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INTRODUCTION 

EBV biology 

Epstein-Barr Virus (EBV) is a large enveloped virus, belonging to the γ-Herpesviridae 

subfamily. It is commonly widespread and it infects about 95% of world population. 

EBV preferential targets are B cells, although other lymphoid and epithelial cells may be 

also infected by this virus. EBV entry in B lymphocytes occurs through interaction with 

complement receptor type 2/CD21,  whereas the mechanism of epithelial cell infection is 

still not completely known. It is still unclear whether EBV infects B cells or epithelial 

cells first, but it seems that, for an efficient infection of polarized basal epithelial cells, a 

cell-to-cell contact with B cells is necessary (1, 2). Moreover, it has been shown that 

virions released from B cells infect efficiently epithelial cells but have less affinity for 

these lymphocytes, whereas EBV particles released from epithelial cells infect efficiently 

B cells (3, 4). These findings suggest that EBV shuttles from B to epithelial cells during 

persistence, and that epithelial cells undergoing lytic cycle provide a source of virions for 

virus spreading to other individuals. Upon its primary infection in the oropharyngeal 

cavity, EBV can cause a lytic infection to produce progeny or it can establish a latent 

infection in B lymphocytes with different program-gene usage depending on cell type and 

on the differentiation stage of the infected cells. These are referred to as latency 

programs, which are necessary for the long-life persistence of the virus in the infected 

hosts, but similar programs are also detected in the various EBV-driven tumors. 

In physiological conditions, EBV life cycle may be described by the Germinal Center 

Model (GCM) (5) (Figure 1). EBV enters the lymphoid tissue of the Waldeyer’s ring and 

at some stage it infects naïve B cells, where the virus establishes the growth program, also 

known as Latency III. During this phase, EBV expresses the EBERs (small non coding 

mRNA) and all the 9 latency genes, including the EBNA gene family (Epstein-Barr 

Nuclear Antigens 1-6) and the LMP gene family (Latent Membrane Protein-1, -2A and -

2B). Naïve B cells activated into proliferating infected blasts move to germinal center 

(GC) where EBV switches its Latency III program into more restricted forms (Latency II, 

or the “default” program). This phase is characterized by a restricted gene expression 

pattern (only LMPs and EBNA1 are expressed), which promotes cell survival of EBV-

infected memory B cells. The memory compartment is indeed considered the site of viral 

long-term persistence, characterized by the Latency I program in which only EBNA1 or 
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occasionally LMP-2 may be expressed. In these memory B cells, EBV can even 

completely silence the transcription of genes encoding for latency proteins (putative 

Latency 0). At any time, EBV can enter the lytic cycle in a small subset of terminally 

differentiated plasma cells producing a progeny that allows the virus to spread within and 

outside the infected host. Although this model is supported by several experimental data, 

the actual role of EBV in GC formation and the involvement of LMPs on the maturation 

of memory B cells are still debated (5). 

Normally, in healthy individuals EBV is carried by a stable number of B cells in the 

blood, and virus replication is constantly monitored by immunological surveillance 

through a specific subset of EBV-specific cytotoxic T lymphocytes (CTLs) and 

antibodies (6). However, when the complex and delicate balance between immune system 

and EBV is altered, several types of EBV-related disorders, including malignancies, may 

occur. 

EBV, the dark side. 

EBV seroconversion is usually asymptomatic, especially when it occurs in childhood, but 

individuals infected in late teens or early twenties may develop Infectious Mononucleosis 

(IM), an acute infection caused by a vigorous immunopathologic response to EBV-

infected cells. After IM, all EBV-infected B cells display a type III latency pattern. 

More importantly, since its discovery in a lymphoblasts culture of a Burkitt’s lymphoma, 

EBV was found to be related to a wide variety of malignancies (Table 1), and it is 

considered a “group I carcinogenic agent” since 1997 by the world Health Organization 

(WHO) (7). In particular, EBV is causally associated mainly with tumors of lymphoid 

origin, although particular types of carcinomas can be also EBV positive. 

 

 EBV-driven lymphomagenesis. 

EBV has elegantly evolved different strategies to promote cell proliferation and 

transformation leading to specific type of lymphomas (8). The different EBV latency 

patterns include the expression of proteins that may variably contribute to 

lymphomagenesis (Table 1). In the broad Latency III, the full set of EBV latency proteins 

is expressed and contribute to lymphomagenesis by acting cooperatively. On the other 

hand, these proteins, mainly EBNA-3, -4, and -6, are strongly immunogenic and mediate 

the prompt recognition and elimination of EBV-infected cells by EBV-specific CTLs. 
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Consistently, most EBV-associated lymphomas show prevalently Latency I or II, whereas 

EBV+ lymphoproliferations of immunosuppressed individuals usually show a Latency III 

pattern. The main transforming EBV protein is LMP-1 (9), whose expression may depend 

on EBNA-2. LMP-1 exerts multiple oncogenic mechanisms, including a functional 

mimicry with a constitutively active CD40, being able to activate the NF-κB pathway (B-

cell growth signal) and induce the transcriptional activation of telomerase reverse 

transcriptase (TERT) (10-12). LMP-1 can also interact with other crucial cell signaling 

pathways, such as JAK/STAT, MAPK, Wnt and IRF4, which are key molecules for B-

cell growth and survival. Notably, it was demonstrated that LMP-1 up-regulates Bcl-2 

and A20, thus blocking p53-mediated apoptosis. Moreover, LMP-1 may also impair the 

B-cell differentiation to plasma cells through down-regulation of BLIMP1α, thus 

avoiding the lytic cycle entry and  maintaining EBV invisible to the immune system. On 

the other hand, even though LMP-2 is not required for B-cell transformation, its functions 

partially overlap with those of LMP-1 in promoting  cell survival (13, 14). 

EBNA-1 is a DNA binding factor, responsible for the maintenance of the EBV episome 

in infected cells. It can cause genomic instability and alteration of DNA repair 

mechanisms, thereby promoting cell cycle progression despite the occurrence of severe 

DNA damages. Other EBNA proteins such as EBNA-2 and EBNA-LP are able to 

modulate the expression and/or function of c-myc, CD21, CD23 and cyclin-D2 (15, 16). 

Besides the direct interaction with cell cycle and survival regulatory signals, EBV can 

also modulate the activity of innate and adaptive immunity. In particular, the viral non-

coding RNAs, EBERs, highly expressed in all latency programs, can modulate innate 

immune responses affecting different pathways, including Toll-like receptors, type I-

Interferon signaling and may deregulate pro-inflammatory cytokines (17). Moreover EBV 

expresses a viral homologue of IL-10 (18) and can up-regulate human IL-6, IL-8 and IL-

10 through LMP-1 (19). EBV is also able to escape immune recognition by  limiting the 

number of antigens that can be presented by HLA class-I molecules, or through the 

expression of viral antigens that have an impaired ability to be processed by proteasome 

as the case of EBNA-1 (20). 
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Table 1. EBV associated lymphomas. 

 

B-cell Lymphoma 

in 

immunocompeten

t hosts 

EBV 

frequen

cy (%) 

Latenc

y 

progra

m 

Mainly interested 

geographic area 

Current 

Therapy 
Prognosis 

Endemic Burkitt’s 

Lymphoma 
100 Type I 

Equatorial Africa, 

Papua New Guinea 
 High-intensity 

Short-duration 

chemotherapy 

 EPOCH-R 

(experimental) 

 

Remission 

in >85% 

(High 

toxicity) 

 

100% of 

remission 

Sporadic Burkitt’s 

lymphoma 
20-30 Type I  

EBV-positive 

Diffuse large B-

cell lymphoma of 

the elderly 

(DLBCL) 

100 Type II 

World Wide 

 
Chemotherapy 

Poor 

prognonsis 

(Adoptive T 

cell 

Therapy 

should be 

considered) 

Poor 

prognosis 

 

5-Year 

overall 

survival in 

26% of 

patients 

DLBCL associated 

with chronic 

inflammation 

70 Type II 

Pyotorax-

associated 

lymphoma 

(classically 

associated with 

DLBCL) 

70 Type II Japan 

 Surgical 

resection 

 Chemotherapy 

 Radiotherapy 

Classical 

Hodgkin’s 

Lymphoma (HL) 

40 Type II   

 Long term 

remission 

in the 

majority of 

cases 

 Poor 

prognonsis 

in EBV+ 

relapsing 

cases (new 

therapeutic 

strategies 

are needed) 

Lymphomatoid 

granulomatosis 

(LYG) 

100 Type II  

 Chemotherapy 

 

 EPOCH-R 

(grade III) 

 IFN (grade I-II) 

(experimental 

approaches) 

Frequent 

relapse, 

poor 

prognosis 

for Grade 

III disease. 

Better 

prognosis 

for grade I-

II. 

