low to enable proper differentiation amongst European

populations.
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Figure 9: Distruct graph showing distribution of samples into clusters according to
membership coefficients for K=2, 3, and 4 [120].

Figure 10: Graphs showing (a) estimated logarithm of the probability of K clusters
given the data and (b) the modal value of the second order rate of change of the likelihood
function given the number of clusters [120].
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Figure 11: Distruct graph showing distribution of samples into clusters according to
membership coefficients for K=2 to 8, including European populations from the CEPH
HGDP, inferred from 36 loci [120].

4.1.2 Validation of genetic clustering using genealogical data

Beginning from our extant sample of individuals, we backwards reconstructed

pedigrees using genealogical data. As can be seen in Table 1, nearly all extant

individuals, in both populations separately and in the combined population, are

found within a single pedigree. This confirms that the two villages have a shared

history, and shows the complexity of relatedness within and between the pop-

ulations. We quantified within and between village relatedness using pairwise

kinship coefficients calculated from pedigree data. In Table 5, we report summary

statistics of these values along with similar data from other isolated populations

obtained from the literature. The average values of kinship between all individu-

als in the populations of Gioi and Cardile are equal to that between third cousins

(Φij = 0.004) and approaching that between second cousins, respectively (Φij =

0.015), confirming a high degree of consanguinity in both villages.
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Table 5: Kinship (φij) summary statistics of Gio and Cardile compared with those of
those of other isolated populations from the literature [120].

Sample Size Average ± SD Median 25-75 percentiles

Gioi-Cardile 1356 0.003 ± 0.0015 0.001 0.000-0.002
Gioi 882 0.004 ± 0.0018 0.001 0.000-0.002
Cardile 474 0.009 ± 0.0024 0.004 0.001-0.008
Perdasdefogua 821 NA 0.007 0.004-0.011
Talanaa 875 NA 0.0014 0.009-0.0021
S-leut Hutteritesb 806 0.0042 ± 0.0031 NA NA
Icelandc

1925-1949 cohort 37762 0.008 ± NA NA 0.000-0.001
1950-1965 cohort 38336 0.005 ± NA NA 0.000-0.001
cEstimates based on pairs of married couples
aFalchi et al. 2004

bAbney et al. 2002

cHelgason et al. 2008

4.1.3 Cluster Membership and Relatedness

Using membership coefficients estimated from structure, we placed individuals into

clusters according to various threshold requirements. First, we took a majority

takes all approach and placed samples into the cluster to which they had more

than 50% membership. Here, we estimated the average kinship of each individual

to all other members of the cluster, ΦCi, where C corresponds to the cluster (C =

1 for the green cluster, C = 2 for the red) and i represents individuals. We thus

compared these values for each individual with their membership coefficient to the

cluster, using Pearson correlation analysis and graphic visualization (Figure 12).

We found significant correlations for both the green and red clusters, with corre-

lation values r = 0.74 (p <10−10, N = 934) and r = 0.082 (p <10−10, N = 423),

respectively.

For further evaluation of the relationship between relatedness within a cluster

and membership to the cluster, we restricted cluster membership with increasingly

stringent membership threshold requirements, of T ≥ 0.50, 0.75, 0.90, 0.95, and

0.99 (Figure 13), T ≥ 0.99 not shown) for K =2. Here, we estimated the average

kinship within each cluster amongst all individuals. As can be seen in the figure,

restricting access to the clusters to individuals that meet the increasingly stringent

membership requirement increases the average kinship within the cluster. These

62



Figure 12: Average kinship of sample individuals with all other members of the cluster
versus membership coefficient to the cluster for the red and green clusters, with Pearson
correlation coefficients.

are nested clusters, as individuals within higher threshold clusters are also found

within lower ones.

4.1.4 Fst and kinship

FST calculated between the two sampled villages using 239 unlinked markers is low

(FST = 0.008). We used the clusters determined above to see whether FST calcula-

tions are affected by restricting analyses to subsets of individuals with increasing

relatedness within clusters (since we know that increased threshold restrictions

for access to clusters results in increased relatedness within them). Pairwise FST

values between clusters for ≥ 0.50, 0.75, and 0.90 are shown in Figure 14. Simi-

larly to what we saw in the case of kinship above, restricting cluster membership

to increasingly stringent thresholds of membership results in increasing FST , and

thus differentiation, between clusters.
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Figure 13: kinship within each cluster at given membership threshold levels for K=2.

4.2 Scantily-differentiated populations

4.2.1 Effect of Demographic Parameters on Clustering Methods

In our simulations, we modelled a scenario with an isolated population instanta-

neously splitting from a source population at a given time point, tdiv. We assume

no gene flow between populations or from external populations, and constant

population size. Figure 15 displays mean clusteredness values and 95% confidence

intervals, across 50 replicates, according to isolate population size and divergence

time, with varying numbers of markers and sample sizes.

We see a few trends in the data in Figure 15. First, with decreasing effective size

and increasing divergence times, our ability to measure differentiation increases.

We also see an interaction effect, such that decreasing effective size and increasing

divergence times together increases our ability to detect structure more so than

either one separately. We predict that this is the combined effect of both of these

parameters increasing the effects of genetic drift, which increases the divergence

between the two populations. Increasing divergence predicts increasing ability to
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Figure 14: Pairwise FST between clusters at given membership threshold levels, for T
0.50, 0.75, and 0.90, for K=2, 3, and 4.

observe differentiation/clustering. We also see that increasing sample sizes and

number of markers considered increases our ability to detect structure as well.

These two aspects of study design also appear to interact, such that increasing

sample size and marker numbers tends to increase our ability to observe structure

more so than either one separately. From here, one could see a compensatory effect

of marker numbers on sample size, and vice versa. Increasing marker numbers

reduces the size of the sample required to observe structure, and vice versa. We

also see that at different levels of differentiation, gauged by differences in effective

size and divergence times, different sample sizes and marker numbers are needed to

observe differentiation. Essentially, as populations become more divergent, lower

numbers of markers and sample sizes are needed to observe differentiation.

4.2.2 Effect of Consanguinity on Clustering Methods

Figure 16 shows that when relatedness is restricted to individuals related up to the

level of second cousin, all detection of structure is erased from our analyses, even
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Figure 15: Average clusteredness values and 95% confidence intervals (C.I.) across 50
replicates for all parameter sets.

when using large sample sizes (n=100) and numbers of markers (m=200). Further,

in the case of n=200 and m=80, we see a decreasing trend of clusteredness between

samples where restriction is up to half-siblings, and where samples are restricted

up to second cousin. We also see a decline in observations of differentiation as

sample sizes and marker numbers decrease.

