

 Università degli Studi di Ferrara

DOTTORATO DI RICERCA IN
SCIENZE DELL'INGEGNERIA

CICLO XXIII

COORDINATORE Prof. Trillo Stefano

Traffic Management of
Automated Guided Vehicles

in Flexible Manufacturing Systems

Settore Scientifico Disciplinare ING-INF/04

 Dottorando Tutori

 Dott. Olmi Roberto Prof. Bonfè Marcello

 Prof. Secchi Cristian

Anni accademici 2007/2009

Day of the defense: March 25, 2011

Copyright c©2011 by Roberto Olmi. No part of this publication may be reproduced

or transmitted in any form or by any means, electronic or mechanical, including pho-

tocopy, recording or any information storage and retrieval system, without permission

in writing from the author.

ii

Abstract

The objective of the research carried out by Roberto Olmi has been the

development of an innovative traffic management system (TMS) for fleets

of automated guided vehicles (AGV) operating in industrial environments.

These vehicles are used for the transport of materials in environments where

the presence of people and moving machinery has to be expected. The TMS

has to control the motion of the vehicles so as to avoid collisions and optimize

transport times.

The approach is based on the decomposition of the problem into three

parts: assignment of transport tasks, path computation, motion control of

each AGV along its path. Transport orders are assigned to available vehi-

cles by solving a linear assignment problem through the Jonker Volgenant

algorithm. The objective is to minimize the sum of the times required by

each vehicle to reach the pick station assigned to it. The motion of the

vehicles is defined incrementally by a controller that periodically computes

the list of the trajectory segments that each AGV is allowed to cover. The

sequence of segments is determined so as to minimize the nominal travel

time. In order to define the movement of vehicles along their routes, a tool

called Coordination Diagram (CD) has been applied. Through this instru-

ment, the problem of coordinating the motion of N AGVs is transformed

into a shortest path problem within an N dimensional space with obstacles.

The main contribution of this dissertation is the application of the CD to

the problem of coordinating a fleet of AGVs in industrial environments. In

[1], [2] and [3], the student has developed an original method to calculate

efficiently the CD. This method is based on an approximation of the CD

that allows to reduce the computational cost of the algorithm and thus

makes it suitable for the coordination of tens of vehicles. To calculate the

shortest path to the CD, in [4] and [5] a complete planning solution has been

proposed that provides greater efficiency with respect to an incremental

approach. However, since the CD changes each time that a path of a vehicle

is modified, an incremental approach is required for the coordination of

AGVs. In particular, in [3] the action that maximizes the advancement of

the fleet while respecting the constraints imposed by the CD is determined

by solving Maximum Independent Set problem. The solver is an heuristic

algorithm which has time complexity quadratic in the number of vehicles

considered.

In order to test the proposed TMS, a simulation software has been de-

veloped using Matlab. The simulations consider AGVs operating on real

layouts developed by Elettric80 S.p.A., a manufacturer of AGV. The pro-

posed algorithm is much more flexible than the one currently used by the

company. It does not require the manual definition of traffic rules and it

allows a significant savings of time (> 30 days / person) in the construction

of new plants. The research project presented in this dissertation has been

selected as a finalist at the “European Technology Transfer Award 2010”

organized by the associations EUROP1 and EURON2.

1EUROP (www.robotics-platform.eu) is the European Robotics Technology Platform, an industry-

driven framework for the main stakeholders in robotics.
2EURON (www.euron.org) is the European Robotics Research Network, a community of more than

200 academic and industrial groups in Europe.

Sommario

L’attività di ricerca svolta da Roberto Olmi ha avuto come obiettivo lo

sviluppo di un innovativo sistema di gestione del traffico (TMS) per flotte

di veicoli a guida automatica (AGV) operanti in ambiente industriale. Tali

veicoli sono destinati al trasporto di materiali in ambienti dove è prevista

la presenza di persone e macchinari in movimento. Il TMS deve controllare

il moto dei veicoli in modo da evitare collisioni e ottimizzare i tempi di

trasporto.

L’approccio adottato si basa sulla scomposizione del problema in tre par-

ti: assegnazione delle missioni di trasporto, calcolo dei percorsi, controllo

dell’avanzamento di ciascun veicolo lungo il suo percorso. Gli ordini di

trasporto vengono assegnati ai veicoli disponibili risolvendo un problema di

assegnamento lineare tramite l’algoritmo di Jonker e Volgenant. L’obiettivo

è quello di minimizzare la somma dei tempi impiegati da ciascun veicolo per

raggiungere la stazione di carico ad esso assegnata. Il moto dei veicoli viene

definito incrementalmente da un controllore che periodicamente trasmette

agli AGV la lista dei segmenti di traiettoria che essi devono percorrere. La

sequenza dei segmenti viene calcolata in modo tale da minimizzare il tempo

nominale di viaggio. Allo scopo di definire il moto dei veicoli lungo i loro

percorsi è stato applicato uno strumento chiamato Coordination Diagram

(CD). Tramite questo strumento il problema di coordinazione del moto di

N veicoli viene trasformato in un problema di ricerca del cammino minimo

in uno spazio N dimensionale con ostacoli.

Il principale contributo di questa tesi consiste nell’applicazione del CD al

problema della coordinazione di una flotta di AGV in ambiente industriale.

In [1], [2] e [3], il dottorando ha sviluppato un metodo originale che per-

mette di calcolare in maniera efficiente il CD. Tale metodo si basa su una

approssimazione del CD che permette abbattere il costo computazionale

dell’algoritmo e lo rende quindi idoneo per il coordinamento di decine di

veicoli. Per il calcolo del cammino minimo all’interno del CD è stata propo-

sta in [4] e [5] una soluzione di pianificazione completa, che garantisce una

coordinazione più efficente rispetto ad un approccio incrementale. Tuttavia,

la necessità di aggiornare continuamente il CD rende necessario un approc-

cio incrementale nella pianificazione del moto dei veicoli. In particolare, in

[3] l’azione di moto che massimizza l’avanzamento della flotta garantendo

il rispetto dei vincoli viene determinata risolvendo un problema di Maxi-

mum Independent Set, grazie ad un algoritmo euristico con complessità

quadratica nel numero di veicoli considerati.

Per verificare i risultati dell’attività di ricerca, è stato sviluppato in Mat-

lab un software in grado di simulare veicoli operanti su gli impianti reali

sviluppati da Elettric80 S.p.A., produttore di sistemi AGV. L’algoritmo

proposto risulta molto più flessibile di quello usato dall’azienda, in quanto

non richiede la definizione manuale di regole di traffico e permette un si-

gnificativo risparmio di tempo (> 30 gg/uomo) nella realizzazione di nuovi

impianti. Il progetto di ricerca qui presentato è stato selezionato come fi-

nalista al concorso europeo “Technology Transfer Award 2010” organizzato

dalle associazioni EUROP1 ed EURON2.

1EUROP (www.robotics-platform.eu) è la piattaforma tecnologica europea per la robotica,

un’associazione di soggetti operanti a livello insustriale nel settore della robotica.
2EURON (www.euron.org) è il network della ricerca robotica europea, una comunità di oltre 200

gruppi accademici e industriali in Europa.

To my family

Acknowledgements

I would like to thank Prof. Cesare Fantuzzi, Dr. Cristian Secchi and

Dr. Marcello Bonfè for the opportunity they have given me of doing this

work. I also wish to greatly acknowledge the company Elettric 80 s.p.a.

(www.Elettric80.com) which supported my research activity and all its staff

I have worked with. Their experience has been an essential contribution to

the development of this work.

This thesis is dedicated to my family. In particular I want to thank my wife

Annalisa, who has always believed in me. Last but not the least, I thank

my parents Giuseppe and Paola. This result is mainly due to what they

have taught me.

Contents

Glossary vii

1 Introduction 1

1.1 AGV Market . 2

1.2 Description of an AGVS . 3

1.3 Quality requirements and design choices 5

1.4 Motivation and objectives of the dissertation 7

1.5 Outline of the dissertation . 8

2 Considered framework for TMS 11

2.1 Considered framework and main objectives of the TMS 11

2.2 Dispatching, routing and management of idle AGVs 14

2.2.1 Dispatching . 14

2.2.2 Routing . 15

2.2.3 Management of idle AGVs . 16

2.3 Coordination of wheeled autonomous vehicles 17

2.3.1 Centralized versus decoupled . 17

2.3.2 Centralized versus decentralized 18

2.3.3 Complete versus incremental . 18

2.3.4 Global versus local . 19

2.3.5 Standard approaches based on traffic rules 20

2.4 The proposed CD-based approach . 20

3 Complete coordination planning 23

3.1 Introduction . 24

3.2 Overview of the problem . 25

iii

CONTENTS

3.2.1 Roadmap and missions . 25

3.2.2 Coordination diagram . 26

3.2.3 Taxonomy of the CDs . 27

3.3 Construction of the CD . 29

3.4 Coordination planning algorithm . 30

3.4.1 Coordination path . 30

3.4.2 Forbidden regions . 32

3.4.3 Construction of the coordination path 32

3.5 Heuristic cost function . 37

3.6 Experiments on a real layout . 40

3.7 Conclusions . 42

4 Incremental coordination 45

4.1 Incremental coordination algorithm . 45

4.2 Complete versus Incremental: comparative tests 50

4.3 Conclusions . 55

5 Zone control approach 57

5.1 Introduction . 57

5.2 Overview of the problem . 59

5.2.1 Roadmap and missions . 59

5.2.2 Partitioned coordination diagram 60

5.3 Coordinator . 62

5.3.1 Segment reservation . 62

5.3.2 Action computation: forward, backward or stop 66

5.4 Experiments . 72

5.5 Conclusions and Future Work . 74

6 Zone controlled without backtracking 79

6.1 Coordination algorithm . 79

6.1.1 Segment reservation . 79

6.1.2 Action computation: forward or stop 81

6.1.3 Multiple collision regions on a single plane 87

6.1.4 Complexity analysis . 88

iv

CONTENTS

6.2 Experiments . 89

6.3 Conclusions and future work . 91

7 Conclusions 95

List of Author’s Publications 99

Bibliography 101

v

CONTENTS

vi

Glossary

Symbols

a1, . . . , a7 Lines defining the forbidden region F

A(qi) Portion of space occupied by an AGV at the configuration qi ∈ R

bki,kj Block: a rectangular region Δi
ki
×Δj

kj
of the plane Sij

BTh Booking table of the segment τh (see Sec. 3.3)

C Configuration space of the AGVs

χi Ratio between the distance covered by Ai on current segment and the total

length of that segment

cij Time nominally required by the i-th empty AGV in order to execute the j-th

pick mission (see Sec. 2.2.1)

CSSh Collision segments set, the set of segments that are colliding with τh

D(u) Cost function for the action choice

δ Time period between two consecutive calls to the coordinator algorithm (=0.5s

for the considered application)

Δi
ki

Time interval in which Ai is expected to travel along the segment ki of its path

di Binary variable which defines the motion direction of Ai (see Sec. 5.3)

dss′ Nominal time required by the fleet to reach the new configuration η′.s from η.s

(see Sec. 3.4.3)

vii

CONTENTS

E Enclosing rectangle

e1, . . . , e6 Lines defining the enclosing rectangle and the blocks grouping

η Programming object representing a coordination path γ(t) (see Sec. 3.4.2)

η.CC Coordination components

η.d Time duration of the last action

η.ES Extension stage

η.P Parent path

ηR Root path (with which the algorithm in Chap. 3 is initialized

η.s Ending point of the coordination path η

η.u Direction of the last coordinated action used for extending η

Uη Set of directions u along which the path η can be extended (see Sec. 3.4.3)

Ũη Subset of the possible extension directions defined in equation (3.10)

F Forbidden region

f(η) Overall cost function associated to a coordination path η (see Sec. 3.5)

Ft(i) Time factor (see equation (4.6))

γ(t) Coordination path: defines a coordinated motion of the AGVs for the time

t ∈ [0, tend] (see Sec. 3.4.1)

g(η) Cost associated to the execution of η (see equation (3.12))

H Number of stations

h(η) Heuristic underestimate of the minimum cost of the remaining path to the goal

from η (see equation (3.14))

K Number of segments

Kacc Parameter which penalizes the number of accelerations of a coordination path

(see Sec. 3.4.1)

viii

CONTENTS

κ Constraint returned by the Alg. 9

ki Index of the sequence of segments constituting the path pi (see Sec. 5.2.2)

li Segment computed by the coordinator algorithm in order to update ri

Li Estimated amount of delay accumulated by Ai while another AGV advances.

(see Sec. 5.3.2)

mi Number of segments in which a path πi is uniformly partitioned (see Sec. 4.1)

N Number of AGVs of the fleet

ni
acc Number of times that the vehicle Ai changes its speed (see Sec. 3.4.1)

ni Number of segments of a path pi

πi(si) Mapping of the path assigned to Ai (see Sec. 3.2.1)

Q Ordered queue of the paths (see Sec. 3.4)

ρ Advancing factor

ri Last reserved segment for Ai

s Point of the CD

S Subset of AGVs for which the coordinator algorithm is updating the list of

reserved segments

S N -dimensional space in which the CD is defined

Sij Plane of the CD relative to the paths pi and pj

sG Goal configuration of the fleet (within the CD)

sI Initial configuration of the fleet (within the CD)

si Nominal time required by Ai to reach the position πi(si)

τ Segment of the roadmap

T Set of segments constituting the roadmap

ix

CONTENTS

Ti Nominal time required by Ai to reach the destination

u Coordinated action (defines the motion of each AGV)

ui Motion action of the vehicle Ai

Uρ Subset of coordinated actions which lead to the same advancing factor (see

equation (4.1))

u∗ Coordinated action chosen by the algorithm

Wi(li) Time required by Ai in order to reach the segment li (see equation (5.4))

wi
ki

Nominal time required by Ai to cover the segment ki

Xcoll
ij Collision region within the CD

(xf , yf) Top right corner of the reference block bli,lj with i < j

(xs, ys) Bottom left corner of the reference block bli,lj with i < j

xci , y
c
i Coordinates of the center of Ai (see Sec. 3.2.3)

xIi , y
I
i Initial coordinates of the center of Ai (see Sec. 3.2.3)

Acronyms

AGV Automated Guided Vehicle

AGVS AGV-Systems

DES Discrete Event System

FMS Flexible Manufacturing Systems

LAPJV Algorithm for Linear Assignment Problem by Jonker and Volgenant ([8])

MHS Material Handling Systems

MM Mission Manager

PSLT Department of Planning and Control of Warehouse and Transport Systems of

the University of Hannover

x

CONTENTS

TMS Traffic Management System

WMS Warehouse Management System

xi

CONTENTS

xii

Chapter 1

Introduction

In modern factories the necessity of increasing production volumes while decreasing

costs in order to be more competitive in the global market is becoming more and more

crucial. This necessity can be fulfilled by automatizing the production and logistic

processes and robotics has contributed and is contributing to this purpose. Today it is

possible to find robotic cells and more innovative robotic solutions in many production

plants. In particular, Automated Guided Vehicles (AGVs) have been introduced since

the 1950s for automatic material handling systems (MHS). Because of their flexibility

and efficiency, many AGV systems (AGVS) are used in production lines and today

they are more and more exploited also at the end of the production line, namely in

automatic warehouses where huge quantities of goods are continuously moved.

Flows of products and materials are central to the primary process of many en-

terprises and as a consequence, efficient and effective material flow management has

drawn much attention. Material handling systems are complex combinations of mate-

rial, machines and people. Efficiency in space utilization, material handling and AGV

control systems was given little consideration. However, rapid development of techno-

logy in handling equipment and increasing cost of labor and material, spurs companies

to improve the design and management of material handling environments. In order

to avoid congestion of goods, AGVS need to never stop during working hours. The

number of AGVs that need to be used is growing more and more and their motion

need to be controlled in such a way that each AGV reaches its destination as quickly as

possible. Thus, traffic management is one of the main issues to be addressed in logistic

systems.

1

1. INTRODUCTION

This dissertation is focused on the development of a traffic management system

(TMS) for AGV-based transportation system. This chapter gives an overview of the

AGVS and motivates the objectives of this dissertation in more detail. In Sec. 1.1

an analysis of the AGV market is given in order to highlight the relevant economical

interest on the development of AGVS. Next, in order to obtain a better idea of the

tasks that have to be performed by an AGVS, an example is reported in Sec. 1.2. In

Sec. 1.3, after a brief analysis of the main system requirements, the most important

issues concerning the design of an AGVS are reported. The objective and motivations

of the presented work are reported in Sec. 1.4. The chapter ends with the outline of

the dissertation.

1.1 AGV Market

It has been estimated that between 20 and 50% of the total operating expenses within

manufacturing can be attributed to material handling [9]. Furthermore, material han-

dling is estimated to represent between 15 to 70% of the total cost of a product. It

is therefore the first place to be considered for cost reduction. However, lowering the

product costs is not the only requirement in order to be competitive nowadays. Mod-

ern enterprises have also to increase their flexibility. The continuous variations in the

product mixes and priorities, require to adopt flexible transportation systems such as

AGVs, which enable flexible material routing and dispatching.

The first AGV has been introduced in the market by Barrett Electronics in the

1950s for serving a production line. It was a simple, slow, tow truck following a wire

in the floor instead of a rail. Scientific and technological advancements have greatly

improved the AGVs. In particular, the navigation system, which was based on following

an hardware layer (i.e. wires, nails) that had to be installed in the environment where

the vehicles were moving, is now more and more based on laser triangulation.

Because of their flexibility and efficiency, many AGVs are used in production lines

and today they are more and more exploited also at the end of the production line,

namely in automatic warehouses, where huge quantities of goods are continuously

moved. Companies producing convenience goods, like those in the food field or in

the paper field, have greatly invested and are still investing in the automation of the

logistics. The possibility of covering 24 hours of work using a single AGV increased

2

1.2 Description of an AGVS

the market of AGV systems in those countries where the labor cost is high and where,

therefore, the return of the investment is quick. In Europe, the countries where AGV

systems have been mostly employed are Italy, Spain, France, Germany, the United

Kingdom and the Scandinavian countries [10]. According to a survey by the Depart-

ment of Planning and Control of Warehouse and Transport Systems of the University

of Hannover (PSLT) [11], containing data until year 2006, the market of AGV systems

in Europe is flourishing. The increasing interest in AGVS is reflected in the sales figures

which reached a new peak in 2006 with a volume of 200 mil. EUR. In comparison to the

year 2000, about a quarter of the AGV systems manufacturers are emergent vendors.

On the other hand, the established vendors offer new and different achievement profiles.

Both aspects point out the dynamics of the vendor side which offers, with more than

25 European manufacturers, a large variety of solutions.

A substantial indicator for the market tendency of AGVS is the annual number of

produced vehicles. The number of AGVS put into operation worldwide by European

AGVS manufacturers sums up to over 2800 new systems and over 700 enlargement

systems, with about 27,500 AGV in total. After an intermediate flattening related to

the number of the AGVs and AGVS put into operation, a significant increase can be

registered since 1999 until 2006. Thus in the three-annual average, the level rose in the

meantime over 140 new systems per year. In 2006, a new peak with over 169 AGVS was

reached. A similar process is determined for the number of AGVs put into operation.

It is also a trend that the average system size measured in vehicles per system rises.

The average number of vehicles per system amounts now again over six vehicles. As

the complexity systems increase, the requirements on planning, engineering, project

management, realization and putting into operation rise. This trend is also pointed out

by the fact that the average equipment price allocated on the vehicles increased.

1.2 Description of an AGVS

Modern logistics facilities such as warehouses, distribution centers, production plants

and transshipment terminals all have AGV-based material transport systems in com-

mon. The next example is used to demonstrate and explain the process of material

transport in more detail. Fig. 1.1 shows an example warehouse.

3

1. INTRODUCTION

Order requests for loads are received from customers or clients such as other fa-

cilities, retail or department stores. These orders are received on-line during the day,

and will be considered for shipment. The storage areas are replenished with incoming

loads, which are outputted by the production lines or delivered by trucks during the

day. The warehouse management system (WMS) then allocates the orders to locations

within the storage areas, and order picking routes are determined. AGVs have to travel

through the aisles between the racks in the storage area to visit the locations to collect

the orders. These routes are determined with objective criteria such as: minimize the

travel time or the waiting time caused by traffic congestion.

The sequence of the executed orders depends on their priorities, whether the orders

involves single or multiple pallet, etc. Since the pick times and travel times of AGVs

are stochastic (due to the acceleration/deceleration effects, failure of equipment, un-

expected obstacles along the paths, etc.), the drop off instants of the loads are also

stochastic. Although an approximate schedule of the orders can be defined, the exact

arrival time and contents of the orders are not known, this fact makes scheduling the

transportation of the loads beforehand impossible. Furthermore, determining combi-

nations of delivering loads and retrieving loads at a particular location beforehand will

also be impossible since the exact arrival times of vehicles or release times of loads can

not be predicted.

In AGVS, the load transfer locations can be programmed into a vehicle control

system in advance. Such a control system can be a central controller, which assigns

transport tasks to vehicles. The process of selecting and assigning transport tasks

to vehicles is called dispatching. The AGVs are in general dispatched on-line, i.e.

based on real-time information, since the uncertainty of the load release and delivery

times makes vehicle dispatching beforehand (scheduling) impossible. Monitoring vehicle

positions and traffic control can be performed by the central computer, or through local

controllers.

