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Curved crystals as optical elements
for focusing X- and γ rays in a Laue
lens: manufacturing, data analyses

and Monte Carlo simulations

Short abstract:

This thesis is devoted to achieve a method to realize bent crystals in order to

diffract hard X- and γ rays with high-efficiency. Several schemes were pursued to ob-

tain high-focusing diffraction for the production of a high-resolution Laue lens. The

focusing capabilities of the crystals were tested with monochromatic and polychro-

matic X- and γ rays at the European Synchrotron Radiation Facility (ESRF) and

at the Institut Laue-Langevin (ILL) in Grenoble, France. Finally, original schemes

for the realization of innovative Laue lenses, based on quasi-mosaic crystals, were

simulated and proposed.

Keywords: High-focusing diffraction - bent crystals - quasi-mosaicity - Laue

lens simulations
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Preface

This work aims at the realization of properly processed silicon and germanium

crystals which could be used as optical elements to diffract and focus hard X- and

γ rays in the 100-1000 keV energy range. These kinds of crystals have recently met

the interest of the astrophysics community because they could allow high-sensitivity

observations of many cosmic phenomena on a satellite-borne focusing telescope and

collect information from the universe as seen through X-rays. Moreover, such crystals

could be used as a γ ray imager in nuclear medicine to diagnose the presence of cancer

pathologies in the human body through γ decays of metastable radioisotopes such as
99mTc.

The work of thesis was carried out within the Laue project, which is a project

financed by the Italian Space Agency (ASI). The final aim of the Laue project was

the realization of a prototype of Laue lens composed of germanium and gallium ar-

senide bent crystals. In particular, the realization and the pre-characterization of the

germanium samples were performed during this Ph.D. period.

This thesis is divided into three main sections. The first section presents the

empirical study performed to develop a method that would lead to the production

of accurate and homogeneous bent samples. In fact, a homogeneous curvature is

a necessary condition for the diffraction of the radiation with high efficiency and

resolution. The resulting proposed method is economical and simple, being based

on mass production tools. Furthermore, an appropriate physical model is given, to

foresee the curvature of the samples as a function of the production parameters.

Several silicon and germanium samples were bent and pre-characterized at the

Sensor and Semiconductor Laboratory (SSL) of Ferrara, Italy. Afterwards, the focus-

ing capabilities of the samples were analyzed at the European Synchrotron Radiation

Facility (ESRF) and at the Institut LaueLangevin (ILL) of Grenoble, France. In the

second section the tests with X- and γ rays performed with the produced samples are

described.

In the last section, investigations and experimental validations of diffraction with

unusual crystal configurations are described. Furthermore, two proposals of Laue

lens are given. Such proposals were theoretical obtained with LaueGen, a genetic

algorithm written for this purpose. Finally, the performance of these simulated Laue

lenses is shown and compared with the data available in the literature.
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Introduction

Manipulation and focusing of hard X- and γ-rays in the 100-1000 keV energy range

represent an increasingly significant topic for the scientific community. However, it is

not trivial to focalize X-rays with good efficiency, and the modalities of implementa-

tion of an X-ray concentrator still represent an open issue.

Loosely speaking, observing hard X-ray or soft γ-ray astronomical sources in this

energy range is analogous to the pre-Galilean naked-eye observation of the sky com-

pared to the modern device-assisted astronomy with a telescope because high-energy

photons cannot be concentrated. Strictly speaking, the lack of optical components

working within this energy range implies the impossibility of focusing, which in turn

leads to a poor signal-to-noise ratio recorded by the detectors. Indeed, multilayer

optics have been proven to be capable of focusing of up to 80 keV photons with high-

efficiency. More recently it has been demonstrated that multilayer reflective optics

can operate efficiently and according to classical wave physics up to photon energies of

at least 384 keV. However, beyond these limits the efficiency of these optics critically

deteriorates [1].

In fact, there exists a wealth of experiments that could be performed, provided

that a suitable sensitivity of detection devices would be accomplished. Indeed, γ-ray

emission takes place in several places in the Universe, spanning from our Sun to the

γ-ray bursts (GRBs) at redshifts z ą 8 and to the cosmic γ-ray background radiation

of the early Universe. Cosmic γ rays originate locally in solar flares, within our

Galaxy in compact binary systems, pulsars, supernova remnants, and in extremely

distant objects such as active galactic nuclei and GRBs. The study of the origin of

the positrons annihilating in the Galactic center could be visible through the e` / e´

annihilation line at 511 keV. A study of the distribution of this emission line would

thus bring new clues concerning the still elusive sources of antimatter. Although a 511

keV emission has been observed for more than 30 years towards the Galactic center

[2], the origin of the positrons still remains a mystery. Stellar nucleosynthesis [3, 4, 5],

accreting compact objects [6, 7, 8, 9], and even the annihilation of exotic dark-matter



2

particles [10] have all been suggested, thus a deeper investigation is necessary.

An X-ray concentrator could also be used as an imager for high-quality imaging

in nuclear medicine. For instance, it would improve γ-ray detection in single photon

emission computed tomography (SPECT) by providing better scan resolution. This,

in turn, would lead to a lower radioactive dose being imparted to the patient, since

there would be no need for tomography scanning [11, 12].

In order to make the realization of the above experiments possible, optical ele-

ments with high-diffraction efficiency are needed, along with an arrangement of the

crystals to permit high-resolution focusing of the diffracted photons. In this thesis,

a method to produce bent crystals suitable for high-efficiency diffraction, namely the

grooving method, is proposed and experimentally tested. The method consists in

grooving one of the major surfaces of a sample with a grid of regular grooves. In fact,

it was shown that a series of superficial grooves may permanently and reproducibly

bend the whole crystal. Moreover, a study of the theory of linear elasticity was done

to exploit the quasi-mosaic effect. Through the quasi-mosaic effect, it is possible to

obtain two curvatures of two different lying of crystallographic planes. The grooves

generate a primary curvature on the largest surfaces of a plate. As a result of the

primary curvature, quasi-mosaicity induces a secondary curvature on a perpendicu-

lar set of planes within the crystal, whose radius depends on the material and the

crystallographic orientations concerned [13]. Combining these two curvatures, it is

possible to achieve either high-diffraction efficiency and focalization of the diffracted

beam [13, 14].

The diffraction efficiency and the focusing capability of the produced crystals were

analyzed and compared with the theoretical expectations. A series of grooved samples

was produced for the realization of a prototype of Laue lens, within the Laue project.

Finally, a computational method based on a genetic algorithm and named Laue-

Gen, was developed ab initio to simulate and optimize new schemes of Laue lens based

on quasi-mosaic crystals. The focusing capability of the simulated Laue lenses, such

as the focusing factor and the sensitivity, are shown and compared with the results

available in the literature.



CHAPTER 1

State of the art

1.1 Focusing X- and γ- rays: the Laue lens

Nowadays, the scientific community is seeking for methods to make the experiments

based on the Laue lens come true [15]. One nonfocusing method that has already

been proposed for X-rays detection consist in the usage of geometrical optics, such as

collimators or coded masks [16]. However, since the total interaction cross-section for

γ-rays attains its minimum within 100-1000 keV, the efficiency of geometrical optics

decreases while at the same time the background noise increases with respect to the

signal, because of the growing importance of shield leakage and/or nβ activation.

Another nonfocusing solution consists of quantum optics based on Compton effect

and tracking detectors [17].

However, focusing methods probably have greater potential because they can con-

centrate the signal from a large collector onto a small detector and beat the instru-

mental background that may hamper the observation. Bragg diffraction can be used

to concentrate the signal. Indeed, the photon energy is linked to the photon energy

via

nλ “ 2dhklsinθB (1.1)

where λ is the radiation wavelength, dhkl the d-spacing of the diffracting planes and

θB is the Bragg angle.

If X-ray diffraction occurs traversing the crystal (the Laue scheme), the problem of

focusing hard X-rays can be approached via a Laue lens. A Laue lens is conceived as an

ensemble of many crystals arranged in such a way that as much radiation as possible is

diffracted onto the lens focus over a selected energy band (see Fig. 1.1) [18, 19, 20, 21].

For practical applications of a Laue lens, crystals with high-diffraction efficiency are
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Figure 1.1: Laue lens

needed, as well as an arrangement of the crystals to permit high-resolution focusing

of diffracted photons [22, 23].

The high-resolution focusing of diffracted photons is an important requirement in

all the applications mentioned above. Perfect and flat mono-crystals diffract within

a very narrow energy range, so they are not adequate for a Laue lens (Fig. 1.2a).

With the aim of wide-passband focusing, one of the components currently under

investigation by the scientific community is the mosaic crystal. This kind of crystal is

an aggregation of crystallites whose angular distribution is a Gaussian spread about

a nominal direction [24] (Fig. 1.2b). For a mosaic crystal, reflectivity is given by [24]

ηM “ 1

2
r1 ´ e´2W p∆θqQT0se

´µT0
cosθB (1.2)

where T0 is the crystal thickness traversed by radiation, ∆θ is the difference between

the angle of incidence and Bragg angle θB, µ the linear absorption coefficient within

the crystal and W (∆θ) the distribution function of crystallite orientations. In turn,

W (∆θ) is defined as

W p∆θq “ 2
´ ln2

π

¯

1

2 1

ΩM

e
´ln2p ∆θ

ΩM {2
q2

(1.3)

where ΩM is called mosaicity, or mosaic spread, and represents the full width at half

maximum (FWHM) of the angular distribution of crystallites. Finally, considering

the kinematical theory approximation [25], Q is given by
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Figure 1.2: Diffraction capability with different kind of crystals, considering a white
X-ray beam impinging on the plate. (a) Perfect crystal. If the Bragg condition is
satisfied, a precise wave length will be diffracted with the efficiency being dependent
on the thickness traversed. The integrated reflectivity is very low. (b)Mosaic crysatal.
The diffraction efficiency is higher with respect the case a), but it is limited at 50%
and the spatial resolution of the diffracted photons is limited by the mosaic defocusing
effect. c) Bent crystal but without QM curvature. The primary curvature can focalize
the diffracted photons. However, the flat diffracting planes reduce the integrated
intensity. d) Bent crystal with QM curvature. QM sample combines the focusing
action due to the primary curvature with the high reflectivity of CDP built up by
quasi-mosaicity.
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Q “ π2dhkl

Λ2
0cosθB

(1.4)

where Λ0 is the extinction length as defined in [26] for the Laue symmetric case.

The mosaic crystal has two main disadvantages. Firstly, it has a limited diffraction

efficiency, corresponding to a maximum of 50% in reflectivity at zero absorption.

Secondly, the spatial resolution of the diffracted photons is limited because of the

so-called mosaic defocusing effect [27]. Crystals with curved diffracting planes (CDP

crystals) represent an alternative to mosaic crystals with the potential to overcome

these two drawbacks. In fact, their energy bandpass can be very well controlled,

because it is proportional to the curvature. Moreover, their diffraction efficiency is

not limited to 50% [25, 28] because the continuous change of the incidence angle on

bent crystalline planes prevents re-diffraction of a diffracted beam. Furthermore, the

energy bandpass of the photons diffracted by CDP crystals is orders of magnitude

broader than that obtained from flat crystals.

Given the numerous advantages of CDP crystals, in this thesis a study of Laue

diffraction with these crystals has been proposed and experimentally validated through

hard X-ray diffraction. For CDP crystals, reflectivity is given by [25]

ηC “ r1 ´ e
´π2T0dhkl

ΩΛ2
0 se

´µT0
cosθB (1.5)

where, in this case, Ω represents the bending angle of the curved diffracting planes.

A particular kind of CDP crystal, that employs the so-called quasi-mosaic (QM)

effect [13], has also been recently proposed as optical component for focusing hard

X-rays (Fig. 1.2d).

1.2 Crystals with curved diffracting planes and quasi-

mosaic crystals

CDP crystals disposed with respect to impinging photons (as in Fig. 1.3a, hereinafter

named geometry 1) were recently proposed and their high reflectivity demonstrated

[29]. A scheme based on such geometry is certainly a viable route for building a Laue

lens. However, it requires the fabrication and the setting up of a large number of

such crystals to cover the whole Laue lens, because the crystals must be oriented with

their major faces parallel to the photon direction. To overcome this problem and

expose the largest crystal surface to the photon flux, the geometry 2 has subsequently
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Figure 1.3: (a) geometry 1. (b) geometry 2. Red arrows represent an X-ray beam.

been proposed and is depicted in Fig. 1.3b. Indeed, geometry two would require the

fabrication and the setting up of about 102 samples, in contrast with 103-104 samples

needed for geometry 1.

A necessary condition for obtaining crystals with CDPs in geometry 2 involves the

employment of the quasi-mosaic (QM) effect. QM crystals belong to a class of CDP

crystals featuring two curvatures of two different lying of crystallographic planes.

As a crystal is bent to a primary curvature by external forces under very specific

orientations, another curvature (secondary curvature) is generated within the crystal,

i.e., the QM curvature [30]. A Laue lens with QM crystals is an arrangement of curved

plates whose primary curvature lies on a spherical calotte of radius RP , while the QM

curvature allows diffraction with CDPs. Due to Bragg diffraction, focusing of each

QM sample converges on a focal spot at a distance f = RP/2 on the symmetry axes

of the calotte (see Fig. 1.4).

Quasi-mosaicity is a mechanical property driven by anisotropy and is fully ex-

plained by the theory of linear elasticity in an anisotropic medium [31]. Most impor-

tantly, quasi-mosaicity allows focusing of the photon flux in a spot smaller than the

size of the diffracting crystal, in contrast to diffraction by a mosaic crystal, the spot of

which is no smaller than the crystal size exposed to the photons. For a quasi-mosaic

crystal, the primary curvature is responsible for focusing, while the secondary (QM)

curvature increases the diffraction efficiency [13]. Thus, since the secondary curvature

can control the size of the focal spot, QM crystals allow focusing with high resolution.

As a result, the sensitivity of a Laue lens could be increase. Indeed, if there were

no QM effect, the integrated reflectivity of the whole lens would be the same as that
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Figure 1.4: Schematic representation of a cross section of a Laue lens based on QM
crystals. Gray rectangles represent the crystals. The primary curvature leads to a
secondary curvature of the planes affected by quasi-mosaicity. In this configuration
the QM diffracting planes are perpendicular to the main surface of the plates. The
primary curvature allows focalizing diffracted radiation onto the focal plane, while the
QM curvature increases the integrated diffraction efficiency.

obtained from flat diffracting planes, which is relatively poor.

In this work of thesis CDP crystal properties are deeply discussed and analyzed.

Moreover, this work demonstrates how such crystals can be manufactured as optical

elements for a Laue lens. Finally, it is studied how a Laue lens based on QM crystals

can be realized.



CHAPTER 2

Self-standing bent crystals as

optical elements: the method of

grooving

2.1 Crystals deformation

Novel applications can be attained through the usage of bent crystals as optical com-

ponents for the focalization of hard X- and γ- rays through Bragg diffraction. Nuclear

astrophysics, nuclear medicine and homeland security would highly benefit from such

optics, because they all share the same need for efficient X- and γ-ray focusing systems.

For the fabrication of a bent crystal, several techniques were developed. Bending

can be accomplished by mechanical means, i.e., by deforming a perfect single crys-

tal through an external device [32]. Mechanically bent crystals have been used in

synchrotrons since decades as high-efficiency monochromators at high-energy X-ray

beamlines [33, 34]. Curved crystals are also very efficiently used to control neutron

diffraction over a wide angular acceptance [33, 35, 36, 37, 38]. However, the usage

of an external device leads to excessive weight, condition not permitted for satellite-

borne experiments. Thus, self-standing bent crystals are mandatory for the practical

implementation of a focusing telescope. Such curved crystal can be produced by ap-

plying a thermal gradient to a perfect single crystal [11]. However, this method is

energy consuming and not suitable to a space-borne observatory as well. Crystals

having curved diffracting planes can also be obtained by a concentration-gradient

technique, i.e., by growing a two-component crystal with graded composition along
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the growth axis [11, 28, 39, 40]. However, crystals bent by such a method are not

easy to manufacture. As a result, the technique hardly applicable for a Laue lens

application, for which serial production of crystals should be envisaged.

