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The Nain ophiolites crop out along the western border of the central East Iran Microcontinent (CEIM) and
consist of an ophiolitic mélange in which pargasite-bearing spinel and plagioclase mantle lherzolites are largely
represented. Whole-rock and mineral chemistry data suggest that these rocks record the complex history of the
asthenospheric and lithospheric mantle evolution. The spinel lherzolites have experienced low-degree (~5%)
partial melting and contain clinopyroxenes with positive Eu anomalies (Eu/Eu” = 1.10-1.48) suggesting that
the partial melting occurred under oxidized conditions (fayalite-magnetite-quartz —0.8 to +1.3). The pargasite
and coexisting clinopyroxene in these rocks are depleted in light rare earth elements (LREE) (mean chondrite-
normalized Cen/Smy = 0.045). The depleted chemistry of this amphibole reflects metasomatism during interac-
tion with H,O-rich subalkaline mafic melts, most likely concurrently with or after the partial melting of the spinel
lherzolites. The plagioclase lherzolites were subsequently formed by the subsolidus recrystallization of spinel
lherzolites under plagioclase facies conditions as a result of mantle uprising, as evidenced by: (1) the develop-
ment of plagioclase rims around the spinels; (2) plagioclase + orthopyroxene exsolution textures within some
clinopyroxene grains; (3) an increase in plagioclase modal content coupled with an increase in modal olivine
and a decrease in modal pyroxene and pargasite; (4) coincident decreases in Al, Mg, and Ni, and increases in
Cr, Ti, and Fe in spinel, as well as decreases in Al and Ca, and increases in Cr and Ti in pyroxene and pargasite;
and (5) the identical whole rock compositions of the spinel and plagioclase lherzolites, which rules out a mag-
matic origin for the plagioclase in these units.
The Nain lherzolites have similar whole-rock and mineral geochemical compositions to subcontinental perido-
tites that are typically representative of Iberia-type rifted continental margins and ocean-continent transition
zones (OCTZ), suggesting that they formed during the early stages of the evolution of the Nain oceanic basin.
This means that the Nain lherzolites represent the Triassic-Jurassic western border of the CEIM or alternatively
an associated OCTZ.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Melt-impregnated peridotites are formed by the porous migration, en-
trapment, and crystallization of basaltic melts within the hosting perido-

Plagioclase peridotites form small portions by volume (~30%)
of abyssal peridotites (Dick, 1989; Dick et al., 2010) and ophiolitic man-
tle sections, and also commonly occur in continental passive margin
settings. Although they are commonly scattered and subordinate in
volume, these peridotites are important geodynamic markers as they
provide crucial information on the petrological and geodynamic pro-
cesses associated with the evolution of the lithospheric mantle in ex-
tensional settings. These peridotites form as a result of two different
petrological processes: (i) the impregnation of peridotites by basaltic
melts (e.g., Dick, 1989) and (ii) the subsolidus recrystallization of perido-
tite under plagioclase facies conditions (e.g., Hamlyn and Bonatti, 1980).
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tites. This type of plagioclase peridotite generally forms in oceanic
settings and are found in many ophiolitic complexes (e.g., Dick, 1989;
Dick and Bullen, 1984; Dijkstra et al., 2001; Kaczmarek and Miintener,
2008; Miintener et al., 2004; Piccardo et al., 2004; Piccardo and Vissers,
2007; Pirnia et al., 2010; Rampone et al., 1997, 2008; Rampone and
Borghini, 2008; Susini and Wezel, 1999; Tartarotti et al., 2002). The geo-
chemistry of these melt-impregnated peridotites suggests they were de-
pleted prior to melt impregnation (e.g., Kaczmarek and Miintener, 2008;
Pirnia et al.,, 2010; Rampone et al., 1997, 2008; Susini and Wezel, 1999;
Tartarotti et al., 2002). The residual chemistry of the hosting peridotites
is interpreted to be the result of intense melting, which presumably re-
cords a mature stage of evolution of oceanic basins. Melt impregnation
is usually preceded by melt-rock reactions (i.e., reactions between deeply
sourced silica-undersaturated melts and peridotites) that cause pyroxene

0024-4937/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.lithos.2018.04.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.lithos.2018.04.001
tahmineh.pirnia@gmail.com
Journal logo
https://doi.org/10.1016/j.lithos.2018.04.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/lithos

T. Pirnia et al. / Lithos 310-311 (2018) 1-19

dissolution and the crystallization of olivine within the hosting peridotite
(e.g., Dijkstra et al., 2001; Piccardo et al., 2004; Rampone et al., 2008).
In contrast, recrystallized plagioclase peridotites are formed by
metamorphic reactions that take place when peridotites ascend
from spinel- to plagioclase-facies conditions within the mantle. The
general reaction for this transition is as follows: clinopyroxene (1) +
orthopyroxene (1) + Al-spinel — clinopyroxene (2) + orthopyroxene
(2) + Cr-spinel + olivine + plagioclase (e.g., Green and Hibberson,
1970; Kushiro and Yoder, 1966; Rampone et al., 1993). Recrystallized

plagioclase peridotites are commonly found in Alpine-type peridotite
massifs (Canil et al., 2003; Fabries et al., 1998; Furusho and Kanagawa,
1999; Green, 1964; Hoogerduijn Strating et al., 1993; Ozawa and
Takahashi, 1995; Rampone et al.,, 1993, 1995, 2005) and ocean-
continent transition zones (OCTZ; e.g.,, Hamlyn and Bonatti, 1980;
Kornprobst and Tabit, 1988; Cannat and Seyler, 1995; Chazot et al.,
2005; Montanini et al., 2006). This type of peridotite is indicative
of cold tectonic exhumation of lithospheric mantle that is related to
passive extension and thinning of lithosphere preceding ocean
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Fig. 1. (a) Simplified geological map of the area north of the town of Nain in Isfahan Province, central Iran (modified after Davoudzadeh, 1972). (b) Geological map of Iran. (c) Map of

sample locations; note that the colored mélange unit is highly tectonized and contains ophiolitic material.
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formation. Few studies have documented the processes of the spinel- to
plagioclase-facies transition within mantle peridotites (e.g., Borghini
et al,, 2010, 2011; Chazot et al., 2005; Montanini et al., 2006; Rampone
et al., 1993, 1995, 2005), and the majority of research on this topic has
relied on laboratory experiments (e.g., Green and Falloon, 1998; Green
and Ringwood, 1970; Presnall et al., 2002).

Iran is divided into the following main tectonic zones (Fig. 1a):
(i) the Zagros fold-and-thrust belt, which is similar to the Arabian
Plate; (ii) the Central-West Iran block, which represents the southern
margin of Eurasia; (iii) the Central-East Iran microplate (CEIM), which
is an independent microcontinental block; (iv) the Alborz and Kope
Dag ranges, which contain rocks from the northern margin of the
Iranian Plate that were folded during collision with Eurasia; (v) the
Makran accretionary prism, which is the physiographic expression of
a subduction zone along the southeastern coast of Iran. Iran contains nu-
merous and widespread Mesozoic ophiolites that delineate suture zones
between the different microcontinental blocks and plates (Fig. 1a). The
Nain ophiolites crop out along the western border of the CEIM (Fig. 1a)
and consist of an ophiolitic mélange dominated by tectonic slices of
mantle peridotite. These mantle peridotites include relatively refractory
clinopyroxene-bearing harzburgites as well as relatively fertile spinel
and plagioclase lherzolites (e.g., Mehdipour Ghazi et al., 2010; Pirnia
et al., 2010, 2013, 2014). The fertile spinel and plagioclase lherzolites
are thought to record the transition from spinel- to plagioclase-facies
mantle conditions, as also observed in the fertile lherzolites that charac-
terize Iberia-type (or Alpine-type) continental margin ophiolites (Dilek
and Furnes, 2011; Saccani et al., 2015). Several examples of continental
margin ophiolites are found in the External Ligurian ophiolites in north-
ern Italy (Rampone et al., 1995, 2005) and the Kizildag (Dilek et al.,
1991) and Kermanshah (Saccani et al., 2013) ophiolites along the north-
ern edge of the Arabian plate in SE Turkey-SW Iran. These types of
continental margin ophiolites typically formed within the OCTZ as
a consequence of amagmatic (or magma-starved) and asymmetric
continental rifting (Robertson, 2007), which led to the exhumation of
subcontinental lithospheric mantle.