If the traffic is not properly treated, congestion, deadlocks or even collisions can

take place. These situations can block part of the system and they can require to stop

the AGVs to allow the intervention of qualified personnel for a manual restart. Besides

drastically reducing the performance of the system, manual restarts have a negative

impact on the customer perception of the AGV system. The traffic control problem

is further complicated by the presence of unpredictable events that can take place in

4

1.3 Quality requirements and design choices

Figure 1.1: Example of a warehouse

automatic warehouses. For example, a pallet may fall during the transportation or

an AGV can suddenly stop because of a fault. These events produce some unplanned

static obstacles along the routes tracked by the vehicles. Furthermore, more and more

“mixed” (i.e. automatic and manned) warehouse systems are present in the market.

Because of economical reasons or of logistic issues, only a portion of a warehouse can

be made automatic and part of the goods is still managed by human guided forklifts.

In these situations, the AGVs are working in an environment populated by moving

obstacles (the forklifts) they cannot absolutely collide with because of safety reasons.

1.3 Quality requirements and design choices

The technology associated with material handling has changed dramatically during the

last three decades, mostly due to the introduction of computers and automation. The

problem of efficiently managing the traffic of AGVs is getting more and more relevant.

In particular, the traffic management is recognized as one of the main issues for the

5

1. INTRODUCTION

development of an AGV system both by the industrial and by the scientific commu-

nities (see e.g. [12]). The main quality requirements for an AGVS are performances,

configurability and robustness [13]. Performance is a major quality requirement, cus-

tomers expect that transports are handled efficiently by the transportation system.

The number of transportation tasks per time unit that can be done by a given num-

ber of vehicles have to be maximized. Coordinating the motion of the AGVs in such

a way that traffic congestion is minimized is essential in order to attain good perfor-

mances. Configurability is important, it allows installations to be easily tailored to

client-specific demands. From a control software point of view, this property is related

to the easiness of installation on many different plant with different needs. The less are

the software components that have to be customized when a new AGVS is deployed,

the more configurable is the system. In current plants tens of AGVs are circulating at

the same time and humans and manually guided forklifts can be present in the same

environment. This makes the robustness another primary concern. The AGVs must be

able to navigate autonomously without colliding and intervention of service operators

have to be avoided since it is costly and time consuming.

In order to meet these requirements a lot of choices have to be done in the design

and control processes of an AGVS. They belong to three different levels of the decision-

making process which are denoted as:

• Strategic decisions level

• Tactical decisions level

• Operational decisions level

At the level of the strategic decisions the relevant long-term constraints are fixed. They

regard the design of the facility layout and the definition of the material flows (the in-

terested reader may refer to [9]). Issues at tactical level include estimating the number

of vehicles, guide-path design, positioning idle vehicles and managing battery charging

scheme. The decisions at this stage have a strong impact on decisions at other levels.

Finally, problems such as AGV scheduling, AGV routing, conflict avoidance, deadlock

resolution and/or prevention are addressed at operational level. Operational level in-

volve the decisions which have to be taken online (i.e. while the system is working) by

the TMS. Some recent surveys regarding tactical and operational issues are [12], [14]

6

1.4 Motivation and objectives of the dissertation

and [15]. There is a high interaction between the strategic, tactical and operational de-

cisions. For example, the number of AGVs is dependent on the control of the vehicles,

and the control of the vehicles is dependent on the constraints, the performance criteria

and the layout. An integrated approach to these levels of decision seems impossible and

one often uses a nested approach, where first the strategic decisions are made based

on rough tactical and operational ideas, followed by fine-tuning the tactical and oper-

ational decisions. Each decision influences the others and have to be done considering

the kind of application (e.g. container terminals rather than automatic warehouses) for

which the system is designed.

1.4 Motivation and objectives of the dissertation

The requirement of producing a vast and ever-changing number of goods at a lower

and lower production costs puts under pressure many companies. In this scenario, a

lot of manually operated systems have been replaced by intelligent machines offering

higher efficiency and reliability. An evidence of this technological evolution is given by

the widespread application of AGVS as a flexible transportation systems in harbors,

warehouses, storages, and product distribution centers. For AGVS manufacturers, the

design of a TMS that is collision-and deadlock-free requires a lot of engineer time and it

needs to be heavily re-adapted when installing the AGV system in another warehouse.

Furthermore, unexpected obstacles and/or faults often require to stop the system for

manual recovery. This leads to a decrease of performance and to a bad impact on the

customer perception of the system.

This dissertation shows an efficient, fault-tolerant traffic control strategy that has

been successfully applied in a simulated AGVS. The main objective is to make the

traffic management of the AGVs automatic and efficient. No tuning depending on

the topology of the warehouse needs to be done and good performance have to be

guaranteed also in presence of faults and mobile obstacles as human guided forklifts.

This will drastically reduce the engineer time required for each installation and the

number of required stops of the system leading to better performance, to a significant

reduction of installation costs and to an increase of customers satisfaction.

The main functionalities required to the TMS are tasks dispatching, path computa-

tion and AGVs coordination. Since the vehicles can not exit the system when no tasks

7

1. INTRODUCTION

Coordination of
AGVs with CD

Zone
control

Bidirectional
motion

(Chap. 5)

Unidirectional
motion

(Chap. 6)

(Chap. 4)

Continuous
control

Incremental
algorithm

Complete
algorithm

(Chap. 3)

Figure 1.2: Taxonomy of the algorithms for the coordination of AGVs presented in this

thesis

are required, the system is also responsible for handling idle AGVs.

1.5 Outline of the dissertation

The overall objective of the dissertation is the development of a TMS for industrial

AGVS. The next chapter gives a description of the considered framework along with the

functionalities that are expected from the TMS. In particular the adopted solutions for

the dispatching, routing and managing idle AGVs are reported. The next four chapters

are devoted to the development of innovative algorithms for solving the coordination

problem. The four works can be classified as reported in Fig. 1.2. The common feature

these works is the application of the CD for determining the way in which the AGVs

have to move along their precomputed paths.

In Chap. 3 we first give introduction to the CD. Then an algorithm for efficiently

computing the CD is developed. Subsequently, exploiting an approximated represen-

tation of the CD, we develop a complete coordination planning algorithm. The speed

profile of each vehicle from its start point to its destination is computed before the

vehicles start moving. A complete approach allows to plan an optimal coordination at

the expense of an high computational complexity.

In order to coordinate the motion of AGVs within a dynamic industrial environment,

where a lot of unexpected events may happen, an incremental coordination is more

8

1.5 Outline of the dissertation

suitable. In Chap. 4 an algorithm which determines the motion of the AGVs step by step

is designed. The motion of the AGVs is not planned in advance. At each iteration the

algorithm defines the motion of the AGVs considering the actual configuration reached

by the fleet. Unexpected events can be considered without the need of replanning.

Both the above mentioned approaches does not take into account the vehicles dy-

namics. Moreover they can not be easily implemented into the considered industrial

framework (see next chapter). These issues are considered by the approach described

in Chap. 5 and Chap. 6. The first consider the case in which the AGVs are allowed to

move both in forward and in backward direction while the second considers only the

forward motion. By considering only one possible motion direction, the latter algo-

rithm is characterized by a computational complexity which is significantly lower than

the previous ones.

In the last chapter some conclusions are drawn.

9

1. INTRODUCTION

10

Chapter 2

Considered framework for TMS

This chapter presents a TMS which gives an efficient solution to the operational prob-

lems outlined before. The application scenario that has been considered is an automatic

material handling system for warehouse and production plants. The TMS has to guar-

antee an efficient and conflict-free motion of a fleet of AGVs that move over a paths

network in a dynamic industrial environment. The main functionalities required are

tasks dispatching, path computation and AGVs coordination. Since the vehicles can

not exit the system when no tasks are required, the system is also responsible for

handling idle AGVs.

In Sec. 2.1 a description of the considered framework is given along with the func-

tionalities that are expected from the TMS. The solutions adopted for the dispatching,

routing and management of idle AGVs are presented in Sec. 2.2. The last two sections

introduce to the AGV coordination problem. In Sec. 2.3 a review of the literature

for solving the coordination problem of autonomous wheeled vehicles is given while in

Sec. 2.4 the approaches proposed in this dissertation are outlined.

2.1 Considered framework and main objectives of the TMS

Operational problems have gradually gained an important role in the research on AGVS,

as documented in recent surveys [12], [14] and [15]. An AGVS is often integrated into a

larger framework which is referred as flexible manufacturing system (FMS). As pointed

out by [16], recent literature offers integrated solutions for the overall operational con-

trol of an FMS. However, integrated approaches are based on the assumption that the

11

2. CONSIDERED FRAMEWORK FOR TMS

TMS
- Mission dispatching
- Routing
- Coordination
- Idle AGV management

New
allocated
segments

Vehicle manager
- Monitor the status
 (batteries, alarms,
 etc.) of the AGVs
- Dispatch messages
 to other modules

Tasks to be executed

Mission manager
Missions sorting

Mission queue

Allocated
segments

Vehicles
positions

Vehicles positions Fl
ee

t l
ev

el
AG

V
le

ve
l

Mission requests
Pl

an
t l

ev
el

Roadmap
database

Pick/Drop Stations,
Segments, Homes

WiFi

AGV
1

AGV
N

Enterprise Resource Planning
Wareouse Management System
Umans operators
etc.

Figure 2.1: Overall control framework for AGVS considered in this dissertation.

entire control system is developed by the same manufacturer. In practice this assump-

tion is seldom verified since FMS are complex systems composed of even more complex

modules which are rarely produced by the same company. These facts motivates the

development of modular control architectures. The work presented in [13], for example,

studies the architectural design of a decentralized control system for industrial AGVS.

They elaborate, in particular, on the integration of different software modules of the

system. In this dissertation, the main focus is on the development of a TMS to be

integrated into an existent industrial control framework.

The proposed TMS is designed to be applied into the existing framework devel-

oped by Elettric 80 S.p.A., a company producing end-of-line automation solutions and

AGVSs for warehouses and production plants. In the considered framework, a network

of paths covering the overall plant is defined considering the layout of the plant and the

location of the pick-up and delivery stations. This network, called roadmap, is statically

defined and it is stored as a database of trajectory segments and points. The paths of

the vehicles are defined by sequences of roadmap segments. The overall control system

for the fleet of AGVs is made up of three layers (see Fig. 2.1). The two higher layers

are centralized, while the third is executed asynchronously on each vehicle. At plant

12

2.1 Considered framework and main objectives of the TMS

level, the incoming transportation requests are collected from the FMS. The mission

manager (MM) is responsible to define the sequence in which the missions have to be

passed to the TMS so as to be executed by the AGVS. The fleet level where the TMS

is located, monitors the status of the fleet and incrementally determines the trajectory

segments which are reserved to any AGV in order to efficiently execute the transports

while avoiding collisions with other vehicles. The main functionalities that have to be

implemented in the TMS are:

• Dispatching: the goal is to determine the assignment of the transportation tasks

to the AGVs.

• Routing: once that a mission has been assigned, the path that a vehicle has to

track has to be determined.

• Coordination: the motion of the AGVs along their paths must be coordinated so

as to avoid collisions and deadlocks. Once the path is computed, an algorithm,

called coordinator, periodically computes the list of the segments that each vehicle

is allowed to track, called reserved segments. The stream of the allocation of these

lists determines the coordinated motion of the fleet.

• Idle AGV management: AGVs that do not have tasks to execute must be located

at some parking positions defined in order to react as efficiently as possible to

new missions. It is also important to avoid that an idle AGV block the motion

of another vehicle.

At last, the AGV level implements the low level control of the AGV for the trajectory

tracking. This level is also responsible for stopping the vehicle if an unforeseen obstacle

is detected and for the loading and unloading operations. A vehicle tracks the list of

trajectory segments which are reserved to it and stops when it reaches the last. In this

way, even if the communication with some vehicle is lost, the safety is guaranteed by

the fact that each vehicle will remain within its set of reserved segments. The TMS

does not have any real time data about the vehicle thus, for safety reasons the insertion

of a segment into the reserved list can not be undone. For that reason, each new path

that has to be assigned to an AGV starts with the sequence of the segments which are

in the reserved list when the path is computed. This approach is rather common in

industrial layouts (see e.g. [17]) and it is called zone control.

13

2. CONSIDERED FRAMEWORK FOR TMS

Remark 1 Deadlock detection and solution: The TMS is also responsible for solving

the deadlocks that may occur by applying a given coordination strategy. In the case a

deadlock is predicted, one of the blocked AGVs is rerouted along a new path. Many

deadlock prediction techniques have been presented for AGV systems. In this thesis the

approach presented in [18] is applied in order to solve the deadlocks that may blocks the

AGVs.

2.2 Dispatching, routing and management of idle AGVs

In this section we describe the methodologies applied for the implementation of three

important functionalities of the TMS: dispatching of the transportation requests to the

AGVs, routing (i.e. definition of the paths), and management of idle vehicles.

2.2.1 Dispatching

A mission is a request for an AGV to execute an operation at a given point, called

station. When a transportation request is issued, two missions are generated: one for

picking the load and one for dropping it at destination. The exact time a mission is

generated is not known in advance. A picking mission is generated only at the time the

load becomes available for the transfer while the drop mission is defined after the pick

operation. All the missions are collected by the MM (see Sec. 2.1). The association of

the missions to the vehicles is done in two stages. First, the MM decides which mission

has to be executed, and subsequently the selected mission is passed to the TMS which

is responsible to select the AGVs that have to execute the missions. The drop missions

are executed as soon as they have been received by the MM whereas a pick mission

is selected (if any is present in the MM queue) and passed to the TMS as soon as a

drop mission has been completed. The criteria applied by the MM in order to select

the pick missions are outside the scope of the presented work. The interested reader is

addressed to [14] and [12] for a good literature review on this topic.

The TMS stores the missions released by the MM and defines which AGV has to

execute each mission. A drop mission is trivially reserved to the AGV that has picked

the load at which it is related. Thus, the TMS is only responsible to dispatch the pick

missions to the empty AGVs. This problem can be modeled as an assignment problem

in which all empty AGVs and all pick missions are considered simultaneously so as to

14

2.2 Dispatching, routing and management of idle AGVs

minimize the total cost due to empty moves of the AGVs. The algorithm was originally

proposed by [19] and, recently it has been adapted to the case of internal AGVS by

[20]. The approach is based on the definition of a cost matrix in which each element

cij corresponds to the cost of executing the mission j with the AGV i. Once that the

cost matrix has been defined, the assignment problem is solved by applying the LAPJV

(Linear Assignment Problem by Jonker and Volgenant) algorithm by [8].

In our implementation the cost cij is the time nominally required by the i-th empty

AGV in order to execute the j-th pick mission. The nominal time is computed by

considering the path length and the nominal speed of the vehicle. By applying the

offline paths computation the nominal travel time can be retrieved in constant time (see

Sec. 2.2.2). A mission is removed as soon as it has been completed by the corresponding

AGV. In this way the number of missions that have to be assigned by the TMS is always

less or equal than the number of vehicles.

2.2.2 Routing

The path that each vehicle has to track in order to execute the assigned mission is

computed (using Dijkstra algorithm) without taking into account the presence of the

other vehicles. A path is defined by a sequence of segments into which the roadmap

covering the overall plant is partitioned. Since the roadmap is statically defined, it is

possible to use the Dijkstra algorithm in order to compute offline all the minimum time

paths between the segments and the pick/drop stations. In this way, for each segment,

the next segment to be covered in order to reach a given station can be stored along

with the minimum travel time between the segment and the station. All this data can

be easily stored in a matrix data structure. This takes O(2HK) space where H is the

number of stations and K is the number of segments of the roadmap. By using this

approach the length of the path to reach any station from any segment of the roadmap

can be determined in constant time while the sequence of segments composing the path

is retrieved in time O(n) where n is the number of segments of the path. Allowing for a

fast determination of the path length is important for the dispatching algorithm since

it needs to know the distance between each AGV and the station points of the missions.

15

2. CONSIDERED FRAMEWORK FOR TMS

2.2.3 Management of idle AGVs

An AGV becomes idle if it has delivered a job at its destination and it is not immediately

assigned to a new job. This task is indicated as homing and the locations are denoted

as home. One of the decisions to make is where to locate idle AGVs so that they can

react as efficiently as possible to a new assignment. [14] observes that most literature

on this topic involves selecting home locations of vehicles in roadmaps composed of

only one cycle. The research of [21] is the only one that takes conventional layouts into

account. Their algorithms minimize the system response time to vehicle demand points

when dispatched from home locations. However, their model does not consider possible

traffic congestions induced by such choice. In the considered framework the home

locations are statically defined and stored within the roadmap database. In general

these places are defined so as to minimize the system response time to the requests for

new transports. Another aspect to be taken into account is the minimization of the

traffic congestion that can be generated when an AGV start moving from a particular

home location. However the home locations are taken as a static input data by the TMS,

thus these criteria their definition will not further analyzed. The criteria considered

in order to define these locations is outside the scope of the thesis (the interested

reader may refer to [12] and [14] for further details). The TMS is only responsible to

dispatch idle vehicle to the home locations. In the considered framework the number

of homes is approximately equal to the number of AGVs. In this way, the idle vehicles

are distributed within the roadmap regardless of the dispatching criterion applied. In

order to dispatch the idle AGVs to the home locations we propose to apply the same

approach used for the mission assignment (see Sec. 2.2.1). Each time that a vehicle

becomes idle the LAPJV algorithm is used in order to assign each idle AGV to an

home location. The cost for assigning an AGV to a given home corresponds to the

time that the vehicle takes to reach that location. In this way, our approach minimizes

the total travel time of the idle AGVs and, as a consequence, also the traffic caused by

the moving idle AGVs is minimized. Due to space restrictions, it is seldom possible to

reserve an home location so that an idle AGV can stop without obstructing the way

of other vehicles, especially near the pick stations. If an idle AGV waiting at home

location blocks another vehicle, the idle AGV has to be dispatched to another location

so as to free the way for the other vehicle. To this aim, the assignment of the homes is

16

2.3 Coordination of wheeled autonomous vehicles

computed again. In this case, the cost for assigning this AGV to its location is set to

infinity so that the idle AGV is dispatched to a different home location.

2.3 Coordination of wheeled autonomous vehicles

In this section a collection of the approaches presented in literature is given following

the classifications given in [22] and [23].

2.3.1 Centralized versus decoupled

Focusing on mobile robots systems, the coordination strategies can be mainly classified

in: centralized approaches and decoupled approaches. Centralized approaches search the

solution of the motion planning problem in a composite coordination space, which is

formed by the Cartesian product of the configuration spaces of the individual vehicles.

In [24] a genetic algorithm is exploited in order to generate optimal (or near-optimal)

paths for a set of non-holonomic vehicles, moving in a environment cluttered with static

and moving obstacles. A Mixed Integer Non-Linear Programming problem is formu-

lated in [25] in order to obtain the optimal velocity profile for each vehicle. Except from

their very high complexity, this kind of approaches are non-robust to any contingencies

arising during the system operation. They require to discard the plans every time the

coordination problem must be updated (e.g., a new mission is assigned to a vehicle). In

[26] an exact algorithm for computing Pareto optima for collision-free coordination is

presented. These approaches are generally characterized by a significant computational

burden so that their application is often limited to simple problem settings involving

two or three vehicles. A time window based method have been developed and imple-

mented in industrial applications for dynamic routing of AGVs [27]. Each time that a

new mission is assigned to a vehicle, the approach is to select the shortest feasible path

of each vehicle from among a set of candidate paths. Though this approach allows to

avoid collisions and deadlock, its benefit can be poor since in many industrial layouts

only a few possible candidate paths for a given mission exist.

Decoupled approaches face the complexity of the coordination, by breaking the

problem into two distinct phases: path planning and motion coordination. During

the first phase a path for each vehicle is planned without considering the presence of

other vehicles. In the second phase the velocity profile of each vehicle along its path

17

2. CONSIDERED FRAMEWORK FOR TMS

is computed. These approaches are more suitable than centralized ones for dealing

with coordination problems involving a big number of vehicles. An approach for the

time optimal coordination that can be considered somewhere between centralized and

decoupled is presented in [28]. In this case however the computation time is still too

high for real applications.

2.3.2 Centralized versus decentralized

A further characterization can be found in [23], where tree aspects are considered: the

architecture of the system, the temporal scope of the planning and the decomposition

of the coordination problem. The architecture can be centralized or decentralized (or

distributed). In the first case, a central unit gathers the data of all the AGV and then

it decides the motion of each AGV. The main advantage of these approaches is that

they allow to obtain a very efficient coordination and, in principle, even the optimal

one (with respect to a chosen functional). The main drawback of these algorithms is

the computational burden. Traffic problems have been also treated using distributed

architectures. In decentralized architectures, each vehicle decides its motion based on

local information. Some interesting works, in which real implementations are reported,

are [29], [13] and [30]. This approach is successful if the environment is populated by

cooperative vehicles that aim at solving traffic jams. Unfortunately, this is not the case

in industrial AGVS. In fact a traffic problem can be caused by an unexpected obstacle

or by a human guided forklift which are not cooperative entities. These situations can

severely limit the efficiency of the system. Another issue is the communication overhead

required in order to share information among agents. The experiments in [13] show

that the maximum bandwidth usage is almost directly proportional to the number of

AGVs and with only five vehicles the usage is up to 40% of a 11Mbps network.