The process of plastic deformation in a material occurs when the material shape

and structure irreversibly change in response to the application of forces. Curved

crystals can be obtained by controlled surface damage by means of a mechanical

lapping process on one side of planar samples. The surface damage introduces defects

in a superficial layer of a few tens of micrometres in thickness. The superficial layer

results subjected to a highly compressive strain [41]. However, with this technique, it

is impossible to obtain bent samples thicker than 1 - 2 millimeters.

A rather non conventional method to deform crystalline plates is grooving of one

of its major surfaces with a grid of regular grooves. In fact, it was shown that series of

superficial grooves may permanently and reproducibly bend the whole crystal. In 70-

GeV proton channeling experiments [42], it was found that accidental microscratches

on a crystal surface cause a deformation of the crystallographic planes to substantial

depths, down to a few hundred microns. The analysis showed that protons near a

scratch are channeled by deformed crystal planes. For example, it was proved that

bent Si and Ge mono-crystals can deflect high-energy charged particles, exploiting

axial or planar potential within the crystal [43, 44]. It was also shown that a silicon

plate alternatively grooved on its major faces could be used as a crystalline undulator

with the purpose of fabricating a miniature free-electron laser [45].

Though the surface grooving method allows to obtain highly reproducible bent

crystals, the physical mechanisms behind the process of deformation of crystals by

superficial grooves have not been fully understood yet. An extensive study was carried

out to understand the process of substrate deformation. By adjusting experimental

parameters, very good control of the curvature was achieved. The process of deforma-

tion was modeled in terms of the irreversible compression that occurs in the material

close to the grooves. The underlying material was treated as an anisotropic medium

elastically reacting to the state of stress provided by the grooves. A good correlation

between experimental results and theoretical expectations was satisfactorily achieved.

2.2 Material and methods

The fabrication of bent Si crystals was developed with the method of superficial

grooving through the usage of a high precision dicing saw (DISCOTM DAD3220),

equipped with a rotating blade of various size, geometry and diamond grit size.

To verify the possibility of deforming a sample through the grooving method, a
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preliminary test was done on a 10ˆ10ˆ2 mm3 silicon sample. A single groove, 160 µm

wide and 1680 µm deep, was done parallel to the sample sides and passing through

the center of the sample surface (see left side of Fig. 2.1). Analysis of the deformation

of the crystal, i.e., of its crystallographic planes, was performed at several positions

along x axis, by using a high-resolution X-ray diffractometer (X’Pert Pro MRD XL

PANalyticalTM) in Bragg geometry (Cu Kα radiation, λ = 1.54 Å). For every step,

the crystal was rotated in the neighborhood of the angle where the Bragg diffraction

occurs. The diffracted radiation was recorded as a function of the incident angle. The

achieved profile of intensity is the so called rocking curve (RC) (see right side of Fig.

2.1). As can be noticed, the Si plate takes the shape of a dihedron bent by 30 arcsec

just beneath the groove.

If instead of an individual groove, a regular grid of grooves is done on the same

surface, a net curvature can be achieved. This is the key idea about deformation of a

plate by the method of surface grooving.

To deepen the study, periodic grooves´160 µm wide´at variable depths were

manufactured on one of the major sides of Si plates, each sample being a square with

lateral dimension of 10 mm and a thickness ranging from 0.5 to 2 mm. Crystals

were (111) oriented so that Young’s modulus and Poisson’s ratio remained constant

along any direction of their surface. Furthermore, to avoid unwanted asymmetries,

the grooves were made along two perpendicular directions. A photo of a grooved

sample is shown in Fig. 2.2, while fabrication parameters of all samples are reported

in Tab. 2.1.

For every crystal, the morphological curvature, as generated by the grooves, was

measured by using an optical profilometer (VEECOTM NT1100) with vertical resolu-

tion of the order of 1 nm. The instrument is equipped with a stitching system that

allows scanning over an area of 10ˆ10 cm2. In order to account for the initial morpho-

logical non-planarity of the samples (wafers generally exhibit non zero bowing) and

thereby to consider only the effect of the grooves, subtraction of the profiles before

and after grooving was done. Since the profile of a surface with grooves is superficially

altered by their presence, the measurements were carried out on the back face of the

samples. A typical interferometric measurement of a grooved plate is shown in Fig.

2.3. As can be noticed, the curvature of the sample is homogeneous and spherical.

Production and characterization of all samples was carried out at the Sensor and

Semiconductor Laboratory (SSL) of Ferrara, Italy.
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Figure 2.1: Left side: photos of the 10ˆ10ˆ2 mm3 Si plate. The clearer rectangles
represent the areas where X-ray beam impinges for diffraction. The groove is centered
at x = 0 mm. Seven measures was done, at (a) = -4 mm, (b) = -2.5 mm, (c) = -1
mm, (d) = 0 mm, (e) = 1 mm, (f) = 2.5 mm, (g) = 4 mm. Right side: Rocking
curves relative to each position as specified by the photo on the left. X-axis is the
angle between X-rays and crystallographic planes.
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Figure 2.2: Photo of a grooved sample, with crystallographic orientation.

Figure 2.3: Interferometric measurement of the backside of a grooved sample. Left
side: 3d view analysis (a). Right side: cross sections of the deformation pattern along
x (b) and y directions (c), as taken on the center of the sample.
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Table 2.1: Fabrication parameters of all samples
Material Silicon

Thickness of plates 530 µm

1030 µm

1940 µm

Plates side length 10 mm
Blade specification G1A 2000
Size diamond grains 2-4 µm

Blade width 160 µm

Groove speed 1 mm/s
Blade angular speed 40000 r.p.m.
Number of grooves from 5ˆ5 to 17ˆ17
Grooves depth variable

2.3 Linear elasticity and revisitation of the Stoney

formula in anisotropic media

Surface grooving produces permanent plastic deformation in the neighborhood of the

grooves [46]. Indeed, plasticization occurs in a thin layer of the crystal beneath and

beside the grooves due to the dicing process. The extension of the plasticized layer

results to be dependent on the grooving process. Such plasticized layer transfers

coactive forces to the crystal bulk, thus producing an elastic strain field within the

crystal.

A precise prediction and optimization of the crystal deformation needs a proper

simulation of the internal state of stress in the structure. This can be obtained by

observing that the plasticized layer-to-substrate interaction problem resembles that

of a thin coating, which transfers interfacial tractions to the underlying substrate. It

can be assumed that the plasticized layer behaves like a thin film deposited onto the

surface of a crystal at the position of the superficial grooves.

A preliminary model, shown in [47], interpreted the effect of grooving as a com-

pressive action exerted on the material between the grooves. A grooved plate was

artificially divided into a compressive film with thickness equal to the depth of the

grooves and an elastic unaltered substrate with the remaining material. Under this

assumption, the Stoney formula was applied to describe the curvature of the plate.

However, this simplification works only for relatively shallow grooves, which result in

a moderately low curvature. For deeper grooves, a more realistic representation of

the physical features of grooved plates is needed. Here it is provided a more effective
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approach that holds true for any radius of curvature.

Indeed, the plasticized layer undergoes a compressive state of stress, whose inten-

sity depends upon dicing parameters, i.e., advance speed of the blade, blade width and

grit (dimension of diamond grains on the blade), number and depth of the grooves.

Thus, mechanical deformation of the crystal can be assessed by solving a film-to-

substrate interaction problem, in which a given level of compressive stress σf in the

coating is imposed.

The curvatures of internal planes of a deformed crystal can be calculated through

the displacement field as a function of u(r), v(r) and w(r), which are the deformations

along the x, y, and z axes, respectively. The normal (σ) and tangential (τ) components

of stress tensor are bound up to mechanical momentaMx andMy applied to the crystal

via

σx “ Mx

I
z, σy “ My

I
z, σz “ 0 (2.1)

τyz “ 0, τxz “ 0, τxy “ 0 (2.2)

where I is the momentum of inertia. As known from the theory of homogeneous

anisotropic thin plates subjected to bending, from the following boundary conditions,

dw

dx

ˇ

ˇ

ˇ

0
“ dw

dy

ˇ

ˇ

ˇ

0
“ 0,

dv

dx
´ du

dy
“ 0, (2.3)

up0q “ vp0q “ wp0q “ 0 (2.4)

the displacement field arising from the deformation of the crystal plate is

u “ 1

2I
rMxpS51z

2 ` S61yz ` 2S11xzq (2.5)

`MypS52z
2 ` S62yz ` 2S12xzqs

v “ 1

2I
rMxpS41z

2 ` 2S21yz ` S61xzq (2.6)

`MypS42z
2 ` 2S22yz ` S62xzqs

w “ 1

2I
rMxpS31z

2 ´ S11x
2 ´ S12y

2 ´ S16xy (2.7)

`MypS32z
2 ´ S12x

2 ´ S22y
2 ´ S26xyqs

where Sij are the components of compliance tensor for anisotropic material referred to

the px, y, zq Cartesian system [31, 48]. u, v and w completely define the displacement

field of the crystal plate. The relationship between the curvature of the middle plane

of the plate and bending moments Mx, My (per unit length), uniformly distributed
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along its sides, is

B2w

Bx2
“ ´ 6

hs
3 p2MxS11 ` 2MyS12q,

B2w

By2 “ ´ 6

hs
3 p2MxS12 ` 2MyS22q (2.8)

hs being the plate thickness.

The plasticized layer, which lies at hs{2 from the middle plane of the plate (being

hf ăă hs, see section 2.4), induces an interfacial stress distribution to the underlying

crystal. As known from the film-to-substrate interaction problem, these interfacial

tractions tend to concentrate in the neighborhoods of the film edges [49]. Particularly,

for coatings compliant with respect to the substrate, an almost constant stress occurs

in the film. Moreover, since the grooves were manufactured on the plate along x and

y directions, taking into account the 90˝ rotational symmetry around z axis, it results

´ 1

R
“ B2w

Bx2
“ B2w

By2 , Mx “ My “ M – σfhfhs{2 (2.9)

hf being the thickness of the plasticized layer and R the radius of curvature. From Eqs.

(2.8) and (2.9), the relationship between film stress and curvature can be obtained as

σf “ hs
2

6pS11 ` S12qhf

1

R
. (2.10)

It is worth noticing that Eq. (2.10) corresponds to the classical Stoney formula (2.11)

for an isotropic film-to-substrate system under equi-biaxial plane stress, which relates

the stress level in the film to the local curvature of the substrate via [50]

σf “ Es hs
2

6p1 ´ νsqhf

1

R
(2.11)

where Es and νs are the Young modulus and Poisson ratio of the substrate, respec-

tively. Indeed, Eq. (2.10) is retrieved from Eq. (2.11) provided that the anisotropy

of the substrate is taken into account, i.e., Es “ 1{S11, νs “ ´S12{S11.

However, due to the presence of the grid of grooves, the plasticized regions on

the crystal surface are not continuous (see Fig. 2.4), thus Eq. (2.10) should not be

applied. Nonetheless, as showed in [51], Stoney formula can simply be extended to a

system with nonuniform curvature if the effective level of plasticization is considered.

In particular, for a symmetric distribution of grooves on a crystal, the mean radius of
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Figure 2.4: Schematic representation of a grooved crystal, section view. Film thick-
ness, hf , substrate thickness, hs, groove depth, d and sample thickness are highlighted.
a0 is the distance between the crystal edge and the first groove, a the groove width
and a1 the distance between the grooves.

curvature R can be expressed as a function of the geometric parameters of the system

R “ l2R

4aχ
, (2.12)

χ “ aN2 ` 2a0N ` NpN ´ 1qa1 ` κpa
4

` aN ` a0 ` a1Nq (2.13)

where l is the crystal lateral dimension, N the integer number of grooves lying on half

of the plate and κ is a coefficient, which takes into account the presence of a groove

placed on the axis of symmetry, i.e., if the number of grooves is odd, κ “ 1, else κ “ 0.

Eqs. (2.12) and (2.13) were obtained by superposing the bending effect due to each

groove through the principle of virtual work applied to the grooved plate [31]; thus,

a proper relationship among the local curvatures 1{R and the mean curvature 1{R
producing the same transversal deflection of the system was found.

Hence, from Eqs. (2.10), (2.12) and (2.13), it results

R “ l2h2
s

6pS11 ` S12qσfhf4aχ
. (2.14)

2.4 Results and Discussion

Plasticization of the surface with grooves operated by a blade with diamonds grains

(grit) has already been investigated through Raman spectroscopy [46]. Results proved

that the plasticized layer is very localized, its thickness being comparable to the grit
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Figure 2.5: Photo of a typical blade obtained through optical microscopy. Dimensions
of some diamond grains are highlighted.

size. Therefore, the thickness of the plasticized layer (hf ) can be directly controlled

by simply varying the blade grit. As can be noticed in Fig. 2.5, where the size of

some diamond grains is highlighted, it is reasonable to set hf to be 5 µm, thus to

make it possible the determination of σf . In any case, the only quantity that can not

be measured directly in Eq. (2.14) is σfhf . However, the following elaborations will

be made in terms of σfhf , therefore precise knowledge on σf and hf individually is

not crucial.

Under the assumption of the plasticized layer as a compressive film deposited on

the surface of an unaltered crystal substrate, the curvature radius of grooved samples

can be obtained through Eq. (2.14). In order to prove this hypothesis, a systematic

production and characterization of grooved samples was worked out. Analysis was

carried out on square Si plates with 10 mm lateral dimension patterned with a grid of

9ˆ9 grooves on one of their surfaces. To deepen our study, different plate thicknesses

(0.53, 1.03 and 1.94 mm) were investigated. In Fig. 2.6, the curvature radius is shown

as a function of the groove depth.

For every grooved sample, the value of σf was calculated by simply reversing Eq.

(2.14). Three averaged values, σf1 “ 38.4 MPa, σf2 “ 38.6 MPa and σf3 “ 38.8

MPa were obtained for three set of samples with thickness 0.53, 1.03 and 1.94 mm,
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Figure 2.6: Mean radius of curvature (R) of grooved plates with variable depth for
a grid of 9ˆ9 grooves. The black points represent the measured samples with uncer-
tainty bars. Theoretical expectation (dashed lines) was calculated taking into account
the uncertainty on σf . Plates thickness (p.t.) was 530, 1030 and 1940 µm.

respectively. Since σf1, σf2 and σf3 are very close to each other, the existence of

a single value for σf = 38.6 MPa, valid for all samples, can be inferred. This fact

confirms that σf does not depend upon the plate thickness but only on the grooving

process, in agreement with theoretical expectations.

According to the model, the mean radius of curvature in Eq. (2.14) is expected to

depend on hs, rather than on the plate thickness. In order to prove the hs dependence,

the same data were plotted vs. hs (Fig. 2.7). As can be seen, experimental data are

again in close agreement with the expectation of the model.

The model was also verified by measuring the radius of curvature as a function of

the number of grooves on 10ˆ10ˆ0.5 mm3 Si plates. Groove depth was kept fixed

at 258 µm with 10 µm of uncertainty. The other physical quantities of interest are

reported in Tab. 2.2 and experimental results are shown in Fig. 2.8. The Fig. 2.8

highlights that good agreement between experimental data and theoretical expecta-

tion exists, as given by Eq. (2.14).

In summary, the state of stress and curvature in the samples are completely de-

termined by the effect of plasticization due to the sawing process. Moreover, it was

found out that the sequence by which the grooves are made does not influence the

stress distribution, meaning that the resulting curvature solely depends upon the final
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Figure 2.7: Mean radius of curvature (R) of grooved plates with variable substrate
thickness (hs) for a grid of 9ˆ9 grooves. The black points represent the measured
samples with uncertainty bars. Theoretical expectation (dashed lines) was calculated
taking into account the uncertainty on σf . Plates thickness was 530, 1030 and 1940
µm.