This study presents new petrographic, mineral geochemical, and
whole-rock geochemical data for fertile, pargasite-bearing spinel and
plagioclase lherzolites from the Nain ophiolite. These data allow the
identification of variations in mineral compositions and modes that
are associated with the transition from spinel- to plagioclase-facies con-
ditions in the upper mantle. The whole-rock geochemical data also
enable the development of a new tectonic model of continental rifting
and subsequent oceanic opening of the Mesozoic Neotethys sector to
the west of the CEIM. These data demonstrate that continental rifting
occurred after Iberia-type passive extension and provide new con-
straints on the reconstruction of the tectonic history of Iran.

2. Geological background

The Nain massif is considered part of the Nain-Baft ophiolitic belt,
which consists of a series of ophiolitic massifs that crop out along the
Nain-Dehshir and Dehshir-Baft strike-slip faults that delineate the
southwestern boundary of the CEIM (e.g., Arvin and Robinson, 2011;
Ghazi and Hassanipak, 2000; Shafaii Moghadam et al., 2010; Fig. 1a).
These massifs consist of a series of tectonic slices that have been
thrusted towards the southwest. The Nain ophiolite is located north
of the town of Nain in Isfahan Province and crops out over an area
of 480 km? with a NNW-SSE trend (Fig. 1b). This area contains ultra-
mafic and mafic rocks along with radiolarites and limestones, all of
which have been strongly intermingled by tectonic processes to form
a “colored mélange” (Davoudzadeh, 1972; Pirnia et al., 2013; Fig. 1b).
This tectonic disruption is dominated by numerous major and minor
faults, the majority of which record vertical displacements. Peridotite
masses have been extensively thrust up along these faults to form elon-
gate oval-shaped bodies that are several kilometers long (Fig. 1b, ¢). The
mantle rocks in the Nain ophiolite consist of clinopyroxene-bearing

harzburgite spinel and plagioclase lherzolite lithologies, all of which
are commonly serpentinized. Both harzburgites and serpentinites con-
tain local dunite occurrences and chromitite pods (Mehdipour Ghazi
et al., 2010; Pirnia et al,, 2010, 2013, 2014). The mantle peridotites
are locally cut by rodingite-altered or unaltered gabbro, pyroxenite,
and wehrlite dikes. Similar to many harzburgites from the Mediterra-
nean ophiolites (see Saccani et al.,, 2017 for a review), the Nain
clinopyroxene-bearing harzburgites are thought to represent residual
mantle formed in a subduction-related settings (e.g., Mehdipour Ghazi
et al.,, 2010). The mantle plagioclase peridotites are commonly located
proximal to shear zones and have fault-related textures that range
from foliated to mylonitic (Pirnia et al., 2010, 2014). The mantle perido-
tites in the study area also contain small coarse-grained gabbro, isotropic
gabbro, diorite, and gabbronorite plutons (Fig. 1b). The northern part of
the Nain ophiolite contains small slices of volcanic rocks that consist of
both pillowed and massive lavas. Rahmani et al. (2007) suggested that
these volcanic rocks have tholeiitic to calc-alkaline affinities.

There is no general consensus on the tectonic setting of the Nain-
Baft ophiolites, although two different models have been proposed:
(i) they formed in a Cretaceous volcanic arc basin related to eastward sub-
duction below the CEIM (e.g., Delaloye and Desmons, 1980; Desmons,
1982; Desmons and Beccaluva, 1983; Ghazi and Hassanipak, 2000);
(ii) they are remnants of a Late Cretaceous backarc basin (e.g., Pirnia
et al., 2010; Shafaii Moghadam et al., 2009; Shahabpour, 2005).
Both of these models suggest that the Nain Basin was narrow and
existed for ~45 Myr between the Cenomanian and the Paleocene
(e.g., Davoudzadeh, 1972; Shafaii Moghadam et al., 2009).

3. Petrography

The Nain mantle peridotites can be texturally subdivided into:
(i) porphyroclastic lherzolites that contain either spinel or spinel and
plagioclase (Table 1), (ii) plagioclase-bearing mylonitic rocks. The fol-
lowing petrographic descriptions are given using the peridotite textural
classification of Mercier and Nicolas (1975). Modal mineralogies for
the peridotites were determined by point counting (2000 points per
thin section). Further details of this modal analysis are provided in the
footnote to Table 1.

Table 1
Modal compositions of representative examples of the Nain spinel and plagioclase
lherzolites.

Texture Rock type Rock no. Minerals
Ol% Opx% Cpx% Spl% Pl% Amp%
Porphyroclastic  Spl-Lherzolite 83 63 23 8 3 - 3
86-A 64 23 8 3 - 2
86-B 63 24 7 3 - 3
Pl-Lherzolite 85 65 22 7 3 1 2
85-B 68 20 5 2 4 1
85C 67 20 7 2 3 1
85D 69 19 4 2 5 1
85-E 65 21 6 3 3 2
88 74 15 2 1 5 1
85A 77 11 2 1 8 1
85F 75 12 2 2 8 1
85G 72 15 3 1 7 1
85H 73 14 4 1 7 1
851 75 11 2 2 9 1
Mylonitic Pl-Lherzolite 50 69 20 4 1.5 5 05
52 74 14 4 15 6 05
51 76 13 35 1 6 05

Footnote: modal compositions were calculated assuming that (a) mesh textured serpen-
tine was originally olivine and (b) bastite compositions were originally orthopyroxene,
and (c) discarding any late tensional veins filled with serpentine fibers, carbonate, or sec-
ondary minerals. Each modal analysis consisted of 2000 counts and lherzolites have
clinopyroxene/pyroxene volume ratios of >0.1 (Arai, 1984). Abbreviations are as in Fig. 2.
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3.1. Porphyroclastic spinel and plagioclase peridotites

The porphyroclastic lherzolites range in texture from porphyroclastic
spinel lherzolites to nearly granular plagioclase lherzolites (Fig. 2a, c, d).
The spinel lherzolites are the most fertile samples within the studied
peridotites and contain up to 8% modal clinopyroxene and 3% modal
amphibole (Table 1). These lherzolites contain orthopyroxene and
clinopyroxene porphyroclasts that usually include fine-grained globular
spinel inclusions (Fig. 2a). Matrix-hosted spinels are light brown and
subhedral to vermicular (Fig. 2b). The plagioclase lherzolites record
the heterogeneous growth of plagioclase on spinel grains. Some portions
of these rocks are entirely free of plagioclase and only contain subhedral
light-brown spinel grains that are texturally similar to those occurring in
spinel lherzolites. Conversely, other portions record the incipient forma-
tion of plagioclase in the form of thin plagioclase rims developed around
spinel grains (Fig. 2c). The plagioclase within the porphyroclastic plagio-
clase lherzolites has been completely altered with the exception of one
sample (88) in which they are partially preserved. Amphibole is distrib-
uted evenly within both spinel and plagioclase lherzolites, and occurs as
isolated matrix-hosted crystals that locally have spinel cores (Fig. 2d) or
as thin rims around orthopyroxene.

There is a clear positive correlation between the modal content
of plagioclase and olivine, and a clear negative correlation between pla-
gioclase and pyroxene contents within the plagioclase lherzolites
(Table 1). The clinopyroxene porphyroclasts are rarely preserved but
instead have generally been recrystallized to form smaller grains. The
clinopyroxenes rarely contain exsolution lamellae consisting of an
intergrown of plagioclase and orthopyroxene (Fig. 2g). When not
enclosed in amphiboles, the spinel within plagioclase lherzolites con-
taining high modal abundances of plagioclase is surrounded by thick
plagioclase rims (Fig. 2e). In these plagioclase-rich lherzolites, pyrox-
enes show spinel inclusions partially recrystallized into plagioclase
(Fig. 2f). The spinels within the plagioclase lherzolites are dark brown
to black in color (Fig. 2e, f).

