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Chapter 1. INTRODUCTION 

 

 

1.1 EPILEPSY 

 

1.1.1 Definition 

 

In October 2012, with Fact sheet n.999, the World Health Organization (WHO) has 

defined epilepsy as “a chronic disorder of the brain characterized by recurrent seizures. 

Seizures are brief episodes of involuntary shaking which may involve a part of the body 

(partial) or the entire body (generalized) and are sometimes accompanied by loss of 

consciousness.” 

Epilepsy, in general, includes a number of neurological disorders of the central nervous 

system due to an excessive and hypersynchronous discharge of particular groups of 

neurons. Different parts of the brain can be the site of such discharges. Seizures can vary 

from the briefest lapses of attention or muscle jerks, to severe and prolonged convulsions. 

Seizures can also change in frequency, from less than one per year to several per day. 

 

The word epilepsy derives from the Greek verb epilambanein, meaning to be seized, to be 

overwhelmed by surprise. This etymology is due to a characteristic feature of this disease, 

that is, the unpredictability of its seizures. Because of its strong social impact, due to the 

unpredictability and the violence of the symptoms and to his considerable spread among 

the population, through the centuries epilepsy has been described and defined in different 

ways based on knowledge and superstition. 

Hippocrates, around the 4th century B.C., was among the first describing epilepsy as an 

ordinary, and not magical, pathology, with origins in the brain. Since then, several other 

definitions and approaches alternated in time to describe and treat epilepsy, resulting in the 

most peculiar and sometimes ludicrous ways to face the problem. 

For the first clinical definition of epilepsy, it is necessary to wait 1870, when the 

neurologist John Hughlings Jackson defined a seizure “an occasional sudden, excessive, 

rapid and local discharge of grey matter of the central nervous system.”  
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Today, it is well known that epilepsy is not a single condition, but a diverse family of 

disorders, having in common an abnormally increased predisposition to seizures. The 

International League Against Epilepsy and the International Bureau for Epilepsy define 

epilepsy as “a disorder of the brain characterized by an enduring predisposition to 

generate epileptic seizures and by the neurobiologic, cognitive, psychological, and social 

consequences of this condition. The definition of epilepsy requires the occurrence of at 

least one epileptic seizure”  (Fisher et al, 2005). 

 

 

1.1.2 Epidemiology 

 

Epilepsy affects more than 50 million people worldwide (World Health Organization, 

2005), with an estimated 2–3 million living in the United States (Hirtz et al., 2007), 6 

million in Europe (World Health Organization, 2010), and at least 40 million in the 

developing world (World Health Organization et al., 2005), which makes this disease one 

of the most common neurological disorders in the world.  

Incidence of epilepsy is higher in children (0-14 years) and in elderly (>60 years) than in 

adult individuals (15-59 years). The mean incidence rates of epilepsy in these age groups 

are, respectively: 82,2/100000 per year – 39,7/100000 per year – 34,7/100000 per year; the 

total incidence rate is 47,4/100000 per year. Incidence rate for age-specific epilepsy 

distribution is significantly different. A non significant trend to higher incidence of 

epilepsy in males compared to females has been reported, showing respectively mean 

incidence rates of 50,7/100000 per year and 46,2/100000 per year (Kotsopoulos et al, 

2002; McHugh and Delanty, 2008). Incidence seems to be higher in males due to the 

greater exposure to risk factors that cause symptomatic epilepsies. Generally, the median 

seizure-specific incidence rates are higher for partial (34,4/100000 per year) than for 

generalized seizures (19,6/100000 per year), but this difference is not significant.  

 

 

1.1.3 Classification of epileptic seizures 

 

In 1989, the International League Against Epilepsy (ILAE) published the International 

Classification of epilepsies. In the paper, two possible etiological dynamics are presented: 
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      a) primary or idiopathic etiology: brain disorder of unknown cause. In fact, most idiopathic 

epilepsy syndromes are presumed to be due to a genetic cause, but in most cases the 

specific genetic defect is not known and a family history of epilepsy may not be present. 

 b) secondary or symptomatic etiology with an identifiable lesion in the brain that triggers 

seizures, like a brain tumor, stroke, viral and bacterial encephalopathies, or other 

neurological disorders. 

 

Epileptic seizures are divided into two major groups, depending on the site of initiation: 

partial-onset and generalized-onset seizures (Fig. 1).  

Partial-onset seizures refers to a specific and localized origin of the seizures. The 

symptoms depend on the function of that specific area. If the seizure does not alter 

consciousness it is known as simple partial. Partial seizures that cloud consciousness are 

known as complex partial seizures. 

Generalized seizures refer to a general involvement of both brain hemispheres in the origin 

of the seizures. This kind of seizures is usually much more dramatic, given that many of 

the brain functions are affected at the same time. In many of these types of seizures, the 

subject will not have any recollection of the seizure afterwards. Generalized seizures may 

be initiated by a partial-onset seizure (secondarily generalized seizures). 

Some seizures, such as epileptic spasms, are of an unknown type (Engel, 2006). 

 

 

Figure 1: Classification of epileptic seizures. 

 

http://en.wikipedia.org/wiki/Epileptic_spasms
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1.1.4 Treatment 

 

Epilepsy treatment is symptomatic, mainly aiming to control seizure recurrence, and only 

surgery can be sometimes curative. No currently available drug is capable of preventing 

epileptogenesis. Since the introduction of bromide as an antiseizure drug in 1857, there has 

been an impressive expansion of therapies that are clinically effective in decreasing the 

frequency and severity of seizures in people with epilepsy. This class of symptomatic 

treatments is widely referred to as ‘‘antiepileptic drugs’’ (AEDs). 

AEDs target different biological substrates such as voltage-gated Na
+
 channels (e.g. 

phenytoin and its derivatives), the GABA system (e.g. barbiturates or benzodiazepines) 

and voltage-gated Ca
2+

 channels (ethosuximide) (Table 1). 
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Drug of choice for 

partial seizures. 

Used also in 

partial and 

generalized 

convulsive 

seizures. 
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400-2400 mg 
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Its common side effects include drowsiness, 

headaches and migraine, motor coordination 

impairment and/or upset stomach. Carbamazepine 

decreases tolerance to alcohol. 

Less common side effects include cardiac 

arrhythmias, blurry or double vision and/or the 

temporary loss of blood cells or platelets (in rare 

cases can cause aplastic anemia). Additionally, 

carbamazepine may exacerbate pre-existing 

hypothyroidism. There are also reports of auditory 

side effects. 
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action 
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Effective on 

partial seizures 
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10-40 mg, in 

association with 

other AEDs. 
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Common side effects are ataxia, somnolence, 

diplopia, dysarthria and rarely gelastic seizures and 

urticaria rashes. 
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Oxcarbazepine causes dizziness, drowsiness, 

blurred or double vision, fatigue and may cause 

headache, nausea, vomiting and stomach pain, 

diarrhea, constipation and dry mouth. It can also 

cause hyponatremia. Concentration loss is also 

reported to be a frequent side effect. Skin sensitivity 

to sunlight also may increase. 
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drowsiness, and peripheral edema (swelling of 

extremities). Children 3–12 years of age were 

observed to be susceptible to mild-to-moderate 

mood swings, hostility, concentration problems, and 

hyperactivity. Rare side effects are represented by 

cases of hepatotoxicity. Gabapentin should be used 

carefully in patients with renal impairment due to 

possible accumulation and toxicity. It has a 

carcinogenic potential. 
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common. In elderly patients, it may cause 

excitement and confusion, while in children it may 

result in paradoxical hyperactivity. 
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Common side effects are dyspepsia and/or weight 

gain. Less common are fatigue, peripheral edema, 

dizziness, drowsiness, hair loss, headache, nausea, 

sedation and tremors. Valproic acid also causes 

hyperammonemia, which can lead to brain damage. 

Rarely, valproic acid can cause blood dyscrasia, 

impaired liver function, jaundice, 

thrombocytopenia, and prolonged coagulation 

times. Valproic acid may also cause acute 

hematological toxicities, cognitive dysfunction and 

reversible pseudo-atrophic brain changes. It is 

known as a teratogen. 

 

 

Table 1: Anti-Epileptic Drugs. 

 

The choice among the different AEDs depends on the semiology of the disease and the 

management of the treatment is correlated to the containment of seizures: some patients 

reach the goal by a monotherapy, some others, unfortunately, require polytherapy with the 

use of two or more AEDs. Monotherapy is desirable because it decreases the likelihood of 

adverse effects and avoids drug-drug interactions. Other important concerns are the risks 

related to the potential for teratogenicity, which may limit the use of effective antiseizure 

medications in women of child bearing potential (AESBSC and ILAE, 2012).  
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In spite of the numerous AEDs available, several patients are refractory to pharmacological 

treatments and continue to experience seizures. Indeed, of those who develop epileptic 

seizures 47% will be controlled with the first AED prescribed, 32% with the second AED, 

and 9% with the third. Fourth and subsequent AEDs have at most a 5% chance of bringing 

remission (Duncan, 2007). This leaves around 30% of individuals that have no chances to 

control their seizures by pharmacological approaches. Therefore it is of central importance 

to develop new drugs able to contain seizures or even to prevent epileptogenesis. This 

latter goal could be reached not only by empirical experimentation of new chemical 

compounds, but also by increasing our knowledge of the complex basis of the pathology.  

When drug treatments result ineffective and patients experience refractory seizures, other 

medical approaches may be applied. These alternative treatments include surgery, vagus 

nerve stimulation, ketogenic diet.  

Epilepsy surgery is an effective and safe alternative form of therapy for selected patients 

with intractable partial epilepsy. Determining the suitability of the surgical treatment and 

the best approach always requires a full assessment, which includes video-

electroencephalogram (EEG) monitoring, neuropsychological examination, and structural 

magnetic resonance imaging. In some patients it may be necessary to perform functional 

imaging tests and intracranial electrode recordings. These tests make it possible to locate 

the epileptogenic zone. The best surgical results are obtained in patients with small 

epileptogenic lesions, which can be totally resected. Nevertheless, in many patients in 

whom complete control is not achieved after surgery, the improvement in seizure control 

also has a positive impact on their quality of life (Villanueva et al, 2007). Surgery usually 

reaches 90% of success in healing focal epilepsy.  

Intractable epilepsy may also be treated by vagus nerve stimulation (VNS). VNS consists 

of two electrodes embedded in a silastic helix that is wrapped around the cervical vagus 

nerve. The stimulator is always implanted on the left vagus nerve in order to reduce the 

likelihood of adverse cardiac effects. The electrodes are connected to an implantable pulse 

generator (IPG) which is positioned subcutaneously either below the clavicle or in the 

axilla. The IPG is programmed by computer via a wand placed on the skin over it. In 

addition, extra pulses of stimulation triggered by a hand-held magnet may help to prevent 

or abort seizures (Sakas et al., 2007). Pilot study results demonstrated significant reduction 

in the frequency, intensity, and duration of seizures with chronic, intermittent VNS (Labar 

et al, 1998). Follow up studies report a mean of 50-60% success for VNS when associated 

to normal pharmacological treatment (Abubakr and Wambacq, 2008; Milby et al, 2008). 
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VNS seems also to progressively increase its effectiveness in seizures containment in time 

(Ardesch et al, 2007; Milby et al, 2008). Very few are the side effects of this practice, 

comprising hoarseness of voice, cough and sometimes weight loss; most of them are very 

mild and bearable for patients.  

Ketogenic diet represents another side treatment for intractable refractory epilepsy and for 

epilepsy at large. The efficacy of the diet is independent of the type of seizure and is 

effective for both generalized and partial seizures at varied ages. The ketogenic diet has 

been widely used as a treatment for drug-resistant childhood epilepsy since the first reports 

of its beneficial action in seizure control. Although the exact mechanism of action is still 

unclear, the high fat and restricted carbohydrate content of the diet is thought to mimic the 

biochemical response to starvation, when ketone bodies become the main fuel for the 

brain’s energy demands. The diet has been shown to be effective in retrospective and 

prospective observational studies: more than half of children who were treated showed a 

greater than 50% reduction in seizures, and many were seizure free after only 3 months 

(Neal et al., 2008).  

The diagnosis of epilepsy is essentially based on a detailed history of the clinical 

manifestations such as onset and course of the crisis, duration and frequency of the same, 

as well as any concomitant causes and analysis of the EEG pattern. An isolated seizure 

does not imply a diagnosis of epilepsy, as it can occur in normal people, such as in children 

aged less than five years during fever above 38°C (benign seizures). Occurrence of 

seizures without massive provocation is therefore an essential factor for the diagnosis. In 

practice, it is often impossible to fulfill this criterion, because information about a patient’s 

seizures is usually anamnestic and the EEG is mostly interictal. Thus the diagnosis of 

epilepsy is not as easy as it might seem at first sight.  

Among epileptic syndromes, temporal lobe epilepsy (TLE) is the most common in adults, 

and affects at least 20% of all patients with epilepsy.  

 

 

1.1.5 Temporal Lobe Epilepsy 

 

Temporal lobe epilepsy (TLE) was defined in 1985 by the ILAE as a condition 

characterized by recurrent seizures originating from the medial or lateral temporal lobe. 

Mesial temporal lobe epilepsy (mTLE) arises in the hippocampus, parahippocampal gyrus 

and amygdale, lateral temporal lobe epilepsy (lTLE) arises in the neocortex on the outer 
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surface of the temporal lobe of the brain. TLE is frequently associated with hippocampal 

sclerosis, reactive gliosis and synaptic rearrangement (Thom et al., 2009). 

Seizures may involve only one or both lobes, giving rise to simple partial, complex partial 

or secondarily generalized seizures. About 40 to 80% of people with TLE also perform 

repetitive, automatic movements (called automatisms), such as lip smacking and rubbing 

the hands together. As seizures usually involve areas of the limbic system that control 

emotions and memory, some individuals may have problems with memory, especially if 

seizures have occurred for more than 5 years. However, these memory problems are almost 

never severe. Seizures occur often after an initial insult like an infection, stroke or trauma, 

vascular malformation or prolonged febrile seizures; a genetic cause is less frequent. 

Between the initial insult and the onset of the crisis, a latency period called 

“epileptogenesis” occurs, with changes in structure and physiology of the brain tissue (Fig. 

2).  

 

 

Figure 2: Epileptic process in symptomatic temporal-lobe epilepsy (Pitkänen, 2002). 
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Existing AEDs are used to control seizures, but up to 40% of patients will fail to respond 

(Kwan and Brosie, 2000). This is particularly true of TLE, the most pharmacoresistant of 

the epilepsies, where continuation of seizures contributes to ongoing problems with work 

and social activity, as well as increased personal health risks. For some individuals, 

neurosurgical resection of the temporal focus is often the only remaining course, while 

many others are deemed unsuitable for surgery. Furthermore, current AEDs have little 

influence on the underlying pathophysiology and there has been little success in directly 

targeting the underlying molecular processes (Pitkänen and Lukasiuk, 2011). Status 

epilepticus (SE), or perhaps even brief, recurring seizures can precipitate neuronal loss and 

contribute to density/volume decline in patients (Fujikawa et al., 2000). Such decline is 

associated with other comorbidities, including depression. Given these admissions, the cell 

and molecular processes underlying epilepsy and epileptogenesis constitute a high research 

priority. For this, animal models are of central importance. 

