

Università degli Studi di Ferrara

DOTTORATO DI RICERCA IN
SCIENZE DELL'INGEGNERIA

CICLO XXV

COORDINATORE Prof. Davide Bertozzi

 Design and Validation of Network-on-Chip
Architectures for the Next Generation of

Multi-synchronous, Reliable, and
Reconfigurable Embedded Systems

Settore Scientifico Disciplinare ING-INF/01

Dottorando Tutore
Dott. Strano Alessandro Prof. Bertozzi Davide

_______________________________ _____________________________
(firma) (firma)

Anni 2010/2012

Dichiarazione di conformitá
AL MAGNIFICO RETTORE

UNIVERSITÁ DEGLI STUDI DI FERRARA

E-mail: alessandro.strano@unife.it
Oggetto: Dichiarazione di conformitá della tesi di Dottorato
Io sottoscritto: Dott. Strano Alessandro
Nato a: Ferrara
Provincia: FE
Il giorno: 25-12-1983
Avendo frequentato il Dottorato di Ricerca in: Scienze dell’Ingegneria.
Ciclo di Dottorato 25.
Titolo della tesi:
Design and Validation of Network-on-Chip Architectures for the Next Generation
of Multi-synchronous, Reliable, and Reconfigurable Embedded Systems.
Tutore: Prof. Bertozzi Davide
Settore Scientifico Disciplinare: ING-INF/01.
Parole chiave della tesi:
Network-on-Chip, Fault-Tolerance, Synchronization, Built-in Self-Testing,
Globally-Asynchronous Locally-Synchronous, FPGA, Reconfigurability.

Consapevole, dichiara:
CONSAPEVOLE: (1) del fatto che in caso di dichiarazioni mendaci, oltre alle
sanzioni previste dal codice penale e dalle Leggi speciali per l′ipotesi di falsitá in
atti ed uso di atti falsi, decade fin dall′inizio e senza necessitá di alcuna formalitá dai
benefici conseguenti al provvedimento emanato sulla base di tali dichiarazioni; (2)
dell′obbligo per l′Universitá di provvedere al deposito di legge delle tesi di dottorato
al fine di assicurarne la conservazione e la consultabilitá da parte di terzi; (3) della
procedura adottata dall′Universitá di Ferrara ove si richiede che la tesi sia consegnata
dal dottorando in 2 copie di cui una in formato cartaceo e una in formato pdf non
modificabile su idonei supporti (CD-ROM, DVD) secondo le istruzioni pubblicate sul
sito: http://www.unife.it/studenti/dottorato alla voce ESAME FINALE disposizioni
e modulistica; (4) del fatto che l′Universitá, sulla base dei dati forniti, archivierá e
renderá consultabile in rete il testo completo della tesi di dottorato di cui alla presente
dichiarazione attraverso l′Archivio istituzionale ad accesso aperto EPRINTS.unife.it
oltre che attraverso i Cataloghi delle Biblioteche Nazionali Centrali di Roma e
Firenze.
DICHIARO SOTTO LA MIA RESPONSABILITA′: (1) che la copia della tesi
depositata presso l′Universitá di Ferrara in formato cartaceo é del tutto identica a
quella presentata in formato elettronico (CD-ROM, DVD), a quelle da inviare ai

i

Commissari di esame finale e alla copia che produrró in seduta d′esame finale.
Di conseguenza va esclusa qualsiasi responsabilitá dell′Ateneo stesso per quanto
riguarda eventuali errori, imprecisioni o omissioni nei contenuti della tesi; (2) di
prendere atto che la tesi in formato cartaceo é l′unica alla quale fará riferimento
l′Universitá per rilasciare, a mia richiesta, la dichiarazione di conformitá di eventuali
copie; (3) che il contenuto e l′organizzazione della tesi é opera originale da me
realizzata e non compromette in alcun modo i diritti di terzi, ivi compresi quelli
relativi alla sicurezza dei dati personali; che pertanto l′Universitá é in ogni caso
esente da responsabilitá di qualsivoglia natura civile, amministrativa o penale e sará
da me tenuta indenne da qualsiasi richiesta o rivendicazione da parte di terzi; (4)
che la tesi di dottorato non é il risultato di attivitá rientranti nella normativa sulla
proprietá industriale, non é stata prodotta nell′ambito di progetti finanziati da soggetti
pubblici o privati con vincoli alla divulgazione dei risultati, non é oggetto di eventuali
registrazioni di tipo brevettale o di tutela.

PER ACCETTAZIONE DI QUANTO SOPRA RIPORTATO

Ferrara, li 11/03/2013

Firma del Dottorando:

Firma del Tutore:

ii

To Liisi, and the journey of our life together

Design and Validation of Network-on-Chip Architectures
for the Next Generation of Multi-synchronous, Reliable,

and Reconfigurable Embedded Systems

Alessandro Strano

Abstract

NETWORK-ON-CHIP (NoC) design is today at a crossroad. On one
hand, the design principles to efficiently implement interconnection

networks in the resource-constrained on-chip setting have stabilized.
On the other hand, the requirements on embedded system design are far from
stabilizing. Embedded systems are composed by assembling together het-
erogeneous components featuring differentiated operating speeds and ad-hoc
counter measures must be adopted to bridge frequency domains. Moreover, an
unmistakable trend toward enhanced reconfigurability is clearly underway due
to the increasing complexity of applications. At the same time, the technology
effect is manyfold since it provides unprecedented levels of system integra-
tion but it also brings new severe constraints to the forefront: power budget
restrictions, overheating concerns, circuit delay and power variability, perma-
nent fault, increased probability of transient faults.

Supporting different degrees of reconfigurability and flexibility in the parallel
hardware platform cannot be however achieved with the incremental evolution
of current design techniques, but requires a disruptive approach and a major
increase in complexity. In addition, new reliability challenges cannot be solved
by using traditional fault tolerance techniques alone but the reliability approach
must be also part of the overall reconfiguration methodology.

In this thesis we take on the challenge of engineering a NoC architectures for
the next generation systems and we provide design methods able to overcome
the conventional way of implementing multi-synchronous, reliable and recon-
figurable NoC. Our analysis is not only limited to research novel approaches
to the specific challenges of the NoC architecture but we also co-design the so-
lutions in a single integrated framework. Interdependencies between different
NoC features are detected ahead of time and we finally avoid the engineer-
ing of highly optimized solutions to specific problems that however coexist
inefficiently together in the final NoC architecture. To conclude, a silicon
implementation by means of a testchip tape-out and a prototype on a FPGA

v

board validate the feasibility and effectiveness of the developed design meth-
ods in nano-scaled technology sub-systems enabling technology transfer from
academia to industry.

vi

Acknowledgements

I have waited for this moment for a long time, basically all my life of student.
Now, I wonder what actually makes this moment unique. Today I feel like the
first part of an exciting journey is overing and a new one is starting. Probably as
a child spends his youth dreaming to become a man similarly I was dreaming
to complete my studies to start my job career. However this moment is much
more than this, more than the excitement of starting a new era of my life. This
moment represents the chance to thank all the people that have helped and
supported me on every step until here. This moment can repay a part, at least
a small part, of the infinite faith put in me in all these years.

My PhD started when my advisor Davide Bertozzi gave me the opportunity
to join the MP-SoC group in Ferrara. Needless to say, Davide has been the
key person during my PhD. He has been more than a simple advisor, he did
not only show me the way for a prolific research but he also provided me pure
lessons of life. In Ferrara, I had the chance to work on ambitious topics in
a great research group. A research group built around the harmony and the
enthusiasm of challenging always new research problems. These latter group
represented the best environment where I could ever imagine to develop my
research. Together with endless scientific stimuli, Davide surrounded me by
an unconditioned trust and pushed me to go beyond my limits. In these years,
I had opportunities that I could neither imagine to have. I traveled around the
world taking part to prestigious conferences, I met some of the pioneers in my
research field, I exchanged opinions and point of view with persons of every
culture and professional background, I had the chance to work in many topics
and many countries. I’m really thankful for all these unrepeatable experiences
that made me grow and I will always bring with me.

I want to thank all the persons of my research group. Simone and Daniele that
have helped me immensely in the first period of my PhD. They represented my
reference point for every problem, every doubt and every question. Thanks for
all your patience, I have learned a lot from you guys. I’m thankful to Alberto,
Luca, Hervé and Marco. It was fantastic to work side by side with you. I

vii

have been impressed by your fairness, your sensitivity and your intelligence. I
enjoyed all the moments that we had together. I even enjoyed the most difficult
of them as the times when we had to work hard until the early morning hours.
Together we have been able to meet the more challenging of the deadlines.
Thanks to all of you my friends. I wish you the greatest satisfaction from the
life.

A special thank you is due to Luca Benini that had me under his wing as co-
advisor for the first year of research. I also owe Igor and Mohammad many
thanks for their support with the technical problems I had during my PhD
work. I could not forget the guys from Spain: Paco, Crispin and Francisco.
I had many enjoyable moments during your internships in Ferrara. Last, I
will never forget the help of Arnaud during my internship in Paris and the
great collaboration and friendship born with Federico and Eleni during my
internship in Lausanne.

Finally, I owe my parents and my whole family to have sustained me in all
my choices and to have patiently followed me through all my sad and happy
moments of this long way. Their invisible, but still strong and caring presence
have encourage me several times.

My last thought is for the person without whom everything else could be mean-
ingless. Liisi, sharing with you the amazing journey of the life is the most
beautiful dream I’ve dreamed with eyes opened.

Alessandro Ferrara, Italy, March 2013

viii

Table of contents

Dichiarazione di conformitá . i

Abstract . v

Acknowledgments . vii

List of Tables . xv

List of Figures . xvii

List of Acronyms and Symbols . xxiii

1 Introduction . 1
1.1 Problem Formulation . 4

1.1.1 The synchronization design issue 4
1.1.2 The Built-In Self-Testing 6
1.1.3 The Reconfiguration Framework 8

1.2 Approach . 9
1.2.1 Validation Strategy 10

1.3 Organization . 11

2 Background . 15
2.1 The GALS Design Style . 15

2.1.1 The dual-clok FIFO Synchronization Interfaces 16
2.1.2 The Mesochronous Synchronization Interfaces 18

2.2 Reliability . 19
2.2.1 Built-In Self-Testing and Diagnosis 20
2.2.2 Fault-tolerance . 21

2.3 Network Reconfiguration . 23

3 Relaxing the Synchronization Assumption in Networks-on-Chip . . . 27

ix

3.1 Limitations of the Fully Synchronous Approach 27
3.2 A Possible Solution: the GALS Design Style 28
3.3 Target GALS Architecture 30
3.4 ×pipesLite switch architecture 33
3.5 The Mesochronous Interface 35

3.5.1 The Loosely Coupled Mesochronous Synchronizer . . 36
3.5.2 Tightly Integrated Mesochronous Synchronizer Archi-

tecture . 38
3.5.3 Theoretical Analysis 40
3.5.4 Experimental Results 45
3.5.5 Mesochronous Link Design Characterization 49

3.6 The Dual-Clock FIFO Interface 56
3.6.1 Tight Integration into the Switch Architecture 60
3.6.2 Latency analysis . 62
3.6.3 Throughput analysis 65
3.6.4 Specialized library components 67
3.6.5 Comparative assessment of bi-synch FIFO variants . . 68

3.7 Discussion . 74
3.8 Conclusions . 75

4 The Moonrake Chip . 77
4.1 GALS Systems and Demonstrators 77
4.2 Moonrake Testchip Architecture 79

4.2.1 PIN Requirement . 85
4.3 Floorplaning Constraints . 86

4.3.1 Area results . 89
4.4 Test Setup . 91
4.5 Test Results . 95
4.6 Conclusions . 103

5 Design Space Exploration for Redundancy-Aware NoC Testing 104
5.1 Methodology and Taxonomy 104
5.2 Target Architecture . 109
5.3 Testing framework based on handcrafted deterministic test pat-

terns . 112
5.3.1 The Testing Strategy 112
5.3.2 Testing Communication Channels 116
5.3.3 TPG for Communication Channels 118

x

5.3.4 Testing Other Internal Switch Modules 118
5.3.5 Fault Detection and Diagnosis 119
5.3.6 BIST-Enhanced Switch Architecture 120
5.3.7 Experimental results 122

5.4 Built-In Scan Chain-Based Testing Framework 124
5.4.1 The Scan Chain Tool-Flow 125
5.4.2 The Baseline Implementation 127
5.4.3 Customizations for the NoC Setting 128
5.4.4 Experimental Results 129

5.5 Built-In Pseudo-Random Self-Testing 133
5.5.1 The Testing Strategy 134
5.5.2 Testing communication channels 135
5.5.3 Testing multiplexers of the crossbar 136
5.5.4 Testing LBDR . 137
5.5.5 Testing Arbiters . 139
5.5.6 BIST-enhanced switch architecture 139
5.5.7 Experimental Results 140

5.6 Testing Framework Comparison 142
5.6.1 Stuck-at-faults coverage and testing latency 142
5.6.2 Routing delay . 143
5.6.3 Area overhead . 144

5.7 Testing Framework for Multi-Synchronous Networks 146
5.7.1 Extension to Multisynchronous Networks 147
5.7.2 Target GALS Architecture 149
5.7.3 Bisynchronous Channel Testing 150
5.7.4 Operating Principle 153
5.7.5 BIST-Enhanced Switch Architecture in a Multisyn-

chronous Scenario 154
5.7.6 Experimental Results 155

5.8 Conclusions . 160

6 OSR-Lite: NoC Reconfiguration Framework 163
6.1 Introduction . 163
6.2 Native OSR technique . 166
6.3 OSR-Lite . 169
6.4 OSR-Lite implementation . 171

6.4.1 OSR-Lite at the Input Ports 173
6.4.2 OSR-Lite at the Arbiters 173

xi

6.4.3 OSR-Lite at the Output Ports 174
6.5 System-Level Evaluation . 175

6.5.1 Propagation . 176
6.5.2 Time Overhead . 177
6.5.3 Comparison . 179

6.6 Synthesis results . 181
6.6.1 Area Comparison . 182
6.6.2 Routing Delay Comparison 183

6.7 Conclusion . 184

7 Co-Optimized Design Methods for General Purpose System 185
7.1 Introduction . 185
7.2 Switch Architecture Extensions for Fault-Tolerant NoC Design 192

7.2.1 The New Fault-Tolerant Flow Control: NACK/GO . . 193
7.2.2 Novel Low-Power Fault-Tolerant Arbiter 194
7.2.3 Fault-Tolerance of Routing logic and Buffer FSMs . . 196

7.3 Reconfiguration Mechanism 196
7.3.1 OSR-Lite at the Input Ports 198
7.3.2 OSR-Lite at the Output Ports 200
7.3.3 Fault-Tolerant Reconfiguration Mechanism 202

7.4 Switch Extensions for System Level Notification 203
7.5 The Built-In Self-Testing Framework 206

7.5.1 The Data-Path . 207
7.5.2 The Control-Path . 209
7.5.3 BIST-enhanced switch architecture 210

7.6 Experimental Results . 211
7.6.1 Area and Critical Path 211
7.6.2 Optimized Reconfiguration Support 214
7.6.3 Coverage for single stuck-at faults 214

7.7 Conclusions . 215

8 The FPGA Demonstrator . 217
8.1 Introduction . 217
8.2 FPGA Platform . 220
8.3 The System Under Test . 221

8.3.1 Basic components: the on-chip network 225
8.3.2 Basic components: the supervision subsystem 227
8.3.3 Basic components: the reconfiguration algorithm . . . 229

xii

8.3.4 The application . 230
8.3.5 The physical platform implementation 233

8.4 Validating Built-in Self-Testing and NoC configuration 235
8.4.1 Protocol for BIST notification and configuration . . . 236

8.5 Validating Fault Detection and NoC Reconfiguration 238
8.5.1 Protocol for transient notification and reconfiguration . 240

8.6 Validating NoC Virtualization 241
8.7 Conclusions . 243

9 Conclusions . 245
9.1 Summary . 246
9.2 Major Contributions . 248

Bibliography . 251

List of Publications . 267

xiii

List of Tables

3.1 Switch crossing latency. 63

3.2 Dual-Clock FIFO throughput with parameterized buffer depth
as a function of sender-receiver frequency ratio. 65

3.3 Throughput of specialized Dual-Clock FIFO variants. 68

3.4 2x2 switch critical path. 69

3.5 5x5 switch critical path. 70

5.1 Coverage for single stuck-at faults. 122

5.2 Test application time and coverage of different testing methods. 123

5.3 Coverage for multiple random stuck-at faults. 124

7.1 Coverage for single stuck-at faults. 215

7.2 Coverage breakdown of data and control path. 215

8.1 Resource utilization of the Virtex 7 chip. 234

xv

List of Figures

3.1 Target Design Platform. 32

3.2 Baseline switch architecture. 33

3.3 GALS switch architecture. 35

3.4 Baseline mesochronous synchronizer architecture of [109]. . . 36

3.5 The loosely coupled mesochronous synchronizer of this work. 37

3.6 Proposed tightly coupled mesochronous synchronizer. 39

3.7 Waveforms example of the tightly coupled mesochronous syn-
chronizer. 41

3.8 The hybrid architecture with a 1-bit mesochronous synchro-
nizer on the receiver end. 43

3.9 Test-case platform under analysis. 45

3.10 Normalized cycle latency of the different synchronization
schemes. 46

3.11 Area breakdown of a switch block with its synchronization
scheme. 47

3.12 Normalized power consumption of different synchronization
schemes in different traffic scenarios. 49

3.13 Operating frequency and tolerated link delay of different syn-
chronizers. 50

3.14 Basic mechanisms affecting skew tolerance. 51

3.15 Tsetup and Thold for the loose coupled varying the skew toler-
ance. 52

3.16 Tsetup and Thold for the tight coupled varying the skew tolerance. 52

3.17 Setup time as a function of negative skew. 54

xvii

3.18 Dual-Clock FIFO Architecture. 56

3.19 Sampling of input data. 58

3.20 Vanilla switch and Dual-Clock FIFO integration into one input
port of the NoC switch architecture. 60

3.21 . 64

3.22 Specialized Dual-Clock FIFO. 67

3.23 Post-layout normalized results of area (a) and power (b) for a
switch with a dual-clock FIFO synchronizer. 71

3.24 Area (a) and power (b) consumption of baseline and special-
ized dual-clock FIFO architectures with different buffer depths. 73

3.25 Area occupancy of NoC switches with different synchroniza-
tion interfaces. 74

4.1 Block diagram of the NoC testchip. 80

4.2 Synchronous sub-systems: (a) the Synch fast design (on the
left-side) and (b) the Synch slow design (on the right-side). . 81

4.3 Loosely coupled sub-systems with mesochronous synchroniz-
ers: (a) the Asynch Loose Slow design (on the left-side) and
(b) the Asynch Loose Fast design (on the right-side). 82

4.4 Hybrid coupled sub-systems: (a) the Asynch Hybrid Slow

design (on the left-side) and (b) the Asynch Hybrid Fast

design (on the right-side). 84

4.5 Dual-clock FIFO design. 85

4.6 NoC testchip floorplan. 87

4.7 Source synchronous communication in the hybrid coupled
sub-systems and PnR constraints. 88

4.8 Source synchronous communication in the loosely coupled
sub-systems and PnR constraints. 88

4.9 Source synchronous communication in the dual-clock FIFO
sub-system. 89

4.10 Area breakdown of the seven sub-systems. 91

4.11 Verigy test platform. 92

4.12 Frequency and skew sweep in the Asynch Hybrid Slow sub-
system. 97

xviii

4.13 Frequency and skew sweep in the Asynch Loose Slow sub-
system. 98

4.14 Percentage of working chips in each test case. 101

4.15 Relative power comparison. 102

5.1 Modular structure of the baseline switch architecture. Not all
connections are showed. 110

5.2 LBDR logic and requirements on the diagnosis outcome. . . . 111

5.3 The cooperative and concurrent testing framework saving TPG
instances and covering their faults. 114

5.4 Practical implementation of communication channel testing. . 116

5.5 TPG for communication channels. 117

5.6 BIST-enhanced switch architecture. 121

5.7 Area overhead for BIST implementation as a function of target
speed. 122

5.8 Coverage of TPG faults. 123

5.9 Latency breakdown of a scan chain-based test. 126

5.10 Practical implementation of the proposed scan chain-based test. 129

5.11 Maximum number of test patterns. 130

5.12 Latency of the scan chain-based test. 130

5.13 Total number of bits stored by the test patterns generator. . . . 131

5.14 Area overhead breakdown of the customized scan chain-
enabled testing strategy. 131

5.15 Area overhead breakdown of the scan chain-based and deter-
ministic test patterns-based solutions. 132

5.16 Latency of the scan chain-based and deterministic test pattern-
based solutions. 132

5.17 Coverage of the scan chain-based and deterministic test
pattern-based solutions. 133

5.18 Optimization steps of the pseudo-random testing framework. . 138

5.19 BIST-enhanced switch architecture. 140

5.20 Coverage for single stuck-at faults as a function of the test la-
tency. 141

xix

5.21 Area overhead for BIST implementation. 141

5.22 Coverage for single stuck-at faults as a function of the test la-
tency. 143

5.23 Routing delay for BIST implementations. 144

5.24 Area overhead for BIST implementations. 145

5.25 Cooperative testing framework for bisynchronous communi-
cation channels. 148

5.26 Baseline bisynchronous communication channel. 149

5.27 Multisynchronous testing framework. 151

5.28 Proposed triple-stage brute-force synchronizer (a) and wave-
forms of synchronizers without (b) and with (c) set port. . . . 152

5.29 Bisynchronous channel operating principle. 155

5.30 Single stuck-at faults coverage as a function of test pattern
count (a) and area overhead for BIST implementation (b). . . . 158

5.31 Bisynchronous framework test time as function of ATA and
TPG frequencies. 159

6.1 Two NoC configurations where the routing algorithm needs to
be adapted. 164

6.2 Channel dependency graph for two routing algorithms and the
combination of both. 167

6.3 Reconfiguration steps performed in an OSR environment. . . 168

6.4 Token advance in a network: (a) check for absence of old mes-
sages and input ports epoch, (b) token signal propagation. The
token separates old traffic from new traffic. 169

6.5 Reconfiguration steps performed in an OSR-Lite environment. 170

6.6 Switch input buffer enhanced with the OSR-Lite logic and a
new set of routing mechanism. 172

6.7 Switch arbiter enhanced with the OSR-Lite logic. 174

6.8 Switch output buffer enhanced with the OSR-Lite logic. 174

6.9 Configuration information from neighbor switches and control
network . 176

xx

6.10 OSR-Lite propagation over a 4 × 4 2D mesh topology: (a)
scrolling up, and (b) scrolling down. 177

6.11 (a) Average message latency at different injection rates for SR
routing on 8 × 8 2D mesh (b) OSR-Lite propagation over a
8× 8 2D mesh topology at different injection rates. 178

6.12 Average message latency with (a) hotspot traffic and uniform
traffic ((b) medium network load and (c) high network load). . 180

6.13 5x5 switch (a) area and (b) routing delay comparison. 182

7.1 Fault tolerant arbiter implementation. 195

7.2 Nack-Go switch . 197

7.3 OSR-Lite logic extended for the NACK/GO input buffer. . . . 199

7.4 Counter of packets of the two epochs. 200

7.5 Configuration information from neighbor switches and control
network . 201

7.6 OSR-Lite logic extended for the NACK/GO output buffer. . . 201

7.7 Fault-tolerant OSR-Lite logic. 203

7.8 Transient fault notification. 204

7.9 Dual network routing primitive. 205

7.10 TMR approach with per-primitive voting system. 206

7.11 Pratical implementation of data-path testing. 207

7.12 BIST-enhanced switch architecture. 210

7.13 Area of the GP-NaNoC switch. 212

7.14 Routing delay. 213

7.15 Efficiency of Single-LBDR implementation. 214

8.1 VC707 baseline prototyping board. 220

8.2 FPGA platform overview. 222

8.3 Design flow for platform implementation. 224

8.4 Basic components of the on-chip network. 225

8.5 LBDR routing logic extension for two cores per switch support. 228

8.6 The matrix multiplication at work. 230

xxi

8.7 The semaphores of the matrix multiplication application. . . . 232

8.8 Layout of the full FPGA design. Green: data NoC; red: Net-
work Interfaces; yellow: dual NoC; cyan: MicroBlazes and
other logic. 234

8.9 Built-in-Self-Testing at work. 235

8.10 Transient fault detection and reconfiguration. 238

8.11 Network regions before (a) and after virtualization (b). Note
that the arrows indicate the logical application flow, not neces-
sarily the route followed by packets. For case (b), the arrows
are only indicative of partitioning, but the pipeline sequence is
in fact shuffled for verification purposes. 241

8.12 Virtualization request and reconfiguration. 242

xxii

List of Acronyms and Symbols

ASIC Application-Specific Integrated Circuit
CMP Chip MultiProcessor
CTS Clock Tree Synthesis
DVFS Dynamic Voltage and Frequency Scaling
FF Flip-Flop
FHD Full High Definition
FIFO First In First Out
FPGA Field Programmable Gate Array
FSM Finite State Machine
GALS Globally Asynchronous Locally Synchronous
GPP General Purpose Processor
GPU Graphics Processing Unit
HDL Hardware Description Language
IP Intellectual Property
ITRS International Technology Roadmap for Semiconductors
LEF Library Exchange Format
LUT Look-Up Table
MIN Multi-stage Interconnection Network
MPSoC Multi Processor System on Chip
MUX Multiplexer
NI Network Interface
NoC Network-on-Chip
OCP Open Core Protocol
P&R Place and Route
PDA Personal Data Assistant
RR Round Robin
RTL Register Transfer Level
SOCE Cadence SoC Encounter
SR Search&Repair
SoC System on Chip
TLM Transaction-Level Modeling
TTM Time-to-Market
VLSI Very Large Scale Integration
LBDR Logic-Based Distributed Routing
TPG Test Pattern Generator

xxiii

ATA Auto-Test Analyzer
BIST Built-In Self-Test
BISD Built-In Self-Diagnosis
DUT Device Under Test
TRC Two-Rail Checker
MISR Multiple Input Signature Register
LFSR Linear Feedback Shift Register
MTTF Mean Time To Failure

xxiv

1
Introduction

THE embedded system market is rapidly growing and features a rich vari-
ety of devices that are able to perform a wide multitude of diverse tasks.

Nowadays, appliances such as mobile phones, personal data assistants
(PDA) and ebook readers became mainstream in our everyday life. These mo-
bile devices are ubiquitous, can be utilized everywhere and their applicability
range span from pure computational tasks, through entertainment up to social
network connectivity. The tremendous complexity reached by such devices
represents a major challenge faced by engineers that have to design systems
under a constant and relentless time-to-market (TTM) pressure. In order to
shorten such TTM, the design of such devices is traditionally performed by
integrating existing components in a plug–and–play fashion into a System-on-
Chip (SoC) [1]. Therefore, a major challenge consists of interconnecting many
different components with each other in an efficient way. According to ITRS
roadmaps [103], thousands of cores will be integrated in a single chip during
the next few years. Such scenario opens up many questions regarding scalabil-
ity issues as all the cores in the single chip will have to be interconnected in a
power efficient and scalable way.

Classically, intellectual properties (IPs) (e.g., memory controller, CPUs,
GPUs, etc.) designed by different vendors are interconnected by dedicated
buses. AMBA, AXI, AHB [75,76] represent well-established industrial exam-
ples of such interconnection architectures. Unfortunately, they do suffer from
well known scalability problems due to arbitration penalties. This is one of
the driver dictating the adoption of a more scalable interconnection scheme:
Networks-on-Chip (NoCs). NoC architectures represent a viable, scalable
packet-switched micro-network interconnect scheme alternative to classical
bus architectures [110]. They are generally believed to be the long term so-
lution to the communication scalability issue.

1

CHAPTER 1. INTRODUCTION

Today, networks-on-chips (NoCs) implement the communication backbone of
virtually all large-scale system-on-chip (SoC) designs in 45nm and below. De-
spite their fast diffusion in products and roadmaps, today’s NoC reality was
not fully encompassed in the early position papers [2,4]. After twelve years of
trial-and-error, design experiences and focused research ([3,5,7,8]), designers
have gained the awareness of the profound difference of on-chip vs. off-chip
interconnect design [13], of the tight constraints of an on-chip setting [6], of
the challenges posed by nanoscale technologies [9] and of the differentiated re-
quirements of specific application domains [10](e.g., application-specific het-
erogeneous NoCs vs. general-purpose homogeneous NoCs). As a result, NoC
design principles have recently reached a stage where they start to stabilize, in
correspondence to their industrial uptake [11, 12].

Unfortunately, the requirements on embedded system design are far from sta-
bilizing and an unmistakable trend toward enhanced reconfigurability is clearly
underway. Reconfigurability of the HW/SW architecture would in fact enable
several key advantages, including on-demand functionality, on-demand accel-
eration, shorter time-to-market, extended product life cycles and low design
and maintenance costs. Supporting different degrees of reconfigurability in
the parallel hardware platform cannot be however achieved with the incremen-
tal evolution of current design techniques, but requires a disruptive approach
and a major increase in complexity. At the same time, fault tolerance was
previously an issue only for specific applications such as space or avionics.
Today, due to the increased variability of components and breadth of operating
environments, reliability becomes relevant to mainstream applications. Sim-
ilarly, new reliability challenges cannot be solved by using traditional fault
tolerance techniques alone: the reliability approach must be part of the overall
reconfiguration methodology.

An even more daunting challenge for NoC designers consists of coming up
with synchronization strategies for systems where the chip-level synchroniza-
tion assumptions have been relaxed. Traditional globally synchronous clock-
ing circuits have become increasingly difficult to design with growing chip
size, clock rates, relative wire delays and parameter variations. Additionally,
high speed global clocks consume a significant portion of system power and
lack the flexibility to independently control the clock frequencies of submod-
ules to achieve high energy efficiency. Therefore, ad-hoc counter measures
must be adopted to relax the synchronization assumption within the system.

In the highly parallel landscape of modern embedded computing platforms,
the system interconnect serves as the framework for platform integration and

2

is therefore key to materializing the needed flexibility and reliability properties
of the system as a whole. Therefore, time has come for a major revision of cur-
rent NoC architectures in the direction of relaxed synchronicity and increased
reconfigurability and reliability.

In addition, a key property that novel NoCs cannot miss is to guarantee a po-
tentially fast path to industry, since NoC deployment is today a reality. An
important requirement for this purpose is the efficient testability of candidate
NoC architectures. This property is very challenging due to the distributed na-
ture of NoCs and to the difficult controllability and observability of its internal
components. When we also consider the pin count limitations of current chips,
we derive that NoCs will be most probably tested in the future via built-in
self-testing (BIST) strategies.

Although there is still ample room to research novel approaches to the spe-
cific challenges of the NoC architecture, one key concern for this new re-
vision round will be to co-design the solutions to different challenges in an
integrated framework. In practice, interdependencies between different NoC
features should be detected ahead of time so to avoid the engineering of highly
optimized solutions to specific problems that however coexist inefficiently to-
gether in the final NoC architecture.

The major contribution of this thesis consists of taking on the challenge of
engineering a NoC architectures for the next generation of multi-synchronous,
highly reconfigurable and reliable systems. The thesis tackles the challenge in
three ways:

• Provides design methods able to overcome the conventional way of im-
plementing testability, reconfigurability and multi-synchronous designs.
In fact, synchronization interfaces are proposed and optimized in terms
of area, latency and power bringing a large energy savings that make a
multi-synchronous NoC affordable at almost the same area and power
cost of its synchronous counterpart. In the reliability context, the the-
sis presents four testing methods based on built-in self-test and self-
diagnosis infrastructures making efficient use of NoC structural redun-
dancy in cooperative testing frameworks. Ultimately, the reconfiguration
is performed by means of a cost-effective, complete and transparent re-
configuration process that has never implemented on-chip before and is
able to drain at run-time the network at link/router level.

• The thesis detects the interdependencies between the different design
features and addresses them all in a coherently integrated final NoC

3

CHAPTER 1. INTRODUCTION

switch. The design methods for testability, reconfigurability and multi-
synchronous designs are co-designed, co-optimized and finally inte-
grated with state-of-art fault-tolerant techniques to coexist efficiently in
the final NoC architecture.

• The proposed design methods have been validated by means of ASIC
implementation and FPGA prototyping proving the practical relevance
of the thesis research. The synchronization interfaces have been in-
tegrated in the first multi-synchronous ASIC demonstrator in 40 nm
CMOS process. On the contrary, methods for testability and reconfig-
urability require non silicon-dependent strategies and they have been
validated on a leading-edge Virtex-7 FPGA.

In the next section, we will start by looking at the problem of the synchroniza-
tion design (Section 1.1.1). Then Section 1.1.2 presents the challenges related
to reliable systems while Section 1.1.3 illustrates the issues of NoC reconfig-
urations. The key approach proposed in this thesis is described in Section 1.2
and finally, Section 1.3 provides an overview of the remaining chapters of the
thesis.

1.1 Problem Formulation

While technology is providing unprecedented levels of system integration, it is
also bringing new severe constraints to the forefront: power budget restric-
tions, overheating concerns, circuit delay and power variability, permanent
faults affecting the system right from the beginning (manufacturing faults)
or with progressive onset (wear-out faults), increased probability of transient
faults. Such constraints are driving the migration into new forms and shapes of
synchronicity, reconfigurability, testability and fault-tolerance. Hereafter chal-
lenges brought by the design of these latter features are detailed with emphasis
on the inability of current NoC literature to effectively tackle them as a whole
in a single integrated framework.