Figure 2.8: Mean radius of curvature (R) of grooved plates with variable number
of grooves. The black points represent the measured samples with uncertainty bars.
Theoretical expectation (dashed lines) was calculated taking into account the uncer-
tainty on σf . Plates thickness was 530 µm and the groove depth was 258 µm.
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Table 2.2: Features of the samples shown in Fig. 2.8
Number of grooves a (mm) a0 (mm) a1 (mm)

5ˆ5 0.16 0.72 1.94
7ˆ7 0.16 0.72 1.24
9ˆ9 0.16 0.72 0.89
11ˆ11 0.16 0.72 0.68
13ˆ13 0.16 0.42 0.59
15ˆ15 0.16 0.37 0.49
17ˆ17 0.16 0.36 0.41

Figure 2.9: Mean radius of curvature (R) of grooved plates with variable depth for
a grid of 9ˆ9 grooves. Empty black circles represent the measured grooved side of
samples with uncertainty bars, while filled red circles represent the measured back
side of samples with uncertainty bar. Theoretical expectation (dashed lines) was
calculated taking into account the uncertainty on σf . Plates thickness was 1940 µm.

configuration of the grooves.

A crucial question for applications is whether or not the strain propagates deep

into the substrate. Thereby, deformation was investigated on the grooved faces of the

samples and compared to their respective backfaces. A systematic study was carried

out on a 10ˆ10ˆ2 mm3 Si plates with a grid of 9ˆ9 grooves on one of their surfaces.

Fig. 2.9 contains the curvature radii measured on both faces of each sample. Both

values agree to each other and to the general trend of the curve within the margin of
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uncertainty, thereby a uniform curvature of the crystalline planes within the samples

can be inferred.

2.5 Conclusions

A precisely determined bending of Si plates was obtained thanks to the method of

grooves. An extensive study through the systematic production and characterization

of grooved silicon samples was performed. It was demonstrated that the deformation

affects the whole crystal, the curvature of opposite sides of the crystal being the same

as far as experimental uncertainty is concerned. Not self-equilibrated residual stresses

in the layer affected by the sawing process result in self-standing bent crystal. Grooved

crystals can be used in manifold applications, especially those where weight constraint

is mandatory, because no external mechanical device can be tolerated. Example of

these applications are the realization of a Laue lens for nuclear medicine, homeland

security or satellite-borne experiments in astrophysics.

The curvature of grooved samples can be foreseen with a model, that is based on

the assumption that the plasticized layer behaves as a compressive film. Then, the

Stoney approach was used to determine the curvature of grooved samples.

The method of grooves appears to be of widespread application and could be used

to bend other materials than silicon. In fact, in the next sections, it will be demon-

strated that germanium also behaves accordingly. An advantage of the developed

model is that it purely relies on macroscopic physical quantities.



CHAPTER 3

Diffracting hard X-rays with high

efficiency: the geometry 1

3.1 Grooved crystals for high-efficiency diffraction

Silicon mono-crystals were bent thanks to a series of parallel superficial grooves on one

of the largest faces of the crystals. Grooved Si crystals were characterized at the Eu-

ropean Synchrotron Radiation Facility (ESRF) in Grenoble, using a monochromatic

beam ranging from 150 to 700 keV. Crystals exhibited very high diffraction efficiency

over a broad range of energy, reaching 95% at 150 keV. The measured angular spread

of the diffracted beam was always very close to the morphological curvature of the

sample under investigation, proving that the energy passband of bent crystals can

be controlled by simply imparting a selected curvature to the sample. The grooving

method was found to offer high reproducibility and easy control of diffraction proper-

ties of the crystals. In the next sections, an on-beam systematic study to probe their

performance vs. diffraction of high-energy photons is shown.

3.2 Experimental

Commercially available pure Si wafers were diced to form plates using the DISCOTM

DAD3220. The samples were bent through the grooving method, as explained in chap-

ter 2. Grooves were manufactured on the surface of the plates along one direction,

i.e., either x or y (Fig. 3.1a). All plates were 1 mm thick with the orientation of the

largest surfaces being (111). Fabrication parameters of all the samples are reported in

Tab. 3.1 and an image of one of the samples is shown in Fig. 3.2. For every crystal,
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Figure 3.1: Grooves were manufactured on the surface of a Si plate along one di-
rection, either x or y (a). The probe X-ray beam enters the sample parallel (b) or
perpendicular (c) to the grooves

Table 3.1: Fabrication parameters of all the samples

Code S24 S31 S71 S72 S81

Size (mm3) 9.8ˆ9.8ˆ1 12.2ˆ12.2ˆ1 25.5ˆ25.5ˆ1 25.5ˆ36.6ˆ1 54.2ˆ30.6ˆ1

Number of
15 15 31 25 30

grooves

Direction
[110] [110] [110] [211] [110]

of grooves

Pitch of
650 780 790 1000 1000

grooves (µm)

Depth of
500 500 500 400 400

grooves (µm)

Blade very hard hard hard hard hard

the curvature induced by grooves was measured through optical profilometry. Once

the initial non-planarity of the samples has been taken into account, profilometry was

done on the back face of the grooved plates. An ellipsoidal surface was recorded, with

the shortest radius of curvature perpendicular to the grooves. A typical profilometric

pattern of one of the samples is shown in Fig. 3.3. Production and optical character-

ization of all samples were carried out at the Sensor and Semiconductor Laboratory.

All samples were tested through X-ray diffraction during a 6-day run at beamline

ID15A of ESRF. A highly monochromatic and quasi-parallel beam was tuned to the

desired energy, ranging from 150 to 700 keV, thanks to a two-reflection Laue Si (111)

unbent monochromator. Monochromaticity was of the order of ∆E/E = 2x10´3. The

sample holder was set far enough from the detector in order to allow for sufficient

separation of diffracted and transmitted beams even at the highest energy. The char-

acterization of the samples was carried out by performing rocking curves (RCs), i.e.,
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Figure 3.2: Side view of sample S71 with a series of grooves as taken by scanning
electron microscope. The black arrow indicates the pitch of the grooves

by recording either the transmitted or diffracted beam intensity while the crystal was

being rotated in the beam around the position where the Bragg condition was satis-

fied. Diffraction and transmission RCs were recorded one after the other, resulting in

two complementary curves as a function of the beam incidence angle. The full width

at half maximum (FWHM) of the RC was a direct measurement of the angular dis-

tribution of diffracting planes (hereinafter referred to as angular spread), namely the

bending angle of the crystal. In all the cases above mentioned, the Bragg angles were

small. Therefore, a possible broadening of the RCs due to a variation of the lattice

parameter can be negligible. Furthermore, the shape of the RCs was not modified

by extinction phenomena, which are negligible in such bent crystals. The RCs also

exhibits the diffraction efficiency of the sample under analysis. For comparison with

previously published measurements, efficiency was defined as in Ref. [52], namely

the ratio of diffracted beam intensity over the transmitted one. Transmitted beam

intensity was recorded by keeping the sample under diffraction condition and shifting

the detector in such a way to measure the beam intensity passing through the crystal

without undergoing diffraction.

All samples were analyzed by diffraction with their (111) planes, the pencil beam

entering the sample at different depths from the grooved surface (coordinate z ). Two

different configurations were used, i.e., the beam was set quasi-parallel (hereinafter

referred to as parallel) or perpendicular to the grooves, its size being 50ˆ50 µm2 and

100ˆ50 µm2, respectively. A sketch of the two configurations is shown in Figs. 3.1b

and 2c.
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Figure 3.3: Optical profilometry scanning of the surface without grooves of crystal
S71 (a). False-color representation of deformation is highlighted. Cross sections of
the deformation pattern along y = [211] (b) and x = [110] (c) directions as taken on
the center of the sample with indications of the two main curvature radii

Table 3.2: Main performance of all the samples under investigation

Code S24 S31 S71 S71 S72 S81

Photon energy
150 150 - 500 150 - 700 150 - 500 150- 600 300

(keV)

Beam configuration
Perp. to Perp. to Par. to Perp. to Perp. to Par. to

the grooves the grooves the grooves the grooves the grooves the grooves
Bending angle

32.2 35.1 15.7 66.6 55.0 29.5
(arcsec)

Angular spread
26.2 23.6 14.1 57.1 49.9 25.7

(arcsec)
Max. diffraction

efficiency at lowest 81.7% 69.1% 94.9% 71.1% 79.4% 86.4%
energy

Averaged diffraction
efficiency at lowest 54.9% 51.1% 93.4% 56.1% 60.3% 81.8%

energy
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Finally, experimental data were analyzed and compared to theoretical expectations

through a custom-made software specifically designed for bent crystals and inspired

from the code in Ref. [23].

3.3 Results and discussion

The main characteristics of each measured sample are summarized in Tab. 3.2. Here

the features of sample S71 are extensively described, since more significant. The

crystal was initially measured at 150 keV with the beam penetrating the sample

through its 25.5ˆ1 mm2 surface at different depths from the grooved side, parallel

and perpendicular to the grooves. Bending angles of the sample, as measured by

optical profilometry, averaged 15.7 and 66.6 arcsec along the [110] and [211] directions,

respectively. Fig. 3.4 shows both diffracted and transmitted RCs as normalized to

transmitted beam intensity (so that diffraction efficiency is readily displayed).

All RCs exhibited flat-topped and uniform shapes with FWHM of the order of

crystal bending, i.e., it averaged 14.1 and 57.1 arcsec for the parallel and perpendicular

cases, respectively. This sample featured significantly high efficiency when the beam

was parallel to the grooves, highlighting very homogeneous diffraction pattern with

efficiency about 93.4% over the whole depth. This performance highlights that a bent

crystal can amply break the 50%-efficiency limit, which holds indeed for a mosaic

crystal. With the beam perpendicular to the grooves, diffraction efficiency was still a

good performance though it varied over the crystal depth, i.e., it was nearly 50% close

to the grooved region, and raised up to 71% deeper into the crystal. Such features

are better pointed out in Figs. 3.5a and 3.5b, where diffraction efficiency is shown as

a function of coordinates z and y (z and x ), for the parallel (or perpendicular) case.

Efficiency resulted constantly close to the unity in the parallel case while it smoothly

varied over the whole depth for the other configuration. However, no dependence on

coordinate y (or x ) was recorded in any case. The same dependence was recorded

for angular spread for the parallel and perpendicular cases (Fig. 3.5c and Fig. 3.5d,

respectively). It follows that the curvature was uniform along coordinate y (or x ),

though its dependence on coordinate z showed different profile. Indeed, as the distance

from the grooved face increased, the angular distribution slightly increased for the

parallel case. Perpendicularly to the grooves, the variation of the angular spread

within the crystal was stronger, i.e., it increased across the groove depth and decreases

outside. This evidence can be ascribed to the fabrication process of grooving. In fact,

generation of mosaicity perpendicularly to the advance speed of the blade is easier

to form than longitudinally because of the stronger action exerted by the blade on
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the side walls of the groove. This effect leads to an increase in angular spread, and

consequently in energy bandwidth, resulting in efficiency decrease throughout the

whole depth of the grooves. Indeed high efficiency was restored beneath the grooves,

meaning that the curvature of diffracting planes was homogeneous and its structure

was not significantly affected by mosaicity.

Finally the sample was measured at several energies, the beam entering the crys-

tal far from the grooved region, parallel and perpendicular to the grooves. RCs are

shown here for parallel case (Fig. 3.6). The sample featured significant diffraction

efficiency up to 700 keV, ranging from 92% down to 29%. With the beam perpen-

dicular to the grooves, efficiency keeps lower than 60% above 200 keV. Next section

compares experimental performance to theoretical expectations, showing that the de-

crease in efficiency with energy is completely in agreement with the dynamical theory

of diffraction [25].

3.4 Simulations

In order to deepen our understanding of diffraction properties of the samples, a sim-

ulation code was developed. The software describes diffraction in both curved and

mosaic crystals and generates the physical quantities of interest. Such quantities, typ-

ically used to qualify the diffraction properties of a crystal, are diffraction efficiency

and reflectivity. Reflectivity is defined as the ratio of diffracted beam intensity over

incident beam intensity. For any set of parameters such as crystalline material, set

of reflection planes and thickness of curved or mosaic crystal, the code computes re-

flectivity and diffraction efficiency as a function of photon energy and angular spread

(or mosaicity). Expected performance is then compared to experimental data. The

diffraction efficiency for mosaic and CDP crystals was calculated with Eqs. 1.2 and

1.5.

As in previous section, the results of the simulations will be shown here for sample

S71. In Fig. 3.7, experimental diffraction efficiency vs. z is compared to the theoret-

ical efficiency in case of a perfectly curved crystal and a mosaic crystal. These latter

were calculated taking into account the FWHM of the RCs, thus an experimental un-

certainty is included. Due to generation of mosaicity perpendicularly to the grooves,

measured efficiency varies over the crystal depth, being always lower than the theo-

retical limit for a perfectly bent crystal, especially under the grooves. However, this

performance keeps always higher or at worst equal to the theoretical efficiency for a

mosaic crystal, meaning that the grooves allow obtaining a homogeneous curvature

with no significant damage of the crystal. In order to better understand the behavior
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Figure 3.4: RCs of crystal S71 with the beam parallel to the grooves at several dis-
tances from the grooved face, at (a) z = 0.4 mm, (b) z = 0.6 mm, (c) z = 0.8 mm; the
RCs were recorded at y = 13.9 mm. RCs with the beam perpendicular to the grooves
at (d) z = 0.15 mm, (e) z = 0.55 mm, (f) z = 0.85 mm; the RCs were recorded at x =
15 mm. The filled red circles plot the intensity of the transmitted beam, whereas the
empty blue circles plot the intensity of the diffracted beam. RCs with rectangular and
homogenous shapes were achieved, with an energy passband of the order of crystal
bending (about 16 arcsec for the parallel case and 57 arcsec for the perpendicular
case). Efficiency is close to the unity in the parallel case. Notice that in (d) the sum
of the transmitted and diffracted beams is bigger than 1 in the left part of the RCs.
This artefact is due to the proximity of the surface where the diffracted beam leaves
the crystal, thus the path of the diffracted beam does not cross the whole thickness
of the crystal, resulting in smaller absorption.
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Figure 3.5: Diffraction efficiency of crystal S71 vs. coordinate z (mm) at several
positions within the crystal (coordinate y or x ) for parallel (a) and perpendicular (b)
cases. Same dependence of angular spread is shown for parallel (c) and perpendicular
(d) cases. No dependence on coordinate y (or x ) was recorded in any case. Efficiency
near the polished side of the sample is close to the unity while it gently decreases close
to the grooved side in the parallel case and more strongly in the perpendicular case.

of diffraction response, the crystal was modeled as it were made by two coexisting

structures at any coordinate z, i.e., a mosaic crystal and a perfectly curved crystal.

Based on this model, diffraction efficiency was considered as the superposition of the

contributions of the two kinds of crystal. Here, C (z ) is the fraction of perfectly curved

crystal-like behavior and [1-C (z )] the contribution of mosaicity, such that

ηpzq “ CpzqηC ` r1 ´ CpzqsηM (3.1)

where η(z ) is the experimental diffraction efficiency obtained at a given distance

from the top of the crystal, ηC the expected diffraction efficiency for a perfectly

curved crystal and ηM the expected diffraction efficiency in case of a mosaic crystal.

As a result, for the perpendicular case the fraction of mosaicity [1-C (z )] is close

to the unity in the region of the grooves, and vanishes outside. For the parallel

configuration the mosaicity fraction keeps about 8% throughout the entire thickness

of the sample. Indeed, in the parallel case, experimental efficiency is constantly close
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Figure 3.6: RCs of crystal S71 with the beam parallel to the grooves, measured at z =
0.8 mm and y = 13.9 mm. Beam energy was set at 200 keV (a), 300 keV (b), 400 keV
(c), 500 keV (d), 600 keV (e) and 700 keV (f). The filled red circles plot the intensity
of the transmitted beam, whereas the empty blue circles plot the intensity of the
diffracted beam. Efficiency falls off with photon energy according to the dynamical
theory of diffraction though a rectangular shape of the distribution is preserved.
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Figure 3.7: Experimental efficiency (blue circles) vs. coordinate z (mm) for crystal
S71 with the 150 keV probe beam perpendicular to the grooves. Red dashed and
dotted lines represent theoretical efficiencies in case of a curved and of a mosaic
crystal, respectively. An experimental uncertainty is included in both cases. Due to
generation of mosaicity, experimental efficiency varies within the crystal, being lower
over the whole groove depth and increasing outside. However, diffraction efficiency
is always higher or at worst equal to the theoretical contribution given by a mosaic
crystal.

to the theoretical limit of a perfectly curved crystal.