 

1.1.6 Experimental models of TLE 

 

The study of epilepsy cannot be performed only in humans because of several different 

reasons, from ethical issues to practical inapplicability, from unavailability of controls to 

high costs of human research. Epilepsy models for studying epilepsy are principally used 

for three reasons:  

1. to understand basic mechanisms underlying the pathology;    

2. to devise new approaches for diagnosis;    

3. to test new drugs or new therapies.    

 

Of course, uncovering the basic mechanisms underpinning the disease will help develop 

new diagnostic, therapeutic and preventive approaches. Models of epilepsy are the best 

instruments on which innovative experimental approaches for diagnosis and therapies can 

be tested. Human studies can give a big support, but preliminary data are normally 

retrieved from in vitro and in vivo experiments.  

Epilepsy models should be created or prepared in order to faithfully reproduce the diversity 

of human epileptic conditions. Therefore, several different models have been developed. 

On the other hand, some experimental approaches model only some of the manifestation of 

epilepsy (epilepsy equivalent) allowing only the investigation on a particular symptom and 
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not on the whole complex picture. In any event, this gives the opportunity to study an 

aspect of the disease.  

Induced models of epilepsy consist in the application of chemical, electrical or damaging 

insults on a healthy brain, in order to transform that brain in an ill one, capable to display 

features of the epilepsy in study.  

 

 

Table 2: Induced model of epilepsy (classification based on the tools used to develop the models). 

 

For TLE, the pilocarpine model is an highly isomorphic model, described for the first time 

in 1983 by Turski and colleagues (Turski et al., 1983). In this model, administration of 
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pilocarpine induces a status epilepticus (SE) characterized by tonic-clonic generalized 

seizures, followed by a latent period of seizures free behavior and by a chronic period, with 

the occurrence of spontaneous recurrent seizures (SRSs).  

In detail: within 5 minutes from the injection, animals begin to be motionless, display oro-

facial movements, salivation, eye blinking, twitching of vibrissae and yawning. 

Discontinuous seizures are initially observed, and then about 60% of the animals develop 

SE (Cavalheiro et al., 1991). All behavioral changes are correlated with a high voltage, fast 

electroencephalographic (EEG) activity that appears to originate in the hippocampus and to 

propagate to the amygdala and the neocortex (Turski et al., 1983). 

SE spontaneously remits 5-6 hours after pilocarpine administration but is generally stopped 

at 2-3 hours with anticonvulsant drugs such as diazepam. In the following 1-2 days, 

animals may experience some occasional, self-limiting generalized seizures of less than 1 

min duration (Mazzuferi et al., 2010).  

The duration of the latent period that follows varies in function of the dose of pilocarpine 

(Liu et al., 1994), the duration of SE (Lemos and Cavalheiro, 1995; Fujikawa, 1996, 

Biagini et al., 2006, Goffin et al., 2007), the strain and age of the animal (Biagini et al., 

2006; Goffin et al., 2007). Cavalheiro et al. (1991) identified a mean duration of 14.8 days. 

During the latent phase, tissue rearrangements related to epileptogenesis occur (Dalby and 

Mody, 2001; Pitkänen and Sutula, 2002). 

The chronic period follows epileptogenesis and, as previously mentioned, is characterized 

by the appearance of spontaneous recurrent seizures. Severity of seizures can be scored 

using a scale developed in 1972 by Racine (Racine, 1972) and recently revised (Veliskova, 

2006). The scale is reported in Table 3. It uses numbers from 1 to 6 to define seizure 

classes: the first three stages are representative of partial seizures, stages from 4 to 6 are 

representative of generalized ones. SRSs begin as partial seizures and become secondary 

generalized. The recurrence of seizures is almost regular throughout the lifetime of the 

animal and appears in a clustered manner, in cycles peaking every 5-8 days or more 

(Goffin et al., 2007; Arida et al., 1999). Seizures frequency is higher during the diurnal 

period (Arida et al., 1999), with an incidence of 67% (Arida et al., 1999; Goffin et al., 

2007). In 90% of the cases, the EEG during seizures is characterized by a dysrhythmic  

activity that starts in the hippocampus and spreads to the neocortex, usually lasting less 

than 60 seconds (Cavalheiro et al., 1991). 
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Classes Features  

1 Staring and mouth clonus P
a

rtia
l 

2 Automatisms 

3 Monolateral forelimb clonus 

4 Bilateral forelimb clonus  

G
en

era
lized

 

5 Bilateral forelimb clonus with rearing and falling 

6 Tonic-clonic seizures 

 

Table 3: Racine’s classification of seizures. Scores from 1 to 3 are representative of partial seizures, the last 

three of generalized ones 

 

Pilocarpine exerts its effects by binding M1 muscarinic receptors, resulting in alterations in 

Ca
2+

 and K
+
 current (Segal, 1988). The high concentration of intracellular Ca

2+
 promotes 

the release of glutamate from presynaptic termini that, in turn, provokes SE. Once 

activated, seizures are subsequently maintained by activation of NMDA receptors. 

Glutamate, acting on AMPA/KA receptors, allows the entrance of Na
+
 into the cells and, 

as a consequence, the Mg
2+

 ion that blocks NMDA receptor is removed. Excessive 

activation of NMDA receptors leads to a massive entrance of Ca
2+

 into the postsynaptic 

cells and induces excitotoxic effects and cell death. 

Recent observations have shown that activation of cholinergic neurons may not be the only 

factor triggering pilocarpine SE. Marchi et al. (2007a, b) suggested that pilocarpine 

induces an early focal damage to the blood-brain barrier (BBB) in regions highly sensitized 

to cholinergic agonists, and this may contribute to the development of seizures, facilitating 

the entrance into the brain of blood-borne factors (e.g. K
+
).  

Moreover, a peripheral activation of the immune system has been hypothesized to play a 

role, because high levels of serum IL-1β have been found after injection of pilocarpine. 

High concentrations of the pro-inflammatory cytokine is known to cause sudden rapid 

changes in excitability of both inhibitory and excitatory neurons (Yang et al., 2005). 

As reviewed by Curia et al. (2008), age, strain, gender, dose, association with other drugs 

to reduce mortality or collateral effects, are variables that have to be carefully controlled to 

obtain a reliable model of the pathology. The lack of a standardized protocol has led some 

investigators to criticize this model. However, it continues to be used in many laboratories 

because easy, rapid and highly homologous to the human disease, involving the same 
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mechanisms and brain areas and displaying the same pattern of responsiveness to AEDs 

observed in TLE patients. 

 

 

 

1.2 EPILEPTOGENESIS 

 

Many acquired epilepsies have an identifiable cause, such as head trauma, an episode of 

status epilepticus (SE), a stroke, or a brain infection (Pitkanen and Sutula, 2002). It is 

thought that these insults set in motion a cascade of neurobiological events that, in time, 

will lead to the occurrence of spontaneous seizures and to the diagnosis of epilepsy. This 

phenomenon is termed "epileptogenesis". In other words, epileptogenesisis is the process 

by which a previously normal brain becomes epileptic. The cellular alterations underlying 

epileptogenesis include neurodegeneration, neurogenesis, axonal damage or sprouting, 

dendritic remodeling, gliosis, recruitment of inflammatory cells into brain tissue, 

angiogenesis, alterations in extracellular matrix, and acquired channelopathies (Fig. 3).  

 

 

Figure 3: cellular alterations occurring during the epileptogenic process (Pitkänen and Lukasiuk, 2009). 

 

Importantly, recent experimental and patient data suggest that molecular and cellular 

changes triggered by an epileptogenic insult can continue to progress after the epilepsy 

diagnosis, even though they might qualitatively and quantitatively differ at various phases 

of the epileptic process (Pitkänen and Lukasiuk, 2011). These neurobiological data raise 
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the question of whether the term “epileptogenesis” should be extended to also include 

disease progression (Pitkänen, 2010).  Thus, not only the prevention or delay of epilepsy 

but also seizure modification (less frequent or shorter seizures, milder seizure type, change 

from drug-resistant to drug-responsive) and cure would be considered to be clinically 

relevant endpoints for antiepiletogenesis studies (Pitkänen and Lukasiuk, 2011).  

The seizure-free period between an epileptogenic insult and the first spontaneous seizure is 

referred to as the “latent period” and may last from weeks to years. Epileptogenesis may 

depend on genetic and/or acquired mechanisms. Genetic influence is thought to be 

strongest in idiopathic epilepsies, whereas mechanisms of circuitry reorganization after a 

brain insult are more extensive in acquired epilepsies. However, the functional 

consequences of a brain injury always depend on the genetic background  (Pitkänen and 

Lukasiuk, 2009). 

 

 

1.2.1 Genetic and epigenetic mechanisms of epileptogenesis 

 

Over 13 genes associated with human epilepsy have been identified so far and at least 33 

single gene mutations in mice have been linked to an epileptic phenotype. 

 

Benign familial neonatal convulsions (BFNC), generalized epilepsy with febrile seizures 

plus (GEFS+) and autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) are 

three idiopathic diseases in which gene mutations code for mutated voltage-gated or 

ligand-gated channels. In particular, mutations in BFNC were identified in genes for 

potassium channels, KCNQ2 and KCNQ3 (Singh et al., 1998; Biervert et al., 1998). These 

mutations are responsible of a loss of function that leads to a decrease in size of the 

potassium current. It has been suggested that even a moderate reduction (20-25%) of 

function may be associated with epilepsy (Schroeder et al., 1998). 

GEFS+ is associated with a point mutation in the genes coding for the -subunit  (SCN1B) 

or for the 1-subunit (SCNA1A) of a voltage-gated sodium channel (Wallace et al., 1998; 

Escayg et al., 2000). In vitro studies suggest that the mutation results in defective 

inactivation of the sodium channel, which could lead to failure to limit the sustained 

repetitive firing of a depolarized neuron (McNamara, 1999). 
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ADNFLE begins clinically in childhood and patients have brief, nocturnal seizures with 

motor features. Mutations affect genes coding for nicotinic cholinergic receptors (Steinlein 

et al., 1997; Phillips et al. 1998) and result in decreased Ca
2+

 flux through the receptor, 

which may lead to a reduction in the amount of GABA released from presynaptic 

terminals, and trigger seizures via synaptic disinhibition (Kuryatov et al., 1997). 

 

PME (progressive myoclonus epilepsies) is a group of rare single-gene epilepsies 

characterized by myoclonus, generalized tonic-clonic seizures and progressive 

neurological dysfunction mainly in the form of dementia and ataxia (Berkovic et al., 1986). 

Among these, the Unverricht-Lundborg disease (ULD) and the Lafora disease (LD) are the 

best characterized. Genetic mutations lead to deficit of two proteins, cystatin B and laforin 

respectively, that result in epilepsy (Acharya, 2002). 

 

Other changes in gene expression occur without affecting the DNA sequence but by 

chemical modification of DNA or chromatin: these include DNA methylation and 

alterations in the methylation or acetylation status of histones. These mechanisms are 

termed epigenetic. Seizure or SE-induced histone modifications have been reported for the 

promoters of a number of genes, including those involved in neuronal plasticity such as c-

fos, c-jun and CREB (Sng et al., 2006). Recently, it has been proposed that aberrant 

promoter methylation is an important pathogenic mechanism underlying epileptogenesis. 

Specifically, increased levels of promoter methylation was shown in surgically-resected 

specimens from patients with TLE (Kobow and Blumcke, 2011). Deacetylation of histones 

at the GluR2 promoter leads to decreased gene expression, resulting in facilitation of 

epileptogenesis (Sanchez et al., 2001). A greater understanding of these mechanisms may 

open new therapeutic windows for difficult-to-treat epilepsies. In addition, epigenetically 

active pharmacologic compounds may be recognized as novel anticonvulsant (and, 

potentially, antiepileptogenic treatments), which may rapidly advance to clinical 

application (Kobow et al., 2012). 

 

 

1.2.2 Acquired postinjury mechanisms 

In addition to SE, various other types of brain insults, such as traumatic brain injury (TBI), 

stroke and tumors, can trigger the epileptogenic process. The common trait of all these 
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insults is the ability to induce a specific set of cellular alterations. Although these cellular 

alterations may be different in different models and in different patients, commonly 

identified features include neurodegeneration, neurogenesis, gliosis, neuroinflammation, 

axonal sprouting, dendritic plasticity, angiogenesis and changes in the extracellular matrix. 

These alterations are accompanied by a variety of molecular changes that can lead, in 

addition to epilepsy, to other functional impairments such as developmental delay or 

memory, emotional and behavioral impairment (Pitkänen and Lukasiuk, 2009). 

 

1.2.2.1 Neurodegeneration 

Areas damaged in TLE typically include the hippocampus, but may also extend to 

extrahippocampal regions, such as the entorhinal and pyriform cortices or the amygdala. 

The severity of the seizures directly determines the extent of brain damage (Ben-Ari and 

Dudek, 2010). 

The hippocampal circuitry is fundamental for information processing, as disorders 

affecting this brain region result in impaired cognitive functions. The normal hippocampus 

consists of subfields. The dentate gyrus (DG), a tightly packed layer of small granule cells, 

and a series of Cornu Ammonis (CA) areas: CA4 (inside the DG), CA3, a very small zone 

called CA2, CA1. The CA areas are all characterized by densely packed pyramidal 

neurons. The areas that follow CA1 in the neuronal pathway that runs across the 

hippocampus are the subiculum  two ill-defined areas called the presubiculum and 

parasubiculum, a transition to the cortex proper (the entorhinal area of the cortex).  

The intrahippocampal circuitry consists of a trisynaptic excitatory pathway. First, perforant 

path axons from the entorhinal cortex (EC) project to the granule cells in the outer 

molecular layer (ML), next the mossy fiber axons of the granule cells innervate the 

pyramidal cells in the CA3 area, then the Schaffer collateral axons of CA3 pyramidal cells 

project to the pyramidal cells in the CA1 area (Fig. 4). Each of these subareas also contains 

complex intrinsic circuitry and extensive longitudinal connections. Further, mossy fibers 

and the perforant path also innervate GABAergic neurons and glutamatergic mossy cells in 

the hilus, which project to granule cells. Within the hippocampus, the flow of information 

from the EC is largely unidirectional, with signals propagating through a series of tightly 

packed cell layers: DG, CA3, CA1, then the subiculum, then out of the hippocampus and 

back to the EC.  

 

http://en.wikipedia.org/wiki/Dentate_gyrus
http://en.wikipedia.org/wiki/Pyramidal_cells
http://en.wikipedia.org/wiki/Pyramidal_cells
http://en.wikipedia.org/wiki/Subiculum
http://en.wikipedia.org/wiki/Entorhinal_cortex
http://en.wikipedia.org/wiki/Hippocampal_subfields
http://en.wikipedia.org/wiki/Hippocampal_subfields
http://en.wikipedia.org/wiki/Subiculum
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Figure 4: Schematic representation of hippocampal circuitry. 