Promising 

results with 

IFN 
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Peripheral T cell 

lymphoma, NK 

tumors, and EBV-

associated 

haematophagocyti

c syndrome (HS) 

100 

Type II 

(EBER

s and 

LMP1 

only) 

Japan- 

South-East Asia 
  

Aggressive NK 

leukemia 
>90 Type II Far East  

Poor 

prognosis 

Extranodal NK-T 

cell Lymphoma 

(Nasal Type) 

100 Type II 
Asia,  Central-

South America 

 Radiotherapy 

(no standard 

treatment) 

 No effective 

chemotherapy 

 New clinical 

trials with 

SMILE (L-

aspariginase, 

methotrexate, 

dexamethasone, 

etoposide, 

ifosfamide) 

Extremely 

poor when 

treated with 

anthracyclin

es 

……………

… 

ORR 74%, 

Complete 

remission 

rate 38% 

Inflammatory 

pseudo-tumor-like 

follicular dendritic 

cell tumor IPLFD 

Near 

100 
Type II    

Angioimmunoblast

ic T-cell 

lymphoma (AITL) 

and associated 

peripheral T cell 

lymphoma (PTCL) 

>90 Type II 
North America 

Europe 

Tipical 

Lymphoma 

chemotherapy 

(no standard 

treatment) 

Frequent 

relapses 

(new 

therapeutic 

strategies 

are needed) 

Lymphomas in 

immonocomprom

ised hosts 

EBV 

frequen

cy (%) 

Latenc

y 

progra

m 

Current Therapy Prognosis  

Post 

transplantation 

lymphoproliferativ

e disorders 

(PTLD) B-cells 

Near 

100 

Type 

III 

 Rituximab 

 

 Immunotherapy 

 Responses in 

35-70% 

 Great success 

 

PTLD NK/T cells >70 
Type 

III 
   

Burkitt’s 

Lymphoma (HIV) 
25-35 Type I 

BL classical 

treatment 
  

Hodgkin’s 

lymphoma (HIV) 
>80 Type II 

Classical HL for 

general population 

treatment 

More aggressive 

of HL 
 

Primary effusion 

Lypmhoma (PEL) 
>80 Type I 

No effective 

therapy exists 
Very poor  

Plasmablastic 

Lymphoma 
Near 70 

Type I-

II 

No standard 

therapy 
Poor  

Plasmablastic 

Lymphoma, oral 

type (HIV) 

100 Type I    
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Primary CNS 

lymphoma (HIV) 
100 

Type 

III 

Combined 

chemotherapy (no 

standard treatment) 

5 years survival 

20-30% 
 

NHLs with 

primary immune 

disorders 

>90 
Type 

III 

Treatment for 

NHL 
  

Iatrogenic 

immunodeficiency 

lymphoma 

40-50 
Type 

III 

Therapies for 

autoimmune 

disease and 

reduced 

immunosuppressiv

e regimen 

Sometimes, 

spontaneous 

remission for 

EBV
+
 cases 

 

 

 EBV and carcinomas. 

The complex interactions between EBV and genetic or environmental factors triggering 

EBV-mediate carcinogenesis, are still controversial and not completely understood. 

In this regard, it was recently demonstrated that at least a 10% of total gastric cancers 

(GC) is associated to EBV (21), while, to date, no evidence support the possible 

correlation between EBV and  breast cancer. 

Conversely, available evidence strongly supports the association between EBV and 

nasopharyngeal carcinoma. 

 Nasopharyngeal carcinoma (NPC). 

Nasopharyngeal carcinoma is an epithelial malignancy that arises from the lateral 

nasopharyngeal recess (Rosenmϋller’s Fossa). WHO classification distinguishes two 

NPC histopathologic variants, a Squamous Cell Carcinoma, the well-differentiated 

keratinizing NPC and a non-keratinizing NPC, divided into differentiated non-

keratinizing carcinoma and undifferentiated carcinoma of Nasal Type NPC (UNPC)(22), 

which is typically paired with a considerable infiltration of normal chronic inflammatory 

lymphocytes. 

NPC is endemic in South-East Asia, Southern China and in Alaska. High incidence is also 

found in Northern Africa, Taiwan, Vietnam and the Philippines. Low incidence (below 

1/100,000) is found in most western countries, especially in Europe and North America, 

even though the presence of immigrant from the endemic zones significantly increases the 

incidence of NPCs in south Italy and in France (23).There are multiple risk factors related 

to NPC onset, including diet, smoke, complex genetic predisposition (24) and different 

environmental factors (Table 2). Notably, despite oncopathogenic mechanisms are still 
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not completely understood, EBV infection seems to be invariably associated to NCP 

development, since virus genome is virtually present in all NPC biopsies of all 

histological subtypes (25). 

 

Table 2: Summary of possible risk factors associated to NPC development 

Factor 
Strength of 

association 

Consistency of 

association 
Subgroup-specific associations 

EBV Strong Consistent 
More consistent association with 

types II and III NPC 

Salt-preserved fish Moderate to strong Consistent 
Stronger association with 

consumption at weaning 

Other preserved foods Moderate Fairly consistent 
 

Lack of fresh fruits and 

vegetables 
Moderate Fairly consistent 

 

Tobacco smoke Weak to moderate Fairly consistent 
Stronger association with type I 

NPC 

Other inhalants Weak to moderate Inconsistent 
 

Formaldehyde Weak to moderate Inconsistent 
 

Occupational dusts Weak to moderate Inconsistent 
More consistent association with 

wood dust exposure 

Chronic respiratory tract 

conditions 
Moderate Fairly consistent 

 

Family history of NPC Strong Consistent 
 

HLA class I genotypes Moderate to strong Consistent 
Inconsistent associations with HLA 

class II genotypes 

 

 

NPC cells characterized by an EBV Latency II program, in which  LMP-1 protein is often 

detected also in pre-invasive lesions and in overt tumors, underlying the possible role of 

this viral protein in the initial phases of malignant transformation(25). LMP-1 is also 

responsible for the deregulation of cellular genes, such as Bcl-2, NFκB and STAT3, 

which are involved in cell proliferation/survival and tumor progression. 

Since epithelial cell infection by EBV can be demonstrated in vitro (Borza CM, 2002), 

but it has not been convincingly documented in vivo, the etiology of this tumor is still 

obscure. Genetic predisposing factors and and dietary carcinogens, are currently thought 

to be of relevance in the development of NPC. With regard to immunologic factors, it is 

well known that, generally, vigorous humoral and cellular immune responses control the 

proliferation of EBV-infected cells in healthy virus carriers. Indeed, both non-specific 

(NK-cell mediated) and EBV-specific (T-cell mediated) responses were shown to play 

important roles during primary infection, while EBV-specific T-cells appear to be 
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critically involved in restraining the proliferation of EBV infected cells during life-long 

persistent infection. On these grounds, different studies have confirmed that T-cells 

specific for EBV antigens expressed during latent and productive infection are maintained 

in the blood of healthy carriers at relatively high frequencies throughout life (26). 

Moreover, direct evidence of the importance of these EBV-specific T-cells and 

controlling the oncogenic capacity of the virus is provided by the occurrence of EBV-

associated immunoblastic lymphomas in patients where this activity is impaired by 

congenital immunodeficiency, immunosuppressive therapy or HIV infection (27). Thus, 

these EBV-associated lymphomas can be prevented or even cured by adoptive transfer of 

in vitro activated and expanded EBV-specific T cells (28), suggesting that the 

reconstitution of EBV-specific immunity could also be a useful strategy in the 

management of NPCs. Early after the discovery of EBV association with NPC, a 

deregulation of the EBV-specific immune response with elevated IgA titers against the 

virus was documented (29). This indicated that the immune response at the site of tumor 

development was changed, and that the tumor might influence local microenvironment to 

facilitate its growth. Indeed, conclusive studies supported the notion that local immune 

suppression rather than a systemic deficiency in EBV-specific immune control may 

contribute to NPC development. In these studies, EBV specific CD4+ and CD8+ T-cell 

responses could be reactivated from peripheral blood of NPC patients (30). Even though 

LMP-1- and LMP-2-specific CD8+ T-cells were enriched in tumor infiltrating 

lymphocytes, their cytotoxicity and cytokine secretion was impaired. This impairment 

could be due to the presence of CD4+CD25+FoxP3+ natural Treg cells in the tumor 

tissue, which could suppress EBV-specific immune responses against NPC even after 

correct homing of effector T cells(31). In addition to active T-cell suppression at the 

tumor site, the efficiency with which NPC can present antigens to T-cells might also be 

compromised. While earlier studies based on a limited number of NPC cell lines 

suggested that antigen processing for HLA-I presentation was intact in NPC cells (32), a 

more recent study on primary tumor tissues suggested that the MHC-I antigen processing 

machinery is down-regulated in the majority of tumors (33). Even though no functional 

deficiency of MHC-I antigen presentation could be tested in this latter study, this makes 

possible to speculate that in addition to active immune suppression at NPC tumor site, the 

recognition of tumor cells by CD8+ T-cells could be also impaired. Together, these data 

suggest that NPC impairs EBV-specific immune control locally, while allowing efficient 

systemic immune responses against this virus.  
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The prognosis of NPC is strongly related to carcinoma histotypes and to the stage of the 

disease, with a survival rate of 70% at 2-years and 30% at 5-years (34, 35). Accordingly, 

conventional treatments for NPC are still unsatisfactory and are often accompanied by 

severe long-term side effects (30). Therefore, the strict association of NPC with EBV 

infection and the expression of immunogenic viral antigens in tumor cells, has stimulated 

intense efforts to develop strategies of immune intervention that could complement or 

even substitute current therapeutic regimens for a better control of this malignancy.  

 

Immunotherapy strategies against EBV-associated malignancies. 

The development of EBV-associated malignancies may be favored by an underlying 

defect in virus-specific CTL immunity and function. Much work has been focused in the 

last years on the reconstitution of CTL immunity to EBV in transplant patients, who are 

rendered susceptible to PTLD by iatrogenic immune suppression modalities. Moreover, 

recent data indicates that other EBV-associated diseases such as NPC, HL, and chronic 

active EBV infections (CAEBV) can potentially be treated by immunotherapeutic 

approaches. Indeed, virus infection in these tumor cells is characterized by the expression 

of a limited set of EBV latent proteins, thus limiting tumor immunogenicity (Figure 1), 

since they may serve as targets for specific immunotherapy. 

 

 

 

Figure 1. EBV latent protein expression and immunogenicity of common EBV-associated 

malignancies. Only EBV latent protein expression is shown. In EBV latency types I-III EBV encoded-

RNAs (EBERs) and the BamHI-A rightward transcripts (BARTs) are also expressed.  
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To date, there are only limited experiences with human EBV vaccines (36, 37). Although 

potentially ideal for preventing EBV-associated malignancies, vaccines providing life-

long immunity against primary EBV infection may not be feasible, because the type of 

immunity required to prevent repeated infection through mucosal surfaces is not clearly 

defined. Moreover, repeated infections with different EBV strains have been described, 

suggesting that the natural immune response to EBV is not sufficient to protect healthy 

EBV-positive individuals from recurrent infections. Vaccine strategies for the 

immunotherapy of EBV-related tumors should seek to elicit or boost specific cellular 

immune response against EBV antigens expressed in these malignancies. Individuals 

likely to benefit from this approach are EBV-seronegative patients prior to solid organs 

transplant (SOT) or patients affected by EBV-associated malignancy with a low tumor 

burden or in remission. However, vaccine strategies are unlikely to be the optimal method 

to enhance EBV-specific T-cell responses for patients who are immunocompromised due 

to immunosuppressive therapies after transplantation or as a result of HL. In such cases, 

the adoptive cell therapy (ACT) with ex vivo activated EBV-specific CTL seems to be 

more promising, especially because it could benefit from T-cells engineering, able to 

enhance effector cells’ specificities and functions. Briefly, ACT consists in the infusion of 

autologous or donor-derived tumor/virus-specific T-cells in patients, upon an ex-vivo 

enrichment and expansion of antigen-specific effectors, in order to reconstitute or boost 

CTLs functions, with the final aim to kill tumor cells and avoid relapses (Figure 2). 