Diffraction efficiency was studied vs. photon energy. Fig. 3.8 shows the response

of sample S71, measured with the beam parallel and perpendicular to the grooves.

In the parallel case (Fig. 3.8a), experimental efficiency is very close to its theoretical

limit over about 15 arcsec angular spread, namely the morphological curvature of the

sample. With the beam perpendicular (Fig. 3.8b) to the grooves, efficiency is slightly

lower than its theoretical limit though still higher than the theoretical efficiency for a

mosaic crystal.

A behavior similar to that of sample S71 was observed by all the samples in Tab.

3.2, this being a representation of the high reproducibility of the grooving method.

3.5 Discussion

The grooving method proved to yield a self-standing homogeneous and controlled

curvature in Si (111) crystals. The crystals showed significantly high efficiency and
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Figure 3.8: Experimental and theoretical diffraction efficiencies vs. energy, for paral-
lel (a) and perpendicular (b) cases for crystal S71. RCs were carried out at 0.8 mm
and 0.85 mm from the grooved face for parallel and perpendicular cases, respectively.
Theoretical efficiency (red dashed line) was calculated taking into account the FWHM
of the RCs, thus an experimental uncertainty is included. Measured diffraction effi-
ciency is represented by blue circles with their error bars. Red dotted line represents
theoretical efficiency for a mosaic crystal with mosaicity equal to the FWHM of the
RCs.

broad-band response when subjected to X-ray diffraction. The morphological curva-

ture measured by optical profilometry is in good agreement with the curvature of the

crystalline planes as determined by X-ray diffraction. As a result, it can be inferred

that the energy bandwidth of bent crystals can be very well controlled. Diffraction

efficiency turns out to be different when the beam is parallel or perpendicular to the

grooves and that is ascribed to a generation of stronger mosaicity perpendicularly to

the grooves. Grooved Si crystals were shown to efficiently diffract up to 700 keV,

proving that optics made of bent crystals can work on a wide energy range in the

hard X / soft γ ray domain. However, at energies above 300 keV, crystals with higher

atomic number may be more suitable to yield a even higher reflectivity.

The use of diffracting crystals disposed in geometry 1 requires the fabrication and

the positioning of a large number of samples to cover the whole Laue lens, because

the crystals must be oriented with their major faces parallel to the photon direction.

A solution to this problem is given in [53]. In fact, a stack of bent crystals can be

assembled as an optical element for X-ray focusing, as shown in Fig. 3.9. The bent

samples were glued one over the other to form a stack, simply using hot-melt adhesive.

The relative alignment of the curved diffracting planes in the stack was tested by hard

X-ray diffractometry using a polychromatic and divergent beam. The experimental

results are shown in [53, 54]. The stack exhibited a single and well defined spot under
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Figure 3.9: A stack of plate-like curved crystals is proposed as an optical component
for focusing of X- and γ-rays. The crystal curvature arises from grooving of a surface
of each plate. In the Laue lens scheme, high-energy photons enter nearly parallel to
the CDP, suffer diffraction and undergo focusing onto the detector.

X-ray diffraction, highlighting that the plates were sufficiently aligned to behave as a

single crystal. The curvature of the plates in the stack can be precisely set by tightly

controlling the experimental parameters of grooving.

Thanks to the stacking, it would be possible to realize optical elements with arbi-

trarily large size, aiding the problem of positioning. However, the number of crystals

needed to cover a whole Laue lens still remains the same, namely very large. More-

over, in order to employ stacked crystals for space-borne system, vibrations tests must

be performed.

To overcome this problem, geometry 2 with curved crystals has been introduced, to

expose the larger crystal surface to the photon flux. It is shown in the next chapters

that, exploiting the quasi-mosaic effect in grooved crystals, it is possible to obtain

bent Si and Ge samples capable of focusing the X-ray beam with high efficiency and

high resolution.



CHAPTER 4

Diffracting hard X-rays with high

resolution: the geometry 2

4.1 Quasi-mosaic crystals

Quasi-mosaicity is an effect of secondary bending within a crystal driven by crystalline

anisotropy. This effect can be used to fabricate a series of curved crystals in geometry

2 for the realization of a Laue lens (see Figs. 4.1). It will be shown that crystals bent

that present the quasi-mosaic effect allow very high-resolution focusing with respect

to mosaic crystals. In particular, quasi-mosaic crystals would increase the signal-to-

noise ratio up to one order of magnitude as compared to a Laue lens based on mosaic

crystals with the same energy passband. Moreover, no mosaic defocusing would occur

for quasi-mosaic crystals.

High-resolution focusing of diffracted photons within an energy range is an impor-

tant requirement for all the applications involving a Laue lens. It is possible to use

quasi-mosaicity for crystal bending, i.e., an effect of anisotropy in crystal deformation.

In this configuration, bending results in a primary curvature generating a secondary

curvature within the crystal due to quasi-mosaic effect. Usage of quasi-mosaic (QM)

crystals allows positioning of the crystals in a Laue lens in the same way as for mosaic

mosaic crystals, i.e., with the diffracting planes perpendicular to the major faces of

the crystal (Fig. 4.1). For a Laue lens made by crystals with diffracting planes per-

pendicular to the major face of the crystal, focusing can be fully provided by bending

the crystals to a primary curvature equal to that of the whole lens. But, even for such

a curved crystal, if the diffracting planes were perfectly flat, the integrated reflectivity

of the whole lens would be the same as for an unbent mono-crystal, i.e., a relatively



36 4. Diffracting hard X-rays with high resolution: the geometry 2

low figure. Indeed, by using QM crystals, it is possible to encompass the focusing

action due to primary curvature with the high reflectivity of bent diffracting planes

built up by quasi-mosaicity. Here it is also shown that since the size of the focal

spot of the photons diffracted by a QM crystal can be controlled by the secondary

curvature, QM crystals allow focusing with higher resolution with respect to mosaic

crystals.

Figure 4.1: A primary curvature of a properly oriented crystal leads to a secondary
curvature owing to quasi-mosaicity. For a Laue lens, quasi-mosaic curvature of (111)
lattice planes resulting from primary bending of p112̄q crystal plates is proposed for
diffraction of the radiation. In this configuration the (111) diffracting planes are
perpendicular to the main surface of the plate, thus positioning of the crystals in
the lens would be the same as for mosaic crystals. ΩP and ΩQM are primary and
secondary bending angles, respectively.

4.2 Quasi-mosaicity in the theory of elasticity

Historically, quasi-mosaicity was discovered by Sumbaev and discussed in a seminal

work [30]. More recently, this phenomenon was introduced by Ivanov [55] to bend Si
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Figure 4.2: Schematic representation of a square crystal plate with the coordinate
system used for the modelling. The bent arrows symbolize the applied momenta Mx

and My.

crystals for steering high-energy particles via coherent effects in crystals, viz. planar

channeling [43] and volume reflection [44]. However, such QM crystals do need an

external device to maintain their curvatures. For satellite-borne experiments the usage

of an external device would lead to excessive weight, thus self-standing bent crystals

are mandatory for practical implementation of QM crystals in a Laue lens.

Quasi-mosaicity is fully understood in the framework of the theory of linear elastic-

ity. A square crystal plate subject to a couple of mechanical momenta applied along x

and y directions undergoes primary deformation (see Fig. 4.2). In this configuration,

the curvatures of internal planes can be calculated through the displacement field as

a function of space u(r), v(r), w(r), which are the deformations along x, y and z

directions, respectively.

Starting from EQs. 2.3 and by assuming Mx = My = M (see Fig. 4.2), the

primary curvature on the center of the plate surface, i.e., at p0, 0, 0q, holds

1

RP

“ d2w

dx2
“ ´M

I
pS11 ` S12q for xz planes (4.1)

and
1

RP

“ d2w

dy2
“ ´M

I
pS12 ` S22q for yz planes (4.2)

while the curvatures induced by quasi-mosaicity is

1

RQM

“ d2v

dz2
“ M

I
pS41 ` S42q for yz planes (4.3)
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and
1

RQM

“ d2u

dz2
“ M

I
pS51 ` S52q for xz planes (4.4)

It follows that QM curvature occurs only if pS41 ` S42q or pS51 ` S52q is not zero,

thus it manifests itself only along selected crystallographic directions. In particular for

a diamond-like lattice, primary deformation of p112̄q planes results in QM deformation

of (111) planes (Fig. 4.1). The ratio between QM and primary curvature along the

radial direction of the lens holds

RQM

RP

“ S12 ` S22

S41 ` S42

(4.5)

For a high-efficiency diffraction by Si or Ge plates, (111) planes are normally selected

because of their high reflectivity. Thus, it is proposed to bend p112̄q Si or Ge plates as

a primary curvature, which results in secondary curvature of (111) diffracting planes

aligned with the radial direction of the lens.

4.3 Discussion and simulations

In this section it is provided a performance comparison between mosaic vs. QM

crystals, each of which used under optimal condition for practical implementation in

a Laue lens with realistic data.

A mosaic crystal was consider with the shape of a square tile of size LM and with

a certain mosaicity ΩM . If is assumed a parallel incoming beam impinging onto the

crystal, the spatial distribution of the photons that are diffracted on the focal plane

is given by the convolution of the tile size of the crystal with the normal distribution

of the crystallites [27]. Thus, the square image of each mosaic crystal suffers from

blurring due to mosaicity, the contribution of all the crystals of a whole ring being

the overlap of the blurred images of all the crystal tiles.

The final pattern is dominated by one of the two effects in the convolution, depend-

ing on the proportion between mosaicity and the ratio between the tile size with the

focusing length. If mosaicity is negligible the focal spot only depends on the tile size,

if instead mosaicity dominates, the intensity of the focal spot is Gaussian-distributed.

In practical cases, as in [27], mosaicity is not negligible though it is not the major

effect.

With an individual QM crystal with tile size LQM , it is possible to focalize the

photons along the radial direction by simply bending the crystal to a primary curva-

ture equal to that of the whole lens. In this case the focal spot is a rectangle with base



4.3. Discussion and simulations 39

LQM in the direction where focusing does not occur and height being determined by

the quasi-mosaic curvature within the crystal. Under same conditions for the incom-

ing beam and by assuming that the passband for photon energy for a mosaic crystal

equals that for a QM crystal, it comes clear that the size of the spot on the focal

plane is certainly smaller for a QM crystal than for a mosaic one.

To deepen this argument, simulations of focusing capability of QM vs. mosaic

crystals was done. These were accomplished through both a Monte Carlo method and

an analytical modelling. Firstly, for both kinds of crystals it is calculated the ratio

between diffracted beam intensity and incident beam intensity, i.e., the reflectivity.

For mosaic case, reflectivity is given by formula 1.2 [24]. Since QM crystals belong

to a class of CDP crystals, then the ratio between diffracted and incident beams, i.e.,

the reflectivity ηQM , is given by the following formula as a result of the dynamical

theory of diffraction [25]

ηQM “ r1 ´ e
´π2T0dhkl

ΩQMΛ2
0 se

´µT0
cosθB (4.6)

where T0 is the crystal thickness traversed by radiation, dhkl the d-spacing of planes

phklq, θB the Bragg angle, µ the linear absorption coefficient within the crystal, Λ0

the extinction length as defined in [26] for the Laue symmetric case and ΩQM “ T0

RQM

represents the bending angle of the curved diffracting planes. With QM crystals,

these latter are (111) planes, thus ΩQM can be calculated as a function of the primary

curvature through Eq. (4.5).

For the simulation, crystal tiles was considered to be disposed as concentric rings

onto the spherical cap of a Laue lens with a certain focal distance f . The energy

passband of a full ring is given by formula [56], which holds for both configurations

∆E « 2ΩEf

r
(4.7)

where r is the radius of the ring and E the mean energy diffracted by a ring, depending

on crystal reflection planes as given by formula [56]

E “ hc

2dhkl sinp1
2
tan´1p r

f
qq « 12.4

f

dhklr
(4.8)

where the approximation of small angles was considered in last two formulae.

In order to provide a numerical comparison, an incoming photon beam with uni-

form energy distribution centered at E and with energy spread ∆E was considered to

impinge parallel to the axis of the lens, this latter taken with a focal distance of 20 m

and made of a single ring. E was investigated within the range 100-250 keV, which is
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Table 4.1: Main features and results of the simulation at E=250 keV
mosaic quasi-mosaic

Material Cu Ge
Atomic number 29 32
∆E (keV) 8.27 8.27
Number of rings 1 1
Ring radius (m) 0.475 0.304
Tile size (mm) 10.0 10.0
Tile thickness (mm) 6.5 2.4
Mass of crystals (kg) 1.71 0.24
Number of photons hitting the lens 106 633898
Mosaicity (arcsec) 81 -
rfocus at FWHM (mm) 5.8 0.47

an interval including both astrophysics and nuclear medicine. Hereinafter are explic-

itly given the parameters for optimization at E = 250 keV. Cu and Ge were chosen

as materials for mosaic and QM cases, respectively. This choice of comparison can be

justified since the former material is normally proposed as a mosaic crystal to diffract

photons at those energies, the latter, having an atomic number comparable to that of

Cu and being commercially available as high perfection mono-crystals. The choice of

a single ring was taken for a more direct comparison between the two configurations.

To fairly compare QM and mosaic crystals with the shape of square tiles, the

energy passband and flux of incident photons were chosen to be the same for the two

cases. For direct comparison with no need for normalization, the crystals were chosen

to have the same tile size LQM = LM = L = 1.00 cm. Thus, the optimal mosaicity

for the mosaic case, ΩM , at 250 keV and L = 1.00 cm turned out to be 81 arcsec.

Therefore, these parameters determine an energy passband ∆E = 8.3 keV. Finally, a

crystal thickness of T0 = 6.5 mm was chosen in order to optimize the reflectivity rM

(Eq.1.2) throughout the whole ring of the lens.

For the QM case, the primary radius of curvature of the crystal must be twice the

focal length of the lens, namely 40 m [57]. T0 was a free parameter that determines

both focusing capability and reflectivity of the lens. Indeed, large values of T0 lead to

higher reflectivity and lower spatial resolution on the focal plane, while smaller values

of T0 smoothly decrease reflectivity but significantly increase the focusing capability.

An optimum value of T0 is determined by perfect matching of the focal spot with the

detector size. In this simulation, it was chosen T0 “ 2.4 mm.

Main features used for the simulation and its outcomes are reported in Tab. 4.1

and results are shown Fig. 4.3 for E “ 250 keV. Here a cross-section of the photon
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Figure 4.3: Cross-section of photon distribution in the focal plane for the cases of
mosaic and quasi-mosaic crystals at E = 250 keV. For the mosaic case the crosses
and the continuum line represent Monte Carlo simulation and analytical modelling,
respectively. For quasi-mosaic crystal the circles and the dashed line represent Monte
Carlo simulation and analytical modelling, respectively. Total counts are normalized
to mosaic case. FWHM turns out to be 5.8 mm for mosaic case while 0.47 mm for
quasi-mosaic one.

distribution in the focal plane, in the cases of mosaic and QM crystals is displayed.

As visible, under same conditions of lens geometry, ∆E and flux of photons hitting

the crystals, the focal spot for the QM case is significantly smaller and a higher signal

intensity can be attained. This latter fact means that focusing with higher resolution

can be accomplished if the lens is formed by QM crystals.

To compare the two focal spots, it was resorted to the signal-to-noise ratio as

follows

StN “ S

N
9 S

Vdet

9 S

rfocus2
(4.9)
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where S is the signal count within a specified encircled area with radius rfocus, N is the

background, Vdet is the useful volume of the detector and rfocus is half of the FWHM

of photon distribution in the focal plane. The background was taken proportional to

the volume of detector, this latter facing the incoming X-rays with a surface as large

as the encircled area. Due to different focalization properties, the obtained FWHMs

of photon distribution in the focal plane for QM and mosaic cases were significantly

different.

As a result of simulation, the quotient between the signal-to-noise ratios for the

cases of QM and mosaic crystals turned out to be

StNQM

StNM

« 10 (4.10)

all over the energy range 100-250 keV.