3.2. Mylonitic plagioclase peridotites

The mylonitic plagioclase peridotites are classified as mylonites
using the fault-related rock classification of Sibson (1977). These
rocks contain alternating porphyroclastic pyroxene-rich and recrys-
tallized fine-grained layers consisting of olivine, orthopyroxene,
clinopyroxene, plagioclase, spinel, and amphibole (Fig. 2h, i). The
pyroxene-rich layers contain orthopyroxene porphyroclasts that are
bent, are elongate parallel to the foliation plane (Fig. 2h), and are usu-
ally associated with thin amphibole overgrowths. In addition, amphi-
boles also occur as distinct small crystals within the recrystallized
matrix. Clinopyroxene neoblasts are present within both layers, reach
up to 1 mm in size (Fig. 2i), and do not have amphibole overgrowths.
Spinels are present as either elongate porphyroclasts surrounded by
plagioclase or as disseminated small crystals (with or without associ-
ated plagioclase) within the fine-grained matrix (Fig. 2j). The peridotite
matrix contains plagioclase in contact with spinel as well as all other
minerals. The plagioclase within the mylonite has also been altered
but to a lesser extent than the plagioclase within the porphyroclastic
lherzolites.

4. Analytical techniques

The major element compositions of minerals within 13 selected
samples were determined using (1) a JEOL JXA8800R electron micro-
probe at Kanazawa University, Japan using an accelerating voltage of
20 kV and a probe current of 20 nA, and (2) a JEOL JXA8200 superprobe
electron microprobe using an accelerating voltage of 15 kV and a probe
current of 10 nA at Leoben University, Austria. The resulting data were
corrected using an online ZAF program and are given in Supplementary
Tables 1 to 6. Iron in silicate minerals is assumed to be Fe?*, whereas
Fe?™ and Fe*" concentrations in spinels were determined using the
approach of Droop (1987).

Orthopyroxene, clinopyroxene, and amphibole trace element
abundances were determined by laser ablation-inductively coupled
plasma-mass spectrometry (LA-ICP-MS) at two different laboratories:
(1) Kanazawa University, Japan and (2) CNR-Istituto di Geoscienze e
Georisorse, U.O.S. of Pavia, Italy. The measurements at Kanazawa
University employed a MicroLas GeoLas Q-Plus LA system coupled to
an ICP-MS system whereas the measurements at Pavia used a Quantel
Brilliant 266 nm Nd:YAG laser source coupled to a Perkin Elmer DRC-e
ICP-MS system. Laser spot diameters of 55 um were used for the analy-
sis of clinopyroxene and amphibole, whereas a laser spot diameter of
100 pm was used for orthopyroxene. All analyses used a laser frequency
and energy of 10 Hz and 6 J/cm?, respectively. External calibration
used an NIST 612 standard at Kanazawa and an NIST 610 standard at
Pavia. The accuracy of the data (reported in relative standard deviation
(RSD%) terms) is better than 5% for the analyses at Kanazawa and better
than 10% for the analyses at Pavia. Details of the analytical procedures
used are given by Morishita et al. (2005a, 2005b) and Miller et al.
(2012). The reproducibility between the two laboratories has been
estimated to be better than 10% relative, based on the accuracy of the
analyses of very similar standard materials. In addition, care was taken
to ensure all spot analyses were located on crack-free and unaltered
areas of the minerals being analyzed. In particular, the selection of
analysis spots on pyroxenes avoided areas containing exsolution lamellae
and plagioclase inclusions. The results of these trace element analyses
are given in Supplementary Tables 7 to 9.

The whole-rock geochemical compositions of 11 selected samples
were determined. Major and trace element compositions were deter-
mined using X-ray fluorescence (XRF) and pressed powder pellets
employing an ARL Advant-XP automated X-ray spectrometer and the
matrix correction methods outlined by Lachance and Trail (1966).
Volatile contents were determined as loss on ignition (LOI) at 1000 °C.
In addition, the concentrations of Rb, Sr, Zr, Y, Nb, Hf, Ta, Th, U, and
the rare earth elements (REE) were determined by ICP-MS employing
a Thermo Series X-I spectrometer. All whole-rock analyses are given
in Supplementary Table 10. All major element compositions were
recalculated on a LOI-free basis prior to plotting. The accuracy of XRF
and ICP-MS analyses was evaluated using international standard rock
samples run as unknowns. The detection limits for these analyses
were also evaluated using the results of several analytical runs of a
total of 29 international standards. XRF detection limits are <0.05 wt%
and <3 ppm for major and trace elements, respectively, whereas
ICP-MS detection limits range between 0.002 and 0.046 ppm. The XRF
and ICP-MS data have accuracies of better than 8% and better than
10%, respectively. Full details of the accuracy and detection limits

Fig. 2. Photomicrographs of Nain spinel and plagioclase lherzolites, taken under plane polarized light barring (a), (h), (i), and (j), which were taken under cross-polarized light, and (g),
which is a backscattered electron microprobe image. (a) Porphyroclasts of ortho- and clinopyroxene within a porphyroclastic spinel lherzolite. (b) Highly aluminous plagioclase-free spinel
within the same sample as shown in (a). (c) Partly dissolved spinel within a porphyroclastic plagioclase lherzolite. (d) Pargasite containing spinel inclusions within a plagioclase
harzburgite. (e) Highly dissolved spinel surrounded by a thick plagioclase rim within a plagioclase lherzolite. (f) Orthopyroxene spinel inclusions surrounded by thin overgrown
plagioclase rims within a plagioclase lherzolite; circles show the locations of LA-ICP-MS analyses (Supplementary Table 7). (g) Backscattered electron microprobe image of a
clinopyroxene porphyroclast containing exsolved orthopyroxene and plagioclase within a plagioclase lherzolite. (h) Elongate porphyroclast of orthopyroxene within a mylonitic
lherzolite. (i) Fine-grained mylonite matrix containing neoblastic pyroxene. (j) Fine-grained plagioclase neoblasts within a fine-grained mylonitic matrix. Abbreviations are as follows:
0l, olivine; Opx, orthopyroxene; Cpx, clinopyroxene; Amp, amphibole; Spl, spinel; Pl, plagioclase; Alt, alteration products.
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for all elements are given in Supplementary Table 11. All whole-rock
analyses were undertaken at the Department of Physics and Earth
Sciences, Ferrara University, Italy.

5. Mineral major-element compositions
5.1. Olivine

Olivine is forsteritic in composition. The forsterite contents [Fo =
100 x Mg/(Mg + Fe®*)| range from 89.1 to 90.2 within the
porphyroclastic Iherzolites, and from 89.9 to 91.0 within the mylonitic
lherzolites (Fig. 3; Supplementary Table 1). The olivine is unzoned
and in porphyroclastic lherzolites has Fo values that decrease slightly
as plagioclase modal abundances increase (Table 1; Supplementary
Table 1). The average Fo contents of these olivines decrease from 90.0
in the spinel lherzolite to 89.5 in the plagioclase lherzolite (which con-
tains up to 9% modal plagioclase; Table 1). These olivines contain
0.26-0.42 wt% NiO and show compositional variations that all lie within
the range of compositions of mantle olivine (Takahashi et al., 1987).

5.2. Spinel

All of the spinels with plagioclase rims within the porphyroclastic
peridotites are chemically zoned, with decreases in Al and increases in
Ti, Cr, and Fe from core to rim (Figs. 4 and 5; Supplementary Table 2).
This chemical zonation is more intense in spinels within lherzolites
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Fig. 4. Spinel Cr# versus Mg# diagram for spinel and plagioclase lherzolites of the Nain
ophiolite along with fields for abyssal spinel peridotites (Dick and Bullen, 1984), abyssal
plagioclase peridotites (Dick, 1989; Dick et al., 2010; Dick and Bullen, 1984; Loocke and
Snow, 2013; Ohara et al., 2002; Seyler and Bonatti, 1997; Susini and Wezel, 1999;
Tartarotti et al., 2002), and recrystallized plagioclase peridotites (Cannat and Seyler,
1995; Chazot et al., 2005; Hoogerduijn Strating et al., 1993; Kornprobst and Tabit, 1988;
Montanini et al., 2006; Rampone et al., 1993, 1995, 2005). Solid lines connect core and
rim compositions, and arrows indicate chemical variations from core to rim.

containing higher modal abundances of plagioclase (Table 1; Supple-
mentary Table 2). Although strongly zoned, the spinel cores within
the plagioclase lherzolites are compositionally comparable to those
within the spinel lherzolites (Figs. 4 and 5; Supplementary Table 2).
The spinels with the lowest Cr# [Cr# = Cr/(Cr + Al)] values (0.10)
occur as isolated grains within the spinel lherzolites (Supplementary
Table 2). On average, spinels within plagioclase lherzolites have much
higher Cr# values (0.26) than the spinel within spinel lherzolites
(0.15; Figs. 4 and 5; Supplementary Table 2). The spinels within
mylonites have moderately high Cr# values (0.28-0.34) and TiO, con-
tents (0.11-0.28 wt%; Fig. 5; Supplementary Table 2).