2.3.3 Complete versus incremental

Considering the temporal scope of the planning the algorithms can be subdivided into

complete and incremental. Complete planners try to find a coordination for the whole

mission of each vehicle in one shot while incremental algorithms coordinate the vehicles

continuously and slightly ahead. With a complete approach the coordination is com-

puted before the robots start moving and, if a vehicle deviates from the planned motion

profile (e.g., due to an unexpected obstacle), the computation must be repeated from

18

2.3 Coordination of wheeled autonomous vehicles

scratch. The main drawback of complete approaches is that they require to discard

the plans every time the coordination problem must be updated (e.g. a new mission is

assigned to a vehicle). This could require to stop the AGVs for a significant amount of

waiting time for each new re-planning. Incremental techniques are convenient when the

vehicles work in a dynamic environment in which some unexpected events may require

the plans to be discarded. Moreover the computational complexity of an incremental

algorithm is independent of the length of the plans, thus it is more suitable when real

time requirements have to be satisfied. A particular class of incremental approaches is

based on the theory of Discrete Event System (DES). It is also possible to model the

AGVS as a Discrete Event System (DES) and the traffic control unit as a controller for

this DES. Some relevant examples are [31] and [32] and [33] [34]. The main drawback

of DES-based approaches is that the main focus is the development of a collision and

deadlock free routing for the AGVs. Performance of the fleet is not often taken into

account and it can be rather low in some situations. Furthermore, it is not clear how

to consider unexpected events that could block some vehicles. In [31] for example, a

condition that guarantees the existence of a solution to the problem of scheduling AGVs

on roads is provided, considering that all vehicles move at constant speed. Exploiting

this condition the authors develop an incremental algorithm that is deadlock free, and

that runs in polynomial time (in the number of vehicles). For industrial AGVs however

the assumption of constant speed is rarely satisfied, thus a more general model must

be considered.

2.3.4 Global versus local

The third aspect depends on the total amount of resources (i.e. routes) needed for each

mission. If this is much less than those available in the plant, the conflicts remain local

and the solution can be found considering only a restricted number of vehicles (see,

for instance, [35]). Differently the conflict resolution may, by propagation, involve the

whole fleet. In this case a global technique is required. In AGVS the transportation

tasks require all the vehicles to traverse long paths within the layout thus a global

approach has to be considered.

19

2. CONSIDERED FRAMEWORK FOR TMS

2.3.5 Standard approaches based on traffic rules

The standard approaches for the coordination of industrial AGVs are based on a set of

traffic rules manually defined during the construction of the roadmap. Some examples

of this approach are [36], [37]. This requires a lot of engineering work when an AGVS

must be deployed or modified since several exceptions have to be handled both for

production and safety reasons.

2.4 The proposed CD-based approach

The coordination algorithms presented in the next chapters are based on the CD (co-

ordination diagram). This tool, which is also called task completion diagram, was first

introduced by [38] in order to coordinate two robot manipulators. The CD allows to

map a coordination problem into a planning problem. Previous works which apply the

CD for coordinating the motion of mobile robots are, [26], [28], [35], [39], [40]. These

approaches try to plan a coordination path by means of standard search algorithms.

For an introduction to this topic see [41]. In [35] the cylindrical structure of the CD

is exploited in order to give an implicit cell decomposition of the diagram. Then the

A* algorithm is applied to find a coordination path. A distributed approach is pre-

sented in [39]. In this case the CD is partitioned into a regular grid over which the D*

algorithm searches for a coordination path. However, by minimizing the length of the

coordination path, the obtained solution does not minimize the average time-to-goal.

An algorithm that minimizes the average time-to-goal is presented in [28] where the

optimal coordination path is found by applying the dynamic programming principles.

All these approaches however suffer from a very high computational complexity (see

Sec. 3.1) so that they can not be applied on a real AGVS composed many vehicles.

Our approach is characterized by a centralized architecture. This choice is due to

the fact that in the industrial environment, mainly for safety reasons, a centralized co-

ordination is still a requirement. Since the transportation tasks require all the vehicles

to traverse long paths within the roadmap, a global algorithm is chosen. In Chap. 4

a complete approach is proposed for systems that are characterized by a low level of

uncertainty (see also [4] and [5]). However, since the system that we are considering is

characterized by an high level of uncertainty, the next chapters are focused on incre-

mental approaches. To the best of the author’s knowledge, the CD-based coordination

20

2.4 The proposed CD-based approach

algorithms proposed since now are complete. The works presented in Chap. 3, Chap. 5

and Chap. 6 is the first application of the CD for the development of an incremental

coordination approach (see also [1], [2] and [3]).

21

2. CONSIDERED FRAMEWORK FOR TMS

22

Chapter 3

Complete coordination planning

In this chapter we propose a complete planning algorithm for computing a coordina-

tion plan for a fleet of vehicles moving along predefined paths. We first classify the

possible collisions that can take place and the induced geometry of the resulting CD.

This analysis justifies the approximated representation of the CD which is used next

for developing the coordination algorithm. Subsequently, we show how to exploit the

structure of the roadmap in order to develop a technique to build the CD online with

a very limited computational effort. Loosely speaking, when the roadmap is defined

we generate a set of offline sub-CDs. When a group of vehicles starts moving over the

roadmap, the CD is composed by putting together the proper sub-CDs which are iden-

tified by the paths tracked by the vehicles. Exploiting the approximated representation

of the CD, the algorithm defines the speed profile with which each vehicle must cover

the assigned path. The algorithm generates a set of possible coordination plans and

then gives the optimal one. Previous works apply traditional path planning techniques

(such as D* or A*) to compute a coordinated motion. However these techniques do not

take into account the fact that the CD has a cylindrical structure. This features enables

our algorithm to explore the CD in a more efficient way. The coordination approach

proposed in this chapter has been validated through experiments on real plants layouts.

We present an example in which the coordinated motion of 10 vehicles is computed in

only 12.4 sec. on a common PC.

The chapter is organized as follows: the first section introduces the proposed com-

plete approach and gives an overview of some related literature. In Sec. 3.2 a formal

definition of the problem is reported along with a classification of the possible kinds of

23

3. COMPLETE COORDINATION PLANNING

collisions that can take place between two AGVs. In Sec. 3.3 the technique for comput-

ing the CD is presented. In Sec. 3.4 the algorithm for planning a coordinated motion

of the AGVs is reported. In Sec. 3.5 the heuristic cost function is defined. In Sec. 3.6

some experiments are presented. Finally, in Sec. 3.7 some conclusions are drawn.

3.1 Introduction

Given a fleet of vehicles to be coordinated along assigned paths, the CD is a represen-

tation of all configurations of the fleet where mutual collisions might occur. A path

through the CD, indicated as coordination path, defines a coordinated motion for the

vehicles. Some approaches try to plan a coordination path by means of standard search

algorithms. For an introduction to this topic see [41]. Examples are [35], [39] and [28].

These techniques however require the CD to be partitioned into a grid in which the

search algorithm is used in order to find a coordination path. At each iteration step the

number of grid elements explored by the algorithm can be exponential in the number

of vehicles. To avoid this problem the algorithm proposed in [35] explores only along

Manhattan paths, but then a smoothing technique is applied over the output path.

Moreover the partition of the entire CD requires an enormous number of cells. As

far as the problem instance is simple (i.e. the obstacle within the CD are small and

sparsely distributed), the algorithm explores a small subset of cells. Differently the

computation time will grow very quickly.

In this chapter we propose a new search strategy that explores the CD by incremen-

tally expanding a set of coordination paths. Starting from a null length path placed

at the the origin of the CD, at each iteration step the algorithm selects a path to be

extended. This operation generates new paths that are identical to the extended one

except for the last added segment. The exploration continues until an optimal path,

among all the possible paths that can be explored by the algorithm, is found.

The main feature of our algorithm is that it drastically reduces the directions to

be evaluated by explicitly considering the cylindrical structure of the CD. The set of

directions used to extend each path is computed by considering two things: the direction

of the last segment of the path and the position of the last point of the path compared to

the obstacles. The directions will be generated by taking the last direction of the path

and modifying only the components that are relevant in order to avoid the obstacles.

24

3.2 Overview of the problem

The second contribution of the chapter is the definition of an heuristic estimate of the

cost function which takes into account the number of times that a vehicle has to stop

and start its motion during the coordinated motion. This brings two benefits. The

first one is that we define a trade-off between time optimality and smoothness of the

motion of each vehicle. The second, but more important, benefit is that the number of

explored states is further reduced thanks to the fact that the algorithm tends to extend

only the smoother paths.

The procedure used for the expansion of a path is similar to that reported in [26]

where an exact algorithm for computing Pareto optima paths is given. The input for

this algorithm is a collision-free path; the output is the Pareto optimal path homotopic

to the input. However the output path is only guaranteed to be a local minimum of

the cost function considered. The proposed algorithm does not focus on a particular

homotopy class but it searches among all possible homotopy classes.

3.2 Overview of the problem

3.2.1 Roadmap and missions

In the application that we are considering, a fleet of N AGVs have to move in the

same environment sharing the same configuration space C (e.g. SE(2)). For a given

plant to be served, a network of paths which the AGVs can follow is defined. This

network is designed through a dedicated CAD program developed by Elettric 80 so as

to avoid collisions between AGVs and static obstacles. We can model this network as

a roadmap R, that is a one-dimensional connected subset of C. The roadmap is formed

by a collection T of regular curves called segments. Each segment τ ∈ T is a mapping

τ : [0, 1]→ R. A route is defined as a sequence of adjacent segments.

We indicate withA(qi) the portion of space occupied by an AGV at the configuration

qi ∈ R. Two segments τi, τj ∈ T represents a pair of colliding segments if there exists a

pair of scalars (α, β) ∈ [0, 1]2 such that

A(τi(α)) ∩A(τj(β)) �= ∅ (3.1)

This means that when two AGVs are moving through τi and τj it can happen that a

collision takes place.

25

3. COMPLETE COORDINATION PLANNING

A centralized planning system plans a set of missions to be executed by the AGVs.

In case no more missions are scheduled, a homing mission is assigned to the AGV

(see Sec. 2.2.3) which is taken to a garage position. It is possible that the planning

system can decide to change a mission previously assigned to an AGV(see Sec. 2.2.1).

Furthermore, vehicles can be blocked by unexpected events (such as a person standing

on its trajectory) for an unpredictable amount of time (see Sec. 1.2). Each AGV has to

execute a mission, namely to reach a goal configuration. The path of each vehicle Ai

is computed without considering the presence of other vehicles and it can be expressed

as a mapping

πi : si → R, si =
[
0, T i

]
(3.2)

where si can be any scalar parameter that allows to express the position of the AGV

along its trajectory. In particular πi(T
i) corresponds to the final configuration. In

order to find a coordination that reduces the delay accumulated by each vehicle, it is

convenient to choose a parameterization based on the expected traveling time. The

scalar parameter si ∈ [0, Ti] is the time that the vehicle Ai would take to reach the

position πi(si) considering that it travels following the given nominal velocity profile.

Our goal is to determine the velocity profile by which each AGV has to move through

the assigned path in order to avoid collisions among the AGVs and to minimize the total

time required by the fleet for reaching the goal configurations. In this (and the next)

chapter we do not take into account vehicle dynamics (we consider that each vehicle

can instantaneously change its velocity). In order to guarantee that the coordination

problem admits a solution, we assume that, for each AGV, the initial and the goal

configurations do not belong to an already planned path.

3.2.2 Coordination diagram

The coordination strategy that we are going to develop in this chapter is based on the co-

ordination diagram (CD). This tool gives a compact representation of the configuration

of the AGVS. Given N paths π1, . . . , πN , parametrized by s1 ∈ [0, T1], . . . , sN ∈ [0, TN],

the CD represents all the configuration set of the vehicles along their paths and, there-

fore, it is given by S = [0, T1]× · · · × [0, TN] .

For each pair of paths, a collision region is defined as:

Xcoll
ij = {(s1, . . . , sN) ∈ S |A(πi(si)) ∩A(πj(sj)) �= ∅} (3.3)

26

3.2 Overview of the problem

This region defines all the possible configurations of the fleet such that two vehicles

collide moving along paths πi and πj . Since the collision region depends only on the

configuration of two vehicles, this region can be completely characterized by its 2D

projection onto the (si, sj) plane of the CD (that we will denote shortly with Sij).

A point s = (s1, . . . , sN) within the CD represents a possible configuration of the

vehicles along their paths. We denote as sI = (0, . . . , 0) ∈ S the initial configuration of

the fleet and with sG = (T1, . . . , TN) the goal configuration. The motion of the vehicles

is computed by searching for a path within the CD which avoids all the collisions among

vehicles. Since the collisions depend only on the configurations of the pairs of vehicles,

such a path can be found by considering just all the planes Sij of the CD.

3.2.3 Taxonomy of the CDs

In this section we provide a classification of the possible collisions that can take place

between two vehicles and the induced geometry of the corresponding collision diagram.

For the sake of simplicity, we consider circular vehicles of the same size. We consider

roadmaps composed only by straight segments, spaced enough so that vehicles on par-

allel segments don’t collide. Under these assumptions, the condition for which there is

a collision is given by: √
(xc1 − xc2)

2 + (yc1 − yc2)
2 ≤ dmin (3.4)

where xci and yci , i = 1, 2, represent the coordinates of the center of the circle, and dmin

is the diameter of the circle.

The regions of the CD corresponding to collision configurations of the fleet can be

approximated with a rectangular region called enclosing rectangle (see Fig. 3.1) having

two sides parallel to the bisector of the diagram.

There are only three possible kinds of collisions between two AGVs:

• Intersection collision: it takes place when the paths intersect each other (see

Fig. 3.1). By the paths parameterizations (using notations in Fig. 3.1, where

xIi , y
I
i are the initial coordinates of vehicle Ai) the condition (3.4) becomes:

((yI2 − yI1)− s1)
2 + ((xI1 − xI2)− s2)

2 ≤ d2min (3.5)

27

3. COMPLETE COORDINATION PLANNING

AGV2

AGV1 AGV2

AGV1

Enclosing
rectangle

Portion of the path
where AGVs

can collide

AGV1

AGV2

Intersection collision Front collision Back collision

y yy

x xx

yI
2

yI
2

xI
1 xI

1xI
1

yI
1

yI
1

xI
2 xI

2xI
2

cy

π1

π1π1

π2

π2

π2

s2s2 s2

s1s1 s1 a

a

a

a

a

a

b

b

b

b

b

b

Figure 3.1: Three kinds of collision and the corresponding CDs

• Front collision: it takes place when the paths have some common segments and

the AGVs move on them in opposite senses. Using the path’s parameterizations

(with notations in Fig. 3.1, where we have posed β = yI2−yI1 , and where xI1 ≡ xI2),

the condition in (3.4) becomes:

β − dmin ≤ s1 + s2 ≤ β + dmin (3.6)

Thus, the enclosing rectangle is defined by all points between the lines of equation

s2 = (β − dmin)− s1 and

s2 = (β + dmin)− s1.

• Back collision: it takes place when the paths have some common segments and

the AGVs move in the same sense (see Fig. 3.1). By computations analogous to

the ones for front collision, we obtain that the enclosing rectangle is defined by all

points between the lines of equations s2 = (β+dmin)+s1 and s2 = (β+dmin)+s1.

28

3.3 Construction of the CD

3.3 Construction of the CD

In this section we propose a strategy for building the CD corresponding to N AGVs

moving along paths over a predefined roadmap R. When an AGV completes its last

mission, a new one is assigned to it. This implies that the CD should be modified.

The construction of the CD is, in general, a computationally demanding task [35]. In

order to avoid to stop all the AGVs for computing the CD the algorithm must require

a small computational effort. In [35] the path of each vehicle are considered to be

not known a priori and the CD is computed online subdividing the path into straight

line segment and arc of a circle. Our approach exploits the knowledge of the roadmap

(recall Sec. 3.2.1) in order to split this computation in an offline phase and an online

phase. This will reduce the time needed for the computation of the CD.

The offline phase is executed once after the definition of the roadmap. For each

τh ∈ T we define the collision segments set CSSh (function Determine CSSh in

Alg. 1) as

CSSh = {τ ∈ T | ∃(α, β) ∈ [0, 1]2A(τh(α)) ∩A(τ(β)) �= ∅} (3.7)

namely the set of segments that are colliding with τh.

For each pair of colliding segments (τh, τk) we compute and store their relative two

dimensional sub-CD sShk using standard collision checking algorithms [41] (function

Compute sShk in Alg. 1). Furthermore, for each segment τh ∈ T, an empty Booking

Table BTh is created. This object contains the list of paths including that segment.

The procedure for creating the sub-CDs is illustrated in Alg. 1.

Algorithm 1 Sub-CDs Computation

Require: Roadmap as a collection T of segments τi

1: for all τh ∈ T do

2: Determine CSSh

3: for all τk ∈ CSSh do

4: Compute sShk

5: end for

6: Create BTh

7: end for

In summary, the main output of the offline phase, is a set of sub-CDs stored in a

database as pieces of a puzzle that will be used in the online phase for building the

29

3. COMPLETE COORDINATION PLANNING

global CD.

When a new path πi is assigned to an AGV, all the sSij describing the collision

regions between the AGV along πi and the other vehicles must be computed. For each

segment τk of the path, we make a reservation on its corresponding booking table; in

this way we specify that the segment τk is contained in the path πi. We then check

the set of colliding segments CSSk. For each colliding segment τh ∈ CSSk, we check

its booking table and in case it has been booked by another path πj , we fetch the

corresponding sub-CD sShk from the database that we have built before. The path πj

can be on its turn split into a sequence of segments and τh will be part of this sequence.

The decomposition of πi and πj into sequences of segments, induces a partition on

the coordination plane. Each block of the partition is identified by a segment in the

sequence of πi and a segment of the sequence of πj . Thus, the sub-CD sShk is inserted

(function Insert(sShk) in Alg. 2) in the plane Sij of the overall CD in correspondence

of the partition block that is identified by τh and by τk.

Remark 2 The sub-CD computed in Alg. 1 are computed assuming a certain default

travel direction over the two segments. During the composition phase, the real direction

along which the colliding segments are crossed by the AGV is considered and the sub-CD

is properly reversed before being inserted in the CD.

In summary, the composition of the diagram is the result of picking the right piece

from a database that has been defined once the roadmap has been defined. The algo-

rithm for composing the CD is reported in Alg. 2:

3.4 Coordination planning algorithm

In this section we give an heuristic algorithm for the computation of a near-optimal

solution to the coordination problem.

3.4.1 Coordination path

A coordination path is a continuous map γ : t → S where t ∈ [0, tend] is the time, that

defines a coordinated motion of the vehicles along their predefined paths. A path that

avoids all collision regions within the CD is said to be collision-free. The coordination

problem requires to define a collision-free coordination path γ : [0, tend] �→ S whose

30

3.4 Coordination planning algorithm

Algorithm 2 CD composition

Require: Paths currently covered by moving vehicles

Require: New path πi

1: for all τh ∈ πi do

2: BTh ← πi

3: for all τk ∈ CSSh do

4: if BTk �= ∅ then
5: for all πj ∈ BTk do

6: Sij ←Insert(sShk)

7: end for

8: end if

9: end for

10: end for

components si(t) define a motion plan for each vehicle Ai so that all the paths are

completed (i.e. γ(tend) = sG, tend <∞) without mutual collisions.

Our goal is to solve the coordination problem problem by seeking to minimize the

sum of the mission time of all vehicles. In [25] a mathematical programming formulation

in which the task completion time (i.e. the time taken by the last vehicle to reach the

goal) is taken as objective function and where dynamic constraints are considered is

given. In many applications, however, considering the average time-to-goal as objective

function would be more appropriate since this allows minimize the number of vehicles

required to serve a given plant ([42]). The minimum of such a function corresponds

to a Pareto optimal coordination among the vehicles ([26]). We consider that each

vehicle can not backtrack along its path and that, at each position si, the vehicles

are able to switch instantaneously between their nominal speed and halting. The first

assumption is only used in order to reduce the computational effort of the algorithm.

Therefore the motion of a vehicle can be described using only a binary variable and the

coordination paths are piecewise linear curves. The direction of each linear segment

of γ(t) can be defined by a vector u = (u1, . . . , uN), called coordinated action, where

ui ∈ {0, 1} for i = 1, . . . , N . Each variation of the direction u of γ(t) corresponds

to an instantaneous change of the motion of some vehicles. We denote with ni
acc the

number of times that the component ui switches its value along the path γ(t). In other

words, ni
acc corresponds to the number of times that the vehicle Ai changes its speed

31

3. COMPLETE COORDINATION PLANNING

while executing the coordinated motion γ(t). Given a path γ(t) with end points at

sI = (0, . . . , 0) and sG = (T1, . . . , TN), we denote as t∗i the time in which the vehicle Ai

reaches its destination (i.e. si(t
∗
i) = Ti). We propose this cost function:

C(γ) =
N∑
i=1

(t∗i + ni
acc ·Kacc) (3.8)

where Kacc is a parameter that is used to penalize the paths that require many vehicles

to be stopped during the execution of their path.