4.4 Conclusions

The effect of quasi-mosaicity in Ge crystals shows efficient focusing of high-energy

photons in a Laue lens. The size of the focal spot yielded by a Laue lens made of

QM crystals is significantly smaller than that obtained with mosaic crystals under

same experimental conditions. Thereby, the focusing capability of a Laue lens can be

largely improved through QM crystals.

Since with QM crystals it is not simple to obtain large values of curvature of the

diffracting planes, a model was proposed in [58] to calculate the diffraction efficiency

of X-rays in Laue geometry for curved crystals with an arbitrary value of the curvature

radius. The model generalizes the results based on the dynamical theory of diffraction,

which are valid only for crystals with a radius of curvature lower than the critical

curvature. The model was proposed for any kind of crystal, and its efficiency tends

to one-half in the limit of a thick flat crystal.

Starting from the obtained results, an extensive study about the quasi-mosaic

effect was performed. Several Si and Ge samples were produced at SSL and their

diffraction capability were analyzed at ILL and ESRF. The experimental results are

shown and discussed in the next chapters. The performed study aims to realize a

Laue lens based on QM crystals, capable of concentrating the diffracted photons in a

focal spot in such a way to maximize the sensitivity of the lens.



CHAPTER 5

Experimental verification of

quasi-mosaicity in self-standing Si

and Ge grooved crystals

5.1 Quasi-mosaicity in grooved crystals

A silicon and a germanium quasi-mosaic bent crystal for high-resolution diffraction of

X- and γ rays were realized. Production and optical characterization of a Si and a Ge

sample was carried out at SSL. Commercially available pure wafers were diced to form

two plates using the DISCOTM DAD3220, equipped with rotating diamond blades of

150 µm width and 5 µm diamond grain size (G1A 320). A net bending was imprinted

to the crystals thanks to a series of superficial grooves to keep the curvature without

external devices. Then, the curvatures were measured using the optical profilometer

VEECOTM NT1100.

5.2 Quasi-mosaicity in the Si sample

Crystallographic orientations of the Si sample are indicated in Fig. 5.1, and the

profilometry characterization is reported in Fig. 5.2. Main features are reported in

Tab. 5.1.

The Si sample was tested through γ-ray diffraction at the Institut Laue-Langevin

(ILL) (Grenoble, France) at the facility named DIffractometer for Gamma Ray As-

trophysics (DIGRA), a facility purposely built for characterization of instrumenta-

tion in Astrophysics. The γ-ray beam energy was 181.931 keV and monochromaticity
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crystals

Figure 5.1: a) Photo of the sample. It is possible to see the grid of grooves. b)
Schematic representation of the sample. The crystallographic orientation and the
QM curvature are highlighted.

Figure 5.2: a) Interferometric measurement of backside of the Si sample. Left side:
3d view analysis (a). Right side: Cross sections of the deformation pattern along x
(b) and y directions (c), as taken on the center of the sample
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Table 5.1: Crystal features
Material Silicon

Tile size (mm2) 15ˆ15
Tile thickness (mm) 1
Blade type G1A 320
Blade rotation (rpm) 40000
Blade speed (mm/s) 0.2
Groove depth (µm) 500
Number of grooves 15ˆ15
Groove step (mm) 1
Primary radius of curvature along y (m) 38
QM radius of curvature (m) 99

∆E{E «10´6. The γ-ray flux was produced by neutron capture in a gadolinium tar-

get (15764 Gd) inserted close to the nuclear reactor of ILL at a temperature of about

400˝C. Beam divergence after the Si (220) monochromator was 1 arcsec, as measured

by recording a rocking curve (RC) of the monochromator itself. Collimated-beam size

dimension was 1 mm on the diffraction plane pyzq and 3 mm on the plane pxzq, z
being the direction of the beam. A standard electrode coaxial Ge detector with 25%

relative efficiency was used.

Characterization of the sample was carried out by performing RCs. The photon

beam hit the p112̄q surface of the sample and was diffracted by bent p111q planes.

Diffraction efficiency was recorded on the center of the sample and the experimental

RC is reported in Fig. 5.3.

The gray zone represents the theoretical expectation as calculated through a

custom-made code specifically designed to predict the behavior of bent and mosaic

crystals. Both primary and secondary curvatures were accounted for in the simulation.

From Eq. 4.5, the secondary-to-primary ratio holds
RQM

RP
» 2.614 for the orientation

used. In fact, the beam was diffracted by (111) bent planes, whose angular distribu-

tion consisted of the convolution between the portion of primary curvature, as seen

by the beam, and the secondary curvature. The primary curvature seen by the beam

was calculated taking into account the width of the collimated beam (1 mm) and the

primary radius of curvature measured with the profilometer. The divergence of the

beam was also included, by convolving the obtained distribution with a gaussian of

σ “ 1 arcsec. Finally, a morphological factor was included to consider the part of the

sample that cannot diffract, i.e., the portion of material removed during the grooving

process.
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crystals

Figure 5.3: Experimental and theoretical RCs. Red circles plot the intensity of mea-
sured diffracted beam with their uncertainty bar. The gray area represents the ex-
pected result as calculated by taking into account the experimental uncertainties. The
dashed black line represents diffraction efficiency if QM curvature were absent.

Fig. 5.3 shows a good agreement between theoretical expectation relying on quasi-

mosaicity and experimental results, and was indeed the first experimental demonstra-

tion that self-standing QM crystals can be manufactured via superficial grooving.

The key effect of quasi-mosaicity, owing to the curvature of diffracting planes, is

a raise in diffraction efficiency. For comparison, it was simulated the same crystal

with the same primary curvature and orientation if there were no quasi-mosaicity,

i.e., if the diffracting crystalline planes were flat. In this case, the contribution in the

convolution from the secondary curvature would be a Darwin-broadened distribution

instead of a wider uniform distribution due to quasi-mosaiciy. Moreover, in the case

of flat diffracting planes, the diffraction efficiency was set at 0.5 because of intrinsic

limitation of diffraction by flat planes in thick crystals [24]. Diffraction efficiency

resulted in the dashed line in Fig. 5.3, which is by far lower than for the case of

curved diffracting QM planes.

5.3 Quasi-mosaicity in the Ge sample

Crystallographic orientations of the Ge sample are indicated in Fig. 5.4, and the

profilometry characterization is reported in Fig. 5.5. Main features are reported in
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Figure 5.4: Sketch of the Ge sample. Crystallographic orientations and grooves are
highlighted, with the coordinate system used.

Tab. 5.2.

The Ge sample was analysed by diffraction of the (111) planes, bent as a result

of the quasi-mosaic effect. Thus, curvature obtained through the grooving method

(primary) induced a secondary curvature of (111) planes through the quasi-mosaic

effect, as shown in Fig. 5.4. In this case, the QM radius of curvature is 2.39 times the

primary one, viz. RQM “ 2.39Rp “ 92.9 m.

5.3.1 High-efficiency diffraction

Diffraction efficiency of the sample was tested through X-ray diffraction at beamline

ID15A of ESRF. A highly monochromatic beam was set at 150 or 300 keV. The

characterization of the samples was carried out by performing rocking curves (RCs).

The beam size was 50ˆ50 µm2 wide, impinging on a region of the sample free of the

grooves. Rocking curves are shown in Fig. 5.6 a and b.

The FWHM of the RCs turns out to be a direct measurement of the angular

distribution of the (111) diffracting planes. Since the sample was 2 mm thick, the

FWHM of the angular spread was expected to be 4.4 arcsec. This value was well

verified through analysis of broadening of the RCs at both beam energies.

The reflectivity was about 50% for both cases, though the expected values were

100% at 150 keV and 95% at 300 keV. It was an effect similar to that in Fig. 3.7,
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crystals

Figure 5.5: a) Interferometric measurement of backside of the Ge sample. Left side:
3d view analysis (a). Right side: Cross sections of the deformation pattern along x
(b) and y directions (c), as taken on the center of the sample

Table 5.2: Crystal features
Material Germanium

Tile size (mm3) 10ˆ30ˆ2
Blade type G1A 320

Blade width (µm) 250
Blade rotation (rpm) 3000
Blade speed (mm/s) 0.1

Diamond grain size µm 5
Groove depth (µm) 1550 ˘ 5
Number of grooves 9ˆ28
Groove step (mm) 1

Primary radius of curvature Rp along y axis (m) 38.86 ˘ 1.94
QM radius of curvature RQM (m) 92.9 ˘ 4.6
QM angular spread ΩQM (arcsec) 4.4 ˘ 0.2
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Figure 5.6: RCs of crystal. The filled red circles plot the intensity of the transmitted
beam, whereas the empty blue circles plot the intensity of the diffracted beam. (a)
Beam energy at 150 keV. (b) Beam energy at 300 keV.

namely diffraction efficiency was pinned at 50% if the diffraction occurred in a layer

of material rich in defects and cracks. This effect was interpreted as a sort of partial

mosaicization of the sample due to the grooving process. From a microstructural

point of view, the material close to the grooves is subjected to contact with numerous

particles of the blade at the same moment, which cause different contact pressures

and produce different depth of cut due to their different shape and size. Thus, metal-

lization, plastic deformation and brittle fracture may occur simultaneously [46]. The

scarce knowledge of the distribution of dislocations, defects and cracks in the structure

due to the grooving process makes it unfeasible any attempt to predict analytically

the diffraction efficiency. However, recorded values of diffraction efficiency are quite

satisfactory, being higher than any other performance relying on mosaic crystals.

5.3.2 Focusing of an X-ray beam

In order to highlight the focusing effect driven by the sample curvature, the crystal

was analyzed through a diverging and polychromatic X-ray source at ILL [59, 60].

The diffractometer used a high-voltage and fine-focus X-rays tube designed for indus-

trial radiography, the X-ray energy range being between 80 and 420 keV. The beam

impinged onto the sample with an angle depending on the position at the entry face

of the crystal. Thus, X-rays with different energies were diffracted towards the im-

age point, which depended on the curvature of the crystal. A sketch of experimental

configuration is shown in Figs. 5.7a and 5.7b.
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Figure 5.7: Schematic representation of the experiment with a divergent polychro-
matic X-ray beam and the bent crystal with the QM curvature in Laue symmetric
geometry. Depending on the sign of RP , the image distance increase (a) or decrease
(b). (c) FWHM of diffraction profile plotted as a function of sample-to-detector dis-
tance LD. Blue filled circles plot the measured width related to (a) and red empty
circles plot the measured width related to (b). Dashed lines enclose the range of the
theoretical width calculated using Eq. 5.2 and considering the uncertainty over pa-
rameters. (d) Diffraction profile with detector in position P2 (LD = 3.45 m). Blue
filled circles refer to (a), red empty circles refer to (b).
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Table 5.3: System parameters an their uncertainty
Parameter Mean value Uncertainty

source-to-sample distance LS (m) 4.45 0.04
sample-to-detector distance LD (m) variable 0.02
source-to-collimator distance (m) 3.03 0.03
collimator-to-sample distance (m) 1.42 0.01

collimator width (mm2) 9.5ˆ9.5 0.1
CO (mm) 45 1

Portion of crystal hit by the beam l (mm) 14.5 0.6
Source diameter a (mm) 1.0 0.1

Mean Bragg angle θB (degree) 0.58 negligible
Beam divergence ε (degree) 0.100 0.004

Table 5.4: The detector: high-resolution and sensitive X-ray image intensifier coupled
with a CCD camera

Detector features

number of pixels 512ˆ512
size of each pixel (mm2) 0.35ˆ0.35

acquisition time few seconds

The geometrical parameters are reported in Tab. 5.3, whereas the detector is

described in Tab. 5.4. Diffraction of (111) planes was firstly analysed with the beam

impinging on the crystal surface as in Fig. 5.7a. Then, the crystal was rotated by

180˝ around the x axis (see Fig. 5.7b). Considering the geometrical configuration,

the energy range of diffracted beam turned out to be 160-227 keV.

Is worthwhile to notice that in spite that the sample is spherically bent, the crystal

behaves as a cylindrical lens because the focusing effect only occurs in the scattering

plane. Thus, diffraction of a polychromatic and divergent beam produces a line on the

detector [61]. The FWHM of the intensity profile, taken on a cross section perpendic-

ular to the line, depends on several parameters. In the case of a perfect crystal and

the sample-to-detector distance LD equal to source-to-sample distance LS, the width

size depended only on the X-ray source size and on the crystal thickness traversed by

the beam. Conversely, a curved crystal can concentrate the diffracted X-rays either

at a smaller or a larger distance. Indeed, under the small-angle approximation, it is

possible to prove
1

Li

“ 1

LS

` 2

RP

(5.1)

where Li is the image distance of a bent crystal with primary radius of curvature
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equal to Rp with the following convention: RP ą 0 when the centre of the osculating

circle is in the half-plane where the image lies, while RP ă 0 in the contrary case.

To evaluate the focusing capability of the sample, the FWHM of the diffracting

profile was recorded on the detector, that is

FWHM “
d

a2 `
´

2T0θB ´ 2LD

T0

RQM

` l
ˇ

ˇ

ˇ
1 ´ LD

Li

q
ˇ

ˇ

ˇ

¯2

(5.2)

where a is the source diameter, T0 the sample thickness traversed by the beam, l the

size of the beam on the crystal surface and RQM the radius of curvature of the QM

diffracting planes. Also in this case is RQM ą 0 when the centre of the osculating

circle is in the half-plane where the image lies, else is RQM ă 0. The term 2LD
T0

RQM

represents the contribution of the QM planes, that can change the FWHM of the spot

but not Li. If LD “ LS it is possible to obtain the formula described in [53, 54]

The image distance was Li “ 5.77 m for Fig. 5.7a and Li “ 3.62 m for Fig. 5.7b.

In order to verify the effect of the crystal curvature, the detector was positioned at 5

different points indicated with P1, P2, P3, P4, P5 in Figs. 5.7a and 5.7b, while LS

was kept fixed. LD was increased by steps of 1.00 m, starting from 2.45 m for P1 to

6.45 m for P5. In Fig. 5.7c the width of the measured diffraction profiles were plotted

as a function of LD, in agreement with their theoretical expectations. Finally, Fig.

5.7d shows the measured diffraction profiles with LD = 3.45 m (P2).

5.4 Conclusion

It was demonstrated that it is possible to exploit quasi-mosaic self-standing curved

crystals to diffract hard X- and γ rays. Sample fabrication relied on the groov-

ing method, which is an easy and cheap technique. It has been experimentally

demonstrated that quasi-mosaicity significantly raises the crystals diffraction effi-

ciency, which results at least one order of magnitude higher with respect to the one

expected from crystals with flat diffracting planes. The aid of simulation leads to

highlight the reasons for the enhancement, which is to be ascribed to the convolu-

tion of the response due to the primary curvature with a broad distribution owing to

the secondary QM curvature. However, it seems that the grooving process lower the

capability of a bent QM crystal.

As well as in a Laue lens, a crystal that exploits the QM effect could also be used

in a white-light diffractometer to control the focal length of the diffracted X-ray beam

by simply adjusting the primary curvature, while the QM curvature guaranties a high
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integrated diffraction efficiency. Such an operation could easily be automated through

a piezo-driven holder.

On the basis of the obtained results, quasi-mosaicity was exploited as effect to

produce a series of high-resolution optical elements for the realization of a prototype of

Laue lens within the Laue project, as shown in chapter 6. Moreover, quasi-mosaicity

was investigated along unusual crystallographic directions, as shown in chapter 7.

Following from that, two new schemes of Laue lens are proposed in chapter 8.
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CHAPTER 6

Manufacture of self-standing Ge

QM crystals for the Laue project

6.1 Quasi-mosaic crystals for a prototype of Laue-

lens

The realization of a Laue lens for astronomical purposes does demand mass produc-

tion of crystalline tiles as optical components. It has been demonstrated in previ-

ous chapters that self-standing curved crystals are a reliable tool to diffract X-rays

with high-efficiency. Moreover, by exploiting the quasi-mosaic effect, it is possible to

diffract X and γ radiation with high resolution. Here the fabrication of 150 quasi-

mosaic Ge samples, bent by grooving one of their largest surfaces, is presented. It

is also shown that the grooving method is a viable technique to manufacture such

crystals in a simple and very reproducible way, thus compatible with mass produc-

tion. Fabricated samples highlight very homogenous curvature. Furthermore, with a

specific chemical etch, it is possible to finely adjust one by one the radius of curvature

of each grooved sample.