 

In an epileptic hippocampus, several degenerating cells are identified in CA1 and CA3 

pyramidal cell layer and in the hilus, with milder damage in CA2 pyramidal layer and in 

granule cells. During the last decades, several studies on the human epileptic temporal lobe 

tissue have shown that these pathophysiological changes are not identical in all patients 

(Blumcke et al., 2013). This pattern is also reproduced in several animal models, including 

the pilocarpine model: pronounced cell loss in these regions, accompanied by edema, is 

observed 3 days after the injection of the alkaloid (Paradiso et al., 2009). The molecular 

mechanisms that underlie the development of hippocampal sclerosis are still unclear, 

although some studies suggest that alterations in gene expression in the hippocampus may 

play a role (Van Gassen et al., 2008). However, cell death is believed to be the initiating 

event that leads to an excitatory neuronal circuitry and to epileptic seizures (Bhowmik et 

al., 2014).  

 

1.2.2.2 Neurogenesis 

Abnormal hippocampal neurogenesis has emerged as another important feature of TLE. 

Neurogenesis is a process of generation of new neurons in the central nervous system 

through division of neural stem cells (NSCs) and neuronal differentiation of newly born 

cells. Although most of the neurogenesis occurs during development, certain regions of the 

brain maintain neurogenesis throughout life. These include the subgranular zone (SGZ) of 

the DG in the hippocampus and the subventricular zone (SGZ) lining the lateral ventricles 

(Kuruba et al., 2009). Within the DG, progenitors that divide throughout life are found in a 

50-100 μm zone just beneath the layer of granule cells (hence SGZ) that also contains the 
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processes of adult neurons and glia (Fig. 5).  

A great fraction of these new cells differentiate into granule cells of the DG, migrating up 

into the granule cell layer (GCL), extending dendrites into the dentate molecular layer, and 

projecting axons into the dentate hilus and CA3 stratum lucidum. Over time, these newly 

added granule cells incorporate into the functional hippocampal circuitry through 

establishment of granule cell specific afferent and efferent synaptic contacts. 

 

 

Figure 5 

 

The extent of hippocampal neurogenesis in the adult brain is not static, as it responds to 

both physiological and pathological stimuli though the net result of a particular stimulus 

varies depending on the activation of positive or negative regulators. For instance, physical 

exercise or exposure to enriched environment positively enhances the amount of 

hippocampal neurogenesis through up-regulation of multiple positive regulators (Kuruba et 

al., 2009).  

One of the most robust stimuli that increase neurogenesis appears to be seizures. Acute 

seizures or status epilepticus abnormally increase the amount of hippocampal neurogenesis 

and induce aberrant migration of a significant fraction of newly born neurons into the 

dentate hilus and in the molecular layer, as well as the projection of axons from newly-

born neurons into the dentate molecular layer. Altogether, these events lead to a significant 

synaptic reorganization in the hippocampus (Ashok, 2014). The precise reasons for the 

aberrant migration of newly born cells are still being examined. A study supports the 



Chapter 1. INTRODUCTION 

 20 

involvement of reelin, a migration guidance cue that promotes appropriate migration of 

newly born neurons into the GCL. Since reelin is produced by interneurons that are 

typically lost in TLE, its deficiency after acute seizures is thought to favor ectopic, 

aberrant migration and integration of newborn cells into the dentate hilus (Gong et al., 

2007). A contribution may derive also from an aberrant glial scaffold (probably due to 

gliosis) that may guide new neurons into the hilus and not toward the molecular layer 

(Shapiro et al.,      .  tudies in animal models re ealing increased hippocampal 

neurogenesis in epilepsy are consistent with studies on tissues from patients in the early 

phase of T E ( l mcke et al., 2001). 

Another pathophysiological feature of the epileptic hippocampus that may be related to 

abnormal neurogenesis is granule cell dispersion (GCD) to the hilus and inner molecular 

layer, which is present in 40-50% of the patients (Kralic et al., 2005). Studies suggest that 

these aberrantly migrated granule cells are hyperexcitable and integrate abnormally (Gong 

et al., 2007). 

 

1.2.2.3 Dendritic plasticity and changes in the extracellular matrix 

Postinjury tissue remodeling is also characterized by the loss of dendritic spines, changes 

in their morphology and reduction of branches. These alterations may affect the 

availability of various receptor types as well as their stoichiometry and, thus, compromise 

the information flow from afferent inputs. Another important change in dendritic plasticity 

is correlated with neurogenesis. In epileptic conditions, newly generated granule cells 

present hilar basal dendrites (HBDs) that persist in the mature cells integrating into 

synaptic circuits and, being furnished with spines, probably contribute to additional 

recurrent excitatory circuits (Spigelman et al., 1998; Ribak et al., 2000). Moreover, in 

epileptic rats, HBDs are significantly longer and form a dense plexus in the hilus as 

compared to control animals in which the majority of the dendritic processes from 

newborn cells are orientated along the SGZ-GL border (Shapiro et al., 2005).  

Alterations in postinjury remodeling of neuronal circuits are accompanied by changes in 

the extracellular matrix (ECM). A large number of enzymes contribute to ECM 

degradation and rearrangement, in particular the tissue-type and the urokinase plasminogen 

activator (tPA and uPA), their inhibitors TIMP-1 and -2, anf metalloproteinases appear to 

be involved (Lukasiuk et al., 2006).  
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1.2.2.4 Neuroinflammation and gliosis 

It has become clear over the past two decades that the brain is immunologically active. The 

brain innate immune response to injury or excessive neuronal activity is orchestrated 

mainly by its resident microglial and astrocytic populations, but neurons also play a key 

role (Vezzani et al., 2013).  

Several lines of evidence demonstrate a link between the activation of inflammatory 

pathways and neurodegenerative diseases, including epilepsy. Interesting, inflammatory 

reactions occur not only in epileptic disorders characterized by an inflammatory 

pathophysiology, but also in TLE or in tuberous sclerosis, raising the possibility that 

inflammation may be a common factor contributing or predisposing to the occurrence of 

seizures and cell death, in various forms of epilepsy with different etiologies. Increased 

markers of inflammation have been found in plasma and cerebrospinal fluid after recent 

tonic-clonic seizures and in brain tissue obtained from patients surgically treated for drug-

resistant epilepsies (Crespel et al., 2002; Peltola et al., 2002). Inflammatory processes are 

not only present in the chronic epileptic brain but some of these pathways are also 

upregulated following an epileptogenic injury, and they often persist during the latent 

phase that precedes spontaneous recurrent seizures. This evidence has generated the 

testable hypothesis that brain inflammation, in addition to its established contribution to 

ictogenesis, may play a role in the development of the epileptogenic process (Vezzani et 

al., 2013).  However, the role of neuroinflammation is controversial. Some authors 

consider immune reactions in the CNS a protective, adaptive and beneficial endogenous 

response – similar to the classic response to infection. This is supported by the evidence 

that released cytokines can induce the synthesis of growth factors that can promote repair 

of the CNS  (Elkabes et al., 1996) or stimulate antioxidant pathways (Wilde et al., 2000). 

Moreover, activated glial cells can operate as scavengers, removing potentially harmful 

debris. Neurons as well as astrocytes are affected by the initial insult and recurrent 

seizures. Following stressful stimuli, astrocytes upregulate the glial fibrillary acidic protein 

(GFAP) and its cell body and processes show hypertrophy. This process is called reactive 

gliosis and is present in several acute and chronic CNS diseases. Further, the organization 

of astrocytes in non-overlapping spatial domains can be lost during recurrent seizures, 

which could worsen pathophysiology (Oberheim et al., 2008).  
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1.2.2.5 Mossy fibers sprouting (MFS) 

Mossy fiber sprouting has been the subject of extensive research and controversy since it 

was first described more than two decades ago. The hypotheses concerning this 

phenomenon are based largely on evidence derived from Timm staining of the inner 

molecular layer of the dentate gyrus in humans and animal models that have undergone 

injury-induced epileptogenesis (Dudek et al., 2004). Axonal plasticity is associated with 

synaptic activity and, therefore, the ability of recurrent epileptic bursts to induce sprouting 

of axonal branches is not surprising. One hypothesis has been that neuronal injury leads to 

the formation of new axon collaterals of dentate granule cells (i.e., mossy fiber sprouting), 

which form recurrent excitatory synaptic connections with other granule cells whose 

proximal dendrites are in the inner molecular layer of the dentate gyrus (Pitkänen and 

Sutula 2002; Sutula, 2002).  

MFS has been observed in many experimental models (Nadler, 2009), and also in the 

hippocampus of surgical patients with various forms of epilepsy (Mathern et al., 1996). In 

the epileptic hippocampus, granule cells have been found to produce basal dendrites that 

extend into the hilus, an additional target for recurrent mossy fiber synapses (Ribak et al., 

2000). Furthermore, many granule cells born during epileptogenesis and presenting 

aberrant features, such as basal dendrites and ectopic migration in the hilus (Parent et al., 

2007), receive innervation from other granule cells and contribute to the formation of a 

reverberating network (Nadler, 2009).  

It has been hypothesized that, at least in the initial phases of epileptogenesis, the prevalent 

target of sprouted mossy fibers may be inhibitory basket cell interneurons, which would 

provide a homeostatic compensatory mechanism for restoration of inhibition (Cross & 

Cavazos, 2009). Nonetheless, because sprouted mossy fibers increase excitatory 

monosynaptic connections between granule cells, it is likely that the aberrant MFS 

contributes to the maintenance of chronic TLE (Santhakumar et al., 2005). However, it is a 

subject of contention whether the frequency and severity of spontaneous seizures in 

chronically epileptic animals are directly proportional to the extent of aberrant MFS. 

Reports from human TLE and some animal models of epilepsy suggest that there is no 

direct link between the total number of lifetime seizures and the density of MFS (Pitkanen 

et al., 2000). In contrast, reports from other animal models of TLE suggest increased 

seizure frequency with an increase in the density of MFS (Buckmaster and Dudek, 1997). 

Thus, studies in diverse animal models of TLE are needed to understand these issues fully. 
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Other proposed hypotheses are that new excitatory synapses are formed with dormant 

basket cells, although only the pyramidal-shaped basket cells have dendrites in the inner 

molecular layer (Freund et al., 1996), and that mossy fibers in the inner molecular layer 

arise from newly born granule cells (i.e., neurogenesis), rather than sprouting of existing 

granule cells (Parent et al., 1999).  

 

 

 

1.3 AIMS  

 

1.3.1 Overview 

 

The primary aim of this thesis was to explore unconventional strategies for clinical 

application of temporal lobe epilepsy. The heart of the work has been to develop new 

delivery systems to block or to enhance the BDNF signal, with the aim of exploring the 

usefulness of BDNF as a therapeutic target. These strategies include the injection in the 

pathologic brain area of HSV-1 based amplicon vectors capable to silence BDNF 

expression and the implantation in the epileptogenic area (the hippocampus) of an 

encapsulated cell biodelivery (ECB) system filled with cells capable of producing and 

secreting BDNF.  

The other aim of the thesis was to explore the implication of GABA in models of acquired 

and genetic epilepsy. First, we studied the alterations of GABA release in the ventral 

hippocampus of rats at different time points after status epilepticus. Second, we studied the 

loss of cortical GABA terminals in Unverricht-Lundborg disease, the most common 

progressive myoclonic epilepsy. 

The rationale for these studies is briefly summarized below. 

 

 

1.3.2 Implication of BDNF in epilepsy 

 

As described above, BDNF is a neurotrophic factor belonging to the neurotrophin family 

that exerts multiple effects in the brain including regulation of neurogenesis, of cell death, 

of plastic modification of synaptic contacts, of neuronal excitability. BDNF has been 
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reported to exert contrasting effects in epilepsy. For example, BDNF signal reduction has 

been reported by many to retard epileptogenesis (Kokaia et al., 1995; Binder et al., 1999; 

Xu et al., 2004; He et al., 2004) and, along the same line, BDNF exacerbates seizure 

activity in epileptic hippocampi in vitro (Scharfman, 1997; Scharfman et al., 1999). 

However, BDNF may also exert beneficial effects (Palma et al., 2005; Paradiso et al., 

2009). Thus, the involvement of BDNF in epilepsy has earned interest in scientific 

community because of this dual aspect: a pro- (“bad”  and/or an anti- (“good”  epileptic 

effect (Simonato et al., 2006). One mechanism that may underlie these contrasting effects 

may be the precise regulation of its local availability, because BDNF can be synthesized 

locally in distinct cellular domains and thereby induce different and maybe opposite effects 

at a very local scale (Chiaruttini et al., 2008).  

 

 

1.3.3 Implication of GABA in epilepsy 

 

The involvement of excitatory and inhibitory amino acids in the generation and spread of 

epileptic seizures has been well documented by many (see for example Ben-Ari, 2006; 

Werner and Covenas, 2011). The fundamental concept is that augmented activity of the 

excitatory amino acids glutamate and aspartate and impaired activity of the inhibitory 

amino acid GABA may be responsible for seizure generation. Less clear is how the 

impairment of GABA signaling is generated: loss of GABA neurons, reduction of GABA 

release, reduction of GABA effectiveness at its receptors (Sierra-Paredes and Sierra-

Marcuno, 2007). In any event, the role of GABA must be central, as many drugs 

potentiating GABA transmission are effective antiseizure agents (Treiman, 2001).  

Unfortunately, little is known on the dynamic changes in the GABAergic system in the 

natural course of TLE and in its progression towards pharmaco-resistance. In the epileptic 

tissue, seizures are not generated in a normal circuit but in a profoundly rewired network 

(Cossart et al., 2005), and only some aspects of the alterations specifically affecting the 

GABA system have been identified. For example, a substantial loss of glutamic acid 

decarboxylase (GAD) mRNA-containing (i.e. GABAergic) neurons has been found in the 

hilus of dentate gyrus (Obenaus et al., 1993) and in the stratum oriens of CA1 (Houser and 

Esclapez, 1996). A reduced number of specific GABAergic neurons, including 

parvalbumin (Drexel et al., 2011; Kuruba et al., 2011) and somatostatin-positive 
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interneurons (Paradiso et al., 2009; Sun et al., 2007), has been found in the epileptic 

hippocampus. Moreover, repetitive activation leads to profound post-synaptic GABAA 

receptor desensitization (run-down) in the human epileptic tissue (Ragozzino et al., 2005) 

and in chronically epileptic rats (Palma et al., 2007; Mazzuferi et al., 2010), indicating an 

impairment of post-synaptic GABA responses. 
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Chapter 2. BDNF 

 

 
2.1 NEUROTROPHIC FACTORS 

Involvement of neurotrophic factors (NTFs) in epilepsy have earned particular interest in 

the scientific community because of their dual aspect: a pro- (“bad”  and/or an anti- 

(“good”  epileptic effect. In fact, it seems that some NTFs favor epileptogenesis or 

progression of epilepsy (or both) whereas others oppose these processes. Still other NTFs 

can exert both positive and negative effects (Simonato et al, 2006). 

 

2.1.1 Neurotrophins 

In the brain, NTFs play a crucial role in the control of neuronal plasticity and survival. The 

best studied NTFs are a family of molecules termed neurotrophins, a group of structurally 

related polypeptide growth factors (Murray and Holmes, 2011). The first neurotrophin was 

identified by the Nobel-prize winner Rita Levi-Montalcini and named “the” ner e growth 

factor (NGF). To date, six member of the family have been identified: NGF, brain-derived 

neurotrophic factor (BDNF), and neurotrophins (NT) 3, 4/5, 6 and 7 (the latter found only 

in fish; Götz et al, 1994). Based on their three dimensional structure (Fig. 4), neurotrophins 

are classified as part of the cysteine knot superfamily due to a distinct structure, formed by 

cystein residues, involved in a double loop formed by two disulphide bonds penetrated by 

a third disulphide bond, known as the cysteine knot (McDonald et al., 1991). The N- and 

C-termini are highly variable in both sequence and structure. In particular, the high 

variability in the N-terminus region is thought to be essential for determining receptor 

binding specificity (Kullander et al., 1997).  
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Figure 4: Schematic representation of the neurotrophin molecule. Dashed blue lines represent the three 

disulfide bonds of the cysteine knot. The N terminus is disordered in the unbound structures and is shown by 

a dashed line (Butte et al., 2001). 