The analyses considering groups of individuals at different levels of related-

ness (Figure 16) show that our observations of clustering using these methods

can largely be regarded as an effect of consanguinity. When adequate numbers

of markers and sample size are considered, genetic structure is detectable either

when individuals are chosen at random (kin-group = 0) or when samples contain

highly-related individuals (kin groups 1 and 2). Conversely, no structure is de-

tected in kin groups 4 through 7, namely in samples from which individuals are

unrelated at the level of 2nd cousin or higher; removal of consanguineous individ-

uals leads to the disappearance of population structure. The structure observed

between the two villages seems, for the most part, to depend on the presence of
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Figure 16: Average clusteredness values and 95% confidence intervals across 50 repli-
cates. Consanguinity decreasing from kingroup 0 to 7.

recent genealogical relationships, at least to the level of first cousins. Sample sizes

are also important in the observation of structure, with no structure whatsoever

emerging from analyses of 20 individuals, and little structuring with samples of

50 individuals when using the largest number of markers. This confirms previ-

ous results [120] suggesting that clustering is observed when a random sample

(kin-group = 0 in Figure 16 panel C), adequate numbers of markers (239 and 200

in previous and current study respectively), and appropriate numbers of sample

individuals are considered. This also explains our results with the CEPH HGDP

European populations analyzed with Cilento.

4.3 Marker Numbers

We first performed clustering analyses using the full marker sets. In the STR678

dataset, nearly all population pairs show some significant degree of differentiation

at the maximum number of markers, with 98% having clusteredness of at least

0.5, 83%, 0.9, and 65%, 0.95, corresponding to average membership coefficients of
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0.75, 0.95, and 0.975, respectively. In the SNP dataset, 1338 population pairs were

analyzed for the G50 analysis, with 445 of them analyzed for the G90 analysis,

meaning that 97.1% of population pairs had Gmax values ≥ 0.5 and 33.3% had

Gmax values greater than or equal to 0.9. However, many of these latter population

pairs did not meet the G ≥ 0.5 in subsequent analyses with lower numbers of

markers. In fact, in subsequent analyses only 31% of population pairs reached a

G ≥ 0.9 using SNP markers.

STR678. For mid to high FST values (Figure 17), and using a threshold of

G ≥ 0.50 for detection of structure, there does not appear to be a distinct lower

limit to the number of markers needed to detect population structure given specific

levels of differentiation. Given FST greater than, or equal to, 0.01, one does not

necessarily need increased numbers of markers to detect structure at lower levels of

differentiation; however, in some cases with FST ≥ 0.01, up to a hundred markers

(or more) may be needed. What we actually see is a range of marker numbers

that may be needed to observe structure given specific levels of differentiation

in a range of populations, so that genetic structure between different population

pairs at given levels of differentiation may be recognized with different numbers

of markers. However, although we do not observe a general trend of decreasing

lower limit of markers with increasing FST , we do observe a decreasing trend

in the upper limit to the number of markers required. As populations become

more differentiated, the maximum number of markers needed for the detection

of structure decreases, as would be expected, for all differentiation levels, with

highly-differentiated populations needing 20 or fewer markers for the detection of

structure. At FST values below 0.01 (see insert, Figure 17), marker numbers in

the hundreds are generally required. Correlations between markers number and

FST for mid to high FST and low FST are -0.64 and -0.50, respectively.

On the other hand, when an increased threshold for determination of adequate

structure is required, that is, G ≥ 0.9, we see a similar pattern as before for

the upper limit of markers needed for detecting structure (Figure 18); however,

a more distinct pattern emerges for the lower limit of markers needed to detect

structure. We also see some odd behavior for datasets analyzed with 20 markers,

in that 20 markers is still adequate for detecting structure at lower FST levels

that may require 40 or more markers for detection (indicated by the observed

pattern of points from scantily to highly differentiated population pairs). Here,
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Figure 17: Number of randomly chosen microsatellite markers needed to detect struc-
ture in pairs of populations with a given level of differentiation (FST ) and a clusteredness
threshold of 0.5. Each data point is a pair of populations, each represented only once.
On the X axis is their FST measured at the maximum number of markers, and at the Y
axis is the lowest number of markers at which structure is observed determined by the
given threshold. The embedded graph contains results for low FST population pairs.

we may expect that by chance we chose markers that were more informative in

the population pairs that still showed differentiation at lower FST levels with 20

markers, even when using a higher standard of differentiation. As Rosenberg [66]

showed, while some markers are informative in populations from all geographic

backgrounds (save Oceania and America), some markers may only be informative,

or more informative, in populations from specific, limited geographic backgrounds.

Correlations between markers number and FST for mid to high FST and low FST

are -0.65 and -0.52, respectively, which we see is a slight increase over the G50

analysis.

At this stage, it seems that that two variables may be contributing to dif-

ferences in marker numbers needed for observing structure at certain degrees of

differentiation (basically, to explain the variation): different sample sizes and in-

formativeness of markers. As mentioned above, Rosenberg et al. [66] showed that

69



Figure 18: Number of randomly chosen microsatellite markers needed to detect struc-
ture in pairs of populations with a given level of differentiation (FST ) and a clusteredness
threshold of 0.9. Each data point is a pair of populations, each represented only once.
On the X axis is their FST measured at the maximum number of markers, and at the Y
axis is the lowest number of markers at which structure is observed determined by the
given threshold. The embedded graph contains results for low FST population pairs.

though some markers are informative in all populations, there are some markers

that are more informative in certain geographical groups, and by chance we may

have randomly chosen markers that are informative in specific populations. For

example, when pairs from those populations, or where one population in the pair,

are from a group of populations in which the markers are informative, we may

expect to see lower numbers of markers needed to differentiate them than, say,

where the markers are not informative in either population. Also, we may expect

to see decreasing numbers of markers needed with increasing numbers of popula-

tions in which markers are informative (i.e., 0>1>2). This is not as big a concern

with higher numbers of markers, as you will be sampling markers with a range

of informativeness, including more highly informative ones. Further, Rosenberg

et al. [66] showed that, while some markers were informative across most popu-

lations, this did not hold for American and Oceanian populations. Could it be
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possible that populations in pairs tending to need more markers at specific differ-

entiation levels come from these regions? A glance at a table of population pairs

and marker numbers needed to observe structure shows that this is not necessarily

the case. A number of population pairs that show no clustering with up to 375

markers or higher numbers of markers are found to contain neither American or

Oceanian populations, and a number of population pairs demonstrating structure

given low numbers of markers are found to contain either Oceanian or American

populations. We may conclude, then, that if informativeness of markers between

population pairs is one culprit here, it does so regardless of the geographical re-

gion from which the population pairs were sampled. That is, the markers may be

informative between certain populations, but randomly informative.

In addition, the horizontal variation in the STR678 G50 graph (Figure 17) is

likely to be due, at least partly, to differences in the extent of clusteredness. For

a given number of markers, those from higher FST pairs are likely to show a clus-

teredness of 0.9 or 0.95, while those at the lower FST range may show clusteredness

of 0.5 or 0.6. If analysis is restricted to marker numbers where population pairs

show clusteredness of 0.9, we do start seeing more of a trend of lower limit to

numbers of markers needed (as observed in Figure 18). Thus, we observe less

variability in number of markers needed to observe structure at specific levels of

differentiation. Even here, though, observations at 20 markers still pretty much

show a range from low FST to high, adding to our prediction of informativeness

of these markers.