1.1.1 The synchronization design issue

The maximum operating speed of the network architecture should not con-
strain the speed of the networked IP cores. This calls for proper decoupling at
the network boundary by means of synchronization interfaces. This is a key
requirement also for power management strategies in the embedded computing

4

1.1. PROBLEM FORMULATION

domain, requiring each core to run at an independent and runtime variable volt-
age and speed. Nowadays, both application requirements and technology ef-
fects call for a disruptive evolution of the synchronization architecture. In fact,
distributing a global clock throughout the entire chip with tighly controlled
skew is becoming increasingly power inefficient and even infeasible. Indeed,
shifting the focus to a pure silicon technology viewpoint, there are some other
very important challenges to be faced by both industry and academic research.
In fact, as technology advances into aggressive nanometer-level scaling, sev-
eral design challenges emerge from technology constraints which require a
continuous evolution of the interconnection implementation strategy adopted
at the circuit and architectural levels. Synchronization of current and future
chips with a single clock source and negligible skew is extremely difficult if not
close to be impossible [1]. Indeed, synchronization is today definitely among
the most critical challenges in the design of a global on-chip communication
infrastructure, as emerging technology variability, signal integrity, power dissi-
pation limits are contributing a severe break-down of the global synchronicitiy
assumption when logical structures spans more than a couple of mm on the
die [14]. NoCs typically span the entire chip area and there is now little doubt
on the fact that a high-performance and cost-effective NoC in 45nm and be-
yond can only be designed under relaxed synchronization assumptions [86]. A
solution would be to design such systems using a fully asynchronous global
intra-chip communication. Such choice would eliminate the clock distribution
concern and would make designs more modular since timing assumptions are
explicitly handled in the hand-shaking protocols. Unfortunately, current design
tools and IP libraries heavily rely on the synchronous paradigm instead, thus
making intermediate solutions more attractive and affordable in the short run.
As previously anticipated, synchronizer-based globally asynchronous locally
synchronous (GALS) systems represent an appealing solution in the mid term,
and is therefore the focus of this thesis. In such systems, the design can be par-
titioned in different frequency islands and the interconnection infrastructure
can be envisioned as mesochronous domain (isolated by dual-clock FIFOs at
the boundary) where a single clock spans the whole communication infrastruc-
ture area relying on a loose synchronization assumption. Such mesochronous
assumption allows to tolerate an arbitrary amount of space dependent time-
invariant phase offset (i.e., skew) among the leaves of the clock signal hence
resulting in a lower power clock tree synthesis. Unfortunately, the high cost of
traditional synchronizer implementations in terms of area, power and latency
is typically the main reason preventing their adoption as intermediate solu-
tion. Moreover, this is only one of the possible GALS implementation variants

5

CHAPTER 1. INTRODUCTION

within a large design space where it is difficult to select the best solution for
the underlying design. Last, there is a general skepticism of industrial design-
ers to relax the synchronization assumption in their chips due to the usage of
unconventional tool capabilities, to the poor predictability of resulting designs
and to the threat of process variations.

Aware of these challenging problems, the first goal of this thesis is to develop
all the required support for the building process of such GALS systems. In
particular, our contribution and emphasis is on the NoC infrastructure that is
augmented with all the necessary library components in a sort of galsification
process. Such GALS blocks are designed to considerably reduce area, power
and latency issues. Furthermore, we perform a crossbenchmarking between
implementation variants, resulting in actual guidelines for designers that want
to migrate from synchronous to GALS solutions. Finally, the development
effort of the synchronization library is validated with the tape-out of the first
multi-synchronous ASIC demonstrator in 40 nm CMOS process.

1.1.2 The Built-In Self-Testing

On-chip interconnection networks are rapidly becoming the reference commu-
nication fabric for multi-core computing platforms both in high-performance
processors and in many embedded systems [15, 24]. As the integration densi-
ties and the uncertainties in the manufacturing process keep increasing, com-
plementing NoCs with efficient test mechanisms becomes a key requirement to
cope with high defect rates [16, 43]. Above all, the NoC testing infrastructure
should not be conceived in isolation, but should be coherently integrated into
a reliability framework taking care of fault detection, diagnosis and network
reconfiguration and recovery to preserve yield [23].

Moreover, wear-out mechanisms such as oxide breakdown, electro-migration
and mechanical/thermal stress become more prominent in aggressively scaled
technology nodes. These breakdown mechanisms occur over time, therefore
the methodology and the infrastructure used for production testing should be
designed for re-use during the system lifetime as well, thus enabling graceful
degradation of the NoC over time.

The detection and identification of failures is the foundation of any reliability
framework. Unfortunately, developing such a testing infrastructure for a NoC
is a serious challenge. The controllability/observability of NoC links and sub-
blocks is relatively reduced, due to the fact that they are deeply embedded and
spread across the chip. Also, pin-count limitations restrict the use of I/O pins

6

1.1. PROBLEM FORMULATION

dedicated for the test of the different NoC components. Traditional approaches
to NoC testing rely on full-scan or boundary scan testing, but cannot avoid the
significant overhead associated with the design for testability (DfT) infrastruc-
ture [45]. Moreover, the resulting test application times and test pattern gen-
eration times are hardly affordable for applications of practical relevance. A
number of other concerns were raised in [44] on the use of external testers for
nanoscale chip testing:

• First, the lack of scalability of test data volumes with the number of
gates hidden behind each package pin.

• Second, the need for testing at full clock speed, which is overly expen-
sive if even possible to accomplish with external testers.

• Third, the poor suitability of these latter for lifetime testing (and not
just for production testing) and for a test-and-repair testing approach
(beyond the baseline go/no-go philosophy).

As an effect, a migration from external testers to built-in self-test (BIST) in-
frastructures was envisioned in [44], and was later confirmed by the large
amount of works in the open literature targeting scalable BIST architectures
for NoC testing [26, 46, 47]. At the same time, the limited fault coverage that
functional and pseudo-random testing can achieve on the control path of NoC
switches when test generators are outside the switch has further pushed the
adoption of BIST units at least for such control blocks [17].

While BIST techniques seem the best suitable solution to tackle permanent
failures in NoCs, transient faults can not be handled by such strategies as they
appear and disappear unpredictably. BIST techniques must be therefore inte-
grated in fault-tolerant systems able to satisfy the high reliability constraints
imposed by modern environments. In this direction, this thesis does not simply
propose methods based on full BIST strategies but it also provides methods to
integrate and optimize the BIST mechanisms in fault-tolerant systems.

In particular, the thesis proposes four different BIST strategies and the coher-
ent integration of the most promising of them in a fault-tolerant switch micro-
architecture thus able to address both permanent and transient failures. A key
principle of the thesis approach consists of exploiting the inherent structural
redundancy provided by NoCs. Each switch is comprised of input ports, out-
put ports, arbiters and FIFOs that are duplicated for each channel. This feature
is used to develop a very effective test strategy which consists of testing mul-
tiple identical blocks in parallel and of cutting down on the number of test

7

CHAPTER 1. INTRODUCTION

pattern generators. This is done both at the abstraction level of the switch
micro-architecture (e.g., testing of the output port arbiters in parallel) and of
the NoC architecture (i.e., testing of all NoC switches in parallel). The inher-
ent parallelism of our BIST procedure makes our testing infrastructure highly
scalable and best suited for large network sizes.

The proposed BIST procedures are suitable both for production and for life-
time testing, and is complemented by a built-in self-diagnosis logic distributed
throughout the network architecture able to pinpoint the location of detected
faults in each switch. This diagnosis outcome matches the reconfigurability
requirements of logic-based distributed routing and is therefore the stepping
stone into the novel network reconfiguration strategy that will be proposed in
this thesis and described in next sections.

1.1.3 The Reconfiguration Framework

As technology advances chip multiprocessors (CMPs) and multiprocessor
systems-on-chip (MPSoCs) have been accepted as the method to enhance the
computing power and the functionality of current high-end systems. An ever
increasing number of cores and devices can be added to the same chip en-
hancing its functionality and power. Current products already include tens and
hundreds of devices (e.g. Tilera with 100 cores [25]). These systems rely on
the Networks-on-Chip (NoC) concept where a high-performance interconnect
is built inside the chip, allowing efficient interconnection between all the de-
vices.

As complexity keeps increasing, there emerge new requirements that affect
how the interconnect is designed. As mentioned in the previous sections, the
system must support a wide range of faults. These latter impact the system con-
figuration rendering the network affected. Besides reliability concerns, there
is also an interest in providing further functionality to the system. Virtualiz-
ing the entire chip into sets of virtual regions and assigning them to different
applications running concurrently is appealing in those systems. Similarly,
powering down unused resources during most of the time is becoming com-
pulsory to keep power consumption levels to reasonable bounds. In both cases,
the NoC component is affected as it needs to be reconfigured to the changing
environment.

To address the new functionalities, the NoC must be enriched with an efficient
reconfiguration process which enables the smooth and transparent transition
between system configurations.

8

1.2. APPROACH

When the topology of the network changes, either involuntarily due to fail-
ing/faulty components or voluntarily due to removal of addition of nodes, the
network routing algorithm must be reconfigured in order to (re)establish full
network connectivity among the attached nodes. In transitioning between the
old and the new routing functions during network reconfiguration, additional
dependencies among network resources may be introduced, causing what is
referred to as reconfiguration-induced deadlock.

Current techniques typically handle this situation through static reconfigura-
tion, meaning that application traffic is stopped and, usually, dropped from the
network during the reconfiguration process. While this approach guarantees
the prevention of reconfiguration-induced-deadlock, it can lead to unaccept-
able packet latencies and dropping frequencies for many applications, particu-
larly realt-time and quality-of-service (QoS) applications.

As alternative it can be implemented a dynamic reconfiguration. This latter
allows user traffic to continue uninterruptedly during the time that the net-
work is reconfigured, thus reducing the number of packets that miss their real-
time/QoS deadline. However such technique requires effort to avoid deadlock
situations and typically brings extra resources to the network.

In this thesis we advance state-of-the-art in reconfiguration frameworks for
NoC-based systems. Anyway, instead of designing a brand new reconfigura-
tion mechanism, it is recognized the large amount of bibliography and propos-
als made for reconfiguration mechanisms in high-performance off-chip net-
works. In this sense, it is picked the approach that better suits the NoC domain
and the tight resource budgets of the on-chip environment. However, in its na-
tive form its implementation in NoCs is out-of-reach. Therefore, we provide
a careful engineering of the NoC switch architecture and of the system-level
infrastructure to support a cost-effective, complete and transparent reconfigu-
ration process.

1.2 Approach

This thesis takes on the challenge of designing the next-generation of multi-
synchronous, reliable, and reconfigurable embedded systems by proposing
new effective ad-hoc methods and by capturing their interdependencies in a
co-designed and co-optimized final architecture.

Specifically, in order to tackle the synchronization problem, we design novel
globally asynchronous locally synchronous (GALS) interfaces able to meet

9

CHAPTER 1. INTRODUCTION

different layout constraints. In particular, we design dual-clock FIFO inter-
faces to provide frequency decoupling between domains and mesochronous
interfaces to relax the constraints of the clock tree within a frequency domain.
The proposed interfaces are able to show that it is possible to migrate from
the synchronous to the GALS paradigm with a negligible area and power cost
without impacting performance.

The thesis also proposes and validates methods for reliable and reconfigurable
embedded systems. Firstly, we present four scalable built-in self-test and self-
diagnosis infrastructures making efficient use of NoC structural redundancy for
testing and diagnosis purposes through the use of a cooperative testing frame-
work. Secondarily the best suited proposed BIST framework has been inte-
grated in an advanced multi-features switch, called GP-NaNoC. This latter in-
tegrates the most relevant and innovative design methods conceived throughout
the thesis and makes sure they co-exist together. The switch is enhanced with a
transparent system reconfiguration mechanism, called Overlapping Static Re-
configuration (OSR-Lite), and a novel flow-control protocol based on detec-
tion, correction and retransmission providing fault-tolerance to the switch.

1.2.1 Validation Strategy

All the proposed design methods have been validated by means of demonstra-
tors able to prove their practical relevance. In particular, two ad-hoc demon-
strators have been implemented in order to ensure the robustness and the ef-
fectiveness of the proposed design methods. The synchronization methods
have been validated through an ASIC demonstrator in 40 nm CMOS process
while the testability and reconfigurability methods have been implemented on
a Virtex-7 FPGA prototype. Both technology and switch fabric adopted for the
demonstrators have been consciously chosen to properly validate the underlin-
ing design methods that they integrate.

The synchronization interfaces have been integrated in the first multi-
synchronous ASIC demonstrator in 40 nm CMOS process. The tape-out on
silicon served as demonstrator of the robustness of the synchronization inter-
faces against process variability and operating conditions (e.g., speed ratio,
clock phase offset). The demonstrator for synchronization methods improves
the maturity of the developed GALS technology and bridges the final gap to
actual silicon implementation. In particular, the testchip design and fabrication
process validates the feasibility and effectiveness of the developed GALS NoC
concept in nano-scaled technology sub-systems by comparing synchronous
and GALS synchronization technology in a homogeneous experimental set-

10

1.3. ORGANIZATION

ting: same baseline designs, same manufacturing process, same die. Finally,
the testchip fabrication breaks the barriers that have prevented the success of
synchronizer-based technology for GALS NoCs so far in alternative design
experiences.

As mentioned, ASIC technology is adopted to prove the robustness of synchro-
nization interfaces against timing constraints of integrated circuits. Indeed the
strict dependency of these latter methods to constraints proper of ASIC tech-
nology did not allow us to consider alternative technologies for the first demon-
strator. On the contrary, FPGA technology has been chosen to implement
the second demonstrator integrating non-silicon dependent methods. In fact,
testability and reconfigurability methods have been validated together with
fault-tolerant techniques and control signaling strategies in a Xilinx Virtex-7
FPGA. In particular, a switching fabric based on the GP-NaNoC switch sup-
porting network partitioning and isolation as well as irregularities has been
designed and prototype on the second FPGA-based demonstrator. This lat-
ter especially validates boot-time testing and configuration, runtime detection
of faults, runtime reconfiguration of the routing function, dynamic virtualiza-
tion of the switching fabric. The NoC prototype implemented on the second
demonstrator is a key enabler for the materialization of the needed flexibility
and reliability properties of next-generation embedded systems.

1.3 Organization

The contributions of this thesis are organized in 9 chapters. Before present-
ing the contributions, Chapter 2 first provides the necessary background of
the work in this thesis. It surveys built-in-self-testing, fault-tolerant and re-
configuration strategies as well as globally-asynchronous locally synchronous
interfaces for the building of GALS systems. Finally, it summarizes the short-
coming of the presented work to be addressed in subsequent chapters.
Chapter 3 introduces the synchronization design issue. In a first step, the moti-
vation for adopting synchronization mechanisms in the NoC environment will
be discussed. Next, the target GALS platform of this thesis along with the
architecture of the basic switch block required to build it will be highlighted.
Last, it is presented the baseline mesochronous synchronizer and the dual-
clock bi-synchronous FIFO with focus on all their improvements that led to a
new fully integrated and flexible switch architecture.
Chapter 4 presents the GALS ASIC demonstrator in 40 nm CMOS process.
The chip, named Moonrake, validates on silicon the robustness of the GALS

11

CHAPTER 1. INTRODUCTION

interfaces proposed in the previous Chapter. Firstly it is described the testing
environment setup and the floorplanning constraints of the chip. Later, the dif-
ferent GALS subsystems integrated into the chip are presented with their own
synchronization properties. Finally, the experimental section presents the per-
formance of the subsystems.
Chapter 5 provides an exploration of built-in testing strategies customized for
NoC-based systems comparing them under an area, coverage and latency point
of view. In particular, the first section proposes a BIST mechanism exploiting
architecture behavior knowledge to come up with a set of customized test pat-
terns for NoC components. The second section presents a strategy based on
a scan chain mechanism. In the third section, we design a testing based on
pseudo-random patterns where we cut down on the test application time and
we provide efficient testing of the control path. In the fourth section, we pro-
pose one of the first built-in self-testing and diagnosis framework for globally-
asynchronous locally-synchronous NoC based on an asynchronous handshak-
ing.
Chapter 6 presents the implementation of the fast and transparent reconfigu-
ration mechanism called OSR-Lite. The Chapter describes the complete re-
configuration mechanism at work, involving the BIST mechanism, a central
manager and a notification infrastructure. It is showed the implementation at
micro-architecture level of the logic enabling the mechanism and the propaga-
tion of the reconfiguration tokens. Finally, the OSR-Lite mechanism is evalu-
ated in terms of area and latency.
Chapter 7 extends the work presented in the previous chapters by propos-
ing a switch (GP-NaNoC switch) integrating BIST, reconfiguration and fault-
tolerance features in a single co-designed architecture. First of all, the switch
architecture extensions for fault tolerant NoC design are presented. Especially,
it is highlighted a novel protocol (NACK/GO) based on retransmission and a
fault-tolerant arbiter. Thus the Chapter presents the optimizations introduced
in the BIST mechanism and the OSR-Lite logic achieved by co-designing the
reconfiguration and testing strategies with the fault-tolerant architecture. Next,
the switch extensions for system level notification are described and coverage,
area and critical path of the novel switch are finally reported.
Chapter 8 reports about the prototyping of the design methods proposed in
the previous Chapters on a Xilinx Virtex-7 FPGA. The FPGA prototype com-
prises a large number of components that enables observability, controllability
and debugability of the system under test. All this components are described
in detail. Last, it is illustrated the application running on the system and the
strategies adopted to validate the BIST, the fault-tolerance and the reconfigu-

12

1.3. ORGANIZATION

ration features of the system.
Finally, Chapter 9 provides concluding remarks on the work presented. The
chapter summarizes the thesis and outlines its contributions.

13

2
Background

THIS chapter starts by surveying several works in the domain of globally
asynchronous locally synchronous (GALS) Networks-on-Chip. Fur-

thermore, contributions concerning testing techniques and fault-tolerant
systems are also surveyed. Last, works in the domain of network reconfigu-
ration are reported. The chapter highlights also the contribution of this thesis
with respect to the work available in the open literature.

2.1 The GALS Design Style

When the target system requires the interconnection of several components
working at different frequency, the adopted synchronization scheme and its
implementation is key for a successful result of the final system design.

A possible solution is to adopt the GALS philosophy which can be seen as
an intermediate design style between the fully synchronous and fully asyn-
chronous solutions. The GALS design paradigm was first proposed in [131]
and consists basically of partitioning the system architecture in independent
synchronous islands while the communication between them is achieved asyn-
chronously. It is therefore a natural enabler for low-power dynamic volt-
age and frequency scaling (DVFS) and low noise. The GALS paradigm has
been frequently experimented by using asynchronous logic [87, 89]. ETH
labs developed a complete GALS methodology leveraging the use of paus-
able clocks [68]. IHP labs designed a 802.11a GALS baseband processor in-
cluding various IP cores, a viterbi decoder, FFT, IFFT and a Cordic processor.
Several asynchronous NoCs have been also proposed: Mango [89], QNoC,
ANoC, CHAIN [130], FAUST [95], Alpin, Magali. A chip dedicated to flex-
ible baseband processing for 3G/4G wireless telecommunication applications
and making use of an asynchronous NoC is described in [83, 84]. However,

15

CHAPTER 2. BACKGROUND

currently the intricacy of asynchronous design and its poor CAD tool support
makes the design of hard macros with ad hoc techniques [77] the only viable
solution for industrial exploitation [85]. This comes at the cost of large area
and penalizes flexibility.

The practical viability of synchronizer-based GALS networks has been demon-
strated in [95], where the hierarchical clock tree synthesis technique for such
systems is detailed. A circuit switched source synchronous GALS link is de-
scribed in [82], making use of long distance interconnect paths. It is then
experimented on a 65nm reconfigurable NoC for an heterogeneous GALS
many-core platform. However, there is no comparison whatsoever with alter-
native clocking styles and/or implementations. In [129] a many-core hetero-
geneous computational platform employing GALS compatible circuit switch-
ing on-chip network has been presented. [115] presents an example of mesh-
connected GALS chip multiprocessor. The work shows that the typical perfor-
mance penalties of GALS systems (mainly due to additional communication
latency) can be hidden by using large FIFO buffers. In [95], the physical im-
plementation of the DSPIN network-on-chip in the FAUST architecture has
been presented. In [116] a cost effective solution for asynchronous delay-
insensitive on-chip communication is proposed. The solution is based on the
Berger coding scheme and allows to obtain a very low wire overhead. [119]
proposes a new asynchronous NoC architecture aiming at low latency trans-
fers. This architecture is implemented as a GALS system, where chip units
are built as synchronous islands, connected together using a delay insensitive
asynchronous Network-on-Chip topology.

2.1.1 The dual-clok FIFO Synchronization Interfaces

From the pure fully asynchronous world, there are several examples of FIFOs
in literature [120, 121]. Since these designs do not utilize clocks, they are
difficult to be adopted when two different clock domains have to be synchro-
nized (e.g., two frequency islands of a GALS system). A reliable data transfer
across unrelated asynchronous clock domains is accomplished by [122]. This
work is demonstrated in both standard cell and full custom design used in a
GALS array processor. In any case, the presented synchronizer does not ac-
count for timing implication when integrated in the NoC domain. The work
in [123] illustrates a modular and easily configurable dual-clock FIFO for dif-
ferent NoC requirements (clocked or clock-less interfaces, synchronization la-
tency for resolving metastability, FIFO capacity). This design was inspired
by the modular FIFO from [124], composed of a ring of stages, where each

16

2.1. THE GALS DESIGN STYLE

stage is composed of a storage cell, a put interface and a get interface. The
solutions in [123] and [124] differ as [123] uses cells that are available from a
typical standard cell library, whereas [124] requires custom, pre-charged cells
in the control blocks. Nevertheless, [123] achieves performance which is com-
parable or even slightly higher than that reported in [124] when scaling for
the different fabrication technologies. Furthermore, [123] separates the FIFO
control logic from the synchronizers, allowing the synchronization latency to
be chosen according to the clock frequency and reliability requirements. [136]
proposed a synchronizing FIFO design based on read and write pointer com-
parison using Gray codes. The result of the comparison is synchronized to
the sender’s and receiver’s clocks. Their design uses two binary counters for
read and write addresses and a dual-port RAM for data storage which results
in a larger and more complicated design for the modest FIFO capacities that
are typically needed for NoC design. Furthermore, the design in [136] only
provides FIFO capacities that are powers of two. The design in [137] uses
the position of the read and write pointers to determine fullness and empti-
ness condition. It employees one synchronizer to detect fullness, and a syn-
chronizer per-stage to detect emptiness. To prevent errors due to metastability
when sampling the pointers, they use two tokens each as the read pointer and
write pointer. This makes their empty detector a little bit more complicated,
as it requires comparing two synchronized write pointer bits with two read
pointer bits for each stage. In addition, to differentiate between a full and an
empty FIFO, they only fill the FIFO up to the second-to-last position, which
means that a n stage FIFO can only hold n − 1 items.

The operating principle of the dual-clock FIFO architecture proposed in this
thesis resembles that of [123]. From an implementation viewpoint, we were
inspired by [137] and [136]. From [137], we borrowed the token ring concept
for implementing FSMs, since this is a simple yet robust solution with respect
to Grey coding. From [136] we borrowed the idea of performing a comparison
between read and write pointers asynchronously and then synchronizing the
result in the target domains. With respect to previous work, this thesis presents
not just a single dual-clock FIFO architecture for use in the general case, but
specializes the architecture for the specific operating conditions.

In general, a tight integration of synchronization interfaces into NoC building
blocks to cut down on latency, area and power is advocated. Finally this thesis
addresses the co-design of synchronizers with NoC building blocks.

17

CHAPTER 2. BACKGROUND

2.1.2 The Mesochronous Synchronization Interfaces

For the particular case where the clocks in two communicating domains have
the same frequency but unknown phase offset, then a dual-clock FIFO would
be too much of an overhead and custom tailored mesochronous synchronizers
are normally more cost-effective. Several works leverage the timing determin-
ism provided by GALS wrapper to facilitate debug and testing of GALS sys-
tems [133], [134]. A mesochronous link is integrated within a multi-processor
tiled architecture based on a Network-on-Chip communication backbone on a
CMOS 65nm technology in [80]. The work builds on a full-duplex link ar-
chitecture illustrated in [79] and on integrated flow control [78]. The baseline
mesochronous synchronizer is instead proposed in [96]. However, the synchro-
nizer is still an external module to the NoC. The same drawback is exposed by
a different synchronization architecture, detailed in [97].

Examples at industrial level are presented in [99], [98], [114], [96]. In [98] au-
thors examine the use of GALS techniques to address on-chip communication
between different synchronous modules on a bus. Issues related to valida-
tion, module interfaces and tool flows, while looking at advantages in power
savings, timing closure and Time-to-Market/Time-to-Money (TTM) are ex-
plored. [114], [96] both suggest to implement the boundary interface with a
source-synchronous design style and propose some form of ping-pong buffer-
ing to counter timing and metastability concerns.

A well established solution for mesochronous synchronization is illustrated
in [128] consists of delay-line synchronizers, using a variable delay on the
data lines. This delay is computed in such a way to avoid switching in the
metastability window of the receiving registers. Variable delay lines make this
solution expensive and not always available in standard cell libraries. This is
the same problem of the works in [117, 118], which use voltage comparators.

Several periodic synchronizers are illustrated in [112], which avoid metastabil-
ity by delaying either the data or the clock signal to sample data when the clock
is stable. Configurable digital delay lines are again needed and experimented
frequency is very low. The same authors in [132] illustrate many ways to “fool”
a synchronizer thus showing several weaknesses of the proposed approaches.
The works in [94,100,117] achieve mesochronous data synchronization by us-
ing Muller C-elements and digital delay lines that are typically designed with a
full-custom approach. [100] presents a self-tested self-synchronization method
for mesochronous communication. The scheme uses two clocks with a phase
shift of 180◦ and a failure detector is used to select which one to use. In [94] a
phase detector in place of a metastability detector is used in the same scheme.

18

2.2. RELIABILITY

Architectures based on FIFO synchronizers are proposed in [101, 123, 128].
FIFO size in [101] depends on the skew, hence is link-dependent or given in the
worst-case. Implementation is also very expensive, as showed in [102]. More
recently, an optimized bi-synchronous FIFO has been proposed in [137] fea-
turing low-latency and small footprint. It can be adapted to the mesochronous
needs while proving able to tolerate skew only up to 50% of the clock period.
An early mesochronous scheme for the SoCBus NoC was proposed in [81],
aiming at compact realization while still lacking of a validation on an NoC test
case. A significant step forward comes from the OCN system [113], which
uses a source synchronous scheme. A matched-delay architecture is used to
compensate the strobe skew and enable high-speed mesochronous communi-
cation. A FIFO synchronizer is used at the receiver side.

Summing up, mesochronous synchronizers surveyed so far incur several dis-
advantages: high implementation overhead, use of non-trivial or full-custom
components or low skew tolerance. Moreover, very few works are able to as-
sess timing margins with layout awareness. In this thesis, the same approach
to synchronization of [96, 109] is taken (source synchronous data transmis-
sion, safe storage of data at the receiver side, sampling in the receiver domain
only when data is stable). However, the baseline architectures and circuits are
improved by providing a more compact and equally robust solution. This is
used just as the baseline architecture for the sake of comparison with the novel
synchronization structure that it is proposed.

The tight synchronizer-NoC coupling design principle adopted for the dual-
clock FIFOs is followed also for the mesochronous synchronizer to cut down
on area, latency and power. Furthermore, a wide range of architecture alter-
natives and even port-level configuration capability is provided. Moreover, we
identify the distinctive design constraints of the new schemes and perform a
design space exploration of mesochronous NoC links and switches to capture
how timing margins can be preserved for different combinations of synthesis
and layout constraints.

2.2 Reliability

As faults will appear with increasing probability due to the susceptibil-
ity of shrinking feature sizes to process variability, age-related degradation,
crosstalk, and single-event upsets, designing efficient reliable NoCs becomes
a key requirement. However, errors can differently affect the system: they
can produce permanent, intermittent or transient failures depending on their

19

CHAPTER 2. BACKGROUND

nature. As a consequence, protection mechanisms may substantially vary as a
function of the target fault to tackle. In particular, strategies envisioned ad-hoc
for permanent failures usually do not reveal intermittent or transient failures
and vice versa mechanisms for these latter failures do not efficiently tackle
permanent ones. As a result, multiple strategies must be co-integrated and co-
optimized in order to efficiently protect the system from a wide range of errors.
Following such considerations, this thesis exploits off-line built-in self-testing
strategies to reveal permanent failures while it relies on on-line fault-tolerant
mechanisms to detect transient and intermittent ones.

2.2.1 Built-In Self-Testing and Diagnosis

Considering the regular and modular structure of on-chip networks, test strate-
gies previously proposed for systems with identical cores [104, 105] can be
applied to the NoC.

However, both approaches incur a significant overhead for DfT structures (full-
scan and IEEE 1500 wrapped cores with registered I/O pins).

The work in [106] proposes an implementation of the IEEE 1149.1 boundary
scan standard as a strategy to carry out hierarchical test, and enable diagnos-
tics, of a 2D grid router. In this case, at-speed testing is not feasible, and
the serial shift through all registers during test costs a lot of additional logic.
In [108] a wrapper with scan-chains attached to each router is proposed. One
of the routers is defined as a test access switch to receive test patterns from
the external test source and broadcast these patterns to other routers. In [107]
the NoC is progressively used for testing its own components in a recursive
manner. Again, scan insertion is needed.

[47] illustrates a wide range of standard DfT techniques for NoC design, from
BIST for FIFOs, to functional testing of wrapped switches. This approach has
a high area overhead due to full scan and BIST.

[45] also proposes a partial scan technique in combination with an IEEE 1500-
compliant test wrapper. Area overhead is greatly reduced, but test application
times amount to tens of thousands of clock cycles and test pattern generation
time does not scale.

As opposed to using scan paths and wrappers for test access, [18] considers
the case where test patterns are applied at the border I/Os of the network.
The method was then extended in [19] to support fault diagnosis, while the
DfT infrastructure was developed in [17]. While very high fault coverage was
achieved, the time complexity of the test configurations is square with respect

20

2.2. RELIABILITY

to the rank of the NoC matrix. Moreover, in order to apply test patterns from
network boundaries at-speed, a large number of test pins are necessary.

In [20], it is proposed to add dedicated logic to enable analysis of response
from each FIFO in the switch, however no test data is presented. In [22] the
possibility to repair the NoC during testing is envisioned, however error infor-
mation is computed once for all and thus cannot handle situations where the
chip slowly degrades.

[21] proposes a built-in self-test and self-diagnosis architecture to detect and
locate faults in the FIFOs and in the MUXes of the switches. Unfortunately,
the control path is left out of the framework.

In [26] an automatic go/no-go BIST operation is proposed at start up of a 2D
mesh NoC. Low fault coverage is achieved for the switch controller, moreover
the methodology applies only to a 2D mesh. That idea is evolved in [42],
where a fault coverage close to 100% is documented with a few thousand clock
cycles. However, the area cost of the BIST architecture is the main concern of
this work.

The pattern based testing section from the more general reliability framework
presented in [23] reports a testing methodology relying on random test pat-
tern generation and signature analysis. Unfortunately, testing takes as large as
200000 cycles with 10000 patterns per test.

The thesis presents four scalable built-in self-test and self-diagnosis infrastruc-
tures for NoCs providing a wide exploration of different testing strategies in a
homogeneous experimental setting. With respect to previous work, we claim
a more efficient use of NoC structural redundancy for testing and diagnosis
purposes through the use of a cooperative testing framework. With respect
to conventional scan-based approaches, we reduce area overhead while at the
same time detecting TPG faults. With respect to state-of-art functional testing
solutions, we provide efficient testing of the control path as well and provide
better test time scalability. With respect to pseudo-random testing, we cut
down on the test application time.

2.2.2 Fault-tolerance

Transient faults cannot be handled by off-line strategies as they appear and
disappear unpredictably. Fault-tolerant systems must be therefore employed
to satisfy the high reliability constraints imposed by modern systems. In this
direction, there are three major approaches.

21

CHAPTER 2. BACKGROUND

First, Modular Redundancy can be adopted. For instance, Constantinides et al.
demonstrated the BulletProof router, which efficiently uses NMR techniques
for router level reliability [41]. However, NMR approaches are expensive, as
they require at least N times the silicon area to implement. Similarly, Time
Redundancy (TR) [32] can be adopted to protect the NoC against faulty com-
ponents. However, Time Redundancy decreases the performance of the NoC,
since all information needs to be retransmitted.

Alternately, error detecting codes can be used. The detection phase is followed
by a recovery one, for instance based on the retry of the unsuccessful opera-
tion. Simple retransmission schemes are described in [30, 31]. In terms of
implementation, [10, 30] use a single transmission buffer that contains both
sent and unsent flits together. [31] uses link-level retransmission together with
the Unique Token Protocol (UTP) to ensure reliability. However, it requires at
least two copies of a packet in the network, increasing buffer occupancy and
flow control complexity. In contrast, [29] minimizes control logic by using
a barrel shifter as retransmission buffer whose size is matched to the round
trip notification latency of a NACK. The work in [28] targets virtual chan-
nel NoC implementations and uses dynamic packet fragmentation in tandem
with a credit-based fault-tolerant flow control to recover from corrupted virtual
channel states. In general, state-of-the-art in fault-tolerant flow control can be
reviewed in [27], where the power inefficient ACK/NACK or the high-impact
T-Error protocols are compared. The key take-away is that more research is
needed in this domain, a challenge that for instance [28] takes on. Unfortu-
nately, the solution in [28] comes with heavy throughput limitations.