Furthermore, in the last years, ACTs took advantage of molecular biology techniques to 

improve effector cells’ specificities by CTLs engineering either with T-cell receptors 

(TCRs) or Chimeric Antigen Receptors (CARs) specific for a particular tumor associated 

antigen (TAA) (38). These new strategies are intriguing and confer high specificity to 

CTLs prior to infusion in patients, but they require higher production costs and strictly 

regulated manufacturing controls. 
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Figure 2. Adoptive T-cell therapy. Peripheral blood mononuclear cells are isolated from buffy-coat 

derived from patients or donors; anti-tumor specific T-cells could be selectively reactivated with 1) 

dendritic cells loaded with particular peptides or proteins, or transfected with vectors expressing protein of 

interest 2) with autologous LCLs (most frequent in case of EBV targeted immunotherapy) naturally 

expressing antigens of interests or transfected with  vectors; alternatively, 3) CTLs could be engineered 

with TCR or 4) with CAR, to confer to the effectors a high-TAA specificity. Specific anti-tumor effectors 

are expanded in vitro and the re-infused in patients. 

 

 

 EBV-specific immunotherapy in PTLD. 

EBV infection poses a significant problem in transplant patients who are greatly 

immunosuppressed in order to prevent chronic organ rejection. Risk factors for the 

development of PTLD include EBV-seronegativity in the transplant recipient, the type of 

organ transplanted (highest in lung and heart and lowest in liver and kidney), and the 

level and type of immune suppression. PTLD emerges as either of recipient or donor 

origin, depending on the type of transplant. For example, bone marrow transplant (BMT) 

patients develop PTLD of donor origin, as EBV-infected B cells derived from the donor 
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marrow proliferate uncontrollably into lymphoma. Conversely, SOT patients develop 

PTLD of recipient origin, as EBV released from the transplanted organ infects the 

recipient’s B cells. On these grounds, initial studies investigated the potential of EBV-

specific CTLs to treat PTLD in BMT patients, as CTLs could be easily generated from 

EBV-seropositive, immunocompetent donors. Pioneering studies (39, 40) demonstrated 

that PTLD was resolved after adoptive transfer of EBV-specific CTLs grown from donor 

peripheral blood mononuclear cells. The method developed to stimulate and expand large 

numbers of EBV-specific CTLs utilized the donor’s autologous EBV-immortalized 

lymphoblastoid B-cell lines (LCLs), which were co-cultured with donor PBMCs in the 

presence of interleukin-2 (IL-2). Similar to PTLD tumor cells, LCLs also have a latency 

III phenotype and can activate polyclonal EBV-specific CTLs with a broad reactivity to a 

range of EBNA-derived p epitopes. The resulting EBV-specific CTLs used in these 

studies killed donor LCLs in vitro, did not compromise allograft function, and most 

importantly, eradicated tumors. More recently, further studies obtained similar results 

from a group of SOT patients (37, 41), however graft versus host disease (GvHD) or 

severe local inflammation and tissue damages frequently occurred after non-autologous T 

cell infusion (37, 42).  

 

 EBV-specific immunotherapy in NPC and HL. 

Clinical evidence accumulated so far indicates that adoptive therapy with EBV-specific 

CTLs (EBV-CTLs) is safe, well tolerated and particularly effective in the case of most 

immunogenic tumors like PTLD (43). In latency II EBV-associated malignancies, 

however, the more restricted pattern of viral latent antigen expression strongly limits the 

therapeutic potential of EBV-CTLs obtained by conventional protocols based on the use 

of autologous LCLs as a source of viral antigens. In fact, the infusion of EBV-targeted 

autologous CTLs was shown to enhance specific immune responses and to induce 

objective clinical responses only in a proportion of NPC and HL cases (44, 45). This is 

probably due to the weak immunogenicity of LMP-1 and LMP-2. To improve protocols 

for in vitro expansion of T-cells specific for the EBNA-1, LMP-1 and LMP-2 antigens, 

which are present in these malignancies, recombinant viruses encoding for these EBV 

products have been utilized to expand specific CD8
+ 

T-cells, which could protect against 

LMP-positive tumor growth in mice (46). However, these T-cell lines, targeting a select 

subset of EBV antigens, are just now starting to be tested in patients. As an alternative to 
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passive immunization, adoptive T-cell transfer of EBV antigen loaded DCs has been 

evaluated for inducing protective CD8
+
 T-cell responses against NPC. Although LMP-2-

specific CD8
+
 T cells could be expanded after peptide-pulsed DC injection in NPC 

patients, these responses were too weak or transient. Thus, vaccine approaches that 

primarily target CD8
+
 T cells have not yielded sufficient therapeutic success against 

EBV-associated lymphomas. Learning from these trials and as a result of a better 

understanding of the crucial role for CD4
+
 T cells in assisting CD8

+
 T cell immunity, 

more recent vaccine formulations aim to incorporate both CD4
+
 and CD8

+
 T-cell 

antigens. In addition to CD4
+
 T-cell help for CD8

+
 T-cell responses, CD4

+
 T-cells can 

also target EBV-transformed B cells directly, adding to their value as vaccine targets. As 

previously observed, many of these immunization strategies target DCs, which have been 

shown to be more efficient than LCLs in expanding EBV specific T cells and are capable 

of priming protective CD4
+
 and CD8

+
 T cell responses against EBV transformed B cells 

in vitro (47). CD4
+
 and CD8

+
 T cells, expanded with DCs, which had been infected with a 

recombinant adenovirus encoding LMP2, were able to kill NPC cells (48). Finally, 

considering that NPC’s and HL’s malignant cells have functional antigen processing 

machinery and express HLA and co-stimulatory molecules (49, 50), the demonstration 

that other viral latent proteins expressed by these neoplastic cells may serve as tumor-

associated antigens could provide the rational background to improve the clinical efficacy 

of adoptive immunotherapy protocols in this setting. 

Adoptive immunotherapy with EBV-specific CTLs has proven to be an effective strategy 

in many PTLDs (51) to reconstitute EBV-specific immunity, prevent the development of 

EBV-PTLD (52) and treat patients with established EBV-PTLD. For other EBV-

associated malignancies, the use of EBV-specific CTL has proven less efficacious; 

however the results obtained so far are sufficiently encouraging to justify continued active 

exploration of this approach. Novel approaches are being developed to enhance the 

potency of EBV-specific immunotherapy by targeting CTL to subdominant EBV proteins 

and by genetically modifying these effector cells to render them resistant against 

inhibitory cytokines or immunosuppressive therapies. Notably, such strategies could have 

broad implications for the adoptive immunotherapy of a broader spectrum of human 

cancers with defined tumor antigens. All these approaches open promising avenues to 

enhance or prime protective EBV-specific immune responses (53), which have been 

suppressed by the tumor cells itself or by their microenvironment, and whose absence 

might predispose for the development of EBV-associated malignancies. 
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BARF-1 as novel target for NPC-immunotherapy. 

As previously discussed, EBV-specific CTLs have been successfully used for the 

prophylaxis and treatment of the highly immunogenic PTLDs, as demonstrated by a large 

number of phase I and phase II trials (54). Conversely, the clinical experience for other 

EBV-associated malignancies, such as HL and NPC, is limited and the results obtained so 

far indicate that EBV-specific CTLs are less effective in these settings (Table 3 (54)). 

EBV-driven tumorigenesis encompasses not only the coordinate activity of latent viral 

proteins but also to the ability of the virus to inhibit host immune responses directed 

towards EBV-carrying lymphocytes. The EBNA-1 protein was initially considered to be 

invisible to the immune system due to the long internal glycine-alanine repeat domain 

that hampers the proteasome-mediated processing of the protein, thus preventing the 

efficient generation of peptides that can bind to HLA class I (20). More recent evidence 

however indicates that EBNA-1-specific CD8+ and CD4+ T cells can be successfully 

generated from patients with PTLD or HL for therapeutic purposes (55, 56). Another 

interesting question is why LMP-1 and LMP-2 expression is tolerated in latency II or III 

malignancies, despite the fact that these viral proteins carry CTL target epitopes restricted 

through common HLA alleles (table 4). Analysis of virus-specific CTL responses at the 

tumor site of EBV-positive HL patients showed that infiltrating CTLs are functionally 

impaired and unable to eliminate the neoplastic cells (57). Therefore, decreased CTL 

efficacy is not only due to the ability of EBV to generate an immunosuppressive 

microenvironment, by local secretion of inhibitory cytokines, but it also involves defects 

in antigen processing or presentation by tumor cells and a selective down-regulation of 

immunodominant EBV proteins. On these grounds, one of the possible approaches to 

overcome these limitations is the identification of additional viral proteins expressed by 

tumor cells and that may serve as tumor-associated antigens to be targeted by improved 

CTL induction and expansion protocols.  
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The BamHI-A fragment of the EBV genome encodes for the BARF1 gene, located at 

nucleotide positions 165449-166189, of the B.95.8 strain. The BARF1 gene is translated 

into a 221 amino acids long protein, with a calculated mass of 31-33 kDa (58). This 

protein may play different functions in immunomodulation and oncogenicity. In 

particular, it has been demonstrated that BARF1 functions as a soluble receptor for 

human colony-stimulating factor 1 (hCSF-1) (59), and recombinant BARF1 inhibits the 

ability of hCSF-1 to induce proliferation of bone marrow macrophage progenitor cells. 