In order to test whether differences in sample sizes may be contributing to the

variation in marker numbers needed to observe differentiation, we performed Pear-

son correlation analyses on sample sizes and marker numbers (Table 6). Correla-

tions between sample sizes and marker numbers needed to observe differentiation

for the G50 analysis for mid to high FST and low FST are -0.22 and -0.53, respec-

tively, and for G90 analysis for mid to high FST and low FST are -0.13 and -0.52,

respectively. Interestingly, sample sizes appear to be more important in determin-

ing marker numbers needed to observe differentiation for low FST population pairs

when using the G50 threshold. We see a significant correlation between marker

numbers and sample size, indicating that some of the variation in marker num-

bers needed to identify clustering at given FST levels may be due to differences in

sample sizes.
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Table 6: Correlations between FST (FST vs m) and sample size (n vs m) and marker
numbers needed to observe differentiation at the specified threshold level (T ), and partial
correlation between FST and marker numbers controlling for sample size (pcor), for N
number of population pairs.

T Fst Fst vs m n vs m pcor N

Wang G50 ≥ 0.01 -0.64 -0.21 -0.66 2732
CEPH377 G50 ≥ 0.01 -0.52 -0.19 -0.53 1064

SNP G50 ≥ 0.01 -0.55 -0.22 -0.58 1337
Wang G50 < 0.01 -0.51 -0.53 -0.44 218

CEPH377 G50 < 0.01 -0.31 -0.49 -0.25 194
SNP G50 < 0.01 NA NA NA NA

Wang G90 ≥ 0.01 -0.65 -0.13 -0.65 2263
CEPH377 G90 ≥ 0.01 -0.47 -0.10 -0.46 972

SNP G90 ≥ 0.01 -0.62 -0.22 -0.62 444
Wang G90 < 0.01 -0.52 -0.20 -0.53 52

CEPH377 G90 < 0.01 -0.51 -0.12 -0.51 70
SNP G90 < 0.01 NA NA NA NA

SNPS. SNP markers show a similar pattern to microsatellites (Figure 19), that

is, no distinct lower limit to the number of markers needed to detect structure at

different levels of differentiation, and a decreasing upper limit as differentiation

increases, for the G50 analysis. G90, however, loses a lot of data points between

in the middle range of FST . That is, data points exist for FST around and greater

than 0.1 and for FST around and lower than 0.025, but none in the middle. Also,

all data points for SNP markers, both in the G50 and G90 analyses have FST

≥ 0.01. Some of the variation in marker numbers that we explained in the case

of microsatellites holds for SNP markers as well. We see a correlation between

sample sizes and marker numbers needed to identify structuring.

We may attribute the large drop in samples from the G50 to G90 SNP datasets

to the fact that a threshold of G ≥ 0.9 is a much harder standard to meet. On

the average, individuals in a pair of populations must have 95% membership to

that cluster. We may also be concerned about the low numbers of burnins and

iterations used in our analyses, as SNPs tend to require longer MCMC chains. We

may be concerned that a failure of convergence due to lower numbers of burnins

and iterations may result in a lowered estimation of clusteredness. We reanalyzed

all pairs of populations with increased lengths of burnins and iterations, 20,000

and 10,000, respectively, using the full marker set to test whether a difference

in chain length would affect clusteredness. 6.9% of population pairs show a 0.1
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Figure 19: Number of SNP markers needed to detect structure in pairs of populations
with a given level of differentiation (FST ) and a clusteredness threshold of 0.5 (left) and
0.9 (right). Each data point is a pair of populations, each represented only once. On
the X axis is their FST measured at the maximum number of markers, and at the Y
axis is the lowest number of markers at which structure is observed determined by the
given threshold.

point difference in the new analyses, with no population pairs showing increased

clusteredness above 0.9, and only 3.7% of new observations decreasing below 0.9.

We can say, therefore, that length of chain does not significantly affect results.

Specifically, increasing the length of the chain does not increase or significantly

decrease the number of populations analyzed in the G90 analysis.

We also performed correlation analyses for all other datasets as well (Table 6).

As one would expect, all correlations are negative. Essentially, as FST or sample

sizes increase, the number of markers needed to observe differentiation decreases.

As in the case of the STR678 dataset, change in magnitude of correlations from

simple to partial correlation is minimal for nearly all datasets. We also see that

correlations of sample sizes to markers for G50 analyses for low FST are much

greater than for G90, and in one case greater than that of FST versus marker

numbers, which are usually greater. These are also the cases where we see a

drop in magnitude of correlation from simple to partial. Given the decrease in

magnitude of correlation when using the higher threshold standard of G90, it

appears that sample size has a more significant effect on the number of markers

needed to observe differentiation when using the lower standard of G50.
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Microsatellites versus SNPS. To test which marker system required more

markers for detection of differentiation, we compared results up to 675 markers,

the maximum number of STRPs considered, for both SNPs and STRPs. For STRP

and SNPs, we find that 94.87 and 97.10%, respectively of population pairs demon-

strate differentiation at the 50% threshold level, and 78.58 and 31.93% at the 90%

threshold level. To consider this analysis further, and to include informativeness

of microsatellites as well, we compared results at different marker numbers up to

100 markers (see Table 7, Figure 20). In the case of the STR678 dataset, we refer

in this table as “Random” to indicate that the markers were randomly chosen in

contrast to “Informative” ones. “Overall” refers to the frequency at the maximum

number of markers. As we can see, the likelihood of observing structure at lower

numbers of markers is greater when considering informative markers. Interest-

ingly, the probability of observing structure at most numbers of markers, up to

100, is greater for randomly chosen SNPS than for randomly chosen microsatel-

lites when considering a standard level of assignment; however, the observation is

reversed when using a confident (i.e., G90) level of assignment. For this analy-

sis, only those population pairs shared among the three datasets were considered

(1326 population pairs).

We can say, then, that informative markers are more efficient for detecting ge-

netic structure between pairs of populations, but our conclusion regarding efficacy

of SNPS versus microsatellites is not conclusive. While SNPs and microsatellites

have similar abilities overall to detect structure at the standard assignment level,

if one uses the higher standard of confident assignment, it would appear that

microsatellites are more powerful. This makes sense, since the attractiveness of

microsatellites has been that their higher mutation rate is more appropriate for

shorter time scales, such as observed for the separation between human popula-

tions.

4.4 ALDH2

Out of 20,000 simulated chromosomes, 6023 alleles had frequencies of 6.9% in the

world, and 5261 had frequencies of 22% in Asia for the Asian-limited allele. In

addition, for the OOA-limited allele 305 had frequencies of 33.3% in the world, and

1355 had frequencies of 42.3% on the OOA branch. When we sampled alleles that
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Table 7: Cumulative percentage of population pairs that showing differentiation given
a specific number of markers for informative and randomly chosen microsatellites, and
randomly chosen SNPS for standard and confident assignment levels. Overall percent-
ages apply to whole datasets, that is, observations up to and including the maximum
number of markers.