 

Neurotrophins activate one or more of the high-affinity tropomyosin-receptor kinase (Trk) 

receptors (Binder and Scharfman, 2004; McAllister et al., 1999) as well as the low-affinity 

p75 neurotrophin receptor (p75NTR; Curtis et al., 1995). The influence of neurotrophins 

spans from developmental neurobiology to neurodegenerative disorders.  In addition to 

their effects on neuronal cell survival, neurotrophins can also regulate axonal and dendritic 

growth and guidance, synaptic structure and connections, neurotransmitter release (Chao, 

2003), differentiation in the developing nervous system (Binder and Scharfman, 2004; 

McAllister et al., 1999), and synaptic plasticity. Levels of the different neurotrophins 

change in a predictable manner in relation to specific stages of embryonic development. It 

is well established that the overall levels of neurotrophins determine the balance between 

cell survival and apoptosis during development. In turn, neural activity has profound 

effects on the levels of neurotrophins (Chao, 2003).  

The different neurotrophins share approximately 50% amino acid homology and they are 

initially synthesized as precursors (pro-neurotrophins) of approximately 240-260 amino 

acids, which are cleaved to produce the mature proteins (Mowla et al., 2001). Pro-

neurotrophins are cleaved intracellularly by furin or pro-convertases at a highly conserved 

dibasic amino-acid cleavage site to release carboxy-terminal mature proteins. The mature 

proteins of 118-129 amino acids, which are about 12 kDa in size, form stable, non-covalent 

dimers, and are normally expressed at very low levels during development. The amino-

terminal half (or pro-domain) of the pro-neurotrophin is believed to be important for the 

proper folding and intracellular sorting of neurotrophins. Once synthesized, neurotrophins 
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can be sorted into either a constitutive or a regulated secretory pathway, and sorting seems 

to be regulated by efficiency of protease processing (Mowla et al., 1999). Different 

neurotrophins show binding specificity for particular receptors. NGF binds preferentially 

to tyrosine receptor kinase A (TrkA); BDNF and NT4 to TrkB; and neurotrophin 3 (NT3) 

to TrkC (Fig.5). 

 

 

Figure 5: Schematic models of Trk and p75 receptor activation (Chao, 2003). 

 

A selective binding to these different receptors permits the transduction of very different 

signals. It is not excluded a direct interaction that allows fine tuning and cross talk.  

Trks are transmembrane glycoproteins of approximately 140 kDa. Trk proteins have four 

domains: an intracellular tyrosine kinase domain, a single trans-membrane region, an 

extracellular neurotrophin-binding domain consisting of two cysteine-rich regions 

separated by a leucine-rich repeat, and two IgG-like domains near the plasma membrane. 

Neurotrophins bind to the second IgG-like domain, induce receptor dimerization and 

trigger tyrosine kinase activity (Roux et al., 2002). As stated above, each neurotrophin 

preferentially binds to a particular Trk: NGF activates TrkA, BDNF and NT-4/5 activate 

TrkB while NT-3 binds preferentially to TrkC. In addition, the interaction of neurotrophins 

with their receptors might be influenced by the splicing variants of Trk receptors (Bucci et 

al., 2014). Truncated forms of the TrkB and TrkC receptors, which lack the tyrosine kinase 

domain, are unable to dimerize and are thus considered to be dominant negative 

modulators of Trk signaling, in contrast with their full-length counterparts (Eide et al., 

1996).   
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When neurotrophins bind to Trk receptors, they lead to Trk dimerization and 

phosphorylation of specific tyrosine residues in the cytoplasmic domain, initiating 

signaling cascades. These phosphorylated tyrosine residues act as docking sites for adaptor 

proteins that propagate neurotrophin signals (Huang et al., 2003). Trk receptors can 

activate three major pathways: Ras, phosphatidylinositol 3-kinase (PI3K) and 

phospholipase C-γ1 (PLC-γ1) signal transduction pathways (Kaplan et al., 2000; Pawson et 

al., 2000; Fig.6). The Ras pathway induces the differentiation of neurons and neurite 

growth, while the second pathway mediates the survival functions of the neurotrophins. 

Finally, the phosphorylated tyrosine in the C terminus recruits phospholipase C-γ (PLCγ) 

which, in turn, catalyzes the cleavage of the substrate PIP2 to DAG and IP3, with DAG 

inducing activation of PKC and IP3 leading to release of Ca
2+

 from internal stores. The 

latter pathway seems to play an important role in neurotrophin-mediated neurotrophin 

release (Canossa et al., 1997) and in synaptic plasticity. It has also been reported that the 

PLC-γ track regulates the neuron-specific intermediate filament protein, peripherin (Loeb 

et al., 1994). 

 

These three signal transduction pathways are also activated by the binding of mature 

neurotrophins to heterodimers formed by one monomer of Trk and one of p75NTR (Fig.6). 
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Figure 6: Signal transduction pathways activated by the neurotrophins. 

 

p75NTR, a trans-membrane glycoprotein receptor of approximately 75 kDa, is a member 

of the tumor necrosis factor (TNF) receptor superfamily. Unlike the Trk receptors, 

p75NTR binds to all neurotrophins with approximately similar low affinity and to all pro-

neurotrophins with high affinity (Bucci et al., 2014). In the extra-cellular domain of 

p75NTR, the four cysteine repeats participate in binding to neurotrophins, while in the 

intracellular domain there is a type II death domain similar to those present in members of 

the TNF family (Lee et al., 2001). Binding to the p75NTR receptor has been shown to 

affect cell survival (Barret and Bartlett, 1994) and axonal outgrowth (Dechant and Barde, 

1997), and to result in activation of NF-κB (Carter et al., 1996).  p75NTR also interacts 

with a number of other receptors, and these interactions often modulate ligand binding as 

well as signaling and trafficking. p75NTR is frequently co-expressed and associated with 

Trk receptors and increases Trk’s affinity for neurotrophins while reducing ligand-induced 

Trk receptor ubiquitination, thus delaying Trk receptor internalization and degradation 

(Makkerh et al., 2005).  

Several variants of the p75NTR receptor have been identified, including soluble forms and 

truncated proteins lacking in the ability to bind neurotrophins (Dechant and Barde, 1997). 
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The precise role of these variants is unknown, but their presence may be functionally 

relevant. 

The complexity of this multiple ligand, multiple receptor signalling system is made evident 

by the often-opposing actions of the neurotrophins; for example, Trk receptors are widely 

reported to promote cell survival and enhancement of the efficacy of synaptic transmission, 

while strong evidence exists in support of a role for p75 in mediating cell death and in 

functional impairment, as will be described in subsequent sections (Hennigan et al., 2007). 

The expression of Trk receptors is dynamically regulated. In the CNS, TrkA is found at 

high density in basal forebrain cholinergic neurons (BFCNs). These neurons provide the 

major cholinergic input to the cerebral cortex and the hippocampus, and can be lost in 

neurodegenerative diseases like Alzheimer disease. TrkB is broadly expressed in the 

nervous system, which explains the multitude of actions it exerts (Lei et al., 2007). TrkC is 

typically expressed in the early phases of development (Tessarollo et al., 1993). The 

expression profile of P75NTR is also highly regulated, showing a down-regulation during 

postnatal development (Bothwell, 1995) and a rapid induction after injury, such as nerve 

lesion or seizures (Roux et al., 1999). This confirms the link between p75 receptor and cell 

death in pathological situations.  

 

2.1.1.1 BDNF  

BDNF is the most represented member of the neurotrophin family in the adult brain. The 

BDNF protein consists of a non-covalently linked homodimer and contains a signal 

peptide following the initiation codon and a pro-region containing an N-linked 

glycosylation site. It is initially produced as a proneurotrophin (pro-BDNF, ~30 kDa) that a 

protease cleaves to the mature form ( ~14kDa; Binder and Scharfman, 2004). In addition to 

the mature form, pro-BDNF is also biologically active.  

The BDNF gene in humans has been mapped to chromosome 11p but several BDNF 

transcripts can be generated in both humans and rodents (Liu et al., 2005, Liu et al., 2006).  

In the  DNF gene, se en exons encoding for the  ’ untranslated region ( ’UTR  are 

alternatively spliced to the eighth exon, which contains the coding sequence and the 

3’UTR, gi ing rise to ten different mRNA transcripts (two exons ha e internal splice 

sites . Furthermore, because the 3’UTR contains two termination sites, each of these ten 

transcripts can have either a short or a long untranslated tail, providing the final 
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astonishing number of 20 different transcripts that encode an identical protein. All these 

BDNF mRNAs are expressed in the brain, but at different levels and not in all neurons. In 

addition, although some BDNF transcripts are widely expressed in many neurons, some 

splice variants (for instance, the one containing exon 1) can be found only in restricted 

neuronal populations (Simonato et al., 2006).  

BDNF and its receptor trkB have a widespread distribution in the CNS (Merlio et al., 1993, 

Conner et al., 1997). Alternatively spliced forms of BDNF mRNA can remain in the cell 

soma or be targeted to the dendrites, where they can be locally translated into protein. It is 

thought that these dendritic forms have a crucial role in the potentiation of active synaptic 

contacts, whereas the somatic forms are implicated in cell survival and in differentiation of 

neuronal precursors (Fig. 7i). Moreover, mRNA translation yields the production of a pro-

BDNF that might or might not be transformed into the mature form intracellularly. This is 

very important because, as described above, the pro- and the mature forms are thought to 

exert contrasting effects (Fig. 7ii). Pro-BDNF and mature BDNF synthesized in the cell 

body can remain in the soma (and modulate survival and differentiation through autocrine 

or paracrine mechanisms) or can be targeted to the axons or dendrites (or both), 

modulating synaptic efficacy. These latter actions can be coordinated with those produced 

by dendritically synthesized BDNF (Fig. 7iii). Released pro-BDNF can also undergo a 

high-affinity interaction with p75NTR receptors or can be transformed into mature BDNF 

by extracellular proteases (Fig. 7iv). Mature BDNF can finally bind to receptors with high 

(TrkB) or low affinity (p75; Fig.7v). 

 

Figure 7: Mechanisms underlying possible effects of the BDNF (Simonato et al., 2006). See text for 

description. 
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2.1.2 BDNF and epilepsy  

As described above, the BDNF protein may exert contrasting effects depending on its 

different subcellular sites of action (soma, dendrites, axons). These contrasting effects may 

explain contradictory findings in the epilepsy field, for example that BDNF may favor or 

oppose epileptogenesis (Simonato et al., 2006). Thus the therapeutic potential of BDNF for 

epilepsy is still controversial (Koyama and Ikegaya, 2005; Kuramoto et al., 2011; 

Simonato et al., 2006). There are several reports supporting the notion that BDNF might 

aggravate epilepsy. Scharfman et al. (2002b) found that intrahippocampal infusion of 

BDNF provokes seizures in rats. Overexpression of BDNF in transgenic mice also 

increases excitability (Croll et al., 1999). Furthermore, intraventricular infusion of BDNF 

accelerates kindling development (Xu et al., 2004). On the other hand, other reports 

suggest that BDNF had antiepileptic effects. Infusion of BDNF delays the development of 

kindling according to other authors (Reibel et al., 2000a). Viral vector-mediated 

supplementation of BDNF attenuates epileptogenesis in the pilocarpine model (Paradiso et 

al., 2009).  

Taken together, the data presented depict a complex situation, in which BDNF seem to 

favor development and progression of epilepsy but, at the same time, might produce anti-

seizures effects in the chronically epileptic brain. How these effects are orchestrated 

remains unclear (Simonato et al., 2006). Because BDNF can produce functionally 

contrasting effects in the context of epilepsy, depending on the stage of progression of the 

disease, understand these mechanisms in depth could be instrumental for the development 

of new therapeutic strategies. One hypothesis could be that different splice variants, 

endowed with different cell site destinations and different functional effects, may be 

produced at different stages of the diseases (Chiaruttini et al., 2008). 
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2.2 BDNF DELIVERY STRATEGIES  

 

2.2.1 Generalities 

The development of effective NTF-based therapies has been hindered in large part by the 

inability to deliver them across the blood brain barrier (BBB) to the target site in a stable, 

controlled, and continuous manner (Rubin et al., 1999). Several approaches are under 

investigation for direct, local delivery of these compounds to the desired brain target, but 

each strategy has its own advantaged and disadvantages (Emerich et al., 2014).  

Direct brain infusion. A catheter implanted into the brain is attached to a pump to control 

the rate and timing of infusion. Surgery is invasive, pumps are prone to leakage, protein 

stability can be poor, immunological responses can block protein function, and distribution 

from the site of injection may be inadequate (Tatarewicz et al., 2007). 

Cell-based delivery. Cells engineered to produce trophic factors are injected into the brain, 

where they can migrate to increase diffusion of the desired factor into the brain tissue. This 

approach may permit anatomical integration between the host and transplanted cells and 

good cell viability and neurochemical diffusion may be achieved. However, migration is 

uncontrolled and cells cannot be retrieved (Huang et al, 2012). 

Biomaterial-based drug delivery. Molecules can be incorporated into injectable or 

implantable biomaterials to provide sustained local targeted delivery to the brain. These 

approaches do not currently provide long-term delivery, necessary for chronic CNS 

diseases (Orive et al, 2009). 

Gene therapy approaches. A viral vector containing the gene that expresses a factor is 

injected into the brain causing the local neurons to produce the factor. This approach can 

achieve localized factor production but there is no any way to regulate expression (Marks 

et al, 2010). 

Cell encapsulation. There are generally two categories for cell immunoisolation by 

encapsulation, micro- and macro-, each with some benefit and limitations (Emerich et 

Winn, 2004). Microencapsulation permits use of allo- and xeno-grafts without 

immunosuppression and thin wall and spherical shape are optimal for cell viability and 

neurochemical diffusion. These same capsules are, however, mechanically and chemically 
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fragile and cannot be retrieved once implanted within the brain parenchyma. 

Macrocapsules also permit the use of allo- and xeno-grafts without immunosuppression, 

provide good cell viability and neurochemical diffusion, have good mechanical stability, 

and can be retrieved if needed or desired. Multiple implant sites may be required for 

optimal benefits (Emerich et al, 2014). 

In the frame of this thesis, we exploited two distinct approaches to down-regulate and to 

up-regulate BDNF levels locally in the epileptic hippocampus. (1) A type of herpes 

simplex virus-1 (HSV-1) based vectors called amplicons (section 2.2.2) were used to host 

the BDNF gene in antisense, in order to down-regulate BDNF levels. (2) An encapsulated 

cell biodelivery device (section 2.2.3) was loaded with cells engineered to produce and 

secrete BDNF to up-regulate its levels. 