Finally, error correcting codes (ECC) can be employed. They typically allow
the correction of a limited amount of errors per codeword in order to contain
complexity. Nonetheless, they are commonly reported to introduce a high tim-
ing penalty, because of the delay of the encoder/decoder and correction blocks.
In [33] the router selects on the fly the most effective ECC scheme to send the
data trough the link. The work in [35] proposes to use the Hamming Code on
the input buffers to protect FIFO data. Similarly [23] protects the data-path
via an ECC strategy. However, by using the fault tolerance techniques pro-
posed in [23, 33, 35], but also in [34] and [38], only the links are protected,
and incur large area and performance overhead. A retransmission scheme that
enables graceful degradation of NoC communication performance under high
failure rates is proposed in [36], but again the control path is not protected. In-
terestingly, erroneous behaviour in the functionality of the routing process or
in output port arbitration may cause flit/packet misrouting. In the worst case,
this results into loss of information or even into a deadlock condition. Clearly,

22

2.3. NETWORK RECONFIGURATION

robust protection against such upsets should be provided. Finally, [37] adopts
error correcting coding to perform on-line testing but achieves a quite low cov-
erage (63%). [29] proposes a mechanism able to exploit an ECC strategy for
single error correction and a retransmission procedure once a double error is
revealed. Anyway, the area overhead to support such mechanism is really se-
vere, in addition to the high switching activity suffered from the retransmission
buffer.

In general, the use of ECC in the above approaches suffers from two main limi-
tations. First, the corrector is used at each clock cycle and ends up in the critical
path. Second, the proposed architectures are not robust to many transient faults
affecting the corrector itself. Moreover, there is consensus on the fact that error
detection followed by retransmission typically has a milder impact on network
power than error correction. This is the assumption of the work in [36] and the
result of an ad-hoc experimental framework in [39] and [40]. However, none of
these works relies on accurate microarchitectural studies and on physical im-
plementation efforts. This thesis integrates the proposed design methods in a
fault-tolerant switch based on a flow control protocol with error notification ca-
pability (NACK/GO) integrating both a detector and a corrector in each switch
buffer [58]. Control logic of input and output buffers is triplicated and voted,
and so are their state registers to avoid misalignment of FSMs. By exploiting
the retransmission capability provided by NACK/GO, the control path of the
switch could be protected with Dual Modular Redundancy (DMR) instead of
TMR.

2.3 Network Reconfiguration

During the last two decades, a large number of proposals have been presented
about resilient routing for both off-chip and on-chip networks. These ap-
proaches are either non-reconfigurable fault-tolerant routing strategies which
tolerate a limited number of faults [49–52], or reconfigurable routing mech-
anisms that allow unlimited changes to the network. This thesis performs a
step forward with respect to literature. We focus on schemes of the second cat-
egory, in particular on those based on reconfiguration processes that consider
such changes to the network structure to obtain new routing paths replacing the
previous ones. Finally, we enhance the proposed scheme with fault-tolerance
capabilities.

In off-chip networks, such as those used in clusters, during a reconfiguration
process, the topology resulting from the connection/disconnection or failure of

23

CHAPTER 2. BACKGROUND

network components is discovered by a central node, which runs the reconfig-
uration algorithm in software. The management software computes new rout-
ing tables and distributes them to each node. Detecting the new topology and
communicating the new routing tables can be completed with or without traf-
fic into the network. Static reconfiguration first stops and drains all user traffic
from the network before completing the reconfiguration process [53, 54]. This
reconfiguration method is unable to provide real-time and quality-of-service
support needed by some applications. On the contrary, dynamic reconfigura-
tion updates routing tables without stopping user traffic. In this case, the main
challenge is to guarantee deadlock freedom as old and new routing functions
are simultaneously active [48, 55–57, 59–62].

In the context of networks on chip, new techniques have been proposed and
other retain some features of the above. The Vicis NoC architecture [23] uses
the turn routing model during fault-free operation, and a heuristic solution that
makes exceptions to that routing model to maximize connectivity. Reconfigu-
ration process rewrites the routing tables based on the information from built-
in-self-test units in each router. When large number of faults occur, exceptions
sometimes result in deadlocked routing paths.

A reconfigurable fault-tolerant deflection routing algorithm based on reinforce-
ment learning for NoC has been proposed in [63]. The algorithm reconfigures
the routing tables through reinforcement learning based on 2-hop fault infor-
mation. In [64], a reconfigurable routing algorithm for a 2D-mesh NoC is
presented. This algorithm introduces low hardware cost but can only be used
in one faulty router or regular region topology. Other proposals can deal with
irregular fault regions. A mechanism to tolerate failures in networks for paral-
lel computers is described in [65]. It tolerates any number of failures regardless
of their spatial and temporal distributions. Immunet is limited by the network
connectivity and results in high area overhead because it requires three routing
tables per router. In [66], a region-based routing has been proposed to handle
irregular networks. This algorithm groups destinations into regions to make
routing decision. However, it does not provide a reconfiguration method to
migrate from one configuration to another.

Finally, [67] presented Ariadne, an agnostic reconfiguration algorithm for
NoCs, capable of circumventing large numbers of simultaneous faults, and
able to handle unreliable future silicon technologies. Ariadne utilizes
up*/down* for high performance and deadlock-free routing in irregular net-
work topologies that result from large numbers of faults.

Ariadne is implemented in a fully distributed mode. Thus it results in very sim-

24

2.3. NETWORK RECONFIGURATION

ple hardware and low complexity although it comes with suboptimal solutions
for lack of global view. The up*/down* routing will not perform optimally un-
der certain configurations, specially in the absence of failures (in a 2D mesh).
In addition, up*/down* routing is encoded in routing tables at switches. Unfor-
tunately, the Ariadne latency badly scales with network size (the configuration
latency increases with the square of the nodes number). This latter property has
a severe impact on the network performance especially because Ariadne does
not guarantee a transparent transition between configurations. The flits have
to freeze in the network pipelines and the throughput drops to zero during re-
configuration. Even when the communication resumes, a high contention due
to the fullness of injection queues strongly degraded the network performance
for a long period.

As opposed to these solutions, the scheme proposed by this thesis (OSR-Lite)
does not use routing tables at switches, allows coding any efficient routing al-
gorithm (even DOR routing) and requires lightweight switch support to enable
truly fast dynamic reconfiguration. Moreover its latency smoothly increases
with network size, and the configuration transition is transparent, ultimately
preserving the throughput of the system.

25

3
Relaxing the Synchronization

Assumption in Networks-on-Chip

THIS chapter introduces the first challenge we aim to solve in this thesis:
the synchronization design issue. In a first step, the motivation for the

adoption of synchronization mechanisms in the Network-on-Chip envi-
ronment will be discussed. Next, the target GALS platform of this thesis along
with the architecture of the basic switch block required to build it will be pre-
sented. Then, the focus will be on the baseline mesochronous synchronizer and
its improvements that led to a new integrated and flexible switch architecture.
Last, a library of novel dual-clock FIFO synchronizers, where each architec-
ture variant in the library has been designed to match well-defined operating
conditions at the minimum implementation cost, will be presented.

3.1 Limitations of the Fully Synchronous Approach

Network-on-chip (NoC) communication architectures are being widely
adopted in multi-core chip design to ensure scalability and facilitate a
component-based approach to large-scale system integration. As technology
advances into aggressive nanometer-level scaling, a number of design chal-
lenges emerge from technology constraints which require a continuous evolu-
tion of NoC implementation strategies at the circuit and architectural level.

Synchronization is today definitely among the most critical challenges in the
design of a global on-chip communication infrastructure, as emerging variabil-
ity, signal integrity, power dissipation limits are contributing to a severe break-
down of the global synchronicity assumption when a logical structure spans
more than a couple of millimeters on die [14]. NoCs typically span the entire
chip area and there is today little doubt on the fact that a high-performance and

27

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

cost-effective NoC can only be designed in 45nm and beyond under a relaxed
synchronization assumption [86].

3.2 A Possible Solution: the GALS Design Style

One effective method to address the synchronization issue is through the use
of globally asynchronous locally synchronous (GALS) architectures where the
chip is partitioned into multiple independent frequency domains. Each do-
main is clocked synchronously while inter-domain communication is achieved
through specific interconnect techniques and circuits. Due to its flexible porta-
bility and transparent features regardless of the differences among compu-
tational cores, GALS interconnect architecture becomes a top candidate for
multi- and many-core chips that wish to get rid of complex global clock distri-
bution networks.

In addition, GALS allows the possibility of fine-grained power reduction
through frequency and voltage scaling [69]. Since each core or cluster of cores
operates in its own frequency domain, it is possible to reduce the power dissi-
pation, increase energy efficiency and compensate for some circuit variations
on a fine-grained level.

Among the advantages of a GALS clocking style, it is worth mentioning [82]:

• GALS clocking design with a simple local ring oscillator for each core
eliminates the need for complex and power hungry global clock trees.

• Unused cores can be effectively disconnected by power gating, thus re-
ducing leakage.

• When workloads distributed to cores are not identical or feature different
performance requirements, we can allocate different clock frequencies
and supply voltages for these cores either statically or dynamically. This
allows the total system to consume a lower power than if all active cores
had been operated at a single frequency and supply voltage [73].

• We can reduce more power by architecture-driven methods such as par-
allelizing or pipelining a serial algorithm over multiple cores [74].

• We can also spread computationally intensive workloads around the chip
to eliminate hot spots and balance temperature.

28

3.2. A POSSIBLE SOLUTION: THE GALS DESIGN STYLE

The methodology of inter-domain communication is a crucial design point for
GALS architectures. One approach is the purely asynchronous clockless hand-
shaking, that uses multiple phases (normally two or four phases) of exchanging
control signals (request and ACK) for transferring data words across clock do-
mains [70,71]. Unfortunately, these asynchronous handshaking techniques are
complex and use unconventional circuits (such as the Muller C-element [72])
typically unavailable in generic standard cell libraries. Besides that, because
the arrival times of events are arbitrary without a reference timing signal, their
activities are difficult to verify in traditional digital CAD design flows.

The so-called delay-insensitive interconnection method extends clockless
handshaking techniques by using coding techniques such as dual-rail or 1-of-4
to avoid the requirement of delay matching between data bits and control sig-
nals [116]. These circuits also require specific cells that do not exist in com-
mon ASIC design libraries. Quinton et al. implemented a delay-insensitive
asynchronous interconnect network using only digital standard cells; however,
the final circuit has large area and energy costs [90].

Another asynchronous interconnect technique uses a pausible or stretchable
clock where the rising edge of the receiving clock is paused following the re-
quirements of the control signals from the sender. This stops the synchronizer
at the receiver until the data signals stabilize before sampling [91, 92]. The
receiving clock is artificial in the sense that its period can vary cycle by cycle,
therefore, it is not suitable for processing elements with synchronous clock-
ing that need a stable signal clock in a long enough time. Besides that, this
technique is difficult to manage when applied to a multiport design due to the
arbitrary and unpredictable arrival times of multiple input signals.

An alternative for transferring data across clock domains is the source-
synchronous communication technique that was originally proposed for off-
chip interconnects. In this approach, the source clock signal is sent along with
the data to the destination. At the destination, the source clock is used to sam-
ple and write the input data into a FIFO queue while the destination clock is
used to read the data from the queue for processing. This method achieves high
efficiency by obtaining an ideal throughput of one data word per source clock
cycle with a very simple design that is also similar to the synchronous design
methodology; hence it is easily compatible with common standard cell design
flows [93, 125–127]. Unfortunately, correct operation of source-synchronous
links is very sensitive to routing delay mismatches between data and the strobe
signals, and hence to delay variability. Therefore, it is very challenging in the
context of nanoscale silicon technologies.

29

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

In general, each GALS paradigm has its own pros and cons. Fully asyn-
chronous design techniques are a more disruptive yet appealing solution, al-
though their widespread industrial adoption might be slowed down by the rel-
evant verification and design automation concerns they raise. Moreover, they
tend to be quite area greedy, at least when timing robustness is enforced. In this
context, a full custom design style is still the safer strategy for their successful
utilization, hence asynchronous NoC building blocks are often instantiated as
hard macros.

For this reason, this chapter will not review fully asynchronous NoC archi-
tectures, but will rather focus on synchronizer-based GALS architectures, and
on source synchronous communication in particular. Using synchronizers for
GALS NoC design implies an incremental evolution of mainstream EDA de-
sign tools and paves the way for compatible architectures (with careful syn-
chronizer engineering) with a standard cell design flow. This chapter is fully
devoted to this kind of GALS architectures.

The remainder of this chapter is organized as follows: Section 3.3 will de-
scribe the target GALS architecture under analysis in this thesis. Section 3.4
will present the switch architecture of reference that has been evolved in a
sort of galsification process till building a GALS NoC switch. In order to
achieve this, Section 3.5 and Section 3.6 respectively present the architectures
of the mesochronous and the dual-clock FIFO synchronizer and their optimiza-
tions that led to novel tightly integrated synchronizers. Section 3.5 and Section
3.6 also present theoretical analysis on the synchronization constraints, which
highlights the distinctive features of each synchronization scheme studied in
the chapter, and describe the experimental results for such architectures. Fi-
nally, Section 3.7 will compare the mesochronous and the dual-clock FIFO
synchronizer under an area point of view and Section 3.8 summarizes the con-
tribution of this chapter.

3.3 Target GALS Architecture

There exist several options when implementing a GALS architecture. From a
pure implementation viewpoint, one method consists of asynchronous clock-
less handshaking, which uses multiple phases of signal exchange to transfer
data. Due to the round-trip signal exchange, the transfer latency between two
consecutive data words is high. Besides that, the asynchronous clock-less cir-
cuits are difficult to verify in traditional CAD flows, and they also demand a
comparatively large area and energy requirements [90, 125].

30

3.3. TARGET GALS ARCHITECTURE

In the system we implemented in this thesis, the on-chip network is seen as
an independent clock domain. Therefore, part of the circuitry is devoted to
reliably and efficiently move data across asynchronous clock boundaries be-
tween NoC switches and connected network interfaces. These latter are as-
sumed to be part of the clock domain of the IP core that they serve. Dual-clock
FIFOs are an effective solution to provide asynchronous boundary communi-
cation, especially in throughput-critical interfaces. However, many designers
are skeptical about their utilization due to the relevant latency, area and power
overhead they incur. Beyond urging research activities aiming at the optimiza-
tion of dual-clock FIFO architectures, this fact emphasizes the need for their
conscious use in GALS systems.

Aware of this, we try to minimize their usage as much as possible by instanti-
ating them only at IP core boundaries, after their respective network interfaces
(see Figure 3.1). However, this choice moves many chip-wide timing concerns
to the on-chip network. In fact, this latter ends up spanning the entire chip and
might be difficult to clock due to the growing chip sizes, clock rates, wire de-
lays and parameter variations. As previously anticipated, in 45nm and beyond,
a global clock signal spanning the whole chip area will be difficult to control
and even to realize with a controllable phase-offset.

In fact, we find that mesochronous synchronization can relieve the burden of
chip-wide clock tree distribution while requiring simpler and more compact
synchronization interfaces than dual-clock FIFOs. Hierarchical clock tree syn-
thesis is an effective way of exploiting mesochronous links, as already exper-
imented in [95]. During the first step, a clock tree is synthesized for each
network switch with a tightly controlled skew (e.g.,5%). Next, each clock tree
is characterized with its input delay, skew and input capacitance. This infor-
mation is used by the clock tree synthesis (CTS) tool to infer a top clock tree
balancing the leaves with a much looser skew constraint (e.g., 30/40%). The
ultimate result is a global clock tree which consumes less power then the tradi-
tional one generated by enforcing chip-wide skew constraints. For future large
multiprocessor systems-on-chip, the use of this methodology can be not just
an issue of power efficiency but even of CTS feasibility.

However, power savings with this methodology should not be taken for
granted, since it involves some overheads: the transmission of the clock signal
across mesochronous links, the mesochronous synchronizers themselves (im-
plementing power-hungry buffering resources) and the increased number of
buffer slots needed at link end-nodes to cover the larger round-trip time (asso-
ciated with the synchronization latency) for correct flow control management.

31

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

Clock Domain Clock Domain

CORE

Initiator
FIFO

Dual−ClockNetwork
Interface

CORE

Dual−Clock
FIFO

Clock Domain Clock Domain

Clock Domain Clock Domain

CORE

Initiator

SWITCH

FIFO
Dual−ClockNetwork

Interface

CORE

CORE

Initiator

SWITCH SWITCH

FIFO
Dual−ClockNetwork

Interface

CORE

Dual−Clock
FIFO

Dual−Clock
FIFO

SWITCHSWITCH

SWITCH

Target

Network
Interface

Target

Network
Interface

Target

Network
InterfaceMESOCHRONOUS

NETWORK−ON−CHIP

Figure 3.1: Target Design Platform.

Our design platform aims at minimizing such overheads through a novel
mesochronous architecture taking advantage of the tight integration of the syn-
chronizer into the switch architecture. However, since these solutions give rise
to timing constraints that might not be verified for specific layout conditions,
we provide architecture variants for these cases as well, thus coming up with a
flexible switch suitable for many design instances.

Beyond mesochronous synchronizers, dual-clock FIFO architectures are still
required at IP core boundaries.

Thus this thesis proposes a library of dual-clock FIFOs for cost-effective MP-
SoC design, where each architecture variant in the library has been designed
to match well-defined operating conditions at the minimum implementation
cost. Each FIFO synchronizer is suitable for plug-and-play insertion into the
NoC architecture and selection depends on the performance requirements of
the synchronization interface at hand.

Finally we demonstrate that the design principle adopted for the mesochronous
synchronizer, which we denote as “tight coupling” of synchronizer with NoC,
can be applied also to dual-clock FIFOs. As a result, all components of our
synchronization library have been conceived for tight integration into NoC
building blocks.

In this direction, moving from a system-level to a switch block view, next sec-
tion will present the fully synchronous baseline switch architecture that will be
used as starting point for the implementation of our target GALS architecture.
In fact, such an architecture will be augmented with various mesochronous and
dual-clock FIFO synchronizer variants as we will see later on in this chapter.

32

3.4. ×PIPESLITE SWITCH ARCHITECTURE

3.4 ×pipesLite switch architecture

The ×pipesLite network-on-chip architecture has been conceived for
the resource-constrained Multi-processor system-on-chip (MPSoC) domain.
Therefore, it features a high degree of parameterization and compact imple-
mentation [110]. It is unpipelined, fully synthesizable with a standard design
flow and achieves frequencies around 1.5GHz for the fastest configurations.

The ×pipesLite switch is conceived as a soft macro from the ground up. The
possibility of design-time tuning of parameters such as flit width, number of
I/O ports, buffer size and flow control policy makes it suitable to explore sev-
eral topologies and architectural variants.

The baseline architecture implements an in/out buffered switch implementing
wormhole switching and source-based routing, as depicted in Figure 3.2.

CROSSBAR

MANAGER

FLOW CONTROL

DATA

STALL

DATA

STALL

STALL

DATA

STALL

DATA
INPUT

BUFFER

INPUT

BUFFER

INPUT

BUFFER

INPUT

BUFFER

ARBITER

ARBITER

ARBITER

ARBITER

PATH SHIFT

PATH SHIFT

PATH SHIFT

DATA

STALL

DATA

STALL

DATA

STALL

DATA

STALL

PATH SHIFT

OUTPUT

BUFFER

OUTPUT

BUFFER

OUTPUT

BUFFER

OUTPUT

BUFFER

Figure 3.2: Baseline switch architecture.

The crossing latency is therefore equal to 1 cycle in the upstream/downstream
link and 1 cycle inside the switch itself. The choice for retiming at input and
output ports stems from the need to break the timing path across switch–to–
switch links. The first chapters of this thesis show that in 65nm technology the
delay of inter-switch links causes a significant performance drop for most reg-
ular NoC topologies depending on the intricacy of their connectivity pattern.
This is certainly technology-, architecture- and topology-specific and depends
on the specific link inference technique too, but a rule of thumb is that with
target operating speeds above 700 MHz, even for 2D mesh topologies, the tar-
get speed is likely to be achieved by leveraging input and output retiming in

33

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

the switch. This is due to the increasing role of RC propagation delay across
the interconnects and will hold even more in future technology nodes.

The ×pipesLite switch relies on a stall/go flow control protocol [27]. It re-
quires two control wires: one going forward and flagging data availability
(“valid”) and one going backward and signaling either a condition of buffer
filled (“stall”) or of buffer free (“go”). With this scheme, power is minimized
since any congestion issue simply results in no unneeded transitions over the
data wires. Moreover, recovery from congestion is instantaneous. The input
buffer serves as a retiming stage, while at the same time handling flow control.
For this purpose, it needs to be 2 slots deep. During normal operation, only one
slot is used. When a “stall” is notified by the downstream stage, output data
of the buffer is frozen. However, it takes one cycle to propagate the “stall”
upstream, during which a new input data is driven and needs to be stored in a
backup slot. This justifies the need for 2 slots. The architecture can be seen
as a synthesizable realization of the elastic buffer concept. The output buffer
has a tunable size for performance optimization, and handles flow control as
well. Therefore, it shares the underlying architecture design techniques with
the input buffer. Arbitration is not centralized, i.e., there is a round-robin ar-
biter for each output port serializing conflicting access requests for that output
port. The critical path of the switch starts from the finite state machine of the
switch input buffer, goes through the arbiter, the crossbar selection signals,
some header processing logic and finally includes a library setup time for cor-
rect sampling at the switch output port (see Figure 3.2). The combinational
logic shifts the routing bits in the packet header in such a way that each switch
reads the target output port for that packet in the first position.

In order to build our GALS platform, mesochronous and multi-synchronous
communication needs to be implemented by means of synchronizers. We en-
vision the design of such synchronizers as a seamless replacement of the switch
input buffer of Figure 3.2 thus effectively coming up with a new GALS switch
architecture, an example is depicted in Figure 3.3.

The architecture flexibility, provided by all the synchronizer interfaces vari-
ants, enables a fully configurable switch building block that can be tailored
depending on different requirements. In fact, as it will be clear later on in this
chapter, different synchronizer implementation choices lead to different trade-
off in terms of performance/link-delay toleration. We see this as a very efficient
and cost-effective way to implement a GALS Network-on-Chip because only
those switch input ports, that have specific synchronization requirements, can
be equipped with a mesochronous or a dual-clock FIFO synchronizer whereas

34

3.5. THE MESOCHRONOUS INTERFACE

ARBITER2

ARBITER0

ARBITER1

ARBITER3

PATH SHIFT

PATH SHIFT

PATH SHIFT

PATH SHIFT

DATA

STALL

DATA

STALL

DATA

STALL

DATA

STALL

MANAGER

FLOW CONTROL

DATA

STALL

CLK

DATA

CLK

DATA

STALL

FULLY

SYNCHRONOUS

INPUT BUFFER

HYBRID

MESOCHRONOUS

INPUT BUFFER

INPUT BUFFER

MESOCHRONOUS

COUPLED

LOOSELY

INPUT BUFFER

MESOCHRONOUS

COUPLED

TIGHTLY

CROSSBAR

STALL

CLK

RX

CLK

DATA

TX STALL

CLK

TX

OUTPUT

BUFFER

OUTPUT

BUFFER

OUTPUT

BUFFER

OUTPUT

BUFFER

Figure 3.3: GALS switch architecture.

in the remaining ports, a fully synchronous input buffer can be instantiated.

All the developed mesochronous and dual-clock FIFO synchronizer architec-
ture variants will be detailed in the remainder of this chapter starting from
the baseline mesochronous synchronization architecture described in the next
section.

3.5 The Mesochronous Interface

This work moves from the mesochronous synchronizer architecture presented
in [109] and illustrated in Figure 3.4. The circuit receives as its inputs a bun-
dle of NoC wires representing a regular NoC link, carrying data and/or flow
control commands, and a copy of the clock signal of the sender. Since the lat-
ter wire experiences the same propagation delay as the data and flow control
wires, it can be used as a strobe signal for them. The circuit is composed by a
front-end and a back-end. The front-end is driven by the incoming clock sig-
nal, and strobes the incoming data and flow control wires onto a set of parallel
latches in a rotating fashion, based on a counter. The back-end of the cir-
cuit leverages the local clock, and samples data from one of the latches in the
front-end thanks to multiplexing logic which is also based on a counter. The
rationale is to temporarily store incoming information in one of the front-end
latches, using the incoming clock wire to avoid any timing problem related to
the clock phase offset. Once the information stored in the latch is stable, it can
be read by the target clock domain and sampled by a regular flip-flop.

35

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

Flip

Latch_0

Mux Flop
Flow Control
Data and

Front−end Back−end

Latch_1

Detector

counter
1−bit

counter
1−bit

Phase
clk_sender

Data and

Flow Control

clk_receiver

Figure 3.4: Baseline mesochronous synchronizer architecture of [109].

Counters in the front-end and back-end are initialized upon reset, after observ-
ing the actual clock skew among the sender and receiver with a phase detector,
so as to establish a proper offset. The phase detector only operates upon the
system reset, but given the mesochronous nature of the link, its findings hold
equally well during normal operation.

Since few flow control wires are traveling backwards, another similar but much
smaller synchronizer needs to be instantiated at the sender to handle them.

3.5.1 The Loosely Coupled Mesochronous Synchronizer

In agreement with [109], it is always possible to choose a counter setup so
that the sampling clock edge in the back-end captures the output of the latches
in a stable condition, even accounting for timing margin to neutralize jitter.
Therefore, no more than 2 latches in parallel are needed in the front-end for
short-range (i.e., single cycle) mesochronous communication with this scheme.

However, other considerations suggest that a different choice may be desirable
at this point. In particular, by increasing the number of input latches by one
more stage, it becomes possible to remove the phase detector (see the new ar-
chitecture in Figure 3.5). This would be desirable due to the timing uncertainty
or the high area footprint or the non-compliance to a standard cell flow that af-
fects many phase detector implementations. A third latch bank allows to keep
latched data stable for a longer time window and to even find a unique and safe
bootstrap configuration (i.e., counters initialization) that turns out to be robust

36

3.5. THE MESOCHRONOUS INTERFACE

in any phase skew scenario.

Data and

Latch_0

Latch_1

Latch_2

Mux
Flip
Flop

local
reset

Front−end Back−end

Flow Control

external reset

clk_receiverclk_sender

Flow Control
Data and

Synchronizer

Reset

counter counter

Figure 3.5: The loosely coupled mesochronous synchronizer of this work.

At regime, the output multiplexer always selects the output of the latch bank
preceding the bank which is being enabled by the front-end counter. Rotating
operation of both front- and back-end counters preserves this order. In contrast
to [109], the reset architecture is designed, as Figure 3.5 shows. In most SoCs,
the reset signal coming into the chip is an asynchronous input. Therefore, reset
de-assertion should be synchronized in the receive clock domain. In fact, if a
reset removal to a flip-flop occurs close to the active edge of its clock, flip-flops
can enter a metastable state. We use a brute-force synchronizer (available in
several new technology libraries as a standard cell, e.g. ST65nm) for reset
synchronization with the receiver clock. Now, the challenge is how to reset
the front-end. Typically, a reset can be sent by the upstream switch. In our
architecture, we prevent metastability in the front-end by delaying the strobe
generation in the upstream switch by one clock cycle after reset de-assertion.
This way, on the first edge of the strobe signal, the receiver synchronizer is
already reset. Such strobe signal generation delay is compliant with network
packet injection delay after reset.

The transmitter clock signal is used as the strobe signal in our architecture.
Differently than [109], a larger timing margin is enforced for safe input data
sampling. In fact, the transmitter clock signal has to be processed at the re-
ceiver end in order to drive the latch enable signals. In actual layouts, this pro-
cessing time adds up to the routing skew between data and strobe and to the
delay for driving the latch enable high-fanout nets. As a result, the latch enable
signal might be activated too late, and the input data signal might have already

37

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

changed. In order to make the synchronizer more robust to these events, we
ensure that input data sampling occurs in the middle of the clock period. In
fact, a switching latch enable signal opens the sampling window of the next
latch during the rising edge, and closes the same during the falling one. As
a result, the latch enable activation has a margin of half clock cycle to occur.
Our post-layout simulations prove that this margin is largely met in practice.
Finally, in agreement with [109], we computed the minimum size of the in-
put buffer in the downstream switch to be 4 slots (flits). They are required by
the stall/go flow control protocol in order to cover the round trip latency and
not to drop flits in flight when a stall signal has to be propagated backwards.
The original input buffer size is 2 slots, reflecting the requirements of stall/go
without synchronization. Please refer to [109] for further details about this.

3.5.2 Tightly Integrated Mesochronous Synchronizer Architec-
ture

The previous synchronizer, similarly to SKIL or to the Polaris one, is a mod-
ule of the NoC architecture, thus loosely coupled with the downstream switch.
The loose coupling stems from the fact that the flip-flop in the synchronizer
back-end belongs directly to the switch input buffer. The mux output is there-
fore sampled like any other input in the fully synchronous scenario. However,
our early exploration indicated that the area overhead induced in this input
buffer, as an effect of the added synchronization latency, is much larger than
the synchronizer area itself.

This hints that a tighter integration of the synchronizer into the switch input
buffer is desirable. In particular, the latch enable signals of the synchronizer
front-end could be conditioned with backward-propagating flow control sig-
nals, thus exploiting input latches as useful buffer stages and not just as an
overhead for synchronization. In this case, input data is at first stored in the
latches and then synchronized. This allows to completely remove the switch
input buffer and to replace it with the synchronizer itself. The synchronizer
output is then directly fed to the switch arbitration logic and to the crossbar.
The ultimate consequence is that the mesochronous synchronizer becomes the
actual switch input stage, with its latching stages acting as both buffering and
synchronization stages (see Figure 3.6). As a side benefit, the latency of the
synchronization stage in front of the switch is removed, since now the syn-
chronizer and the switch input buffer coincide. The main necessary change
to make the new architecture come true is to bring flow control signals to the
front-end and back-end counters of the synchronizer. This solution would still

38

3.5. THE MESOCHRONOUS INTERFACE

require 4 slot buffers, i.e., 4 latching banks. However, a further optimization
is feasible. The backward-propagating flow control signal (the stall/go signal)
could be directly synchronized with the strobe signal in the synchronizer front-
end before being propagated to the upstream switch. This would save also the
synchronizer at the transmitter side. In fact, the backward-propagating signal
would be already in synch with the strobe, which in turn is in synch with the
transmitter clock. The ultimate result is the architecture illustrated in Figure
3.6.

We are aware that this latter choice shrinks timing margins for the backward
flow control signal. The reason is that it leaves the downstream switch with
a generation delay across its synchronizer and also experiences the link prop-
agation delay. This margin will be assessed post-layout in the experimental
section, proving the applicability of the scheme. For this architecture solu-
tion, only 3 latching banks are needed in the synchronizer. In practice, only 1
slot buffer more than the fully synchronous input buffer. The tightly coupled
synchronizer makes the mesochronous NoC design fully modular like the syn-
chronous one, since no external blocks to the switches have to be instantiated
for switch-to-switch communication. Please notice that the reset architecture
remains unchanged with respect to Figure 3.5.

SWITCH INPUT BUFFER

Mux Stall

clk_receiver

Stall

Flow Control

andData
Flow Control

Data andLatch_1

Latch_0

Latch_2

counter

countercounter

counter

Latch_0

Front−end Back−end

Latch_1

Latch_2

clk_sender

Mux

Figure 3.6: Proposed tightly coupled mesochronous synchronizer.

39

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

Operating principle

In case a go signal comes from the switch arbiter, at each clock cycle data are
latched in the input buffers of the synchronizer, synchronized with the local
clock and propagated to the switch arbiter and crossbar. When a stall occurs,
the output mux keeps driving the same output until communication can be re-
sumed. While the stall signal gets synchronized with the strobe and reaches
the front-end, the front-end latches keep sampling input flits in a rotating way.
When the stall signal finally leaves the synchronizer, it will stop the transmis-
sion of the upstream switch and the front-end counter operation at the same
time. At this point, the situation is frozen. When then a go arrives, the out-
put mux becomes operational again. Later, input latches and upstream switch
resume their operation again at the same time. Please observe that this mech-
anism does not waste bandwidth on flow resumption, since the synchronizer
backend can immediately start sweeping the output of front-end latches upon
receipt of a go. Interestingly, flow control logic in the synchronizer is sim-
plified with respect to that of the original switch input buffer. Before, a finite
state machine used to generate a stall by monitoring the number of elements in
the buffer. When it was equal to one and a stall came from the switch internal
logic, than a stall was also generated for the upstream switch. In the new ar-
chitecture, the synchronizer just synchronizes the stall signal from the switch
logic with the transmitter clock and propagates it upstream. This way, a large
amount of logic is saved.

Figure 3.7 reports the waveforms showing operation of the tightly coupled
synchronizer. A delay from the strobe signal is assumed for the latch enable
signals to account for their high-fanout.

3.5.3 Theoretical Analysis

In this section we analyze the previously presented synchronizer architectures
(i.e., loose and tight) from a formal viewpoint.

The two synchronizer solutions presented so far have a series of common con-
straints regarding the correct sampling of data and flow control wires. In fact,
the basic idea consists of sending data (or stall hereafter) and clock signal with
a null phase offset, latching data at receiver end and performing the sampling
only when data is stable. Nonetheless, as discussed in previous sections, there
are some architectural peculiarities that differentiate the timing constraints of
each solution with respect to another. Let us first analyze the common con-
straints considering Formula 3.1.