Since the measure of t∗i is computed without considering the vehicle dynamics, Kacc

can be used to approximately take into account the delay accumulated by the vehicles

each time that a component of u switches its value (considering the same delay for a

start or a stoppage).

3.4.2 Forbidden regions

The proposed algorithm exploits an explicit representation of the CD that is obtained by

approximating each collision region with a convex polygonal region as shown in Fig. 3.2.

The polygon corresponds to the region enclosed by a set of lines: two horizontal (a1

and a5), two vertical (a2 and a6), two parallel to the bisector of the plane (a3 and

a4) and one orthogonal to the bisector of the plane (a7); all tangent to the obstacle

and non coincident with each other. We refer to this polygon as forbidden region,

denoted F. This approximation is justified by the observation that frequently, in AGV

applications, the collision regions have a strip shape (see Sec. 3.2.3). Thanks to this

definition a coordination path that avoids all the forbidden regions is also collision-free.

The algorithm that we propose finds a collision-free path by efficiently exploiting the

explicit representation of the forbidden regions.

3.4.3 Construction of the coordination path

The approach consist of building a set of piecewise linear coordination paths by iterative

expansions. The algorithm terminates when the best path of the set is better than all

those that can be generated. At each iteration step a path is selected from the set

and one or more paths are generated by concatenating it with a set of linear segments

(for each segment a new path is generated). These segments will be referred as actions

since they represent a coordinated motion of the fleet from a configuration to another.

32

3.4 Coordination planning algorithm

si

sj

Ti

Tj

a1

a2

a3

a4

a5

a6

a7

Collision subregions

Forbidden regions

Figure 3.2: Two collision subregions and the relative forbidden regions.

This process induces a hierarchical structure over the set of paths such that each path

can be defined as an extension of another one.

The extension of a path is based on the explicit representation of the CD obtained

by defining the forbidden regions. For each forbidden region a set of segments, called

critical segments, can be defined. Given a plane Sij , the set of critical segments asso-

ciated with the forbidden regions of this plane is composed by (see Fig. 3.3):

• all the boundary edges of the forbidden region but the one coincident with a7.

• two segments coincident with a3 and a4 outgoing from the boundary of the for-

bidden region towards the axes of the plane. These are interrupted when they

encounter another forbidden region.

• two segments coincident with a1 and a2 from the forbidden region towards a3 and

a4. These are terminated when they encounter another forbidden region.

• two segments coincident with the rays si = Ti and sj = Tj , from sG towards the

axes of the plane.

Loosely speaking the subset of critical segments defined in Sij represents some config-

urations that are critical for the coordination of the vehicles Ai and Aj . This means

that when a coordination path γ(t) reaches a critical segment on some Sij , the different

alternatives for the coordination of Ai and Aj should be explored.

33

3. COMPLETE COORDINATION PLANNING

si

sj

Ti

Tj

Critical segments

Figure 3.3: Critical segments for two forbidden regions

A coordination path γ(t) is represented as an object η characterized by some prop-

erties (indicated by using the syntax “η.Property”). The properties are:

• η.s denotes the ending point of the path

• η.P indicates the parent path

• η.u direction of the last action

• η.d time duration of the last action

• η.CC coordination components

• η.ES extension stage

Every path has the starting point at sI ∈ S while the ending point is defined by the

property η.s ∈ S. A path has zero or more children paths. The children represent the

paths that are generated, during one iteration of the algorithm, by extending a given

path, called the parent path (η.P). The only exception is the root path, denoted as

ηR, for which no parent is defined. The root path is the null length path with which

the algorithm is initialized ηR.s = sI . The extension of a path η, generates a new

path η′ that is obtained by adding to η an action connecting the point η.s to a point

s′ ∈ S. The new path η′ is the piecewise linear curve connecting the sequence of points

η0.s, . . . , ηk.s, ηk+1.s where η0 = ηR, ηk = η, ηk+1 = η′ and ηi.P = ηi−1 for every

i ∈ [1, k + 1]. The point s′ is the nearest point at which a ray outgoing from the point

34

3.4 Coordination planning algorithm

η.s reaches a critical segment in some Sij . In Fig. 3.4 an example of the paths generated

after two expansion steps within a two dimensional CD is reported. More formally:

s′ = η.s+ dss′u (3.9)

where u = (u1, . . . uN), ui ∈ {0, 1}, is the vector that defines the direction of the action

with which the path is extended. This vector defines the vehicles of the fleet that have

to advance in order to reach the new configuration s′ from η.s. Each component ui

defines whether a vehicle must be moving or not. The scalar value dss′ > 0 represents

the time required by the fleet to reach the new configuration s′ considering that each

vehicle is traveling at its nominal velocity. This parameter is stored as a property of

the path, denoted η′.d, since it will be used in the next section for the computation of

the cost function. A path η can be extended by using a set of directions u. For each

direction in which the path is extended a new path η′ is added as a child of η. The

direction u along which the new path is created is stored in η′.u. The i-th component

of η.u is referred as (η.u)i. All the pair of axes (i, j) such that (η.u)i = 1 or (η.u)j = 1

and where the new point η′.s is coincident with a critical segment defined in Sij are

called coordination components. These axes are stored in η′.CC . Note that the point

η′.s may lie on a critical segment in more than one plane, thus the cardinality of set

is 2 ≤ |η.CC | ≤ N . The set of directions u along which a path can be extended is

denoted with Uη. The definition of Uη takes into account the direction η.u of the last

action of η and the set of coordination components η.CC . Instead of all the 2N possible

directions, the set Uη contains only the directions defined by substituting in η.u any

possible assignment of the components indicated by η.CC . Since, generally, |η.CC | is
only a fraction of N , this definition of Uη leads to a drastic reduction of the search

directions. When the point η.s is located on the boundary of some forbidden region, all

directions in Uη that enter the forbidden region must be eliminated in order to ensure

that the paths extended are all collision free. Moreover, when a path is chosen to be

extended the algorithm does not consider all the directions in Uη. The extension of a

path is done in different stages, called extension stages. This is obtained by defining a

partition of Uη so that at each extension stage a different subset Ũη ⊆ Uη is used for

the extension. The partition is defined by considering the sum of the components ui of

the coordination components η.CC . The extension stage of a given path, denoted as

35

3. COMPLETE COORDINATION PLANNING

s1

s2

T1

T2

sG

ηR

ηa
ηb ηc

Figure 3.4: Coordination paths after two expansion steps in a two dimensional CD.

η.ES , indicates which subset of directions must be considered for the next extension of

the path. Formally, the subset Ũη is defined as:

Ũη =

⎧⎨
⎩u ∈ Uη

∣∣∣∣∣∣
∑

i∈η.CC

ui = |η.CC | − η.ES

⎫⎬
⎭ (3.10)

where | · | denotes the cardinality of the set. Note that η.ES ∈ {0, 1, . . . , |η.CC |} thus
the number of subsets defined by the partition of Uη is equal to |η.CC |+ 1.

The algorithm is summarized in Alg. 3. The paths that are created at any iteration

step are inserted into an ordered queue Q. The elements of Q are sorted in ascending

order of the cost function defined in the next section. At the beginning of the algorithm

Q is initialized with the root path ηR (lines 1-2 in Alg. 3). The algorithm then runs

in a while loop (line 4) in which at each step, the first element from Q, denoted as η∗,

is considered for the extension. If η∗.ES = |η∗.CC |, all the subset of Uη∗ have already

been evaluated, the path η∗ can not be further extended and it is removed from Q

(line 5). The function DirectionSet(η∗) (line 7) returns the subset Ũη∗ of the directions

corresponding to the extension stage reached by η∗. After that, the extension stage of

η∗ is incremented (line 8). All the directions of Ũη∗ that enter any forbidden region are

removed (line 9). For each direction in Ũη∗ , a new path (along with all its properties)

is computed (lines 11-13). Then the cost function is evaluated so that the new path

can be inserted in the correct position within the ordered queue Q (lines 14-15). When

η∗.s ≡ sG the search terminates and the path represented by η∗ is the optimal path

36

3.5 Heuristic cost function

among all those that can be explored by the algorithm. This path is then used to

specify the coordinated motion of the fleet.

Algorithm 3 Coordination path search

Require: Critical segments R and forbidden regions F

1: ηR.s = sI ; ηR.P = ∅; ηR.u = (0, . . . , 0); ηR.d = 0; ηR.CC = {1, . . . , N}; ηR.ES = 0

2: Q = ηR

3: η∗ = GetFirst(Q)

4: while η∗.s �= sG do

5: if η∗.ES = |η∗.CC | then Q.Remove(η∗)
6: else

7: Ũη∗ = DirectionSet(η∗)
8: η∗.ES = η∗.ES + 1

9: Ũη∗ = RemoveCollDir(Ũη∗ , η
∗.s,F)

10: for all u ∈ Ũ do

11: η′.s = s′ = NewPoint(η∗.s,u,R)
12: η′.P = η∗; η′.u = u; η′.d = dss′ ; η

′.ES = 0

13: η′.CC = FindCoordAxes(s′,u,R)
14: Evaluate f(η′) � See Sec. 3.5

15: Q← η′

16: end for

17: end if

18: η∗ = GetFirst(Q)

19: end while

3.5 Heuristic cost function

In this section we describe the function used by the algorithm to determine the order in

which the paths are extended. Thanks to this function the algorithm extends first the

paths that are more likely to optimize the objective function defined in (3.8). When

the algorithm terminates the best path among all those that can be created is returned.

Like for the A* algorithm this function, denoted f(η), is defined as the sum of

two terms. The first, denoted g(η), is directly related to the shape of the path while

the second, denoted h(η), is an heuristic underestimate of the minimum cost of the

remaining path to the goal point sG ∈ S. Formally the cost function is defined by this

37

3. COMPLETE COORDINATION PLANNING

expression:

f(η) = g(η) + h(η) (3.11)

Recall that each path can be described as a sequence of actions (i.e. linear segments).

Each new path is obtained from a previous one by adding a new action. Given a path

η′ the value of g(η′) is computed by adding to the cost of its parent path η = η′.P the

cost of the new action:

g(η′) = g(η) + c(η, η′), g(ηR) = 0 (3.12)

where c(η, η′) is the additional cost of the new added action. This cost is defined as:

c(η, η′) = Kacc ·Nacc(η, η
′) +Nrun(η) · η′.d (3.13)

where, in the first term, Nacc(η, η
′) is the number of vehicles that have to change

their motion at the configuration η.s while executing the coordination path η′. This

quantity corresponds to the number of non null components of the vector η′.u − η.u.

In the second term, Nrun(η) is the number of vehicles that have not reached the goal at

the configuration η′.s. The value η′.d (defined in Sec. 3.4) represents the time required

by the fleet to reach the configuration η′.s from the configuration η.s.

Remark 3 The parameter Kacc is the additional cost accumulated each time that a

vehicle has to change its motion (Sec. 3.2.2). By inflating the value of Kacc it is

possible to reduce the computational burden of the algorithm since only the paths that

require less changes of velocity are extended. The time taken by the complete algorithm

and the values chosen for the parameter Kacc are reported in Tab. 4.1 (see Sec. 4.2).

We have adopted high values of Kacc so that the algorithm extends only the coordination

paths that require few accelerations for the vehicles. In particular the solution found

will produce a coordinated motion in which all vehicles avoid collisions by starting their

motion at different times, and travel at the nominal velocity till the end of their mission.

The heuristic estimation of the cost-to-go must be an underestimate of the actual

cost in order to obtain an optimal plan ([41]). The estimate of this cost is defined as:

h(η) =
N∑
i=1

(Ti − η.si) +Kacc · J(η) + 2Kacc · P (η) (3.14)

The first term is the sum of the times that each of the vehicles takes to reach the goal

position if the collisions with other vehicles are ignored. The last two terms are an

38

3.5 Heuristic cost function

underestimate of the amount of costs that will be accumulated each time that a vehicle

will have to stop or start its motion. In particular J(η) is the number of vehicles Ai such

that (η.u)i = 0 and (η.s)i �= Ti. These vehicles will have to start their motion in order to

reach their goal. The term P (η) represents the minimum number of vehicles that, from

the configuration η.s, will have to stop before reaching the goal. This term is multiplied

by two because each time that a vehicle has to stop then it will also have to restart

its motion. Consider for example the point ηa.s in Fig. 3.4. From this configuration

the vehicles A1 and A2 will approach a collision if they advance simultaneously. Thus

if both are advancing it can be stated that one of the two vehicles will have to stop

(thus P (ηa) = 1). The value of P (η) can be computed by solving a binary integer

program (BIP). We denote with z1, . . . , zN the variables of the program. The value

zi = 1 means that the vehicle Ai will have to give the way to another vehicle (thus

ui will have to be set to 0) while zi = 0 means that Ai is stopped or it does not have

to give the way to other vehicles. The objective function is
∑N

i=1 zi, subject to the

constrains defined as follows. For each plane Sij such that (η.u)i = 1 and (η.u)j = 1,

if the projection of η.s onto Sij is between the rays a3, a4, a5, a6 and a7 (Fig. 3.2),

the constraint zi + zj ≥ 1 is imposed. This constraint means that, since the pair of

vehicles is approaching a collision, at least one of the two vehicles will have to stop. The

minimization of the objective function under these constraints gives an underestimate

of the number vehicles that will have to stop in order to avoid all forbidden regions. A

solver for the BIP can be found within the Optimization Toolbox of MATLAB.

Given the solution z∗1 , . . . , z∗N , P (η) is computed as:

P (η) =
N∑
i=1

z∗i (3.15)

Consider the example reported in Fig. 3.4 for two vehicles in which ηR.s = (0, 0),

ηa.s = (10, 10), ηb.s = (0, 5), ηc.s = (30, 0) and sG = (60, 40). We report the computa-

tion of the cost function for Kacc = 10. By applying (3.11)-(3.14):

• For ηR: g(ηR) = 0, h(ηR) = 120, thus f(ηR) = 120. But this path will not further

extended because ηR.ES = |ηR.CC |, thus it will be removed from Q.

• For ηa: g(ηa) = 40, h(ηa) = 100, thus f(ηa) = 140.

• For ηb: g(ηb) = 20, h(ηb) = 105, thus f(ηb) = 125.

39

3. COMPLETE COORDINATION PLANNING

Figure 3.5: Snapshots of the simulation of the complete algorithm (test no. 5 in refsec3.5)

• For ηc: g(ηc) = 70, h(ηc) = 80, thus f(ηc) = 150.

Thus at the next step the algorithm will extend path ηb.

In Fig. 3.5 some snapshots illustrating an example of coordinated motion obtained

with the proposed complete algorithm are reported. The goal positions are marked with

G1, . . . , G5. The vehicles are supposed to move on a Manhattan like roadmap and to

have the same maximum velocity such that horizontal segments are covered in 7.5s and

vertical segments in 5s. In Fig. 3.6 the planes Sij , relative to a problem instance with 5

AGVs are displayed. For each plane, the projections of the collision-free coordination

path are displayed along with the set of paths explored by the algorithm.

3.6 Experiments on a real layout

We have tested our algorithm running a simulation with up to 10 vehicles in MATLAB

on a Intel P8400 2.26 GHz (see Fig. 3.7). The total time required by the algorithm

in order to compute the coordination path is 12.4 seconds. The vehicles are supposed

to move on a roadmap used in a real industrial plant. In its real implementation this

roadmap is composed both of curvilinear an straight line segments. In order to simplify

the simulation program, all the curvilinear segments have been replaced by straight

line segments. However, this is only a graphical approximation since the underlying

coordination algorithm considers the effective trajectory of the vehicles. The nominal

40

3.6 Experiments on a real layout

Figure 3.6: Projections of the best coordination path within Sij (thick red line) and the

paths explored by the algorithm (light gray lines). Axis units in 10−1s

41

3. COMPLETE COORDINATION PLANNING

Table 3.1: Timing for each vehicle.

Vehicle 1 2 3 4 5 6 7 8 9 10

Tadvance [s] 144.2 118.6 115.2 127 73.4 151 123 107 121.6 136.8

Tstop [s] 26.8 0 1.6 0 17 0 0 1.4 0 0

speed with which a vehicle has to cover each segment is defined during the roadmap

design and it can be different according to the type of vehicle and the load that it

carries. The missions that are assigned to each vehicle are representative of the real

working condition of the system. Each mission is defined by four way-points: initial

position, pick-up position, drop off position and rest position. In Fig. 3.7 the test is

illustrated. The initial, pick-up, drop-off and rest positions of the vehicles are marked

with S1, . . . , S10, P1, . . . , P10, D1, . . . , D10, H1, . . . , H10 respectively. See also the

attached video of the simulation test. The timings of each vehicle are reported in

Tab. 3.1. For each vehicle the total time of advancement (Tadvance) and the waiting

time (Tstop) are reported. For the proposed experiment we have adopted Kacc = 10 so

that the algorithm extends only the coordination paths that require few accelerations

for the vehicles. In particular the solution found will produce a coordinated motion in

which all vehicles avoid collisions by stopping their motion only once. Although this

could produce a suboptimal solution, inflating Kacc allows a substantial reduction of

the computation times. In Fig. 3.6 the planes Sij , relative to an experiment conducted

with 5 vehicles are displayed.

3.7 Conclusions

In this chapter we have presented a complete algorithm for planning a coordinated

motion of a fleet of AGVs moving along predefined paths. Using the particular structure

of the considered application we have been able to considerably reduce the time required

for computing the CD. We propose an algorithm that computes a complete coordination

plan for the overall missions that each vehicle has to execute. The algorithm generates a

set of possible coordination plans and then gives the optimal one. In real world planning

problems, time for deliberation is often limited. The computational complexity of the

algorithm is still too high for application on real AGVS where the paths assigned to

42

3.7 Conclusions

8

6

7

10

4

2

3
5

9

1

P1P1

D1D1

P2P2

H1H1

D2D2

D8D8

D4D4

P4P4

D9D9

P8P8

H7H7 D7D7

P7P7

H6H6

D6D6

P6P6

H5H5

D5D5

P5P5

H4H4

D3D3

P3P3

H2H2

H8H8

P9P9

P10P10

H9H9

H10H10

D10D10

H3H3

S1S1

S2S2

S3S3

S6S6

S9S9

S10S10 S8S8

S5S5

S4S4

S7S7

10m

Figure 3.7: A snapshot of the simulation with 10 vehicle running in a real industrial

plant.

43

3. COMPLETE COORDINATION PLANNING

the AGVs are frequently changed. The algorithm presented in this chapter can be

applied in systems where the number of vehicles is limited and the paths that have to

be executed by the vehicles are almost always the same. A possible improvement could

be obtained by modifying the algorithm so that it can find a feasible solution quickly

and then refine it while vehicles are in motion.

44

Chapter 4

Incremental coordination

In this chapter a methodology for coordinating a group of mobile vehicles following

predefined paths is presented. The CD are used for representing the possible collisions

among the vehicles. We exploit this information in order to define a mapping between

the configuration space of the fleet and a set of motion constraints that the AGVs

must satisfy in order to avoid mutual collisions. Then, a centralized and incremental

planning algorithm which defines the motion of the AGVs step by step is developed.

At each step, the algorithm defines the motion of the AGVs considering the actual

configuration reached by the fleet. The main advantage of an incremental approach is

that it allows to take into account unexpected events that can occur in an industrial

environment without the need of replanning. Due to the unpredictability of the indus-

trial environment (e.g. temporary malfunctioning of the AGVs, emergency stops), this

this feature is fundamental for the considered application.

For an overview of the problem considered in this chapter, as well as for the defini-

tion of CD, the reader is addressed to Sec. 3.2. In Sec. 4.1 the incremental algorithm

for coordinating a fleet of AGVs is presented and in Sec. 4.2 some simulations are

developed in order to compare the proposed incremental algorithm with the complete

algorithm developed in Chap. 3. Finally, in Sec. 4.3 some conclusions are drawn.

4.1 Incremental coordination algorithm

As reported in Sec. 3.2.2, in order to find a solution to the coordination problem it

is sufficient to find a collision-free path with end points γ(0) = sI and γ(tend) =

45

4. INCREMENTAL COORDINATION

sG. We want to design an incremental algorithm which determines the coordination

action step by step (like in [23]) rather than an algorithm that defines the overall

coordination strategy in one shot (like in [35]). This choice is due to the fact that

in factory applications a lot of unexpected events could prevent some AGVs from

performing the pre-planned action.

The problem of finding an optimal coordination path has an exponential complexity

[35, 41] and, therefore, in case the number of AGVs is big, it could be necessary to

stop the AGVs for a significant amount of time waiting for each new re-planning. An

incremental algorithm decides which action to implement when the vehicles are at a

given configuration by looking at all the possible collisions (due both to the presence

of collision regions in the CD and to unexpected events) and decides the motion that

the AGVs should make. Thus, the algorithm that we are proposing, allows to take

into account also unexpected events without the need of re-planning each time the

coordination of the vehicles.

In order to build the incremental coordination algorithm, we first need to impose

a grid structure over the CD S. Thus, for each axis, we split the interval [0, l(πi)] of

the CD into mi segments. This induces a grid structure over each Sij plane. The

granularity of the partition (i.e. mi) depends on the particular application.

Remark 4 Notice that the partition of the axis for the planning algorithm is different

from that considered in Sec. 3.3 since the granularity required is, in general, different

from that induced by the segments in T.