 

2.2.2 HSV-1 based amplicon vectors 

Viral-derived vectors are the most promising gene transfer tools due to the fact that viruses 

are naturally occurring molecular devices that have evolved to ensure targeted gene 

delivery and efficient expression in most cell types (Epstein, 2009). 

HSV-1-based vectors have the capacity to deliver up to 150 Kb of foreign DNA to the 

nucleus of most proliferating and quiescent mammalian cells, making this family of 

vectors a very interesting tool for gene transfer and gene therapy. The uniqueness of HSV-

1-based vectors stems from several properties: (1) the very large capacity to host foreign 

DNA; (2) the virus DNA does not integrate into the host cell DNA, implicating no risk of 

insertional mutagenesis; (3) the complexity of the virus genome, which contains 

approximately 40 genes that are not essential for virus replication and can therefore be 

deleted without disturbing virus production in cultured cells; (4) the capacity of HSV-1 to 

infect neurons and the ability to trans-synaptically spread from neuron to neuron in both 

anterograde and retrograde directions; (5) the capacity to establish a latent infections in 

neurons (Epstein, 2009). 

Three different types of vectors can be derived from HSV-1 to exploit one or more of these 

properties (Fig. 8). Recombinant attenuated viruses are replication-competent vectors 

carrying mutations that restrict spread and lytic viral replication to cancer cells without 

causing major toxicity to the healthy tissues. Defective, replication-incompetent non-

pathogenic recombinant vectors lack one or more genes essential for replication, but retain 
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many advantageous features of wild-type HSV-1, like the ability to express transgenes 

after having established latent infections in central and peripheral neurons. Amplicon 

vectors are defective, helper-dependent vectors that carry no viral genes and take 

advantage of the large carrier capacity of the virus particle to deliver long or multiple 

transgenic sequences (Epstein, 2005). 

 

 

Figure 8: The three types of HSV-1-based vectors (Esptein, 2009). 

 

Amplicon vectors (Spaete and Frenkel, 1982) are HSV-1 particles identical to wild- type 

HSV-1 from the structural, immunological and host-range points of view, but which carry 

a concatemeric form of a DNA plasmid, named the amplicon plasmid, instead of the viral 

genome (Epstein, 2005). An amplicon plasmid (Fig.9A) is a standard Escherichia coli 

plasmid carrying one origin of virus replication (Ori-S) and one packaging signal (pac or 

‘a’  from H V-1, in addition to the transgenic sequences of interest (Spaete & Frenkel 

1985, Deiss et al., 1986).  
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Figure 9: Amplicon plasmid and amplicon vectors (Epstein, 2009) 

 

One major advantage of amplicons as gene transfer tools is the fact that they carry no virus 

genes and consequently do not induce synthesis of virus proteins. Therefore, these vectors 

are non-toxic for the infected cells and non-pathogenic for the transduced organisms. 

Furthermore, the absence of viral genes in the amplicon genome strongly reduces the risk 

of reactivation, complementation or recombination with latent or resident HSV-1 genomes. 

Amplicons are quite versatile tools due to the fact that, during their production, the genome 

replicates, like HSV-1, via a mono-directional, rolling circle-like mechanism, generating 

long concatemers composed of tandem repeats of the amplicon plasmid (Boehmer & 

Lehman 1997; Fig. 9B). Since infectious HSV-1 particles will always package 

approximately 150 Kb DNA (the size of the virus genome), the number of repeats that a 

particular amplicon vector can carry and deliver depends on the size of the original 

amplicon plasmid (Kwong & Frenkel 1984). Therefore, an amplicon plasmid of around 5 

Kb will be repeated approximately 30 times in the amplicon vector, while a very large 

amplicon plasmid, carrying a 150 Kb genomic locus, will originate amplicon vectors 

carrying a single repeat of this sequence. This is important especially to get an efficient 

knock-down of the expression of the target gene. A second benefit that arises from the lack 

of viral genes in the amplicon vector is that most of the 150 Kb capacity of HSV-1 can be 

used to accommodate very large pieces of foreign DNA.  
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All of these features make the amplicon vectors one of the most powerful, interesting and 

versatile gene delivery platforms.  

 

2.2.3 Encapsulated cell biodelivery (ECB) device 

Encapsulated cell biodelivery (ECB) is an attractive alternative to more direct gene therapy 

methods and combines the potency of gene therapy with an implantable and retrievable 

device. This technology targets diseased neurons with therapeutic biological substances 

continuously produces and secreted by genetically engineered human cells enclosed within 

the implant (Emerich et al., 2014). Within the tip of the implant, a stably genetically 

engineered human cell line grows on a polymer scaffold behind a semipermeable hollow 

fiber membrane and continuously secretes a biologically active amount of the therapeutic 

protein directly into a localized region of the brain (Lindvall et Wahlberg 2008). ECB 

devices filled with genetically modified human cells to release gene products into the host 

tissue have the advantage of being a reversible treatment: the ECB devices can be removed 

from the brain with a relatively simple procedure and thereby terminate their effect. The 

cells in the ECB devices can have long-term viability when implanted into brain because 

the nutrients from the surrounding host tissue can penetrate the semipermeable membrane 

of the device while the gene products are released into the host tissue. Another advantage 

of ECB devices is that the encapsulated cells do not alter host cells or integrate into the 

host brain. Furthermore, the semipermeable membrane isolates the cells in the device from 

immune reactions against them in the host brain. Therefore, there is no need for 

immunosuppressant drugs (Nikitidou et al, 2013).  

The active portion of the device consists of a 7 mm long semipermeable   polyethersulfone 

(PES) hollow fiber membrane with an inner diameter of 500 µm filled with a poly vinyl 

alcohol (PVA) cylindrical matrix, which serves as support for the cells. The genetically 

engineered human cell line grows on this matrix (Fig. 10). 

The technology is capable of making practically any cell derived therapeutic, including 

recombinant growth factors, peptides, and antibodies.  The encapsulated cells provide 

long-term factor secretion from the implanted device (Nikitidou et al, 2013).                                
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Figure 10: Schematic representation of ECB device (Lindvall andWahlberg, 2008). 
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Abstract 

Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-

epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced 

tools designed to block or to enhance the BDNF signal. The aim of this study was to 

develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 

(HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb 

constituted of concatameric repetitions of an expression cassette, enabling the expression 

of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-

pathogenic and have been successfully employed in the past for gene delivery into the 

brain of living animals. Amplicon vectors are thus a relevant and reliable choice for 

expressing a silencing cassette, which, in multiple copies, is expected to lead to an 

efficient knock-down of the target gene expression. Two BDNF silencing strategies have 

been developed. The first, antisense, has been chosen to target and degrade the 

cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent 

transcription technology, has been chosen to repress transcription at the BDNF gene. Both 

these amplicon vectors proved to be effective in down-regulating BDNF expression in 

vitro, in BDNF-expressing mesoangioblasts cells. However, only the antisense strategy 

was effective in vivo, after inoculation in the hippocampus in the pilocarpine model of 

temporal lobe epilepsy, in which BDNF mRNA levels are strongly increased. 

Interestingly, the knock down of BDNF levels induced with BDNF-antisense was 

sufficient to produce significant behavioral effects, in spite of the fact that it was produced 

in a part of a single hippocampus and not in the entire epileptogenic area. In conclusion, 

this study demonstrates a reliable effect of amplicon vectors in knocking down gene 

expression in vitro and in vivo. Therefore, this approach may find broad applications in 

neurobiological studies. 
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Introduction 

 

The neurotrophin brain-derived neurotrophic factor (BDNF) is widely expressed in the 

brain, where it exerts a key role in neuronal survival, differentiation, and plasticity (Cohen-

Cory et al., 2010; Yoshii and Constantine- Paton, 2010). BDNF is therefore viewed as a 

promising therapeutic target for CNS-related disorders, including epilepsy (Simonato et 

al., 2006; Simonato and Zucchini, 2010). However, an important issue that has limited 

developments in the direction of bringing therapies that target the BDNF system to the 

clinics has been the difficulty in delivering it to a specific and restricted brain region and 

thereby locally modulating its levels. Here, we present novel tools to pursue this aim: 

amplicon vectors derived from Herpes simplex  virus type 1 (HSV-1) capable to down-

regulate BDNF expression in vitro and in vivo.  

HSV-1 amplicon vectors hold considerable promise as gene-transfer vehicles 

because of some unique features: (i) the very large capacity to host foreign DNA, (ii) the 

inability to integrate viral DNA into host chromosomes, that reduces the risk of insertional 

mutagenesis, (iii) the capacity to infect nervous system cells (Epstein et al., 2009). Finally, 

another attractive feature of amplicon vectors is that they carry and deliver a variable 

number of repeats of the transgene (Kwong & Frenkel 1984), which makes then 

particularly suited to get an efficient knock-down of a target gene through expression of 

multiple copies of the silencing transgene. 

Two silencing strategies have been pursued in the frame of this study. The first, 

called “antisense”, has been chosen to target and degrade the cytoplasmic mRNA pool of 

BDNF via an RNA interference mechanism (Wang and Barr, 2005), whereas the second, 

based on the “con ergent transcription technology” (Tran et al.,    3 , has been chosen to 

repress the BDNF gene through chromatin remodeling.  
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Double-stranded RNAs (dsRNAs) induce a potent and specific post-transcriptional 

gene silencing by triggering the degradation of homologous target mRNAs. This form of 

gene suppression was first observed in the nematode worm Caenorhabditis elegans and 

termed RNA interference or RNAi (Paul et al., 2002). RNAi is therefore a biological 

process in which RNA molecules inhibit gene expression by causing the destruction of 

specific mRNA molecules in sequence-specific manner. Similarly, experimental 

introduction of antisense RNA into cells can be used in certain biological systems to 

interfere with the function of an endogenous gene (Fire et al., 1998).  

The convergent transcription approach is based on the co-expression of sense and 

antisense RNA strands from independent expression cassettes or a divergent cassette in 

which a full-length cDNA sequence is positioned between two identical promoters (Wang 

et al., 2003; Lee et al., 2002), such that independent transcription from each promoter 

produces a pool of sense and antisense RNAs capable of forming long dsRNAs and 

undergoing processing to the effector siRNAs (Tran et al., 2003). The use of convergent 

transcription from opposing promoters to induce RNAi-mediated gene inhibition has been 

reported in trypanosomes and Drosophila (Shi et al., 2000; Giordano et al., 2002), as well 

as in yeast and mammalian cells, through a transcriptional gene silencing mechanism 

(Gullerova and Proudfoot, 2012). It has been predicted that the expression of up to 8% of 

human genes may be influenced by antisense RNA or antisense transcription (Chao-Chung 

et al., 2003; Shendure et al., 2002), suggesting that convergent transcription does occur 

with high frequency in the human genome (Tran et al., 2003). 

The silencing effect of amplicon vectors has been assessed by examining their 

efficiency in down-regulating BDNF levels in vitro, in BDNF-expressing mesoangioblast 

cells, and in vivo, using a rat model of temporal lobe epilepsy (TLE) in which BDNF 

mRNA levels are strongly increased in the hippocampus. 
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Materials and Methods 

 

Amplicon vectors 

Amplicon plasmids. For construction of the plasmid containing antisense BDNF (plasmid 

pAm2-BDNF-antisense-GFP), the XbaI-BamHI fragment containing the cytomegalovirus 

(CMV) promoter was cut from the pMA-RQ-CMV plasmid and cloned in the XbaI-

BamHI sites of pAm-GFP, a plasmid expressing the green fluorescent protein (GFP) under 

control of the ICP22 promoter, to obtain the pAm-GFP-CMV plasmid. The BDNF 

fragment was cut from the plasmid pBSK-BDNF using EcoRI and cloned in the polylinker 

NheI blunt-end site of pAm2-GFP-CMV, flanked by the CMV promoter and a SV40 

polyadenylation signal (Fig. 1A). To discriminate between cloning in sense and antisense 

orientation, 12 starter cultures, obtained after transformation of E. Coli high efficiency 

transformation competent bacteria, were digested with ScaI, PvuII and PstI, and run on 

agarose gel electrophoresis.  

 For construction of the BDNF convergent transcription plasmid (pAm-CT-BDNF-

GFP), a new CMV fragment (HindIII/PmeI) was subcloned into the HindIII/EcoRV site of 

pAm-GFP-CMV, in the opposite direction compared to the other CMV promoter, 

obtaining the pAm-CT-GFP plasmid. The pAm-CT-BDNF-GFP plasmid was then 

obtained by cloning the EcoRI sticky-end in the EcoRV-digested pAm-CT-GFP plasmid, 

in order to put the BDNF sequence between the two CMV promoters (Fig. 1B). The 

pAm2-GFP plasmid was used as control amplicon (Fig. 1C). 

 Cell lines and virus. The cell lines employed in this study were the following: 

genetically modified mesoangioblasts producing BDNF and GFP (MABs-BDNF; Su et al., 
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2012), Gli36 cells (a human glioblastoma cell line), Vero cells (African green monkey 

kidney epithelial cell line), Vero 4.42 cells (that express the HSV-1 immediate early genes 

ICP4, ICP27 and ICP42 required for helper virus replication) and Vero cells expressing the 

ICP4 and Cre genes. All cell lines were propagated in Dulbecco’s minimum essential 

medium (DMEM, Lonza, Switzerland) supplemented with 10% fetal bovine serum (FBS, 

Invitrogen Gibco, USA), 100 U/ml penicillin and 100 mg/ml streptomycin (Invitrogen). 

Cells were maintained at 37°C in a humidified incubator containing 5% CO2. 

 Amplicon production. Amplicon vectors were produced by transfecting 10 µg of 

each amplicon plasmid (pAm2-BDNF-antisense-GFP, pAm-CT-BDNF-GFP and pAm2-

GFP) into Vero 4.42 cells using the jetPRIME reagent (Polyplus-transfection, France). 

Cells were superinfected the following day with the LaL J helper virus at a multiplicity of 

infection (MOI) of 0.5 plaque forming units (pfu)/cell in medium M199 (Gibco) 

supplemented with 1% FBS and 1% penicillin/streptomycin. Three days later, cells were 

harvested and amplicon viral particles were extracted by several rounds of freeze/thaw and 

sonication. To calculate purity of the production, amplicon and helper particles were 

titrated to obtain transduction units (tu)/ml and pfu/ml. Several successive rounds of 

infections and productions were performed to obtain high quantity of amplicon particles 

and a final infection-production step was performed on a Vero cell line expressing the 

ICP4 and Cre genes to obtain a final high purity working stock.  

 Cell infection. Confluent MABs-BDNF cells seeded in 6-well plates were infected 

with the GFP-control, BDNF-antisense or CT-BDNF amplicon at MOI 5 or 20, and 

maintained at 34°C in DMEM with 10% FBS for 24, 48, 72 or 96 h. At each time point, 

cells were washed twice in PBS, then scraped and resuspended in 50 L of lysis buffer 

(50 mM Tris-HCL pH 8, 150 mM NaCl, 1% NP-40) containing a protease inhibitor 

cocktail (Roche, Germany). The protein content of the lysates was evaluated by the 
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Bradford method using the Bio-Rad protein assay kit (Bio-Rad Laboratories, CA, USA). 

 

Animals 

Male Sprague-Dawley rats (240-260 g; Harlan, Italy) were used for in vivo experiments. 