Informative Random SNPS
Markers G50 G90 G50 G90 G50 G90

5 10.41 4.61 4.93 0.79 4.77 0.08
10 29.73 20.43 17.09 5.72 29.33 0.40
15 47.46 37.84 25.83 11.13 49.60 3.82
20 59.86 49.52 41.73 25.12 59.86 5.33
25 67.97 55.80 47.69 31.64 65.82 12.00
30 74.01 62.24 52.38 38.55 72.42 13.28
35 77.58 65.58 56.36 43.00 77.27 15.26
40 79.81 68.52 59.86 48.17 81.80 22.89
45 81.32 70.11 66.30 48.89 83.15 23.45
50 83.15 71.54 69.32 51.43 85.06 24.17
55 84.82 72.50 71.38 52.54 86.72 25.20
60 85.69 73.37 74.80 55.09 87.68 25.83
65 86.57 73.93 76.63 57.07 89.19 26.23
70 86.88 74.40 78.62 59.54 89.67 26.63
75 87.84 74.48 80.92 61.29 90.62 27.27
80 89.11 74.96 82.35 61.84 91.10 27.42
85 90.30 75.36 83.55 64.71 91.65 27.82
90 91.57 75.76 84.50 65.90 91.97 27.90
95 93.24 76.07 84.90 66.06 92.29 27.98

100 94.20 76.39 87.04 67.33 97.10 27.98

overall 94.87 78.58 96.38 70.97 97.10 31.93

had a 6.9% frequency in the worldwide population, that is an overall frequency in

the simulated data, we find that it only occurs with a 0.0092 probability in a single

population (see Figure 21). Further, in the simulated Asian population, it only

occurs with a 0.003 probability. When we sampled alleles with a frequency of 22%

in Asia (that is, in the simulated Asian population) we find a 0.9966 probability

of it being found elsewhere (see Figure 22). For alleles with frequencies matching

the OOA-restricted alleles, we find that it has a probability of 0.0024 of only being

found on the OOA branch (that is, anywhere but Africa) when its frequency is

33% globally and probability of being found in Africa of 0.9985 when it occurs at

42% on the OOA branch (results not shown).
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Figure 20: Comparison of numbers of markers needed to identity differentiation between
pairs of populations for random (R) and informative (I) microsatellite, and SNP (S)
markers for G ≥ 0.50 (G50) and G ≥ 0.90 (G90). X axis is marker numbers and Y is
cumulative frequency of observations where differentiation is observed at that number
of markers.

Figure 21: Probability of simulated alleles with frequencies in Asia of 0.22 appearing
in other geographical populations (left).

Figure 22: Probability of simulated alleles with global frequencies 0.069 appearing in
different geographical populations (rights).
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4.5 Archaic Admixture

We used generalized hierarchical modeling [41] to fit a serial founder effects model

to our data of 100 worldwide populations. In Out-of-Africa (OOA) populations,

we observe a decrease in realized (that is, estimated from the data) gene identi-

ties relative to expected gene identities (Figure 23), with no difference observed in

African populations, and a decrease between African and non-African populations.

We suspect that input of new, unique mutations from a separate lineage, such as

an archaic one, into modern humans leaving Africa increased heterozygosity in

the populations on that branch. Hence, we decided to simulate a set of popula-

tions following an inferred human demographic history with and without archaic

admixture to determine whether observed deviations can be attributed to archaic

admixture on the OOA branch. Ghm plots in Figures 24 and 25 illustrate what

we actually observe in the data and what we expect to observe sans admixture,

respectively, for the subset of 16 populations. We see in Figure 25 that realized

and expected gene identities match. Also, though the expected and realized ge-

netic distances correlate pretty closely (r = 0.99) in the first case, showing that

the data fits the model well, we see a closer fit in the case of our second figure (r

= 0.999), indicating that a SFE model without admixture improves the fit to the

data.

The observed difference between expected and realized gene identity coeffi-

cients in our subsample of 16 populations is similar that what we observe in the

larger sample of 100 populations (Figure 23) from the extended CEPH HGDP.

Therefore, we felt justified in only simulating and analyzing a 16 population sub-

sample. When we simulate a model with no admixture, we see no difference be-

tween expected and realized gene identity coefficients in the ghm plot (Figure 25).

This shows what we expect from a pure SFE model with no archaic admixture.

We also compared gene identities between populations within one geographical

region, or at one node marking a major founder effect, and populations in other ge-

ographical regions against geographical distance. Results are shown in Figures 26.

In these analyses, only 99 out of the 100 populations are shown. In the compari-

son of Native American populations versus populations in other regions, we see a

decrease of realized gene identity compared to that expected from the model. In-

terestingly, for East Asian and European populations versus populations in other
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Figure 23: Scatter plot showing goodness of fit of the hierarchical model (top) and ghm
plot (bottom) from observed results for 100 populations.

Figure 24: Scatter plot showing goodness of fit of the hierarchical model (top) and ghm
plot (bottom) from observed results for 16 populations.
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Figure 25: Scatter plot showing goodness of fit of the hierarchical model (top) and
ghm plot (bottom) expected in the absence of archaic admixture for the subset of 16
populations.

regions, we see some interesting patterns. In addition to the decrease in realized

gene identity, we also see decreasing gene identity with increasing distance between

East Asian, and European and South Asian populations; and between European,

and East Asian and South Asian populations. Finally, between populations sep-

arated at the root node (node 100), we see a decrease in realized gene identity

between African and non-African populations, and little to no decrease in realized

gene identity between African and other African populations.

Our simulations show that observed differences between realized and expected

gene identities may be explained by archaic admixture with modern humans. In

addition, we see that higher admixture rates results in increased divergence be-

tween realized and expected gene identities (see Figure 27). Further, we see that

increasing divergence time increases the effect of archaic admixture on gene iden-

tity differences, or to put it another way increasing divergence times lowers the

archaic contribution needed to produce a given difference, for example our ob-

served difference of 0.02. A comparison of observed to simulated results shows
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Figure 26: Gene identities between populations in different regions of the world against
geogrpahic distance (GeoDeo). Bold lines on the Y axis indicate expected gene identities
between populations at the shared nodes marking each geographical region, while dotted
lines indicate realized gene identities between the populations.
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Figure 27: Contour plot of divergence between expected and realized gene identities for
SMM. Gene identity difference is regressed on archaic contribution within each level of
divergence time, using quadratic regression.

that the patterns in the observed are consistent with an admixture event on the

OOA branch.

Simcoal2 also implements an option for microsatellite mutation following the

generalized stepwise mutation (GSM) model [18]. We decided to test the ef-

fect of using different geometric probability distribution parameters for the GSM

model on estimation of archaic contribution on the OOA branch. Setting the

GSM parameter to 1 increases, slightly, the archaic contribution needed to pro-

duce observed differences at given divergence times (results not shown). How-

ever, setting the GSW parameter to 0.5 or 0.9, to model a Generalized Stepwise

Mutation model [18], considerably decreases the archaic contribution needed to

produce these differences. Using GSW = 0.5, the archaic contribution needed to

approximate the observed difference is approximately 10 and 20% at 700 and 450k

years (results not shown), respectively, while using GSW = 0.9 requires archaic

contributions of approximately 10, and 20% at 650 and 325k years, respectively

(Figure 28). We needed to change mutation rates to 4.75 ∗ 10−5 and 4.00 ∗ 10−5

to match our observed gene identity at the base when using GSW = 0.5 and 0.9,

respectively. Contour plot for GSW = 0.9 shown in Figure 28.