When moving over a path πi, an AGV, executes an action ui. It can either move

forward to the next segment (ui = 1) or move backward to the previous segment

(ui = −1) or remain motionless (ui = 0). The role of the coordination algorithm is to

tell to all the vehicles which action has to be executed. We define the action set as

U = {(u1, . . . , uN) | ui ∈ {−1, 0, 1}}. The problem of choosing the right coordinated

action has, in general, exponential complexity. In order to decrease the computational

effort, we will not consider generic collision regions, but we will limit ourselves to the

three kinds of collision regions outlined in Sec. 3.2.3.

It is clear that, locally, the best coordinated action is the one which leads to the

major advancement of the fleet. Thus, the first criterion by which the actions are chosen

is the maximization of overall fleet advancement. Since all vehicles can take only three

46

4.1 Incremental coordination algorithm

actions, we can identify 2N + 1 subsets Uρ ⊆ U that contain actions which lead to the

same advancing factor ρ:

Uρ = {(u1, . . . , uN) |
N∑
i=1

ui = ρ} (4.1)

Loosely speaking, the advancing factor, provides a measure of the advancement of the

overall fleet. For example, the action subset UN−1 contains all the actions that make

advancing all vehicles but one that remains motionless.

The algorithm evaluates, in decreasing order, the actions belonging to each subset

Uρ, starting from ρ = N , until it is found a subset that contains a valid action. In

Alg. 4, we have denoted with Action Set(ρ) the function that gives the subset to Uρ.

Thanks the cylindrical structure of the collision regions the algorithm can realize a

coordination path considering just all the Sij . As we have seen in Sec. 3.2.3, collision

regions on the two dimensional planes have a well defined shape. Thanks to this

particular structure, we can define over each plane some regions that we call shadow

zones. These regions are defined between the collision region, the axes of the plane

and the two rays a1 and a2 tangent to obstacle borders and parallel to the bisector of

the plane (see Fig. 4.1). The goal is to partition each plane in a set of zones in which

some actions are forbidden since they would lead to collision or they would delay the

completion time of the missions.

The algorithm has to choose an action that is allowed by all planes (a valid action).

We denote by sij the point in Sij that denotes the configuration of two AGVs considered

along their paths πi and πj (see Sec. 3.2.1). For all possible collision region (Sec. 3.2.3)

we can define (see as an example Fig. 4.1):

• Light region: When sij falls in this region there are no actions that have to be

discarded.

• Antumbra region: sij falls in this region when the vehicles are approaching to

collision. To escape from the shadow zone, one AGV has to advance while the

other has to stop or go backward. As long as sij remains in this region, there are

no action that penalize the possibility of escaping from the shadow zone. Thus,

all the actions remain valid.

47

4. INCREMENTAL COORDINATION

• Penumbra region: This corresponds to the situation in which one vehicle has

reached a segment that belongs to the path of another vehicle. To escape from

this region the following constraint between the actions has to be satisfied:

ui + uj ≤ 1 (4.2)

• Umbra region: This corresponds to the situation in which a couple of AGV has

reached a common portion of path. Thus one of the two vehicles has to move

backward. The constraints imposed by this region are:

ui + uj ≤ 0 (4.3)

• Obstacle border: This is the border of the collision regions. In this region, all the

directions that enter into the collision region are forbidden. Referring to Fig. 4.1,

the following constraints on the control actions have to be satisfied:

ui − uj ≥ 0 sij ∈ AB

ui + uj ≥ 0 sij ∈ BC

uj − ui ≥ 0 sij ∈ CD

ui + uj ≤ 0 sij ∈ DA

(4.4)

For each action set Uρ to be evaluated, the algorithm reads in which zone the

coordination point projection falls (ReadRegion(Sij , s) in Alg. 4) and discards all the

actions of Uρ that do not respect the constraints imposed by the region. In Alg. 4

we refer to this operation with Prune(Region, Uρ). Further actions are forbidden in

case they imply a movement of an AGV that has to implement an emergency stop. In

this way, the emergency handling is embedded online in the coordination controller.

If, after pruning, all the actions contained in Uρ are discarded, the next subset Uρ−1

is considered. The evaluation of the action subsets terminates when, after pruning,

the action set contains at least one action that satisfies the constraints induced by the

shadow zones of each coordinate plane. We refer to this subset as the valid action set.

In general, when the evaluation stops, the valid action set contains more than one

action. The final choice of the action to execute is made evaluating a cost function

D(u). This cost is an indicator of the total time spent by the vehicles to avoid the

collision with the others and it depends on the way chosen to bypass each collision

region on the CD. Consider a given configuration of the vehicles and a valid action set.

48

4.1 Incremental coordination algorithm

Penumbra

PenumbraAntumbra

Umbra

Collision zone

D

C

B

A

Light region

sj

si

a1

a2

λ1

λ2

P1

P2sij

Figure 4.1: Shadow sub-zones and corresponding actions allowed

For each sij falling in a shadow zone, two points in the plane are individuated. These

points, indicated as P1 and P2 in Fig. 4.1, are the intersection between the two half-lines

λ1 and λ2 (outgoing from the actual position in the coordinate plane, parallel to and

directed in the positive direction of the coordinate axis) and the two rays a1 and a2 as

depicted in Fig. 4.1. The distance between sij and the points P1 and P2 is proportional

to the time required by two AGVs for bypassing the collision region traveling in a given

direction. Thus, to each action moving toward P1 (P2) is associated a cost equal to the

distance between sij and P1 (P2). On the other hand, to each action moving away from

P1 and P2 (or standing in the same position) is associated a cost equal to the sum of

the distances between sij and the points P1 and P2. This means that actions that don’t

tend to resolve the collision condition are penalized with respect to those that tend to

escape from the shadow zones. Finally, a cost equal to the minimum distances between

sij and P1 and between sij and P2 is associated to actions which yield an advancement

of both vehicles. This means that the choice of bypassing the obstacle is postponed

but, since both AGVs are moving toward their goals, these action are not penalized.

In case the coordination point in the plane doesn’t fall into a shadow zone, a zero cost

is associated to all actions.

These calculations in Alg. 4 are indicated by the function Cost(u, Sij). The total

cost of the action u is defined as the sum of the costs associated to u on each coordinate

49

4. INCREMENTAL COORDINATION

plane. Once that each valid action has been assigned to a cost, the algorithm picks a

minimum cost action. Thus, the chosen action u∗ is given by:

u∗ = argmin
u∈Uρ

D(u) (4.5)

Algorithm 4 Incremental coordinator

Require: Current positions of the vehicles si

1: ρ← N � N active vehicles

2: Uρ ← ∅
3: while Uρ = ∅ do
4: Uρ ← Action Set(ρ)

5: for all Sij do

6: Region← ReadRegion(Sij , s)

7: Uρ ← Prune(Region, Uρ)

8: end for

9: ρ← ρ− 1

10: end while

11: for all Sij do

12: if Region = Shadow then

13: for all u ∈ Uρ do

14: D(u)← D(u)+ Cost(u, Sij)

15: end for

16: end if

17: end for

18: u∗ ← ArgMin(D(u))

19: return u∗

In Fig. 4.2 some snapshots illustrating an example of coordinated motion obtained

with the proposed incremental algorithm are reported. In the first one we have marked

the goal positions G1, . . . , G5. In Fig. 4.3 we show some planes of the CD in which are

displayed the shadows and the projection of the coordination path computed.

4.2 Complete versus Incremental: comparative tests

Some tests have been developed in order to compare the incremental algorithm proposed

in this chapter with the complete algorithm presented in Chap. 3. We have tested our

50

4.2 Complete versus Incremental: comparative tests

1

2

3

4

5

5

G1

G2

G3

G4 G5

1

3

6

2

4

5

1

2

3 4

1

2

3 4

5

1

2

3

4

51

2

3 4

5

12 3
4
5

Figure 4.2: Snapshots of the simulation with the incremental algorithm

51

4. INCREMENTAL COORDINATION

LGV 1

LG
V

2

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

LGV 1

LG
V

3

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

LGV 1

LG
V

4

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

LGV 1

LG
V

5

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

LGV 2

LG
V

3

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

LGV 2

LG
V

4

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

LGV 2

LG
V

5

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

LGV 3

LG
V

4

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

LGV 3

LG
V

5

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

LGV 4

LG
V

5

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

Figure 4.3: The solid black line describes the projections of the coordination path within

the CDs.

52

4.2 Complete versus Incremental: comparative tests

Test no. 1 2 3 4 5 6 7 8 9 10 11 12

Comp. time [s] 1.1 140 13.8 14 49.9 6.3 44.3 4.6 2.7 4.3 19.4 4.4

Kacc 10 10 10 10 10 50 10 50 10 50 10 50

Table 4.1: Computation time and Kacc values.

algorithm running a simulation with 5 vehicles in MATLAB on a Intel P8400 2.26 GHz.

The vehicles are starting at random positions along given paths in order to consider

the fact that the mission can be released asynchronously. In Fig. 4.5 some tests are

illustrated. The vehicles are supposed to move on a Manhattan like roadmap and to

have the same maximum velocity such that horizontal segments are covered in 7.5s and

vertical segments in 5s.

Time factor ([42]) has been used to measure system performance in the tests:

Ft(i) =
t∗i
Ti

(4.6)

where t∗i is the time required by Ai to reach its destination, Ti is the time that is

required by the AGV to reach its destination considering that it continuously travel at

its nominal velocity. Thus, a small value of the time factor indicates a good coordination

of the fleet. The average time factor over all vehicles from 12 simulation runs are

reported in Fig. 4.4. The complete algorithm works far better than the incremental

one in 6 experiments while for the other cases the performances are almost the same.

For the construction of the CD both the algorithms exploit the strategy described

in Sec. 3.3. The online computation of the CD requires on average takes 260 ms.

The incremental algorithm, for the computation of a single action takes at maximum

8 ms (while the average is 2 ms). The times required by the complete algorithm for

computing a coordination plan are reported in Tab. 4.1. Even if these values are far

higher than the ones required by the incremental algorithm, they could be acceptable

if the missions were known in advance. However, unexpected events may prevent the

AGVs to execute the planned motion (e.g. a manual driven vehicle standing on the

trajectory of the AGV). In this case the coordination plan has to be discarded and all

the AGVs have to wait for the new plan. In the considered application, events that can

block the motion of AGVs are frequent, thus an incremental algorithm is more suitable.

53

4. INCREMENTAL COORDINATION

Complete algorithm (Chap. 3) Incremetal algorithm (Chap. 4)

Figure 4.4: Results of the comparative tests

Figure 4.5: Top-left: test no. 1, Bottom-left: test no. 2, Top-right: test no. 11, Bottom-

right: test no. 12.

54

4.3 Conclusions

4.3 Conclusions

In this chapter we have proposed an algorithm for coordinating multiple AGVs mov-

ing on a predefined roadmap for an industrial application. Since only some kinds of

collisions can take place (see Sec. 3.2.3), we have been able to develop a incremental

coordinator with a limited complexity and which can handle both collisions avoidance

and emergency stops that can take place in industrial plants.

The simulation tests executed for both the complete coordinator (Chap. 3) and the

incremental coordinator (presented in this chapter) show that the incremental planner

has to be chosen for the considered application because of the possible unexpected

events that may occur in the industrial environment.

On the experimental sides, it is necessary to implement the proposed control strat-

egy on a real industrial setup. In order to do this, we need to relax some assumptions

made since now. In particular, in the next chapter we will handle the vehicle dynamics

by developing an algorithm that plans always some steps ahead with respect the current

configuration.

55

4. INCREMENTAL COORDINATION

56

Chapter 5

Zone control approach

In this chapter, we propose an algorithm for coordinating a group of mobile vehicles

that go through predefined paths in a dynamic industrial environment. The approach

is based on a centralized traffic control unit that defines the coordination of the fleet

incrementally during the motion of the vehicles. The AGVs move according to the zone

control approach (see Sec. 2.1). We have modified the approach presented in Chap. 4

in order develop a coordinator algorithm that can be applied within the zone control

approach. A partitioned CD has been defined and the constraints introduced in Sec. 4.1

have been adapted in order to consider the new structure of the CD. Simulation tests

have been executed in order to compare the performance of our algorithm with the one

currently implemented by the company.

The chapter is organized as follows: in the first section the main assumptions are

recalled. In Sec. 5.2 a formal definition of the problem is reported. In Sec. 5.3 the co-

ordination algorithm is presented. In Sec. 5.4 some experiments are presented. Finally,

in Sec. 5.5 some conclusions are drawn and some future work is addressed.

5.1 Introduction

Our goal is to develop an algorithm that polls the status of the AGVs while they are

executing their missions, and plans the segments that each AGV is allowed to track in

order to avoid collisions with other AGVs and to minimize the total time required by

the fleet for reaching the rest configurations.

57

5. ZONE CONTROL APPROACH

In the framework developed by Elettric 80 (see Chap. 2), the coordination algorithm

can control the motion of vehicles only by reserving to each AGV the segments that

it has to cover. However it is not possible to ensure that the segments will be covered

by each vehicle at the nominal velocity. The nominal speed defined for each segment

is only a setpoint for the motion controller of the vehicle. The actual speed can be

different due to dynamic constraints and/or to unexpected events that could occur

during the motion of the vehicle (e.g a vehicle stops to avoid a person on its way). For

that reason the collisions between vehicles can be avoided only reserving at each vehicle

a list of segments that are not colliding with other segments already reserved.

This chapter is an extension of the incremental approach presented in Chap. 3. The

approach considers:

• The actual velocity of the AGVs can be different from its nominal value; this

allows to easily take into account the effects of the dynamics as a velocity errors.

• The safety is guaranteed also if the communication with some vehicles is lost.

• Real industrial roadmaps are considered, where the dimension of the segments is

pre-assigned.

The assumptions under which our algorithm is designed to work are:

• The paths must start on segments that are not colliding (see Sec. 5.2) with the

segments of other paths.

• All vehicles are geometrically identical.

• The vehicles must be allowed to move in both the directions (forward and back-

ward) over all segments.

The first two assumptions are required only to simplify the discussion of the algorithm,

but they can be removed following the considerations in Remark 5 and Remark 10. The

third requirement is not always satisfied in industrial plants, however it is non strictly

necessary in order to make the algorithm working. The last assumption is considered

in order to increase the performance of the system by giving more flexibility to motion

of the vehicles.

58

5.2 Overview of the problem

5.2 Overview of the problem

5.2.1 Roadmap and missions

In this section we modify some of the definitions given in Sec. 3.2.1. Recall that the

paths of the AGVs are defined within a collection T of regular curves called segments.

In this chapter a path pi is defined as a sequence of ni adjacent segments and it can be

represented by the following mapping

pi : k → T, k = 1, 2, . . . , ni (5.1)

We will refer with Ai to the vehicle that is assigned to the path pi. Each segment

τ of the roadmap has to be covered by each vehicle Ai at a specified nominal speed

which depends on the type of vehicle (and other factors like the payload, the priority,

etc.) and on the shape of the segment. Recall that A(q) is the volume occupied by an

AGV at the configuration q ∈ R (in order to simplify the description of the proposed

algorithm we consider that all the vehicles are identical). A segment τ ∈ T is a colliding

segment for another segment τ ′ ∈ T (and vice versa) if there exists a pair of scalars

(α, β) ∈ [0, lτ]× [0, lτ ′] such that

A(τ(α)) ∩A(τ ′(β)) �= ∅ (5.2)

This means that when two AGVs are moving through τ and τ ′ it can happen that a

collision takes place. The concept of colliding segments can be extended by introducing

a new parameter denoted release distance. For any pair of colliding segments (τ, τ ′) the

release distance is a value γτ,τ ′ ∈ [0, lτ] so that, for any (α, β) ∈ [γτ,τ ′ , lτ] × [0, lτ ′] the

following holds

A(τ(α)) ∩A(τ ′(β)) = ∅ (5.3)

This means that if an AGV has crossed the release distance γτ,τ ′ , along the segment τ ,

the segment τ ′ can be safely covered by another vehicle (see the example in Fig. 5.1).

Remark 5 By giving a more general definition of colliding segments, it is possible to

consider also the case of a fleet composed of different types of vehicles. In practice, for

each pair of segments it is possible to determine the list of vehicle shapes such that the

segments are colliding.

59

5. ZONE CONTROL APPROACH

When the mission is released (the sequence of missions is defined as described in

Chap. 2), an AGV has to execute a path, namely to reach a final configuration within

the roadmap, starting from its current configuration. The path that each AGV has to

track is computed without taking into account the collisions with other vehicles. Our

goal is to define the motion of each vehicle along its path in order to avoid mutual

collisions between AGVs.

5.2.2 Partitioned coordination diagram

For any pair of AGVs, a CD is given by Sij =
[
0, T i

] × [
0, T j

]
. A point (si, sj) ∈ Sij

represents a configuration of the vehicles along their paths. Recall that si is the time

that the vehicle Ai would take to reach the position πi(si) considering that it travels

at the nominal speed on each segment (Sec. 3.2.1).

Since each path can be defined by (5.1), the domain
[
0, T i

]
of its parameterization

(3.2) can be partitioned into a sequence of adjacent intervals
[
Δi

1 . . .Δ
i
ni

)
. Each Δi

ki

(with ki = 1, . . . , ni) corresponds to the time interval in which Ai is expected to travel

along the segment ki of its path if traveling at its nominal speed. When a new path is

assigned to a vehicle, these intervals are computed according to the nominal speed at

which each segment has to be covered by the vehicle. By picking a particular interval

Δi
ki

from each path, we define a block as bki,kj = Δi
ki
×Δj

kj
⊆ Sij . A block identifies

a rectangular region Δi
ki
× Δj

kj
of the plane Sij . The set of all blocks constitutes a

partition of the CD (see Fig. 5.1).

Given two paths pi and pj , a block bki,kj corresponding to a pair of colliding segments

(pi(ki), pj(kj)), is defined a collision block. By taking into account the release distances

(see Sec. 5.2.1) the area of the collision blocks can be reduced. An example of Sij

is reported in Fig. 5.1 in which the collision blocks are represented with black filled

rectangles.

The set of all collision blocks in a plane of the CD is called collision region. A

collision region can be composed of many disjoint subregions (see Fig. 5.2). However,

in order to simplify the description of the proposed approach we discuss this case only

in the next chapter (see Sec. 6.1.3).

When an AGV completes its mission, a new one is assigned to it. An idle vehicle

that is waiting at an home location (see Chap. 2) is considered to be assigned to

a path composed of only the last segment covered by the vehicle before stopping.

60

5.2 Overview of the problem

a) b)

(xf , yf)

(xs , ys)(xf , yf)

(xs , ys)

Load Load

A
i

A
i

AjAj

sisi

sjsj

Δi
1 Δi

1
Δi

2 Δi
2

Δi
3 Δi

3
Δi

4 Δi
4

Δj
1 Δj

1

Δj
2 Δj

2

Δj
3 Δj

3

τ1

τ2

τ3τ4τ5

γτ1,τ4

γτ1,τ4 γτ1,τ4

Figure 5.1: Example of motion coordination of two vehicles in which the concept of

release distance is applied. The path of Ai is the sequence τ5, τ4, τ2, τ1 while the path of Aj

is τ5, τ4, τ3. In a) Aj can not enter the segment τ4 because that segment is colliding with τ1,

which is currently occupied by Ai; in b) the Ai is beyond the release distance γτ1,τ4 , thus

the Aj is allowed to cover the segment τ4. At bottom, the CD, which is used to determine

the motion constraints is reported. The grid partition of the CD, induced by the sequence

of segments composing the paths is represented with gray lines. Black rectangles are the

collision blocks (representing the pairs of colliding segments). The pink area represents the

pair of segments which are reserved to the vehicles. In a) xs < γτ1,τ4 because Ai has not

already passed the release distance. In b) xs > γτ1,τ4 , thus the constraint that blocks the

motion of Aj is removed.

This implies that the CD must be modified in order to consider the possible collisions

introduced by the new path. In Sec. 3.3 we have exploited the a priori knowledge of the

roadmap in order to compute offline the pairs of colliding segments. This reduces the

computational cost. The definition of the CD allows to give a geometrical representation

of the coordination problem. Through this representation all information about the

possible collisions among the vehicles can be extracted in a way that is independent of

the roadmap considered. A classification of the possible collisions that can take place

between vehicles is given in Sec. 3.2.3 by using the CD.

A solution to the collision free coordination of the N AGVs is to incrementally

select the sequence of segments that each vehicle has to cover in order to reach the des-

tination. We are going to present an algorithm that controls the motion of the vehicles

by searching for a path within the CD which avoids all the collisions among vehicles.

61

5. ZONE CONTROL APPROACH

si

sj

Ti

Tj

Figure 5.2: Two groups of collision blocks.

Exploiting the geometry of the CD, it is possible to associate at each configuration of

the fleet a set of constraints on the actions of each vehicle such that no collisions occur.

5.3 Coordinator

The coordination problem can be solved by finding a proper path in the CD (see

Chap. 3). In this section an incremental algorithm (see Alg. 5) which determines the

reserved segments (i.e., the segments that the AGV is allowed to track) for each vehicle

in such a way that no collisions take place is presented.