40

3.5. THE MESOCHRONOUS INTERFACE

A

clock_sender

strobe

latch_enable_0

latch_enable_1

latch_enable_2

data_in

latched_data_0

latched_data_1

latched_data_2

clock_receiver

data_out

t_skew

B C D E F G H

A

B

C

D

E

F

G

H

B C D E F G HA

t_delay

Figure 3.7: Waveforms example of the tightly coupled mesochronous synchronizer.

Tsetup ≤ Tclock

2
+ Tlatch enable (3.1)

For the sake of simplicity, we consider the case where clock and data signals
are sent to the link channel without routing skew (perfect wires alignment).
At receiver end, when a rising edge of the clock signal occurs, after a further
Tlatch enable the latch window is transparent and data is captured. When a
clock falling edge occurs (after half clock cycle) data is sampled correctly if
and only if it was already stable for a Tsetup . Of course, considering a non-
zero routing skew between clock and data wires, a further T routing skew

has to be taken into account at left or right side of the equation depending on
the relative position between clock and data signals.

Furthermore, for a correct sampling, data has to be kept stable at least for
a Thold before changing. Therefore, within a clock cycle, a Tclock

2
and a

Tlatch enable are necessary to sample the data but a further Thold is needed
so that it can be considered stable (see Formula 3.2). As before, in a non-zero
routing skew exists, it has to be taken into account as it additionally reduces
the timing margin for a correct sampling.

Tclock

2
+ Tlatch enable ≤ Tclock − Thold (3.2)

41

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

So far, we have analyzed timing constraints common to all the proposed so-
lutions. We will now consider, synchronizer by synchronizer, a further timing
constraint that is specific for each architecture.

As our previous discussions already indicated, in the loosely coupled archi-
tecture, data sent from the upstream switch requires two clock cycles to be
sampled by the downstream switch input buffer. Therefore, within two clock
cycles, data has to traverse the link channel in Tlink , it requires a Tlatch enable

plus Tmux to correctly latch and output data from the external synchronizer
towards the switch. A further Tsetup is necessary to guarantee correct sam-
pling by the downstream switch input buffer (see Formula 3.3). The entire
data-path has to be traversed in two clock cycles, 1 cycle to synchronize data
by the loosely coupled synchronizer plus a further clock cycle to sample data
by switch input buffer. Obviously, a trade-off between clock frequency and
link length is necessary for a correct operation of the entire system that would
otherwise fail by violating the Tsetup of the input buffer.

2 · TClock ≥ Tskew + Tlink + Tlatch enable+

+Tmux + Tsetup
(3.3)

The same reasoning holds for the tightly coupled architecture with some differ-
ences though. In fact, sampling elements in the switch–to–switch data-path are
the respective output buffers of the upstream and downstream switches. This
path has to be traversed in two clock cycles: a first clock cycle is needed to
send data from the upstream switch and to synchronize it by the multi-purpose
switch input buffer. A second clock cycle is required to forward data from the
switch input buffer to the output buffer of the same switch building block (see
Formula 3.4).

2 · Tclock ≥ Tskew + Tlink + Tlatch enable+

+Tmux + Tarbiter + Tcrossbar+

+Tshift header + Tsetup

(3.4)

Differently from the loosely coupled architecture, Formula 3.4 points out the
extra timing required to traverse the switch building block (e.g., arbitration
time, crossbar traversal, etc.). In this case, a violation of the above would
result in a sampling failure of the output buffer. A further timing constraint for
the tightly coupled architecture is that illustrated by Formula 3.5.

42

3.5. THE MESOCHRONOUS INTERFACE

Tclock ≥ Tgeneration + 2 · Tlink + Tcounter+
+Tmux + Tsetup

(3.5)

We name this constraint as the round-trip dependency of the tightly coupled
synchronizer. In fact, within a single cycle, the clock sent by the upstream
switch triggers the bottom counter of the downstream switch synchronizer
front-end (that is in charge of flow control synchronization, see Figure 3.6).
Once a multiplexer output has been selected, the just synchronized stall signal
can be forwarded to the upstream switch output buffer to stop data transmis-
sion. Obviously, for a correct sampling, the output buffer requires the stall
signal to be stable for at least Tsetup . The reason of this constraint is that in
a single clock cycle, the stall signal has to be synchronized (at downstream
switch end) and forwarded to the upstream switch to stop data transmission.
The loosely coupled synchronizer is not affected by this constraint as the flow
control synchronization is performed by a 1-bit synchronizer instantiated at
upstream switch side. Intuitively, this constraint strongly limits the maximum
operating frequency for a given link length of the tightly coupled architecture.

Architecture flexibility: the Hybrid solution

Mux Stall

clk_receiver

Flow Control

andData
Flow Control

Data andLatch_1

Latch_0

Latch_2

countercounter

counter

Front−end Back−end

clk_sender

Mux

Stall

counter

Latch_0

Latch_1

Latch_2

Latch_1

Latch_2

Mux

Stall

upstream

switch

clk_receiverclk_receiver

SWITCH INPUT BUFFER

counter

1−bit
synchronizer

To the Latch_0

Figure 3.8: The hybrid architecture with a 1-bit mesochronous synchronizer on the
receiver end.

In order to alleviate the limitation of the tightly coupled architecture, resem-
bled by Formula 3.5, the hybrid architecture has been envisioned. In fact, the
stall signal generated by the downstream switch arbiter is not synchronized in

43

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

the backend of the hybrid synchronizer but is directly forwarded to a 1-bit syn-
chronizer instantiated in front of the upstream switch. This way, the round-trip
dependency can be broken and Formula 3.5 does not hold for such an architec-
ture anymore. Obviously, being the data-path of the hybrid architecture exactly
the same as that of the tightly one, Formula 3.4 still remains valid but a new
constraint for the stall signal path arises. The new constraint (see Formula 3.6)
encompasses the time required to generate the stall signal by the arbiter (the
higher the switch radix, the slower is the stall generation as the arbiter size
increases); a Tlink to traverse the link channel; the time necessary to the 1-bit
synchronizer to latch and output the stall signal towards the upstream switch
output buffer which requires a further Tsetup to sample the stall signal.

2 · Tclock > Tstall generation + Tskew + Tlink+

+Tlatch enable + Tmux + Tsetup
(3.6)

Results in Section 3.5.5 will give an experimental evidence of the analysis
presented above. While describing the specific constraints for each architec-
ture, we omitted commenting Tskew parameter. It represents a misalignment
between upstream and downstream clock (same clock frequency f , different
phase offset). In all the presented architectures, Tskew is a decreasing factor for
a correct operation as it reduces the timing margin of the analyzed system.

Another degree of flexibility of our architecture is that a switch can be assem-
bled out of a mix of synchronous and mesochronous ports. In fact, the out-
put architecture of the tightly coupled synchronizer resembles that of a syn-
chronous switch input buffer, therefore for the switch data-path and control
logic it is irrelevant whether the input port is synchronous or mesochronous. A
flexible heterogeneous switch architecture can therefore be built, where input
ports are either the conventional 2-slot buffer of synchronous switches or the
tightly coupled synchronizer. Finally, an external mesochronous synchronizer
can also be instantiated in front of the synchronous switch input ports to infer,
whenever needed, the loosely coupled synchronization architecture.

Summing up, the three synchronizer architectures described so far enable the
building process of GALS systems in a flexible and scalable way. In fact,
depending on the link length (and an associated link delay), one of the different
three solutions can be implemented in order to achieve a reliable timing margin
for a correct operation of the system.

44

3.5. THE MESOCHRONOUS INTERFACE

3.5.4 Experimental Results

This part of the chapter will characterize the mesochronous interfaces pre-
sented so far from latency, area footprint and power consumption viewpoint.
In order to achieve such goal, both loose, tight and hybrid mesochronous inter-
faces have been implemented by means of the ×pipesLite NoC library [110].
Synthesisis and place&route have been performed through a backend synthesis
flow leveraging industrial tools. The technology library utilized is a low-power
low-Vth 65nm STMicroelectronics library (CMP project [135]).

Comparative latency Analysis

Since the tightly coupled mesochronous synchronizer not only changes the
synchronizer implementation but also affects the entire network architecture,
we performed basic tests to capture the macroscopic performance differences
implied by the different synchronization architectures. We focus on synchro-
nization latency, since the stall/go mechanism implemented in our synchro-
nizer ensures that a stall-to-go transition of the flow control signal can be im-
mediately propagated to the next stage. Hence, there are no wasted cycles
at flow resumption, differently than [109]. Since what matters here is not a
network-wide performance analysis, but just to investigate the latency of each
scheme, this feature can be more conveniently stimulated and analyzed in a
simple ad-hoc experimental test case for fine-grain performance analysis. We
opted for a simple processor–NoC–memory topology (see Figure 3.9).

NI NI
RX

TX

RX

TX

Switch 0Processor MemorySwitch 1

Figure 3.9: Test-case platform under analysis.

The investigated NoC is comprised of a couple of 2x2 switches respectively
connected to the processor and the memory. Furthermore, each network switch
is connected to its own RX-, TX-mesochronous part meant for synchronizing
received data and flow control signals. For the sake of comparison, the SKIL
synchronizer is considered as well. This is another loosely coupled module
with the switch architecture [96].

The traffic pattern consists of full-bandwidth read and write transactions, i.e.,
the target memory never stops the access flow. Of course, the only perfor-

45

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

mance differentiation is seen for read transactions, since they are blocking for
the processor core, hence they rely on the network ability to keep latency to
a minimum. Performance results could be easily interpreted by means of a
simple analytical model (Formula 3.7). It relates performance results to the
intrinsic design characteristics of each synchronizer.

cycles = n + latency × 2× #transactions (3.7)

In fact in the best case, SKIL exposes two cycles synchronization overhead
plus a further execution cycle for traversing the network switch; whereas our
loosely coupled solution only requires one cycle latency in the mesochronous
plus one cycle in the network switch. Even better, the tightly coupled
mesochronous synchronizer requires the same computational resources of the
vanilla switch (i.e., 1 execution cycle). The reason is that the tightly coupled
solution seamlessly replaces the input buffer of the network switch thus pro-
viding a fast, reliable and robust mechanism for data synchronization. As for
the tightly coupled, the hybrid solution as well only requires a single execution
cycle in order to synchronize the data. The reason is that the synchronization
circuit of the data path is the same as that of the tightly coupled interface (i.e.,
1 cycle). Regarding the flow control, the stall signal in the hybrid architecture
is directly forwarded from the arbiter to the TX- module instantiated in front
of the upstream switch. This module is the one taking care of synchronizing
the flow control signal in the same clock cycle when it has been forwarded.

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

tight hybrid loose SKIL

execution_cycles

Figure 3.10: Normalized cycle latency of the different synchronization schemes.

Summarizing, whenever the system with the tightly (or hybrid) coupled

46

3.5. THE MESOCHRONOUS INTERFACE

mesochronous synchronizer performs a computational task in n cycles, the
alternative schemes, i.e., SKIL and the loosely coupled synchronizer respec-
tively require a number of cycles equal to Formula 3.7, where latency is the
number of clock cycles of the deployed mesochronous architecture whereas
#transaction is the number of read operations performed by the processor unit.
As depicted in Figure 3.10 there is a direct impact of the adopted synchroniza-
tion solution on the overall system performance. While the tightly coupled and
hybrid solutions keep the same performance as the vanilla network switch, a
performance drop up ranging from 3% up to 6% incurs when using a loosely
coupled or the SKIL scheme respectively.

Area Overhead

In order to estimate the area savings by using the tight integration design strat-
egy, we went through a commercial synthesis flow and refined RTL descrip-
tion of the mesochronous switches (tightly, hybrid and loosely coupled) down
to the physical layout. All the systems were synthesized, placed and routed
at the same target frequency of 1GHz. In Figure 3.11, the area footprint of
switches is reported along with a breakdown pointing out the contribution of
synchronizers and/or input buffers.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

vanilla tight hybrid loose

N
o

rm
a

liz
e

d
 A

re
a

 B
re

a
k
d

o
w

n

input_buffer / synchronizer
other

tx external synch.
rx external synch.

Figure 3.11: Area breakdown of a switch block with its synchronization scheme.

The tightly, hybrid and loosely coupled solutions are compared against a
vanilla (i.e., fully synchronous) switch; input buffer area for this switch only
refers to the area occupancy of a normal 2 slot input buffer. For the loosely

47

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

coupled solution, a 4 slot buffer is needed to cover the round trip latency, and
this is most of the overhead for this solution. As clearly pointed out by the area
breakdown in Figure 3.11, the sum of the transmitter and of the receiver syn-
chronizers is almost equal to that of a 2 slot buffer, i.e., of the input buffer in
the vanilla switch. For the tightly coupled solution, input buffer/synchronizer
area refers to the multi-purpose switch input buffer (which is also the syn-
chronizer). As for the latter, the hybrid architecture result refers to multi-
purpose switch input buffers plus as many instances of TX- synchronizer as
input ports. Clearly, there is almost no area overhead when moving from a
fully synchronous to a tightly (or hybrid) integrated mesochronous switch as
they employ similar buffering resources.

From the performance viewpoint, our post-layout synthesis results confirm that
the critical path of the switch is not impacted by the replacement of the vanilla
input buffer with the tightly integrated mesochronous synchronizer. By exper-
imenting with different switch radix, the critical path deviates only marginally
in the two cases, therefore no performance penalty should be expected for the
mesochronous switch.

Power Consumption

A further step of our exploration was to contrast power consumption of the
proposed mesochronous schemes. Our target design is a 5x5 switch in four dif-
ferent variants: the first is a fully synchronous switch block, the second has a
tightly integrated mesochronous synchronizer per each input port; the third one
is a switch utilizing a hybrid mesochronous synchronizer per input port thus
requiring also a tx-synchronizer on the sender side; the last variant has a pair of
loosely coupled rx- and tx-synchronizers per input port. Three different traffic
patterns have been utilized to carry out an accurate power analysis: idle, re-
quest for a random output port and parallel communication flows. Post-layout
simulation frequency was 700MHz for all the designs. As showed in Figure
3.12, in all the cases, the highest power consumption is consumed by the most
buffer demanding solution, i.e., the loosely coupled design. Power consump-
tion of the vanilla and tightly coupled designs are similar as expected; this is
mainly due to the equivalent buffering resources deployed in both switches.
The hybrid solution is a bit more expensive compared to the tight and the
vanilla mainly because there is a small extra buffering due to the 1-bit syn-
chronizer for each mesochronous port.

Next section will perform a design space exploration of the mesochronous
link architecture in order to assess several quality metrics of the synchronizer

48

3.5. THE MESOCHRONOUS INTERFACE

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

idle random parallel

N
o

rm
a

liz
e

d
 T

o
ta

l
P

o
w

e
r

vanilla
tight

hybrid
loose

Figure 3.12: Normalized power consumption of different synchronization schemes in
different traffic scenarios.

interface presented so far.

3.5.5 Mesochronous Link Design Characterization

The above architecture provides degrees of freedom for port-level selection of
the most suitable mesochronous synchronization option based on timing and
layout constraints. The following design space exploration of a mesochronous
link implemented with our architecture will provide the guidelines for such
port-level selection, and is therefore an essential enabler for automatic assem-
bly of the target GALS NoC.

Design tradeoffs

A series of experiments have been carried out in order to characterize, for each
synchronizer architecture, the maximum operating frequency for a given link
length between two switch building blocks. In practice, a 5x5 switch, ideally
extracted from the center of a 2D mesh, has been considered after place&route.
The switch has been synthesized with a very tight timing constraints (1 GHz),
so that after place&route the critical path for all the architectures will be in
the switch–to–switch link. The switch is connected to a tester injecting clock
and data with an increasing delay. The utilized testbench assumes an ideal
alignment between clock signal and data as well as no routing skew. This

49

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

way, we can assess for a certain operating frequency, the relative link delay
supported by each architecture. Obviously, a certain link delay corresponds to
a relative channel length depending on how the link synthesis policy is chosen.

The theoretical analysis discussed in Section 3.5.3 is here confirmed by ex-
perimental results. In fact, Figure 3.13 reports maximum operating frequency
of each synchronization scheme for a certain link delay. Obviously, being af-

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

 2500

 2750

555MHz 617MHz 714MHz 833MHz 1GHz

L
in

k
 D

e
la

y
 (

p
s
)

tightly
hybrid

loosely

Figure 3.13: Operating frequency and tolerated link delay of different synchronizers.

fected by the round-trip constraint, the tightly coupled architecture turns out
to be the less delay tolerant. Indeed, an increment of either frequency or de-
lay would result in packets loss due to the late arrival of the backward prop-
agating signal. However, such supported link delays enable the tightly cou-
pled architecture to sustain a correct communication within a typical range of
link length in nanoscale technologies. On the other hand, the hybrid alterna-
tive is quite effective as it relieves the round-trip constraint while keeping the
area and power cost as low as the tightly coupled architecture. In fact, by us-
ing a small single-bit synchronizer at transmitter end for the backward signal,
round trip dependency can be removed thus increasing maximum achievable
frequency. Best results in terms of link delay toleration for a given frequency
are achieved by the loosely coupled architecture. However, this result comes
at a high area/power and also latency cost.

50

3.5. THE MESOCHRONOUS INTERFACE

Skew Tolerance

Skew tolerance of our architecture schemes depends on the relative alignment
of data arrival time at latch outputs, multiplexer selection window and sam-
pling edge in the receiver clock domain. A few basic definitions help to assess
the interaction among these parameters in determining skew tolerance. For
the loosely coupled synchronizer, such definitions are pictorially illustrated in
Figure 3.14(a).

MUX WINDOW

LATCH OUTPUT

SETUP TIME

HOLD

TIME

(a) Loosely coupled synch.

Txbar

LATCH OUTPUT

HOLD

TIME

SETUP TIME

Tarb+

Txbar

Tarb+

(b) Tightly coupled synch.

Figure 3.14: Basic mechanisms affecting skew tolerance.

During the mux window, data at latch outputs is selected for forwarding to the
sampling flip-flop in the switch input port. Its duration closely follows that of
the clock period. Sampling occurs on the next rising edge of the receiver clock
inside the mux window. We denote the time between the starting point of the
mux window and such sampling instant as the Setup time. Conversely, after an
Hold time since the rising edge of the clock the mux window terminates. This
is the time required by the counter to switch the multiplexer selection signals.

When we consider the tightly coupled architecture (Figure 3.14(b)), then the
same metrics are taken at the switch output port rather than at the multiplexer
output of the synchronizer. Therefore, the starting time of the mux window is
delayed due to the worst case timing path between the synchronizer output and
the switch output port, which includes the arbitration time, crossbar selection
time and some more combinational logic delay for header processing. At the
same time, the sampling rising edge of the receiver clock remains unaltered,
therefore the ultimate effect is a shortening of the Setup time for the tightly
integrated mesochronous switch architecture.

51

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%

T
im

e
 M

a
rg

in
 (

p
s
)

Skew Tolerance [% of the clock period]

Tsetup
Thold

FF-Tsetup
FF-Thold

Figure 3.15: Tsetup and Thold for the loose coupled varying the skew tolerance.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%

T
im

e
 M

a
rg

in
 (

p
s
)

Skew Tolerance [% of the clock period]

Tsetup
Thold

FF-Tsetup
FF-Thold

Figure 3.16: Tsetup and Thold for the tight coupled varying the skew tolerance.

Figure 3.15 quantifies these timing margins for the loosely coupled switch ar-
chitecture. Results are referred to a 2x2 switch working at 660 MHz after
place&route. X-axis reports negative and positive values of the skew, ex-
pressed as percentage of the clock period. Setup and hold times have been
experimentally measured by driving the switch under test with a clocked test-
bench, by inducing phase offset with the switch clock and by monitoring wave-
forms at the switch. The connecting link between the testbench and the switch
is assumed to have zero delay. A positive skew means that the clock at the
switch is delayed with respect to the one at the testbench. The figure also

52

3.5. THE MESOCHRONOUS INTERFACE

compares setup and hold times with the minimum values required by the tech-
nology library for correct sampling (denoted FF-Tsetup and FF-Thold).

First of all, we observe that both times are well above the library constraints,
thus creating some margin against variability. For the whole range of the skew,
the hold time stays the same. The result is relevant for positive skew, since its
effect is to shift the mux window to the right, close to the region where latch
output data switches. However, the stability window of the latch output data is
long enough to always enable correct sampling of stable data before the point
in time where it switches.

In contrast, a negative skew causes the mux window to shift to the left, therefore
as the negative skew grows (in absolute values) the latch output data ends up
switching inside the mux window, which corresponds to the knee of the setup
time in Figure 3.15. From there on, the switching transient of data becomes
closer to the sampling edge of the receiver clock and correct sampling can be
guaranteed until the setup time curve equals the FF-Tsetup one. However, even
for -100% skew synchronizer operation is correct.

Figure 3.16 illustrates the same results for the tightly coupled mesochronous
switch. As anticipated above, the setup time is decreased by 370ps, corre-
sponding to the time for arbitration, crossbar selection and shifting of routing
bits. Interestingly, the knee of the setup time occurs for the same value of the
negative skew, in that the switching instant of the latch output data enters the
mux window at exactly the same point in time. The ultimate implication is that
the tightly coupled synchronizer cannot work properly with -100% skew, since
the crossing point with the FF-Tsetup occurs at around -95%. In practice, we
can conclude that a 2x2 switch with tight coupling of the synchronizer on each
port consumes 40% less area and power than its loosely coupled counterpart
while incurring a 23% degradation of the maximum skew tolerance.

Target frequency

We now extend the above results to the case where the same RTL design (a
2x2 switch) is synthesized for a higher and lower target frequency and observe
implications on the timing margins of a tightly coupled mesochronous NoC
architecture. Figure 3.17 shows setup time as a function of negative skew for
different target cycle times. The skew is expressed as percentage of the cycle
time, and the assumption behind this plot is that as we relax the cycle time also
the maximum skew constraint can be proportionally relaxed.

If we assume that by relaxing the target speed all delays scale proportionally

53

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

0% 20% 40% 60% 80% 100% 120%

S
e

tu
p

 T
im

e
 (

p
s
)

Negative Skew

1.25ns
1.5ns

ideal 2ns
2ns

Figure 3.17: Setup time as a function of negative skew.

in the design, then we would expect that by relaxing the speed from 1.5ns
to 2ns the setup time increases by 1.33x (see starred line). This is not the
case, since the real setup time increases much more, as the figure shows. The
reason for this is that the arbitration and switching logic inside the switch can
be optimized for area as the timing constraint is relaxed only up to a certain
point, beyond which no more netlist transformations are feasible. Therefore,
the shifting of the mux window to the right, illustrated in Figure 3.14(b) for the
tightly coupled architectures, scales ideally only up to a certain point, beyond
which we observe a more-than-linear increase of the setup time. This is what
happens for the 2ns target period.

Another deviation of the ideal curve from the real one regards the knees. In
fact, although the target period increases from 1.25 to 2ns, a given skew per-
centage on the x-axis actually means a different absolute phase offset for the
different cases. Therefore, the switching instant of synchronizer latch outputs
should enter the mux window at the same percentage skew for all target periods
(see starred line in Figure 3.17 for a 2ns target).

This is again not the case, indicating that a delay has not scaled proportion-
ally to the clock period. The rationale for this is the time to generate the
latch enable signals in the synchronizer front-end. For a tight 1.25ns con-
straint, this netlist was already non-critical, therefore by relaxing the timing
constraint its delay stays more or less the same. Therefore, the knee appears
later for large cycle times, as the real curve for a 2ns target proves. The key

54

3.5. THE MESOCHRONOUS INTERFACE

take-away from this characterization is that by relaxing the target clock fre-
quency for the same RTL design an improvement of the skew tolerance and of
the timing margins can be generally achieved for the tightly coupled architec-
ture. In addition, a larger cycle time provides the physical synthesis tool more
margin to enforce the feasibility constraint of Formula 3.4.

Switch radix

A last degree of freedom that we explored is the switch radix. We assume that
for the same given target frequency, the switch radix is increased from 2 to 5.
The effect on the timing margins is similar to what happens when we move
from a loosely coupled to a tightly coupled mesochronous architecture. In
fact, an increase of arbitration and crossbar selection time takes place, which
results in a decrease of the setup time. Conversely, the knee occurs for the same
amount of negative skew, since the modification concerns only the switch in-
ternal architecture, not the time at which latch outputs switch. Overall, by
combining the two effects we have an additional reduction of the maximum
(negative) skew tolerance, which is equal to the increase in delay of the combi-
national logic described above. In general, for high radix switches it has to be
verified that the reduced setup time is still above the minimum value required
by the technology library.

In contrast, synthesis constraints help relieve the above limitation. In fact,
for both the 2x2 and the 5x5 switch, the synthesis tool tries to meet the same
target cycle time and to exploit the available slack to save area. In practice, the
syntheses of both the 2x2 and the 5x5 designs converge with almost no slack.
Therefore, control logic with 5 and 2 inputs takes almost the same delay with
a large difference in area. In this way, the setup time in the two cases is almost
unaffected because of the netlist transformations performed by the synthesis
tool in the area-performance plane. In our experiments, a 5x5 switch exhibits
a setup time which is only 5% lower than the one in the 2x2 switch. For those
NoC architectures where the above netlist optimizations are ineffective or for
very high radix switches, it is necessary to verify that the reduced setup time
is still above the minimum value required by the technology library.

Another implication of the switch radix concerns timing closure of the hybrid
synchronization architecture. As already noted while commenting Figure 3.8,
the critical path starts in the switch arbiter (which generates the stall signal)
and includes the propagation of the stall signal to the upstream switch. As the
switch radix increases, the delay for stall generation by the arbiter increases,
and might make this timing path critical for the entire NoC.

55

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

3.6 The Dual-Clock FIFO Interface

Dual-clock FIFOs usually incur a significant area, power and latency over-
head with respect to mesochronous synchronizer interfaces. However, while
these latter simply guarantee skew compensation, dual-clock FIFOs also pro-
vide frequency decoupling. This thesis proposes a library of dual-clock FI-
FOs for cost-effective MPSoC design, where each architecture variant in the
library has been designed to match well-defined operating conditions at the
minimum implementation cost. Following the same principle adopted for the
mesochronous synchronization, dual-clock FIFOs of our synchronization li-
brary have not been conceived in isolation, but have been tightly co-designed
with the switching fabric of the on-chip interconnection network, thus making
a conscious use of power-hungry buffering resources and leading to affordable
implementations in the resource constrained MPSoC domain.

All the dual-clock FIFOs of our synchronization library are derived from a
baseline dual-clock FIFO architecture, which is designed to be compatible with
a standard cell design flow (i.e., without using custom cells).

Token Ring

Counter

Token Ring

Counter

OR FF

FF

FF

FF

FF

FF

00SS S S

RX_STALLVALID_IN

Synchronizer Synchronizer

T
X
_
F
U
L
L

WRITE_POINTER

READ_POINTER

STALL VALID_OUT

CLK_TX CLK_RX

RX_STALL

R
X
_
E
M
P
T
Y

W
P
i

W
P
i

R
P
i

R
P
i
+
1

SET
FULL

FULL_TMP EMPTY_TMP

SET
EMPTY

DATA_IN DATA_OUT
MUX

Figure 3.18: Dual-Clock FIFO Architecture.

The dual-clock FIFO (see Figure 3.18) is designed directly for use in a NoC
setting. The xpipesLite NoC architecture already described in Section 3.4 is
used as an experimentation platform. The NoC architecture determines the
flow control protocol that the FIFO has to implement for correct interfacing

56

3.6. THE DUAL-CLOCK FIFO INTERFACE

with the NoC. xpipesLite implements the stall/go flow control protocol requir-
ing two control wires: one flags data availability while the other one propa-
gates in the opposite direction and instructs the sender to stop or resume the
flit transmission flow.

The circuit in Figure 3.18 receives as input a bundle of NoC wires representing
a regular NoC link, carrying data and flow control commands, and a copy of
the clock signal of the sender. Since the latter wire in principle experiences the
same propagation delay as the data and flow control wires, it can be used as a
strobe signal for them. The bi-synchronous FIFO has a sender and a receiver
interface. Each interface has its own clock signal, Clk Tx for the sender and
Clk Rx for the receiver.

Special care is devoted to enforcing timing margins for safe input data sam-
pling. In fact, the transmitter clock signal has to be processed at the receiver
in order to drive the write pointer. In actual layouts, this processing time adds
up to the routing skew between data and strobe and to the delay for driving the
clock input of the flip-flops. As a result, the strobe signal might be activated
too late, and the input data signal might have already changed. In order to
make the synchronizer more robust to these events, we make the strobe signal
transition only on the falling edge of the transmitter clock. This way, each data
is sampled approximately in the middle of the clock period (see Figure 3.19(a)
and Figure 3.19(b) for a pictorial illustration).

Queuing and de-queuing of data elements in the FIFO follow the protocol we
describe hereafter. The data in is queued into the FIFO, if and only if the
valid in signal is true and the full signal is false at the falling edge of Clk Tx.
Symmetrically, data is dequeued to data out, if and only if the RX stall/go
signal is false (go) and the empty signal is false at the rising edge of Clk Rx.

As shown in Figure 3.18, the bi-synchronous FIFO architecture is composed of
2 token ring counters. In the sender interface, the token ring counter is driven
by the Clk Tx, synchronous to incoming data. It generates the write pointer
indicating the position to be written in the data buffer. In the receiver interface,
the token ring counter is driven by the local clock, Clk Rx. It generates the
read pointer indicating the position to be read in the data buffer. Data buffer
contains the data storage of the FIFO, which is parameterizable.

Full and empty detectors signal fullness and emptiness conditions of the FIFO.
In our solution, these detectors perform an asynchronous comparisons between
the FIFO write and read pointers that are generated in clock domains asyn-
chronous to each other. The asynchronous FIFO pointer comparison technique
uses few synchronization flip-flops to build the FIFO.

57

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

(a) Sampling on clock rising edge.

(b) Sampling on clock falling edge.

Figure 3.19: Sampling of input data.

The full detector decides the value of the full signal depending on the content
of write and read pointer. It requires N 2-input AND gates and one N -input OR
gate, where N is the FIFO depth. The detector computes the logic AND opera-
tion between the write and read pointer and then collects the result along with
an OR gate, thus obtaining logic value 1 if the FIFO is full, 0 otherwise. The
FIFO is considered full when the write pointer points to the previous position
of the read pointer. Vice versa, the FIFO is considered empty when the write
pointer points to the same position of the read pointer.

Assertion of the empty tmp signal is synchronous to the Clk Rx-domain, since
empty tmp can only be asserted when the read pointer is incremented, but de-
assertion of the empty tmp signal happens when the write pointer is increased,
which is an asynchronous event to Clk Rx. On the contrary, assertion of the
full tmp signal is synchronous to the Clk Tx-domain, since full tmp can only
be asserted when the write pointer is incremented, but de-assertion of full tmp
happens when the read pointer increments, which is an asynchronous event
to Clk Tx. As a consequence, the full tmp and empty tmp signals, coming
out of an asynchronous comparison of read and write pointers, need to be
synchronized by means of carefully engineered brute force synchronizers.

In particular, when the read pointer catches up with the write pointer, the
empty tmp signal presets the rx empty flip-flops. When a FIFO write takes
place, the write and read pointer contents are different, thus the empty tmp can
be de-asserted, releasing the preset control of the synchronizer. The rx empty
will be de-asserted after two rising edges of Clk Rx. Since the de-assertion
of empty tmp occurs on a falling Clk Tx edge while rx empty is clocked by

58

3.6. THE DUAL-CLOCK FIFO INTERFACE

Clk Rx, the two-flop synchronizer is required to remove metastability associ-
ated with the asynchronous de-assertion of the preset control of the first flip-
flop. Also the removal of the preset signal on the second flip-flop can violate
the recovery time. However, in this case the second flip-flop will not go to a
metastability state because the preset to the flip-flop has forced the output high
so far and the input to the same flip-flop is also high, which is not subject to a
recovery time instability [136].

The tx full signal could be generated in an equivalent way with respect to
rx empty but an optimization is required to satisfy proper NoC constraints.
In fact, the proposed FIFO is designed to support a STALL/GO flow control
protocol. Since tx full signal generated by the two-flop synchronizer coin-
cides with the stall/go signal propagated upstream, it needs to be generated
on the rising edge of Clk Tx. This way, the time since the strobe edge occurs
at the transmitter switch until the backward propagating flow control signal
comes back should be one clock cycle. In order to meet this timing constraint,
the two-flop synchronizer that generates tx full samples on the rising edge of
Clk Tx and full tmp does not preset the second tx full flip-flop. In particular,
when a FIFO-write operation causes a full condition on the falling edge of
Clk Tx, the full tmp signal is consequently asserted and presets the first tx full
flip-flop. Therefore, assertion of the tx full signal occurs on the next rising
edge of Clk Tx, and it can in turn be safely sampled by the counter on the
next falling edge of the same clock. In practice, the token ring counter cannot
progress any longer since the detection of the full condition. This mechanism
relieves the round-trip dependency, since the stall/go signal leaves the FIFO as
soon as the rising edge of Clk Tx arrives and samples it, without waiting for
the next falling edge.