Notably, hCSF-1 is known to have a number of other activities, including induction of 

mononuclear cells to release cytokines, such as interferon alpha (IFN-α), tumor necrosis 

factor alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), and IL-1 (60). 

Thus, the ability of BARF1 to block hCSF-1 activity might impair cytokine release from 

mononuclear cells, thereby reducing cellular immune response to EBV. BARF1 could 

also act as an oncogene when stably expressed in mouse fibroblasts and monkey kidney 

cells (61) being able to induce the expression of the c-myc proto-oncogene and the CD21 

and CD23 B-cell activation antigens (62). Interestingly, BARF1 was found in EBV-

immortalized epithelial cells, without the expression of LMP1, which is essential for B-

cell immortalization (63) and was also capable of inducing malignant transformation in 

Balb/c3T3 cells and in human Louckes and Akata B-cell lines (62, 64, 65). Moreover, 

Cohen and colleagues showed that both recombinant and EBV-derived BARF1 protein 

were able to inhibit IFN-α production by human monocytes (66). Therefore, BARF1 

might also play an important role in modulating the innate host response to promote 

survival of virus-infected cells in vivo. Although BARF1 is thought to be a lytic gene in 

B-lymphocytes, since it is not expressed in BL cell lines (67), its expression was detected 

in NPC and EBV-positive gastric carcinoma (GC) tissues in the absence of the expression 

of other lytic genes (68). This suggests that BARF1 may be expressed as a latent gene in 

EBV-associated epithelial malignancies. Notably, computer analysis of BARF1 sequence 

predicted a cleavage site after the 20th N-terminal amino acid. The secretion of a 29 kDa 

BARF1-coded polypeptide (69) from human B cells was already reported by Strockbine 

et al. (70, 71) suggesting that almost all BARF1 protein is secreted in culture medium 

rendering its detection difficult in intracellular compartments. Thus, one possible 

mechanism of oncogenic transformation induced by BARF1 might be autocrine/paracrine 

cell cycle activation by the secreted form of its translation product. Finally, BARF1 is 

also able to induce humoral responses in EBV-seropositive individuals and may serve as 

a target for antibody-dependent cellular cytotoxicity in NPC patients (72). 
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Table 4. CD8
+
 epitopes defined in NPC-associated EBV proteins.  
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AIM OF THE STUDY.  

Although adoptive infusion of EBV-specific T-cell lines constitutes a promising strategy 

for the treatment of patients with NPC or HL, the clinical benefit of current protocols is 

still unsatisfactory. One major limitation is constituted by the restricted number of EBV 

antigens that can be targeted in malignancies carrying a latency II (or I) and their poor 

immunogenicity. The oncogenic EBV protein BARF1 is expressed in the majority of 

NPC cases and may constitute an attractive therapeutic target. In fact, we have previously 

demonstrated that NPC patients have strong spontaneous CD4 and CD8 T-cell responses 

against BARF1 protein and derived epitopes. Moreover, BARF1-specific cCTLs can be 

easily generated from EBV
+ 

donors, an important prerequisite to exploit BARF1 

immunogenicity for  immunotherapeutic purposes. 

The present study aims at developing a new optimized protocol for adoptive 

immunotherapy of NPC, based on the generation of T-cell lines enriched in BARF1-

specific effectors. To this end, we had to devise strategies to up-regulate BARF1 in LCLs 

without inducing cell apoptosis or a complete EBV lytic replication in order to allow 

these cells to effectively present BARF1 peptides together with other EBV target 

epitopes. On these grounds, we investigate different EBV lytic cycle inducers used at 

suboptimal concentrations for their ability to up-regulate BARF1 expression in LCLs 

without compromising cell survival. This approach was chosen in the light of the relative 

simplicity of use of drugs already adopted in the clinic or easily up-gradable to GMP 

standards.  

BARF1-expressing LCLs were then used as antigen presenting cells to generate specific 

donor- and patient- derived CTLs potentially able to kill more efficiently NPC cells in a 

HLA-A*0201 restricted fashion . We have demonstrated that, as compared with the other 

drugs investigated, doxorubicin (DX) (an anthracycline family member) is able to induce 

a more specific expression of BARF1 mRNA in LCLs at concentrations that do not affect 

cell survival. 

CTLs generated with DX-LCLs (DX-CTLs), showed higher specificity for targets loaded 

with BARF1 peptides or endogenously expressing this target protein. Intriguingly, 

responses against LMP1 were also enhanced in several instances. Consistently with this 

findings, DX-CTLs displayed a higher content in granzyme-β granules. Considering that 

DX is able to induce immunogenic cell death (73-76), we also investigated whether DX 

treatment induced the expression of molecules potentially able to enhance the 
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immunogenicity of LCLs, even at doses inducing complete apoptosis only in a minority 

of cells. 

Feasibility and effectiveness of the protocol developed were also verified on LCLs and T 

lymphocytes derived from NPC patients. In particular, cytotoxicity assay demonstrated 

that DX-CTLs generated from NPC patients achieved a similar efficiency in terms of 

antigen-specific lysis as donor-derived DX-CTLs. These findings further confirm that 

BARF1 CTL could be successfully exploited to potentially enhance the clinical efficacy 

of NPC adoptive immunotherapy, and provide the rationale for a rapid up-grading at the 

GMP level of this innovative protocol. 

 

 

Figure 3. Representation of our new approach of immunotherapy protocol. Peripheral blood 

mononuclear cells are isolated from buffy-coat derived from patients and properly criopreserved; 

Autologous LCLs were generated with B.95.8 EBV strain and subsequently treated with lytic cycle 

inducers, in order to induce BARF1 expression. PBMCs were then co-cultured with treated-LCL and 

autologous anti-BARF1 T-cells could be selectively reactivated and expanded. By this way, not only 

BARF1-specific effectors could be selected, but other cytotoxic T-cells enriched in EBV specificities will 

be included in the culture, and this could be further improve spectrum of T-cell killing and increase the 

therapeutic potential. Standard calcein AM release were performed to verify efficiency of the new immune 

effectors, then specific CTLs could be further expanded prior re-infusion in patient. 
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1. MATERIAL AND METHODS 

 

NPC patients and healthy donors 

 

Four blood samples were obtained from NPC patients. All NPC cases investigated were 

EBV-associated as shown by in situ hybridization for EBERs. Buffy coats from 5 EBV-

seropositive healthy donors were also collected and included in present study. Peripheral 

blood mononuclear cells (PBMCs) were freshly isolated on Ficoll-Hypaque density 

gradient (Lymphoprep, Freseniu Kabi Norge Halden, Norway) and cryopreserved 

immediately using standard procedures and viably frozen at -180°C until use. HLA-A and 

-B typing was performed in all cases by sequence-based typing, according to standard 

high-resolution typing techniques. 

Reagents and antibodies 

Hsp70, Hsp90, Myd88 (D80F5), and cleaved Caspase 3 (D175) antibodies were from 

Cell Signaling Technology (Cell Signaling Technology, Inc., Boston, MA 02241-3843); 

GAPDH antibody was from Abcam (Abcam, Cambridge, UK); Parp (F2), Zebra (BZ1) 

and β-tubulin (H-235) from Santa Cruz Biotechnology (Dallas, Texas, U.S.A.). 

Cell lines and culture conditions 

The following HLA-A*0201-restricted cell lines were used in the study: the DG75 human 

Burkitt’s lymphoma; the Granta-519 human mantle cell lymphoma; donor-derived EBV-

transformed LCLs, generated in vitro by transformation of B cells using the standard 

EBV isolate B.95.8; the transporter associated with antigen-processing-deficient T2-A2 

cells and the c666.1-A2 NPC cell line transfected in vitro with the HLA-A*0201 gene. 

The Ramos human BL and  the c666.1-Wt NPC cell lines were used as non HLA-A*0201 

controls. Phoenix cell line were used as packaging cell line for infection protocol. All cell 

lines were cultured in RPMI-1640 (Gibco, Grand Island, NY), containing 10% fetal 

bovine serum (Gibco, Grand Island, NY), 2 mM L-glutamine, 100 g/ml streptomycin 

and 100 IU/ml penicillin (Sigma Aldrich, St Louis, Missouri, US), with the exception of 

Granta-519 cell line and Phoenix, which was cultured in complete Dulbecco’s Modified 

Eagle’s Medium (DMEM, Cambrex Bio Science Walkersville, MD). Donor- and patient-

derived EBV-specific CTL lines were cultured in CellGro® GMP DC (CellGenix GmbH, 

Am Freiburg, Germany), supplemented with 100 lg/ml streptomycin and 100 IU/ml 

penicillin (Sigma Aldrich, St Louis, Missouri, US). 
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Transfection-infection protocol. 

For the expression of the HLA-A*0201 allele in c666.1Wt NPC cell line, HLA-A*0201 

gene was inserted into pBABE-Puro retroviral vector (Add gene), cloned into One Shot 

Top-10 chemically competent E.coli (Invitrogen
TM 

life technologies) and purified using 

the PureYeld Plasmid  Maxiprep System  (Promega) according to manufacturer 

recommendations. Phoenix were transfected by calcium phosphate methods using a 

calcium phosphate Profection kit (Promega) or with DOTAP (Invitrogen
TM 

life 

technologies) with 20 μg of pBABE-Puro-A2 vector accordingly to manufacturer 

recommendations. Briefly, Phoenix  were first incubated with calcium phosphate/vector 

precipitate or DOTAP/vector for 24 hr at 37°C 5%CO2 in DMEM + 10%FCS. Medium 

was then replaced with fresh RPMI1640 and cells were newly incubated 24 hr 37°C 

5%CO2. After the secondary incubation, viral medium was collected and used to infect 

c666.1 NPC cells. C666.1-Wt cells were plated in 6-well plates (10
6
cells/ml) and 

incubated twice with viral medium, first, 2 hr at 32°C 5% CO2and then over night with 

fresh viral medium at 32°C 5% CO2. After incubations, viral medium was replaced with 

fresh RPMI1640. Selection in puromicin started into 3 days. 