5.3. Orthopyroxene

Orthopyroxenes are enstatitic in compositions and show consistent
Mg# [Mg# = (Mg/(Mg + Fe?™)] values within the porphyroclastic
peridotites (0.905) but variable Mg# values within the mylonites
(0.898-0.911; Fig. 6a; Supplementary Table 3). The orthopyroxenes
are chemically zoned in the porphyroclastic lherzolites with Al,05
contents that decrease from core (mean of 4.26 wt%) to rim (mean of
3.50 wt%; Fig. 6¢, e; Supplementary Table 3). This decrease in Al,03
contents is associated with a decrease in Cr,Os; within the spinel
lherzolites and an increase in Cr,03 within the plagioclase lherzolites
(Supplementary Table 3). The orthopyroxenes within the plagioclase
lherzolites contain higher mean concentrations of Cr,03 (0.47 wt%)
than the orthopyroxenes within the spinel lherzolites (0.42 wt%;
Fig. 6a; Supplementary Table 3). A similar decrease in orthopyroxene
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Al,03 content from core to rim is also present within the mylonites
(Supplementary Table 3), although this decrease is not systematically
associated with any increase in Cr,03 content. Orthopyroxene cores
adjacent to plagioclase inclusions contain relatively low concentra-
tions of Al,03 and Cr,03, similar to the rims of these orthopyroxenes
(Supplementary Table 3).

5.4. Clinopyroxene

Clinopyroxenes are mostly diopsidic in composition and yield
a mean CaO concentration of 22.9 wt% (Supplementary Table 4).
All of these clinopyroxenes are chemically zoned and have A1,03 con-
centrations that decrease from core to rim (Fig. 6d, f; Supplementary
Table 4), independent from variations in Cr,03 content. Although
with different behavior in different rocks, the TiO, and Na,O contents
generally show mutual correlation (Supplementary Table 4). In spinel
lherzolites, their contents decrease from cores to rims, whereas in
plagioclase lherzolites their contents increase from core to rim
(Fig. 6d; Supplementary Table 4). The clinopyroxenes within mylonites
have lower mean Al,05 contents (2.44-5.31 wt%) but higher mean
Cr,05 contents (0.64-1.16 wt%) than the clinopyroxenes within
the porphyroclastic lherzolites (Al,03 = 2.87-6.35 wt%; Cr,03 = 0.53-
1.07 wt%; Fig. 6b, d; Supplementary Table 4).

5.5. Amphibole

The amphiboles show pargasite compositions based on the classifi-
cation of Leake et al. (1997). All of these amphiboles have composi-
tions very close to the ideal pargasite formula, with low KO contents
(<0.04 wt%; Supplementary Table 5). Their TiO, contents range from
1.09 to 3.35 wt% and their Mg# ranges from 0.877 to 0.921 (Fig. 7a;
Supplementary Table 5). Amphiboles within the mylonites have uni-
form compositions (Fig. 7a-f; Supplementary Table 5) whereas the
amphiboles within the porphyroclastic samples vary in composition
between the spinel and plagioclase lherzolites (Fig. 7a-f; Supplementary
Table 5). In particular, the amphiboles within the plagioclase lherzolites
contain lower concentrations of Al,O3 (mean of 13.9 wt%) but higher
concentrations of Ti,O (mean of 1.92 wt%) than the amphiboles within
the spinel lherzolites (mean Al,03 of 14.6 wt% and mean Ti,O of
1.22 wt%; Fig. 7a, b).

5.6. Plagioclase

The plagioclase relics within porphyroclastic lherzolite sample
88 have a bytownite composition (mean of Ang;) and are free of ortho-
clase components (Supplementary Table 6). The plagioclase within the
mylonites also has a bytownite composition but with a wider range of
compositional variations (An;;-Ang7) that are associated with the
mylonitization process. These anorthite contents are independent on
the mineral occurrence or texture.

6. Trace element mineral chemistry
6.1. Orthopyroxene

The orthopyroxenes contain very low REE concentrations (<4 times
the chondrite composition of Sun and McDonough, 1989) and have
strongly fractionated REE patterns with a mean Chondrite-normalized
(Sun and McDonough, 1989) Ceyn/Yby value of 0.008 (Fig. 8a, c, e;
Supplementary Table 7). These REE compositions are expected for
orthopyroxenes within mantle peridotites. The orthopyroxenes within
the plagioclase lherzolites have higher heavy REE (HREE) and lower
middle (MREE) to light REE (LREE) concentrations than those in the spi-
nel lherzolites (Fig. 8a, ¢; Supplementary Table 7). The multi-element
variation diagram patterns for these orthopyroxenes show positive Ti
anomalies (Fig. 8b, d, f). In addition, the orthopyroxenes within the spi-
nel lherzolites have slight to significantly elevated positive Eu anomalies
(Eu/Eu” = 1.01-1.69; Fig. 8a, b; Supplementary Table 7).

6.2. Clinopyroxene

The clinopyroxenes have fractionated REE patterns that are depleted
in the LREE and have flat MREE to HREE patterns at ~5 to 11 times chon-
drite abundances (Sun and McDonough, 1989; Fig. 9a, c, e). The
clinopyroxenes within the porphyroclastic plagioclase lherzolites have
either positive or negative Eu anomalies (Eu/Eu* = 0.69-1.16; Fig. 9d,
f; Supplementary Table 8), where the positive Eu anomalies show a
negative correlation with plagioclase modal abundances (Table 1).
In contrast, the clinopyroxenes within the spinel lherzolites have posi-
tive Eu anomalies (Eu/Eu” = 1.10-1.48; Fig. 9b). The clinopyroxenes
within the plagioclase lherzolites are slightly enriched in the REE and
trace elements, barring Eu and Sr, relative to those within the spinel
lherzolites (Fig. 9a-d; Supplementary Table 8). The clinopyroxenes
within the mylonites have slightly negative to negative Eu anomalies
(Eu/Eu* = 0.73-0.95).

6.3. Amphibole

Amphiboles have similar REE patterns to coexisting clinopyroxenes
in that they are LREE depleted (mean Cen/Smy = 0.045) with almost
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flat MREE to HREE patterns (mean Gdy/Yby = 0.90) at ~10-13 times
chondrite abundance (Sun and McDonough, 1989; Fig. 10a-c; Supple-
mentary Table 9). The amphiboles within the porphyroclastic plagio-
clase lherzolites are also similar to the pyroxenes in that they contain
slightly higher REE and trace element concentrations than the amphi-
boles within the spinel lherzolites (Fig. 10a, b; Supplementary Table 9).
Similar to pyroxenes, amphiboles within the spinel lherzolites also
have positive Eu anomalies (Eu/Eu* = 1.03-1.14; Fig. 10a; Supplemen-
tary Table 9).

7. Whole-rock major and trace element geochemistry
The effect of alteration on the mobility of major and trace elements

in the samples was determined by plotting major elements against
MgO and LOI values (not shown). The lack of any correlation between