Finally, when a FIFO-read operation takes place, the read pointer is incre-
mented and the full tmp signal is de-asserted, thus releasing the preset control
of the first tx full flip-flop. Therefore, due to the low logic value driving the
input port of the first tx full flip-flop, the FIFO will de-assert the tx full signal
after two rising edges of Clk Tx. As the de-assertion of full tmp occurs on a
rising edge of Clk Rx and because tx full is clocked by the Clk Tx, the two-flop
synchronizer is required to remove metastability that could be generated by the
first tx full flip-flop.

The tx full assertion process generates a critical timing path. The full tmp
critical timing path consists of (i) the tx clk − to − q incrementing of the
write pointer, (ii) comparison logic of the read pointer with the write pointer,
(iii) presetting the first tx full flip-flop, (iv) meeting the setup time of the second

59

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

Figure 3.20: Vanilla switch and Dual-Clock FIFO integration into one input port of
the NoC switch architecture.

tx full flip-flop clocked with Clk Tx. This critical path has to be covered in half
clock cycle since write pointer is incremented on the falling edge while the
tx full flip-flop is sensitive to the rising edge. As regards the receiver domain,
in the bi-synchronous FIFO in isolation, the empty assertion crosses a similar
critical path but this time it can be properly covered in one clock cycle since
the two-flop synchronizer is sensitive to the rising edge like the receiver token
ring. Furthermore, the rx empty assertion does not represent a critical path.

3.6.1 Tight Integration into the Switch Architecture

The dual-clock FIFO presented above can be used as a standalone component
in a generic instance of the xpipesLite architecture, since it properly imple-
ments flow control. However, placing a FIFO in front of a NoC switch (like in
Figure 3.1) implies a latency and buffering overhead for clock domain decou-
pling.

We found an alternative approach effective for mesochronous synchronizers:
merging the synchronizer with the switch input buffer allows to share buffering
resources for multiple tasks, namely switch buffering, flow control and syn-
chronization, thus leading to a cost effective implementation of the synchro-
nization interface. Unfortunately, this tight integration of architecture modules
in some cases raises new timing constraints that have to be verified or even en-
forced with proper architecture-design techniques, as showed in Section 3.5.3.

In this section we extend the tight coupling design philosophy to dual-clock
FIFOs, and prove that merging the architecture illustrated in Section 3.6 with
the switch input buffer is straightforward (and far easier than for mesochronous

60

3.6. THE DUAL-CLOCK FIFO INTERFACE

synchronizers) and does not fundamentally alter circuit timing.

As illustrated in Figure 3.20, the data buffer of the dual-clock FIFO is very sim-
ilar to the architecture of the vanilla switch input stage (i.e. the baseline fully
synchronous switch input buffer natively consisting of sampling elements, a
mux and a FSM), therefore it does not bring major implications on the switch
critical path. Moreover, the stall/go signal is provided by the arbiter, which
receives the valid signal valid out as an input.

The 2-slot input buffer of the vanilla switch has been replaced by a dual-clock
FIFO that requires 5-slot buffers in the case where high performance needs
to be guaranteed, thus leading to an area and power overhead. We will prove
in Section 3.6.3 that in every frequency ratio scenario between sender and re-
ceiver, 100% throughput is guaranteed in the presence of a FIFO depth of at
least 5 slots. Please notice that in any case the latency overhead of the syn-
chronization interface is much reduced, since FIFO synchronizer and switch
input buffer are not cascaded anymore.

The buffering overhead cannot be removed, but it is so marginal that in typi-
cal use cases it can be completely hidden. In fact, the xpipesLite architecture
features input and output buffers, and the size of each of them is individually
tunable. Generally, one buffer is kept to its minimum size (2 slots for correct
support of flow control), while the other one is oversize to sustain performance
and usually set to 6 slots based on past experience on system-level perfor-
mance analysis [111]. In this scenario, the switch input buffer (merged with the
FIFO synchronizer) can be used to implement performance-efficient buffering,
while the output buffer can be retained just for retiming purposes. This way,
the buffering overhead for synchronization is completely masked and there is
fundamentally no area difference between a fully synchronous switch and a
switch with synchronization-capable input buffers. Please observe that Fig-
ure 3.20 emphasizes the possibility to carry out a port-level configuration of
the synchronization options to be supported by the switch. One or more input
ports could decouple sender/receiver clock domains, while other ports might
connect to switches/network interfaces in the same clock domain, thus giving
rise to a large number of GALS NoC architecture variants.

Of note, the way the dual-clock FIFO architecture synchronizes the stall signal
incurs a severe constraint on the round trip time. In fact, the transmitter clock
used for stall synchronization at the downstream switch has already undergone
a link delay Tlink , and the stall signal itself takes another link delay to go back
to the upstream switch:

61

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

Tclock ≥ 2 · Tlink + Tff−propagation + Tsetup (3.8)

Within a single cycle, the clock sent by the upstream switch triggers the flip-
flop of the downstream brute-force synchronizer (Tff−propagation) and the just
synchronized stall signal is forwarded to the upstream switch output buffer to
stop data transmission. Obviously, for a correct sampling, the output buffer
requires the stall signal to be stable for at least Tsetup . The reason of this
constraint is that in a single clock cycle, the stall signal has to be synchronized
(at downstream switch end) and forwarded to the upstream switch to stop data
transmission. However, in such an architecture the most critical optimization
is driven by the specific frequency ratio between two communicating domains
rather than layout considerations (i.e., a large link delay may downgrade the
final operaring speed of the whole design).

3.6.2 Latency analysis

Assertion and de-assertion latency of full/empty

Buffering requirements of the dual-clock FIFO can be limited when the num-
ber of clock cycles between the full/empty detection and the write/read sus-
pension can be minimized. To meet this goal, the proposed architecture lever-
ages optimized full/empty brute-force synchronizers having asynchronous pre-
set control. Their runtime operation is detailed hereafter.

Figure 3.21(a) shows FIFO waveform when the transmitter frequency is higher
than the receiver one. Since the receiver is slower than the sender, the dual-
clock FIFO will generate periodically full assertion and full de-assertion. Dur-
ing T2 interval, value of the pointer is WPi = RPi + 1 and full tmp is asserted,
setting full set on falling tx clk edge. During T3, on the rising txclk edge, the
second tx full flip-flop will sample a logical high value and will drive tx full
signal high. During T3, on the falling tx clk edge, the token ring counter will
receive a high tx full and will interrupt data write. Furthermore, the elapsed
clock cycle between the detection of a full assertion and the write suspension
is reduced to one clock cycle. During T3, read pointer shifts and full tmp
is de-asserted on rising rxclk edge. Consequently, during T4 full set is de-
asserted and during T5 also tx full is de-asserted synchronously with txclk .
Finally in T5, token ring counter in the sender domain restarts shifting regu-
larly write pointer on the falling txclk edge. Therefore, elapsed clock cycles

62

3.6. THE DUAL-CLOCK FIFO INTERFACE

between full set de-assertion and the write pointer shift are reduced to one and
a half clock cycles.

Let us now analyze a scenario when the transmitter frequency is lower than the
receiver one. Since the read pointer is faster than the write pointer, the FIFO
will generate periodically empty assertion and empty de-assertion. Symmet-
rically, the elapsed clock cycles between the detection of an empty assertion
and the read suspension is only one clock cycle. Differently from the pre-
vious scenario, the elapsed clock cycles between empty set de-assertion and
the read pointer shift is two clock cycles. This is due to the fact that the to-
ken ring counter in the receiver domain needs half clock cycle more to sample
rx empty due to the intrinsic 2-flop synchronizer latency. As the elapsed time
between detection of empty/full and read/write suspension is one clock cycle,
no quasi-full and quasi-empty detection need to be implemented and under-
flow/overflow is avoided by construction. On the contrary, slower empty/full
de-assertion does not introduce errors in the FIFO activity but it can impact the
FIFO throughput (see Section 3.6.3).

Switch crossing latency

As the sender and the receiver bridged by the dual-clock FIFO have different
clocks, the crossing latency of the FIFO depends on frequency ratio and clock
phase offset. Latency can be decomposed in two parameters: the first one is
∆Trx , that is the time between the falling edge of the sender clock and the
rising edge of the receiver clock. ∆Trx can vary between 0 and 1 clock cycle
depending on the offset between the clock signals. The second parameter is
the number of clock cycles required by the read pointer to reach the location
pointed by the writer. As reported in Table 3.1, three different scenarios have
been analyzed in order to characterize the crossing latency of the switch with
the integrated dual-clock FIFO interface.

I◦ minimum latency ∆Trx + 2Clockrx
II◦ empty de-assertion ∆Trx + 3Clockrx
III◦ maximum latency ∆Trx + Clockrx × (BufferDepth − 1)

Table 3.1: Switch crossing latency.

In the first scenario, when the read and write pointers are adjacent and the
writer is preceding the reader, a minimum latency occurs. In this case, the
read pointer opens the mux window after ∆Trx for the data it is pointing to
and the next data (which is the one being currently written) will be read after
a further clock cycle. Therefore, the minimum latency to traverse the FIFO

63

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

(a) FIFO depth of 5, tx faster than rx.

(b) FIFO depth of 4, rx and tx freq. are similar.

(c) FIFO depth of 4, rx slower than tx.

Figure 3.21

64

3.6. THE DUAL-CLOCK FIFO INTERFACE

synchronizer in this case is ∆Trx + 1Clockrx . In the second case, when the
buffer is empty and a write operation occurs, a ∆Trx + 1Clockrx is needed to
clear the emptiness condition and a further clock cycle is required to enable
the data at the multiplexer output. Finally, when the distance between the
pointers is maximum (full condition), the required time for the reader to point
the current write position is given by a∆Trx (offset between the clock signals)
plus a contribution which depends on the number of buffer slots preceding the
one currently pointed by the writer (which accounts to BufferDepth-2). Please
note that in all latency results, 1 Clockrx cycle has been added to account for
the time from the FIFO output to the input of the switch output buffer. In fact,
Table 3.1 reports the overall switch crossing latency.

3.6.3 Throughput analysis

We consider our FIFO-based synchronizer to provide 100% throughput when
the slowest end of the FIFO (either transmitter or receiver) can push/eject 1
data word per clock cycle.

In case of large FIFO depth, the de-assertion latency of the full signal (needed
to notify the writer that further data can be stored) does not impact throughput,
in that the reader has enough storage of past data words. This way, the reader
avoids a blocking condition due to the delay needed to restart the writer. Sim-
ilarly, the de-assertion latency of the empty signal does not lead to a blocking
of the writer (which should wait till the reader resumes data consumption from
the FIFO) due to the large availability of empty buffer slots in a deep FIFO.

By construction, we verified that the proposed dual-clock FIFO architecture
guarantees 100% throughput when a FIFO depth of 5 slots is set, regardless of
the frequency ratio between sender and receiver.

FREQUENCY SCENARIO FIFO DEPTH OF 5 FIFO DEPTH OF 4 FIFO DEPTH OF 3
I◦ 3× ftx > frx 100% 100% 100%

II◦ 1.5× ftx > frx 100% 100% 50%− 100%

III◦ ftx > frx 100% 50%− 100% 50%− 100%

IV◦ frx > ftx 100% 50%− 100% 50%− 100%

V◦ 1.5× frx > ftx 100% 100% 50%− 100%

VI◦ 3× frx > ftx 100% 100% 100%

Table 3.2: Dual-Clock FIFO throughput with parameterized buffer depth as a function
of sender-receiver frequency ratio.

However, an interesting trade-off exists between throughput and FIFO depth
(and consequently area and power footprint). Therefore, we now investigate

65

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

what happens when the FIFO depth is configured to be lower than 5 to save
area. Figure 3.21(b) shows the system behavior when considering a FIFO
depth of 4 and a tx clk frequency similar (but higher) to the rx clk frequency.
During T2, value of the pointer is WPi = RPi + 1 and full tmp is asserted,
thus setting full set. During T3, the token ring will receive a high tx full and
will interrupt the data write. Consequently to read pointer shifting, full set
and tx full are de-asserted respectively during T4 and T5. During T5, token
ring in the sender’s domain restarts to shift regularly the write pointer. Since
we have a FIFO depth of 4, during T5 the value of the pointer is WPi = RPi

and empty tmp is asserted. Although transmitter frequency is higher than the
receiver one, the FIFO generates an empty tmp inducing a logic high rx empty
and a suspension of the regular read operation. This effect is clearly undesired
and causes a reduction of throughput. In this condition, the FIFO is not able to
deliver one word per cycle and the throughput is around 50%.

On the contrary, the FIFO will produce different results when considering a
lower rx clk frequency. Assuming the frequency ratio scenario showed in Fig-
ure 3.21(c) and a FIFO depth of 4, this time we obtain a throughput of 100%
In fact, during T2, the value of the pointer is WPi = RPi + 1 and full tmp
is asserted. In any case, during T5, when the token ring in the sender’s do-
main restarts to shift regularly the write pointer, the value of the pointer is not
WPi = RPi and empty tmp is not asserted.

Therefore, the FIFO throughput directly depends on the relative frequency
between domains. Notice that examples could be envisioned by considering
rx clock frequency higher than the tx clock one, thus obtaining symmetrical
throughput results. Summing up, a FIFO with depth of 4 has 100% throughput
if the sender clock cycle time (Ttx) and receiver clock cycle time (Trx) meet
one of these requirements:

3× Ttx < 2× Trx (3.9)

2× Ttx > 3× Trx (3.10)

As a result, the proposed FIFO with depth 4 guarantees 100% throughput when
the transmitter module works with a frequency 33% lower or 50% higher than
the receiver module. In presence of different frequency ratios, throughput is
between 50% and 100%.

For the sake of further area and power optimizations, we analyzed the proposed
FIFO with a depth of 3 slots. Following previous deductions, this solution

66

3.6. THE DUAL-CLOCK FIFO INTERFACE

guarantees a throughput of 100% in case the transmitter is three times faster
or slower than the receiver. In the remaining cases, the throughput is between
50% and 100%. Table 3.2 sums up the throughput results as a function of FIFO
depth and frequency ratio scenarios.

3.6.4 Specialized library components

The dual-clock FIFO architecture can be specialized in order to reduce latency
and area while sustaining throughput. In particular, an architecture specializa-
tion can be envisioned when synchronizing data from a sender domain which
is permanently faster than the receiver one (Figure 3.22). In this architecture,
the valid in signal is sampled by the data buffer as an additional data wire.
This way, data in and valid in cross together the dual-clock FIFO without any
additional logic needed to generate valid out. Moreover, data is sampled by
data buffer in every possible condition, also when valid in is low. Since an
empty assertion can only occur when the sender is slower than the receiver, it
is not possible to have an empty condition in our considered scenario. There-
fore, the empty detector is not required in this architecture.

Figure 3.22: Specialized Dual-Clock FIFO.

This way, considering a scenario with the sender faster than the receiver and
the specialized FIFO with a depth of 4, it is possible to achieve 100% through-
put also when the condition in Formula 3.9 is not met. In fact, since no empty
condition has to be detected, this architecture allows to read a safely sampled
data in slot i also in case the write pointer , waiting for full de-assertion,

67

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

has not shifted from i to i + 1 position yet. Therefore, buffer resources are
optimized and performance is preserved. In particular, 1 slot buffer is saved
while guarantying the same throughput with respect to the architecture of Fig-
ure 3.18. Table 3.3 reports area and throughput results of the architecture de-
picted in Figure 3.22 as a function of buffer depth and frequency ratio of the
end-nodes.

FREQUENCY SCENARIO FIFO DEPTH OF 4 FIFO DEPTH OF 3 FIFO DEPTH OF 2
I◦ 3× ftx > frx 100% 100% 100%

II◦ 1.5× ftx > frx 100% 100% -
III◦ ftx > frx 100% - -

Table 3.3: Throughput of specialized Dual-Clock FIFO variants.

Please note that a similar optimization is not feasible when the receiver is per-
manently faster than the sender domain. The reason is that, the full detector
is still required because it is not possible to guarantee the absence of the full
condition. In fact, when a contention takes place in the switch block, an input
may loose its grant (from the arbiter) and consequently become stalled. In this
case, a slower sender may succeed in filling up the dual-clock FIFO buffer,
therefore, the full detector is necessary to interrupt the communication.

As the baseline dual-clock FIFO, the specialized counterpart is meant to be
directly tightly integrated in the switch architecture and it does not bring major
implications on the switch critical path itself.

3.6.5 Comparative assessment of bi-synch FIFO variants

Experimental results for the dual-clock FIFO interface are structured into two
subsections. In the first one, area benefits of the tightly coupled design prin-
ciple applied to dual-clock FIFOs are quantified, while in the second one the
implementation overhead for the different components in the synchronization
library is characterized in relative terms. All physical synthesis experiments
have been performed with a 65nm STMicroelectronics technology library.

Impact of NoC-synchronizer merging on the switch critical path

The switch configurations illustrated in Table 3.4 were synthesized, placed and
routed. The first one is a fully synchronous switch with a 2 slot input buffer
and a 6 slot output buffer. Moreover, the input buffer of the same switch is
merged with a high-throughput dual-clock FIFO, thus augmenting the input

68

3.6. THE DUAL-CLOCK FIFO INTERFACE

buffer storage to 5 slots. Finally, two remaining switch configurations imple-
ment 6 slot buffers in each input port: a fully synchronous one and one with
merged dual-clock FIFOs. The last column of Table 3.4 reports the resulting
maximum operating frequency.

INPUT BUFFER OUTPUT BUFFER FREQUENCY
I◦ 2 fully synchronous 6 fully synchronous 1.43GHz
II◦ 5 bi-synch FIFO 6 fully synchronous 1.25GHz
III◦ 6 fully synchronous 2 fully synchronous 1.2GHz
IIII◦ 6 bi-synch FIFO 2 fully synchronous 1.2GHz

Table 3.4: 2x2 switch critical path.

The first configuration allows the switch to work at the highest frequency of
1.43GHz. In the second configuration, the switch, having the integrated FIFO
synchronizer, features a lower frequency (1.25GHz). This result depends on
the fact that the integration of the dual-clock FIFO has shifted the critical path
from the switch crossbar and arbitration logic to the dual-clock FIFO itself in
the input stage (see Figure 3.18).

In the third configuration, the switch performance decreases to 1.2GHz. This
is due to the fact that the delay of the finite state machine in the input buffer
is larger depending on the number of buffer slots, and it adds up to the prop-
agation delay through the arbiter and the crossbar selection signals. Interest-
ingly, the equivalent switch configuration with multiple clock domain support
achieves the same speed and features the same critical path. As a result, the
fourth configuration supports multiple clock domains while guaranteeing the
same critical path of the fully synchronous switch having an equivalent overall
amount of buffer storage.

The key take-away is that the tightly coupled FIFO synchronizer can determine
the critical path in low radix switches (e.g., 2x2) when these latter could afford
a speed higher than 1.25GHz with a typical fully synchronous input buffer.
However, please notice that most topologies in use for NoC design typically
require a larger number of switch I/Os.

In the following analysis we implement a 5x5 switch (used to build up a 2D
mesh topology) in 2 different configurations. In particular we compare one
fully synchronous switch configuration with one switch configuration integrat-
ing the FIFO synchronizers. Input and output buffers have the same size in
both designs. Results are illustrate in Table 3.5.

The relevant result here is that, the increased switch radix decreases the maxi-

69

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

INPUT BUFFER OUTPUT BUFFER FREQUENCY
I◦ 6 fully synchronous 2 fully synchronous 830Mhz
II◦ 6 bi-synch FIFO 2 fully synchronous 830Mhz

Table 3.5: 5x5 switch critical path.

mum operating speed, which ends up falling below the 1.25GHz threshold be-
yond which the dual-clock FIFO behaves as speed limiter. Below this thresh-
old, the critical path moves somewhere else, hence the support for multiple
clock domains does not bring any limitation to the maximum achievable per-
formance.

Area benefits of NoC-synchronizer merging

Three different designs have been compared. The first one is the conventional
5x5 vanilla (fully synchronous) switch with a 6-slot input buffer and a 2-slot
output buffer per port. The second one is a switch where a dual-clock FIFO
with 6 buffer slots has been merged with each input port. In order to carry out
a fair comparison with the vanilla switch, total buffering resources have been
kept equal, i.e., the output buffer size in the switch with the FIFO synchronizers
has been reduced from 6 to 2 slots. The last configuration is a vanilla switch
(6-slot inputs, 2-slot outputs) with external dual-clock FIFO (6 buffer slots)
per input port.

To assess area occupancy, all the above switch configurations have been syn-
thesized, placed and routed at the same target frequency of 1GHz. Total area
of the tightly coupled system exhibits almost the same area footprint of the
vanilla switch. This is a direct consequence of the fact that exactly the same
buffering resources have been deployed in a specular fashion (between input
and output).

As showed in Figure 3.23(a), being the input buffer size of the three systems
the same (6 slots), there is a similar amount of cell area devoted to either only
buffering (vanilla switch) or buffering and synchronization (tightly and loosely
coupled switch). Moreover, the loosely coupled system features the same area
overhead (with the same distribution of input buffer and other cell area) of the
other switches plus a further synchronization area due to the external block
implementing the dual-clock FIFO.

These results point that the merging approach applied to the dual-clock FIFO
design achieves up to 24% of area saving with respect to the loosely coupled

70

3.6. THE DUAL-CLOCK FIFO INTERFACE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

vanilla tight loose

T
o

ta
l
S

w
it
c
h

 A
re

a

input buffer/synchronizer
other

rx-, tx-external

(a) Area breakdown.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

idle random parallel

T
o

ta
l
S

w
it
c
h

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n

vanilla
tight

loose

(b) Power consumption.

Figure 3.23: Post-layout normalized results of area (a) and power (b) for a switch
with a dual-clock FIFO synchronizer.

design methodology.

To assess the power consumption of a switch integrating dual-clock FIFOs
on the input ports, the vanilla, tightly and loosely coupled designs have been
tested under different traffic patterns: idle (to measure standby power), ran-
dom (target output port of input packets is randomly selected) and parallel
(no switch internal conflicts). Post-layout simulations have been carried out
at 800MHz. The switch with the external dual-clock FIFO is the most power
greedy under all possible traffic patterns, as showed in Figure 3.23(b). This is
due to a larger amount of buffering resources. From the power viewpoint, there
is a substantial benefit when integrating the dual-clock FIFO in the switch ar-
chitecture. In fact, the tightly coupled design is the most power efficient among
those under test and achieves up to 51% power saving (under random traffic).

The motivation lies in the inherent clock gating that is implemented by our

71

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

dual-clock FIFO, which clocks only one bank of flip-flops at a time out of the
total input buffer. If the incoming data is not valid, then the token ring circuit
does not even switch thus gating the entire input buffer. Obviously a similar
clock gating technique can be applied to the vanilla switch as well, and in fact
the key take-away here should be that the dual-clock FIFO integration into the
switch does not imply any major power overhead, as long as buffer depths of
at least 6 flits are used in all switch variants for performance optimization.

Above all, these results indicate that with the proposed architecture design
techniques it is possible to evolve a fully synchronous switch to a switch sup-
porting relaxation of synchronization assumptions with marginal implementa-
tion overhead. This is a key enabler for the GALS paradigm in the context of
NoC-centric MPSoCs.

Characterization of synchronization library components

In this experiment a comparison between the baseline dual-clock FIFO archi-
tecture and its specialized version has been carried out. By varying buffer
depth of each solution, we could span the entire range of components of the
proposed synchronization library.

Buffer depth of the baseline architecture ranges from 5 to 3 slots while sup-
porting all possible frequency ratio scenarios. On the other hand, the special-
ized version requires from 4 to 2 buffer slots and is able to work with all the
sender/receiver frequency ratio where the sender is always faster than the re-
ceiver. Furthermore, for the sake of comparison, a fully synchronous input
buffer (with minimum number of slots, i.e. 2) has been considered.

As reported in Figure 3.24(a), when the buffer depth is reduced in both the
architectures, a corresponding reduction of overall cell area takes place. The
reason lies in a reduction of both sequential and logic cell area. In fact, by
reducing the buffer size, sequential elements are obviously reduced along with
a simplification of the detector and all the combinational logic. It is interesting
to note that when considering the two architectures with the same buffer depth
(e.g., 4) there is a marginal area reduction of the specialized version. This is
due to the absence of the empty detector which is no longer required. A further
consideration stems from a comparison between the vanilla input buffer (2-
slots) and the equivalent size specialized dual-clock FIFO. Of note, the dual-
clock FIFO is more area efficient than the vanilla input buffer because the FSM
taking care of valid signals is simplified.

Power consumption has been computed by considering all the architectures

72

3.6. THE DUAL-CLOCK FIFO INTERFACE

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

5 depth baseline

4 depth baseline

4 depth optim
ized

3 depth baseline

3 depth optim
ized

2 depth optim
ized

vanilla

A
re

a
 (

u
m

2
)

(a) Area.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

5 depth baseline

4 depth baseline

4 depth optim
ized

3 depth baseline

3 depth optim
ized

2 depth optim
ized

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

m
W

) sequential
combinational

(b) Power consumption.

Figure 3.24: Area (a) and power (b) consumption of baseline and specialized dual-
clock FIFO architectures with different buffer depths.

operating at the same frequencies that permit all them to correctly work while
supporting full throughput communication. Experiments have been performed
with a sender four times faster than the receiver. Sender clock frequency has
been set to 1GHz. All the architectural variants have been tested under parallel
traffic patterns.

As reported in Figure 3.24(b), a reduction of the buffer depth implies a corre-
sponding reduction of power consumption in both baseline and optimized ar-
chitectures. Interestingly, by comparing the result of the two architectures with
the same buffer depth of 3, it is possible to note a similar power consumption.
Conversely, when comparing the baseline and the optimized architectures with
a buffer depth of 4, it is clear that a higher consumption takes place for the
baseline one. In fact, the baseline dual-clock FIFO with 4 and 5 buffer slots

73

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

requires a larger token ring counter due to the high fanout net. This is not an
issue in the optimized FIFO as there is no empty detector.

Following the previous considerations, experimental results proved that a
clock-gated fully synchronous input buffer requires the similar power con-
sumption of the baseline dual-clock FIFO when assuming the same buffer
depth and a fully synchronous scenario.

3.7 Discussion

During the final step of our investigation, the previously presented
mesochronous variants are compared with their analogous dual-clock FIFO
ones. In particular, let us compare four NoC switch variants engineered to
support different synchronization schemes. The baseline switch is again from
the xpipesLite architecture (see Section 3.4). Its input stages have been aug-
mented at first with a mesochronous 3 slot buffer interface able to tolerate up
to 100% positive and negative skew,

 0

 0.5

 1

 1.5

 2

 2.5

vanilla 3slot-meso 4slot-fifo 5slot-fifo

N
o
rm

a
li
z
e
d
 A

re
a

Figure 3.25: Area occupancy of NoC switches with different synchronization
interfaces.

Among the baseline dual-clock FIFO options, the only interface that is able
to work without a performance decrement (full throughput condition) in a
mesochronous scenario is that with 5 slots. The reason is that, other solutions
with smaller buffer slots, are not able to interface two clock domains working
at the same frequency (see Table 3.2) retaining a full throughput condition.
Moreover, the specialized 4-slot dual-clock FIFO variant (see Table 3.3) is the
second solution that can work in a fully synchronous regime with arbitrary
clock phase offsets. Summarizing, in the library of dual-clock FIFOs, there
exist two possible solutions to be deployed in a mesochronous scenario: (i) a

74

3.8. CONCLUSIONS

baseline 5-slot and (ii) a specialized 4-slot interfaces. As depicted in Figure
3.25, the most specialized dual-clock FIFO is almost 30% more area expensive
(in absolute term) with respect to the mesochronous solution.

Obviously, the reason stems from the fact that the dual-clock FIFO has been
natively conceived for a multi-frequency application domain whereas the
mesochronous interface is designed ad-hoc for the scenario under investiga-
tion (same clock frequency, unknown phase offset) and requires less control
logic.

It should be finally observed that mesochronous NoCs are the reference solu-
tion for ultra-low cost synchronizer-based GALS systems. When observing the
target platform of Figure 3.1, it makes a conscious use of area/power-hungry
dual-clock FIFOs, which end up being instantiated only at network boundary.
Instead, more compact mesochronous synchronizers are used inside the net-
work, thus minimizing the area and latency overhead.

3.8 Conclusions

This chapter presented a library of synchronization interfaces for use in cost-
effective MPSoCs. The need to avoid costly general-purpose interfaces fit-
ting all kinds of performance requirements and layout constraints has been
addressed by specializing the synchronizers for the different operating condi-
tions. First of all, the configuration degrees of freedom exposed by the syn-
chronizers are used (e.g., buffer size), but also fully customized architecture
solutions are engineered.

In dual-clock FIFOs, architecture specialization can be carried out based on
application performance requirements and on the ratios between transmitter
and receiver speeds. When it comes to mesochronous links, even simple syn-
chronizer schemes can achieve large skew tolerance, therefore the key require-
ment becomes the adaptation to the actual layout conditions (e.g., critical tim-
ing paths and link lengths and their interrelation). In all cases, our library
synchronizers have been co-designed (merged) with the NoC building blocks
thus helping designers meet tight area, power and latency budgets via care-
fully engineered switch input ports. A key take-away of this work is that in
a mesochronous scenario, a generic dual-clock FIFO component is not the
right choice for an area and power budget limited designer but a customized
mesochronous interface (selected from our library) represents a more cost-
effective alternative. The design techniques of synchronization interfaces pre-
sented in this work enable to replace a fully synchronous switch with an aug-

75

CHAPTER 3. RELAXING THE SYNCHRONIZATION ASSUMPTION IN

NETWORKS-ON-CHIP

mented variant supporting the relaxation of synchronization assumptions at
marginal implementation overhead, thus making GALS technology affordable
for NoC-centric MPSoCs.

76

4
The Moonrake Chip

IN this chapter we present a complex GALS ASIC demonstrator in 40 nm
CMOS process further improving the maturity of the developed GALS
technology presented in Chapter 3. This chip, named Moonrake, compares

synchronous and GALS synchronization technology in a homogeneous exper-
imental setting: same baseline designs, same manufacturing process, same
die. The chip exploits the library of synchronization interfaces presented in
Chapter 3 to validate GALS technology for network on-chip communications
and bridges the gap to actual silicon implementation. In a first step, the ad-
vance with respect to state-of the-art demonstrators will be discussed. Next,
the Moonrake architecture and its floorplan will be presented. Then, the focus
will be on the test setup and the test results.

4.1 GALS Systems and Demonstrators

Globally Asynchronous Locally Synchronous (GALS) technology has been
proposed many years ago as an alternative to the traditional synchronous
paradigm for chip synchronization [138]. Although significant potential was
reported by the academia, the GALS methodology has never taken off in the
industry. However, the growing challenges, imposed by the unrelenting pace
of technology scaling to the nanoscale regime, urge for an efficient and safe
system-level integration methodology. Consequently, we have targeted the im-
plementation of a chip in the advanced 40 nm CMOS process, aiming at the
assessment of GALS technology for nanoscale designs. The chip was named
Moonrake. Our intention was to evaluate GALS vs. standard synchronous
technology on the same die, by implementing synchronous and GALS coun-
terparts of the same baseline designs.

For on-chip networking applications, a GALS system results from the inter-

77

CHAPTER 4. THE MOONRAKE CHIP

connection of domains with different synchronization assumptions. Chapter
3 was focus on the provision of flexible and cost-effective interfaces for arbi-
trary composability. In this direction, the novel mesochronous and dual-clock
FIFO synchronization interfaces, aiming at low-area/power/latency overhead
while preserving timing robustness, were integrated into NoC test structures
exposing (and comparing) a range of flexible GALS solutions.

In past years several GALS chip implementations were reported. Many of
them were focused on point to point GALS architectures (several designs from
ETHZ [138], WLAN baseband processor from IHP [139]), while more re-
cent implementations have also explored the GALS NoC concept (NEXUS
chip [140], recent SpiNNaker [141], and three implementations from LETI,
namely FAUST [144], ALPIN [142], and MAGALI [143] chip). The Magali
chip is probably the most complex within the GALS demonstrators followed
by the Moonrake chip. Improvement of this latter upon state-of the- art con-
cerns the most aggressive manufacturing process, the higher industrial rele-
vance of its galsified designs, the maturity of implemented synchronization
interfaces. Above all, both the baseline synchronous and the GALS counter-
parts of the same designs are now available on the same chip, thus paving the
way for benchmarking in a truly homogeneous experimental setting (both at
the architecture and at the technology level).

The contributions of this chapter are as follows:

• The design flow followed for different GALS systems is illustrated
and compatibility with mainstream standard cell libraries and design
toolflows is discussed.

• The feasibility of GALS NoCs linking sub-systems with heterogeneous
timing assumptions by means of area/power/latency optimized inter-
faces while preserving timing margins has been demonstrated.

• Synchronous and GALS counterparts of the same baseline designs, im-
plemented in the same demonstrator chip, have been compared in terms
of area, pointing out counterintuitive benefits of the GALS design style.

This chapter further improves the maturity of the developed GALS technology
presented in Chapter 3 and bridges the final gap to actual silicon implementa-
tion on the 40nm technology. In this direction, it illustrates a test-chip design
and fabrication process validating the feasibility and effectiveness of the de-
veloped GALS NoC concept in nano-scaled technology sub-systems. Also,
the testchip fabrication was a valuable experience of technology transfer from

78

4.2. MOONRAKE TESTCHIP ARCHITECTURE

academia to industry, thus breaking the barriers that have prevented the suc-
cess of mesochronous technology for GALS NoCs so far in alternative design
experiences.