RNA extraction, cDNA synthesis and quantitative Real-time PCR (qRT-PCR). 

One-to-3x10
6
 cells were collected and washed twice in PBS. Total RNA was extracted 

from cells by QIAGEN RNeasy Mini Kit. Quantification and integrity of mRNA were 

determined through the Experion Automated Electrophoresis system (BIO-RAD, 

Hercules, CA, US). One µg of RNA was retro-transcribed into cDNA using the Iscript RT 

OneTube Supermix (BIO-RAD, Hercules, CA, US) according to manufacturer’s 

recommendations. Quantitative real-time PCR were performed in a Thermal Cycler 

CFX96, using SsoFast EvaGreen Supermix (BIO-RAD, Hercules, CA, US) accordingly 

to manufacturer’s recommendations. Primers (table 5) were designed with Primer3 

(version 0.4.0) and specificity controls were performed by BLAST alignment tool. Primer 

were from Sigma Aldrich, St Louis, Missouri, US. 

Primer sequences for the housekeeping genes 18S, beta-actin, beta-2-microglobulin and 

HPRT were kindly provided by BIO-RAD. Normalized fold expression was calculated 

with “delta-delta Ct” method. 
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Table 5: primers used for qRT-PCR. Primers were designed with primer3 web tool 

(http://primer3.ut.ee/). Then were tested at different concentration of both, target and primers, before 

analysis. 

Immunoblotting analysis. 

Whole cell lysates were prepared in lysis buffer [50 mmol/L Tris-HCl (pH 7.5), 150 

mmol/L NaCl, 2 mmol/L EDTA, 2 mmol/L EGTA, 2 mmol/L sodium orthovanadate, 25 

mmol/L h-glycerophosphate, 25 mmol/L sodium fluoride, 1 mmol/L 

phenylmethylsulfonyl fluoride, 1 Amol/L okadaic acid, 5 Ag/mL leupeptin, 5 Ag/mL 

aprotinin, 0.2% Triton X-100, and 0.3% NP40] and lysed for 30 minutes on ice. Total 

protein extracts were obtained by centrifugation at 13,000 rpm for 15 minutes and protein 

concentration was determined by the Biorad Bradfor Protein Assay (Milan, Italy). 

Proteins were fractionated using SDS-PAGE and transferred onto nitrocellulose 

membranes. Immunoblotting was performed using the enhanced chemiluminescence plus 

detection system (PerkinElmer, Massachussets, U.S.A.) through Chemidoc XRS
+
 

instrument (Biorad, Hercules, CA, US). 

 

Induction of EBV lytic cycle in lymphoblastoid cell lines. 

Lymphoblastoid B-cell lines were seeded at the concentration of 5x10
5
 cells/ml and the 

induction of EBV lytic cycle was achieved by incubation of cells with either with 1) 

TPA+NaB: 20 ng/ml of 12-O-tetradecanoyl-phorbol-1-acetate, TPA, and sodium 

butyrate, NaB, both from Sigma Aldrich, St Louis, Missouri, US, in complete RPMI-

http://primer3.ut.ee/
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1640 medium for 48 hr at 37 °C 5% CO2; 2) Doxorubicin (DX): 25 nM DX for 6 hr at 37 

°C 5% CO2 and  3); CSP: 5 µM CSP for 6 hr at 37 °C 5% CO2. After DX and CSP  CRO 

treatment the cells were washed once and cultured in fresh complete RPMI-1640 medium 

for further 24 hr. DX and CSP were both provided from pharmacy of our istitution. 

Generation of EBV-specific CTL lines. 

Autologous donor- and patient-derived EBV-specific CTLs were generated and weekly 

re-stimulated using as antigen presenting cells (APCs) LCLs treated or not with 

suboptimal concentration of TPA+NaB, DX and CSP in order to induce mainly abortive 

EBV lytic cycle. After the treatment, LCLs were γ-irradiated 80 Gy, before the first 

stimulation, and 40 Gy, before each CTL culture re-stimulation. IL-2 (3 ng/ml) was added 

to the culture medium starting from day 14
th

 and fresh medium was added every 3 days. 

Effector cells were co-cultured with APCs at a 40:1 T-cells:LCLs ratio and CTL lines 

differentiation/memory phenotype was monitored at day 10
th

 and at 35
th

. 

Flow cytometry. 

The following fluorescent-conjugated monoclonal antibodies were used: Fluorescein 

Isothiocyanate (FITC) or Phycoerythrin-TexasRed (ECD) α-CD3 (mouse IgG1, clone 

UCHT1), Phycoerythrin-Cyanine5 α-CD4 (PC5; mouse IgG1, 13B8.2), Phycoerythrin-

Cyanine7 α-CD8 (PC7; mouse IgG1, SFCI2IThy2D3), ECD α-CD45RA (mouse IgG1, 

2H4LDH11LDB9) all from Beckman Coulter, Fullerton, CA, USA; Phycoerythrin α-

CD197 (CCR7) (PE; rat IgG2a, 3D12) from BD Pharmingen, Becton Dickinson, Franklin 

Lakes, NJ, USA; PE α-CD284 (TLR-4) (mouse IgG2a, HTA125) from Affimetrix 

eBioscience, San Diego, CA, USA; PE α-HLA-A2 (mouse IgG2b, BB7.2) from Acris, 

Herford, Germany); PE α-CRT (calreticulin) (mouse IgG1, FMC.75) from Abcam 

(Cambridge, UK). 

Properly labelled isotypic antibodies were used as negative controls. All antibodies were 

used in an appropriate volume of 10% Rabbit Serum (Dako, Glostrup 

Denmark) and Phosphate Buffer Saline (PBS, Biomerieux, Marcy l'Etoile, France) to 

reduce nonspecific signal. Cytofluorimetric analysis was performed with a Cytomics 

FC500 (Beckman Coulter) and data were analyzed with CXP software (Beckman 

Coulter). 

Standard calcein-AM release assay. 
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Cytotoxic activity of peptide-specific CTLs was evaluated using peptide-loaded T2-A2, 

c666.1-Wt, c666.1-A2, Granta-519 and K562 cell lines as targets in calcein-AM release 

assay. T2-A2 cells were pulsed for 2 hours at 37 °C at 5% CO2 either with HLA-A*0201-

restricted BARF1 peptides (p23 and p49) or with the LMP-1 epitope YLQ (ref). All target 

cells were resuspended in Hanks Balanced Salt Solution without phenol red (HBSS), 

supplemented with 5% FCS, labelled with 5 µM (T2-A2 and K562) or 7.5 µM (c666.1-

Wt, c666.1-A2 and Granta-519)  of calcein-AM (Calbiochem, Darmstadt, Germany) and 

incubated 30 minutes at 37°C, 5% CO2. Labelled cells were washed 3 times and seeded in 

96-wells plate at a concentration of 5x10
3
 cells/well. EBV-specific CTLs were added at 

20:1, 10:1, 5:1 effector:target ratio. All tests were performed in triplicate. The HLA-

A*0201-specific mAb cr11.351 was added to the target cells and incubated at room 

temperature for 30 min to assess the HLA-A*0201 restriction of CTL responses. To 

obtain total calcein-releasing cells, targets were incubated with 100 µL/well of lysis 

buffer (25 mM sodium perborate, 0.1% Triton-X100 in HBSS, pH 9.0). Spontaneous 

release was determined by seeding target cells and adding 100 µL/well of HBSS. Plates 

were incubated for 4 hours at 37°C and 5% CO2 in a volume of 200 µL/well. Following 

incubation, the content of each well was mixed, plates were centrifuged and 100 µL of the 

supernatant was transferred to a 96-well black culture plate. Fluorescence intensity was 

measured by reading the plates from the top using Tecan Infinite 200 Pro (Tecan Group 

Ltd, Männedorf). Excitation and emission filters were 485 and 535 nm, respectively and 

gain was set at 70. The percentage of lysis was calculated as follows:  
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Multispectral imaging flow cytometry. 

The following fluorescent-conjugated monoclonal antibodies were used: PC7 α-CD8 

(mouse IgG1; clone SFCI21Thy2D3) from Beckman Coulter, PE α-CD19 (mouse IgG1; 

clone HIB19) from eBioscience and FITC α-granzyme β (mouse IgG1; clone GB11) 

purchased from BD Pharmingen
TM

, BD Biosciences. To determine the T:APC conjugate 

formation (CD8+ T cells and autologous B-LCL) and to quantify the specific recognition 

and killing of our cytotoxic cell cultures by granzyme β granules formation we performed 

a cytotoxicity assay, as previously described. Briefly, after 2 hours co-culture, autologous 

LCL+T cells (1.5x10
6
 cells/condition) were stained with α-CD8-PC7 and α-CD19-PE 

monoclonal antibodies in an appropriate volume of 10% rabbit serum and PBS to reduce 

nonspecific. Following surface molecules staining, cells were fixed and permeabilized 

with fixation/permeabilization buffer for 30 minutes at 4°C, washed twice, and labeled 

with α-granzyme β antibody in the presence of 2% rabbit serum in PBS at 4°C for at 45 

minutes and, after two washes, cells were re-suspended in PBS with 1% 

paraformaldehyde. The cells were run on ImageStreamX cytometer using the INSPIRE 

software (Amnis Corporation, Seattle, WA) and images were analyzed using the IDEAS 

software (Amnis Corporation, Seattle, WA). Cells were excited using a 488 nm laser with 

intensity of 50 mW. Brightfield, side scatter, fluorescent cell images were acquired at 40× 

magnification. Only events with brightfield areas greater than 30 μm
2
 (excluding debris) 

and non-saturating pixels were collected. In T:APC binding experiments, 3x10
4 

events 

were collected for each sample. In particular, cells were gated for focused populations 

and doublets containing at least one T cell were gated from among all cells. Intracellular 

granzyme β granules formation upon specific T cell activation was determined by sub-

cellular localization and spot count experiments. Thirty thousand events were collected 

for each sample. The cytoplasmic localization of the granules was measured using the 

“internalization algorithm” of the IDEAS software, defined as the ratio between intensity 

inside the cell and the intensity of the entire cell. The inside of the cell is defined by the 

“erosion mask” that fits the cell membrane. Cells containing small concentrated 

fluorescent spots have positive scores, whereas cells showing little and diffuse 

fluorescence have negative scores. Only viable cells were selected on the basis of 

morphologic features. Single-stained compensation controls were used to compensate 

fluorescence between channel images on a pixel-by-pixel basis. 
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RESULTS 

Doxorubicin up-regulates BARF-1 mRNA expression in LCLs. 