Si0,, Al,03, FeO, MgO, Ca0, Na,0, and Ni concentrations with LOI
values (e.g., r? LOI-Si0, = 0.23; r? LOI-Al,05 = 0.03; r? LOI-FeO =
0.08; r* LOI-MgO = 0.17; r* LOI-Ca0 = 0.20; r* LOI-Na,0 = 0.03;
2 LOI-Ni = 0.03) suggests that these elements were not significantly
mobilized during alteration of the peridotites. In addition, the concen-
tration of a number of elements correlate well with MgO concentrations
(e.g., 12 MgO-Si0, = 0.72; 1 Mg0-AL,0; = 0.81; 12 MgO-FeO = 0.77; r?
MgO-Ca0 = 0.77; 1> MgO-Na,0 = 0.91; r> MgO-Ni = 0.72), again sug-
gesting that these elements have not been significantly mobilized. In ad-
dition, all of the samples plot close to the “terrestrial array” for fresh
mantle peridotites on a Mg0O/SiO, vs. Al;,03/Si0, diagram (not shown;
Jagoutz et al., 1979), indicating that these mantle peridotites have under-
gone limited (if any) mobilization of SiO,, Al,O3, and MgO contents.
The concentrations of Al,03, Ca0, and V (Fig. 11a, b; Supplementary
Table 10), as well as SiO, and Na,O, in both spinel and plagioclase
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lherzolites negatively correlate with MgO concentrations. In contrast,
Ni, FeO, and Co concentrations positively correlate with MgO (Supple-
mentary Table 10). Both plagioclase and spinel lherzolites have similar
whole-rock geochemical compositions (Supplementary Table 10) that
are characterized by low concentrations of TiO, (0.05-0.08 wt%) and
high concentrations of Ni (1806-1919 ppm) and Cr (2259-2699
ppm). They also contain relatively high concentrations of Al,03
(2.75-3.86 wt%), Ca0 (1.92-2.97 wt%), Zr (1.22-2.79 ppm), and Y
(1.51-3.35 ppm), all of which are typical for slightly depleted perido-
tites. Both spinel (Mg# = 0.901-0.903) and plagioclase (Mg# =
0.895-0.898) lherzolites also have similar Mg# values. In general,
these rocks have whole-rock major and trace element compositions
that are similar to those of the subcontinental mantle peridotites that
crop out within the External Ligurian ophiolitic units of the northern
Apennines (Ottonello et al.,, 1984; Rampone et al.,, 1993, 1995; Fig. 11).
All of the lherzolites contain relatively high concentrations of the
HREE (e.g., Yby = 0.99-2.06; Fig. 12a, b). However, the plagioclase

lherzolites are depleted in the LREE with respect to both the MREE
and HREE (Cen/Smy = 0.09-0.22; Cen/Yby = 0.04-0.11). They have
chondrite-normalized REE patterns (Fig. 12b) that are similar to
those of subcontinental mantle peridotites within the Erro-Tobbio pe-
ridotites of the Ligurian Alps, Italy (Rampone et al., 2005). In contrast,
the spinel lherzolites have lower LREE/MREE (Ceyn/Smy = 0.39-0.46)
and LREE/MREE (Ceyn/Yby = 0.18-0.19) values, and chondrite-
normalized REE patterns that partially overlap those of the subconti-
nental peridotites of the External Ligurian and Erro-Tobbio ophiolites
(Ottonello et al., 1984; Rampone et al., 1993, 1995, 2005). In general,
both plagioclase and spinel lherzolites are relatively enriched in
the REE (Fig. 12), indicating that both these rocks represent slightly
depleted mantle peridotites. This inference is consistent with their
high Al,053/SiO; ratios (0.065-0.089), which are much higher than
those of peridotites that represent the residual mantle after mid-ocean
ridge basalt (MORB)-type melt extraction in mid-ocean ridge settings
(Al,03/Si0, = 0.030-0.060; Saccani et al., 2013).
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8. Thermobarometry

Temperature estimates were undertaken using the thermometers
of Brey and Kéhler (1990), Witt-Eickschen and Seck (1991), and
Liang et al. (2013). The two-pyroxene thermometer of Brey and
Kohler (1990) is based on the exchange of orthopyroxene components
between coexisting pyroxenes, whereas the orthopyroxene thermom-
eters of Brey and Kohler (1990) and Witt-Eickschen and Seck (1991)
are based on the solubility of Al and Ca in orthopyroxene. The ther-
mometer of Liang et al. (2013) is based on the partitioning of the
REE between coexisting clinopyroxenes and orthopyroxenes, and is
used to estimate the closure temperature of the peridotites, whereas
the thermometers of Brey and Koéhler (1990) and Witt-Eickschen
and Seck (1991) yield estimates of cooling temperatures. Temperature
estimates were based on pyroxene core compositions and are given
in Table 2. The Brey and Kohler (1990) and Witt-Eickschen and Seck
(1991) thermometers yield similar ranges of equilibration temperatures

for the porphyroclastic spinel (834 °C-939 °C) and plagioclase (823 °C-
941 °C) lherzolites. The mylonites have a more limited and slightly
lower temperature range (877 °C-899 °C) than the porphyroclastic
lherzolites. However, it should be noted that the tectonic disruption
(e.g., fine grain-size) experienced by these rocks may have affected
these temperature estimates. There are no correlations between modal
plagioclase contents and temperature estimates. The temperatures esti-
mated using the Liang et al. (2013) method (991 °C-1101 °C) are about
150 °C higher than the temperatures obtained using the other methods.
This difference is similar to that observed in Alpine subcontinental peri-
dotites, but is much lower than the differences observed in abyssal peri-
dotites (Dygert and Liang, 2015).

The barometer of Nimis and Ulmer (1998) is the only method that
can be used to estimate equilibration pressures for all of the samples in
the study area because it is based on clinopyroxene compositions. On av-
erage, spinel lherzolites yield equilibration pressures of ~0.60 GPa
(Table 2), whereas the plagioclase lherzolites yield lower pressures
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(~0.47 GPa). These calculated pressures correlate to depths of ~20 and
~16 km for the spinel and plagioclase lherzolites, respectively. Unfortu-
nately, the recently proposed geobarometers for plagioclase-bearing
mantle rocks (Borghini et al.,, 2010, 2011; Fumagalli et al., 2017) can
only be used for plagioclase lherzolite sample 88 and the mylonites as
a result of the lack of fresh plagioclase in the other samples. Sample
88 yielded an estimated pressure of 0.37 GPa using the Borghini et al.
(2010) method and 0.53 GPa using the Fumagalli et al. (2017) method.
The pressure estimate obtained using the Fumagalli et al. (2017)
method is similar to that obtained using the Nimis and Ulmer (1998)
barometer (0.49 GPa). Mylonite pressure estimates vary as a function
of the method used (Table 2), with a mean equilibration pressure of
0.42 GPa. All of these estimated temperatures and pressures fall within
the stability field of pargasite (Jenkins, 1983), and the highest lherzolite
temperatures are close to 900 °C, which is the temperature of the upper

thermal stability of pargasite coexisting with orthopyroxene (Lykins
and Jenkins, 1992).

9. Discussion
9.1. Mantle metasomatism: evidence from depleted amphibole compositions

The lherzolites are slightly depleted as a result of low-degree partial
melting that likely preceded amphibole metasomatism. In fact, the
REE normalized patterns of the spinel lherzolites are consistent with
patterns calculated for a fertile mantle source that had undergone
low-degree fractional partial melting (~5%; Fig. 12a). This is also consis-
tent with the compositions of spinel and clinopyroxene within these
lherzolites (Figs. 3 and 9a; Supplementary Table 2). The presence of
pargasite in both spinel and plagioclase lherzolites suggests that
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from the Nain spinel and plagioclase lherzolites normalized to the chondrite composition
of Sun and McDonough (1989). Amphiboles from porphyroclastic spinel lherzolites are
shown in (a), from porphyroclastic plagioclase lherzolites are shown in (b), and from
mylonite plagioclase lherzolites in (c). Grey columns highlight Eu values, and positive
and negative anomalies are denoted by Pos. and Neg., respectively.

metasomatism associated with the formation of this mineral preceded
the formation of plagioclase, indicating that the crystallization of
the plagioclase was not associated with this metasomatic event.
The pargasite in the studied rocks contains very low concentrations
of the LREE and the large ion lithophile elements (LILE; Fig. 10a-c;
Supplementary Tables 5 and 9), which indicates that this mineral has a
refractory nature. Amphiboles with similarly depleted compositions are
uncommon in mantle rocks (e.g., Menzies and Hawkesworth, 1987),
but have been identified within fertile subcontinental-type lherzolites
(e.g., Chazot et al., 2005; Green, 1964; Hoogerduijn Strating et al.,
1993; Piccardo et al., 1993; Rampone et al., 1993, 1995; Zanetti et al.,
1996, 2000) and in some mantle xenoliths (e.g., Abe et al., 1998; Arai,
1986; Johnson et al., 1996). Two major processes explain the presence
of depleted amphiboles in mantle peridotites: (i) re-equilibration with
depleted pyroxenes; (ii) metasomatism by H,O-rich mantle fluids.
The first hypothesis suggests that these amphiboles were originally
enriched in the LREE and the LILE but became depleted as a result of
the sub-solidus redistribution of elements between amphiboles and

depleted pyroxenes within the hosting peridotite (Vannucci et al.,
1995; Zanetti et al., 1996). The similar REE patterns of pargasite and
clinopyroxene (Figs. 9a, 10a, 13) indicate that these minerals are in
equilibrium within the Nain lherzolites. This suggests that originally
enriched amphiboles have equilibrated with coexisting and rather
depleted clinopyroxenes. However, the composition of the initial
amphibole within the lherzolites is unknown, meaning that it is not
possible to quantitatively model this amphibole-clinopyroxene re-
equilibration. Nevertheless, given the very depleted nature of the studied
pargasites and assuming an original amphibole with enriched composi-
tion, it follows that, in order to compensate the enriched composition of
the amphibole, the composition of the original clinopyroxene should
have been very depleted. However, a very depleted composition of the
original clinopyroxene implies that the hosting peridotites experienced
high-degree partial melting (>20%). Nevertheless, this hypothesis is in
contrast with both the mineral and whole-rock geochemistry of the
Nain spinel lherzolites, which is indicative of ~5% fractional melting
(Figs. 3, 9a, 12a; Supplementary Table 2). Therefore, the depleted com-
position of the amphiboles in these units was not influenced by re-
equilibration with clinopyroxene.