The remainder of this chapter is organized as follows: Section 4.2 will de-
scribe the testchip architecture composed of replicated sub-systems each val-
idating a different feature of the new synchronization technology and it will
describe the optimization required to meet the pin budget. Section 4.3 high-
lights the global and local constraints imposed in the testchip floorplan and
the post place&route area results of each sub-systems. Section 4.4 illustrates
the test environment and the testflow composed of continuity, functional and
operating current tests. Next, Section 4.5 will present the testchip results eval-
uating the NoC subsystems in terms of skew and frequency robustness, power
consumption and yield. Finally, Section 4.6 summarizes the contribution of
this chapter.

4.2 Moonrake Testchip Architecture

The need to validate a new synchronization technology and the poor exper-
imentation of the newly developed 40nm Infineon technology made the risk
associated with testchip fabrication pretty high. In order to minimize such
risk, the final decision for the testchip was to instantiate a number of small and
replicated sub-systems each validating a different feature of the new synchro-
nization technology. Replication of the sub-systems enables to amortize the
risk of manufacturing concerns. To push this approach to the limit, the deci-
sion was to replicate sub-systems validating the same concepts even more in
order to reflect different operating speeds. In practice, some sub-systems were
selected for clocking from an external low-speed clock source through a JTAG
interface, while other sub-systems with similar functionality were selected for
higher-speed clocking from a PLL. The lower speed of clocking from an exter-
nal source is associated not only with the inherent limitations of a possible test
setup, but also with the limited driving capability of I/O pins. In both cases (in-
ternal vs external clocking), the sub-systems testing mesochronous interfaces
were made capable of tolerating an increasing amount of clock skew between
transmitter and receiver clock domains.

Figure 4.1 provides an overview of the testchip block diagram. Each sub-
system replicates the same baseline network-on-chip template, a 2-ary 1-mesh
topology, where every switch of the network is connected to 2 cores (a memory
core and a tester block). The cores are connected to JTAG interfaces in order to

79

CHAPTER 4. THE MOONRAKE CHIP

Figure 4.1: Block diagram of the NoC testchip.

be programmable by external input pins. In particular, the testchip compares a
fully-synchronous NoC sub-system with two mesochronous NoC sub-systems
(a first one composed by loosely coupled and a second one by tightly coupled
mesochronous synchronizers) and a GALS NoC sub-system integrating also
dual-clock FIFO interfaces. As mentioned above, in order to test the reliability
of the source synchronous communication and to compare sub-system latency,
area and power under different frequency constraints, every sub-system is de-
signed twice to work at low and high frequency. The sub-systems designed
to work at low frequencies (i.e. frequency lower than 260MhZ) are fed by an
external clock injected through the input pins of the JTAG interface. On the
contrary, the sub-systems designed to work at high frequency receive the clock
by a PLL (Phase Lock Loop) integrated into the testchip itself.

The PLL is able to generate four different clock phases (0, 90, 180, 270) on
distinct module output pins with a maximum speed of 400MhZ. The PLL fre-
quency can be set through external pins. Moreover, each synchronizer-based
sub-system receives two separated PLL clocks. In fact, the phase of the first
clock is statically zero while the phase of the second clock can be selected
by exploiting a 4x1 multiplexer and the external pins for mux programming.
A dedicated multiplexer is implemented for every synchronizer-based sub-

80

4.2. MOONRAKE TESTCHIP ARCHITECTURE

system. As a result, the testing of the source synchronous interfaces can be per-
formed also under different skew constraints. To notice that both the frequency
and the phase of the PLL clock can be set during the power-on phase of the
testchip. Also, the multiplexer delay ends up contributing to the clock phase
offset between two mesochronous domains in the same sub-system, therefore
such multiplexers have been synthesized for ultra-high speed of operation. The
distinctive features of every sub-system can be described as follows:

• The Synch Slow sub-system is demonstrating a fully synchronous NoC
communication at low frequency. The sub-system is composed by 1
JTAG controller, 2 switches, 2 memory cores and 2 tester blocks and is
clocked by a unique external clock (see figure 4.2.b).

• The Synch Fast sub-system implements a fully synchronous NoC com-
munication at high frequency. The sub-system is composed by 1 JTAG
controller, 2 switches, 2 memory cores, 2 tester blocks and 1 synch
block. The synch block implements a brute force synchronizer and it
is used to synchronize the JTAG inputs with the fast and real sub-system
clock which comes from the PLL (see figure 4.2.a).

Figure 4.2: Synchronous sub-systems: (a) the Synch fast design (on the left-side)
and (b) the Synch slow design (on the right-side).

• The Asynch Loose Slow sub-system has two mesochronous clock do-
mains having the same low clock frequency but arbitrary phase offset.

81

CHAPTER 4. THE MOONRAKE CHIP

This sub-system uses loose mesochronous synchronizers (RX, for the
datapath, and TX, for the control path) placed in the bidirectional link
next to the switches. The RX module synchronizes the data and the TX
module synchronizes the flow control signal absorbing the phase offset
between the domains. The sub-system is composed by 2 JTAG con-
trollers, 2 switches, 2 memory cores, 2 tester blocks, 2 loosely coupled
RX datapath synchronizers and 2 loosely coupled TX control path syn-
chronizers (see figure 4.3.a).

• The Asynch Loose Fast sub-system has two mesochronous clock do-
mains having the same high clock frequency but arbitrary phase offset.
The domain0 is driven by PLL clock with 0 skew while the domain1
is driven by the output of the dedicated multiplexer, thus selecting one
of the pre-configured clock phase offsets. This sub-system uses loosely
coupled mesochronous synchronizer (RX and TX) placed into the bidi-
rectional link next to the switches. The sub-system is composed by 2
JTAG controllers, 2 switches, 2 memory cores, 2 tester blocks, 2 loosely
coupled RX synchronizers (for the data path), 2 loosely coupled TX syn-
chronizers (for the control path) and 2 synch blocks for synchronization
with timing of the input pins (see figure 4.3.b).

Figure 4.3: Loosely coupled sub-systems with mesochronous synchronizers: (a) the
Asynch Loose Slow design (on the left-side) and (b) the Asynch Loose Fast de-
sign (on the right-side).

82

4.2. MOONRAKE TESTCHIP ARCHITECTURE

• The Asynch Hybrid Slow has two mesochronous clock domains hav-
ing the same slow clock frequency but arbitrary phase offset. This sub-
system has two tightly coupled mesochronous synchronizers integrated
into the switch input stage (for the data path) and two loosely coupled
TX synchronizers (for the control path) into the bidirectional link. The
mix of the synchronizer implementation styles explains the name of this
scheme (hybridcoupling) and is motivated by the need to break a
long timing path originating in the upstream output buffer, going through
the mesochronous interface at the downstream switch and going back to
the upstream switch. By implementing the control path synchronizer as
loosely coupled, a minor area overhead is incurred (this is a 1-bit syn-
chronizer), while breaking the timing path across the link and resulting
in higher operating speeds for a given link length (see Section 3.5.3).
The sub-system is composed by 2 JTAG controllers, 2 switches, 2 mem-
ory cores, 2 tester blocks, 2 tightly coupled RX synchronizers and 2
loosely coupled TX synchronizers (see figure 4.4.a).

• The Asynch Hybrid Fast sub-system has two mesochronous clock do-
mains having the same high clock frequency but arbitrary phase offset.
This sub-system has two tightly coupled mesochronous synchronizers
integrated into the switch input stage and two loosely coupled TX syn-
chronizers into the bidirectional link. Again, this is a hybrid coupled
synchronizer-based design. The domain0 is driven by PLL clock with 0
skew while the domain1 is driven by the output of the dedicated multi-
plexer. The sub-system is composed by 2 JTAG controllers, 2 switches,
2 memory cores, 2 testers, 2 tightly coupled RX synchronizers, 2 loosely
coupled TX synchronizers and 2 synch blocks for synchronization with
the timing of the input pins (see figure 4.4.b).

• The Asynch Fifo sub-system has three clock domains: domain0 and do-
main1 have the same high-speed clock with arbitrary phase offset while
domain2 has a distinct clock signal switching at a lower speed. The
cores and the switches have true independent clocks with distinct fre-
quency and offset. Since the sub-system has different clock frequencies,
two tightly coupled dual-clock FIFOs are integrated into the switch input
stage and two additional loosely coupled dual-clock FIFOs are instan-
tiated next to the cores in order to synchronize the information coming
from the cores and from the switches, respectively. Please notice that
the loosely coupled dual-clock FIFOs have not been merged with their
associated network interfaces to reflect the case where custom network

83

CHAPTER 4. THE MOONRAKE CHIP

Figure 4.4: Hybrid coupled sub-systems: (a) the Asynch Hybrid Slow design (on
the left-side) and (b) the Asynch Hybrid Fast design (on the right-side).

interfaces need to be rapidly reused in a GALS system, and therefore
the merging process may turn out to be a lengthy or cost-ineffective pro-
cess. In principle, nothing prevents from performing such a merging
process with the network interface as well, even considering that the in-
put stage of the network interface (and of its response path in particular)
is composed by a FIFO. Moreover, the sub-system has two tightly cou-
pled mesochronous synchronizers integrated into the switch input stage
and two loosely coupled TX synchronizers into the bidirectional link.
The domain0 is driven by PLL clock with 0 skew while the domain1
is driven by the output of the dedicated multiplexer, thus selecting a
clock phase offset. Domain2 is clocked by an external clock through the
JTAG interface. The sub-system is composed by 1 JTAG controllers, 2
switches, 2 memory cores, 2 tester blocks, 2 tightly coupled RX syn-
chronizers, 2 loosely coupled TX synchronizers, 4 tightly coupled dual-
clock FIFOs, 4 loosely coupled dual-clock FIFOs and 1 synch blocks
(see figure 4.5). It is worth observing that this sub-system reflects a typ-
ical operating condition: the IP cores operate at a slower speed than the
on-chip network, where this latter can be inferred as the collection of
mesochronous sub-domains. This sub-system may be considered as the
most complex one in the testchip and aims at validating the most ad-
vanced synchronizer-NoC merging techniques developed in the context

84

4.2. MOONRAKE TESTCHIP ARCHITECTURE

of the thesis.

Figure 4.5: Dual-clock FIFO design.

4.2.1 PIN Requirement

As a final step, three further optimizations were required to meet the total pin
budget. This latter was very tight since, as anticipated, the Moonrake architec-
ture is based on the parallel implementation of the synchronous and the GALS
variants of the same baseline designs. In order to reduce chip area, the same
pad frame for both was re-used, and therefore data input and output pins were
in most cases multiplexed.

First of all, the programmable input pins and the external clocks ended up be-
ing shared between the 7 sub-systems. Consequently, in order to avoid an un-
desirable parallel setting of all the 7 sub-systems, the reset input signal crosses
a de-multiplexer designed to enable a single sub-system at a time (i.e., the
active reset drives only one of the seven sub-systems). As a result, it is possi-
ble to select the operative sub-system by driving the de-multiplexer with three
dedicated input pins.

Similarly, a multiplexer allows a single sub-system at a time to exploit part of
the output pin resources (two shared output pins). In fact, each fast sub-system
has both its output pins (one per JTAG) shared and each synchronizer-based

85

CHAPTER 4. THE MOONRAKE CHIP

slow sub-system has the output pin belonging to the domain0 (zero skew) ded-
icated but the output pin of the domain1 shared. This strategy allows slight
output pin resource saving with a marginal impact on the testability of the de-
sign. Indeed, each slow sub-system (which can be viewed also as the safe and
backup version with respect to the fast counterpart) has still a dedicated out-
put pin ensuring the sub-system testability, even when a failure in the output
multiplexer occurs.

Moreover, as mentioned above, the phase of the PLL clock is selected through
a 4x1 multiplexer. As a result, each sub-system tightly belongs to its own
clock phase multiplexer (the whole sub-system fails when a failure affects its
multiplexer). Then, an instance of the clock phase multiplexer is replicated
in front of each synchronizer-based sub-system to avoid multiples sub-system
failures due to single multiplexer error. Anyway, to further reduce the number
of global input pins, the three clock phase multiplexers are still driven by two
shared input pins. To note that the final goal is to test a sub-system at a time
and the parallel clock phase setting of the synchronizer-based sub-system does
not reduce the testability of the design.

As a conclusion, the input pins and the external clock sharing allows to save
33 input pins (they scaled from 44 to 11), the output pin sharing reduces from
11 to 8 the required output pins and, the clock phase multiplexers optimization
saved 4 additional control pins. Finally, the global pin number scaled down
from 70 to 30 (9 input/output pins are considered to drive the PLL). This ap-
proach enabled a massive optimization of the output/input pin requirements
while marginally affecting the flexibility of the architectural test structures.

4.3 Floorplaning Constraints

The modularity of the testchip NoC architecture allowed an easier place-and-
route. In fact, every sub-system was synthesized independently and treated as
a soft-macro. Anyway, global and local constraints were imposed respectively
in the testchip floorplan and in each sub-system. In particular, the final global
testchip floorplan is represented in figure 4.6. The PLL is placed on the left side
of the design and the seven NoC sub-systems are on the right side. To note that
the PLL required a relevant percentage of the total testchip area. At a global
floorplan level, the soft-macro of the fast sub-systems (in figure 16 denomi-
nated as Hybrid Fast, Loos Fast, Synch Fast and Fifo Fast sub-systems) were
constrained to be placed as close as possible to the PLL. In fact, the distance
between the PLL and the fast designs was minimized in order to reduce the

86

4.3. FLOORPLANING CONSTRAINTS

length of the clock tree branches. This strategy mitigated the unpredictability
of the skew between the clock leaves and, as a result, it increases the accuracy
of the sub-system intra-domain skew set by the external pins.

Figure 4.6: NoC testchip floorplan.

Additionally, at a sub-system level, the source synchronous communi-
cation was constrained as well. In particular, figure 4.7 depicts the
source synchronous communication in the hybrid coupled sub-systems
(Asynch Hybrid Slow and Asynch Hybrid Fast). In this case, the
TX MESO0 and TX MESO1 modules were placed respectively close to the
SWITCH0 and SWITCH1 modules. That is required to ensure that an addi-
tional link delay does not nullify the ideal synchronization of the TX MESO
module output, i.e. the flow control signal. Moreover, the links were con-
strained in order to have the same delay regardless of their crossing direction
(i.e. D1 = D2). As a result, the skew test experiments can be performed with an
additional degree of freedom regardless of the data crossing direction. Finally,
the data crossing the source synchronous links was routed together with the
strobe signal to match their propagation delay (bundled routing) with industry-
available physical synthesis techniques.

As regards the source synchronous communication in the loosely cou-
pled sub-systems (Asynch Loose Slow and Asynch Loose Fast), also the
RX MESO0 and RX MESO1 modules together with the TX MESO0 and
TX MESO1 modules were placed respectively close to the SWITCH0 and
SWITCH1 modules (see Figure 4.8). As mentioned before, that is required

87

CHAPTER 4. THE MOONRAKE CHIP

Figure 4.7: Source synchronous communication in the hybrid coupled sub-systems
and PnR constraints.

to ensure the ideal synchronization of the data/flow control of the RXME-
SO/TXMESO output. Similarly to the hybrid coupled communication, the
information on the link are bundled routed and the D1 crossing delay corre-
sponds to the D2 crossing delay.

Figure 4.8: Source synchronous communication in the loosely coupled sub-systems
and PnR constraints.

As final step, the source synchronous communication by means of dual-clock
FIFOs was constrained. In particular, since in the Asynch FIFO sub-system
the communication between switches is constrained as in the hybrid coupled
sub-system, figure 4.9 focuses on the source synchronous communication be-
tween the switches and the cores. In this case, the external dc-FIFO modules

88

4.3. FLOORPLANING CONSTRAINTS

(i.e. the interfaces taking care of synchronizing the data to the cores) were
placed close to their respective memories (MEMORY0 and MEMORY1) or
testers (TESTER0 and TESTER1). As before, that is required to ensure the
ideal synchronization of the dc-FIFO data output. Similarly to the switch com-
munication scenario, the information on the dc-FIFO link are bundled routed
and the D1 crossing delay corresponds to the D2 crossing delay.

Figure 4.9: Source synchronous communication in the dual-clock FIFO sub-system.

4.3.1 Area results

This section compares the seven sub-systems under an area point of view. Ev-
ery sub-system has been synthesized independently by means of the 40nm
standard cells Infineon Technology and treated as a soft-macro. In partic-
ular, the slow sub-system (Asynch Hybrid Slow , Asynch Loose Slow

and Synch Slow) were synthesized at 100Mhz while the fast sub-
systems (Asynch Hybrid Fast , Asynch Loose Fast , Asynch FIFO and
Synch Fast) at 500Mhz.

As mentioned before, the key idea of the testchip was to instantiate a num-
ber of small and replicated sub-systems each validating a different feature of
the new synchronization technology. Basically, all the seven sub-systems in-
tegrate the same modules (2 memory, 2 tester, 2 switches and 1/2 JTAG) but
the communication between these modules is enabled by different source syn-
chronous interfaces. As a result, the source synchronous interfaces provide the
main contribute in terms of area overhead with respect to the fully synchronous
baseline sub-system (Synch Slow and Synch Fast). See figure 4.10 for area
results.

89

CHAPTER 4. THE MOONRAKE CHIP

In particular, the fast solutions present a similar area footprint with respect to
the slow counterpart. In fact, although the fast sub-systems were synthesized
at a higher frequency than the slow sub-systems, both the solutions meet the
target frequency constraint with a large slack and as a result the synthesis tool
was able to provide a well optimized gate-level netlist in terms of area footprint
in both the cases. To note that the additional synch modules integrated in the
fast sub-systems provided a negligible area overhead. Interestingly, since the
goal of the testchip was to evaluate the NoC synchronization technology, the
instantiated memories and testers are elementary and as a result the switches
required more than the 50% of the total area footprint of each sub-system.
Following a sub-system comparison in terms of area:

• The Asynch Hybrid Slow sub-system required the 7% of additional
area than the fully synchronous baseline sub-system (Synch Slow). In
particular, this area overhead is due to the additional Jtag module re-
quired to configure the second frequency domain (3%), the 2 Tx Meso
flow control synchronizers (1.5%) and the 2 switches integrating the data
mesochronous synchronizer (2.5%).

• The Asynch Loose Slow sub-system required the 17% of additional
area than the fully synchronous baseline sub-system (Synch Slow). In
particular, this area overhead is due to the additional Jtag module (3%),
the 2 Tx Meso flow control synchronizers (1.5%), the 2 Rx Meso data
synchronizers (5%) and the area overhead of the 2 switches (5.5%). To
note that the input buffers of the two switches were extended by two
slots since 2 clock cycles of latency are added in the round-trip from
the transmitter and receiver synchronizers and vice versa on the link.
Interestingly, the Asynch Loose Slow sub-system had a 10% of area
overhead with respect to the Asynch Hybrid Slow sub-system.

• The Synch Fast sub-system required 4% of additional area than the
Synch Slow sub-system mainly due to the higher synthesis frequency.

• The Asynch Hybrid Fast sub-system and the Asynch Loose Fast

sub-system followed the same area trend than their slow counterparts. In
fact, they feature respectively 7% and 17% of area overhead with respect
to the Synch Fast sub-system.

• The Asynch FIFO sub-system required 30% of additional area than the
fully synchronous fast sub-system (Synch Fast). In particular, this
area overhead is mainly due to the 4 loosely coupled dual-clock FIFOs

90

4.4. TEST SETUP

(17%) and the 4 tightly coupled dual-clock FIFOs (9%). To note that all
the dual-clock FIFOs were with 5 buffer slots and, the tightly coupled
dual-clock FIFOs have been merged with the switch input buffer. Then,
since the xpipes switches are natively composed of 2 input buffer slots,
the total amount of buffering resources is increased. In order to keep the
total buffering resources and reduce the final source-synchronous switch
area overhead the output buffer size could be reduced from 6 to 3 slots,
since additional buffer slots come with the synchronization-augmented
input buffer.

Figure 4.10: Area breakdown of the seven sub-systems.

As a final consideration, the global area footprint of the testchip was composed
by two additional main contributions: the PLL module, and the pin pads. In
particular, almost half of the total required area was devoted to the PLL instan-
tiation.

4.4 Test Setup

In this section we describe the test performed on the testchip and the test spec-
ification that had to be provided to enable test engineers to create a DUT board
design specification and implement the tests themselves. The testing phase
took place at IHP and took profit by IHPs testing equipment.

The Moonrake tests were mainly conducted on the Verigy 93000 SOC (see
Figure 4.11). The Verigy 93000 SOC is a high performance production test

91

CHAPTER 4. THE MOONRAKE CHIP

system. It has a digital-dominant configuration with licensed speeds up to
800MB/s. The hardware is capable of up to 3.6GB/s per channel. The test
system provides a set of commonly used standard test functions such as func-
tional test, current measurements, sweep tests etc. Low level programming for
user/device specific requirements is available through a rich C++ API as well
as direct firmware access. The 93000 system was used for interactive func-
tional verification of the NOC tests, sweep tests on parts of the NOC and for
the standard current measurements.

Figure 4.11: Verigy test platform.

The test specification had to be provided by filling in appropriate templates and
supplying vector data files (EVCD). The vector data files are generated from
logging the data flow on the design ports during a functional simulation. As the
simulation is event-driven also the resulting test data files are event-based and
need to be converted into a new format in order to be read by the test system
software. This vector translation (conversion from event based format to cycle
based format) extracts the actual vector data at defined points following the
timing provided in the test specification. The successful completion of this
task depended on several parameters and, as a result, a special attention was
devoted to provide the test specifications and to define the minimum number
of simulation runs able to capture the real testchip quality metrics.

92

4.4. TEST SETUP

In particular, for each test/vector set using a different timing, a separate timing
set specification was provided. As an example, some of the main information
required in the test specification for each timing set are the following:

• Source cycle frequency: the frequency used in the simulation defining
the period to be used for the cycle representation of the simulation data.

• Target cycle frequency: the frequency to be used during the test.

• Sample point for source vector data: the sample point is related to the
simulation since it specifies the point within the cycle where the logical
value should be sampled during vector translation.

• Exact timing position of read strobe impulses to capture outputs.

Moreover, if the tests have to be executed at several different frequencies or
clock phase, timing data is required for each frequency/phase offset to be
tested. An additional step for the success of the testing is represented by the
definition of the type of test/measurement to execute and, as a consequence,
the simulation to perform.

The continuity test was the first performed. This test function checks for
continuity of the test signal paths and for short circuits. Normally, it is exe-
cuted in all testflows since it gives first information about the integrity of the
chip under test. Basically, it forces a test current into the chip and measures
the voltage between the pin and vdd/ground. The test is passed if the mea-
sured voltage is in the range specified in the test function setup. A second
executed test is called IDDQ . This test function measures the quiescent power
supply current (IDDQ) of the chip when it is stimulated by an EVCD without
events. In this case, it was provided an EVCD where the external clocks were
kept constant, the reset signals enabled and the PLL switched-off. Then, the
FunctionalTest was performed to analyze the behavior of the chip under
specific input patterns. This test function examines the DUT following the
timing set and performing a real time comparison between expected and re-
ceived data (specified by the vector set). Through this test, the functionalities
of the seven sub-systems were fully validated. Each sub-system of the testchip
was evaluated under several operative frequencies and skew scenarios through
frequency and clock phase sweep.

Moreover, the EVCDs were generated in order to stimulate every possible NoC
state. In fact, each EVCD was composed by the following six transactions:

93

CHAPTER 4. THE MOONRAKE CHIP

1. The tester0 performs 2 writes to the memory1 (memory slot 0 and 1).
The flits cross both the switches and the NoC link before to reach the
target memory. The data move from domain0 to domain1. In the
synchronizer-based sub-systems, the source synchronous synchronizers
are stimulated.

2. The tester0 performs 2 writes to the memory1 (memory slot 0 and 1).
The flits cross both the switches and the NoC link before to reach the
target memory. The data move from domain0 to domain1. In the
synchronizer-based sub-systems, the source synchronous synchronizers
are stimulated.

3. The tester1 performs 2 writes to the memory0 (memory slot 0 and 1).
As before, the flits cross both the switches and the NoC link before to
reach the target memory but in this case the data moves from domain1
to domain0.

4. The tester1 and the tester0 perform 2 writes to the memory0 (memory
slot 2,3,4 and 5) at the same time. These transactions force congestion
in the switch0. As a result, the flow control taking care of the interrup-
tion/resumption of the communication on the link was tested.

5. The tester1 and the tester0 perform 2 writes to the memory1 (memory
slot 2,3,4 and 5) at the same time. In this case, the congestion is forced
in the switch1. The c and d transactions test together the flow control
of the NoC in both the directions.

6. The tester0 requires a read from the memory1. The tester packets move
from domain0 to domain1 and the memory packets from domain1 to
domain0.

7. The tester1 requires a read from the memory0. In this case, the tester flits
move from domain1 to domain0 and the memory flits from domain0 to
domain1.

To note that the memory locations are not overwritten by the transactions in or-
der to allow the full evaluation of the test during the final memory scan-out. Fi-
nally, the OperatingCurrent test was performed. The operating current test
measures the current supplied to the chip while it is undergoing a functional
test. This test allows to estimate the power consumption as a function of the
injected vector data files. In particular, the test function programs a sequencer

94

4.5. TEST RESULTS

to execute the provided vectors in a loop until the operating current measure-
ment is completed. In this case, a specific area to loop was indicated in the
provided EVCDs. In particular, the power consumption of every sub-system
was evaluated during idle time and under low and high traffic conditions. The
idle time EVCDs was written to enable a sub-system at a time without inject-
ing transactions. On the contrary, the high/low traffic EVCDs were composed
of writes transaction (6 at a time) performed sequentially by the 2 testers into
the memories of their opposite domains. The number of clock cycles to wait
between 2 sequence of writes transactions was higher for low traffic than high
traffic condition.

4.5 Test Results

As mentioned above, the first performed test was the continuity test. Since
several testchip copies were printed (19 versions), this first test allowed to
discard the chips with defects and to perform the further tests in the remain-
ing reliable chips. Only 1 chip presented process defects in the design under
test. The functionaltest was executed as a second test and it was per-
formed in two steps. In the first step, the slow sub-systems were analyzed
(Asynch Hybrid Slow , Asynch Loose Slow and Synch Slow). Since the
slow sub-systems are clocked from an external low-speed clock, the PLL was
no longer required and it was switched-off. The goal of this test was to ver-
ify the functionalities of a sub-system at a time in each frequency and skew
scenario.

The frequency sweep was performed increasing gradually the speed of the
injected external clocks. The control input signal and the data input signal
were injected in compliance with the target operating frequencies. The strobe
setting at the output pins was performed similarly. The selected lower bound
for the frequency sweep was 25MhZ. Clearly, the test could also be performed
below this frequency but we did not expect relevant results under this threshold.
On the contrary, the upper bound of the frequency sweep was not specified
a priori since the test was also meant to determine the maximum operating
frequency that the slow sub-systems were able to achieve. This maximum
speed is associated not only with the inherent limitations of the test setup, but
also with the limited driving capability of the I/O pins. To note that the slow
sub-systems were synthesized at 100 MHz although the synthesis tool met the
frequency constraints with a large slack.

Additionally, a skew sweep was performed for the Asynch Hybrid Slow and

95

CHAPTER 4. THE MOONRAKE CHIP

Asynch Loose Slow at every operating frequency under test. In this case, the
domain1s clock phase was gradually increased until 100% of the clock period
was achieved. To note that the applied skew can be seen as positive skew
in the a and d transactions (see the previous section), while on the contrary
as negative skew for the b and c transactions. As a result, a functional test
for a given clock phase passes when the NoC source synchronous link is able
to absorb both the positive and the negative skew. This approach allows to
reduce the final effort required to define the test specification and to perform
the testing. Anyway, in order to perform a safe test, the skew was not only
applied to the domain1 external clock but it was also applied to the control/data
input signal and to the output pin strobe of the same domain.

As a result, the Synch Slow sub-system passed every functional test in the
range of 25Mhz and 265Mhz. Interestingly the sub-system was able to work
at a frequency significantly higher than the frequency of synthesis. That can
be due to two main reasons:

• A significant slack was reported after the 100Mhz synthesis. Then the
failure of the sub-system is actually expected when the slack is com-
pletely absorbed.

• The designs were instantiated by means of the worst case standard cell
library. The worst case library was probably assuming overly pessimistic
conditions.

Concerning the synchronizer-based sub-systems, the skew and frequency
sweep results of the Asynch Hybrid Slow and the Asynch Loose Slow

sub-systems are depicted in Figure 4.12 and in Figure 4.13, respectively.

As demonstrated by Fig. 4.12 and Fig. 4.13, the two synchronizer-based slow
sub-systems were able to pass the functional tests in the range of 25Mhz and
265Mhz as the Synch Slow sub-system. Moreover, they well absorbed the
applied skew tolerating 100% of the clock period offset in most of the fre-
quency scenarios. In particular, the Asynch Loose Slow sub-system was
able to tolerate every injected skew up to 265Mhz. On the contrary, the
Asynch Hybrid Slow sub-system presented some failures at low frequency
and high skew (but in a domain with poor practical relevance). Anyway, these
latter failures do not find an easy justification in theory. In fact, although the
Asynch Loose Slow sub-system is supposed to have relaxed intrinsic timing
margins compared to the Asynch Hybrid Slow counterpart, the failures were
expected to show up at high frequency rather than at slow frequency. Then, we

96

4.5. TEST RESULTS

Figure 4.12: Frequency and skew sweep in the Asynch Hybrid Slow sub-system.

are induced to think that this low frequency failures are actually due to prob-
lems in the test equipment and/or specification. Moreover, a slow degradation
of the skew tolerance was expected with increasing frequency. Since the sub-
systems under test fail before showing the expected skew tolerance degradation
and they fail all together (Synch Slow sub-system included) at the same fre-
quency, the max performance is probably dictated by the driving capability of
the I/O pins or by a critical path violation. On the contrary, a violation of the
timing margins in the source synchronous interfaces should be excluded.

In the second part of the functionaltest , the fast sub-systems were an-
alyzed (Asynch Hybrid Fast , Asynch Loose Fast , Asynch FIFO and
Synch Fast). The goal of this second testing part was still to verify the func-
tionalities of the sub-systems (a sub-system at a time) since in this case the
sub-systems were clocked by the PLL. As a result, the frequency and the skew
sweep should be performed according with the limitations dictated by the PLL
specification. In particular, the PLL provides the following 4 clock phases: 0,
90, 180 and 270 (i.e. the highest provided skew corresponds with the 75% of
the clock cycle). Moreover, the PLL clock frequency is generated according
with the following formula:

97

CHAPTER 4. THE MOONRAKE CHIP

Figure 4.13: Frequency and skew sweep in the Asynch Loose Slow sub-system.

PLLfreq = [PLLexternalclock ∗ (n + 1)]/2 (4.1)

To note that the n parameter can be set through dedicated external pins. Fol-
lowing the reported formula, a sweep of the PLLexternalclock frequency
could directly generate the desired sweep of the PLL clock. Anyway, the PLL
has been designed to properly work with an external clock of around 25Mhz.
As a consequence, the experiments were performed with a fixed external clock
(25Mhz) and the n parameter was used to modify the PLL frequency. Theo-
retically, 8 bits are available to set the n parameter but three of these bits were
hard-wired at a low value in order to meet the maximum pin number require-
ments (i.e., 5 input pins are still available). As a result, the PLL can run at
the maximum frequency of 400Mhz (supposing n=00011111 and PLLexter-
nal clock=25Mhz).

Unluckily, the frequency and the skew sweep in the fast sub-systems could not
exploit the same timing set and vector data file since the frequency and the
clock phase had to be set statically by driving the dedicated external pins. On
the contrary, the clock phase and the clock frequency in the slow sub-systems
were modified by means of the same EVCDs through straightforward steps. In
fact, the clock phase in the slow sub-systems was simply set by delaying the

98

4.5. TEST RESULTS

injection of the clock and control/data input signals while the clock frequency
was modified by scaling the timing of the vector data files.

Then, a few test frequencies were selected to perform the functional test of
the fast sub-systems. The selected PLL frequencies for test were 200Mhz and
400Mhz in the 4 available clock phase variants. It is useful to recall that the
input pins were supposed to inject the data/control signals with a frequency of
25Mhz (going through the synchronizer) and the fast sub-systems were syn-
thesized at 500Mhz. The results with the test frequencies were as follows:

• The Synch Fast functional test passed with the PLL frequency set at
200Mhz and 400Mhz with all the chips that previously were able to pass
the continuity test. To note that only 1 chip out of 19 chips was discarded
during the continuity test.

• The Asynch Loose Fast functional test passed with the PLL fre-
quency set at 200Mhz in each of the 4 skew scenarios for the 18 chips.
The same sub-system operating at a frequency of 400Mhz passed the
test with 17 chips. The sub-system was not able to work at 400Mhz in
only 1 chip previously able to pass the continuity test.

• The Asynch Hybrid Fast functional test passed with the PLL fre-
quency set at 200Mhz in each of the 4 skew scenarios for the 18 chips.
The same sub-system operating at a frequency of 400Mhz passed the
test with 12 chips. The sub-system was not able to work at 400Mhz
in 6 chips previously able to pass the continuity test. Anyway, each of
these 6 chips passed the functional test with a phase offset of 90, 180
and 270, on the contrary, they did not pass the test with 0 of skew. The
0 of skew represents the fully synchronous scenario and intuitively the
source synchronous interfaces should provide the best timing margins
in this condition. As future work, further explorations of the timing set
specification should be performed to justify this result, which might be
most probably ascribed to the inexperience with the testing equipment
and/or to the complex testing procedure rather than to a true problem in
the technology.