We also tested our models using a range of effective population sizes, holding

divergence time constant at 400 years, to test whether Green [141] or Huffs [142]
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Figure 28: Contour plot of divergence between expected and realized gene identities for
GSW = 0.9. Gene identity difference is regressed on archaic contribution within each
level of divergence time, using quadratic regression.

estimates of 3000 and 18,500 individuals had any effect on results. We find no

effect of effective population size on gene identity differences in the presence of

archaic admixture.

4.6 AIDA

Of note, we refer to the first distance class as the zero distance class and the more

distant classes numbered positively from one, such that what may be considered

the second distance class is actually distance class one. Figure 29 contains clado-

grams for all datasets. We observe clinal structuring from isolation-by-distance

on a continent-wide scale, as observed when analyzing the YBase dataset, as well

as at a more local, regional scale, as observed when Finnish, Italian, and UK

populations are analyzed separately. Some confusion abounds regarding what is

and what isnt a pattern indicative of isolation by distance, particularly as visu-

alized in a correlogram. Isolation by distance occurs when there is a tendency

for mate choice to occur within ones own population or between closely located

populations, which would be observed as a steady, or approximately steady, de-

cline in similarity or autocorrelation. The case where you have significant positive

autocorrelation at zero distance followed by non-significant or nearly zero auto-
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Figure 29: Correlograms for European and regional datasets. Distances except for the
0 distance class are the average of the distance boundaries for the distance class. The
symbols * and *** indicate significance at the 0.005 and 0.05 levels, respectively. For the
European, that is, the YBase, dataset, II values are significant for all distance classes,
for both IAM and SMM models for the reduced dataset. For Italy all distance classes
for IAM and SMM models are significant at the 0.005 level for except the third one
(distance class 2), which is significant at the 0.05 level. UK populations have significant
II values for IAM and SMM models for all distance classes, and for the mtDNA for all
distance classes except the second. All significance is at 0.005 level except for the final
UK mtDNA distance class, where significance is at 0.05 level. The Finns have significant
II values for IAM and SMM models, and for Y-SNPs for all distance classes.

correlation for other distance classes or a distinct, steep drop in autocorrelation

following the zero distance class, is more indicative of discrete structuring in the

dataset.

In Europe (that is, the Ybase dataset), the pattern observed for both SMM and

IAM models mirror, to some extent, that found in Roewer [115] using haplogroup

frequencies. However, while their results show an exponential pattern indicative of

what some would refer to as isolation by distance [143], and though ours initially

appears to show an exponential isolation by distance pattern, most stark between

the 0 and 1 distance classes, removal of the 0 and final distance classes reveals

a distinct clinal pattern through increasing distance classes (as observed in the
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insert in the European correlogram in Figure 29. The pattern observed in Europe

appears to be a result of structure amongst populations creating a large decline

in autocorrelation from the zero distance class, with minor sharing of haplotypes

with populations in close proximity resulting in a clinal pattern across non-zero

distance classes. Results from the reduced European dataset approximately mirror

those of the full dataset, showing that there is little to no effect of uneven sampling

on results.

In Italy, under the SMM model autocorrelation shows a structured pattern

of similarity for haplotypes in the zero distance class and insignificant or close

to zero similarity at other distance classes, while IAM appears to be more clinal

(though the steps between all distance classes but 0 and the first are slight). The

Finns show probably one of the more distinctly clinal patterns (at least from 0

distance class to 1 and 2), but there is also a depression between distance classes

1 and 3. Autocorrelation on Y-SNPs in Finnish populations show a similarly

distinct cline, but with no depression as observed for Y-STRPs. Also, II values

are pretty similar for both mutational models at all distance classes, and also for

SNPS at all distance classes except the second. The UK populations also display

a distinct clinal pattern, with the SMM model showing a slightly steeper cline.

mtDNA for the UK populations, however, clearly evidences a structured pattern

of similarity of haplotypes within populations and zero-similarity of haplotypes

with other populations. For European, Finnish, and UK datasets, and Italian

dataset for all but distance class 2, all II values for YSTR results and YSNP

results for Finnish populations are significant at the 0.005 level. For mtDNA,

results in the zero distance class and distance class 2 are significant at the 0.005

level and distance class 3 at the 0.05 level.
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5 DISCUSSION

5.1 Comparison of Genetic and Genealogical Data

Historical evidence indicates a common origin for the villages of Gioi and Cardile,

separating approximately 1000 years ago. We were interested in determining

whether recently separated populations with a shared origin, limited geograph-

ical distance between villages, and small population sizes could be differentiable

using model-based clustering methods. Divergence between villages is low (FST

= 0.008), but approximating what has been estimated in European populations.

Rosenberg et al. [2] found differentiation amongst European populations with a

lower FST of 0.007 using 377 microsatellites. Our observed high level of consan-

guinity within villages indicates that these populations do in fact represent genetic

isolates. As such, they may be useful in disease-gene association studies. Though

the degree of consanguinity is lower in the combined villages than in each village

separately, it is still high enough to provide additional evidence of a common origin

for the two villages.

Access to genealogical records dating to the 17th century allowed extensive re-

construction of pedigrees, from which we calculated kinship coefficients. Though

kinship estimates estimated through genealogy path counting are not considered

as accurate as those estimated from genomic data, particularly in the presence

of high consanguinity [144,145], we needed an alternative measure of relatedness,

independent from data used to infer genetic clusters, against which we could com-

pare our genomic results. We find a large and significant correlation between the

two descriptors of population structure, one based on genealogical pedigrees, and

the other estimated from neutral genetic polymorphisms. This shows that non-

random mate choice and limited population size are reflected in the distribution

of allele frequencies.

Latch et al. [58] found 97% accuracy in the performance of model-based clus-

tering methods in assigning individuals to clusters when FST is greater than 5%.

To the contrary, we were able to identify two clusters, roughly corresponding to

the two villages, and nearly consistently assigned individuals to the cluster corre-

sponding to their village of sampling, despite our lower FST of 0.008. One reason

for the reduced performance of clustering methods in their study with lower levels
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of FST , and the inconsistency with our findings, may be due to the lower numbers

they considered (e.g., 10) and the fact that they simulated co-dominant markers,

which do not have the resolving power of microsatellites and therefore may be con-

sidered inappropriate for studying scantily-differentiated populations. Supporting

our results, we show (1) increased relatedness of individuals within inferred clusters

and a correlation of membership to a cluster with relatedness to other members of

the cluster (Figure 12), (2) increased kinship within a cluster with increased mean

membership coefficient to the cluster (Figure 13), and (3) increased differentiation

between and among clusters with increased relatedness within each cluster (shown

by increase in FST with increase in average kinship within clusters as membership

within clusters is restricted to increasingly stringent threshold requirements, Fig-

ure 14). We find evidence that individuals that cluster with the village opposite

from which they were sampled are likely the result of recent migration from the

other village.