The second hypothesis suggests that the depleted amphiboles were
derived from low-density H,O-rich metasomatic fluids that were origi-
nally depleted in incompatible elements. In turn, the LREE-depleted
character of these aqueous fluids is interpreted to be the result of the
earlier equilibration of these fluids in the garnet stability field, as sug-
gested for the genesis of depleted amphiboles within the External
Liguride and Zabargad peridotites (e.g., Piccardo et al., 1993; Rampone
et al,, 1993; Vannucci et al., 1995). The hypothetical metasomatic fluids
that interacted with the Nain lherzolites are likely to have had flat HREE
and slightly depleted LREE patterns (mean Ceyn/Yby = 0.10-0.13;
Fig. 13). The REE concentrations of these metasomatic fluids can be
modeled using clinopyroxene-amphibole/basaltic melt partition coeffi-
cients (Hart and Dunn, 1993; Sisson, 1994). This modelling suggests
that the metasomatic agents were subalkaline mafic melts that closely
resemble the tholeiitic melts in slow-spreading-ridge settings such as
the Mid-Atlantic Ridge (e.g., Sun et al., 1979; Fig. 13b). The water con-
tent of these metasomatic melts was likely supplied by degassing of
deeper parts of the mantle during the initial stages of basin extension.
The depleted chemistry of these amphiboles suggests that metaso-
matism occurred either after or contemporaneously with the partial
melting of the lherzolites. In summary, it is likely that the depleted
chemistry of the Nain pargasites is the result of metasomatism by H,0O-
rich mantle fluids.

9.2. Positive Eu anomalies in mantle clinopyroxene

The REE patterns of clinopyroxene within the spinel lherzolites
are similar to the calculated composition of clinopyroxene after low-
degree (<5%) partial melting (Fig. 9a), with the exception of the
slight to appreciable positive Eu anomalies within the clinopyroxenes
(Eu/Eu” = 1.10-1.48; Fig. 9b; Supplementary Table 8). Similar positive
anomalies are also present within coexisting amphiboles (Eu/Eu* =
1.03-1.14) and orthopyroxenes (Eu/Eu* = 1.01-1.69; Figs. 8b, 10a;
Supplementary Tables 7 and 9). These positive Eu anomalies, although
slight, are remarkable, as Eu behaves incompatibly during mantle
melting (e.g., Sun and Liang, 2012). This means that pyroxenes within re-
sidual mantle material typically have negative Eu anomalies (e.g., Tang
et al.,, 2017). The unusually high concentrations of Eu in the studied
clinopyroxenes can be explained in two ways, as outlined below.

The first hypothesis is based on the heterovalent state of Eu, which
is the only REE that can exist in divalent and trivalent states under
magmatic conditions. This means that the Eu mineral/melt partition co-
efficient for a given mineral is dependent on Eu>*/Eu?* ratios that in
turn are predominantly a function of the prevailing redox conditions.
Although few experimental studies have considered the partitioning
of Eu in mantle minerals as a function of oxygen fugacity conditions,
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the results show a positive correlation between oxygen fugacity and py-
roxene Eu partition coefficient values (e.g., Karner et al., 2010; Laubier
et al., 2014; McKay, 2004; Moller and Muecke, 1984; Schwandt and
McKay, 1998; Sun et al., 1974; Weill and McKay, 1975). The oxygen fu-
gacity conditions recorded by the spinel lherzolites (Table 2) vary
between fayalite-magnetite-quartz (FMQ) —0.8 and FMQ +1.3,
clearly indicating oxidizing conditions (e.g., Ballhaus et al., 1990,
1991). This suggests that the unusually positive Eu anomalies
within the clinopyroxenes were generated by the partial melting
of lherzolites under oxidizing conditions, favoring the retention of
Eu within clinopyroxene. The second hypothesis involves the gener-
ation of positive Eu anomalies within these clinopyroxenes by the
sequestering of Eu from the plagioclase that was originally present
within these rocks. This implies that the studied spinel lherzolites
are likely to have been derived from earlier-formed plagioclase
lherzolites that are not preserved within the Nain mantle series.
The precursor plagioclase most likely formed by the crystallization
of trapped melts in the lherzolites that were produced in situ during
partial melting. The breakdown of plagioclase during the transition
from plagioclase to spinel facies caused the clinopyroxene within
these rocks to incorporate the excess Eu that was originally hosted
by plagioclase. The shape of the pressure (P)-temperature
(T) curve that separates the spinel and plagioclase facies in the man-
tle (e.g., Irving and Green, 1970; Kushiro and Yoder, 1966) suggests
that the transition from the latter to the former can be achieved by a
simple temperature decrease at almost constant pressure. Both of
the hypotheses discussed above can explain the positive Eu anoma-
lies within the clinopyroxenes in the studied rocks, although the
data obtained to date do not allow a further assessment of the spe-
cific process that generated these Eu anomalies.

Positive Eu anomalies are also present in some pyroxene and
amphibole cores within the studied plagioclase lherzolites al-
though the majority of these minerals have negative Eu anomalies
(Supplementary Tables 7-9). This change in Eu anomaly is most
likely related to the subsolidus recrystallization of spinel to pla-
gioclase, note the plagioclase within the plagioclase lherzolites
represents a different generation of plagioclase formation and is
not related to the postulated “magmatic” plagioclase discussed
above.
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Table 2
Calculated equilibration temperatures, pressures, and oxygen fugacity conditions for the Nain spinel and plagioclase lherzolites.
Texture Rock type Rockno. T(°C)Ca T(°C) T(°C)Cain Opx  Tgee (°C) P (GPa) Ca P(GPa) An P(GPa) pland  fO, (FMQ)
in Opx 2-pyrox 2-pyrox in Cpx in Pl 2-pyrox
Brey and Kéhler (1990)  Witt-Eickschen Liang et al.  Nimis and Borghini et al. ~ Fumagalli Ballhaus et al.
and Seck (1991)  (2013) Ulmer (1998)  (2011) et al. (2017) (1990)
Porphyroclastic ~ Spl-lherzolite 83 834+29 842425 928 +126 1064 + 62  0.60 —0.78
86-A 939 +£22 888+36 935428 0.60 0.74
86-B 921+17 937 +28 938424 0.60 125
Pl-lherzolite 85 845426 907 +£22 906 + 28 1017+ 45 0.56 —1.16
88 823 +£28 925416 911417 1059 +£58 049 0.37 0.53 —0.39
85B 914 +£31 873+29 941412 0.49 0.46
85D 923427 910+23 937 +16 0.42
85F 918 £22 885431 930412 0.49 0.61
85G 899 +25 882431 93949 0.46
85H 924 +£28 909 +29 933422 0.44 0.46
851 904 +31 927 +17 935+ 14 0.44 0.42
Mylonitic Pl-Iherzolite 50 887 +£16 891420 886421 1029 +£23 040 0.37 0.49
51 877 +£18 899+15 893419 1019+ 52 038 0.39 0.50

Footnote: equilibrium pressure was assumed to be 1 GPa for temperature calculations using the approach of Brey and Kéhler (1990). Pyroxenes are denoted by Pyrox with all other
abbreviations as in Fig. 2. Oxygen fugacities are expressed relative to the fayalite-magnetite-quartz (FMQ) oxygen buffer, and the data represent mean values for each sample (n>5).