Considering that BARF1 is mainly expressed in B lymphocytes undergoing EBV 

reactivation, we investigated the ability of different EBV lytic cycle inducers to up-

regulate BARF1 expression in LCLs. As a first step, we used TPA and NaB that 

synergically activate EBV lytic cycle in EBV-infected cells (77, 78). In particular, healthy 

donor-derived LCLs were treated for 48 hours with suboptimal concentrations of TPA 

and NaB to induce a mainly abortive lytic cycle and the expression of several EBV latent 

and lytic genes was assessed by quantitative reverse transcription PCR (qRT-PCR). As 

shown in figure 4A (upper graph), BARF1 mRNA expression was significantly enhanced 

after TPA and NaB treatment (TPA+NaB) if compared to untreated cells, with a mean of 

2.5 fold increase (p≤0.05). The treatment also significantly enhanced the mRNA 

expression of both latent (LMP1, EBNA1, EBNA2) and lytic (BZLF1/ZEBRA, EA) EBV 

genes, with a 2 to 3 fold-increases (p≤0.05). Therefore, at the various concentrations used, 

TPA and NaB treatment induced a generalized enhancement of EBV gene expression 

including a strong induction of genes responsible for EBV lytic reactivation, being thus 

unsatisfactory for our purposes (Figure 4A). 

We then investigated DX and CSP as less potent lytic cycle inducers for their ability to 

up-regulate BARF1 expression at concentrations mainly leading to abortive EBV 

replication (79). These experiments disclosed that DX and CSP treatment (Figure 4A, 

central and lower graph) up-regulate EBV lytic and latent gene expression, but more 

interestingly DX-treated LCLs showed a significantly higher expression of BARF1 

mRNA and a lower, although significant (p≤0,05), up regulation of the other EBV genes 

investigated (Figure 4A, central graph). 

Furthermore, at concentrations used, DX was found to more efficiently preserve cell 

viability as compared to the other drugs used. In fact, LCLs treated with TPA+NaB or 

CSP, but not with DX, displayed late phase of apoptosis as assessed by PARP cleavage in 

western blot (Figure 4B). 
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Figure 4. A. DX treatment specifically enhancesBARF1 expression. qRT-PCR on EBV lytic and latent 

gene performed on LCLs treated with TPA+NaB- (20ng/ml and 3mM respectively) DX- (25 nM) or CSP- 

(5 µM). mRNA fold expression is referred  to Ctrl-LCLs (=1). 2
-ΔΔCq 

method, was used to normalize gene 

expression, using 18-S as reference gene. The data represent a mean of 3 independent experiments. p value 

was calculated through Student t-test. B. DX-LCLs did not show a late phase of apoptosis . Apoptosis 

stage was assessed by PARP cleavage. Whole cell lysates corresponding to 50 μg of proteins were analyzed 

by immunoblotting analysis for the indicated proteins. GAPDH shows equal loading of protein for each 

lane. 

 

 

LCLs treated with doxorubicin does not affect  the  differentiation of healthy donor-

derived EBV-specific CTLs. 

EBV-specific CTL lines were generated by priming healthy donor-derived PBMCs either 

with untreated (Ctrl) or treated (TPA+NaB, DX, CSP) autologous LCLs. CD8
+
/CD4

+
 T 

cell ratio and phenotype were monitored by multiparametric flow cytometry analysis 

(Figure 5A) at day 10 and at day 35 of culture. The number of CD8
+
 T cells ranged from 

49-to-82% after the first and the last stimulation, respectively. In particular, we observed 

a high prevalence of CD8
+
 in our CTLs cultures at day 35

th
, ranging between 6-11% 

(±5%) for CD4
+
 and 67-77% (±7%) for CD8

+
 (Figure 5B, left histogram). No difference 

in CD8
+
 T-cells percentage was observed among the four CTLs cultures. Combined 
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analysis of CCR7 and CD45RA receptors demonstrated that the 80-90% of CD8
+
 and 69-

77% of CD4
+
 T cells displayed an Effector Memory phenotype (EM, CCR7

-
CD45RA

-
, 

Figure 5B, mid and right histograms respectively). Again, no significant differences were 

observed with regard to the differentiation features of the four CTL cultures. 

 

 

Figure 5. DX-treated LCLs do not affect CTLs differentiation phenotype. A. Differentiation (memory) 

status of CD3
+
CD4

+ 
and CD3

+
CD8

+
 through CCR7 and CD45RA expression, in early stage of culture 

generation (day 10
th

) and after the last re-stimulation (day 35
th

). Percentages of Temra (CCR7
-
CD45RA

+
) 

EM (CCR7
-
CD45RA

-
) and CM (CCR7

+
CD45RA

-
) are shown. B. Left histogram: CD8

+
/CD4

+
 ratio within 

CD3
+
 lymphocytes among the at day 35

th
. Mid and the right histograms represent CD4

+
 and CD8

+
 T-cells 

phenotype, respectively (data represent a mean of 3 experiments). 

 

 

 

A 
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DX-CTLs specifically kill T2-A2 cells loaded with BARF1-derived peptides and 

tumor cell lines endogenously expressing BARF1. 

EBV-specific CTL cultures were tested for their ability to recognize and kill T2-A2 target 

cells loaded with EBV-derived peptides (Figure 6A) in a HLA-A*0201 restricted fashion. 

In particular, T2-A2 cells were loaded either with two BARF1-derived peptides, p23 and 

p49 (80), and the LMP1-derived YLQ peptide (49). DX-CTLs were able to specifically 

kill both BARF1- (median=25.8% and median=21.0%, p23 and p49 respectively) and 

LMP1-loaded T2A2 (median=14.9%) inducing higher percentage of specific lysis if 

compared to Ctrl- and TPA+NaB- or CSP-CTLs (p23 peptide, median= 0, 5.7, 6.0% 

respectively; p49 peptide, median= 0, 11.2, 0.3% respectively; YLQ peptide, median= 

2.6, 0.3, 0.3%, respectively) (Figure 6B). 

Considering that the c666.1 NPC cells do not express HLA-A molecules, we have 

generated a derived cell line stably expressing HLA-A*0201(c666-A2) using the 

pBABE_HLA-A*0201 retroviral expression vector. To confirm HLA-A*0201 gene 

expression in c666-A2 cell line mRNA was isolated from these cells and specific PCR 

was performed on cDNA. As shown in Figure 7A, both, c666-A2 CaPHO4 and DOTAP 

clones expressed the HLA-A*0201 transcript as the HLA-A*0201 naturally expressing 

DG75 cell line. HLA-A*0201 expression on cells surface of infected cells was confirmed 

by flow cytometry (Figure 7B). Since the c666.1-A2 cl.2 CaPHO4, displayed a significant 

HLA-A*0201 cell surface expression if compared to the parental cell line, cytotoxicity 

assays were performed using this clone as specific target model. As shown in Figures 8A 

and B. DX-CTL cultures were also able to efficiently recognize and specifically kill 

BARF1 endogenously expressing NPC cells. In particular, these effectors showed a 

median 37% (mean= 58%) of specific lysis against the NPC c666.1-A2 cell line, whereas 

no killing was achieved against the HLA-A* lacking parental c666.1 cell line. 

Conversely, Ctrl-, TPA+NaB- and CSP-CTLs induced specific lysis only at low levels 

against c666.1-A2 (median= 5.8, 30.3, 19.3%, respectively) (Figure 8B). Finally, only 

low killing was observed against the myelogenous leukemia K652 cell line, thus 

excluding unspecific NK-like cytotoxicity. 
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Figure 6. A. DX-CTLs specifically kill T2-A2 cells loaded with BARF1-derived peptides. Induction of 

BARF-1 (p23 and p49) and LMP1 (YLQ) peptide-specific T-cell responses from 3 HLA-A*0201
+
 healthy 

donors. Cytotoxicity assays were performed at 20:1 E:T ratio. Specific lysis was calculated subtracting the 

lysis of empty T2-A2 condition. B. Box plot represent cytotoxicity assay performed on T2-A2 cells loaded 

with BARF1 or LMP1 peptides. Statistical analysis were performed with Student t-test (*=p≤0.05 versus 

the other CTL lines). 
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Figure 7. A. c666.1-A2 cells stably express HLA-A*0201. HLA-A*0201 gene expression was assessed by 

PCR on cDNA of the following cell lines: NPC cell lines, c666.1 –Wt and c666.1–A2 transfected with 

DOTAP or CaPHO4 technique (clones 1 and 2, respectively); Burkitt’s lymphoma cell lines, Ramos (HLA-

A*0201 negative cell lines) and DG75 (HLA-A*0201 positive cell lines). B Flow cytometry analysis of 

c666.1 Wt NPC cell line, or c666.1 infected (DOTAP or CaPHO4 clones) with the retroviral vector 

carrying the HLA-A*0201 gene.  The isotypic control is shown (gray area). 

 

The enhanced lytic activity showed by DX-CTLs prompted us to investigate intrinsic 

characteristics of these effector cells. In particular, intracellular content of granzyme-β 

granules was analyzed by spot counting through multispectral imaging flow cytometry 

(Figure 9A). These experiments were carried out using as stimulators autologous LCLs 

pulsed with two different BARF1 peptide epitopes or the YLQ LMP-1-derived peptide. 