Grooved QM Ge samples were fabricated for the Laue project (2010-2013) under

support of the Italian Space Agency (ASI). The Laue project is devoted to the develop-

ment of advanced technologies for building a petal of a Laue lens with a broad energy

passband (100-300 keV) and long focal length (20 m) for space-borne Astrophysics

experiments [62, 63]. The main aim is to significantly overcome the sensitivity limits

of the current generation of X-ray telescopes and improve the imaging capability.
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Figure 6.1: Schematic representation of a cross section of a Laue lens based on QM
crystals. Primary curvature of p112̄q planes leads to a secondary curvature of (111)
planes owing to quasi-mosaicity. In this configuration the (111) diffracting planes are
perpendicular to the main surface of the plate. It can also be seen the capability of
primary curvature to focalize diffracted radiation while QM curvature establishes an
increase in diffraction efficiency.

6.2 Experimental realization of the Ge QM sam-

ples

To combine the focusing action of the primary curvature with the raise in the diffrac-

tion efficiency due to the QM curvature, the crystals have to be positioned in the

Laue lens as depicted in Fig. 6.1. In fact, to focalize the impinging photons, a cylin-

drical curvature would work. However, it derives from the theory of elasticity that a

spherical curvature is required to obtain the QM effect [13].

The production and optical characterization of 150 QM Ge crystals for the Laue

project was carried out at SSL. Crystallographic orientations are indicated in Fig.

6.2. Commercially available pure Ge wafers were diced to form 30ˆ10ˆ2 mm3 plates,

using the DISCOTM DAD3220, equipped with rotating diamond blades of 250 µm

width and 5 µm diamond grain size (G1A 320). A permanent curvature was induced

through the grooving method. A radius of curvature of 40 m was chosen for the
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Table 6.1: Crystal features
Material Germanium

Tile size (mm3) 30ˆ10ˆ2
Blade type G1A 320

Blade width (µm) 250
Blade rotation (rpm) 3000
Blade speed (mm/s) 0.1
Groove depth (µm) 1550
Number of grooves 9ˆ28
Groove step (mm) 1

Primary radius of curvature along y (m) 40
QM radius of curvature (m) 95.6
Angular bandpass (arcsec) 4.3

project. It is possible to calculate the ratio between QM (RQM) and primary (RP )

radius of curvature thanks to the linear theory of elasticity. It turns out to be
RQM

RP
=

2.39, which corresponds to a QM curvature of about 95.6 m. The angular bandpass

corresponding to this radius of curvature is 4.3 arcseconds. Main features are reported

in Tab. 6.1. The curvature of all the samples was measured using the profilometer

VEECOTM NT1100 on the back surface of each sample.

Figure 6.2: Photo of a Ge sample before (a) and after (b) the manufacture. Crystal-
lographic orientation are highlighted.

The profilometric measurement of the primary radius of curvature of a typical

sample is reported in Fig. 6.3. The curvatures resulting from the grooving process

are very close to a spherical surface, because the grooves are regularly spaced and

have all the same depth.
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Figure 6.3: Interferometric measurement of backside of a sample with average radius
of curvature r “ 39.9 meters. Left side: 3d view analysis (a). Right side: Cross
sections of the deformation pattern along x (b) and y directions (c), as taken on the
center of the sample.

To verify the uniformity of the curvature, subtraction of measured surface with

a perfectly spherical surface having the radius of curvature equal with the average

radius of curvature of the measured sample was performed. Result of subtraction

with the sample of Fig. 6.3 is shown in Fig. 6.4. Moreover, the root mean square

roughness Rq was calculated by using Eq. 6.1. It represents the standard deviation

of the distance between the measured sample surface and the spherical surface with

radius of curvature = 39.9m.

Rq “

g

f

f

e

1

MN

M
ÿ

i“l

N
ÿ

i“l

Z2pxi, yiq “ 13.86nm (6.1)

where M and N are the numbers of data points in the X and Y direction of the array,

respectively, and Z is the surface height.

Although the distribution of primary radius of curvature of the manufactured

samples was not symmetric, a fit with a Gaussian distribution was worked out. The

distribution for the [111] direction is displayed in reported in Fig. 6.5. The series

of 150 samples was purposely produced with an average radius of curvature slightly

lower with respect to the desired value of 40 meters. Such distribution averaged 36.6
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Figure 6.4: Subtraction between the measured sample with a spherical surface with
radius r “ 39.9 meters. Left side: 2d view of subtracted data (a). Right side: Cross
sections of the subtraction pattern along x (b) and y directions (c), as taken on the
center.

m with standard deviation of 6.6 m. Indeed, the over-bent samples can be adjusted

one by one at attain the value of 40 m thanks to a chemical etch. In fact, during

the production, some features were difficult to control. For example, there was an

uncertainty on the crystals thickness, which can vary from sample to sample. The

consequence was partial reproducibility in the final curvature. Indeed, for each sample

the curvature is homogeneous, but the resulting radius of curvature may vary from

sample to sample.

The method to adjust the curvature consisted in a fast chemical etch, based on

a solution of H2O2. Such solution is capable of oxidizing Ge with different speeds,

depending on the crystalline phase [64]. In fact, it is possible to selectively remove

the most amorphous part of a sample, namely the material plasticized by the blade,

by lowering the superficial tension and then the curvature of the sample. With quick

chemical etch at low H2O2 concentration, the possibility of increasing the radius of

curvature of samples of a few meters was experimentally verified. In Tab. 6.2 an

example is reported. 60 seconds of etching was performed, obtaining a relaxation of

the curvature of about 4 meters, starting from 36.8 to 40.3. With shorter etch it

would be possible to obtain lower value of relaxation.
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Figure 6.5: Distribution of primary radius of curvature, measured along [111] direction
on the 150 crystal tiles produced, before the chemical etch. The red dashed line shows
the best fit Gaussian distribution.

6.3 Discussion

Ideally, each tile is expected to produce a diffracted spot shaped as a thin rectan-

gle, with 10 mm width and of thickness given by the quasi-mosaic defocusing. The

defocusing can be estimated to be 2Fdetm, Fdet being the distance of the tile from

the focal spot and m the angular distribution due to QM effect [27]. In this case

2Fdetm » 0.84mm.

The expected reflectivity for these crystals can be predicted by the diffraction

theory for curved diffracting planes. However, a portion of the sample is removed

during the manufacture process, thus it must be taken into account that the grooves

occupy about 32.5% of the samples volume. Expected reflectivity as a function of the

photon energy is reported in Fig. 6.6.

The production of 150 QM samples of germanium was carried out rapidly and in

a very reproducible way. The interferometric measurement takes few minutes, less

than 5 minutes for each sample. The chemical etch is very fast, it takes about one

minute. The cut process is the longest part of the production, it is about 4-5 h

long. Currently, it is necessary to measure the samples for each step, because the

experimental condition may vary in a not well controlled way. More time can be
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Table 6.2: Adjustment of the curvature in a Ge grooved sample
Chemical etch solution of H2O2

Initial radius of curvature along [111] 36.8 m
Concentration 2.5 ml in 100 ml of water
Etch duration 60 s

Final radius of curvature 40.3 m
Temperature room

saved, once all the processes will be optimized.

Figure 6.6: Expected reflectivity for the fabricated Ge samples. The top curve is the
theoretical reflectivity of a non-grooved CDP block of germanium having dimensions
identical to those of our tiles. The bottom curve shows the theoretical reflectivity
of the grooved tiles, which takes into account the fact that a fraction of crystal is
removed during the manufacture process.

It is shown that the samples obtained with the grooving method turn out to

have a high-homogeneous curvature, with a small uncertainty on the final curvature.

Moreover, with the chemical etch, it turns be possible to finely adjust one by one the

radius of curvature of each sample, preserving the homogeneity of bending. Grooving

turns out to be an elective method for a quick production of a large number of self-

standing bent samples, that is a mandatory issue for a concrete realization of a Laue

lens.
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The Ge samples are currently being tested at LARIX facility, with X-ray diffraction

on the QM (111) planes. When all these experimental data will be acquired, the

prototype of the Laue lens will be assembled and tested at the LARIX laboratories

to form the petal lens. Finally, it will be very important to verify if the curvature of

the grooved crystals change once mounted on the lens support.



CHAPTER 7

Quasi-mosaic effect of (422) and

(311) bent planes: experimental

validation

7.1 Motivations

Crystals are the core of a Laue lens. For a concrete application of a Laue lens, crys-

tals characterized by high-diffraction efficiency are needed, as well as high-resolution

focusing of the diffracted photons. Moreover, it is very important that the lens is

characterized by a large collecting area, resulting in a large effective area, in order to

enhance the signal-to-noise ratio on the detector. The effective area of a Laue lens

at a certain energy is defined as its geometric area, as seen by the X-ray beam, times

the diffraction efficiency at that energy.

In order to increase the geometric area of a Laue lens and thus the number of

collected photons, it is possible to use several materials with different lattice spacings

and crystallographic orientations for diffraction. Unlike the case of mosaic crystals,

for which the nominal direction of mosaic planes can be chosen relatively easily, the

quasi-mosaic effect is bound up to very specific crystallographic orientations. It is the

purpose of this chapter to show that quasi-mosaicity does exist in Si and Ge crystals

along unusual and never explored orientations, such as the (422) and the (311). As

it is explained in section 8.3, the combined use of Si and Ge exploiting (111), (422)

and (311) QM CDPs leads to an unprecedented performance for a Laue lens. Indeed,

exploiting (111), (422) and (311) diffracting planes would permit the fabrication of

a Laue lens with the geometric area one order of magnitude larger than for a lens
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Figure 7.1: Theoretical diffraction efficiency for curved diffracting planes. The thick-
ness traversed by the beam was set to be 2 mm, the angular spread of diffracting
planes was 5 arc-seconds.

solely composed of (111) QM crystals. In fact, (111), (422) and (311) have different

d-spacing, thus they occupy different positions in the Laue lens.

In Fig. 7.1 is shown the theoretical diffraction efficiency of Si and Ge crystals, by

taking into account a QM angular spread of 5 arcsec, that is a typical value for QM

crystals. It is possible to notice that the diffraction efficiency of high crystallographic

indices is lower with respect to that for low indices. However, (422) and (311) crystals

can be arranged in the outermost part of a lens because of the larger Bragg angle.

Indeed, the distance R from the axis of the lens at which a crystal can diffract the

radiation onto the detector is proportional to the Bragg angle, i.e., R depends on the

crystallographic planes used for diffraction. Using the approximation for small angle,

it results

R “ f tanp2θBq9
?
h2 ` k2 ` l2 (7.1)

where f is the focal length, θB the Bragg angle and ph, k, lq are the Miller indices of

the planes used for diffraction.

Even if the diffraction efficiency for such crystallographic orientations is lower than

that for the (111) planes, the external position guarantees a large geometric area,

resulting in a large effective area. Moreover, since Ge and Si crystals have different

d-spacing, even more locations for crystalline tiles are possible. In summary, building
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Figure 7.2: Schematic representation of a crystal plate with the coordinate system
used for the modeling. In (a) two moments are applied, while in (b) and (c) a single
moment is applied. Crystallographic orientation and QM curvature for the three cases
are highlighted.

up a lens with very large geometric area that concentrates a range of energies with

high efficiency can be envisaged.

7.2 QM curvature calculation for (422) and (311)

planes

Since the QM curvature is a consequence of crystal anisotropy, its radius of curvature

is strictly linked to the crystal orientation. It is possible to calculate the ratio between

QM and primary curvatures thanks to the linear theory of elasticity.

Two new cases are considered. The case shown in Fig. 7.2a refers to quasi-

mosaicity with (111) planes. It has been demonstrated in previous chapters that a

primary spherical bending of (422) planes in Si or Ge plates results in a QM curvature
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of the (111) planes. A spherical curvature can be obtained by applying two momenta

Mx and My to a crystal. As shown in chapter 4, the ratio between QM and primary

curvature radii is
RQM

RPy

“ ´S12 ` S22

S41 ` S42

, (7.2)

Since the stress is uniform over the largest surface, the ratio is independent of the

crystal plate dimensions.

The case in Fig. 7.2b corresponds to the quasi-mosaicity in (422) planes1. For this

case, it is demonstrated that cylindrical bending of (111) Si or Ge plates as a primary

curvature results in a QM curvature of the (422) planes, so that only one momentum

M has to be applied to the sample. For the case of Fig. 7.2c, it is demonstrated that

cylindrical bending of (422) Si or Ge plates as a primary curvature results in a QM

curvature of the (311) planes, so that also in this case only one momentum M has to

be applied to the sample. In these two cases, the primary curvature along the y axis

is
1

RPy

“ d2w

dy2
“ ´M

2I
S22, (7.3)

while the QM curvature in the focusing direction is

1

RQM

“ d2v

dz2
“ M

2I
S42. (7.4)

Finally, the ratio between QM and primary curvatures can be obtained as

RQM

RPy

“ ´S22

S42

. (7.5)

The ratios for the cases of interest are reported in Tab. 7.1.

7.3 Experiment with a (422) QM sample

Here the possibility to exploit the quasi-mosaic effect for bent (422) diffracting planes

is experimentally demonstrated.

A cylindrical curvature was produced on a Si crystal by inducing a superficial

strained layer. The tile size was 20ˆ100ˆ3 mm3 and the crystallographic orientation

was the same as in Fig. 7.2b. The sample curvature was measured by using the optical

1Since diffraction by (211) planes is forbidden in diamond-like crystalline structure as Si
and Ge, (422) planes were considered. However, they represent the same crystallographic
direction.
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Table 7.1: Ratios between QM curvatures and principal curvatures, the latter calcu-
lated along the y axis

QM CDP RQM/RPy

Ge (111) -2.390
Si (111) -2.614
Ge (422) 3.185
Si (422) 3.542
Ge (311) 3.141
Si (311) 3.455

Table 7.2: Experimental features

QM sample

material silicon
tile size 20ˆ100 mm2

tile thickness 3 mm
primary radius of curvature, along y [224] 21.2 m
QM radius of curvature, (422) planes 74.6 m
Beam Features

γ-ray beam
beam energy 181.931 keV
monochromaticity ∆E{E «10´6

beam divergency 1 arcsec

profilometer VEECOTM NT1100 at SSL. The primary radius of curvature, measured

along y, was 21.2 m. Using the results listed in Tab. 7.1, the radius of curvature of

the (422) QM planes (secondary curvature) was 74.6 m.

Diffraction efficiency of the (422) CDP was tested by γ-ray diffraction in transmis-

sion geometry at the Digra facility at ILL. The γ-ray beam energy was E “ 181.931

keV with monochromaticity ∆E{E «10´6. Gamma quanta were produced by neu-

tron capture in a gadolinium target (15764 Gd), which was inserted close to the nuclear

reactor of ILL at a temperature of 400˝C. The beam divergence after the Si (220)

monochromator was 1 arcsec, measured by recording a rocking curve (RC) of the

monochromator itself. The collimated-beam size was 1 mm on the diffraction plane

and 3 mm on the perpendicular plane. A standard electrode coaxial Ge detector

with 25% relative efficiency supplied by Canberra was used. The main features of the

experiment are reported in Tab. 7.2.