• The Asynch FIFO functional test passed with the PLL frequency set at
200Mhz in each of the 4 skew scenarios for the 18 chips. To note that
this sub-system should not only absorb the skew into the source syn-
chronous link but also synchronize data from 25Mhz to 200Mhz and
vice versa. The same sub-system operating at a frequency of 400Mhz

99

CHAPTER 4. THE MOONRAKE CHIP

passed the test with only 11 chips out of 18. The output of the remain-
ing 7 chips was not stable. In fact, although the sampled output was
in most of the cases matching the expected one, the correct output was
still not guaranteed when repeating the test several times. Moreover, the
failing clock phase was usually only one at a time and, surprisingly, it
was randomly changing although the test was performed on the same
chip. Interestingly, the failing tests presented few unstable output bits
always located in the same position of the output vector. On the con-
trary, when the Asynch Hybrid Fast and the Asynch Loose Fast

sub-systems were failing the output vectors presented the anomalous bits
spread homogeneously all over the output vector. As a result, these in-
formation led us to suppose that specific patterns bring few bits of the
Asynch FIFO sub-system to a metastability condition that results into
unpredictable results.

At a better analysis, the Asynch FIFO sub-system is the only one that
integrates brute force synchronizers, composed of a sequence of 2 flip-
flops, where the output bit can fall into a metastability condition. The
probability of solving the metastability in these bits follows the MTTF
law and tightly depends on the technology node and the operative fre-
quencies. As reported in literature (see [88]), the failure probability is
not negligible anymore at the scaling of the technology node and with
the increase of the frequencies. Then, the MTTF law applied to the
dual-clock FIFO brute force synchronizers provides a valid explanation
for the instability of the few output bits in the Asynch FIFO sub-system
at 400Mhz. To note that the brute force synchronizers are stimulated
only during the congestion conditions of the switches (i.e. when asser-
tion of the STALL/GO flow control is required). The congestion of the
switches is achieved in only two of the six transactions and it always
affects the switches during the same clock cycles (in compliance with
the EVCD patterns).

Summing up, Fig.4.14 illustrates on the y-axis the percentage of chips (out of
the 18 ones which passed the continuity test) that proves functional in each
test case (identified by the operating frequency, skew and architecture variant
parameters).

The success percentage, for a first time implementation, is quite high. We
start observing some issues at 400 MHz, as we approach the target synthesis
frequency of 500 MHz. However, the failure pattern is such that improving
upon such results should not be an issue in future work. In fact, the zero skew

100

4.5. TEST RESULTS

Figure 4.14: Percentage of working chips in each test case.

failure for the Asynch hybrid fast design does not seem to be related to the
robustness of the interface. Also, failures at 400 MHz for Asynch loose fast
design are independent of the applied skew, thus denoting a different problem
than the robustness of the mesochronous synchronizers. Finally, the failures
for the Asynch FIFO design could be easily solved by cascading more flip
flops in the brute-force synchronizers used inside dual-clock FIFOs.

We then performed some power measurements on the test structures. Fig.4.15
shows the relative comparison between power of the designs under test clocked
by the PLL. Taking a look at the plot, it is clear that it was not possible to
inject significant traffic due to the constraints of the measurement setup. In
fact, in order to achieve precise dynamic current measurements, it is essential
that the pattern has a constant current profile and that it can be repeated in a
loop to make sure the pattern is running as long as the current measurement is
active (and there is no way of predicting how long the measurement will be.
The tool uses auto-ranging, i.e., it executes several measurements to find the
minimum measurement range where no overflow occurs.) Unfortunately, the
NoC structures under test consist of a quite time consuming programming step
of a much shorter execution phase, therefore most likely the programming step
is the prevailing contribution to measured power figures.

Idle power is taken by selectively removing the reset but without giving any
input traffic to the platform itself. Clearly, the power difference between the ar-
chitectures under test is not significant at all: the synchronizer-based solutions
tend to add 0.38mW overhead to the power of the synchronous sub-system

101

CHAPTER 4. THE MOONRAKE CHIP

14,9

15

15,1

15,2

15,3

15,4

15,5

15,6

15,7

15,8

15,9

Idle Low Traffic High Traffic

SYNCH_FAST

ASYNCH_H_FAST

ASYNCH_L_FAST

ASYNCH_FIFO

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 [
m

W
]

Figure 4.15: Relative power comparison.

(slightly more for the loosely coupled solution), which grows to 0.5mW for
the Asynch FIFO design. The overhead in percentage terms would be 2.8%
and 3.7% with respect to the synchronous sub-system for the mesochronous
and for the dual-clock FIFO-based ones, respectively. Ultimately, we feel the
key take away of these results is that synchronizer-based GALS technology
comes at a marginal power overhead.

The above power results indicate just a trend and should be handled very care-
fully for the following reasons:

• The error margin of the test equipment is about 0.3mA. The current ab-
sorbed by the NoC structures differs by an amount which is close to the
uncertainty of the measurement tool. In addition, a single measurement
of the current was taken at regime. However, by sampling the current
multiple times we were getting a further uncertainty of around 0.5mW.
In spite of all this, we were able to observe a clear relative trend between
the architectures under test which is orthogonal to the 18 working chips.
Also measurements for slow designs confirm the same power trends.

• Injecting heavy traffic into the test structures was virtually impossible,
given the small size of the structures themselves and the large time
needed to program the structures, prevailing with respect to the actual

102

4.6. CONCLUSIONS

packet exchange time. For this reason, the most accurate power results
certainly concern the idle power tests.

• The Asynch FIFO design has memories, tester and JTAG interfaces
working at 25 MHz instead of 200 MHz like in the other fast platforms.
However, this does not seem to favor this design much, from a power
viewpoint.

4.6 Conclusions

The Moonrake chip was as illustrated successfully tested. It was the first im-
plementation of synchronizer-based GALS NoC technology in 40nm CMOS
process. The objective was to validate the synchronization technology, con-
taining key innovations such as the tight coupling of the synchronizer with the
switch input buffer, and, implicitly the design technology supporting it. The
testchip was structured in a modular way, thus amortizing the manyfold risks
associated with testchip fabrication: in essence, porting a new synchronization
technology to a new manufacturing process, and then using new features of the
test equipment to test such an advanced chip implementation.

Overall, results are very promising. NoC test structures getting the clock from
the external world provided an excellent result: frequencies from 25 to 265
MHz were swept, while at the same time varying the clock phase offset from 0
to 360 degrees. This means that the synchronization mechanisms, considered
by themselves, can be ported to the 40nm technology and prove functional in
such an environment. When it comes to the designs synthesized for and operat-
ing at a higher frequency, then a set of issues comes into play: not only higher
stress of the technology platform, but also larger complexity of the test proce-
dure. 91% of the performed tests completed successfully, and the failures seem
more related to testing or systematic issues in the technology platform rather
than to the robustness of the synchronization interfaces. Also, an interesting
experimental phenomenon was observed: as technology scales down, the reso-
lution time constant of brute force synchronizers degrades, hence calling for a
larger number of cascaded flops to resolve metastability. This is of special in-
terest to many dual-clock FIFO realizations. Finally, our power measurements
indicate that the power overhead when moving from a fully synchronous test
system to a mesochronous one or even to a multi-synchronous one is marginal.
To conclude, we find that this testchip experience validates the feasibility and
effectiveness of the developed GALS NoC concept in nano-scaled technology
sub-systems bridging the final gap to actual silicon implementation.

103

5
Design Space Exploration for

Redundancy-Aware NoC Testing

THIS chapter provides an exploration of testing strategies for NoC-based
systems. In particular, it presents four scalable built-in self-test and
self-diagnosis infrastructures making efficient use of NoC structural re-

dundancy for testing and diagnosis purposes through the use of a cooperative
testing framework. While the first three strategies are applied to fully syn-
chronous NoCs, the last one tackles the testing of multisynchronous systems.
The optimization of the stuck-at-fault coverage and the minimization of area
and latency of the testing and diagnosis strategy will be the guideline of the
chapter. The proposed testing strategies will be compared between each others
and the most promising of them will be thus exploited as the reference testing
and diagnosis strategy in the final next-generation system presented in the last
chapters of this thesis.

5.1 Methodology and Taxonomy

Embedded systems have been shifting to multi-core solutions (Multiprocessor
System-on-Chips; MPSoCs). A clear example of high-end MPSoCs are the
products offered by Tilera [24] where multi-core chips provide support to a
wide range of computing applications, including high-end digital multimedia,
advanced networking, wireless infrastructure and cloud computing.

Main microprocessor manufacturers are also shifting to chip multiprocessors
(CMPs) for their latest products. In CMPs many cores are put together in
the same chip and, as technology advances, more cores are being included.
Recently, Intel announced a chip with 48 cores, under the Tera-scale Comput-
ing Research Program [145]. Previously, Intel also developed a chip proto-

104

5.1. METHODOLOGY AND TAXONOMY

type [146] that included 80 cores (known as TeraFlops Research chip).

Current trends indicate that Multi-core architectures will be used in most appli-
cation domains with energy efficiency requirements exceeding 10GOPS/Watt.
However, aggressive CMOS scaling accelerates transistor and interconnect
wearout, resulting in shorter and less predictable lifespans for CMPs and MP-
SoCs [149]. It has been predicted that future designs will consist of hundreds
of billions of transistors, with upwards of 10% of them being defective due
to wearout and process variation [147]. Consequently, in order to support the
current technology trends we must develop solutions to design reliable systems
from unreliable components, managing both design complexity and process
uncertainty [148].

Network on Chip is being increasingly investigated by researchers and design-
ers to address the issues of interconnect complexity in both CMPs and MP-
SoCs [150]. The reliability of NoC designs is threatened by transistor wearout
in aggressively scaled technology nodes. Wear-out mechanisms, such as oxide
breakdown and electromigration, become more prominent in these nodes as
oxides and wires are thinned to their physical limits. These breakdown mecha-
nisms occur over time, so traditional post burn-in testing will not capture them.

As a result, an important requirement for this purpose is the efficient testability
of candidate NoC architectures. This property is very challenging due to the
distributed nature of NoCs and to the difficult controllability and observability
of its internal components. When we also consider the pin count limitations
of current chips, we derive that NoCs will be most probably tested in the fu-
ture via built-in self-testing (BIST) strategies. These latter are also capable of
tackling wearout failures since they are suitable both for production and for
lifetime testing.

Finally, the chapter focuses on Built-In-Self-Testing techniques. All the test-
ing logic of these latter techniques is encapsulated inside the chip, working
autonomously from the exterior of the chip. In BIST-based systems, the gener-
ation of the test cases and the check of the results is performed inside the chip,
instead of being done in an external device.

In this chapter, we take the challenge of performing a design space exploration
for BIST-based testing for NoCs. In order to perform such exploration, we
have identified the main degrees of freedom extended to a designer implement-
ing a testing framework for NoCs. First of all, the degree of controllability ex-
ploited by the testing framework plays a crucial role since it denotes the ability
to move the design under test (DUT) around in its entire configuration space.
Secondly, the kind of test patterns adopted to stimulate the DUT has a rele-

105

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

vant impact on the performance of the framework. Finally, the aforementioned
degrees of freedom are constrained by the target performance that the testing
framework is required to achieve. In particular, the framework performance is
driven by three main reference metrics: stuck-at-fault coverage, area overhead
and testing time. As a result, this manuscript wants to explore the trade-off
exposed by these latter metrics at the swapping of network controllability and
test patterns kind.

In general, a network is divided in sub-blocks and these latter represent the el-
ementary blocks around the testing framework is built. Thus the testing frame-
work controls all the inputs of each sub-block. Finally the degree of control-
lability is dictated by the granularity of the network sub-blocks. While high
controllability requires to divide the network in several micro blocks on the
contrary low controllability comes with few macro blocks. On one hand, when
controllability of the network increases then stuck-at-fault coverage arises and
testing time decreases. On the other hand, a higher controllability comes with
a higher area overhead due to the inherent complexity of the BIST infrastruc-
ture. Our purpose is to analyze different controllability scenarios in order to
identify the ones better performing.

In addition, different kinds of test patterns can be generated and combined with
testing frameworks at each stage of controllability. We identify the following
main groups of test patterns:

1. Deterministic-Handcrafted. Test patterns are totally created by hand ex-
ploiting the knowledge of the DUT. The underlining idea consists in
bringing the DUT into all the possible functional states.

2. Deterministic-Algorithmic. Algorithmic deterministic test patterns are
generated by automatic tools (like Tetramax). Tools produce a set of
heuristic test patterns by taking as an input the DUT.

3. Pseudo-Random. Linear-Feedback-Shift-Registers (LFSR) generate
pseudo-random test patterns. Such patterns randomly stimulate the DUT
until the expected performance is achieved.

At a first glance, a loose control seems appealing for a testing framework. In
fact, this latter comes with light and low intrusive frameworks. However, a
loose controllability does not typically achieve acceptable stuck-at-fault cov-
erage and testing time regardless of the adopted test patterns. Deterministic-
handcrafted test patterns are applied at the network-boundaries in [18] any-
way the time complexity of the test configurations is square with respect to

106

5.1. METHODOLOGY AND TAXONOMY

the rank of the NoC matrix and the control path achieves a low coverage.
Differently, deterministic-algorithmic or pseudo-random test patterns can be
adopted. However the automatic tools are not able to converge to a set of al-
gorithmic deterministic test patterns when the whole network is given as input
due to the complexity of the design. Similarly, pseudo-random test patterns
injected at the boundaries of the network do not achieve relevant results in
terms of testing time and stuck-at-time coverage. Even when the controllabil-
ity of the network is increased by means of traditional full-scans, the testing
framework incurs an hardly affordable area overhead (like in [47]).

Such considerations brought us to start our testing framework exploration in
scenarios with higher degree of controllability. In particular, a first set of test-
ing frameworks was developed for each kind of test patterns by controlling
switch sub-blocks. Each sub-block is composed by a chain of two or more
switch modules. In particular we consider the following switch modules: the
input and output buffer, the switch-to-switch link, the arbiter, the multiplexers
of the crossbar and the routing mechanism. The testing frameworks stimulate
the boundaries of the chain. Once we have evaluated the first set of results
then we moved to a higher or lower degree of controllability in accord with the
achieved stuck-at-fault coverage, area overhead and testing time. The key idea
is to migrate to a higher controllability solution whenever coverage or test-
ing time are inadequate while to migrate to a lower degree of controllability
whenever the area overhead skyrockets.

The design space exploration is completed by an analysis of the diagnosis
structure alternatives. The diagnosis structure represents the infrastructure in
charge of check the correctness of test responses. In this case, three mainly
diagnosis options are reported in literature:

1. Signature analysis is widely adopted in digital systems to compress mul-
tiple bit streams. This latter is usually implemented by means of a
Multiple-Input-Signature-Register (MISR).

2. Comparators trees can be adopted to perform an effective diagnosis able
to exploit the inherent structural redundancy of the design under test.
Once stimulated by the same test patterns, replicas of the same mod-
ules outputs the same results if there is no fault. Thus test responses of
multiple replicas feed comparator trees for the diagnosis.

3. ROM registers store the expected test responses which are compared
with the output of the DUTs.

107

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

As a matter of fact, the choose of the diagnosis structure does not represent
a degree of freedom for testing framework but it is rather dictated by the de-
sign under test and the adopted test patterns. Indeed MISR must be combined
with long pseudo-random patterns sequences to avoid aliasing effects. Thus
signature analysis is usually coupled with LFSR solutions since it results un-
reliable when alternatives test patterns are adopted. Concerning ROM regis-
ters, they are inefficient in redundant environments. In fact, their information
can be replaced by test responses generated by in-situ replicas of the DUT.
Finally, the manuscript follows a clear strategy as regards the choose of the
diagnosis structure. Since the NoC exposes a high degree of redundancy then
ROM registers are discarded in favor of comparators trees able to effectively
exploit the NoC environment. Anyway, comparators trees introduce inter-
dependencies between DUTs replicas complicating the failure analysis with
respect to MISRs. As a result, MISRs are preferred to comparator trees when
the testing framework is based on pseudo-random patterns. On the contrary,
comparators trees are still adopted in the other test patterns scenarios.

Overall, the manuscript provides an exploration of built-in testing strategies
customized for NoCs comparing them under an area, coverage, routing delay
and latency point of view. The test of NoC switches will occur in parallel, thus
making test application time independent of network size. Notice that com-
munication channels between switches are tested as a part of the switch testing
framework from the switches themselves in most of the proposed techniques.

A key principle of our approaches consists of exploiting the inherent struc-
tural redundancy provided by NoCs. Each switch is comprised of input ports,
output ports, arbiters and FIFOs that are duplicated for each channel. This
feature is used to develop very effective test strategies which consists of test-
ing multiple identical blocks in parallel and of cutting down on the number of
test pattern generators. This is done both at the abstraction level of the switch
micro-architecture (e.g., testing of the output port arbiters in parallel) and of
the NoC architecture (i.e., testing of all NoC switches in parallel). The inher-
ent parallelism of our BIST procedure makes our testing infrastructure highly
scalable and best suited for large network sizes.

Finally our BIST procedures are suitable both for production and for lifetime
testing, and are complemented by a built-in self-diagnosis logic distributed
throughout the network architecture able to pinpoint the location of detected
faults in each switch. This diagnosis outcome matches the reconfigurability
requirements of logic-based distributed routing.

The rest of the chapter is organized as follow. Section 5.2 presents the base-

108

5.2. TARGET ARCHITECTURE

line switch architecture which will be the baseline for the testing frameworks.
Section 5.3 takes on the challenge pointed by [26] of exploiting architecture
behavior knowledge to come up with a set of customized test patterns for NoC
components. Thus we present a deterministic test patterns-based BIST/BISD
framework with low latency and high coverage while at the same time detect-
ing TPG faults. Section 5.4 presents a strategy based on a scan chain mecha-
nism and algorithmic deterministic test patterns. With respect to the conven-
tional scan-based approaches, we built-in the test pattern generators and the
diagnosis modules and we reduce the area overhead. In Section 5.5, we de-
sign a testing based on pseudo-random patterns where we cut down on the test
application time and we provide efficient testing of the control path. Section
5.6 compares between each others the proposed testing frameworks in terms of
area, stuck-at-fault coverage and latency. In Section 5.7, we propose one of the
first built-in self-testing and diagnosis framework for Globally-Asynchronous-
Locally-Synchronous Network-on-Chip based on an asynchronous handshak-
ing. Finally, the main conclusions are presented in Section 5.8.

5.2 Target Architecture

Performance of testing frameworks in literature are hardly comparable be-
tween each others since whenever numbers are available, network under tests
are very different. On the contrary, we want to perform a design space explo-
ration in a homogeneous setting in order to build up a fair comparison between
testing techniques. As a result, we use the xpipesLite switch architecture [110]
with a 5× 5 configuration to prove viability of all our solutions.

The baseline switch architecture illustrated in Fig.5.1 represents a variant of the
architecture presented in section 3.4. As this latter switch, it implements both
input and output buffering and relies on wormhole switching. The crossing
latency is 1 cycle in the link and 1 cycle in the switch itself. Flit width assumed
in this thesis is 32 bits, but can be easily varied. Without lack of generality,
the size of the output buffers is 6 flits, while it is 2 flits for the input buffers.
This switch relies on a stall/go flow control protocol. It requires two control
wires: one going forward and flagging data availability (”valid”) and one going
backward and signaling either a condition of buffer filled (”stall”) or of buffer
free (”go”).

The switch architecture is extremely modular and exposes a large structural
redundancy, i.e., a port-arbiter, a crossbar multiplexer and an output buffer
are instantiated for each output port, while a routing module is cascaded to the

109

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

OUTPUT SOUTH

.

.

.

.

.

.

.

.

.

ARBITER NORTH

LBDR WEST

ARBITER SOUTH

LBDR EAST

INPUT WEST

INPUT EAST

OUTPUT NORTH

Figure 5.1: Modular structure of the baseline switch architecture. Not all connections
are showed.

buffer stage of each input port. This common feature to all switch architectures
will be intensively exploited in this work.

On the contrary of the switch architecture presented in section 3.4 based on
source-based routing, the target switch of this chapter implements distributed
routing. We implement distributed routing by means of a route selection
logic located at each input port. Forwarding tables are usually adopted for
this purpose, although they feature poor area and delay scalability with net-
work size [151]. The possibility to implement logic-based distributed routing
(LBDR) while retaining the flexibility of forwarding tables has been recently
demonstrated in [152]. In practice, LBDR consists of a selection logic of the
target switch output port relying on a few switch-specific configuration bits
(namely routing Rxy , connectivity Cz and deroute bits drt). The number of
these bits (14 in this case) is orders of magnitude less than the size of a for-
warding table, yet makes the routing mechanism reconfigurable.

The core of LBDR logic is illustrated in Fig.5.2(a), illustrating the conditions
that select the output port north UN ′ for routing. The pre-processed direction
of packet destination N ′/S ′/W ′/E ′ is an input together with the routing and the
connectivity bits. In some cases (see [152] for details), deroutes are needed to
properly route packets, and the associated logic is reported in Fig.5.2(b).

LBDR supports the most widely used algorithms for irregular topologies and
can be used on a 2D mesh as well as on roughly 60% of the irregular topologies
derived from a 2D mesh, like in Fig.5.2(c). Irregularity of the connectivity
pattern can be an effect of manufacturing or wearout faults, but also of power
management or thermal control decisions or of virtualization strategies. Switch
configuration bits need to be updated whenever the topology evolves from one
connectivity pattern to another (e.g., when a fault is detected).

Our testing and diagnosis frameworks have been all conceived to enable a net-

110

5.2. TARGET ARCHITECTURE

(a) Core logic for route computation

DEROUTE

DEMUX
(enable)

dr0dr1

UN'
UE'
UW'
US'

UN'

UE'

UW'

US'

UN

UE

UW

US

(b) Deroute logic

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Bidirectional Routing Restriction

Router Cn[0] Ce[0] Cw[0] Cs[0]

0 0 1 0 1
1 0 1 1 0
2 0 1 1 1
3 0 0 1 1
4 1 1 0 1
5 0 1 1 1
6 1 1 1 0
7 1 0 1 1
8 1 1 0 1
9 1 1 1 1
10 0 1 1 1
11 1 0 1 1
12 1 1 0 0
13 1 1 1 0
14 1 1 1 0
15 1 0 1 0

(c) Connectivity bit setting be-
cause of failed links.

Figure 5.2: LBDR logic and requirements on the diagnosis outcome.

work reconfiguration strategy leveraging the cost-effective flexibility offered
by the LBDR routing mechanism. An algorithm is reported in [152] for com-
putation of the switch configuration bits given the topology connectivity pat-
tern. As an example, updated connectivity bits are illustrated in Fig.5.2(c).
This algorithm might be executed by a centralized NoC manager and in prac-
tice needs the list of failed links to recompute the configuration bits for correct
routing with the available communication resources. Failure of a switch input
or output port can be viewed as the failure of the connected link. Our diagnosis
strategies will therefore target this requirement and will provide an indication
of whether input and output ports of a switch are operational.

111

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

5.3 Testing framework based on handcrafted deter-
ministic test patterns

This section proposes a built-in self-test/self-diagnosis procedure at start-up
of an on-chip network based on deterministic test patterns. Concurrent BIST
operations are carried out after reset at each switch, thus resulting in scalable
test application time with network size. The key principle consists of exploit-
ing the inherent structural redundancy of the NoC architecture in a cooperative
way, thus detecting faults in test pattern generators too.

Four main features differentiate the testing framework proposed in this section
from most previous work. First, we take on the challenge of generating deter-
ministic test vectors on-chip at a limited area overhead. At the same time, this
enables us to report much shorter test application times than typical pseudo-
random testing frameworks and larger fault coverage in the control path than
most functional testing frameworks for NoCs. Second, we account for the te-
dious problem of faults affecting test pattern generators (TPGs) and provide
large coverage for them. This is done without implementing more hardware
redundancy but fully exploiting the existing one by means of a cooperative
testing framework among switches. Third, our testing framework targets dou-
ble and triple stuck-at faults from the ground up, and not as an afterthought.
Fourth, our framework is not limited to regular 2D meshes, but can be applied
to a much wider range of network topologies.

As a result, the coverage for single stuck-at faults closely tracks 100% in both
the control and data path of the network. This latter is achieved by means
of deterministic test patterns handcrafted for the specific block under test by
exploiting knowledge of the architecture behavior. Finally testing of stuck-at
faults can be performed in less than 1200 cycles regardless of their size, with
an hardware overhead of less than 26%.

5.3.1 The Testing Strategy

The key idea of our BIST/BISD framework consists of exploiting the inher-
ent structural redundancy of an on-chip network. We opt for testing the NoC
switches in parallel, thus making test application time independent of network
size. Communication channels between switches are tested as a part of the
switch testing framework.

Each switch can in turn test its manyfold internal instances of the same sub-
blocks (crossbar muxes, communication channels, port arbiters, routing mod-

112

5.3. TESTING FRAMEWORK BASED ON HANDCRAFTED DETERMINISTIC

TEST PATTERNS

ules) concurrently. In fact, all the instances are assumed to be identical, there-
fore they should output the same results if there is no fault. As a consequence,
the test responses from these instances are fed to a comparator tree. This makes
the successive diagnosis much easier. There is a unique test pattern generator
(TPG) for all the instances of the same block, thus cutting down on the num-
ber of TPGs. Although the principle is similar to what has been proposed
in [45, 46, 104], there is a fundamental difference. If the TPG of a set of block
instances is affected by a fault, then the comparison logic will not be able to
capture this since all instances provide the same wrong response. To avoid
this, a cooperative framework is devised, such that each switch tests the block
instances of its neighboring switches.

As an example, a switch tests the incoming communication channels from its
north/south/west/east neighbors (i.e., it feeds their test responses to its local
comparator tree), thus checking the responses to distinct instances of the same
TPG. This way, a non-null coverage of TPG faults becomes feasible. Fig.5.3(a)
clearly illustrates the cooperative testing framework for communication chan-
nels and the need for a single TPG instance per switch to feed test patterns to
all of its output ports. Faults in the TPG, in the output buffer, in the link and in
the input buffer will be revealed in the downstream switch. Each switch ends
up testing its input links, while its output links will be tested by their respective
downstream switches.

The same principle can be applied for the testing of switch internal block in-
stances associated with each output port: crossbar muxes and output port ar-
biters. Fig.5.3(b) shows the case of port arbiters. The main requirement for
testing these instances is that the communication channels bringing test re-
sponses to the comparators in the downstream switches are working correctly.
Clearly, testing these modules can only occur after communication channels
have been tested. Therefore, the procedures in Fig.5.3(a) and Fig.5.3(b) occur
sequentially in time. Should one communication channel result defective, this
would not be a problem, since it would not make any sense to test and use a
port arbiter when the corresponding port is not operational. Crossbar multi-
plexers associated with each output port are tested in the same way and are
hereafter not illustrated in Fig.5.25 for lack of space.

Finally, the methodology can be extended to test block instances associated
with each switch input port with some modifications. This is the case of the
LBDR routing block. The key idea to preserve the benefits of cooperative and
concurrent testing is to carry test patterns rather than test responses over the
communication channels to neighboring switches, where the LBDR instances

113

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

OUT

CHANNEL

COMPARATOR
TPG

TPG

TPG

TPG

LINK

BUF

IN

BUF

(a) Testing communication channels.

ARBITER

COMPARATOR

ARBITER
TPG

TPG

TPG

TPG

ARBITER

EAST

ARBITERSOUTH

NORTH ARBITER

WEST

(b) Testing output port arbiters.

COMPARATOR

LBDR
TPG

TPG

TPG

TPG

L

B

D

R

L

B

D

R

L B D R

L B D R

(c) Testing LBDR routing logic.

Figure 5.3: The cooperative and concurrent testing framework saving TPG instances
and covering their faults.

are stimulated and their responses compared (see Fig.5.3(c)). If the channel is
not working properly, than testing and use of the downstream routing block is
useless, since it is associated with an input port which will not be used.

A BIST engine is embedded into each switch and regulates the testing proce-
dure. This latter is in fact split into four phases in time:

• testing of communication channels.

• testing of the crossbar.

• testing of the arbiters.

114

5.3. TESTING FRAMEWORK BASED ON HANDCRAFTED DETERMINISTIC

TEST PATTERNS

• testing of the LBDR routing blocks.

The serial execution of test phases for the switch internal components is dic-
tated primarily by the limited flit width, constraining the amount of test pat-
terns that can be transmitted at the same time over the communication channel,
and also by the limited availability of comparators, although in our case the
former effect comes into play first. As the flit width increases, then we can
perform more testing operations in parallel, starting from those components
that have a limited amount of primary input/outputs (e.g., the arbiter with the
LBDR).

A fundamental difference with respect to a lot of previous work is that we
do not rely on pseudo-random testing (like in [23]), which usually gives rise
to large testing times. We use deterministic test patterns instead, which are
handcrafted for the specific block under test by exploiting knowledge of the
architecture behavior. This way, the reduced number of test patterns enables
the serialization of test phases without making test application time skyrocket
(see section 5.3.7).

On a cycle by cycle basis, comparator outputs are fed to a diagnosis logic
which identifies where exactly the fault occurred. In our diagnosis framework,
each switch checks whether test responses from its input ports are correct or
not. As a consequence, the outcome of the diagnosis is coded in only 5 bits,
one for each input port of the current switch (they would be of course doubled
if a two-rail code is implemented to protect them against stuck-at faults). A ’1’
indicates that the port is faulty. In practice, the fault may be located either in
the input buffer or in the LBDR module, in the connected communication link
or even in the output buffer and associated port arbiter and crossbar multiplexer
of the upstream switch. This further level of detail is not needed, since in any
case the meaning is that the link is unusable, and this is enough for a global
controller to recompute the reconfiguration bits for the LBDR mechanism.

In the final implementation, other 5 bits will be needed to code the diagnosis
outcome because of practical implementation issues, as discussed in section
5.3.2.

Common to most current NoC testing frameworks, the underlying assumption
for correct operation of our BIST/BISD infrastructure is that the reset signal
can be synchronously deasserted in all switches of the network at the same
time.

115

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

TO LOCAL

TPG Data

stall_in

stall_in (testing)

valid

stall_in (normal) stall_channel

stall_channel

stall_channel (testing)

(normal)

Output Buffer Input Buffer

stall_out

TO COMPARATORS

UPSTREAM SWITCH DOWNSTREAM SWITCH

From local

TPG
stall_channels

of local input ports

COMPARATORS

Figure 5.4: Practical implementation of communication channel testing.

5.3.2 Testing Communication Channels

Communication channels include input/output buffers and their intermediate
links, as illustrated in Fig.5.4: all these elements are jointly tested by means of
a single TPG and the test patterns are handcrafted for them based on knowledge
of their behavior.

Our approach in this direction was to expand the finite state machine (FSM)
of the device under test (DUT) into all its possible states. Therefore, we have
defined a sequential test pattern that drives the FSM to each of its states. In
this way, we can ensure that if the FSM reaches the expected state for all the
test patterns there are no faults inside the DUT. As an example, the FSM of the
buffers defines that if the Stall signal is asserted and the buffer receives a set of
valid flits, the buffer has to store the flits that it receives until it becomes full.
One test pattern to check this behavior would fill up the buffer by asserting the
Stall signal, and would in the end check whether the output buffer correctly
asserts the Full signal. The datapath is obviously much easier to test by means
of only few test patterns.

From an implementation viewpoint, there are several practical issues. On one
hand, we had to make the stall input of the output buffer directly controllable
to the TPG to raise its stuck-at fault coverage to almost 100% (see Fig.5.4).

On the other hand, the stall channel signal of the input buffer, which lies in the
downstream switch, should be driven by the TPG as well. This would require
an additional wire in the switch-to-switch link. A similar concern is that the
stall out signal from the output buffer should be brought to the comparators in
the downstream switch, again requiring an additional wire in the link.

To avoid the extra wires, we opted for the solution in Fig.5.4: stall channel is

116

5.3. TESTING FRAMEWORK BASED ON HANDCRAFTED DETERMINISTIC

TEST PATTERNS

NEXT PATTERN

100101..

100010..

001100..

OUTPUT BUFFER STALL

INPUT BUFFER STALL

OUTPUT BUFFER WRITE

BUFFER INPUT DATA

DUT RESET

TEST PATTERN

COUNTER

CLOCK CYCLE

COUNTER

111001..

100011..

000001..

110101..

000111..

111110..

Figure 5.5: TPG for communication channels.

driven by the TPG of the downstream switch, while stall out is brought to the
comparator tree in the upstream switch. From the testing viewpoint nothing
changes, since all channel TPGs inject the same patterns synchronously, and
so do the comparators. The only difference lies in the fault coverage of TPG
faults, which is likely to be decreased a bit. In fact, those (upstream) TPG
faults that can be detected by only monitoring stall out will not be detected,
since all the stall out signals brought to the local comparators will be driven
by the same TPG. Similarly, some faults in the (downstream) TPG will not
be detected, since the comparators compare responses to stall channel signals
generated by the same faulty TPG: the responses will look like the same. These
implementation variants, needed to adapt the conceptual testing scheme to the
constraints of the real implementation, will be proven in section 5.3.7 to only
marginally decrease fault coverage of the TPGs, while leaving fault coverage
for the communication channel obviously unaffected.

The only major implication is that the fault detection framework becomes even
more collaborative: some (very few) faults in the channel and/or TPGs are now
detected in the upstream switch comparators instead of the downstream ones.
Therefore, other 5 additional diagnosis bits are needed, flagging a fault in the
output port of a switch. The global controller will combine this (OR operation)
with the faults detected at the input port of the downstream switch to get the
complete indication of a fault across the entire channel.