5.2 Scantily-differentiated populations

15% of global variation among worldwide human populations has been found to be

attributed to variation between populations, either within or between regions, with

the rest accounted for by genetic differences between members of the same local

population [9,11,146]. Advances in technology for genotyping and genetic analyses

have made possible fine scale analysis of human population structure [10,147], but

shortage of markers and inadequate sample sizes may reduce power for detecting

structure between and among populations with lower levels of differentiation. We

were interested in quantifying the effect of limited marker numbers and sample

sizes on the detection of structure in scantily-differentiated populations. Here, we

explored the behavior of microsatellite markers since they have been the most com-

monly used marker systems for investigating genetic variation and demographic

history in closely-related populations, particularly in humans.

Our results confirm those of earlier studies using microsatellite and other

marker systems. Bamshad et al. [54] demonstrated a 90% or greater mean accuracy

of assignment to continent of origin when at least 60 alu insertion or microsatellite

markers were used, which increased to greater than 99% mean accuracy with 160

markers. Similarly, Waples and Gaggiotti [55] failed to identify population struc-
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ture when using 20 low mutation rate (µ = 5 ∗ 10−7) markers and 50 individuals

from four populations with Ne = 50 with scantily-differentiated populations (FST

= 1%), but correctly assigned individuals with 80% accuracy with FST ≥ 5%.

We show that the observed genetic structure in our isolated populations from

southern Italy is largely the result of the high consanguinity present within the vil-

lages. In fact, removal of individuals related to the level of first cousins completely

removes all trace of structure between these populations. When observations of

genetic structure are solely the result of consanguinity, genetic differences may

only affect a subset of loci in a portion of the population [60]; however, when

it results from reproductive isolation, genetic differences may systemically affect

the whole genome in nearly all individuals. This latter observation may be of

concern for health and forensic science applications. Therefore, it is important

to identify the extensiveness of consanguinity in study populations. That is, one

should determine whether a mere subset of study subjects is affected, or whether

it is more widespread, affecting most or all of the population. In the former sce-

nario, removal of consanguineous samples allows estimation of structure without

bias caused by relatedness, but in the latter, removal of consanguineous individ-

uals may remove all trace of structure from the population, as observed when we

removed individuals related to the level of first cousins. In human populations,

genetic relationships between pairs of individuals within a genealogy may be seen

as loops composed of ancestors connecting them, with the width of the loop pro-

portional to the probability of sharing genomic regions identical by descent. Along

with these loops connecting specific pairs of individuals, ancestors within one loop

may be connected to other loops. Thus, removal of closely related individuals may

result in loss of genealogical information about other, more distant, relationships.

Though we intended on only removing individuals related up to a specific lower

degree of relatedness, in the process we probably removed a number of individu-

als with more distant degrees of relatedness as well. For example, removing one

individual from a pair related at the 1st cousin level (or removing all individuals

related to one particular individual related at the 1st cousin level) will result in a

loss of a number of individuals that are related at the 6th or 7th degree level. Not

only did removing relatedness to the first cousin level eliminate all observation of

structure, it also removed all detection of kinship as well. As such, we created

a pair of populations where individuals within one village were just as likely to
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not be related to other individuals with the village as they would be to individ-

uals in the other village. Essentially, we have two villages where individuals are

completely unrelated to each other in their own or the other village.

When dealing with consanguineous populations, it may be useful to gener-

ate random samples from the dataset for consideration in model-based clustering

methods. However, this is only applicable in populations with diffuse consanguin-

ity. It is important to note that family-based clustering is a form of genetic struc-

turing appropriately identified by clustering methods. In the absence of genealog-

ical information, likelihood based methods for joint estimation of consanguinity

and isolation from allele frequencies are available for estimating the contribution

of consanguinity to genetic structure [60,61].

We find here evidence of population structure despite the recent separation

and geographical closeness of the two villages. In addition, we find that limited

numbers of markers may be sufficient to detect structure even at low levels of

differentiation, and that results of genetic analyses mirror measures of structure

obtained from genealogical analyses. Thus, when reconstruction of genealogical

pedigrees is impossible due to lack of records, or limited access to records, one

may be able to observe the effects of kinship by analyzing a few hundred genetic

polymorphisms. However, observed structure in scantily-differentiated may be

the result of close familial relationships amongst members within villages, which

should be taken into consideration when designing studies involving closely-related

geographical isolates. Care should be taken to reduce the effect of related individ-

uals in populations, but we must be aware that this may reduce completely the

observation of structure. In addition, it is important to note that limited numbers

of markers and small sample sizes may prevent observations of structure when it

does in fact exist, particularly at lower levels of differentiation.

5.3 Marker Numbers

We used clusteredness as the metric for our analyses rather than the accuracy of

placement approach of Bamshad et al. [54] because clusteredness depends little

on where populations are sampled from and therefore is free from concerns that

populations may actually share more genetic affinity with the opposite population

rather than their sampled population. However, we also observe in our initial re-
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sults on the STR678 dataset that, except in the case of low FST population pairs,

most populations tend to have similar population and individual level clustered-

ness. Population level-clusteredness is an indication of the extent that individuals

in the population tend to cluster more with the population to which they were

sampled from (for example, if a population has high individual-level clusteredness

but significantly lower population-level, it would indicate that individuals are not

necessarily clustering with their sampled population).

Considering the case of randomly chosen markers, that is, ignoring the informa-

tiveness of markers which may decrease the number of markers needed to observe

structuring, we see that a mere handful of markers (m ≤ 20) may be needed

to detect structure in well-differentiated populations. However, and predictably,

as differentiation between populations decreases, greater numbers of markers are

needed to identify population structure. However, and perhaps less predictably,

even in poorly-differentiated populations structure may still be detected with low

numbers of markers, although not always. For populations with FST of less than

0.01, marker numbers in the hundreds are likely to be required. Strictly speaking,

this study shows that these results apply to the case where you are identifying

two clusters with a given FST between populations; we are not sure how these

results will play out when considering more than two populations, but we expect

a similar relationship.

We also see that even in well-differentiated populations, 10 markers, as is still

common in molecular ecology studies [148–151] may not be sufficient to detect

structure. Though Latch (2006) seemed to have had no difficulty in this regard

with her simulated populations, she also used large numbers of samples per pop-

ulation (i.e., 100). We found that, based on the correlation of sample size with

number of markers needed to observe structuring, some of the variation in marker

numbers needed to observe structuring at similar FST levels appears to be a re-

sult of differences in sample sizes. Therefore, we may conclude that increasing

sample size may also increase the likelihood of observing structure, particularly

in scantily-differentiated populations, if structure exists. Also, increasing sample

sizes may decrease the number of markers needed in analyses. However, often it is

much easier to type more markers than to sample more individuals, particularly

in genetic isolates where many individuals are genealogically related [63,152].

Also, although our sample sizes are generally smaller than those in Latch’s
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simulated populations, so our results may not be directly comparable, her 100

individuals per sample may not be realistic for most studies, particularly for hu-

man populations, and especially if one is careful to avoid related individuals. To

examine this further, we looked at sample sizes of 245 human populations from

the extended CEPH HGDP: the original CEPH HGDP [1,2], plus additional pop-

ulations from South and North America [5], Africa [4], India [15], and Pacific

Islanders [3]. Here, the maximum number of individuals in a single population

was 63 and the mean number of individuals per sample was 21. The mode was

only slightly larger at 25 (median = 48). Other human population genetic studies

tend to show smaller sample sizes as well.