5.3.1 Segment reservation

The mapping defined in (5.1) specifies the sequence of segments that an AGV has to

cover. In order to simplify the notation, the k-th segment of a path pi, is indicated

as ki ∈ {1, . . . , ni}. Each vehicle Ai is associated to a list of segments, called reserved

segments, that it is allowed to cover. The first segment of the list is the segment on

which an AGV is located and it is denoted as ci ∈ {1, . . . , ni}. The last segment is

indicated with ri ∈ {1, . . . , ni}. The current segment ci is automatically updated each

time that an AGV enters a new segment of its path. The motion of an AGV along the

list of reserved segments is controlled at AGV layer (see Chap. 2). A vehicle covers

all the reserved segments and stops at the end of the last. The list of reserved seg-

62

5.3 Coordinator

Algorithm 5 Coordinator algorithm

1: function Coordinator(CD, r1, . . . , rN , S)

2: E← UpdateEnclosingRectangle(CD)

3: (l1, . . . , lN)← (r1, . . . , rN)

4: while S �= ∅ do
5: u∗ ← ActionComputation(E, S, l1, . . . , lN)

6: for all i ∈ S do

7: l′i ← LastAllocated(u∗i , li, ri, di)
8: if u∗i �= 0 then

9: if ∃ kj ∈ [cj , . . . , lj] such that bli,kj is a collision block then

10: return li � Return previous value

11: S = S \ i
12: end if

13: if u∗i = 1 ∧ (l′i = ni ∨ Wi(l
′
i) > W̄) then � Not starving

14: return l′i
15: S = S \ i
16: else if u∗i = −1 ∧ li = 0 then

17: return li

18: S = S \ i
19: end if

20: else � If no segments are reserved

21: return l′i
22: S = S \ i
23: end if

24: end for

25: end while

26: end function

63

5. ZONE CONTROL APPROACH

ments [ci, . . . , ri] can be updated by the coordinator with the addition of new reserved

segments.

In this chapter we consider that every AGV is allowed to cover each segment both

in the same or in opposite direction with respect to the nominal orientation of the

segment. The motion direction of Ai is denoted with the binary variable di. If di = 1

the vehicle covers the segments of the path in their nominal direction (i.e. toward the

destination), if di = 0 the vehicle moves in opposite direction. The sequence of reserved

segments has to be consistent with the motion direction of the vehicle, i.e. ri has to

greater or equal than ci when di = 1, and less or equal otherwise.

The width of the interval Δi
ki

(i.e. the nominal time required by Ai to cover the

segment ki) is denoted with wi
ki
. The time required by an AGV in order to reach the

segment li ∈ [1, . . . , ni] is given by

Wi(li) = −χiw
i
ci +

li∑
ki=ci

wi
ki

(5.4)

where χi ∈ [0, 1] is the ratio between the distance covered by Ai on current segment and

the total length of that segment. The coordinator algorithm is executed periodically,

with a time period of δ = 0.5s. Each time it updates the lists of reserved segments so

that the AGVs can advance without colliding each other. If the time Wi(ri) (i.e. the

time required by Ai in order to reach the last reserved segment ri) is less than a value

W̄ (a parameter which has been fixed to 5s) the AGV Ai is defined starving. This

condition indicates that a vehicle will reach the end of the segment ri before the next

execution of the algorithm and thus it will stop unless new segments are added to the

reserved list. At each time period the algorithm starts a while loop (see line 4 in Alg. 5)

in which, for each starving vehicle, the last reserved segment ri is updated to a new

value li ∈ [1, . . . , ni]. A vehicle which still is starving after the execution of coordinator

(e.g. because a segment li = ri is returned) will stop before the next execution of the

algorithm (or it will remain stationary if already stopped). During the iterations of the

loop the algorithm updates the segments li corresponding to a subset S of vehicles. At

the first iteration the set S contains the starving vehicles. The condition Wi(l
′
i) ≥ W̄

(see line 13 in Alg. 5) indicates that the AGV Ai is no more starving. In this case, as

well as the case in which an AGV has reached the last segment of its path (l′i = ni),

the vehicle is removed from S and the new last reserved segment l′i is returned. An

64

5.3 Coordinator

Algorithm 6 Update last allocated segment

1: function LastAllocated(u∗i , li, ri, di)
2: if u∗i = 0 then

3: li = ri; return (li, di)

4: end if

5: if li �= ri then

6: li = li + ui

7: else

8: if (ui = 1 ∧ di = 1) ∨ (ui = −1 ∧ di = 0) then

9: li = ri + ui

10: else

11: if ui = 1 then

12: di = 1

13: else

14: di = 0

15: end if

16: li = ri

17: end if

18: end if

19: return li

20: end function

AGV that has to implement an emergency stop is automatically removed from S. In

this way, the emergency handling is embedded online in the coordination controller.

At the first iteration (see while loop in Alg. 5), the segments li are initialized to ri

for each vehicle Ai (also those that are not in S).

At each iteration the function ActionComputation (see line 5 in Alg. 5) evaluates

the li relative to every AGV (also those that are not in S) and returns an action

ui ∈ {1, 0,−1} for the AGV in S. The while loop (line 4 in Alg. 5) terminates when the

set S is empty. The routine LastAllocated, defined in Alg. 6, updates li according

to the action u∗i (see line 7 in Alg. 5). The list of reserved segments can be either in

forward (di = 1) or in backward (di = 0) direction. The action u∗i = 0 does not change

li and causes the AGV Ai to be removed from S. The code at lines 5-18 in Alg. 6

guarantees that the segment li is consistent with the motion direction of the AGV.

Namely, if di = 1 the segment li can not be less than ri and if di = 0, li can not be

65

5. ZONE CONTROL APPROACH

grater than ri.

Remark 6 Each list of reserved segments must not contain segments that are colliding

with reserved lists of other AGVs. The action chosen by the algorithm ActionCom-

putation (line 5 in Alg. 5) guarantees only that all the segments l1, . . . , lN are not

colliding (pairwise). Thus, at each iteration it must be checked that the last added seg-

ment li, for each vehicle Ai in S, is not colliding with any segment kj ∈ [cj , . . . , li] (see

line 9 in Alg. 5). If this is the case, li is set to its previous value and the Ai is removed

from S. See Fig. 6.1 as an example.

Remark 7 At each iteration the algorithm evaluates the allocation of new segments

according to the last added segment li of each vehicle. In order to avoid situations in

which the algorithm ends up on a loop over the same blocks (i.e. livelock situations), a

trace of the visited segments is stored and at each iteration the algorithm checks if the

configuration it is evaluating has been already visited. If this is the case the changes

applied to each li are discarded and the loop cycle is terminated. For seek of simplicity

this function is not reported in the pseudocode.

In Fig. 5.5 some snapshots illustrating the coordination of two vehicles are reported

as a running example.

5.3.2 Action computation: forward, backward or stop

This section describes the algorithm ActionComputation executed at each iteration

of the coordinator algorithm (see line 5 in Alg. 5) for defining how to update the

lists of reserved segments. Each vehicle is allowed to move forward, backward or stop.

For any pair of AGVs in which at least one of the two is in S, this function evaluates

the position of the block bli,lj , called reference block, with respect the collision regions

of the CD Sij .

The set S represents the AGVs for which the number of reserved segments has

to be incremented. The function ActionComputation returns a vector of actions

u = u1, . . . , uM (also called coordinated action) that will be used by the coordinator

algorithm to update the reserved segments of the AGVs in S. Even if S might in

general be constituted by any subset of vehicles, we consider (to simplify the notation)

that S = A1, . . . ,AM (M ≤ N).

We consider the best coordinated action u as the one which leads to the major

advancement of the fleet. Given M vehicles, the set of all 3M possible vectors u is

66

5.3 Coordinator

denoted as U . This set can be partitioned (as already seen in Sec. 4.1) into 2M + 1

subsets Urho ∈ U according to the following definition:

Uρ =

{
(u1, . . . , uM) |

M∑
i=1

ui = ρ

}
(5.5)

where ρ is called advancing factor. Loosely speaking, the advancing factor, provides a

measure of the advancement of the starving vehicles related to the coordinated action

u.

For each Ai that is not in S the algorithm takes an action ui = 0. The algorithm

evaluates, in decreasing order, the actions belonging to each subset Uρ, starting from

ρ = M , until it is found a subset that contains a valid action.

Remark 8 Note that, if the constraints imposed by the CD are too restrictive, the

action computation algorithm needs to evaluate a number of action which is exponential

in the number of vehicles. However, differently from Chap. 4 where all the N AGVs

of the fleet are always considered, here only the subset S of M (M ≤ N) vehicles

is evaluated by the coordination algorithm. Even if it does not change complexity of

the algorithm in the worst case (S contains all vehicles), this fact reduces the mean

computational effort.

The reference block bli,lj represents the configuration that the vehicles will reach,

once that all reserved segments have been covered. When new segments have to be

reserved, the position of this block is evaluated in order to avoid the possible collision

regions.

All collision regions in Sij are represented with a rectangular region having two

sides parallel to the bisector of the diagram. This region has been defined as enclosing

rectangle E (see Sec. 3.2.3) and it is computed at line 2 in Alg. 5. In Fig. 5.3 we have

represented the enclosing rectangle with the blue lines e1, e2, e3, e4.

On each plane Sij , the position of the reference block bli,lj is evaluated, with respect

to the enclosing rectangle E. As a convention, if i < j, the position of the bottom left

and top right corners of bli,lj are indicated respectively with the coordinates (xs, ys)

and (xf , yf) (see Fig. 6.1). In the following we consider i < j. If li > ci (i.e. the

AGV has more than one reserved segment), the values of xs and xf are respectively

the lower bound and the upper bound of the interval Δi
li
. If li = ci (i.e. the vehicle is

on its last reserved segment) the value xf is the upper bound of the interval Δi
ci while

67

5. ZONE CONTROL APPROACH

1

2

3

4

A

B

C

DQ

e5

e6

e1

e2
e3

e4

si

sj

Legend of blocks

Light

Antumbra

Penumbra

Between umbra

and penumbra

Umbra

Borders

Inner

Collision

Figure 5.3: The colors denote the block grouping and the arrows the corresponding

constraints. The upper right box reports a detail of the borders blocks (red filled): block 1

has only one corner inside enclosing rectangle, 2 and 3 have two corners inside, 4 has three

corners.

xs = x′s + χi(xf − x′s) where x′s is the lower bound of Δi
ci and χi ∈ [0, 1] is the ratio

between the distance covered by Ai on segment ci and the total length of that segment.

The values of ys and yf are computed analogously.

At each iteration the function ActionComputation (line 5 in Alg. 5) extracts the

coordinates (xs, ys) and (xf , yf) and determines the position of bli,lj with respect to

the enclosing rectangle E.

Remark 9 Note that, when a vehicle passes the release distance, the constraints im-

posed by the CD may change. Consequently, also the action chosen by the function

ActionComputation may vary. An example about this detail is reported in Fig. 5.1.

The blocks in which a plane Sij is partitioned (recall Sec. 5.2) can be grouped

according to their position with respect the enclosing rectangle. At each group of

68

5.3 Coordinator

blocks is associated a constraint that restricts the set of actions that can be chosen

by the algorithm. These associated constraints ensure that the two vehicles will reach

their goals without colliding while minimizing the completion time of the two missions.

Given an enclosing rectangle (see the example Fig. 5.3) we give the definition of the

groups of blocks and the associated constraints:

• Inner blocks: those that have all the corners inside the enclosing rectangle.

Thanks to the constrains imposed bli,lj will never be in this group of blocks.

• Antumbra blocks: those that have the upper right corner inside the region enclosed

by the lines e5, e6 and the axes of the plane. This region means that the vehicles

are approaching to collision. As long as bli,lj is in this group, there are no actions

that penalize the possibility of escaping from this zone. Thus, all the actions

remain valid.

• Penumbra blocks: those that have the upper right corner inside one of the two

regions enclosed by the lines e1, e5 and e6, as well as e2, e5 and e6. This corre-

sponds to the situation in which one vehicle has reached a segment that belongs

to the path of another vehicle. To escape from this region the following constraint

between the actions has to be satisfied:

ui + uj ≤ 1 (5.6)

• Umbra blocks: those that have all the corners inside the region enclosed by the

lines e3, e5 and e6. This corresponds to the situation in which a couple of AGVs

has reached a common portion of path. The constraints imposed by this region

are:

ui + uj ≤ 0 (5.7)

• Between umbra and penumbra blocks: those that are traversed by the segments

QA and QD. We have imposed these constraints:

ui ≤ max(−uj , 0) for bli,lj across QA

uj ≤ max(−ui, 0) for bli,lj across QD
(5.8)

• Borders blocks: those that have some corners inside the enclosing rectangle. The

associated constraints are different according to the number of corners that are

inside the enclosing rectangle: see Tab. 5.1.

69

5. ZONE CONTROL APPROACH

Table 5.1: Border constraints

Corners inside enclosing rectangle

Borders 1 2 (case a) 2 (case b) 3

AB uj ≥ ui uj ≥ max(ui, 0) ui ≤ min(uj , 0)

{
ui ≤ 0

uj ≥ 0

BC ui ≥ −uj uj ≥ max(−ui, 0) ui ≥ max(−uj , 0)
{

ui ≥ 0

uj ≥ 0

CD ui ≥ uj uj ≤ min(ui, 0) ui ≥ max(uj , 0)

{
ui ≥ 0

uj ≤ 0

DA uj ≤ −ui uj ≤ min(−ui, 0) ui ≤ min(−uj , 0)
{

ui ≤ 0

uj ≤ 0

“case a” and “case b” distinguish the cases in which respectively the horizontal

edge and the vertical edge is inside.

• Light blocks: All other blocks. There are no constrained actions.

The algorithm evaluates the block bli,lj on each plane Sij , identifies at which region it

belongs, and discards all the u ∈ Uρ that do not respect the constraints imposed by the

region. Further actions are forbidden in case they imply a movement of an AGV that

has to implement an emergency stop. In this way, the emergency handling is embedded

online in the coordination controller. If all the coordinated actions contained in UM are

discarded, the next subset UM−1 is considered and so on. The evaluation of the action

subsets terminates when is found an action set which contains at least one coordinated

action that satisfies the constraints imposed. We refer to this subset as the valid action

set.

In general, when the evaluation stops, the valid action set contains more than one

coordinated action. The final choice of the action to execute is made evaluating a cost

function D(u). We denote with sij the upper right corner of the block bli,lj (i.e. the

point (xf , yf)). For each block having sij between lines e1, e2 and e4 two points in

the plane are individuated. These points, indicated as P1 and P2 in Fig. 5.4, are the

intersection between the two half-lines λ1 and λ2 (outgoing from sij , parallel to and

directed in the positive direction of the coordinate axis) and the two rays e1 and e2.

Consider the distances Li and Lj between the corner sij and respectively the points P1

70

5.3 Coordinator

si

sj
e1

e2

e3

e4

Li
Lj

P1

P2

λ1

λ2
sij = (xf , yf)

Legend:

New added blocks

Reserved blocks

Figure 5.4: Evaluation of the distances Li and Lj

Table 5.2: Cost computation

Actions
ui 0 -1 -1 -1 0 1 0

uj 1 1 0 -1 0 ∀ -1

Cost Di(u) Li Li Li 0 0 0 0

and P2. Consider two vehicles at the configuration sij , Li (or Lj) corresponds to the

amount of delay (recall that the parameterization of the paths is based on time) that Ai

(or Aj) accumulates, due to its stop or backward motion, while the other one advances.

Obviously, no delay is accumulated for the vehicle that can advance. The same delay

is accumulated also if Aj (or Ai) move backward, and the other remain motionless. If

ui = uj , no delay is accumulated since this choice does not tend to resolve the collision.

In Tab. 5.2 is reported the delay Di(u) accumulated by Ai according to the coordinated

action u considered.

For all actions u = (u1, . . . , uM) in the valid action set, the algorithm computes for each

vehicle Ai, the maximum Di(u) evaluated over all planes for which it is defined (recall

that the distances Li and Lj , which determine the cost Di(u), are defined for each plane

in which sij between lines e1, e2 and e4). The overall cost D(u) of the coordinated

action considered is the sum of all the costs Di(u) associated to each vehicle:

D(u) =

M∑
i=1

Di(u) (5.9)

Once that each valid action has been assigned to a cost, the algorithm picks a minimum

71

5. ZONE CONTROL APPROACH

cost action u∗:

u∗ = argmin
u∈Uρ

D(u) (5.10)

This is the action returned by Action choice. Minimizing (5.9) allows to reduce the

idle time of the starving vehicles. This allows to reduce the time factor which has been

proposed as a performance measure for the evaluation of an AGV system.

Remark 10 If the initial segment of a path pi is colliding with a segment of another

path pj, the plane Sij has a collision block adjacent to the line si = 0. This situation can

lead to a deadlock situation that can be avoided by defining some additional constraints

which the valid action set must satisfy.

5.4 Experiments

Some simulation tests have been developed in MATLAB to evaluate the improvement of

the new algorithm described by this chapter. The positions of the vehicles are updated

every 0.5s. A speed error in the simulated motion of the vehicles is introduced in order

to take into account all possible factors that may affect the real speed of the vehicles

(e.g. AGV dynamics). The vehicles are supposed to move on a roadmap used in a

real industrial plant. In its real implementation this roadmap is composed both of

curvilinear and straight line segments. In order to simplify the simulation software, all

the curvilinear segments have been replaced by straight line segments. However, this is

only a graphical approximation since the underlying coordination algorithm considers

the effective trajectory of the vehicles. The nominal speed with which a vehicle has

to cover each segment is defined during the roadmap design and it can be different

according to the type of vehicle and the load that it carries. As described in Chap. 2,

the framework required to manage an AGV system is composed of many different

functionalities. The purpose of the experiments is not to evaluate how the proposed

algorithm interplays with all those functionalities. Thus concerns like deadlocks which

are determined by the interactions between different functions of the framework, is

not considered here. Nevertheless, the transportation tasks that are assigned to each

vehicle are representative of a real working condition of the system.

Time Factor ([42]) has been used to measure system performance in the tests (see

(4.6) in Sec. 4.2). The average time factors over all vehicles from 29 simulation tests

are reported in Fig. 5.8.

72

5.4 Experiments

Aiming at simulating different traffic situations, we have tested our algorithm on

three different parts of the overall roadmap: “Area A”, “Area B” and “Area C” (see

Fig. 5.6).

The maximum number of vehicles that can be employed depends on the amount

of pick/drop stations within each part. We have also performed some tests using the

overall roadmap and deploying up to ten vehicles (see Fig. 5.7).

Each mission is defined by four way-points: the position of the vehicle when a new

transportation task is assigned to it, the pick-up and drop off positions and the final

rest position. In Fig. 5.6 and Fig. 5.7 the tests are illustrated. The starting, pick-up,

drop off and rest positions are marked with S1, . . . , S10, P1, . . . , P10, D1, . . . , D10 and

R1, . . . , R10 respectively.

The experiments 1-9 have been conducted with a fleet of 4 vehicles running in Area

A. The missions are randomly generated and assigned to each vehicle. The aim of this

group of experiments is to analyze the traffic management of the fleet when vehicles

have to traverse a narrow passage. To this end, the tests consider only the motion of

the vehicles between the pick-up and drop off stations which are placed at opposite

sides of the narrow passage. The results are reported in the first row of Fig. 5.8. In the

rest of the experiments the whole mission of each AGV is considered. The groups of the

experiments 10-12, 13-17 and 18-23 have been conducted in Area B, Area C and in the

overall layout respectively. The tests of each group have been defined incrementally.

For example, considering the first group, test 10 considers only two missions (i.e. two

vehicles), test 11 has been defined from test 10 by adding a new randomly generated

mission and so on. The incremental construction of the groups of experiments is the

reason for which the time factor increases with the increasing of the number of vehicles

considered (see rows 2-4 of Fig. 5.8). The last group of tests (from 24 to 29) is defined

by randomly generating and assigning a set of ten missions spanning the overall layout.

From this set of experiments it is clear that there is not a clear advantage of one

algorithm over the other. The average overall test results put in evidence that the

performance of the proposed algorithm in some cases is worse than the algorithm that

has been customized by the company in order to serve the considered plant. However,

we should consider that the original requires up to fifteen days of engineer work to

be fine tuned. Differently, the proposed algorithm is able to coordinate vehicles on

different roadmaps without the need of any additional engineering work.

73

5. ZONE CONTROL APPROACH

As claimed in the chapter, our algorithm considers the possibility that vehicles can

be blocked by some unexpected events or rerouted, due to a mission reassignment. This

property has been verified by adding to our simulation software a functionality that

allows to manually block a set of vehicles or to change their paths. Unfortunately the

simulator used to run the algorithm of the company does not have these functionalities,

thus we cannot compare the two algorithms in these situations.

5.5 Conclusions and Future Work

In this chapter we propose an algorithm for coordinating a group of AGVs developed

to be implemented into the real industrial framework considered in Sec. 2.1. The main

advantage of our approach is that it saves several days of engineering work each time

new plant must be deployed since it is applicable to any kind of roadmap without the

need of specific traffic rules. Simulation tests on a real roadmap have been executed in

order to compare the performance of our algorithm with the one currently implemented

by the company. The results shows that the implementation of our algorithm into the

existent framework can slightly improve the performance of the system.