Upon stimulation with empty LCLs, CTLs generated with DX-LCLs displayed the 

highest number of intracellular granzyme-β granules. Moreover, when co-cultured with 

BARF1-peptide loaded LCLs, DX-CTLs showed a marked increase in the number of 

granules, with most of effectors with 2-3 positive spots/cell. This effect was also observed 

in CTLs generated with TPA+NB or CSP, although with a lower number of total 

granzyme-β spots (Figure 9A). Notably, DX-CTLs showed the highest intracellular 

content of granules also when stimulated with LCLs pulsed with the LMP-1 peptide 

epitope (Figure 9A). We also exploited the ability of multispectral imaging flow 

cytometry to enumerate LCL-T cell doublets. As shown in Figure 9B, DX-CTLs were 

also able to achieve the highest frequency of doublets with BARF1-peptide pulsed LCLs. 

Stimulation with LMP1-loaded LCLs elicited comparable numbers of doublets in all 

cultures except for Ctrl-CTLs (Figure 9B). 
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Figure 8. A. DX-CTLs show high specific killing against BARF1 endogenously expressing tumor cell 

lines. Cytotoxic activity of CTLs derived from 2 HLA-A*0201
+
, against c666.1-Wt (used as negative 

control) and c666.1-A2 NPC cell lines, Granta-519 MCL cells and K562 (used to exclude unspecific NK-

like cytotoxicity). Tests were performed at 20:1 E:T ratio. HLA-A*0201 restriction was confirmed by the 

use of the anti-HLA-A*0201 cr11.351 monoclonal antibody. B. Box plot represent cytotoxicity assay 

performed on BARF1 endogenously expressing tumor cell lines.(*=p≤0.05 in respect to other targets; **= 

p≤0.05 in respect to responses of the other CTLs against c666.1-A2). 
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Figure 9. A. Enumeration of granzyme β granules and LCL-T cell doublets in DX-CTLs. A. Peptide-

loaded autologous B-LCL were co-cultured with DX-CTLs and labeled with α-CD19, α-CD8 and α-

granzyme β monoclonal antibodies to identify LCL-CTL doublets and granzyme β content. Results are 

indicated as the number of granzyme β spots within CD8+ T cell population. Some representative images of 

granzyme β-FITC, CD19-PE and CD8-PC7 positive cells are displayed. Lower histograms represent 

granzyme β granule content in Crtl-, TPA+NaB- and CSP-CTLs. B. The quantification of LCL-T cell 

doublets was performed on CTRL-, TPA+NaB-, DX- and CSP-CTL lines. The y axis displays the 

normalized frequency of LCL-CTL doublets containing at least one T-cell. The histograms are 

representative of a single experiment. The right panel displays some representative cell images (CD19-PE 

and CD8-PC7). LCL-CTL conjugates were acquired at 40× magnification. 

 

DX treatment enhances LCLs immunogenicity. 

In an attempt to elucidate the mechanisms underlying the enhanced functional properties 

of DX-treated LCLs as antigen presenting cells, we assessed whether DX was able to up-

regulate HLA Class I expression. Considering that γ-irradiation is currently used to 

inactivate LCLs before stimulation and that is also able to modulate the expression of 

HLA molecules (81, 82), we investigated the possible synergism between DX treatment 

and γ-irradiation. We therefore monitored HLA-A*0201 expression in LCLs by qRT-

PCR before γ-irradiation (NI=Not Irradiated) and 24 hours after γ-irradiation (t24) 

(Figure 10). DX-treated LCLs revealed a marked increase in HLA-A*0201 expression 

(mean=2.3 fold increase before irradiation), an effect that persisted also 24 hours after 

irradiation. No significant change in HLA-A*0201 mRNA was detected in TPA+NaB- 

and CSP-LCLs compared to untreated LCLs (mean=1.3 and 1.0 fold expression, 

respectively) in NI samples, whereas a decreased expression in TPA+NaB-LCLs was 

observed at t24 (mean=0.8 fold change). The higher expression of HLA-A*0201 in DX-

LCLs was also confirmed at the protein level by flow cytometry analysis at t24 (Figure 

11A). 
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Figure 10. DX treatment enhances HLA-A*0201 expression in LCLs. Relative quantification by qRT-

PCR on HLA-A*0201 allele in LCL before (NI=Not Irradiated), and 24 hr after γ-irradiation (t24). Data are 

relative to Ctrl-LCLs (=1), 2
-ΔΔ-Ct

 method was used to calculate and normalize fold expression. 18-S was 

used as reference gene. 

 

 

 

Figure 11. HLA-A*0201 and CRT surface expression were increase inDX-LCLs. Flow cytometry on 

treated LCLs, isotypic control (dashed line) Ctrl-LCLs (gray area) and treated-LCLs (black line) are shown 

for all graphs. x-mean for every condition is reported  A. Flow cytometry analysis on HLA-A*02 were 

performed at t24. B. Calreticulin (CRT) was investigated in LCLs after 3 hr of treatment.  

 

Recent data demonstrated that DX is able to induce an immunogenic cell death both in 

vitro (76) and  in vivo (74, 83). Although our experimental conditions were set to preserve 

cell viability, we hypothesized that DX could enhance immunogenicity of treated cells 

(84) also when used at  concentrations inducing only minimal apoptotic effects. As a first 
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step, we assessed by flow cytometry the membrane translocation of calreticulin (CRT), 

after 3 hours of treatment, since this is a very early event occurring after exposure of 

tumor cells to anthracyclines (85). After DX treatment, a higher percentage of cells 

displayed membrane localization of CRT (49.8%; x-mean is reported in Figure 11), 

whereas Ctrl-LCLs and CSP-LCLs maintained a similar percentage of positive cells (35% 

and 33% respectively), and TPA+NaB induced a slight decrease (28.8%) (Figure 11B). 

After CRT exposure, a secondary event in ICD is the High Mobility Group Box1 

(HMGB1) release in culture medium (86). This parameter was evaluated through enzyme 

linked immunosorbent assay (ELISA) at the end of treatments (Figure 12). The extent of 

HMGB1 release by DX-LCLs was about 3 fold higher than that of Ctrl-LCLs, whereas 

for TPA+NaB- and CSP-treated LCLs, the releases were similar (between them) and 

lower than that of Ctrl-LCLs (about 0.8 fold change). 

 

 

 

Figure 12. DX treatment increases HMGB1 release from LCLs. ELISA performed on LCL supernatants 

at the end of each type of treatment. The histogram represents the fold increase of HMGB1 release by 

treated LCLs, in comparison to untreated LCLs (ctrl=1). Experiments were performed in triplicate and 

performed at least three times on different donor-derived LCLs. 

 

 

Protein expression of other two crucial ICD markers, HSP70 and 90, was assessed by 

western blot, immediately after γ-radiation and before co-culturing with CTLs (t0), and at 

t24 to assess the possible contribution of γ-irradiation to the enhanced immunogenicity of 

DX-LXLs (87). (Figure 13). Protein expression of both HSPs increased in DX-LCLs at t0 

and t24, and a slight increase of HSP70 was observed in CSP-treated LCLs at t24, 

whereas TPA+NaB and CSP down regulated both HSPs (CSP at t0 and TPA+NaB at both 

time points) as a possible consequence of concomitant apoptosis.  
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Figure 13. DX treatment up-regulates HSP-70, HSP-90 and MyD88. PARP cleavage and protein 

expression of HSP70, HSP90 and MyD88 were analyzed at different time point: immediately after γ-

irradiation (t0) and 24hrs after γ-irradiation (t24); Whole cell lysates corresponding to 50 μg of proteins 

were analyzed by immunoblotting for the indicated proteins. GAPDH shows equal loading of protein for 

each lane. 

 

We also evaluated the expression of TLR-4 and MyD88 proteins (74), which constitute 

the functional receptor complex of HMGB1 and are mediator of immunogenicity induced 

by several drugs. Flow cytometry analysis showed that DX markedly increased the 

number of TLR-4-expressing cells (63.3% vs. 38.1% of control LCLs). Treatment with 

CSP also induced TLR-4 up-regulation in LCLs although with a slightly lower increase in 

the percentage of positive cells (54.4%) whereas TPA+NaB had only marginal effects 

(Figure 14). Moreover, DX strongly up-regulated MyD88 expression in LCLs as shown 

by immunoblotting (Figure 13), whereas the expression levels of this proteins decreased 

in untreated, TPA+NaB- and CSP-LCLs, becoming almost undetectable at 24 hrs (Figure 

13). 
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Figure 14. Surface expression of TLR-4 increases upon DX-treatment. Isotypic control corresponds to 

dashed line, Ctrl-LCLs are displayed with the gray area and treated LCLs are shown with black line. αTLR-

4-PE staining was performed at t24. x-mean values are reported. 

 

DX-LCLs efficiently generate EBV-specific patient-derived CTLs with broadened 

antigenic specificity and enhanced lytic activity. 

To validate our results using patient-derived CTLs, we selected the protocol based on the 

use of DX-LCLs as antigen presenting cells, which globally resulted the most efficient 

strategy to generate EBV-specific CTLs with broadened antigenic specificity and 

enhanced lytic activity. We therefore verified whether DX was able to induce in patient-

derived LCLs the same immunogenic changes observed in LCLs obtained from healthy 

donors. All results were confirmed (Figure 15). In particular, BARF-1 and LMP-1 mRNA 

transcripts were up-regulated with 1.9 and 1.7 fold increase, respectively (Figure 15A). 

Moreover, flow cytometry analysis showed that DX induced a slight up-regulation of 

HLA*A2 molecules (x-mean 15.5 and 18.0, Ctrl- and DX-LCLs respectively), an 

increased number of CRT exposing cells (35% for Ctrl and 49.7% for DX), and a higher 

percentage of TLR-4 expressing cells (from 52,4 to 75,1 %, x-mean: 3.3 and 4,74 

respectively) (Figure 15B). HSP70 and HSP90 and MyD88 investigated by western blot 

were found to be all up-regulated in DX-LCLs, which also showed an enhanced release of 

HMGB1 assessed by ELISA (Figure 15C and D). 

We then generated CTL lines from 4 NPC patients using conventional and DX-treated 

LCLs. Cytotoxicity assays confirmed results previously obtained with CTLs from healthy 

donors. As shown in Figure 16A, BARF1-peptide loaded-T2A2 were more efficiently 

killed by DX-CTLs as compared with CTLs obtained with untreated LCLs (Figure 16A), 

with 30-40% of specific lysis (slightly higher than the one observed with donor-derived 
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CTLs). Importantly, T2A2 cells pulsed with LMP1 peptides were also recognized and 

killed more efficiently by DX-LCLs. These effectors also showed a high specific lysis 

(50-60%) against the c666.1-A2 NPC cell line, whereas conventional CTLs induced only 

a limited cytotoxic activity (Figure 16B). 