9.3. Metamorphic evolution of the lherzolites: recrystallization in the
plagioclase facies and mylonitization

9.3.1. Microtextural evidence

The studied plagioclase lherzolites are characterized by: (i) the de-
velopment of plagioclase rims around spinel as well as around spinel
inclusions within pyroxene porphyroclasts (Fig. 2c, e, f); (ii) the devel-
opment of plagioclase + orthopyroxene exsolution lamellae in some
clinopyroxene porphyroclasts (Fig. 2g); (iii) a noticeable decrease in
modal pyroxenes abundances as modal olivine and plagioclase abun-
dances increase (Table 1). Similar microtextures are present in plagio-
clase peridotites from the northern Apennines, western Iberia, and on
Zabargad Island, where they are interpreted to be the result of the re-
equilibration of peridotites under conditions of the plagioclase facies
(e.g., Chazot et al., 2005; Kornprobst and Tabit, 1988; Piccardo et al.,
1993; Rampone et al., 1993, 1995, 2005). The progressive increase in
the degree of recrystallization in the plagioclase facies is associated
with an increase in modal plagioclase abundance within the lherzolites
(Table 1). The spinel assemblage within both plagioclase and spinel
lherzolites is almost identical in texture and chemistry (Figs. 3-6;
Supplementary Tables 2-4). This also supports the hypothesis that
the plagioclase lherzolites were generated by the recrystallization
of pre-existing spinel lherzolites. Similarly, comparing these features
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Fig. 13. Chondrite-normalized REE compositions of the calculated metasomatic melts that
interacted with the Nain spinel Iherzolites, normalized to the chondrite composition of
Sun and McDonough (1989). The Mid-Atlantic basalt field is from Sun et al. (1979) and
the partition coefficients that were used to calculate equilibrium melts are from Sisson
(1994) and Hart and Dunn (1993).

indicates a genetic link between the porphyroclastic and mylonitic
peridotites, whereby the latter were formed by the deformation of the
former.

The textural features of the Nain peridotites are different from the
textures present within melt-impregnated peridotites. In particular,
specific microtextures associated with melt-rock interaction that
are typically observed within plagioclase-impregnated peridotites
are absent from the Nain lherzolites. These include the presence of gab-
broic or plagioclase veinlets/pockets that cut the peridotite matrix or
porphyroclasts and the co-crystallization of plagioclase and pyroxene
from the impregnating melts (e.g., Dijkstra et al., 2001; Piccardo and
Vissers, 2007; Pirnia et al.,, 2010; Rampone et al., 1997, 2008;
Rampone and Borghini, 2008; Susini and Wezel, 1999; Tartarotti et al.,
2002). This contrasts with the negative correlation between modal pla-
gioclase and pyroxene abundances within the Nain lherzolites (Table 1).
A few discrete plagioclase crystals that could eventually be associated
with melt impregnation processes are present within the mylonites
(Fig. 2j). However, the overall textural evidence indicates that these pla-
gioclase crystals have been separated from their associated spinels and
have recrystallized as individual grains due to foliation in the mylonite
matrix.

9.3.2. Mineral compositional evidence

The spinel within the plagioclase peridotites records specific chemi-
cal features that are the result of chemical re-equilibration between
spinel and plagioclase. These chemical features include being depleted
in Al and enriched in Cr, Ti, and Fe, and are generally present in both re-
crystallized and melt-impregnated peridotites (e.g., Chazot et al., 2005;
Dick and Bullen, 1984; Dijkstra et al., 2001; Loocke and Snow, 2013;
Piccardo et al., 2004; Rampone et al., 1995, 2008; Tartarotti et al.,
2002). However, the chemistry of the spinels is slightly different in the
two groups of peridotites (Figs. 4, 5). In particular, a comparison be-
tween the chemical features of spinels and those of coexisting minerals
(i.e., olivine), may reveal different chemical patterns within recrystal-
lized and melt-impregnated peridotites (Fig. 3).

The Nain plagioclase lherzolites contain chemically zoned spinel
(Figs. 4, 5; Supplementary Table 2) where Al and Ni concentrations
decrease and Cr, Ti, and Fe concentrations increase from core to rim.
The intensity of this zonation is proportional to the modal abundance
of plagioclase within these lherzolites (Figs. 4, 5; Table 1; Supplemen-
tary Table 2). The Al depletions and Cr, Ti, and Fe enrichments can be
explained by the equilibration of these spinels with plagioclase (e.g.,
Chazot et al., 2005; Dick and Bullen, 1984; Dijkstra et al., 2001; Loocke
and Snow, 2013; Piccardo et al., 2004; Rampone et al., 1995, 2008;
Tartarotti et al., 2002). However, the Ni depletions are the result of
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chemical exchange between spinel and coexisting olivine (e.g., Okamura
et al,, 2006). The crystallization of olivine with plagioclase as a result of
subsolidus reactions (e.g., Kushiro and Yoder, 1966) promoted the ex-
traction of Ni from coexisting spinel within these lherzolites. All these
zonations are present in spinels associated with olivines with almost
uniform Fo contents (Fig. 3; Supplementary Table 1), in contrast to
the chemical variations recorded in spinel and olivine within melt-
impregnated peridotites, where olivine Fo contents show a marked
decrease with increasing degree of melt impregnation (Fig. 3). In
addition, the spinel in the studied lherzolites has higher Ti contents
(mean of 0.22 wt%) for the same range of Cr# values than spinel within
melt-impregnated abyssal peridotites (mean of 0.10 wt%; Fig. 5;
Supplementary Table 2). The Ti-rich nature of these spinels indicates
that the lherzolites are fertile, providing evidence of a subsolidus rather
than magmatic origin for the plagioclase.

The spinels have lower Mg# values than spinels from melt-
impregnated peridotites (Fig. 4), indicating that the former record
lower equilibration temperatures than the latter (Table 2). The decrease
in Mg# from core to rim in the spinels (Fig. 4; Supplementary Table 2)
can also be explained by cooling (see Arai, 1992). In addition, an in-
crease in the modal abundance of olivine could promote the ex-
change of Mg from spinel to coexisting olivine, explaining why spinels
within plagioclase lherzolites containing higher modal abundances
of olivine (Table 1) have lower Mg# values (mean of 0.74) than
spinels within spinel lherzolites (mean of 0.69; Fig. 4; Supplementary
Table 2). The fine grain size of the minerals within the mylonites most
likely favored the processes that control the redistribution of Mg be-
tween spinel and olivine, as described above. This means that for a
given Cr#, the spinels within the mylonites have lower Mg# values
(mean of 0.65) than those in the porphyroclastic lherzolites (Fig. 4;
Supplementary Table 2).

The pyroxenes within the lherzolites are chemically zoned, where Al
and Ca decrease from core to rim (Fig. 6¢—f; Supplementary Tables 3 and
4) as a result of a combination of cooling and plagioclase crystallization.
These lherzolites re-equilibrated under P-T conditions of the plagioclase

facies (823 °C-941 °C, 0.47 GPa), causing the solubility of Al and Ca
(Tschermak's molecules, CaAl,SiOg) within these pyroxenes to
decrease (e.g., Witt-Eickschen and Seck, 1991). The crystallization of
plagioclase had a similar effect on these pyroxenes, as both of these
elements are also highly compatible in plagioclase. The pyroxenes within
plagioclase-rich lherzolites have mean Al and Ca concentrations that are
lower than the concentrations of these elements in pyroxenes within
plagioclase-poor lherzolites, despite the fact that these pyroxenes have
similar Mg# values (Fig. 6a, b; Supplementary Tables 3 and 4). In addi-
tion, pyroxene cores in contact with plagioclase inclusions have low Al
and Ca contents (Supplementary Table 3). Pyroxene Ti and Cr concentra-
tions are similar to spinel Ti and Cr concentrations in that they increase
with increasing modal plagioclase abundance (Fig. 6a-d; Table 1; Sup-
plementary Tables 3 and 4). The clinopyroxenes contain higher concen-
trations of Ti than those within melt-impregnated peridotites containing
spinels with comparable compositions (Fig. 14). These relatively high
clinopyroxene Ti concentrations indicate that the lherzolites are fertile
rather than reflecting any melt interactions. The pargasites show similar
major-element compositional variations to the pyroxenes, where de-
creases in Al, Ca, and Na and increases in Ti and Cr are associated with
an increase in modal plagioclase abundance (Table 1; Fig. 7; Supplemen-
tary Table 5). The lherzolites display a clear positive correlation between
modal plagioclase abundance and the concentrations of trace elements
in pyroxenes and pargasites barring Eu and Sr, both of which slightly de-
crease with increasing modal plagioclase abundance (Table 1; Supple-
mentary Tables 7-9). This increase in trace element concentrations
associated with the increase in degree of recrystallization generated
slightly more enriched pyroxenes and pargasites in the porphyroclastic
plagioclase lherzolites than in the spinel lherzolites (Figs. 8a-d, 9a-d,
10a, b). The breakdown of pyroxene and pargasite as a result of
subsolidus reactions provided excess REE and LILE to the Iherzolite ma-
trix. These trace elements were subsequently taken up by the newly
formed plagioclase and the remaining pyroxene and pargasite. This
means that the pyroxene and pargasite within the plagioclase-rich
lherzolites has a more fertile chemistry than their counterparts within
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the spinel lherzolites (Figs. 8a-d, 9a-d, 10a, b). A similar model has been
proposed to explain the composition of plagioclase lherzolites within the
External Liguride (Rampone et al., 1993, 1995).