The sample was characterized by performing RCs. The photon beam hit the (111)



68 7. Quasi-mosaic effect of (422) and (311) bent planes: experimental validation

Figure 7.3: Experimental and theoretical RCs of a [224] QM crystal cylindrically bent.
Red crosses plot the intensity of the measured diffracted beam with their uncertainty
bar. The gray area represents the expected result as calculated by taking into ac-
count the experimental uncertainties. The dashed black line represents the diffraction
efficiency without the QM curvature.

surface of the sample. Diffraction efficiency was measured at the center of the sample

and its RC is reported in Fig. 7.3. The gray area in the figure represents the theoret-

ical expectation as calculated through a custom-made code, specifically designed for

simulating the performance of diffraction through broad-band crystals such as mosaic

or CDP crystals. In the simulation, both primary and secondary curvatures were

accounted for. The angular distribution after diffraction consists of the convolution

between the distribution of the portion of primary curvature seen by the beam, and

the distribution of secondary curvature. The primary curvature seen by the beam was

calculated by taking into account the width of the collimated beam (1 mm) and the

radius of curvature measured with the profilometer (21.2 m). To calculate the diffrac-

tion efficiency, the dynamical theory was considered [65]. Moreover, the divergence

of the beam was included by convolving the obtained distribution with a Gaussian

of σ=1 arcsec. Fig. 7.3 highlights the very good agreement between the theoretical

expectation relying on quasi-mosaicity and the experimental results.

As a result of the above experiment, it can be inferred that the quasi-mosaicity of

(422) planes can be implemented in the construction of a Laue lens composed of QM

crystalline tiles.
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Table 7.3: Crystal features
Material Silicon

Sample size (mm2) 15ˆ15
Sample thickness (mm) 2
Blade width (µm) 250
Blade rotation (rpm) 3000
Blade speed (mm/s) 0.1
Groove depth (µm) 1550
Number of grooves along x axis 14
Groove step (mm) 1
Primary radius of curvature (Rp) along y axis (m) 25.0 ˘ 1.2
QM diffracting planes (311)
RQM{Rp 3.455
QM radius of curvature (m) 86.4 ˘ 4.3
QM angular spread ΩQM (arcsec) 4.8 ˘ 0.2

7.4 Experiment with a (311) QM sample

Here it is experimentally demonstrated, as an innovative effect, the possibility to

exploit the quasi-mosaic effect for bending (311) diffracting planes.

The production and the morphological characterization of a QM silicon sample

was carried out at SSL. A commercially available pure Si wafer 2 mm thick was

diced to form a plate of 15ˆ15 mm2 using the DISCOTM DAD3220, equipped with

a rotating diamond blade of 250 µm width and 5 µm diamond grain size (G1A 320).

A permanent curvature was induced through the grooving method. The grooves were

manufactured in such a way to obtain a cylindrical curvature of the sample, i.e., only

along the x axis, as schematized in Fig. 7.2c.

The primary curvature was measured using the optical profilometer VEECOTM

NT1100 on the back face of the samples. The profilometric pattern of the sample

surface is shown in Fig. 7.4 and the sample features are listed in Tab. 7.4.

The sample was tested through γ-ray diffraction at the DIGRA facility at ILL.

The γ-ray beam energy was 181.931 keV. The beam features are summarized in Tab.

7.4.

Characterization of the sample was carried out by performing RCs. The diffrac-

tion efficiency was measured at the center of the samples and the pertaining RC are

reported in Figs. 7.5a and b. Accordingly with the theory of diffraction, the RC

is expected to be a uniform distribution about 35% high [65]. For a better under-

standing of the experimental results shown in Fig. 7.5, simulation of the RC was
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Figure 7.4: Interferometric measurement of the backside of the sample. Left side: 3d
view analysis (a). Right side: Cross sections of the deformation pattern along y (b)
and x directions (c), as taken at the center of the sample.

Table 7.4: Beam features
Beam energy (keV) 181.931
monochromaticity (∆E{E) «10´6

Collimated beam size (mm2) 1ˆ1

carried out. The gray area in Fig. 7.5b represents the theoretical expectation, taking

into account the uncertainty on the curvature of the sample. As in the case of (422)

planes reported in section 7.3, beam divergence, primary and secondary curvatures

were taken into accounted for the simulation. From the theory of elasticity, the ratio

between QM and primary curvature is set at
RQM

RP
= 3.455 for the (311) planes, thus

RQM “ 3.455Rp “ 86.4 m. For the calculation of diffraction efficiency, the dynamical

theory was considered [65]. Finally, a morphological factor was included to consider

the part of the sample that cannot diffract, i.e., the portion of material removed during

the grooving process, that is about 18%.

In summary, Fig. 7.5 highlights very good agreement between the theoretical ex-

pectation and the experimental results. It can be noticed that the diffraction efficiency

turns out to be not very high. However, bent crystals exploiting the (311) diffracting
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Figure 7.5: Experimental and theoretical RCs of the (311) QM crystal cylindrically
bent. a) The blue empty circles plot the intensity of measured diffracted beam with
their uncertainty bar, whereas the red filled points plot the transmitted beam. b)
Zoom on the diffracted points. The gray area represents the expected result as calcu-
lated by taking into account the experimental uncertainties.

planes can be arranged in the external area of a Laue lens, allowing significant in-

crease in its geometric area. Since the moderate diffraction efficiency of (311) planes

is compensated for by the large geometric area they can cover, a raise in the effective

area of a Laue lens becomes possible.

7.5 Conclusions

Two innovative bent silicon quasi-mosaic crystals were investigated as optical com-

ponents for a Laue lens, exploiting (422) and (311) QM planes. The samples were

manufactured with a self-standing curvature thanks to the grooving method, i.e., there

was no need for any external holder to keep the crystal bent. Quasi-mosaicity lead to

an increase in diffraction efficiency. Indeed, if there were no QM effect, the integrated

reflectivity of the whole lens would be the same as that obtained from flat diffracting

planes, which is relatively poor.

The combined use of several kinds of crystals and crystallographic orientations

could be a viable route to realize a Laue lens with high sensitivity, which would be

the condicio sine qua non for the concrete realization of a X- and γ- ray concentrator.

In the next chapter, two prototypes based on the obtained results are simulated and

proposed.
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CHAPTER 8

Simulation of Laue lenses: the

LaueGen code

8.1 Simulation of a Laue lens with QM crystals

In this chapter the acquired knowledge on quasi-mosaicity is applied to simulate new

prototypes of Laue lenses. For the prototypes, Si and Ge crystals were chosen for

two reasons. First, because they can be commercially found with high crystalline

perfection, and especially because they exhibit the QM effect. A photon beam with

energy between 100 and 300 keV was considered to impinge onto the crystals parallel

to the axis of the lens because Si and Ge diffract X-rays at high efficiency in this energy

range. Since (111), (422) and (311) planes can diffract photons of the same energy,

though at very different Bragg angles, the crystals could be arranged at different

positions to build up a Laue lens, featuring significant enhancement of the geometric

area undergoing diffraction.

The crystal tiles were considered to be disposed as concentric rings onto the spher-

ical calotte of a Laue lens with a focal distance f “ 20m. Thus, the primary radius

of curvature of the tiles must be twice the focal length of the lens, namely 40 m

[57, 66, 63]. The thickness of the tile, T0, affects both the focusing capability and the

reflectivity of the lens. High values of T0 lead to higher reflectivity and lower spatial

resolution on the focal plane, while lower values of T0 decrease the reflectivity but

increase the focusing strength.

For a CDP crystal, the ratio between diffracted beam intensity and incident beam
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intensity, that is, the crystal reflectivity ηQM , is given by the formula [25]

ηQM “ p1 ´ e
´π2T0dhkl

ΩQMΛ2
0 qe

´µT0
cosθB , (8.1)

where the first factor is the diffraction efficiency, the latter is the attenuation factor

due to absorption throughout the sample, µ is the linear absorption coefficient, dhkl

the d-spacing of planes (hkl), θB the Bragg angle, and Λ0 the extinction length as

defined by [26] for the Laue symmetric case. ΩQM represents the bending angle of the

CDPs, namely of the QM planes. ΩQM can be calculated as a function of the primary

curvature through Eqs.7.2 and 7.5.

The energy bandpass of a crystal in a ring is given by the formula [56]

∆E » 2ΩPE
f

rring
. (8.2)

Here rring is the radius of a selected ring, ΩP is the bending angle induced in the

tile by primary curvature and E the mean energy diffracted by the ring. This latter

depends on the material, crystallographic plane, and the distance from the axes of

the lens, that is, the radius of the ring, as given by the formula

E » fhc

dhklrring
, (8.3)

where h and c are the Planck constant and the light speed in vacuum, respectively.

The small-angle approximation was considered in the last two formulae.

The effective area of an instrument at a certain energy is defined as its geometric

area, as seen by the X-ray beam, times the diffraction efficiency at that energy. This

parameter is important for quantifying the number of events that an ideal detector

located on the focus of the Laue lens would count under exposure to a certain photon

flux. As for any tile in the lens, the effective area at a given energy is defined as

the geometric area exposed to the photon flux times the reflectivity of the tile at the

energy of interest. Because of the finite angle ΩQM exposed to photon flux, only a

part of the tile is capable of diffracting a certain photon energy. Thus, the effective

area AEff for a single tile is given by

AEff “ pdΩP

dΩ
˙

dϵQM

dΩ
qAtile, (8.4)

where the first function in the convolution is the normalized distribution of diffract-

ing planes due to the primary curvature, the second function is the distribution of
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reflectivity due to the QM curvature as function of the diffracting angle Ω, and Atile is

the geometric area of each tile. The effective area of the whole lens is the sum of the

effective areas of the tiles composing the lens itself. For the simulation, the effective

area was calculated as a discrete function of energy, the step being 0.5 keV. This value

was selected because it is a good compromise between accuracy and computational

time.

As an estimator of the smoothness of the effective area as a function of the photon

energy, the quantity smoothing was defined in the following way. Firstly, the moving

average of the effective area was calculated for five sequential values of energy starting

from the minimum (100 keV). Then, the distance between these five values of AEff

and their average value was calculated and the largest distance was selected. This

procedure was repeated by shifting the section under analysis along the energy axis,

up to the maximum energy (300 keV). The quantity smoothing was defined as the

sum of all the collected contributions of maximum distances.

To maximize and smoothen the effective area of the simulated Laue lens, a com-

putational method based on a genetic algorithm, named LaueGen, was implemented.

As a first step, a Laue lens was generated, composed of Si and Ge QM crystalline tiles.

A tile of the lens was chosen arbitrarily and was randomly transformed into a tile of

different species by changing the material and/or the crystallographic orientation.

It is possible to define a quantifier kris of both the effective area for all the energies

and the smoothness of the effective area itself.

kris “ w1

şEmax

Emin
AEff ri ` 1s dE

şEmax

Emin
AEff ris dE

´ w2
smoothingri ` 1s
smoothingris , (8.5)

where the index [i ] represents the configuration before crystal transformation, while

the index [i+1 ] represents the configuration after crystal transformation. w1 and w2

are weights that have to be assigned in Eq. 8.5. By increasing w1 it is possible to

achieve a high value of the total effective area, while an increase of w2 favors a better

smoothness. The minus sign before the second term of the equation indicates that

the second quantity has to be minimized, while the first has to be maximized.

If kri ` 1s ą kris, the crystal exchange is held, otherwise it is rejected. This

procedure was iterated until the system reached thermalization, that is, the maximum

of kris was attained.
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Table 8.1: Lens features
inner radius 0.25 m
outer radius 2.26 m
focal length 20 m
number of rings 100
geometric area 158496 cm2

crystal radial length 20 mm
crystal tangential length 10 mm
crystal thickness 5 mm

Table 8.2: Crystals features
material Ge (111) Si (111) Ge (422) Si (422) Total

samples 2259 4778 34629 36254 77920
mass (kg) 12.0 11.1 184.3 84.5 292.0

8.2 Simulation of a Laue lens with (111) and(422)

QM crystals

A Laue lens composed of Ge and Si QM crystals was simulated. The crystals were

chosen all with the same tile size 20ˆ10 mm2, with the longer side parallel to the

direction where focalization occurs, that is, the radial direction. This choice of tile

size reduces the blank space between tiles, while T0 was chosen to be 5 mm to guar-

antee high reflectivity. The crystals were arranged in the lens thanks to LaueGen.

The algorithm was initialized by starting with an a priori initial guess for the tile

arrangement in the Laue lens, taking into account the different Bragg angles. Fig. 8.1

shows a possible arrangement of the QM tiles in a Laue lens, and quantitative results

are listed in Tab. 8.3. Fig. 8.2 represents the spectral effective area of the lens, in

which the contributions of the four species are visible.

To verify that the final arrangement was not affected by the initial guess and to

control possible interference of local maxima in the quantifier in Eq. 8.5, LaueGen was

re-initialized by a fully casual disposition of the tiles. After a much longer computing

time, a similar arrangement to the previous simulation was obtained.

Since the lens was composed of QM tiles 20ˆ10ˆ5 mm3 of size with the focusing

curvature along the wider dimension, all the diffracted photons were enclosed in a

circle of 10 mm in diameter. To evaluate the capability of focalization of this Laue

lens, a Monte Carlo code was written to simulate an on-axis photon beam hitting the
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Table 8.3: Number of tiles per type normalized to the number of samples per ring.

Ring Tiles Ge (111) Si (111) Ge (422) Si (422) Ring Tiles Ge (111) Si (111) Ge (422) Si (422)

1 157 1.000 - - - 51 786 - - 0.673 0.327

2 169 1.000 - - - 52 798 - - 0.733 0.267

3 182 0.984 0.016 - - 53 811 - - 0.720 0.280

4 194 0.938 0.062 - - 54 823 - - 0.710 0.290

5 207 0.831 0.169 - - 55 836 - - 0.630 0.370

6 220 0.723 0.277 - - 56 848 - - 0.610 0.390

7 232 0.664 0.336 - - 57 861 - - 0.602 0.398

8 245 0.620 0.380 - - 58 874 - - 0.580 0.420

9 257 0.560 0.440 - - 59 886 - - 0.569 0.431

10 270 0.548 0.452 - - 60 899 - - 0.558 0.442

11 282 0.291 0.709 - - 61 911 - - 0.542 0.458

12 295 0.268 0.732 - - 62 924 - - 0.528 0.472

13 308 0.136 0.864 - - 63 936 - - 0.496 0.504

14 320 0.075 0.925 - - 64 949 - - 0.474 0.526

15 333 0.045 0.955 - - 65 962 - - 0.467 0.533

16 345 0.055 0.945 - - 66 974 - - 0.441 0.559

17 358 0.075 0.925 - - 67 987 - - 0.432 0.568

18 371 0.111 0.889 - - 68 999 - - 0.428 0.572

19 383 0.131 0.869 - - 69 1012 - - 0.416 0.584

20 396 0.172 0.828 - - 70 1024 - - 0.406 0.594

21 408 0.189 0.811 - - 71 1037 - - 0.402 0.598

22 421 0.211 0.789 - - 72 1050 - - 0.387 0.613

23 433 0.028 0.661 0.312 - 73 1062 - - 0.389 0.611

24 446 0.025 0.267 0.709 - 74 1075 - - 0.390 0.610

25 459 0.004 0.248 0.725 0.022 75 1087 - - 0.397 0.603

26 471 0.011 0.200 0.771 0.019 76 1100 - - 0.397 0.603

27 484 - 0.056 0.928 0.017 77 1112 - - 0.394 0.606

28 496 - 0.028 0.925 0.046 78 1125 - - 0.405 0.595

29 509 - - 0.953 0.047 79 1138 - - 0.416 0.584

30 521 - - 0.948 0.052 80 1150 - - 0.418 0.582

31 534 - - 0.934 0.066 81 1163 - - 0.433 0.567

32 547 - - 0.925 0.075 82 1175 - - 0.447 0.553

33 559 - - 0.928 0.072 83 1188 - - 0.461 0.539

34 572 - - 0.907 0.093 84 1200 - - 0.468 0.532

35 584 - - 0.914 0.086 85 1213 - - 0.496 0.504

36 597 - - 0.868 0.132 86 1226 - - 0.458 0.542

37 609 - - 0.849 0.151 87 1238 - - 0.481 0.519

38 622 - - 0.860 0.140 88 1251 - - 0.488 0.512

39 635 - - 0.838 0.162 89 1263 - - 0.298 0.702

40 647 - - 0.822 0.178 90 1276 - - 0.260 0.740

41 660 - - 0.811 0.189 91 1288 - - 0.254 0.746

42 672 - - 0.795 0.205 92 1301 - - 0.258 0.742

43 685 - - 0.778 0.222 93 1314 - - 0.202 0.798

44 698 - - 0.756 0.244 94 1326 - - 0.179 0.821

45 710 - - 0.749 0.251 95 1339 - - 0.163 0.837

46 723 - - 0.743 0.257 96 1351 - - 0.194 0.806

47 735 - - 0.721 0.279 97 1364 - - - 1.000

48 748 - - 0.713 0.287 98 1376 - - - 1.000

49 760 - - 0.707 0.293 99 1389 - - - 1.000

50 773 - - 0.684 0.316 100 1401 - - - 1.000
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Figure 8.1: Arrangement of crystalline tiles over the calotte of the simulated Laue
lens. The legend describes the diffracting plane employed. The crystals are 20ˆ10ˆ5
mm3 Ge tiles. The disposition of the tiles is optimized thanks to LaueGen code

lens within the energy range of 100-300 keV. The concentration of photons is high at

the center of the spot and rapidly decreases close to the borders, as is clearly visible

in Figs.8.3 and 8.4.