 

 

 

Figure 15. DX treatment on NPC patient LCLs up regulates BARF1 and LMP1 genes, enhances 

HLA-A*0201 and CTR molecules and induces all the ICD markers. A. qRT-PCR performed on DX-

LCLs, BARF1 and LMP1 were investigated; relative quantification was calculated with 2
-ΔΔCq

 method 

(Ctrl-LCLs=1), *=p≤0.05, Student t-test). B. Flow cytometry analysis of HLA-A*0201 (t24), CRT (3Hr) 

and TLR-4 (t24). Isotypic controls (dashed line), Ctrl-LCLs (gray area) and DX-LCLs (black line) are 

shown. C. PARP cleavage and HSP70, HSP90 and Myd88 expression were evaluated by western blot 

analysis immediately after γ-irradiation (t0) on two different NPC patient LCLs. Whole cell lysates (50 μg 

of proteins) were analyzed for the indicated proteins. GAPDH shows equal loading of protein for each lane. 

D. HMGB1 release in culture medium from LCLs was assessed by ELISA and expressed as ng/ml. 
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Figure 16. DX-CTLs elicit strong EBV-specific responses to both BARF1-and LMP1-derived peptides 

and to BARF1 endogenously expressing NPC cell. A. Induction of peptide-specific T-cell responses by 

from 2 HLA-A*0201
+ patients. Cytotoxicity assays were performed at 20:1 E:T ratio. Specific lysis was 

obtained subtracting empty T2-A2 lysis. B. Cytotoxic activity of patient-derived CTLs against NPC cell 

line c666.1-Wt (used as negative control), c666.1-A2, Granta519 and K562. HLA-A*0201 restriction was 

confirmed by using  the cr11.351 monoclonal antibody.  
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DISCUSSION AND CONCLUSIONS. 

While EBV-specific EBV-CTLs have been used successfully for the prophylaxis and 

treatment of the highly immunogenic post-transplant lymphoproliferative disorders, the 

clinical experience for other EBV-associated malignancies, such as Hodgkin's lymphoma 

and NPC, is limited and the results obtained so far indicate that EBV-specific CTLs are 

less effective in these settings. Decreased CTL efficacy most likely reflects immune 

evasion strategies by tumor cells, including down-regulation of immunodominant EBV 

proteins and local secretion of inhibitory cytokines. One of the possible approaches to 

overcome these limitations is the identification of additional viral proteins expressed by 

tumor cells and that may serve as tumor-associated antigens to be targeted by improved 

CTL induction and expansion protocols. Our group has previously demonstrated that 

NPC patients show strong spontaneous CD4
+
 and CD8

+
 T-cell responses specific for the 

EBV-encoded BARF-1 protein and that this viral antigen provides immunogenic HLA-

A*0201 epitopes. These findings strongly suggested that exploitation of the immunogenic 

features of BARF-1 may help improve the current immunotherapeutic strategies for EBV-

associated malignancies. Nevertheless, current protocols adopted to generate EBV-

specific CTLs do not allow to obtain adequate numbers of effectors specific for BARF-1, 

if any, as a probable consequence of the lack of BARF-1 expression in LCLs, the 

conventional antigen presenting cells used for these immunotherapeutic approaches. 

To overcome these limitations, we set up a new protocol to generate EBV-specific CTLs 

enriched in specificities for BARF-1. We demonstrate that treatment of LCLs with DX, a 

commonly used antineoplastic drug, is able to up-regulate BARF-1 expression without 

inducing massive EBV lytic replication or rapid apoptotic phenomena. This approach 

proved to be more effective in up-regulating BARF-1 and preserving LCL viability as 

compared to other EBV lytic cycle inducers and was therefore selected as the treatment of 

choice for our purposes. Notably, DX treatment also increased the expression levels of 

other relevant EBV targets of immunotherapy, particularly LMP-1. Consistently with the 

ability of DX to up-regulate the expression of EBV proteins in LCLs, the CTL cultures 

generated by our protocol showed a markedly enhanced efficiency in killing not only 

targets presenting BARF-1 epitopes, but also showed higher cytotoxic activity against 

LMP-1 peptide pulsed target cells. These findings are highly encouraging in the light of 

the possible clinical efficacy of our innovative protocol, which allows the generation of 
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EBV-specific effectors with broadened antigenic specificity able to more efficiently kill 

cells expressing subdominant immunotherapeutic targets such as LMP-1. 

Notably, the enhanced cytotoxic activity showed by CTLs induced by DX-treated LCLs 

were confirmed also when NPC cell lines were used as target cells. To successfully carry 

out these experiments, we have engineered c666.1 cells to stably express the HLA-

A*0201 molecule. In our cytotoxicity assays, the specificity of recognition and the HLA 

restriction of CTLs induced by DX-treated LCLs was assured by the almost absent killing 

of the parental c666.1 cell line that is totally devoid of HLA-A alleles.  

Interesting insights were obtained by granzyme-β granules counting performed by 

multispectral imaging flow cytometry. This technique proved to be particularly useful to 

robustly demonstrate that CTLs induced by DX-treated LCLs include a substantial 

fraction of effectors readily activated and “armed” upon stimulation with BARF-1 epitope 

peptides. Surprisingly, also TPA+NaB- or CSP-CTLs displayed a relatively higher 

number of granzyme-β granule-producing T-cells when these effectors were cultured in 

the presence of BARF1-loaded LCLs. This may reflect the relative immunodominance of 

BARF-1 with respect to LMP-1, as also suggested by the fact that these two EBV genes 

were expressed at similar levels in these LCLs. Moreover, also the frequency of doublets 

formation was higher for DX-CTLs in the presence of BARF-1-presenting targets. These 

findings together support the conclusion that DX-CTLs have a broader and more efficient 

killing potential and are more activated as compared to T-cell cultures generated with 

TPA+NaB- or CSP. 

The increased ability of DX-LCLs to generate highly efficient EBV-specific CTLs could 

be at least in part related to the enhanced survival of these cells as compared to LCLs 

treated with other lytic cycle inducers. Nevertheless, persistence of live DX-LCLs in co-

cultures should be at least comparable to that of untreated LCLs, suggesting that 

mechanisms other than enhanced survival are probably involved. In this respect, our 

finding that only DX-LCLs show increased mRNA and protein levels of HLA-A*02 is of 

particular relevance considering the central role of these molecules in antigen 

presentation. Our results, therefore, are consistent with the possibility that DX-LCLs have 

enhanced immunogenic properties also because of their ability to induce a more efficient 

and prolonged presentation of tumor-associated antigen epitopes as compared to 

conventional or TPA+NaB- or CSP-treated LCLs. 

Considering that DX is able to induce an immunogenic cell death, we explored the 

hypothesis that DX treatment of LCLs could result in functional changes related to and 



- 47 - 
 

presumably responsible for the enhanced immunogenic features of these cells, even at 

doses unable to induce overt apoptotic effects. Moreover, DX was also shown to 

modulate the release/expression of damage associated molecular patterns (DAMP) in 

tumor cells and mouse models (73, 74). Here, we demonstrate that, under our 

experimental conditions, only DX was able to elicit an early CRT exposure at the surface 

of LCLs (88, 89), one of the functional hallmark of early ICD (89). In the setting of ICD, 

CRT serves as an “eat-me-signal” and promotes the immunogenicity of dying tumor cells. 

Consistently with the observation that CRT exposure is an early event in ICD, at the time 

of our CRT analysis, DX-LCLs showed no evidence of late apoptosis. 

Another well established marker of ICD is HMGB1 that may be released by cells in 

response to various stimuli, including pro-apoptotic drugs (76, 89). HMGB1 may exert 

direct effects on CD4
+ 

T cells, promoting Th1 polarization, T-cell expansion and survival, 

but it may also act indirectly by inducing functional changes in dendritic cells. In 

particular, it has been demonstrated that HMGB1 released by damaged or apoptotic cells 

may bind to TLR-4 on dendritic cells, a molecule that functions as surface receptor for 

this soluble factor, and that mediates downstream signaling through MyD88, resulting in 

improved tumor antigen presentation and enhanced induction of CTL immunity (90). We  

demonstrated not only that DX-LCLs secreted higher amounts of HMGB1, but also that 

DX was able to up-regulate its TLR-4 receptor and MyD88 on LCLs. These findings are 

consistent with the occurrence of an autocrine/paracrine loop in the LCL culture 

promoted by DX and resulting in enhanced immunogenicity of the majority of cells.   

We have also investigated the effects of DX and other EBV lytic cycle inducers on the 

expression of HSP70 and 90, key chaperone molecules that play important role in 

signaling, protein function, trafficking and turnover (91) and are also functionally 

involved in protein and epitope folding. Our findings indicate that only DX treatment 

induces a marked up-regulation of these proteins, even in the absence of evident 

apoptosis. This could be an additional mechanism probably underlying the enhanced 

immunogenicity of DX-LCLs and of the antigens presented by these cells. 

One of the major advantages brought about by our innovative protocol resides in its easy 

up-gradability to GMP standards, considering that no molecular engineering of cells is 

required and that DX is a drug already and broadly used in the clinics. In addition, 

feasibility and a rapid translation in clinical studies are also assured by confirmation of 

the high efficiency of the protocol developed also when cells derived from NPC patients 

are used. We are currently performing further studies aimed at validating the therapeutic 
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efficacy of our improved protocol in suitable animal models. We are also investigating 

whether the broader antigen specificity of DX-CTLs is not restricted to viral proteins but 

also involves cellular antigens whose targeting may further enhance the therapeutic 

potential of these effectors. On the basis of the results presented herein, we hope that the 

protocol we have developed will be able to enhance the rate of clinical responses of 

adoptive immunotherapy for NPC patients, particularly for those with relapsed or 

refractory disease. 
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