9.3.3. Whole-rock geochemical evidence

Although the Nain spinel and plagioclase lherzolites have signifi-
cantly different modal compositions, they have similar whole-rock
geochemical compositions (Fig. 11; Supplementary Table 10). This sim-
ilarity supports a metamorphic origin for the plagioclase in these rocks,
as the addition of plagioclase by melt impregnation would have in-
creased the concentrations of Al,Os, Ca0, and TiO, in the plagioclase
lherzolites relative to the spinel lherzolites (e.g., Rampone et al.,
2008; Seyler and Bonatti, 1997; Susini and Wezel, 1999). In addition,
the plagioclase lherzolites contain similar concentrations of the HREE
and have similar MREE/HREE ratios relative to the spinel lherzolites
(Smp/Yny = 0.41-0.50 for the plagioclase lherzolites, 0.41-0.46 for
spinel lherzolites). However, the plagioclase lherzolites contain lower
concentrations of the LREE than the spinel lherzolites, reflecting the
lower modal abundances of pyroxene in the former relative to the latter
(Fig. 12; Supplementary Table 10).

10. Geodynamic implications

The Nain ophiolites are thought to have formed in either (i) a
Cretaceous continental volcanic arc related to the eastward subduc-
tion of a narrow branch of the Tethyan Ocean crust under the CEIM
(e.g., Delaloye and Desmons, 1980; Desmons, 1982; Desmons and
Beccaluva, 1983; Ghazi and Hassanipak, 2000); or (ii) a Late Cretaceous
ensimatic backarc extensional basin that formed to the north of the
Sanandaj-Sirjan as a result of the subduction of the southern Neotethyan
Basin associated with the formation of the Zagros fold-thrust belt
(e.g., Pirnia et al., 2010; Shafaii Moghadam et al., 2009; Shahabpour,
2005). However, both these tectonic reconstructions focus on the con-
vergent and oceanic closure phases of the evolution of this region, mean-
ing that the tectonic setting during oceanic basin opening remains
unclear. The mantle lherzolites that crop out in the Nain ophiolites
have mineral (e.g., Fig. 9) and whole-rock (Figs. 11, 12) geochemical
compositions that typify subcontinental mantle material exhumed at
Iberia-type (i.e., magma-poor or Alpine-type) rifted continental margins
(Rampone et al., 1995, 2005; Saccani et al., 2013, 2015). The classical
models proposed for the magma-poor rifted margins of the western
Tethys (for a general review and relevant references, see Dilek and
Furnes, 2011; Saccani et al., 2015) suggest that the CEIM was rifted
from the continental block of Central-West Iran as a result of asymmetri-
cal passive extension. This tectonism caused the exhumation of subconti-
nental mantle now recorded in the Nain lherzolites. These lherzolites
record low-degree partial melting (<5%; Fig. 12), suggesting that this re-
gion was similar to the western Tethys in that the upwelling and exhu-
mation of subcontinental mantle in the Nain area was associated with
limited partial melting and limited magmatism, processes that are typi-
cally associated with magma-poor rifted margins (Saccani et al,, 2015).

Unfortunately, the age of continental rifting and subsequent seafloor
spreading in the study area cannot be accurately defined. However,
Lensch and Davoudzadeh (1982) used the regional scale geology to
suggest that this area records Triassic to Jurassic rifting around the
Central and East Iran blocks that separate the CEIM from neighboring
continental blocks. In addition, Berberian and King (1981) suggested
that extensional movements around the CEIM occurred in the Late
Triassic. Paleomagnetic data indicate that the CEIM drifted southward
and underwent a counterclockwise rotation in Middle Jurassic-Early
Cretaceous. During this period, oceanic crust was forming all around
the CEIM (e.g., Mattei et al., 2014, and references therein). These data
suggest that the continental rifting in this region and the associated
exhumation of the Nain subcontinental lherzolites occurred no later
than the Late Triassic to Early Jurassic. Our reconstruction indicates
that the Nain subcontinental mantle lherzolites are genetically and

temporally unrelated to mantle harzburgites (and associated dunites
and chromitite pods) and the Late Cretaceous volcanic arc-type mag-
matic rocks that crop out in the Nain mélange (e.g., Desmons and
Beccaluva, 1983; Ghazi and Hassanipak, 2000; Khalatbari-Jafari et al.,
2015; Shafaii Moghadam et al., 2009). In fact, the Nain subcontinental
mantle lherzolites originally represented the western border of the
CEIM or alternatively the neighboring OCTZ. This means that the Nain
ophiolites can be classified as Continental Margin ophiolites according
to recent ophiolite classifications (e.g., Dilek and Furnes, 2011;
Saccani, 2015; Saccani et al., 2015), as they formed during the early
stages of ocean basin evolution following continental breakup. In con-
trast, the mantle harzburgites and the Late Cretaceous volcanic rocks
and sheeted dykes that crop out within the Nain mélange represent typ-
ical volcanic arc-type ophiolites. These two different ophiolite suites
were tectonically incorporated into the colored mélange and were
then emplaced onto the central Iran continental margin during conver-
gence and subsequent continental collision in the Late Cretaceous.

11. Summary and conclusions

The Nain lherzolites represent subcontinental mantle peridotites
that record the initial stages of oceanic basin formation around the
CEIM. The subcontinental nature of these lherzolites is suggested by
chemical and textural similarities with subcontinental peridotites in
magma-poor (Iberia-type) continental margin ophiolites. These similar-
ities include the fact that the Nain lherzolites are relatively fertile,
recording only ~5% partial melting that likely occurred during their
exhumation from asthenospheric to lithospheric levels in response
to continental rifting and lithospheric extension. The slight to signifi-
cant positive Eu anomalies in pyroxenes and pargasite within spinel
lherzolites in this area are the result of partial melting under high oxy-
gen fugacity. The oxygen fugacity calculated for these spinel lherzolites
varies between FMQ —0.8 and FMQ +1.3. The depleted chemistry of the
pargasites suggests that the metasomatic agents that interacted with
the Nain lherzolites were low-density aqueous melts that were origi-
nally chemically depleted. These melts were tholeiitic and had compo-
sitions similar to those of melts generated at slow spreading centers.
The depleted nature of the pargasites in this region suggests that meta-
somatism occurred contemporaneous with or after the partial melting
recorded within these lherzolites. The further accretion of lherzolites
into the lithosphere and lower depths was associated with their ascent
from conditions of the mantle spinel facies to those of the mantle plagio-
clase facies. The recrystallization of these lherzolites under plagioclase
facies conditions is recorded by textural and mineral chemical evidence,
including: (1) the development of plagioclase rims around spinel;
(2) the presence of plagioclase + orthopyroxene exsolution lamellae
within clinopyroxene porphyroclasts; (3) a positive correlation be-
tween plagioclase modal abundances and olivine modal abundances,
and a negative correlation between plagioclase modal abundances and
pyroxene modal abundances; (4) decreases in Al, Mg, and Ni, and in-
creases in Cr, Ti, and Fe concentrations in spinel; (5) decreases in Al
and Ca, and increases in Cr and Ti concentrations in pyroxenes and
pargasite; and (6) a slight overall increase in the concentration of the
REE and the majority of the trace elements (barring Eu and Sr, which
slightly decrease) in pyroxenes and pargasite.
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