From a computational complexity point of view, in the worst case the proposed

algorithm is still exponential (see Remark 8) in the number of AGVs. Since in real

applications up to 50 AGVs have to be considered, in the next chapter a polynomial

time coordinator will be presented.

74

5.5 Conclusions and Future Work

2
1

21

2

1

2

1

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

AGV 1

A
G

V
 2

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

AGV 1

A
G

V
 2

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

AGV 1

A
G

V
 2

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

AGV 1

A
G

V
 2

2
1

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

AGV 1

A
G

V
 2

2

1
0 10 20 30 40 50 60 70

0

5

10

15

20

25

30

AGV 1

A
G

V
 2

0 5 10 15 20 25 300

5

10

15

20

25

AGV 1

A
G

V
 2

2

1
0 5 10 15 20 25 30

0

5

10

15

20

25

AGV 1

A
G

V
 2

21
0 5 10 15 20 25 300

5

10

15

20

25

AGV 1

A
G

V
 2

2

1

0 5 10 15 20 25 300

5

10

15

20

25

AGV 1

A
G

V
 2

0 5 10 15 20 25 300

5

10

15

20

25

AGV 1

A
G

V
 2

21

2

1

0 5 10 15 20 25 300

5

10

15

20

25

AGV 1

A
G

V
 2

2
1

0 5 10 15 20 25
0

5

10

15

20

25

30

AGV 1

A
G

V
2

2

1

0 5 10 15 20 25
0

5

10

15

20

25

30

AGV 1

A
G

V
2

1

2

0 5 10 15 20 25
0

5

10

15

20

25

30

AGV 1

A
G

V
2

2
1

0 5 10 15 20 25
0

5

10

15

20

25

30

AGV 1

A
G

V
2

1

2

0 5 10 15 20 25
0

5

10

15

20

25

30

AGV 1
A

G
V

2

2

1

0 5 10 15 20 25
0

5

10

15

20

25

30

AGV 1

A
G

V
2

2

1

Frontal collision Intersection collisionNose to tail collision

Figure 5.5: Some snapshots of three running examples and the corresponding coor-

dination diagrams are reported. For simplicity (with M vehicle the CD would be M -

dimensional) only two vehicles are employed. The first two examples illustrate a potential

collision in bottleneck segments (recall that the coordination algorithm cannot change the

assigned path).

75

5. ZONE CONTROL APPROACH

Figure 5.6: Snapshots of the experiments conducted in the three parts of the layout.

76

5.5 Conclusions and Future Work

9

5

7

3

4

8
1

2

6

S2P2

D2

R2

S1

P1 R1

S9

P9

R9S7

P7

P8

D8

S5

P5

D5

R5

S6

S4

P4
D4

R4

P3
D3

R3

P6

S3

S8
D1

D6

D7

D9

R6

R7

R8
Overall plant

10 m
Area A

Area B

Area C

Figure 5.7: Snapshot of one experiment conducted considering the overall layout.

77

5. ZONE CONTROL APPROACH

Figure 5.8: Results of the comparative tests (considering up to 10 vehicles in the overall

layout).

78

Chapter 6

Zone controlled without

backtracking

This chapter presents an improved version of the coordinator algorithm described in

Chap. 5. The main improvement is the reduction of the time complexity. While for the

previous solution the complexity is exponential with respect to the number of vehicles,

the current coordinator has a polynomial time complexity. This improvement has been

achieved mainly by applying an heuristic algorithm for the action selection problem.

Differently from before, each vehicle is only allowed to wait or to move forward along

its path. The coordinator computes the maximum set of AGVs that are allowed to

advance while respecting the constraints.

A formal analysis of the computational time complexity is given. The performances

obtained with the proposed TMS are evaluated through some tests involving up to 25

vehicles on a paths layout used in a real industrial plant.

The chapter is organized as follow. In Sec. 6.1 the coordination algorithm is pre-

sented. In Sec. 6.2 provide some simulation results. Finally, in Sec. 6.3 some conclusions

are drawn and some future work are mentioned.

6.1 Coordination algorithm

6.1.1 Segment reservation

In this section an incremental algorithm (see Alg. 7) which determines the reserved

segments (i.e., the segments that the AGV is allowed to track) for each vehicle in such

79

6. ZONE CONTROLLED WITHOUT BACKTRACKING

Algorithm 7 Coordinator algorithm

1: function Coordinator(CD, l1, . . . , lM , S)

2: F ← Update Forbidden Regions(CD)

3: while S �= ∅ do
4: u∗ ← Action Computation(F, S, l1, . . . , lM)

5: for all i ∈ S do

6: l′i = li + u∗i
7: if u∗i = 1 then

8: if ∃ kj ∈ [cj , . . . , lj] such that bli,kj is a collision block then

9: return li � Return previous value

10: S = S \ i
11: end if

12: if l′i = ni or Wi(l
′
i) > W̄ then � Not starving

13: return l′i
14: S = S \ i
15: end if

16: else � If no segments are reserved

17: return l′i
18: S = S \ i
19: end if

20: end for

21: end while

22: end function

a way that no collisions take place is presented.

Remark 11 In this chapter we exploit again the definitions given in Sec. 5.3.1 about

the list of reserved segments and the starving condition.

At each period the algorithm starts a while loop (see line 3 in Alg. 7) in which, for

each starving vehicle, the last reserved segment li is updated. During the iterations

of the loop the algorithm updates only the reserved segments lists corresponding to

a subset S of vehicles. At the first iteration the set S contains the starving vehicles.

A vehicle Ai is removed from S (i.e., li is no more updated) if Wi(li) ≥ W̄ , which

means that it is no more starving. An AGV that has to implement an emergency stop

is automatically removed from S. In this way, the emergency handling is embedded

online in the coordination controller. When the S becomes empty the loop terminates.

80

6.1 Coordination algorithm

Collision block

This segment
can not be allocated

Reference block

si

sj

ci li l′i

cj

lj

l′j
(xs, ys)

(xf , yf)

bci,cj

bli,lj

Figure 6.1: Example of the CD for two vehicles. The segment l′i can not be added to the

reserved list since the block bl′i,cj is a collision block.

At each iteration the algorithm evaluates the last reserved segment li of each vehicle

Ai (also those that are not in S) in order to chose how the reserved list of each vehicle

has to be updated. This computation is done by Action Computation (Alg. 8) which

returns a binary action ui ∈ {0, 1} for each AGV. If ui = 1 a new segment is added to

the reserved list, i.e. li is incremented by 1, (see line 6 in Alg. 7). Otherwise, if ui = 0

no segments are added and the Ai is removed from the set S. The block bli,lj identified

by this set of segments is called reference block.

6.1.2 Action computation: forward or stop

In this section the algorithm for the selection of the coordinated action u is presented.

In order to reduce the computational complexity of the algorithm, we have limited the

possible actions for each vehicle to only two values (forward and stop).

The proposed algorithm exploits an explicit representation of the CD that is ob-

tained by approximating each collision region with a convex polygonal region (line 2

in Alg. 7), as shown in Fig. 6.2. We refer to this polygon as forbidden region and we

81

6. ZONE CONTROLLED WITHOUT BACKTRACKING

si

sj

Ti

Tj

A B

C

D

EF

G

−C1

C2

C3Xmin

Ymin

Xmax

Ymax

Figure 6.2: A collision region and the forbidden region with which it is approximated.

denote it with F. The polygon corresponds to the region enclosed by seven edges: two

horizontal (AB and FE), two vertical (AG and CD), two parallel to the bisector of the

plane (BC and GF) and one orthogonal to the bisector of the plane (ED); all tangent

to the obstacle and non coincident with each other. In particular ED is tangent to

the farthest point from the origin. Of course there are some instances of the forbidden

region where the segments BC, GF and ED degenerate into a point (e.g., when the

collision region is square). This approximation is justified by the observation that fre-

quently, in AGV application, the collision regions have a strip shape (see Sec. 3.2.3).

Since the directions of each edge are fixed, the forbidden region can be defined using

seven parameters, one for each edge: Ymin for AB, Ymax for FE, Xmin for AG, Xmax for

CD, C1 for BC, C2 for GF and C3 for ED. Note that the definition of forbidden region

is a refinement of the definition of enclosing rectangle given in Sec. 5.3.2. This allows

to reduce the number of action constraints defined for a given plane of coordination

diagram.

The blocks in which a plane Sij is partitioned can be grouped according to their

positions with respect to the forbidden region F. At each iteration the algorithm

evaluates at which group the reference block bli,lj belongs. On each plane Sij , the

position of bli,lj is evaluated by the function Find Constraints (see Alg. 9). Alg. 9

extracts, at line 2, the coordinates (xs, ys) and (xf , yf) and determines the position of

82

6.1 Coordination algorithm

Algorithm 8 Action Computation

1: function Action Computation(F, S, l1, . . . , lM)

2: V = S, E = ∅, ui = 0, ∀i
3: for all i ∈ S do

4: for all j = 1, . . . ,M do

5: κ = Find Constraints(li, lj ,F)

6: if κ = “ui + uj ≤ 1” then

7: E = E ∪ (i, j)

8: else if thenκ = “uj = 0”

9: V = V \ {j}
10: uj = 0

11: else if κ = “ui = 0” then

12: V = V \ {i}
13: ui = 0

14: else if κ = “ui, uj = 0” then

15: V = V \ {i, j}
16: ui = 0, uj = 0

17: end if

18: end for

19: end for

20: Z = Maximum Independent Set(V,E)

21: return ui = 1, ∀i ∈ Z

22: end function

bli,lj with respect to the forbidden region. The points (xs, ys) and (xf , yf) are compared

with the parameters of the forbidden region in order to determine in which region the

block belongs. Once that the region has been determined, the function outputs the

constraint on the actions ui and uj of the AGVs Ai and Aj through the variable κ. At

each group of blocks (also called region), a constraint that restricts the set of actions

that can be chosen by the algorithm is associated. These constraints ensure that the

two vehicles will reach their goals without colliding. Given a forbidden region (see e.g.,

Fig. 6.3) the groups of blocks and the associated constraints are:

• Antumbra blocks: As long as the reference block bli,lj is in this group, all the

actions remain valid (i.e. ui, uj ∈ {0, 1}).

83

6. ZONE CONTROLLED WITHOUT BACKTRACKING

si

sj

Legend of blocks

Light

Antumbra

Penumbra right

Penumbra left

Decision region

Umbra

Collision

Figure 6.3: The colors denote the block grouping. For each group the actions that are

allowed are represented with black arrows.

• Penumbra blocks: To escape from this region the following constraint between

the actions has to be satisfied:

ui = 0 if bli,lj in Penumbra left
uj = 0 if bli,lj in Penumbra right

(6.1)

• Decision blocks: When the reference block is in this region it has to be chosen

which AGV has to stop in order to avoid the collision region. The following

constraint is imposed:

ui + uj ≤ 1 (6.2)

• Umbra blocks: When bli,lj is in this region, no action are allowed to both the

vehicles. Thanks to the constrains imposed the reference block bli,lj will never

be in umbra group. However, a bad initial positioning of the fleet at start-up or

84

6.1 Coordination algorithm

a system failure could lead to this situation. In this case both the vehicles are

stopped an error message is issued.

• Light blocks: All other blocks. There are no constrained actions.

For the sake of brevity, the part of the code that identifies the blocks that overlaps

the forbidden region is synthesized by the function FindInside. When the reference

block bli,lj has one corner inside the forbidden region (see the example in Fig. 6.5), this

function checks the blocks of the CD which are above it (i.e. ∀bki,ljki ∈ [li . . . ni]) and

on right side (i.e. ∀bli,kjkj ∈ [lj . . . nj]). If no collision blocks are found, bli,lj is Light

and the function returns κ = “∅”; if a collision block is found in both sides, bli,lj is

Inner and κ = “ui, uj = 0”; if a collision block is found only in the above side, bli,lj is

Penumbra right and κ = “uj = 0”; if a collision block is found only in the right side,

bli,lj is Penumbra right and κ = “ui = 0”.

The problem of finding a coordinated action u∗ which maximize the advancement

of the vehicles in S can be expressed as a Binary Integer Program (BIP) in which each

constraint is either unary (eq. (6.1)) or binary (eq. (6.2)). The unary constraints are

trivially satisfied since they simply require to put the related variable to 0 (see lines

10, 13 and 16 in Alg. 8). The remaining problem can be stated as follows.

Max U =
∑

ui

Subject to

{
ui + uj ≤ 1 ∀(i, j) ∈ E
ui ∈ {0, 1} ∀i ∈ V

(6.3)

Where V is the set of actions ui that are not constrained by unary constraints and E

are the pairs of actions that are constrained by binary constraints. This particular BIP

can be represented as a undirected graph G = (V,E) where V is the set of vertices

and the E is the set of edges. This fact allows to transform this optimization problem

into a Maximum Independent Set (MIS) problem. Given an undirected graph, the

MIS problem consist of finding a maximum-cardinality subset Z of vertices such that

no two vertices in Z have an edge between them. By solving the MIS for the graph

G = (V,E), the solution Z indicates which variables have to be set to 1 in order

to obtain a solution for the problem in (6.3) (see [43]). In other words, the set Z

corresponds to the maximum set of AGVs that can advance without violating any of

the constraints.

85

6. ZONE CONTROLLED WITHOUT BACKTRACKING

In order to find the set Z, the heuristic procedure developed in [43] is applied (see

line 20 in Alg. 8). This algorithm incrementally removes the vertices which are not

within Z. At each iteration a vertex is selected and removed from the graph along with

all its incident edges. The algorithm is based on two characteristics of the vertex: the

degree, which is the number of neighbors of the vertex, and the support, which is the

sum of the degree of the neighbors of the vertex. Among the vertices which maximize

the support, the one with the minimum degree is selected. The process terminates

when all edges of the graph have been removed. The set of remaining vertices is Z.

Note that, for our application, it is likely that there could be tie situations where more

than one vertex exists with the same maximum support and minimum degree. In this

case, one of these vertices can be indifferently selected. This fact can be exploited in

order to further reduce the time that each vehicle has to stop for the traffic. The delay

accumulated by a vehicle in order to avoid a collision with another one can be evaluated

by using the CD. When a pair of vehicles (Ai and Aj) is approaching to collision, the

corresponding block bli,lj is in Antumbra or in Decision region within the plane Sij (see

e.g., Fig. 6.4). We denote with sij the upper right corner of the block bli,lj (i.e., the

point with coordinates defined by the right limit of the intervals Δi
li
and Δj

lj
) and with

e1 and e2 respectively the lines coincident with the borders BC and GF of the forbidden

region. For each block in Antumbra or in Decision region for which sij is between lines

e1, e2 two points in the plane are individuated. These points, indicated as P1 and P2

in Fig. 6.4, are at the intersections between the two rays λ1 and λ2 (outgoing from sij ,

parallel to and directed in the positive direction of the coordinate axis) and e1 and e2.

The distances between sij and the points P1 and P2, are denoted respectively with Lj

and Li. Consider two vehicles at the configuration sij , Li (or Lj) corresponds to the

amount of delay (recall that the parameterization of the paths is based on time) that

Ai (or Aj) accumulates, due to its stop, while the other one advances. The maximum

delay which can be accumulated by each vehicle due to its stop can be determined by

considering all planes of the CD. We have modified the algorithm in [43] so that, when

a tie situation occurs, the vertex corresponding to the vehicle with the minimum value

of delay is selected from among all candidates (recall that the vertices selected during

the iterations of the algorithm are those corresponding to the actions that will be set

to 0).

86

6.1 Coordination algorithm

Reference block si

sj

e1

e2

Li

Lj

P2

P1

λ2

λ1
sij

Figure 6.4: Evaluation of the distances Li and Lj

6.1.3 Multiple collision regions on a single plane

The set of collision blocks on a plane Sij can be composed of many disjoint components

(see e.g., Fig. 6.2). We refer to these separated components as collision regions. In

order to manage this case, some features must be added to the algorithm. First of

all, a forbidden region is defined for each collision region. When two forbidden regions

within the same plane are overlapping, a new forbidden region which encloses both the

collision regions is defined (see Fig. 6.5).

Each forbidden region that is defined for a plane of the CD induces a different

blocks partitioning and thus many different constraints can be associated to the same

block bli,lj . The function Action Computation runs the Find Constraints routine

for each forbidden region and then the most restrictive constraint is retained. If the

constraints imposed by two forbidden regions are respectively ui = 0 and uj = 0 the

algorithm checks the neighboring blocks of bli,lj in order to determine which constraint

must be considered: if bli+1,lj is a collision block, the constraint is ui = 0, if bli,lj+1 is

a collision block, the constraint is uj = 0, otherwise the constraint of the region that

is closer to the origin of the diagram is considered. The case in which both bli+1,lj and

bli,lj+1 are colliding is not considered since in this case the blocks are enclosed by the

same forbidden region. The delay evaluated in order to brake the ties of the MIS solver

can be computed almost in the same way described in Sec. 6.1.2. On each plane, the

values L1 and L2 are computed for each forbidden region with respect to which the

block bli,lj is in Antumbra or in Decision region and the the maximum value is retained.

87

6. ZONE CONTROLLED WITHOUT BACKTRACKING

si

sj

Figure 6.5: A pair of overlapping forbidden regions (in dark gray) are merged. Three

examples of blocks inside the forbidden region are represented in red. In order to determine

the constraint to apply when a block overlaps the forbidden region, the position of the

collision blocks, above and on the right of the considered block is checked.

6.1.4 Complexity analysis

In summary, the algorithm Coordinator defined in this section (see Alg. 7) updates

the lists of reserved segments that each vehicle Ai is allowed to cover. The coordinated

action u, with respect to which the lists are updated, is computed by the algorithm

Action Computation (see Alg. 8). This algorithm finds the coordinated action which

maximizes the advancement of the fleet subject to a set of constraints. The constraints

are defined by the function Find Constraints (see Alg. 9) according to the configu-

rations of every pair of AGVs (represented by the block bli,lj). For the analysis of the

time complexity of the proposed algorithm a fleet of M starving AGVs is considered.

The maximum number of segments composing the path of an AGV is denoted with n.

Note that the number of starving vehicles can be reduced by adopting a small value of

the time period δ: the less is the time period between any two consecutive iterations,

the fewer are the vehicles that reach the starving condition in that period.

88

6.2 Experiments

In a plane Sij , the maximum number of disjoint collision regions is O(n2). This

happens, for example, if the paths of the vehicles Ai and Aj repetitively traverse the

same group of colliding segments. However in real applications this is never the case

and a reasonable upper bound is O(n). This corresponds to the case in which the paths

of Ai and Aj repetitively traverse a sequence of different groups of colliding segments.

At the first execution a set of new paths is assigned to all the vehicles, thus the

forbidden regions must be computed for all M(M − 1)/2 planes Sij . The number of

blocks in which Sij is partitioned is n2. Checking for all collision blocks within a plane

and identifying the connected components takes O(n2) time. Considering O(n) disjoint

collision regions the time complexity of computing all the forbidden regions on a single

plane is O(n3). The complexity of computing the forbidden regions for the entire CD

is O(M2n3).

The maximum number of iterations of the while loop in Coordinator (line 3

in Alg. 7) is n. At each iteration, the function Action Computation (see Alg. 8)

evaluates the actions constraints by executing the function Find Constraints (see

Alg. 9) for each plane. Since Alg. 9 requires constant time, the overall time required

to evaluate the constraints on all planes is O(M2). If multiple collision regions are

considered on each plane the complexity becomes O(M2n). Once that all the constraint

have been collected the MIS problem can be solved executing the function Maximum

Independent Set (line 20 in Alg. 8). The time complexity of the algorithm used to

solve the MIS problem ([43]) is related to the the number of vertices of the graph. If all

AGVs are starving at the same time the number of vertices is M and the time required

by algorithm is O(M3). This upper bound is derived considering that the maximum

number of iterations of the algorithm is M and that, at each iteration, the computation

of the minimum degree and the maximum support of all the vertices takes O(M2).

The overall complexity of the algorithm is

O(M2n3 +M2n+M3) (6.4)

6.2 Experiments

In order to test the effectiveness of the presented TMS some simulation experiments

have been executed. The two aspects that are evaluated are the computational time

of the algorithm and the time performances with which the transportation tasks are

89

6. ZONE CONTROLLED WITHOUT BACKTRACKING

Table 6.1: Computation times of our TMS [ms].

Number of vehicles

10 15 20 25

Max. Avg. Max. Avg. Max. Avg. Max. Avg.

Update F 93 33 201 58 336 131 629 95

Seg. Res. 213 16 266 27 547 56 908 67

executed. The simulation framework emulates the real control framework described in

Chap. 2. Three processes are executed on the same PC (an Intel Pentium D 3.20 GHz):

• the mission manager emulator (MME) which generates the transportation re-

quests according to a statistical model of the material flow within the considered

plant.

• the vehicle manager emulator (VME) which interfaces the TMS with the MME

and the AGVs. The state of the AGVs is internally emulated by this process.

• the TMS, which communicates with the VME through a UDP protocol. Our

TMS is implemented in MATLAB.