They were housed under standard conditions: constant temperature (22-24ºC) and 

humidity (55- 65%), 12 h light/dark cycle, free access to food and water. Experiments 

involving animals were conducted in accordance with European Community (EU 

Directive 2010/63/EU), national and local laws and polices (authorization: D.M. 83/2009-

B and D.M. 246/2012-B). All efforts were made to minimize animal suffering.  

Amplicon infusion. Under ketamine and xylazine (43 and 7 mg/kg, i.p.) anesthesia, 

a glass needle connected to a perfusion pump was implanted in the right dorsal 

hippocampus using a stereotaxic apparatus for small animals, with the following 

coordinates: A −1.7;   −1. ; D +3.7 (Pellegrino and Cushman, 1979 . Anesthesia was then 

maintained using isofluorane (1.4% in air, 1.2 ml/min). Two different doses of amplicon 

vector, 1x10
4
 tu and 5x10

5
 tu, were injected in a volume of 1 ul at a flow rate of 0.1 

ul/min. Amplicon vectors (GFP-control, BDNF-antisense and CT-BDNF) were injected 5 

days before pilocarpine administration.  

Status Epilepticus. Pilocarpine was administered i.p. (340mg/kg), 30 min after a 

single injection of methyl-scopolamine (1 mg/kg, s.c., to prevent peripheral effects of 

pilocarpine , and the rats’ beha ior was monitored for se eral hours thereafter, using the 

Racine’s scale. Within the first hour after injection, all animals developed seizures 

evolving into recurrent generalized convulsions (status epilepticus, SE). SE was 

interrupted 3 h after onset by administration of diazepam (10 mg/kg i.p.) and rats were 

killed by decapitation under light diethyl-ether anesthesia at three different time points: 3h, 

6h and 24h after onset of SE. Brains were rapidly frozen in 2-methylbutane. 
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Histology  

Rats were killed under deep isofluorane anesthesia. Brains were removed, immersed in 

10% formalin for 48 h and then paraffin embedded. Serial section of 6 µm were cut with a 

Microtome (Leica RM2125RT, Germany). In all experiments, adjacent sections were used 

for different staining procedures. 

Immunohistochemistry. Sections were dewaxed and rehydratated as described 

above. All antigens were unmasked using a commercially available kit (Unmasker, 

Diapath , according to the manufacturer’s instructions. After washing in phosphate 

buffered saline (PBS), sections were incubated with Triton x-100 (Sigma; 0.3% in PBS 1×, 

room temperature, 10 min), washed twice in PBS 1×, and incubated with 5% BSA and 5% 

serum of the species in which the secondary antibody was produced for 30 min. They were 

incubated overnight at 4°C in humid atmosphere with a primary antibody specific for 

different cellular markers: GFAP (mouse polyclonal, Sigma) 1:100; IBA-1 (rabbit 

monoclonal, AbCam MA, USA) 1:200, GFP (rabbit polyclonal, Santa Cruz, Texas) 1:50. 

After 5-min rinses in PBS, sections were incubated with Triton (as above, 30 min), washed 

in PBS and incubated with a goat anti-mouse Alexa 594 secondary antibody (1:250, 

Invitrogen) for mouse primary antibodies, or with a goat anti-rabbit, Alexa 488 secondary 

antibody (1:250; Invitrogen) for rabbit primary antibodies, at room temperature for 3.5 

hours. NeuroTrace (1:150) was included in the secondary antibody incubation. After 

staining, sections were washed in PBS, counterstained with 0.0001% DAPI for 15 min, 

and washed again. Coverslips were mounted using anti fading, water based Gel/Mount 

(Sigma). 
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Western Blot  

Tissue sample extraction. The left and right dorsal hippocampi were dissected and 

processed to extract total RNA, genomic DNA and proteins using the RNeasy Lipid Tissue 

Mini kit (Qiagen, Germany). RNA extraction was performed following the manufacturer 

instructions. Proteins and genomic DNA were isolated after RNA extraction using the 

phenol phase. Briefly, genomic DNA was precipitated from the phenol phase with ethanol 

and pellets were washed with sodium citrate ethanol solution and stored in 75% ethanol at 

-80°C. After DNA precipitation, proteins were isolated from the supernatant ethanol-

phenol by isopropanol precipitation. Proteins were then washed several times with 0.3 M 

guanidine HCl-95% ethanol solution before being air-dried and rehydrated in a Laemmli-

like buffer (62 mM Tris-HCl pH 6.8; 2% SDS; 10% glycerol; 12.5 mM EDTA; 50 mM 

DTT; -mercaptoethanol; protease inhibitor cocktail) by a 20 min incubation at 95°C and 

3 rounds of 30 sec sonication. The protein content of the lysates was evaluated by the 

Bradford method using the Bio-Rad protein assay kit (Bio-Rad Laboratories). 

 Western Blot analysis and quantification. Infected MABs and dissected dorsal 

hippocampi extracts, corresponding to 20 and 30 µg total proteins respectively, were 

analyzed by Western blotting. Each sample was diluted in SDS-gel loading buffer, boiled 

for 10 min and centrifuged before loading. Then they were electrophoretically separated 

onto a 12% SDS-polyacrylamide gel and transferred to nitrocellulose membranes. After 

blocking in a buffer (PBS-Tween20) containing 5% dried milk, membranes were 

incubated with the primary antibody in a buffer containing 2.5% dried milk overnight at 

4°C. After three washings, incubations were performed with the secondary antibody in 

buffer/dried milk at room temperature for 1 h. The BDNF protein was revealed using a 

rabbit anti-BDNF monoclonal antibody (AbCam, dilution 1:1000); GFP using a mouse 

anti-GFP monoclonal antibody (Roche; 1:1000); actin using a rabbit anti-actin monoclonal 
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antibody (Sigma, MO, USA; 1:1000). Mouse monoclonal antibodies were revealed using a 

goat anti-mouse horseradish peroxidase (HRP)-conjugated secondary antibody (Dako, 

Denmark; dilution 1:1000) and rabbit monoclonal antibodies by a swine anti-rabbit HRP-

conjugated secondary antibody (Dako; dilution 1:3000). The immunocomplexes were 

detected using the ECL Western blot detection kit (GE Healthcare, NJ, USA) and 

ChemiDoc XRS (Bio-rad) for electronic blot pictures. Quantification was performed 

using the Image Lab software (Biorad). 

  

 

Results 

 

HSV-1 amplicon plasmid generation 

We developed two silencing strategies to down-regulate BDNF protein level. The first 

strategy, called “antisense”, target and degrade the cytoplasmic mRNA pool of  DNF. For 

this strategy, the rat BDNF cDNA is expressed in a head to tail, complementary manner to 

the endogenous BDNF mRNA, in order to induce its degradation through the mechanism 

of RNA interference (Fig. 1A). The amplicon plasmid (pAM2-BDNF-antisense-GFP) and 

vector (BDNF-antisense-GFP) we generated express both the mRNA for eGFP and the 

antisense BDNF mRNA. The second strategy, based on the Convergent Transcription (CT) 

technology, repress the BDNF gene at transcription level. In this vector (CT-BDNF-GFP), 

the BDNF cDNA is inserted between two cytomegalovirus (CMV) promoters oriented in 

opposing directions (Fig. 1B), and the resulting convergent transcription elicits down-

regulation of the BDNF gene transcription through chromatin remodeling associated with 

epigenetic silencing marks (Gullerova et al., 2012). We also generated a control amplicon 

plasmid and vector (named GFP amplicon vector), which possessed only the GFP reporter 
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cassette (Fig. 1C). Following the cloning steps, large purified stocks of these 3 amplicon 

vectors were produced. The titer of each stock was 9.4×10
8
 t.u./ml, 1.05×10

9
 t.u./ml and 

1.05×10
7
 t.u./ml, respectively for BDNF-antisense-GFP, CT-BDNF-GFP and GFP 

amplicon vectors. The BDNF-antisense-GFP and CT-BDNF-GFP amplicon vectors 

contain more than 20 copies of the silencing cassette. In principle, hosting many copies of 

the silencing cassette is an optimal choice for efficient knock-down of the expression of 

the target gene. As described, we produced each amplicon vectors with a GFP expression 

cassette for monitoring the infection in cells and animals. 

 

In vitro validation 

The next step was to evaluate the effects of each amplicon vectors against BDNF in vitro. 

In order to study their efficiency to repress the BDNF expression, we infected BDNF-

expressing mesoangioblast (MABs) cells with BDNF-antisense-GFP or CT-BDNF-GFP 

amplicon vectors at a multiplicity of infection (MOI) of 5. Controls cells were infected 

with the GFP amplicon vector or not infected. The infection of cells with BDNF-antisense-

GFP or CT-BDNF-GFP amplicon vectors was confirmed by GFP fluorescence, as shown 

in Fig. 2A and Fig. 2E. We examined pro-BDNF protein levels for 96 hours after infection 

using western blot analysis. MABs cells infected with the BDNF-antisense-GFP amplicon 

vector displayed lower pro-BDNF levels beginning 24 h post infection as compared with 

cells not infected or cells infected with the GFP amplicon control vector. The decrease of 

pro-BDNF protein levels was even more prominent at the following time-points, and 

became essentially complete 94 h after the infection (Fig. 2D). The same experiment was 

performed using the CT-BDNF-GFP amplicon vector and, again, we observed a nearly 

complete cancellation of pro-BDNF expression from MAB cells at 96 h after the injection 

(Fig. 2G). However, time-course differed in that the decline in pro-BDNF protein levels 
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occurred more slowly than with BDNF-antisense-GFP (Fig. 2H). These results indicate 

that, in vitro, both amplicon vector, BDNF-antisense-GFP and CT-BDNF-GFP, produce a 

highly efficient knock-down of pro-BDNF levels. Thus, both vectors were elected for in 

vivo testing.  

 

In vivo validation 

We first explored the toxicity of the amplicon vectors after direct injection in the rat 

hippocampus. To this aim, we injected 5×10
5
 t.u. of either vector in a volume of 1 l in 

the right hippocampus dentate gyrus area of naïve rats and, 5 days after injection, 

examined gliosis, microcytosis and neuronal loss using GFAP, IBA-1 

immunohistochemestry and neurotrace staining, respectively. Administration of the 

BDNF-antisense-GFP or of the CT-BDNF-GFP amplicon vectors did not alter the 

morphology of the hippocampus (Fig. 3). The density of GFAP-positive cells in the 

injected hippocampus compared was similar to that of the non-injected contralateral 

hippocampus, i.e. there was no indication of reactive astrocytosis (Fig. 3). Similar to 

GFAP cells, the density of IBA-1 positive cells was comparable in both the ipsilateral and 

the contralateral hippocampus, indicating absence of reactive microgliosis (Fig. 3). Finally, 

neuronal density, as measuerd using the NeuroTrace staining, was also not altered after 

injection of either amplicon vector (Fig. 3). Taken together, these data suggest that 

treatment with amplicon vectors do not induce an overt damage when directly injected in 

the brain. 

Next, we tested the biological efficiency for down-regulation of BDNF protein 

levels. To this aim, we decided employ the pilocarpine model. Intra-peritoneal injection of 

pilocarpine in rodents provokes generalized seizures leading to a status epilepticus (SE), 

which drives a massive increase in BDNF levels in the hippocampus (Binder et al., 2001). 
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To test the efficiency of amplicon vectors, we injected them in the right dorsal 

hippocampus, 5 days before pilocarpine administration, and animals were then killed at 3 

different time points: 3 h (peak of pilocarpine-induced increase in BDNF mRNA levels; 

Binder et al., 2001; Mudò et al., 1996), 6 h (peak of pilocarpine-induced increase in BDNF 

protein levels; Elmer et al., 1998) and 24 h after onset of SE. Rats were injected either with 

the control GFP, the BDNF-antisense-GFP or the CT-BDNF-GFP vector at 2 doses, 1×10
4
 

or 5×10
5
 t.u. Amplicon vector injections into the dorsal hippocampus produced expression 

of GFP in infected cells (Fig. 4A for BDNF-antisense-GFP) at the site of injection, 

whereas a negligible number of positive cells was observed contralateral to injection under 

this experimental conditions. We therefore decided to use the contralateral dorsal 

hippocampus as an internal control. Pro-BDNF expression was measured by western 

blotting and the signal was normalized to -actin. The control GFP amplicon vector did 

not produce any effect. The low dose (1×10
4
 t.u.) of the BDNF-antisense-GFP amplicon 

vector exhibited a robust reduction of pro-BDNF protein levels at all time points (Fig. 4B). 

This effect appeared to be dose-dependent, because the high dose let to an even greater 

effect (data not shown). Different from the antisense strategy, only a small, non significant 

reduction (about 10%) in pro-BDNF protein levels was observed in low dose (1×10
4
 t.u.) 

CT-BDNF-GFP injected hippocampi (Fig. 4B), even if GFP immunofluorescence 

confirmed the infection. The high dose of vector also proved ineffective in knocking down 

pro-BDNF levels (data not shown). Thus, the CT-BDNF-GFP amplicon vector cannot 

induce heterochromatin to a sufficient level to prevent transactivation in vivo, whereas the 

BDNF-antisense amplicon vector proves effective in knocking down efficiently pro-BDNF 

protein levels.  

The model system we employed for analysis of BDNF knock down permits an 

initial evaluation of the behavioral implications. Knocking down BDNF overexpression 
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only in part of one hippocampus cannot be expected to produce robust behavioral effects 

in a model in which a pro-convulsant agent is administered systemically. However, we 

observed that animals treated with BDNF-antisense-GFP entered convulsive SE later then 

those treated with the control GFP amplicon vector (Fig. 5A). Moreover, whereas the 

infusion of both BDNF-antisense-GFP and CT-BDNF-GFP amplicon vectors per se did 

not produce over signs of behavioral toxicity, because all animals were apparently well 

after the surgery and in the following days, the percentage of animals that died after 

pilocarpine administration was higher in the high dose BDNF-antisense group (Fig. 5B). 

Thus, even knocking down BDNF expression in a portion of a single hippocampus seems 

sufficient to elicit significant behavioral effects.  

 

 

Discussion 

 

In this study, we generated two conceptually different amplicon vectors to locally knock 

down the levels of BDNF: a classical antisense approach and an approach based on 

convergent transcription. The main finding was that, whereas both approaches proved 

highly efficient in vitro, only the former (antisense) provided robust results in the in vivo 

settings of status epilepticus-induced BDNF expression in the hippocampus.  

HSV-1-based amplicon particles were generated following a recently described 

method that produces relatively high titers of vector stocks with reduced amounts of helper 

virus (Epstein, 2009). The need of helper is a major limitation of the amplicon approach, 

and is therefore very important to reduce it (ideally, to completely eliminate it). The 

advantages of the amplicon approach are however significant. In particular, worth of note 

is the fact that the amplicon genome does not express HSV-1 replication functions, 
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offering the opportunity to package very large transgenic sequences: it is possible to 

transduce more than 110 kb of foreign DNA in a single particle (Epstein, 2005). Since this 

amount of space must all be filled in the helper capsid, small transgenes are repeated in 

concatameters, with a number of repeats that will depend on the size of the original 

amplicon plasmid (Kwong & Frenkel, 1984; Boehmer & Lehman 1997). In the present 

study, the produced BDNF-antisense-GFP and CT-BDNF-GFP amplicon vectors 

contained more than 20 copies of the BDNF silencing cassette. Many copies of the BDNF 

cassette can be expected to ensure a particularly efficient knock down of the protein of 

interest.  