8.3 Discussion

Diffraction from (422) CDP occurs at a Bragg angle much larger than for the (111)

planes at the same energy. This means that the crystalline tiles implementing (111)

CDP occupy the innermost part of the lens because of the small Bragg angle. In con-

trast, tiles using (422) CDP occupy the outermost part of the lens because of the large

Bragg angle. Although the reflectivity for (422) CDP is lower than for (111) CDP,

the external position guarantees a large geometric area, resulting in a large effective

area. Moreover, this configuration works with Ge and Si crystals simultaneously ow-

ing to their different d-spacing, that is, still more locations for crystalline tiles are
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Figure 8.2: Effective area per unit energy of the lens. The contributions of the tiles
of different species is visible. Tiles were positioned in the lens to maximize effective
area in the energy range 100-300 keV and made the profile as smooth as possible
with respect to energy variation. The histogram is calculated analytically, while the
continuous lines are calculated with a Monte Carlo simulation.

generated. In summary, the possibility to build up a lens with very large geometric

area has been demonstrated. Si crystals provide the largest part of the effective area

at low energies, as expected for a light material. Ge tiles, which are composed of

a material with higher atomic number, maximize their reflectivity for high energies,

providing the largest part of effective area in this zone.

The photon distribution on the focal plane are well-collimated as a result of focus-

ing through QM tiles. This peculiarity is expected to provide high-quality focusing.

A quantifier of the focusing capability is the focusing factor G, defined as

G “ fph
Aeff

Ad

, (8.6)

where Aeff is the effective area of the lens and Ad is the area of the focal spot that

contains a fraction fph of photons reflected by the lens. Physically, it represents the

number of photons enclosed in a focal spot divided by the area of the focal spot and

normalized with respect to the photon flux impinging on the lens. To calculate the

focusing factor, the radius of the focal spot Rspot was chosen to enclose 90% of the

photons, cutting the tails of the distribution, that is, Rspot “ 4.66mm. Fig. 8.5 shows

the focusing factor of the lens as a function of the energy of impinging photons.
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Figure 8.3: Photon distribution onto the focal plane of the lens in arbitrary units.
Concentration of photons is high in the focal point and rapidly decreases far from the
center. The distribution is obtained with a Monte Carlo code.

Figure 8.4: Fraction of enclosed photons vs. radius of the focal spot enclosing the
photons on the focal plane. The radius Rspot corresponding to 90% of the enclosed
photons was chosen for the simulation to cut the tails of the focal distribution. Rspot “
4.66mm
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Figure 8.5: Focusing factor of a lens composed of QM (422) and (111) crystalline
tiles (continuous line), or composed of QM (111) tiles only (dashed line), in an energy
range of the lens of 100-300 keV.

For the sake of comparison, it was simulated the performance of a Laue lens

consisting solely of Si and Ge QM (111) tiles and optimized for the purpose. The

dimension of QM tiles, the curvature radius and the energy bandpass of the lens are

the same as in the previous case. A lens made of (111) QM crystals results in a smaller

effective area and then in a smaller focusing factor, as visible in Fig. 8.5.

Finally, the performance of the lens is expressed in terms of the most often ac-

knowledged quantifier recognized by the community of astrophysicists, namely the

sensitivity, that is, the lowest flux detectable with 3 sigma significance, for the cases

of continuum- and narrow-line emissions. The results are shown in Fig. 8.6, which are

in line with the sensitivity of the proposed Laue lens for the Gamma Ray Imager (GRI)

[21]. Indeed, the smaller effective area of the QM-based Laue lens, which results from

the usage of QM crystals, is abundantly compensated by the strong focusing exerted

by the QM effect. In fact, the property of QM crystals to focus on a spot smaller

than the dimension of the diffracting crystals themselves raises the sensitivity of the

lens. Another advantage of the proposed lens is that its focal length is expected to

allow the lens to be accommodated in one spacecraft only despite its relatively large

diameter, resulting in a modest weight (292 kg) of the diffracting crystals. If a longer

focal length was considered, with two satellites flying in formation as for the GRI, a

still better figure of merit would be attained (effective area would increase to 1000
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Figure 8.6: Predicted 3σ detection sensitivities for continuum (black) and narrow
line (blue) emission, assuming an exposure time of 100 ks and ∆E/E = 1/2 for the
continuum and ∆E/E = 3% for the line sensitivity.

cm2 at 100 m focal length).

8.4 Simulation of a Laue lens including (311) QM

crystals

A Laue lens consisting of (111), (422) and (311) curved QM planes was generated

and simulated. The crystallographic planes used are the most efficient QM planes

achievable. For this case, the crystals were chosen 10ˆ30 mm2 of size, with the longer

side parallel to the direction where focalization occurs, namely the radial direction.

T0 was chosen to be 5 mm to guarantee high reflectivity.

To maximize the effective area of the simulated Laue lens and smoothen its en-

ergy dependence, the LaueGen code was employed. The algorithm was initialized by

starting with an a priori initial guess for the tile arrangement, taking into account

the different Bragg angles. Fig. 8.7 shows a possible arrangement of the QM tiles

as result of the simulation and quantitative results are listed in Tab. 8.6. Fig. 8.8

represents the spectral effective area of the lens, in which the contributions of the six

species are visible.

Since the lens was composed of QM tiles 10ˆ30ˆ5 mm3 of size with the focusing
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Figure 8.7: Arrangement of crystalline tiles over the calotte of the simulated Laue
lens. The legend describes the diffracting plane employed. The crystals are 10ˆ30ˆ5
mm3 Si and Ge tiles. The disposition of the tiles is optimized with a specifically
written code.

curvature along the wider dimension, all the photons diffracted were enclosed in a

circle of 10 mm in diameter. To evaluate the capability of focalization of this Laue

lens, a Monte Carlo code was compiled to simulate an on-axis photon beam hitting

the lens within the energy range of 100-300 keV. The concentration of photons is high

at the center of the spot and rapidly decreases close to the borders, as is clearly visible

in Figs. 8.9-8.10.

The focusing factor G was calculated. For this purpose, the radius of the focal spot

Rspot was chosen to enclose 90% of the photons, cutting the tails of the distribution,

that is, Rspot “ 4.64mm. Fig. 8.11 shows the focusing factor of the lens as a function

of the energy of impinging photons. Finally, the performance of the lens is expressed
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Table 8.4: Lens features
inner radius 0.25 m
outer radius 2.23 m
focal length 20 m
number of rings 66
crystal radial length 30 mm
crystal tangential length 10 mm
crystal thickness 5 mm

Table 8.5: Crystals features
Material Ge (111) Si (111) Ge (311) Si (311) Ge (422) Si (422) Total

samples 1314 1201 2567 2278 19837 23594 50791
mass (kg) 10.49 4.20 158.4 82.46 20.50 7.96 284.0

in terms of the the sensitivity. The results are shown in Fig. 8.12.

Figure 8.8: Effective area per unit energy of the lens. The contributions of the tiles
of different species are visible. Tiles were positioned in the lens to maximize effective
area in the energy range 100-300 keV and made the profile as smooth as possible
with respect to energy variation. The histogram is calculated analytically, while the
continuous lines are calculated with a Monte Carlo simulation.
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Table 8.6: Number of tiles per type normalized to the number of samples per ring.
Ring Tiles Ge (111) Si (111) Ge (311) Si (311) Ge (422) Si (422)

1 157 1.000 0.000 0.000 0.000 0.000 0.000
2 175 1.000 0.000 0.000 0.000 0.000 0.000
3 194 1.000 0.000 0.000 0.000 0.000 0.000
4 213 0.920 0.080 0.000 0.000 0.000 0.000
5 232 0.806 0.194 0.000 0.000 0.000 0.000
6 251 0.657 0.343 0.000 0.000 0.000 0.000
7 270 0.526 0.474 0.000 0.000 0.000 0.000
8 289 0.318 0.536 0.145 0.000 0.000 0.000
9 308 0.000 0.416 0.584 0.000 0.000 0.000
10 326 0.000 0.270 0.730 0.000 0.000 0.000
11 345 0.000 0.258 0.742 0.000 0.000 0.000
12 364 0.000 0.299 0.701 0.000 0.000 0.000
13 383 0.005 0.248 0.742 0.005 0.000 0.000
14 402 0.000 0.281 0.714 0.005 0.000 0.000
15 421 0.010 0.321 0.663 0.007 0.000 0.000
16 440 0.000 0.000 0.139 0.000 0.861 0.000
17 458 0.000 0.028 0.061 0.002 0.906 0.002
18 477 0.000 0.000 0.099 0.002 0.899 0.000
19 496 0.000 0.000 0.002 0.004 0.992 0.002
20 515 0.000 0.000 0.025 0.000 0.973 0.002
21 534 0.000 0.000 0.019 0.009 0.972 0.000
22 553 0.000 0.000 0.063 0.004 0.920 0.013
23 572 0.000 0.000 0.061 0.016 0.911 0.012
24 590 0.000 0.000 0.075 0.032 0.888 0.005
25 609 0.000 0.000 0.061 0.069 0.862 0.008
26 628 0.000 0.000 0.035 0.121 0.828 0.016
27 647 0.000 0.000 0.040 0.060 0.856 0.043
28 666 0.000 0.000 0.056 0.092 0.838 0.015
29 685 0.000 0.000 0.079 0.082 0.780 0.060
30 704 0.000 0.000 0.026 0.153 0.740 0.081
31 722 0.000 0.000 0.050 0.151 0.720 0.079
32 741 0.000 0.000 0.020 0.148 0.692 0.139
33 760 0.000 0.000 0.033 0.179 0.661 0.128
34 779 0.000 0.000 0.041 0.187 0.637 0.135
35 798 0.000 0.000 0.040 0.147 0.608 0.206
36 817 0.000 0.000 0.037 0.191 0.611 0.162
37 836 0.000 0.000 0.011 0.179 0.646 0.164
38 854 0.000 0.000 0.032 0.211 0.550 0.207
39 873 0.000 0.000 0.031 0.142 0.623 0.204
40 892 0.000 0.000 0.021 0.157 0.519 0.303
41 911 0.000 0.000 0.029 0.108 0.515 0.349
42 930 0.000 0.000 0.000 0.109 0.417 0.474
43 949 0.000 0.000 0.000 0.298 0.212 0.490
44 968 0.000 0.000 0.000 0.000 0.412 0.588
45 986 0.000 0.000 0.000 0.000 0.252 0.748
46 1005 0.000 0.000 0.000 0.000 0.368 0.632
47 1024 0.000 0.000 0.000 0.000 0.293 0.707
48 1043 0.000 0.000 0.000 0.000 0.362 0.638
49 1062 0.000 0.000 0.000 0.000 0.305 0.695
50 1081 0.000 0.000 0.000 0.000 0.276 0.724
51 1100 0.000 0.000 0.000 0.000 0.255 0.745
52 1118 0.000 0.000 0.000 0.000 0.263 0.737
53 1137 0.000 0.000 0.000 0.000 0.257 0.743
54 1156 0.000 0.000 0.000 0.000 0.252 0.748
55 1175 0.000 0.000 0.000 0.000 0.236 0.764
56 1194 0.000 0.000 0.000 0.000 0.275 0.725
57 1213 0.000 0.000 0.000 0.000 0.298 0.702
58 1232 0.000 0.000 0.000 0.000 0.282 0.718
59 1250 0.000 0.000 0.000 0.000 0.175 0.825
60 1269 0.000 0.000 0.000 0.000 0.221 0.779
61 1288 0.000 0.000 0.000 0.000 0.191 0.809
62 1307 0.000 0.000 0.000 0.000 0.138 0.862
63 1326 0.000 0.000 0.000 0.000 0.207 0.793
64 1345 0.000 0.000 0.000 0.000 0.191 0.809
65 1364 0.000 0.000 0.000 0.000 0.000 1.000
66 1382 0.000 0.000 0.000 0.000 0.000 1.000
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Figure 8.9: Photon distribution onto the focal plane of the lens in arbitrary units.
Concentration of photons is high in the focal point and rapidly decreases far from the
center. The distribution is obtained with a Monte Carlo code.

Figure 8.10: Fraction of enclosed photons vs. radius of the focal spot enclosing the
photons on the focal plane. The radius Rspot corresponding to 90% of the enclosed
photons was chosen for the simulation to cut the tails of the focal distribution. Rspot “
4.64mm
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Figure 8.11: Focusing factor of the simulated lens in the energy range of 100-300 keV.

Figure 8.12: Predicted 3σ detection sensitivities for continuum (black) and narrow
line (blue) emission, assuming an exposure time of 100 ks and ∆E/E = 1/2 for the
continuum and ∆E/E = 3% for the line sensitivity.



88 8. Simulation of Laue lenses: the LaueGen code

8.5 Conclusions

The idea of a Laue lens to focalize X- and γ-rays was proposed about thirty years ago

with a scheme entirely based on mosaic crystals. Compared to the initial formulation,

significant progresses have been done, which bring the concept of a Laue lens within

reach. Here, two novel configurations are proposed, based solely on quasi-mosaic

crystals, with hybrid Si and Ge samples exploiting traditional (111) planes and (422)

and (311) diffracting planes as innovative concepts. with these configurations, it is

possible to enhance the capability of the lens by a factor larger than two compared with

a Laue lens made of only one species of QM crystals. High sensitivity was obtained

as a result of the strong focusing capability due to the quasi-mosaic effect. Thanks

to the possibility of employing different diffracting planes with different d-spacing, a

lens with very high focusing factor and sensitivity can be obtained.



Conclusions

In this Ph.D. thesis a feasibility study for the development of optical elements capable

of concentrating hard X-rays with high resolution for a Laue lens has been pursued.

The usage of bent silicon and germanium crystals allows achieving very high

diffraction efficiency. For a practical implementation of a focusing telescope for

satellite-borne experiments (e.g. a Laue lens), self-standing bent crystals and a man-

ufacturing method mass-production oriented are required. To this aim, this thesis

proposes the grooving method as a technique meeting in full both requirements, other

than being economical and simple. Grooved samples were tested at ESRF and at ILL,

with monochromatic and polychromatic X- and γ rays, showing diffraction efficiency

up to 95%, a level unreachable with mosaic crystals. Furthermore, the concept of

quasi-mosaicity was studied and applied to obtain high-resolution optical elements.

Thanks to the study of the linear theory of elasticity in anisotropic media, unusual

crystallographic orientations bent by the quasi-mosaic effect were investigated and

experimentally verified at ILL.

The combined usage of the grooving method and the quasi-mosaic effect was em-

ployed for the production of 150 germanium samples as optical elements for the build-

ing of a prototype of Laue lens. This prototype was developed within the Laue project,

a project financed by the Italian Space Agency (ASI).

Finally, a genetic algorithm named LaueGen was implemented to simulate two pro-

totypes of Laue lens. These prototypes are entirely based on quasi-mosaic crystals.

It was demonstrated that with quasi-mosaic crystals it is possible to achieve unprece-

dented focusing capability, since they allows concentrating the diffracted X-rays onto

a focal spot smaller than the crystals size.

Based on the knowledge gained during the Ph.D. period, novel techniques will be

studied to produce new optical elements in the next future. Moreover, innovative

prototypes of Laue lens will be proposed through the use of the LaueGen code.
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