For testing the computational requirements of the coordinator algorithm (see Sec. 6.1),

the vehicles are supposed to move on a roadmap used in a real industrial plant which

is composed both of curvilinear and straight line segments (see Fig. 6.6). The size of

the physical layout is 220m x 150m. The roadmap has 988 pick/drop stations and 4515

trajectory segments. The maximum driving speed of the AGVs is 1.5 m/s. The average

number of segments constituting a path is 25. For each execution of theCoordinatior,

the average number of iterations of the while loop (see Alg. 7) is 2. Four simulations

running 10, 15, 20 and 25 AGVs have been executed. The average and maximum

time required to define the forbidden regions F (line 3 in Alg. 7) and to update the

lists of reserved segments (time to execute the while loop in Alg. 7) are reported in

Tab. 6.1. The computational burden required by the other functionalities of the TMS

(see Chap. 2) is negligible. The AGVs send their positions and status to the TMS every

δ = 0.5s. In some cases the coordinator takes a longer time run. The messages that

are received when the TMS is busy executing the coordinator algorithm, are discarded.

90

6.3 Conclusions and future work

However, when a vehicle is allowed to advance, the list of reserved segments is long

enough to let it to advance for 5s. Thus the loss of messages from the AGVs does not

affect the motion of the vehicles.

In order to evaluate the performances with which the transportation tasks are exe-

cuted we consider two standard measures denoted as time to pick (TTP) and time to

drop (TTD). The TTP is the time a load has to wait at the source station before it is

picked by an AGV. The TTD is the time required by an AGV to transport the load

to the destination. These tests are executed running a simulation on a smaller plant

(size: 260m x 45m, 179 pick/drop stations and 1191 trajectory segments) with 7 AGVs.

The engineers of Elettric80 have decided to to test the TMS on this layout since it is

more affected by traffic congestions. The ratio of loads generation is 140 per hour. The

duration of the simulations is about 70 minutes. The proposed algorithm is compared

to the one proposed by Elettric80 considering the results from three simulation runs.

The average and maximum values of the TTP and TTD are reported in Tab. 6.2. Our

TMS allows to obtain TTP values that are lower than the ones obtained by Elettric80.

This is mainly due to the better strategy implemented by our TMS for the mission

assignment (see Sec. 2.2.1). Considering the TTD values there is not a clear advantage

of one algorithm over the other. However, we should consider that the original requires

up to 15 days of engineer work to be fine tuned. Differently, the proposed algorithm is

able to coordinate vehicles on different roadmaps without the need of any additional

engineering work.

6.3 Conclusions and future work

In this chapter we have proposed an algorithm for coordinating multiple AGVs moving

on a predefined roadmap for an industrial application. The CD has been applied within

an existent industrial framework which implements the zone control approach for spec-

ifying motion commands to the vehicles. The overall time complexity of the proposed

algorithm is polynomial with respect to the number of AGVs. This is a considerable

improvement of the algorithm presented in Chap. 5, the complexity of which is expo-

nential. The computational requirements have also been evaluated through simulations

involving up to 25 vehicles on a real roadmap. Simulation tests have been executed

91

6. ZONE CONTROLLED WITHOUT BACKTRACKING

Table 6.2: Performances comparison.

Proposed TMS

Sim. No. TTP [s] TTD [s]

Max. Avg. Max. Avg.

1 251 77 191 86

2 242 81 245 89

3 152 69 200 85

Elettrc80 TMS

Sim. No. TTP [s] TTD [s]

Max. Avg. Max. Avg.

4 241 90 253 87

5 223 78 159 83

6 256 93 176 85

also in order to compare the performance of our algorithm with the one currently im-

plemented by the company. The results show that currently, the implementation of

our algorithm into the existent framework, can improve the performance of the system.

Another advantage of our approach is that it saves several days of engineering work

each time a new plant must be deployed since it is applicable to any kind of roadmap

without the need of specific traffic rules.

In this last algorithm we have removed the possibility for the vehicles to move back-

ward. However it is currently under development a strategy for allowing the AGVs to

backtrack along their paths without significantly increasing the computational com-

plexity. When a vehicle is required to go backward, its path can be modified so that

the the forward motion along the new path will correspond to a backward motion along

the previous one. This method can be seen as a special case of dynamic routing. The

amount of segments to be covered in backward motion is determined by using the CD.

This could also be the first work in which the CD is exploited for dynamic routing

purposes.

92

6.3 Conclusions and future work

Algorithm 9 Find Constraints

1: function Find constraints(F, S, l1, . . . , lM)

2: (xs, xf, ys, yf) = Block Corners(bli,lj)

3: (C1, C2, C3, Xmin, Ymin, Xmax, Ymax) = F

4: if yf − xs ≥ C1 ∧ ys− xf ≤ C2 then

5: if xf ≥ Xmin ∧ yf ≥ Ymin then

6: if xs < Xmin then

7: if ys < Ymin then

8: κ = “ui + uj ≤ 1” � Decision region

9: else

10: κ = “ui = 0” � Penumbra left

11: end if

12: else if ys < Ymin then

13: κ = “uj = 0” � Penumbra right

14: else if xf ≤ Xmax ∧ yf ≤ Ymax ∧
15: ∧xf + yf ≤ C3 then

16: κ = FindInside(CD) � Forbidden region

17: else

18: κ = “∅” � Light

19: end if

20: else

21: if xf ≥ Xmin then

22: if xs < Xmin then

23: κ = “ui + uj ≤ 1” � Decision region

24: else

25: κ = “uj = 0” � Penumbra right

26: end if

27: else if yf ≥ Ymin then

28: if ys < Ymin then

29: κ = “ui + uj ≤ 1” � Decision region

30: else

31: κ = “ui = 0” � Penumbra left

32: end if

33: else

34: κ = “∅” � Antumbra

35: end if

36: end if

37: else

38: κ = “∅” � Light

39: end if

40: return κ

41: end function

93

6. ZONE CONTROLLED WITHOUT BACKTRACKING

25m

Figure 6.6: Layout of the roadmap used for the test with 25 AGVs. This roadmap is

used on a real plant.

94

Chapter 7

Conclusions

The work realized during the last three years and presented in this thesis has been de-

voted to the research of a new strategy for coordinating the motion of multiple AGVs

operating in a dynamic industrial environment (see Chap. 1). This coordination strat-

egy has to be implemented into the existing framework developed by Elettric 80 S.p.A.,

a company producing end-of-line automation solutions and AGVSs for warehouses and

production plants.

All the four solutions explored in this dissertation exploit the CD ([38]). This

tool allows to represent the possible collisions that can take place between any pair

of AGVs as regions within a set of planes. The CD can thus be used in order to

transform the coordination problem of N vehicles as a path planning problem within

an N -dimensional space.

The first issue that has to be considered is the construction of the CD. Exploiting the

structure of the application we are dealing with, an efficient procedure for composing

the CD has been developed in Sec. 3.3. The possible collisions that can take place

between AGVs and the induced geometry of the resulting CD are classified in Sec. 3.2.3.

This classification motivates the approximated representations (enclosure rectangles

and forbidden regions) of the CD which allows to develop the coordination algorithms

proposed in this thesis.

The first approach that has been presented (see Chap. 3) is an algorithm that com-

putes a complete coordination plan for the overall path that each vehicle has to execute.

The algorithm generates a set of possible coordination plans and then gives the optimal

one. Even if this approach has been successfully applied in a simulation experiment

95

7. CONCLUSIONS

involving 10 vehicles, the computational complexity is too high for an application in a

real industrial environment. In fact, the path of the AGVs are frequently modified and

unexpected events may prevent the AGVs from executing the planned coordination. In

these cases the coordination plans have to be discarded and AGVs needs to stop and

wait for a new plan.

In order to coordinate the motion of AGVs within a dynamic industrial environment,

where a lot of unexpected events may happen, an incremental coordination is more

suitable. In Chap. 4 an algorithm which determines the motion of the AGVs step

by step is designed. The approach is based on a mapping between the configuration

space of the fleet and a set of motion constraints that the AGVs must satisfy in order

to avoid mutual collisions. At each iteration the algorithm defines the motion of the

AGVs considering the actual configuration reached by the fleet. Since the motion

of the AGVs is not planned in advance, unexpected events can be considered online

without the need of replanning. This algorithm has been compared with the complete

algorithm both from a computational complexity and a performance point of view.

The time factor ([42]) has been used as a performance measure. The results shows

that, even if the performance is lower than that obtained with the complete approach,

the computational complexity is orders of magnitude lower than that of the complete

approach.

In order to simplify the problem, the above mentioned approaches does not take

into account the vehicles dynamics. Moreover they can not be easily implemented into

the considered industrial framework (see Chap. 2). These issues are considered by the

approach described in Chap. 5 and Chap. 6. The algorithm presented Chap. 5 is the

implementation of the incremental algorithm into the zone control framework used in

the considered application. A partitioned CD has been defined and the constraints

introduced in Sec. 4.1 have been adapted in order to consider the new structure of

the CD. The main advantage of this solution is that it allows to save several days of

engineering work each time a new plant must be deployed since it is applicable to any

kind of roadmap without the need of specific traffic rules. Simulation tests on a real

roadmap have been executed in order to compare the performance of the algorithm with

the one currently implemented by Elettric 80. The results shows the implementation

of our algorithm into the existent framework, can slightly improve the performance

of the system. The main limitation on the application of this algorithm in a real

96

implementation is the complexity which in the worst case is still exponential in the

number of AGVs.

This problem has been solved with the last algorithm, proposed in Chap. 6. This

improvement has been achieved mainly by applying a polynomial time heuristic algo-

rithm for the action selection problem. Differently from before, each vehicle is only

allowed to wait or to move forward along its path. The coordinator computes the

maximum set of AGVs that are allowed to advance while respecting the constraints. A

formal analysis of the computational time complexity shows that the overall complex-

ity of this coordinator algorithm is cubic in the number of AGVs. The performances

obtained with the proposed TMS are evaluated through some tests involving up to 25

vehicles on a paths layout used in a real industrial plant. Even if the vehicles are not

allowed to move backward, as in the previous algorithm, our solution still gives better

performances with respect to the one used by Elettric 80.

Besides the study for the development of the coordinator algorithm, the presented

work also proposes a solutions for other important issues that have to be considered

by a TMS (see Chap. 2). The main functionalities that have been developed are: task

dispatching, vehicle routing, management of idle AGVs. In particular, the transport

tasks are assigned to available AGVs by solving a linear assignment problem through

the Jonker Volgenant algorithm. The objective is to minimize the sum of the times

required by each vehicle to reach the pick station assigned to it. The same criteria is

applied for dispatching the idle vehicles to a set of predefined home positions.

97

7. CONCLUSIONS

98

List of Author’s Publications

[1] R. Olmi, C. Secchi, and C. Fantuzzi. Coordination of multiple AGVs

in an Industrial application. In IEEE Int. Conf. on Robotics and Automation,

pages 1916–1921, May 2008.

[2] R. Olmi, C. Secchi, and C. Fantuzzi. Coordination of Industrial AGVs.

Int. J. Vehicle Autonomous Systems, 9(1/2):5–25, 2011.

[3] R. Olmi, C. Secchi, and C. Fantuzzi. A Traffic Management System for

Automated Guided Vehicles in Automatic Warehouses. Int. J. Autonomous

Robots, Special issue: Motion Safety for Robots, Under review, 2011.

[4] R. Olmi, C. Secchi, and C. Fantuzzi. Coordination of Multiple Robots

with Assigned Paths. In 7th IFAC Symp. on Intelligent Autonomous Vehicles,

2010.

[5] R. Olmi, C. Secchi, and C. Fantuzzi. Coordinating the motion of multi-

ple AGVs in automatic warehouses. In IEEE - ICRA10 - Int. Workshop on

Robotics and Intelligent, Transportation System, 2010.

[6] D. Ronzoni, R. Olmi, C. Secchi, and C. Fantuzzi. AGV Global Localiza-

tion Using Indistinguishable Artificial Landmarks. In IEEE Int. Conf. on

Robotics and Automation, 2011.

[7] R. Olmi, C. Secchi, and C. Fantuzzi. A Coordination Technique for

Automatic Guided Vehicles in an Industrial Environment. In IFAC Symp.

on Robot Control, 2009.

99

LIST OF AUTHOR’S PUBLICATIONS

100

Bibliography

[8] R. Jonker and A. Volgenant. A shortest augmenting path algorithm for

dense and sparse linear assignment problems. Computing, 38(4):325–340,

1987.

[9] J.A. Tompkins, J.A. White, Y.A. Bozer, and J.M.A. Tanchoco. Facilities

Planning, 4th ed. John Wiley & Sons, Inc., 2010.

[10] Elettric 80 S.p.A. The autonomous guided vehicles market. In Internal

report, 2009.

[11] L. Schulze, S. Behling, and S. Buhrs. Automated Guided Vehicle Sys-

tems: a Driver for Increased Business Performance. In Int. MultiConference

of Engineers and Computer Scientists, 2008.

[12] I.F.A. Vis. Survey of research in the design and control of automated

guided vehicle systems. Europ. J. of Operational Res., 170:677–709, 2006.

[13] D. Weyns and T. Holvoet. Architectural Design of a Situated Mul-

tiagent System for Controlling Automatic Guided Vehicles. Int. J. on

Agent-Oriented Soft. Eng., 2(1):90–128, 2008.

[14] T. Le-Anh and M.B.M. DeKoster. A review of design and control of

automated guided vehicle systems. Europ. J. of Operational Res., 171:1–23,

2006.

[15] S.-Y. Huang L. Qiu, W.-J. Hsu and H. Wang. Scheduling and routing

algorithms for AGVs: a survey. Int. J. Production Res., 40(3):745–760, 2002.

101

BIBLIOGRAPHY

[16] D. Naso and B. Turchiano. Multicriteria Meta-Heuristics for AGV

Dispatching Control Based on Computational Intelligence. IEEE Trans.

on Systems, Man, and Cybernetics - part B: Cybernetics, 35(2):208–226, 2005.

[17] J.H. Lee, B.H. Lee, and M.H. Choi. A real-time traffic control scheme

of multiple AGV systems for collision free minimum time motion: a

routing table approach. IEEE Trans. on Systems, Man, and Cybernetics - part

A: Systems and Humans, 28(3):347–358, 1998.

[18] R.L. Moorthy, W. Hock-Guan, N. Wing-Cheong, and T. Chung-Piaw.

Cyclic deadlock prediction and avoidance for zone-controlled AGV sys-

tem. Int. J. Production Economics, 83:309–324, 2003.

[19] B. Fleischmann, S. Gnutzmann, and E. Sandvoß . Dynamic Vehi-

cle Routing Based on Online Traffic Information. Transportation Science,

38(4):420–433, 2004.

[20] T. Le-Anh, R.B.M. de Koster, and Y. Yu. Performance evaluation of

dynamic scheduling approaches in vehicle-based internal transport sys-

tems. Int. J. of Production Res., 48(24):7219–7242, 2010.

[21] C. Hu and P.J. Egbelu. A framework for the selection of idle vehicle

home locations in an automated guided vehicle system. Int. J. of Production

Res., 38(3):543 – 562, 2000.

[22] A. Farinelli, L. Iocchi, and D. Nardi. Multirobot systems: a classifi-

cation focused on coordination. IEEE Trans. Systems, Man and Cybernetics,

Part B, 34(5):2015–2028, Oct 2004.

[23] R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. Multi-

robot cooperation in the MARTHA project. IEEE Robot. Automat. Mag.,

5(1):36–47, Mar 1998.

[24] E. Xidias and N. Aspragathos. Motion planning for multiple non-

holonomic robots: A geometric approach. Robotica, 26(4):525–536, 2008.

102

BIBLIOGRAPHY

[25] J. Peng and S. Akella. Coordinating Multiple Double Integrator

Robots on a Roadmap: Convexity and Global Optimality. In IEEE Int.

Conf. on Robotics and Automation, pages 2751–2758, Apr 2005.

[26] R. Ghrist, J.M. O’Kane, and S. LaValle. Computing Pareto optimal

coordination on roadmaps. Int. J. Robot. Res., 24(11):997–1010, 2005.

[27] N. Smolic-Rocak, S. Bogdan, Z. Kovacic, and T. Petrovic. Time Win-

dows Based Dynamic Routing in Multi-AGV Systems. IEEE Trans. on

Automation Science and Engineering, 7(1):151–155, 2010.

[28] S.M. LaValle and S.A. Hutchinson. Optimal motion planning for mul-

tiple robots having independent goals. IEEE Trans. on Robotics and Automa-

tion, 14(6):912–925, Dec 1998.

[29] O. Purwin, R. D’Andrea, and J.W. Lee. Theory and implementation of

path planning by negotiation for decentralized agents. Robot. Auton. Syst.,

56(5):422–436, 2008.

[30] D. Herrero-Pérez and H. Mart́ınez-Barberá. Modeling Distributed

Transportation Systems Composed of Flexible Automated Guided Ve-

hicles in Flexible Manufacturing Systems. IEEE Trans. on Industrial Infor-

matics, 6(2):166–180, 2010.

[31] A. Giridhar and P.R. Kumar. Scheduling automated traffic on a network

of roads. IEEE Trans. on Vehicular Technology, 55(5):1467–1474, 2006.

[32] N. Wu and M. Zhou. Modeling and deadlock control of automated

guided vehicle systems. IEEE/ASME Trans. on Mechatronics, 9(1):50–57, Mar

2004.

[33] M.P. Fanti. Event-based controller to avoid deadlock and collisions in

zone control AGVs. Int. J. Production Res., 40(6):1453–1478, 2002.

[34] S.A. Reveliotis. Conflict resolution in AGV systems. IIE Transactions,

32(7):647–659, 2000.

103

BIBLIOGRAPHY

[35] T. Simeon, S. Leroy, and J.P. Laumond. Path coordination for multi-

ple mobile robots: a resolution-complete algorithm. IEEE Trans. Robot.

Automat., 18(1):42–49, Feb 2002.

[36] T.W. Min, L. Zhe, H.K. Yin, G.C. Hiang, and L.K. Yong. A rules and

communication based multiple robots transportation system. In IEEE Int.

Symp. on Computational Intelligence in Robotics and Automation, pages 180–186,

1999.

[37] T. Borowiecki and Z. Banaszak. A constraint programming approach

for AGVs flow control. In Workshop on Robot Motion and Control, pages 153–

158, 1999.

[38] P.A. O’Donnell and T. Lozano-Perez. Deadlock-Free and Collision-Free

Coordination of Two Robot Manipulators. In IEEE Int. Conf. on Robotics

and Automation, 1, pages 484–489, May 1989.

[39] Y. Guo and L.E. Parker. A distributed and optimal motion planning

approach for multiple mobile robots. In IEEE Int. Conf. on Robotics and

Automation, 3, pages 2612–2619, May 2002.

[40] M. Jager. Using software agents to avoid collisions among multiple

robots. In IEEE Int. Cof. on Tools with Artif. Intell., pages 50–57, 2001.

[41] S. LaValle. Planning Algorithms. Cambridge University Press, 2006. Also

available at http://planning.cs.uiuc.edu/.

[42] S. Berman, E. Schechtman, and Y. Edan. Evaluation of Automatic

Guided Vehicle Systems. Robot. Comput. Integr. Manuf., 25(3):522–528, 2009.

[43] S. Balaji, V. Swaminathan, and K. Kannan. A Simple Algorithm to

Optimize Maximum Independent Set. Adv. Modeling and Optimization,

12(1):107–118, 2010.

104

	Glossary
	1 Introduction
	1.1 AGV Market
	1.2 Description of an AGVS
	1.3 Quality requirements and design choices
	1.4 Motivation and objectives of the dissertation
	1.5 Outline of the dissertation

	2 Considered framework for TMS
	2.1 Considered framework and main objectives of the TMS
	2.2 Dispatching, routing and management of idle AGVs
	2.2.1 Dispatching
	2.2.2 Routing
	2.2.3 Management of idle AGVs

	2.3 Coordination of wheeled autonomous vehicles
	2.3.1 Centralized versus decoupled
	2.3.2 Centralized versus decentralized
	2.3.3 Complete versus incremental
	2.3.4 Global versus local
	2.3.5 Standard approaches based on traffic rules

	2.4 The proposed CD-based approach

	3 Complete coordination planning
	3.1 Introduction
	3.2 Overview of the problem
	3.2.1 Roadmap and missions
	3.2.2 Coordination diagram
	3.2.3 Taxonomy of the CDs

	3.3 Construction of the CD
	3.4 Coordination planning algorithm
	3.4.1 Coordination path
	3.4.2 Forbidden regions
	3.4.3 Construction of the coordination path

	3.5 Heuristic cost function
	3.6 Experiments on a real layout
	3.7 Conclusions

	4 Incremental coordination
	4.1 Incremental coordination algorithm
	4.2 Complete versus Incremental: comparative tests
	4.3 Conclusions

	5 Zone control approach
	5.1 Introduction
	5.2 Overview of the problem
	5.2.1 Roadmap and missions
	5.2.2 Partitioned coordination diagram

	5.3 Coordinator
	5.3.1 Segment reservation
	5.3.2 Action computation: forward, backward or stop

	5.4 Experiments
	5.5 Conclusions and Future Work

	6 Zone controlled without backtracking
	6.1 Coordination algorithm
	6.1.1 Segment reservation
	6.1.2 Action computation: forward or stop
	6.1.3 Multiple collision regions on a single plane
	6.1.4 Complexity analysis

	6.2 Experiments
	6.3 Conclusions and future work

	7 Conclusions
	List of Author's Publications
	Bibliography