For an examination of sample sizes in typical molecular ecology studies, one

need only look at some of Latch’s own work, where most sample sizes were lower,

often much lower, than her 100 simulated samples per population. While a few

populations in her studies had ≥ 100 samples, this was not often the case, and

even in these studies mean sample sizes were quite lower: 44 [153] and 62 [149].

Other studies show mean sample sizes of 37 with maximum size of 47 [151], 37

with a maximum size of 40 [150], and 36 with a maximum size of 58 [58]. Recent

publications from other groups showed small sample sizes as well [148, 154–157].

While sample sizes such as these groups used may be sufficient to address specific

questions of ecological or evolutionary relevance, they may be inadequate for iden-

tifying structure using model-based clustering algorithms (i.e., stochastic) unless

adequate numbers of markers are utilized.

While human population genetics studies have been increasingly using high-

throughput SNP genotypes, many studies still use limited numbers of markers in

their analyses, particularly in molecular ecology [38,149], but also in human pop-

ulation genetics [57, 158]. Conclusions on genetic structure inferred from limited

numbers of markers, typically that no substructure exists among populations (or

limited structuring), should be approached with caution, because increasing the

number of markers considered may reveal otherwise undetected structuring. In

addition, we need to consider that results from recent simulation studies in molec-

ular ecology which have used low numbers of markers, but large, unrealistic sample

sizes in testing clustering algorithms [38, 55, 58] may need to be considered with

caution. Their conclusions/results may be affected if sample sizes are adjusted to

reflect common sample sizes.
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Above and beyond the effects of sample size and number of markers considered,

the informativeness of the markers also affects our ability to differentiate between

populations pairs. At any number of markers, for G50 or G90, informative mark-

ers perform better at differentiating pairs of populations. The story with SNP

markers is a little bit more complex; contrary to the conclusions of Lao et al. [8],

it is not necessarily the case that fewer SNPs than STRPs are needed for detecting

structure. While SNP markers perform better, though barely, at the G50 stan-

dard given different numbers of markers considered, STRP markers perform better

at the G90 level. That is, at the G50 level more populations are differentiated

with lower numbers of SNP markers, but at the G90 levels more populations are

differentiated with lower numbers of STRP markers. Whichever marker system

requires fewer markers may be dependent on the standard chosen for clustering.

Of note, Lao et al. [8] concluded that fewer SNPs would be needed than STRPs

when using carefully chosen markers, which we did not investigate here. SNPs

may very well be shown to outperform STRPs if we specifically chose informative

markers. Also, while we are testing for pairwise differentiation, Lao and colleagues

was more concerned with observing geographical structure. Informative SNPs may

work better at grouping geographical populations, where the divergence was more

ancient, while STRPs may perform better at identifying differentiation between

more recently diverged populations.

High-throughput datasets have become de rigueur in recent years [9, 16, 159].

While the increase in data may allow more detailed analyses of human populations,

we may ask ourselves whether it is too much. We show that for many popula-

tions, at least when considering population pairs, most show structure with much

smaller datasets. Though our analyses only constituted pairs of populations, it is

reasonable to assume that our findings are applicable to sets of populations with

complex patterns of clustering. However, we also have to take into account that

one of the purposes of these large-scale studies, or interesting results to be gleaned

from them, is not necessarily that of discrete structuring, but more fine scale struc-

turing as per [10], and for particularly closely-related populations. While smaller

datasets may be appropriate for identifying genetic structure, larger datasets may

yet be important for higher resolution analyses of ancestry and admixture. Nev-

ertheless, the question still stands, how much data is enough?
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5.4 ALDH2

For both the Asia and OOA restricted alleles, observed distributions are inconsis-

tent with expectations for neutral variants. Therefore, we can conclude that both

alleles may have been subjected to historical selection in East Asia and in non-

African populations, respectively. Additional evidence from this project supports

the finding that natural selection is responsible for the restricted distribution of

ALDH2*2. First, simulated alleles with frequencies matching those of ALDH2*2

have ages that encompass the OOA migration [160]. As such, these alleles would

be expected to show a more widespread distribution. Also, neutrality is rejected

using the Slatkin-Bertorelle intraallelic variability test [161], both for an intraal-

lelic nucleotide substitution in ALDH2 and for a closely linked STR marker [160].

5.5 Archaic Admixture

It has been speculated that archaic admixture occurred on the population leaving

Africa, but not within Africa [86]. This is consistent with our observations of

reduced gene identity in OOA populations, but not in African populations, and

between OOA and African populations. A part of this prediction is that input

of new alleles from an archaic lineage has the effect of increasing heterozygosity

on the OOA branch, thereby reducing gene identity. These predictions are borne

out by our simulations. Input from a simulated archaic branch into the OOA

branch results in reduction in gene identity in OOA populations, not in African

populations, and between OOA and African populations. In addition, our results

give support for isolation by distance between Eurasian populations in different re-

gions, as shown by the decreasing gene identity between East Asian and European

populations with increasing geographic distance in Figures 27 and 28, respectively.

In our simulations, the archaic contribution needed to produce the observed

difference between expected and realized gene identities is higher than that esti-

mated by Green [86]. To achieve our observed difference at 650k years, near the

high end of divergence time estimates, we would need an archaic contribution of

20%, while a 15% contribution would require a divergence time of 850k years (not

shown), outside the range of divergence time estimates. Using divergence time

of 400k, slightly higher than the mean estimate of 370k years would require a

30% archaic contribution. However, choosing a GSM mutational model with ge-
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ometric probability distribution parameter of 0.9 reduces the divergence time at

which archaic contributions of 10 and 20% give us our observed difference between

expected and realized gene identities. We do not observe the 5% archaic contri-

bution estimated by Green [86] within our range of divergence times, even using

the estimated divergence time of Homo erectus of 1 million years (not shown).

Another point to consider is that although our estimates are higher than those

of Green, they are actually perfectly within the 0 to 20% CI range estimated by

Noonan [162], and Wall et al. Wall [163] found 14% (CI 8 20%) and 1.5% (CI 0.5

- 2.5%) admixture estimates in European and East Asian samples, respectively.

Here, we develop a model for the effect of archaic introgression on modern

human genetic variation. We start with a baseline model of pure phylogenetic

radiation, with assumptions that 1) genetic drift reduces genetic variation, 2) mu-

tation is the only process that adds genetic variation, and 3) evolution along each

branch is independent of one another. Under these assumptions, the expected gene

identity between any two contemporary populations will be less than or equal to

the gene identity within their most recent common ancestor (mrca, and the low-

est gene identity corresponds to that estimated between pairs of populations that

share a most recent common ancestor defined by the root of the tree. In mod-

ern humans, this would correspond to the common ancestor of all contemporary

modern humans, which we identify as MCA (modern human common ancestor).