HSV-1 amplicon vectors also share many useful features of the HSV-1 parent virus 

(Wang and Fraefel, 2002), like the ability to infect a broad range of dividing and non-

dividing host cells, including neurons. HSV amplicon vectors allow efficient infection of 

many neuronal types, with transgene expression over an extended period of time without 

demonstrable side effects (Oehmig et al., 2004).  

We compared two conceptually different strategies for knocking down BDNF gene 

expression using amplicon vectors, the classical antisense strategy and the convergent 

transcription strategy. The former is based on the technique of RNA interference (RNAi) 

that was first discovered in Caenorhabditis elegans (Wang and Barr, 2005). RNAi is a gene 

silencing mechanism in which a double-stranded RNA (dsRNA) molecule is generated 

that directs the specific degradation of the corresponding target mRNA (Kavi et al., 2008). 

The BDNF-antisense-GFP amplicon targets and degrades the cytoplasmic mRNA pool of 

BDNF through the mechanism of RNA interference: expression of the transgene leads to 

formation of sense RNA-antisense RNA hybrids in the cytosol and thereby degrades 

and/or prevents translation of pro-BDNF mRNA. The second strategy that we tested is 

based on the convergent transcription (CT) technology (Tran et al., 2003) that acts through 
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nuclear transcriptional gene silencing. In our experimental settings, expression of the 

transgene leads to repression of BDNF gene transcription at the nuclear level. In vitro 

experiments demonstrated a reliable effect of both amplicon vectors in knocking down 

pro-BDNF levels. Thus, both silencing amplicon vectors were elected for in vivo studies.  

To study the effects of amplicon in vivo, we decided to employ a status epilepticus 

model. Epileptogenic stimuli are known to affect the expression of BDNF transcripts in the 

hippocampus (Timmusk et al., 1993; Chiaruttini et al., 2008). Specifically, pilocarpine 

leads to increased BDNF mRNA and protein levels peaking respectively 3 and 6 h after 

onset of status epilepticus (Tongiorgi et al., 2004, Elmer et al., 1998). It is thought that 

increased BDNF levels play a role in the transformation of a normal brain in epileptic, i.e. 

in a brain that can spontaneously generate seizures. Indeed, spontaneous seizures begin to 

occur a few days or weeks after pilocarpine status epilepticus, and in this latency period is 

associated with plastic changes in the epileptogenic area, including increased 

neurogenesis, cell death, plastic modifications of synaptic contacts (Pitkanen & Sultula, 

2002). BDNF exerts relevant effects upon all of these phenomena. However, it is still 

unclear what the implications of its increased biosynthesis could be. Strategies to down-

regulate the BDNF signal have been reported by many to retard epileptogenesis (Kokaia et 

al., 1995; Binder et al., 1999; He et al., 2004; Liu et al., 2013), and bath-applied BDNF 

exacerbates seizure activity in the epileptic hippocampus in vitro (Scharfman, 1997; 

Scharfman et al., 1999). In contrast, the combined supplementation of BDNF and 

fibroblast growth factor 2 (FGF-2) has been reported to attenuate cellular alterations 

associated with epileptogenesis and to highly significantly reduce the frequency and 

severity of spontaneous recurrent seizures (Paradiso et al., 2009; Bovolenta et al., 2010; 

Paradiso et al., 2011). To dissect out these mechanisms there is a need to develop tools to 

locally modulate the BDNF signal in vivo, in particular to block it.  
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Therefore, we decided to test the ability of our vectors to down-regulate BDNF 

expression in the pilocarpine model system. First, in keeping with previous reports 

(Oehmig et al., 2004), we found that in vivo injection of amplicon vectors did not cause 

obvious toxic effects (cell death) nor significant activation of astrocytes or microglia. 

Second, and more important, we found that the silencing activity mediated by the BDNF-

antisense-GFP amplicon vector was highly significant, even at relatively low doses, 

whereas the CT-BDNF-GFP amplicon vector did not produce significant reductions in 

pro-BDNF levels. Why the efficiency of in vivo silencing was so different between the two 

strategies, in spite of the fact that both were equally effective in vitro, is difficult to 

understand. One hypothesis may be that competition with the pilocarpine-induced 

transactivation of the BDNF gene (the CT-BDNF strategy) is harder than regulation of the 

cytosolic BDNF mRNA pool (with the BDNF-antisense strategy).  

Importantly, the knock down of BDNF levels induced with BDNF-antisense-GFP 

was sufficient to produce significant behavioral effects, in spite of the fact that it was 

produced in a part of a single hippocampus and not in the entire epileptogenic area. 

Moreover, the kind of behavioral results that were obtained are also worth noting, in that 

they reflect the double-edge pattern of BDNF effects in epileptogenesis. On one hand, 

consistent with the pro-epileptic effects of BDNF (Kokaia et al., 1995; Binder et al., 1999; 

He et al., 2004; Liu et al., 2013) we observed an increased latency to onset of status 

epilepticus in BDNF-antisense-GFP-injected animals. On the other hand, consistent with 

the neuroprotective role of BDNF (Paradiso et al., 2011) we observed an increased 

mortality of animals injected with BDNF-antisense-GFP. These initial data must be 

verified and extended using multiple, bilateral injections ensuring a robust and widespread 

knock down of BDNF gene expression in the epileptogenic region. 
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In conclusion, this study demonstrates a reliable effect of amplicon vectors in 

knocking down gene expression. At variance with the convergent transcription strategy, 

which is effective only in vitro, the BDNF-antisense-GFP amplicon vector proves effective 

both in vitro and in vivo, knocking down efficiently BDNF protein levels in the injected 

hippocampus at different time points. Therefore, the antisense strategy seems a better 

choice for silencing BDNF expression in vivo. This is further supported by the observation 

that even knocking down BDNF expression in a portion of a single hippocampus is 

sufficient to elicit significant behavioral effects. Taken together, these data illustrate the 

broad potential of amplicon vectors as gene transfer tools for silencing gene expression.  
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Figure 1. Structure of the amplicon plasmids. (A) The pAM2-BDNF-antisense-GFP 

plasmid (6.84 Kb) results by insertion in antisense orientation of a fragment (1.1 Kb) 

containing the BDNF sequence and a poly-A tail. (B) In the pAM-CT-BDNF-GFP plasmid 

(7.07 Kb), the BDNF sequence (1.1 Kb) is inserted in convergent transcription, between 

two CMV promoters. (C) The control plasmid, pAM2-GFP plasmid (5.70 Kb). 
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Figure 2. In vitro validation of the amplicon vectors. (A to D) Infection of mesoangioblast 

(MABs) constitutively expressing BDNF with the BDNF-antisense-GFP amplicon vector 

at MOI 5. Infection of the cells with amplicon vectors was confirmed by GFP fluorescence 

(A) and GFP detection on western blot (C). Pro-BDNF expression was analyzed by 

western blot in the 4 days following infection. The pro-BDNF signal was normalized to -

actin for quantification (D). (E to H) Infection of MABs with the CT-BDNF-GFP 

amplicon vector at MOI 5. Infection of the cells was confirmed by GFP fluorescence (E) 

and GFP detection on western blot (G). Pro-BDNF expression was analyzed by western 

blot in the 4 days following infection. The pro-BDNF signal was normalized to actin for 

quantification (H). * p<0.05, **P<0.01, ***p<0.001: Anova and post-hoc Dunnett test. 

Horizontal bar in panels A, B, E and F = 25 m. 
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Figure 3. Absence of overt amplicon vector-induced toxicity after injection in the dorsal 

hippocampus. Dentate gyrus (DG) of the dorsal hippocampus injected (ipsilateral) and 

noninjected (controlateral) with BDNF-antisense-GFP amplicon vector (A) or with CT-

BDNF-GFP amplicon vector (B). Nuclei are marked by DAPI in blu, GFAP-positive 

astrocytes in red, IBA-1-positive microglia in green and neuronal nuclei are laveled by 

NeuroTrace in magenta. Horizontal bars = 1   μm.  
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Figure 4. Transgene expression following injection of amplicon vectors in the right 

hippocampus at different time points after pilocarpine-induced status epilepticus. (A) 

Representative GFP immunofluorescence in the dorsal hippocampus of a rat injected with 

the BDNF-antisense-GFP amplicon vector. (B) Quantification of the pro-BDNF signal, 

normalized to -actin, 3, 6 and 24 h after pilocarpine status epilepticus induced 5 days 

after injection of the amplicon vectors in the right dorsal hippocampus. * p<0.05, ANOVA 

and post-hoc Dunnett test. Horizontal bar in A = 25 m. 
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Figure 5. (A) Time to enter convulsive status epilepticus following administration of the 

different dose of BDNF-antisense-GFP vector. * p<0.05, ANOVA and post-hoc Dunnett 

test. (B) Mortality of pilocarpine-treated animals injected with the different dose of 

BDNF-antisense-GFP amplicon vector. 
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Abstract 

Brain-derived neurotrophic factor (BDNF) is a potential therapeutic target for temporal 

lobe epilepsy, but evaluation of its potential is complicated by difficulties in its delivery. 

Here, we describe the effect on epileptic seizures of encapsulated cell biodelivery (ECB) 

devices filled with genetically modified human cells engineered to release BDNF. 

Encapsulated cells can survive long-term in the host tissue and ensure continued release of 

the therapeutic molecule. Moreover, they hold the advantage of being a reversible 

treatment. These devices, bilaterally implanted in the hippocampus, significantly decreased 

the frequency of spontaneous seizures in rats made chronically epileptic after pilocarpine-

induced status epilepticus, whereas animals implanted with empty devices or with devices 

containing parental ARPE-19 cells displayed identical seizure frequency and severity as 

those completely untreated. Thus, ECB device-mediated long-term supplementation of 

BDNF in the epileptic tissue may represent a valid strategy to control spontaneous 

seizures. 
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Introduction 

 

One third of the epilepsies are refractory to medical treatment and, therefore, it is highly 

needed to find new therapies acting with mechanisms that are different from those of the 

drugs currently in use (Simonato et al., 2014). In this sense, neurotrophic factors like 

brain-derived neurotrophic factor (BDNF) may represent interesting candidates, because 

an extensive literature demonstrates their involvement in each of the cellular alterations 

associated with epileptogenesis: not only do their trophic effects suggest an involvement in 

cell death, neurogenesis and axonal sprouting, but they also exert effects at the synaptic 

level, with distinct modulatory actions at excitatory and inhibitory synapses (Simonato et 

al., 2006).  

 However, BDNF has been reported to exert contrasting effects in epilepsy, 

depending on the period in the natural history of the disease (the latent period between and 

epileptogenic insult and the beginning of spontaneous seizures vs. the chronic epileptic 

period) and/or on specific alterations in some of its biological properties (biosynthesis, 

processing, subcellular sites of action, …  and/or on the deli ery strategy (direct 

intracerebral injection, use of  iral  ectors, … . Thus, the therapeutic potential of  DNF 

for epilepsy is still controversial (Koyama and Ikegaya, 2005; Kuramoto et al., 2011; 

Simonato et al., 2006). 

Addressing the issue of BDNF therapeutic potential is further complicated by 

difficulties in its delivery. No traditional small-molecule drug with suitable 

pharmacokinetics and capable to act as agonist or antagonist at the high-affinity BDNF 

receptor TrkB has been yet developed. Moreover, delivery strategies based on cell grafts 

or viral vectors generally provide a relatively short-term treatment whereas, by their very 

nature, chronic diseases like epilepsy require long-term treatments. 
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Here, we describe the effect on epileptic seizures of encapsulated cell biodelivery 

(ECB) devices filled with genetically modified human cells engineered to release BDNF 

into the host tissue. Encapsulated cells can survive long-term in the host tissue and ensure 

continued release of the therapeutic molecule (Emerich et al., 2014). Moreover, they hold 

the advantage of being a reversible treatment (Nikitidou et al., 2013).  

 

 

Materials and Methods 

 

Cell culture. ARPE-19 cells, a spontaneously immortalized human retinal pigment 

epithelial cell line, were cultured using standard plating and passaging procedures in T-75 

flasks and incubated at 37°C, 90% humidity and 5% CO2. The growth medium consisted 

of Dulbecco’s modified Eagle’s medium (DMEM)/Nutrient Mix serum with Glutamax 

(Invitrogen Gibco, USA) supplemented with 10% fetal bovine serum (Gibco). Routine 

culture consisted of feeding the cells every 2-3 days and passaging them at 70-75% 

confluence. Cells were split at a 1:3 ratio using TrypLE Select (Invitrogen) following 

dissociation. Briefly, the medium was removed, the TrypLE dissociation enzyme was 

added to the flask, and cells were allowed to detach for 3-5 minutes. Cells were then 

harvested, spun down and resuspended in medium. Finally, T-75 flasks were seeded with 

437,500 cells (2500 cells/cm
2
). 

BDNF-secreting cell line establishment. We generated clonal BDNF-secreting ARPE-19 

cell lines using the sleeping beauty (SB) transposon expression system. ARPE-19 cells 

were co-transfected with the plasmid pT2.CAn.hopp.BDNF  that contains the entire pre-

pro BDNF sequence and the SB vector pCMV-SB-100x. This technology uses an 

optimized SB transposase (SB100x), which mediates genomic integration of multiple 
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copies of the transgene inserted between two transposon terminal inverted repeats. The 

preferred sites for genomic SB integration are palindromic AT repeats, and the insertion 

site distribution is nearly random. This vector system is capable of stable gene transfer 

with long-term gene expression. Clones were selected using G418 (Sigma-Aldrich, 

Germany) and single colonies were isolated and expanded based on their BDNF release 

levels. Colonies producing high levels of BDNF were further characterized. 

Encapuslation of cells in the ECB device. Small devices for cell culture experiments were 

built as follows: 7 mm long semipermeable polyethersulfone (PES) hollow fibers (Akzo 

Membrana, Obernburg, Germany), with an inner diameter of 500 µm and a mean 

molecular weight cut-off of 280 kd, were fitted with a cored poly-vinyl alcohol (PVA) 

cylindrical foam matrix (Clinicel, Mpact, Eudora, Kansas USA). A load tube was attached 

to the membrane in one end with ultraviolet-cured acrylic glue, and in the other end it was 

sealed with the same glue. Prior to filling, ARPE-19-BDNF cells were cultured in growth 

medium. Cells were dissociated and suspended in Human Endothelial Serum-free medium 

(HE-SFM; Invitrogen) at a density of 100,000 cell/µl. Five µl of cell solution (5x10
4
 cells 

in total) were injected into each device using a custom manufactured automated cell-

loading system. Devices were kept in HE-SFM at 37°C and 5% CO2 for 2-3 weeks prior to 

surgical implantation. Devices loaded with non-modified ARPE-19 cells or without cells 

were treated in the same manner and included as negative controls.  