To our baseline model, we add an archaic population, which persisted after

the split from modern humans but which is currently extinct, and an introgres-

sion event on the OOA lineage. Our assumptions are that the introgression event

is from the archaic into the modern population, though there is nothing to pre-

clude introgression in the other direction. Though not violating assumptions one

and three, this event does violate assumption two by allowing gene flow as well as

mutation to increase variation in a lineage. This results in a more complex pattern

of gene identities in the human population. A few considerations are in order: 1)

the ancient common ancestor of modern and archaic humans (ACA), 2) the gene

identity along the branch leading to the extinct archaic population (JA), 3) the

point on the modern human lineage at which introgression occurred, and 4) the

percentage of genes in the modern human population descended from the archaic

population (m). We note that the admixture event divides the tree into two moi-

eties: hybrid descendents, populations and lineages on the out-of-Africa branch,
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and hybrid non-descendents, populations and lineages on African branches.

We label the branch on which admixture occurred b, and the populations

before and after admixture B and H, respectively. At the point of admixture,

population B becomes population H with gene identity decreasing according to

the equation,

JH = m2JA + (1−m)2JB + 2m(1−m)JACA

where JA, JB , JH , and JACA are gene identities in the extinct archaic population,

in the admixed modern human population prior to admixture, in the admixed

modern human population following admixture, and in the archaic common an-

cestor, respectively. Expectedly, JACA ≤ min(JA, JB), and therefore JH ≤ JB.

We label the common ancestor of all populations descended from H, the HRCA

(hybrid radiation common ancestor), and we expect that JHRCA ≥ JH . It is pos-

sible that admixture occurred just before radiation of populations from the OOA

node, in which case H = HRCA and JH = JHRCA, but not necessarily. In the

event that admixture did not occur just before radiation, we would expect that

JHRCA>JH as a result of genetic drift after admixture.

Finally, and more amenable to analysis, we consider the gene identity be-

tween extant populations of the two moieties. Gene identity between hybrid

non-descendent populations is unaffected by the admixture event, and these pop-

ulations maintain a perfect tree-like structure with gene identity JMCA at the

base. Similarly, hybrid descendent populations maintain a perfect tree-like struc-

ture, though it differs from what we assume without admixture only by having a

slightly lower gene identity at the root (i.e., JHRCA, as above). However, the gene

identity between pairs of populations from each of these moieties is affected by

hybridization as such,

JXiYj
= mJACA + (1−m)JMCA

where Xi and Yj are populations from the hybrid descendent and hybrid non-

descendent moieties, respectively. It is expected that JXiYj
will be less affected by

the admixture event because (1−m)>(1−m)2.

Though we do not know the gene identity of the archaic common ancestor in

reality, we can estimate the gene identity of simulated archaic common ancestors.
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This allows us to test our second derived equation for estimating the gene iden-

tity in hybrid descendent/non-descendent common ancestors. Here, we considered

the gene identity at nodes within Africa not considering the final African node.

We took as the gene identity before admixture to be the gene identity between

African populations sharing that node, and the gene identity between African and

non-African populations sharing that node to represent the gene identity at the

node after admixture. For all combinations of archaic contribution and divergence

times, we compared results of JXiYj
calculated using the equation and estimated

from the data. Calculated results refer to those where JXiYj
was determined by

plugging in the gene identities between African populations sharing the node,

while estimated results refer to those where JXiYj
was estimated by the gene iden-

tities between African and non-African populations sharing the node. Differences

between these results for all comparisons were similar to within 0.005.

To estimate the archaic contribution, we used our 100 population subsample,

chosen to include 10 nodes within Africa. We then ran a regression on estimated

gene identities before and after admixture, as the X and Y terms, respectively. The

term (1−m) was considered to be the slope and mJACA to be the intercept. We

thus estimated the archaic contribution to be 11.1%, corresponding to a divergence

time of 500k years from our simulations using a generalized stepwise mutation

model with a geometric parameter of 0.9 (Figure 28). This estimation is lower

than that estimated by Wall et al. [163] for archaic contribution to the modern

human genome.

5.6 AIDA

Previous AIDA analyses on other uniparentally inherited markers have shown

varied results. In European populations, Y-Chromosomal SNPs show a similar

clinal pattern [102], while those in East Asian populations follows a quasi-clinal

pattern [100], as seen in Finland. While no autocorrelation is seen for Portugal

when observed separately [97], a more geographically dispersed analysis of the

Iberian Penninsula shows a clinal autocorrelation, though only for the first three

distance classes, with negative autocorrelation for the most distant distance class

and the two other distance classes being not significant [99]. A previous analysis

of Italy with Y-SNPs shows significant positive and negative autocorrelation for
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the zero and most distant distance classes, respectively, but no pattern or other

significant values between them [98]. In addition, Y-chromosomal haplogroups in

Italy and Greece, individually, display quasi-clinal patterns [114].

Siberian populations show positive autocorrelation at close distances, but little

autocorrelation at further distances; however, when compared with other popula-

tions with possible historical contact with Siberian populations a clinal (or nearly

clinal) autocorrelation pattern appears [101]. In addition, Northwest Siberian

populations show a clinal pattern when compared with North Eurasian popu-

lations [164] for mtDNA and Y haplogroups. In North Africa, there is apparent

autocorrelation, though with no clinal pattern (slightly declining positive autocor-

relation at close distance classes, negative or no auto correlation at more distant

distance classes), while the addition of the Middle East results in significant II val-

ues for the first 3 distance classes (where a slight decrease is seen before) to a clinal

pattern at more distant distance classes [96]. Finally, Levant Y haplogroups show

a quasi-clinal pattern and Central Asia a clinal pattern with some deviation [165].

MtDNA in European populations show spatial autocorrelation, but not in a cli-

nal pattern as observed here [107], while Nile River populations do show the clinal

pattern as we observe for Y microsatellites [77]. In South America, autocorrelation

is clinal for close distance classes, but then gets lost in the more distant distance

classes. When divided into eastern and western populations, eastern populations

show a clinal pattern, while western ones show no autocorrelation [106]. MtDNA

for Italy (with and without Sardinians) show quasi-clinal patterns, though a bit

choppy, and some non-significance at some distance classes [92]. Aleutian islands

show a clinal pattern [105]. A lack of autocorrelation is observed in Tuscany [104].

In the case of Sweden, for both mtDNA and Y chromosome SNPs autocorre-

lation is observed, but no real discernible patterns. Only significance given is for

99%, which only occurs, negatively, in the most distant distance class [166]. Some

significant autocorrelation, but no distinct patterns, for 15 European population

samples; however, when analyzed separately Mediterranean populations show a

quasi-clinal pattern with two non-significant mid-distance classes [111].

A number of microsatellite-specific mutational model (i.e., Stepwise Muta-

tional Model, or SMM) specific statistics have been formulated for analyses of

microsatellite data under the assumption that statistics based on the mutational

scheme of microsatellites would better fit the data. However, at least in the case of
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spatial autocorrelation and European populations, mutational model choice does

not affect results to a significant extent. We see no major difference between results

when considering a more realistic stepwise model (SMM) then when considering

an independent allele model (IAM). However, Italy does show some difference,

with one model showing more clinal variation of differences indicate of isolation

by distance, and the other appearing to demonstrate a clearly structured popula-

tion. In addition, we also considered a limited number of datasets, and analyses

of additional datasets with different demographic histories may reveal differences

in results when considering different models.
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