Device verification. The amount of BDNF released by each capsule over a 4 h and 24 h 

incubation period in HE-SFM was measured using the Human BDNF Quantikine ELISA 

Kit (R&D systems, Minneapolis, USA). Standards and samples were assayed in duplicate 

according to manufacturer’s instructions, and results were expressed in ng  DNF per 4 h 

or per 24 h.  
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Animals. The experiments involving animals were conducted in accordance with 

European Community (EU Directive 2010/63/EU), national and local laws and polices 

(authorization: D.M. 83/2009-B and D.M. 246/2012-B). Male Sprague-Dawley rats (250-

350 g; Harlan, USA) were used for all experiments. They were housed under standard 

conditions: constant temperature (22-24ºC) and humidity (55- 65%), 12 h light/dark cycle, 

free access to food and water.  

Pilocarpine treatment. Pilocarpine was administered i.p. (34  mg/kg , and the rats’ 

beha ior was obser ed for 3 h thereafter, using the Racine’s scale. Within the first hour 

after injection, all animals developed seizures evolving into recurrent generalized 

convulsions (status epilepticus, SE). SE was interrupted 3 h after onset by administration 

of diazepam (10 mg/kg i.p.)  

Surgery. Surgery for ECB device implantation was performe 20 days after SE, between 

two video monitoring sessions (describe below). Rats were anaesthetized using isoflurane 

(3-4%) and positioned in a stereotaxic frame (Stoelting, Dublin, Ireland). A midline 

incision was made in the scalp and two bilateral holes drilled through the scull. Devices 

filled with ARPE-19 BDNF cell (n=10) were bilaterally implanted in hippocampus in 

vertical position by an implantation cannula mounted to the stereotaxic frame. The 

implantation coordinates, with respect to bregma, were: AP: -4.8, ML: ±4.6 and DV: -7.0 

(Fig. 1). After implantation, the skin was suture closed.  

Video monitoring. Video monitoring was performed using Swann 4 channel System 

(Swann, Santa Fe Springs, California USA). The first video monitoring session was 

between day 10 and day 20 after SE, i.e. shortly after animals started experiencing 

spontaneous seizures (Paradiso et al., 2009). The second video monitoring session was 

after implantation of the ECB-device, between day 25 and day 35 after SE. Seizure 

severity was scored using the scale of Racine (Racine, 1972): 1, chewing or mouth and 
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facial movements; 2, head nodding; 3, forelimb clonus; 4, generalized seizure with rearing; 

5, generalized seizure with rearing and falling.  

Post-experiment device verification. At the end of the experiments, rats were deeply 

anaesthetized, decapitated and their brains removed. The devices were retrieved and 

incubated at 37°C in HE-SFM. Media samples for determination of BDNF release were 

collected the next day.  

Immunohistochemistry. Brains were rapidly removed and frozen in 2-methylbutane. 

Coronal sections (20 μm thick) were cut across the entire hippocampus, and mounted onto 

polarized slides (Superfrost slides, Diapath-Microstain, Italy). DAPI immunofluorescence 

was performed on section re-hydrated in distilled water for 5 min. Sections were washed in 

phosphate-buffered saline (PBS) 1× for 10 min and than stained with 0.0001% DAPI for 

15 min, and washed again. Coverslips were mounted using anti fading, water based 

Gel/Mount (Sigma).  

  

 

Results 

 

Efficiency of the devices: BDNF release 

To verify the efficacy of the devices, we first measured the release of BDNF in the 

incubation culture media, after filling each ECB device with ARPE-19 BDNF producing 

cells. Before implantation in the hippocampus, each device was filled with cells, incubated 

in HE-SFM medium for 2 weeks, then positioned into a well containing 1 ml fresh HE-

SFM medium and incubated at 37°C (5% CO2) for 4 or 24 h. BDNF concentrations in the 

medium were measures using an ELISA assay.  Devices were then implanted and the same 

procedure was repeated within 24 h after explantation at the end of the experiment, i.e. 
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following 15 days in vivo. Before implantation, the average BDNF concentration in the 

medium was 23.13±0.71 ng/ml for 4 h and 139.48±5.21 ng/ml for 24 h incubation, while 

after the explantation it was about three times higher, i.e. 77.17±7,24 and 454.87±47.96 

ng/ml, respectively after 4 and 24 h incubation (Fig. 1).  

 

Video monitoring 

Pilocarpine administration induced a convulsive status epilepticus (SE) that was 

interrupted 3 h after onset through the i.p. injection of diazepam. For 2–3 days after SE, 

animals experienced some occasional, self-limiting generalized seizures and then entered a 

latency state in which they were apparently well (Curia et al., 2008; Mazzuferi et al., 2010; 

Paradiso et al., 2009; Soukupova et al., 2014). To verify that the animals employed in this 

study presented the previously reported epilepsy development and progression, all animals 

were continuously video monitored between day 10 and day 20 after SE (referred to herein 

as early chronic period) and between day 25 and 35 after SE (herein late chronic period), 

to verify frequency, severity and duration of the spontaneous generalized seizures, class 4 

or 5 according to the Racine scale (Racine, 1972). Spontaneous seizures occurred in all 

animals. In early chronic rats, the mean daily frequency of generalized seizures was 

1.9±0.2, while it was 2.8±0.1 in late chronic rats; the mean forelimb clonus duration was 

34±2 s in the early chronic and 46±1 s in the late chronic group (Fig. 2). These data 

indicate a progression of the disease.  

Twenty days after SE, at the end of the first monitoring epoch, all animals were 

randomly assigned to four groups: one group was not treated at all (naïve); the second 

group was bilaterally implanted with empty ECB devices; the third group with two devices 

filled with parental ARPE-19 cells; the last group with ECB devices filled with ARPE-19-

BDNF cells. Animals without any device displayed an average of 2.8±0.1 generalized 
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seizures per day; similar to these controls, the group of empty devices and the group of 

animals implanted with ARPE-19 devices presented a mean of daily seizure of 2.9±0.1 and 

2.7±0.1 respectively. On the contrary, animals treated with ECB-ARPE-19-BDNF devices 

displayed only 0.7±0.1 seizures per day (Fig. 3A). No difference in any of the parameters 

analyzed in this study was observed between the first three groups, and therefore they have 

been pooled together for statistical analysis and collecti ely termed “control de ices” 

group. Thus, a highly significant decrease (about 75%) of the frequency of spontaneous 

seizures was observed between the control group (2.8±0.1 generalized seizures/day) and 

the treated ARPE-19-BDNF devices animals (Fig. 3A). 

The forelimb clonus duration (s), however, was only moderately (yet significantly) 

decreased in animals implanted with the ARPE-19-BDNF device compared with control 

groups (36±4 s vs. 46±1 s; Fig. 3B). 

 

Placement of the ECB devices  

DAPI staining was performed on sections from brains of all animals to confirm the correct 

position of the ECB devices in the hippocampus (Fig. 4).  

 

 

Discussion 

 

In this study we demonstrate that ECB devices filled with ARPE-19 cells modified to 

secrete high levels of BDNF, when implanted in the hippocampus, significantly decrease 

the frequency of spontaneous seizures in rats made chronically epileptic. This effect was 

somewhat unexpected, in that it has been previously reported that a Herpes Simplex 

vector-mediated supplementation of BDNF in the hippocampus of epileptic rats did not 
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produce any alteration in spontaneous seizure frequency or severity (Paradiso et al., 2009). 

However, some major differences exist between this previous paper and the present one: 

first, the BDNF delivery method differed (endogenous cell infected by the vector 

producing and secreting BDNF vs. ECB); second, BDNF was expressed together with 

fibroblast growth factor 2 (FGF-2) by the viral vector; third, the viral vector induced 

expression of the transgenes (BDNF and FGF-2) only in the dorsal hippocampi, whereas 

ECB devices were implanted bilaterally and released BDNF in a wider area, mainly in the 

ventral hippocampus. Thus, the pattern of BDNF supplementation can be expected to be 

significantly different in the two studies, being more widespread and robust with ECB 

devices. The concept that sufficiently high levels of BDNF may produce antiseizure 

effects is in line with the finding that BDNF reduces GABAA receptor desensitization in 

the human and in the murine epileptic hippocampus (Palma et al., 2005; 2007). 

 These findings suggest that ECB devices could potentially be an alternative source 

for exogenous long-term delivery of BDNF to the hippocampus, and that this strategy can 

reduce the frequency of generalized seizures. Of course, a limiting factor may be the extent 

of damage caused by the implant. However, this factor did not prove critical in the present 

experimental setup, in that animals implanted with empty devices or with devices 

containing parental ARPE-19 cells displayed identical seizure frequency and severity as 

those completely untreated. Moreover, in translational terms the impact of damage would 

be relatively smaller in the much larger human brain.  

One difficult issue to solve is the genuine BDNF-dependence of the effects. 

Unfortunately, no small molecule TrkB antagonist with suitable pharmacokinetics for 

peripheral administration is currently available, and the ECB device does not allow 

practical space for intra-hippocampal injection in the entire area where it releases BDNF. 

However, the effects observed in this study are very likely dependent on BDNF, because 
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animals treated with parental ARPE-19 cells (not producing BDNF) displayed a daily 

frequency of seizures comparable to empty devices and not to ARPE-19 BDNF devices.  

In conclusion, the present data suggest that BDNF, continuously released in the 

epileptic hippocampus, reduces the frequency of generalized seizures. Understanding in 

depth the mechanistic basis of this effect will require further studies. However, this 

approach may be applied to patients that are selected for surgical resection of the epileptic 

hippocampus. These patients may undergo implantation of depth electrodes to define the 

epileptogenic area before surgery. A ECB device may be implanted together with 

electrodes: if it proved ineffective, it would be removed and the patient would undergo 

surgery as originally planned; if effective, the patient would have the option of avoiding 

surgery. Importantly, the ECB technology has been already tested in other neurologic 

disease, such as Alzheimer’s disease, and has demonstrated good safety and tolerability 

(Tornoe et al., 2012; Eriksdotter-Jonhagen et al., 2012).  
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Figure 1. BDNF release from ECB devices. Average BDNF release measured by ELISA 

from ECB devices before the implantation and after the explantation. BDNF release 

measured per 4 h and 24 h. 
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Figure 2.  Behavioral analysis. Average frequency (left Y axis) and forelimb clonus 

duration (right Y axis) of spontaneous generalized seizures (class 4 or 5) in the early (day 

10-20) and late chronic period (day 25-35) after pilocarpine induced-SE. Data are the 

means ± SEM of 34 (early chronic) and 15 (chronic). ***< .  1:  tudent’s t-test. 
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Figure 3. Behavioral analysis. Average frequency (A) and duration (B) of spontaneous 

seizures in the late chronic period (25-35 days after pilocarpine induce-SE). Data are the 

means  ± SEM of  8-10 animals per group. No device: animals not treated with devices; 

empty device: animals implanted with empty ECB devices; ARPE-19 device: animals 

implanted with ECB devices filled with parental ARPE-19 cell; ARPE-19 BDNF device: 

animals implanted with ECB devices filled with ARPE-19 cell secreting BDNF; control: 

no, empty and ARPE-19 groups pulled together. *< .  ; ***< .  1:  tudent’s t-test for 

unpaired data. 
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Figure 4. Placement of ECB devices in the hippocampus. Representative example of 

bilaterally implanted ECB devices in the hippocampus. DAPI staining in blue. Horizontal 

bar = 10 μm.  
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Chapter 3. GABA 

 
  
3.1 Impairment of GABA release in the hippocampus at the time of the first 

spontaneous seizure in the pilocarpine model of temporal lobe epilepsy  
 

Temporal lobe epilepsy (TLE) is associated with profound alterations in the GABA 

system. Repetitive activation leads to GABAA receptor desensitization (run-down) in 

refractory human TLE and in the rat pilocarpine model of TLE (Mazzuferi et al., 2010; 

Palma et al., 2007). Moreover, TLE is associated with a loss of hippocampal GABAergic 

interneurons (Drexel et al., 2011; Gill et al., 2010; Kuruba et al., 2011).  

These findings suggest an impairment of GABA signaling in the epileptic brain, but the 

presynaptic counterpart of this phenomenon is still unknown, as the alterations in GABA 

release have not yet been systematically measured along the natural course of the disease.  

This paper aimed at filling this gap by analyzing GABA outflow in the hippocampus at 

multiple stages of TLE, from the epileptogenic insult (pilocarpine-induced SE) to the 

chronic period characterized by the spontaneous occurrence of seizures. The data suggest 

that impaired GABA release in the hippocampus favors the occurrence of spontaneous 

recurrent seizures and sustains the maintenance of an epileptic state in chronic animals. In 

contrast, a GABAergic hyper-responsiveness protects from the occurrence of seizures 

during latency. These events correlate with the loss of GABA interneurons, particularly of 

parvalbumin and somatostatin positive interneurons.  
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3.2 Loss of cortical GABA terminals in Unverricht-Lundborg disease 
 

Several progressive genetic disorders of the central nervous system can present with 

seizures as the main clinical symptom. Examples of these disorders are those included in 

the group of progressive myoclonic epilepsies (PMEs), that are characterized by the 

occurrence of myoclonus, tonic–clonic seizures and progressive neurological deficit 

(Berkovic et al., 1993, Lehesjoki and Koskiniemi, 1999, Delgado-Escueta et al., 2001, and 

Shahwan et al., 2005).  

The Unverricht-Lundborg disease (ULD, EPM1) is the most common progressive 

myoclonic epilepsy and it is associated with a defect of cystatin B (CSTB), a protease 

inhibitor. We report here the first direct evidence that loss of cortical GABA input occurs 

in a relevant animal model and in a case of human ULD, leading to a condition of latent 

hyperexcitability that favors myoclonus and seizures. These findings have direct relevance 

for understanding of the pathogenic mechanism of ULD and the neurobiological basis of 

the effect of currently employed drugs. 
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Chapter 4. CONCLUSIONS 

 

 
4.1 OVERALL CONCLUSION AND FUTURE 

PERSPECTIVES 
 

 

Expanding the knowledge of NTFs is important, because data on their biology and their 

implication in the pathogenesis of neurodegenerative diseases, including epilepsy, are 

insufficient. Also, improvements are needed to deliver these molecules selectively in the 

lesion area. 

In this thesis, we explored new technologies to better understand the role of BDNF in 

epilepsy, by developing and validating innovative strategies to modulate the BDNF signal 

within the epileptic focus. Whilst on the one hand we developed tools (amiplicon vectors) 

to silence BDNF expression in vivo, on the other we tested the effects of a continuous 

administration of BDNF in the epileptic hippocampus by using ECB devices.  

Some aspects of the present findings are worthy of note. First, the data support the 

consolidated hypothesis that BDNF can exert contrasting effect in the epileptic brain, 

depending on the experimental settings and on the stage of progression of the disease. 

Second, the implantation of the ECB devices was performed under conditions that are 

perfectly compatible with the clinical situation: chronic patients with surgically-treatable 

TLE that are planned to undergo a two-step surgery (implantation of recording electrodes, 

then removal of the epileptogenic area) may be an ideal population to clinically test this 

approach because the ECB device might be implanted together with the electrodes and, 

should it prove ineffective, it could be removed and the patient could undergo surgery as 

originally planned. Third, the results are promising not only in epileptic field, but also for 

other neurodegenerative diseases or to test other NTFs.  

A detailed analysis of the mechanisms of action was behind the scope of this thesis. The 

present data, however, prompt future studies in which a more refined modulation of BDNF 

levels is achieved, for example by using amplicon vectors designed to up and down 

regulate the different splice variants of BDNF mRNA. We plan to investigate these 

fascinating and challenging possibilities in the future.  
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