117

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

5.3.3 TPG for Communication Channels

A test pattern can be easily generated in hardware by using a clock cycle
counter and some logic to generate the values of the input signals for the DUT.
In order to extend this approach to a TPG able to generate all the test patterns
for a given DUT, we can include an additional counter. This latter will indicate
the current test pattern within the test sequence. Figure 5.5 depicts the resulting
conceptual scheme for the channel TPG. The actual gate-level implementation
depends on the logic synthesis tool and on the synthesis constraints. The two
counters act as a FSM driving the control signals of two levels of multiplex-
ing: the first one selects the current test pattern, while the second one selects
the current clock cycle and associated input vector for the buffer.

It is however possible to easily compact the combinational logic, because there
are a lot of test patterns that include other test patterns. For instance, by check-
ing the response not only at the end of the test pattern, but also somewhere in
the middle, it is often possible to detect another fault. This perfectly matches
with the capability of our BIST framework, which even performs check re-
sponse at each clock cycle. Therefore, it is possible in our implementation to
perform a compaction of test patterns by generating in hardware only those
patterns including a subset of the other ones, thus largely saving test time and
TPG area.

5.3.4 Testing Other Internal Switch Modules

A similar process is followed to generate deterministic test patterns for the port
arbiters, the LBDR modules and the crossbar. Also the implementation of their
TPGs is identical, and so are the optimization techniques.

Again, the most relevant practical implementation issue concerns the commu-
nication of test patterns or responses across the switch-to-switch links for the
crossbar and LBDR module. The crossbar outputs 34 bits in response to a test
vector: 32 data bits, 1 valid bit and 1 stall bit. The communication channel can
only carry 32 bits (the valid bit of the channel needs to be permanently set to
1 during test vector transmission, while the stall signal travels in the opposite
direction). The two remaining crossbar signals (valid and stall) which do not
fit into the link can be either transmitted by means of additional lines used only
during testing, or alternatively checked by local comparators, similarly to what
has been done for the communication channel. We took the latter approach,
and the results in section 5.3.7 again confirm the marginal coverage reduction
on TPG faults. Fault coverage of the crossbar is not affected at all by this

118

5.3. TESTING FRAMEWORK BASED ON HANDCRAFTED DETERMINISTIC

TEST PATTERNS

choice.

Unlike other modules, test vectors for the LBDR modules should be transmit-
ted across the link, and they take 31 lines (the primary inputs of the LBDR
module). So, they perfectly match with the current flit width, provided the
number of network destinations does not exceed 64. From there on, the test
vector width starts growing logarithmically with the number of destinations,
and additional lines may be required on the link.

In contrast, the use of a larger flit width in the network (e.g., 64 bits) would
automatically solve the problem. In that case, the test patterns of the LBDR
block and the test responses of the arbiter could even be communicated at the
same time over the link. Also, since LBDR module and arbiters have only few
outputs, their response checking could be performed at the same time on the
available tree of comparators, thus cutting down on the test application time
(see section 5.3.7).

5.3.5 Fault Detection and Diagnosis

The core of the diagnosis unit is given by comparators which can be imple-
mented in two different ways, by:

• using a level of XORs and an OR gate to provide a single output encod-
ing of the equality test;

• using a two-rail checker TRC (with the second word which is negated);

We opted for the TRC approach, which achieves the self-testing and fault-
secure properties [153] although leading to a more complex circuit.

In the diagnosis unit we use 10 different comparators to compare data from
all the possible pairs of switch input ports. A smaller number of comparators
could be used. Unless time multiplexing is exploited, this would trade cost
for diagnosis capability. The maximum number of usable comparators also
depends on the number of switch I/O ports. In what follows, we will focus
on the internal switches of a 2D mesh for the sake of simplicity (featuring 5
I/O ports, including the local connection to the network interface), however all
irregular topologies supported by LBDR and making use of switches with at
least 3 I/O ports are suitable for our methodology. Obviously, the lower the
number of ports, the lower the diagnosis capability.

If we denote two faults in different ports under comparison as equivalent if
they produce the same output sequence in response to the same input stimuli,

119

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

then our comparator and diagnosis logic is able to:

• diagnose the correct position of 1 or 2 faulty channels affected by equiv-
alent or non-equivalent faults;

• diagnose the correct position of 3 faulty channels affected by non-
equivalent faults; 1

• detect the presence of 4 and 5 faulty channels. Anyway, since a 5x5
switch affected by 4 or 5 faults has to be discarded, we don’t distinguish
between these two scenarios.

One might argue that when a communication channel fails, then the following
testing phases have less inputs available and diagnosis capability reduces. In
practice, this effect plays only a minor role, since a fault on a communication
channel means that also (say) the arbiter of that channel should be considered
faulty (unusable). So, the diagnosis capability reduces, but also the number of
input ports to be checked reduces as well.

When a switch features only three I/O ports, then the detection and diagnosis
capabilities change as follows. Single stuck-at faults can be diagnosed while
double faults can be detected, provided they are not equivalent. If they are
equivalent, then diagnosis fails. However, when two faults are detected in two
ports out of three, the switch should be discarded anyway.

As regards the possible presence of faulty comparators, let us first note that
any input vector producing less than four ones corresponds to faults in less
than four comparators (we are neglecting the case where all 5 channels are
faulty and 4 of them have equivalent faults, which is very unlikely). In case
the number of faulty comparators is larger than 3, some configuration exists
which may produce a wrong diagnosis. Let us note, however, that it is suffi-
cient to have a single test vector (not a test sequence) featuring less than four
ones to immediately recognize the presence of faulty comparators because no
combination of faulty channels may produce such response.

5.3.6 BIST-Enhanced Switch Architecture

The switch architecture enriched with the BIST infrastructure is illustrated in
Fig.5.6. Only one section is reported. The figure is necessarily at a high ab-

1The probability that more than two faulty channels produce the same output se-
quence in response to the same input stimuli is here neglected.

120

5.3. TESTING FRAMEWORK BASED ON HANDCRAFTED DETERMINISTIC

TEST PATTERNS

FAULTY OUTPUT PORT TO NI

...

...

ARBITER
TPG

CROSSBAR
TPG

CROSSBAR
TPG

COMPARATORS

TO

COMPARATORS

TO

TPG
LBDR

TPG
CHANNEL

.. CROSSBAR
TPG

from
all
input
ports

from
all
input
ports

IB S T E N G I N E

0

0

0

0

0

FAULTY INPUT PORT N

FAULTY INPUT PORT S

FAULTY INPUT PORT W

FAULTY INPUT PORT E

FAULTY INPUT PORT FROM NI

0

0

0

0

0

LBDR_N

ARB_N

OUTPUT BUFFER

NORTH

NORTH
INPUT BUFFER

IN_N

N_REQ_N

IN_N

IN_S

inputs_N

inputs_S

N_stall_S

N_stall_N

NORTH
CROSSBAR MUX

N_stall

(in inputs_N)

COMPARATORS DIAGNOSIS

FAULTY OUTPUT PORT N

FAULTY OUTPUT PORT S

FAULTY OUTPUT PORT W

FAULTY OUTPUT PORT E

Figure 5.6: BIST-enhanced switch architecture.

straction level, and signal-level connection details previously illustrated in sec-
tions 5.3.2 and 5.3.4 are purposely omitted.

A test wrapper consisting of multiplexers can be clearly seen, which enables
test pattern injection of TPGs in the modules they test. At the output of the
input buffer, test patterns are directly fed to the LBDR module, since they are
carried by the communication channel as normal network traffic. A multiplexer
in front of each output buffer selects between the switch datapath, the test
patterns from the LBDR TPG (feeding the LBDR module of the downstream
switch), the channel TPG (directly feeding the channel) and the arbiter test
responses (checked in the downstream switch). A BIST engine drives the 4
phases of the testing procedure by acting upon the control signals of the test
wrapper.

During the first three phases (communication channel, crossbar, arbiter test-
ing), outputs of the input buffers are selected to feed the comparator tree, while
in the last phase (LBDR testing), all LBDR outputs are selected. Test response
check and diagnosis are performed at each clock cycle, and result in the setting
of 10 bits, indicating whether each input/output port is faulty or not.

121

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

500Mhz 600Mhz
0

20

40

60

80

100

120

140

160

Vanilla
BIST

Sw
itc

h
Ar

ea
 (%

)

Figure 5.7: Area overhead for BIST implementation as a function of target speed.

Switch sub-block Test patterns Test vectors Coverage
Comm. channel 58 464 99.4%

Arbiter 82 328 97.1%
Crossbar 72 72 99.8%
LBDR 240 240 98.7%

Table 5.1: Coverage for single stuck-at faults.

5.3.7 Experimental results

We performed logic synthesis of a 5x5 switch on the 40nm Infineon low-power
technology library. The baseline switch architecture of Fig.5.1 is compared
with its BIST-enhanced counterpart.

Fig.5.7 shows the area overhead for BIST implementation as a function of the
target speed. Area overhead is 25.27%, which peaks at 37.1% when maximum
performance is required. In this latter case, the multiplexers on the critical path
are primary targets for delay optimization in exchange for more area. It should
be pointed out that this overhead is tightly technology-library dependent.

When considering the BIST infrastructure in isolation (at 600 MHz) most of
the overhead comes from the on-chip generation of test patterns (almost 31%)
and from the multiplexers (44%) of the test wrapper. Interestingly, although
arbiters and LBDR require less test vectors than the communication channel,
their TPGs are far more complex due to higher irregularity of their test patterns.

Fault Coverage

Tab.5.1 reports the total number of deterministic test patterns (and test vectors)
generated for each tested module, and the associated coverage. This latter was

122

5.3. TESTING FRAMEWORK BASED ON HANDCRAFTED DETERMINISTIC

TEST PATTERNS

Test Cycle Coverage
Our 864 - 1104 99.3%
[21] 3.88 x 102 - 2.89 x 103 97.79%

[108] 4.05 x 105 95.20%
[42] 2.74 x 103 99.89%
[45] 9.45 x 103 - 3.33 x 104 98.93%
[46] 5 x 104 - 1.24 x 108 N.A.
[17] 320 99.33%
[23] 200 x 103 full (no exact numbers)

Table 5.2: Test application time and coverage of different testing methods.

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

CHANNEL TPG (ideal) CHANNEL TPG (real) ALLOCATOR TPG LBDR TPG CROSSBAR TPG (ideal) CROSSBAR TPG (real)

Figure 5.8: Coverage of TPG faults.

derived by means of an in-house made gate-level fault simulation framework:
(one or more) faults are applied to any or selected gate inputs, then our testing
procedure is run on the affected netlist and the diagnosis outcome is compared
with the expected one.

It can be seen that in all cases the coverage for single stuck-at faults closely
tracks 100%. The number of test vectors provides the test application time (in
clock cycles). A network with a flit width of 32 bits, as assumed so far, would
therefore take 1104 clock cycles for testing, regardless of the network size. If
we assume 64 bit flits, then LBDR testing occurs in parallel with arbiter testing
and total test time reduces to 864 cycles.

These numbers compare favorably with previous work, as Tab.5.2 shows. Only
[21] and [17] in some cases do better. However, [21] does not test the control
path while [17] reports 320 cycles for a 3x3 mesh (made of a simplified switch
architecture) which however grow linearly with network size. Also, this latter
approach makes additional use of BIST logic for the control path not accounted
for in the statistics.

123

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

Multiplicity of Fault Injection 2 3 4 5
Coverage 99.2% 96.4% 96.6% 96.6%

Table 5.3: Coverage for multiple random stuck-at faults.

We feel that area overhead is hardly comparable with previous work since
whenever numbers are available, features of the testing frameworks are very
different (e.g., control path not tested [21], test patterns generated externally
[45,108], diagnosis missing [42,45,46,108], lack of similar test time scalability
[17,18], NoC architecture with overly costly links [42]). Moreover, the impact
of synthesis constraints is never discussed.

Fig.5.8 reports the coverage of TPG faults. While single stuck-at faults in the
allocator and channel TPGs feature a coverage of roughly 95%, worse results
are obtained for the LBDR and especially for the crossbar TPGs. We verified
that their lower coverage is a direct consequence of the low number of test pat-
terns they generate. The designer can then choose whether increasing crossbar
TPG area and having it generate more patterns or dedicating a separate test
phase to TPGs. Also, when comparing real vs ideal coverage of channel and
crossbar TPGs, it is possible to assess the marginal reduction of TPG fault
coverage as an effect of the local (instead of remote) check of some signals of
these modules in the switch they belong to (see section 5.3.2 and 5.3.4).

Since our BIST infrastructure targets multiple stuck-at faults from the ground
up, we characterized fault coverage for multiple faults as well. We have
injected multiple faults randomly in the gate-level netlist of the switch and
checked the diagnosis response. Fault multiplicity was 2,3, 4 and 5 and fault
injections for a given multiplicity were repeated 1000 times, as in [23]. As
Tab.5.3 shows, the proposed BIST framework provides a higher than 96% cov-
erage in every scenario. Interestingly, the coverage saturates with 4 and 5 faults
since the probability to inject errors in a module already affected by an error
becomes high.

5.4 Built-In Scan Chain-Based Testing Framework

The test of the integrated circuits is traditionally performed by means of scan
chains. The scan-chain still features a wide adoption in the industrial environ-
ment although several alternative testing techniques have been proposed. In-
deed the success of the scan-chain is justified by some key reasons. First of all,
the main synthesis tools support a semi-automatic insertion of the scan-chain

124

5.4. BUILT-IN SCAN CHAIN-BASED TESTING FRAMEWORK

in the logic under test. In addition, it achieves an extremely high stuck-at-fault
coverage of both the data and the control path. Anyway, it is showed in [45]
that traditional full-scan and boundary scan strategies like [47,106–108] incur
an hardly affordable area overhead. [45] also proposes a partial scan technique
in combination with an IEEE 1500-compliant test wrapper. Area overhead is
greatly reduced, but test application times amount to tens of thousands of clock
cycles and test pattern generation time does not scale. Then the advantages in
terms of coverage and design time of the scan-chain technology are offset by
severe area overhead and high latency. Furthermore, the scan-chain is typi-
cally associated with test patterns injected by off-chip sources. The injection
of external test patterns becomes infeasible in modern integrated circuits due
to the limited pin budget and the difficulties in reaching the widespread logic
of the NoC. Finally, life-time testing is not supported by this solution because
of the need for an industrial test environment.

Aware of the relevance of the scan chain-based mechanism, we enrich our
design space exploration of testing strategies by implementing this latter tech-
nique in the NoC switch. Scan chain-based mechanisms are conventionally
coupled with algorithmic deterministic patterns self-generated by Automatic
Test Pattern Generator (ATPG) tools. Thus we rely on ATPGs to stimulate the
DUT although we do not finally evaluate a conventional implementation but
we custom-tailor the scan chain for the target NoC setting in order to alleviate
its intrinsic limitations.

As a result, the next sections present the switch architecture enhanced with
the customized scan chain infrastructure. In particular, we implement a test-
ing framework based on test patterns generated by means of an ATPG tool,
Tetramax. This latter tool requires as input the post-synthesis netlist together
with the list of the primary inputs/output and generates as output a sequence
of algorithmic deterministic patterns. Finally, the performance of the proposed
solution is compared in terms of area, coverage and latency with a baseline
(unoptimized) scan-chain strategy and with the testing framework based on
handcrafted deterministic patterns in Section 5.3.

5.4.1 The Scan Chain Tool-Flow

In order to implement a scan chain in our design under test we exploited the
Synopsys tool enhanced with some dedicated commands (set dft signal ,
set scan configuration , set scan path , etc.). Thus, the post-synthesis
design was automatically augmented with scan-enable sequential cells and
scan-in/scan-out ports for the write/read of the scan chain control bits. Finally,

125

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

LOAD FaPIs MaPOs Pulse UNLOAD

1 clk cycle 1 clk cycle 1 clk cycle N clk cycle N clk cycle

Figure 5.9: Latency breakdown of a scan chain-based test.

the test patterns were generated by means of the Tetramax tool. Tetramax re-
quires as input the post-synthesis netlist together with the list of the primary
inputs/outputs and the scan-in/scan-out ports of the design.

The injection of a test pattern in a scan chain-enabled design follows a se-
quence of 5 phases (see figure 5.9). During the first phase (load), n test bits
are driven through the scan-in port. Since a single bit for clock cycle is in-
jected in each chain, the length of this phase is equal to n clock cycles where
n is the number of sequential cells of the chain. During the next two phases
(force all pis and measure all pos), the primary inputs are stimulated
with the test data pattern and the primary outputs’ response is read out. Both
these phases last 1 clock cycle. The reset ports are tested during the third phase
(pulse) and finally the scan-out bits are read in the last phase (unload). The
unload phase lasts n clock cycles. Then the unload and the load phases
dominate the latency required to inject a test pattern. Intuitively the number of
sequential cells (n) for chain has a relevant impact on the final latency of the
test.
It is possible to model the total latency (TotLat) of a test based on scan
chains by means of the following formula:

TotLat = (TotCells/TotChains + 4)X(NumPat) + TotCells/TotChains (5.1)

The formula is parametrized by the number of test patterns (NumPat),
the number of total design cells (TotCells) and the number of scan chains
(TotChains). To notice that it is taken into account the overlapping of the
unload phase with the load phase of the next test pattern.
Similarly, the number of bits stored by the test pattern generator can be
modeled by the following formula:

126

5.4. BUILT-IN SCAN CHAIN-BASED TESTING FRAMEWORK

NumBit = (PIs + ScanChainPort + TotCells)XNumPatterns (5.2)

In this case, PIs represents the number of primary inputs of the design and
ScanChainPort takes into account the additional inputs required by the scan
chain test framework.

The number of bits of Equation 5.2 gives the size of the test pattern generator,
thus its area footprint. Modeling the latency and the number of bits of the test
generator represents a key step for the further optimizations presented in the
following sections.

5.4.2 The Baseline Implementation

As in the cooperative testing framework of section 5.3, we use the xpipesLite
switch architecture [110] to implement a baseline scan chain-enabed testing
strategy in a realistic NoC setting. When implementing a scan chain frame-
work, it is possible to set few Synopsys parameters to specify the number of
chains in the design, the number of cells for each chain and group cells in a
single chain.

We did not constrain the synthesis tool during the first baseline implementa-
tion. As a result, the tool created 48 scan chains for the whole switch design.
Each scan chain was composed of 40 sequential cells and required 147 test
patterns. The test achieved a high stuck-at-fault coverage (99.95%) and a rea-
sonable latency of 6500 cycles. Anyway, each scan chain differs from the other
scan chains thus a dedicated set of test patterns was required for every chain.
As a consequence, 310k bits were stored into the test pattern generator and the
resulting area footprint was too severe when enhancing the scan chain frame-
work with a built-in self-testing approach. Therefore alternative solutions are
required in order to alleviate the area overhead.

We constrained Synopsys to modify the number of scan chains in the switch.
Interestingly the synthesis tool balances the number of sequential cells within
each scan chain. As expected, the latency linearly decreased with the increase
of the number of scan chains following Equation 5.1. However, the area over-
head stayed approximately constant since the same number of test patterns
was required despite the modification of the scan chain length (the remaining
parameters of Equation 5.2 did not change as well).

In addition, the whole switch needs to be discarded when a single fault is de-
tected with the above implementations. Although diagnosis logic can associate

127

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

a faulty cell to a single faulty scan chain, the position of the cell in the switch
is still unknown. In fact, the cells of a switch port are not grouped in a sin-
gle scan chain and every scan chain collects cells from multiple switch ports.
Therefore a faulty scan chain does not carry the information required to enable
a graceful degradation of the switch as in section 5.3.

5.4.3 Customizations for the NoC Setting

A generic implementation of a scan chain-based testing strategy proved area
hungry and resulted in poor fault tolerance. Thus customizations for a NoC
setting were envisioned to overcome these latter concerns.

Following the intuition of Section 5.3, the key idea of our BIST framework
based on scan chains consists of exploiting the inherent structural redundancy
of an on-chip switch. We collected the cells of each input and output ports in
distinct groups. In particular, a port-arbiter, a crossbar multiplexer and an out-
put buffer group were instantiated for each output port, while a routing module
and an input buffer group were instantiated for each input port. Then we per-
formed a dedicated synthesis for each group before to glue all the synthesis
results in a single design (see Figure 5.10). In this way every scan chain is
associated with a cell group and failure of a chain can be viewed as the failure
of the associated switch input or output port. Our diagnosis strategy will there-
fore provide an indication of whether input and output ports of a switch are
operational or not. Moreover, all the scan chain instances are assumed to be
identical, therefore there is a unique test pattern generator (TPG) for all the in-
stances of the same block, thus cutting down on the total number of bits stored
in the TPGs. Finally all the instances of the same scan chain should output
the same results if there is no fault. As a consequence, the test responses from
these instances are fed to a comparator tree similar to the tree of Section 5.3.
As already proved, this makes the successive diagnosis much easier.

The core of the diagnosis unit is given by comparators which are implemented
using a two-rail checker TRC achieving the self-testing and fault-secure prop-
erties. When we consider a 5x5 switch then we use 20 different comparators to
compare data from all the possible pairs of switch input ports and switch out-
put ports. Thus the diagnosis logic diagnoses the correct position of 3 faulty
input ports and 3 faulty output ports affected by non-equivalent faults. Finally,
it detects the presence of 7, 8, 9 and 10 faults located in different input or out-
put ports. Anyway, since a 5x5 switch affected by more than 6 faults has to be
discarded, we don’t distinguish between these latter scenarios.

128

5.4. BUILT-IN SCAN CHAIN-BASED TESTING FRAMEWORK

Figure 5.10: Practical implementation of the proposed scan chain-based test.

Although the principle is similar to what has been proposed in Section 5.3,
this solution presents a fundamental drawback. If the TPG of a set of block
instances is affected by a fault, then the comparison logic will not be able to
capture this since all instances provide the same wrong response. Furthermore
the communication channels between switches are not tested as a part of the
switch testing framework.

5.4.4 Experimental Results

The switch enhanced with the proposed scan chain was synthesized by means
of a 40nm Infineon technology library. The test patterns were generated by
Tetramax. A test pattern can be generated in hardware by using a clock cy-
cle counter and some logic to generate the values of the input signals for the
DUT. Then we exploited the Tetramax test patterns to implement a test pattern
generator built-in into the switch. A test wrapper consisting of multiplexers
enables test pattern injection of TPGs in the scan chain they test.

Scan Chain Results: Custom Vs Baseline Implementation.

Both the baseline and the proposed solution well perform in terms of cov-
erage: they achieve the 99.9% of single stuck-at-fault coverage. However,

129

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

Baseline Scan Chain Proposed Scan Chain

0

20

40

60

80

100

120

140

160

Te
st

Pa
tte

rn
s

Figure 5.11: Maximum number of test patterns.

Baseline Scan Chain Proposed Scan Chain

0

1000

2000

3000

4000

5000

6000

7000

Latency

Cl
oc

k C
yc

les

Figure 5.12: Latency of the scan chain-based test.

the proposed scan chain customization brought an interesting reduction of the
number of test patterns. In fact, Tetramax exploited respectively 103 and 65
test patterns to test the scan chains of the output and the input port. On the
contrary, 147 test patterns were required to test the baseline scan chains (see
Figure 5.11). Interestingly the pseudo-random clustering of the cells in the
baseline solution did not allow Tetramax to perform the test patterns optimiza-
tion achieved in the custom-tailored solution.

The reduction of the test patterns enables shorter load and unload phases.
Thus the latency of the proposed solution decreases by 20.2% with respect to
the baseline counterpart (see Figure 5.12). Furthermore, the area overhead ben-
efits from both the test pattern reduction and the proposed optimizations (i.e.
single sets of test patterns test all the instances of the same port). Then, the area

130

5.4. BUILT-IN SCAN CHAIN-BASED TESTING FRAMEWORK

Baseline Scan Chain Proposed Scan Chain

0

50000

100000

150000

200000

250000

300000

350000

TP
G

 B
its

Figure 5.13: Total number of bits stored by the test patterns generator.

Contributo dei moduli all'overhead

bist
diagnosi
mux testing
Scan-chain
tcr
tpg ingressi
tpg uscite

Other
Diagnosis
Test Wrappers
Scan-Chain Cells
TCR
Input TPG
Output TPG

Figure 5.14: Area overhead breakdown of the customized scan chain-enabled testing
strategy.

overhead of the proposed solution was cut down by the 82% with respect to
the baseline one (see Figure 5.13). Although this result was achieved through
an aggressive reduction of the built-in test pattern generators’ area, these latter
still introduce the highest area overhead (as reported in Figure 5.14).

Comparison with Handcrafted Deterministic Test Pattern-Based Frame-
work

In this section the scan chain-based proposed solution is compared with the
deterministic test patterns-based solution of Section 5.3 in terms of coverage,
latency and area overhead. As showed by Figure 5.15, the area of the deter-
ministic test patterns-based solution outperforms the scan chain-based frame-

131

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

Scan-chain Deterministic

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

TPGs
TCR
Wrappers
Diagnosis
Scan-chain Cells

Ar
ea

 O
ve

rh
ea

d
B

re
ak

do
w

n
(%

)

Figure 5.15: Area overhead breakdown of the scan chain-based and deterministic test
patterns-based solutions.

Scan-chain

Deterministic

0 1000 2000 3000 4000 5000 6000

Latency

clock cycles

Figure 5.16: Latency of the scan chain-based and deterministic test pattern-based
solutions.

132

5.5. BUILT-IN PSEUDO-RANDOM SELF-TESTING

Scan-chain Deterministic

95.00%

95.50%

96.00%

96.50%

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

Co
ver

ag
e (

 %
)

Figure 5.17: Coverage of the scan chain-based and deterministic test pattern-based
solutions.

work. They introduce respectively an area overhead lower than the 30% and
higher than the 130% with respect to a switch without BIST/BISD capability.
Although the above mentioned customizations alleviates the scan chain test
pattern generators’ area overhead, the area footprint of these latter is still sim-
ilar to the whole switch area confirming how the scan chain technique is not
well suited for built-in approaches.

Furthermore, the latency of the scan chain solution is five times higher than
the deterministic counterpart underlining the intrinsic slowness of the load

and unload phases of a scan chain-based test (see Figure 5.16). Finally, both
the BIST frameworks achieve a single stuck-at-fault coverage higher than 99%
as reported in Figure 5.17.

5.5 Built-In Pseudo-Random Self-Testing

Most BIST architectures in literature use pseudo-random test pattern genera-
tors. However, whenever this technique has been applied to on-chip intercon-
nection networks, overly large testing latencies have been reported. On the
other hand, the alternative approaches proposed in the previous sections ei-
ther suffer from large area penalties (like scan-based testing) or high design
effort for the use of deterministic test patterns. This section presents the op-
timization of a built-in self-testing framework based on pseudo-random test
patterns to the microarchitecture of network-on-chip switches. As a result, we
will demonstrate that that through proper customizations for an on-chip setting

133

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

fault coverage and testing latency approach those achievable with deterministic
test patterns while materializing relevant area savings and enhanced flexibility.

This section aims at a low area footprint and low-latency testing framework
for NoCs by optimizing built-in pseudo-random self-testing for the microar-
chitecture of a NoC. The choice of pseudo-random testing potentially reduces
the area overhead, although the test time concern arises. This latter was tack-
led by reusing test responses of switch sub-blocks as test patterns for cascaded
blocks combined with specific test pattern optimizations for selected blocks to
preserve coverage.

The efficiency of the developed testing framework is demonstrated by the com-
parison with the cooperative testing strategy (section 5.3) relying on determin-
istic test patterns and strictly aiming for low testing latencies.

5.5.1 The Testing Strategy

The baseline switch architecture is the same as showed in Fig.5.1. It relies on a
stall/go flow control protocol and implements distributed routing by means of
a route selection logic located at each input port. Failure of a switch input or
output port and their associated switch internal sub-blocks can be viewed as the
failure of the connected link. The diagnosis strategy proposed in this section
will therefore target this requirement and will provide an indication of whether
input and output ports of a switch are operational or not. As the cooperative
testing strategy of Section 5.3, each switch can in turn test its several internal
instances of the same sub-blocks (crossbar muxes, communication channels,
port arbiters, routing modules) concurrently by means of pseudo-random pat-
terns. The testing framework of Section 5.3, which comes up with one of the
lowest testing latencies reported in the open literature for similar single stuck-
at fault coverages, will be used for the sake of comparison as a lower bound
for testing latency.

Deterministic test patterns come with their own drawbacks, especially the large
effort to define the test patterns and the poor adaptation to technology library
and/or node migrations. For these reasons, we extended our analysis to a
framework relying on a pseudo-random testing. However, naive application
of such testing strategy to NoCs like [23] results in unacceptable testing la-
tencies of hundreds of thousands of cycles. In fact, a baseline pseudo-random
testing usually tests the modules under test in sequence to exploit a single test
pattern generator thus reducing the area overhead of the framework. Anyway,
the total testing latency represents the potential killer of this approach. In fact,

134

5.5. BUILT-IN PSEUDO-RANDOM SELF-TESTING

the testing latency does not scale at the increase of the number of modules to
test. Furthermore, random test patterns do not allow an efficient testing of the
control-path. Indeed, some states of the FSMs typically have a low probability
to be reached through pseudo-random input patterns.

We propose NoC test optimization based on the three following ideas:

• To increase the fault coverage within reasonable times, we exploit the
knowledge of the architecture under test to rise the probability of driv-
ing the FSMs to test-relevant states. We thus foster an hybrid approach
(combining deterministic and pseudo-random patterns) for these ma-
chines.

• To reduce the area overhead we reuse the test responses of a switch sub-
block as test patterns for the cascaded ones.

• To minimize the latency we test the redundant replicas of the same mod-
ules in parallel, like the solution in section 5.3.

We progressively optimize a baseline pseudo-random testing framework for
the NoC in incremental steps. First of all, we decompose the network (i.e.
the switch and the channel) into its building blocks: the arbiters, the crossbar
multiplexers, the input buffer, the output buffer, the LBDR and the link.

Then, we exploit a Linear-Feedback-Shift-Register (LFSR) for test pattern
generation and a Multiple-Input Signature Register (MISR) for compression
of test responses.

Finally we progressively cascade switch sub-blocks to the LFSR and monitor
the variations of testing latency and fault coverage. For cascaded sub-blocks,
test responses of the upstream block are test patterns for the downstream one.
Whenever possible, we try to compensate coverage degradation by means of
ad-hoc optimizations thus cascading as many blocks as possible and minimiz-
ing the number of test phases. This process is detailed hereafter.

5.5.2 Testing communication channels

As a first step a stand-alone output buffer was tested. A 34 bit LFSR was
required to drive the flit, the valid and the stall signal. A high fault coverage
was achieved (99.5%) in 250 clock cycles. The coverage for single stuck-at
faults was derived by means of the Tetramax tool.

As a next step, the full communication channel was tested. Then the link
and the input buffer of the downstream switch were cascaded to the output

135

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

buffer, as reported in Fig.5.18(a). In this case, the testing coverage saturated to
91.2% after 250 clock cycles. This coverage degradation pointed to the need of
exploiting the knowledge of buffer implementation to increase test efficiency.

As showed in Fig.5.18(a), we increased the controllability of the channel by
driving the stall signals. From an implementation viewpoint, there are several
practical issues. In fact, the stall channel signal of the input buffer, which lies
in the downstream switch, should be driven by the LFSR as well. This would
require an additional wire in the switch-to-switch link. A similar concern is
that the stall out signal from the output buffer should be brought to the MISR
in the downstream switch, again requiring an additional wire in the link. To
avoid the extra wires, we opted for the solution in Fig.5.18(a): stall channel is
driven by the LFSR of the downstream switch, while stall out is not observed
directly by a MISR but it is still connected to the arbiter affecting its behav-
ior. From the testing viewpoint nothing changes, since all the pseudo-random
LFSRs inject the same patterns synchronously.

As a result, we obtained a fault coverage of 99.7% in 250 clock cycles.

5.5.3 Testing multiplexers of the crossbar

A similar process was followed to include the multiplexers of the crossbar in
the testing framework. The channel modules were cascaded to the multiplexer
as showed in Fig.5.18(b). The multiplexer was directly fed by the LFSR while
the channel was crossed by the test responses of this latter module.

This incremental testing step required interesting optimizations to limit the
LFSR area overhead and to preserve a high fault coverage. First of all, the
multiplexer of the crossbar presents 165 inputs (33 inputs for port) when taking
into account a 5x5 switch. Thus a baseline testing environment could require a
relevant area overhead due to a 165 bits LFSR. As a second concern, few con-
trol signal configurations (see select in Fig.5.18(b)) allow the multiplexer input
signals to cross the multiplexer logic. As a consequence, we experimented a
high degradation of the fault coverage of the cascaded channel due to the low
amount of testing packets forwarded by the multiplexer.

In order to tackle the LFSR area overhead, we fed each input port of the mul-
tiplexer with the same 34 pseudo-random bits exploiting a data shift of 6 · N
bits for every input port. To note that the N parameter corresponds to the mul-
tiplexer port ID. As a result, we preserved the fault coverage and the LFSR
extension from 34 bits to 165 bits was no longer required.

Concerning the issue related to the multiplexer control signals, we de-

136

5.5. BUILT-IN PSEUDO-RANDOM SELF-TESTING

signed a ring counter driving them to data transparent configurations
(10..0, 01..0, 00..1). Furthermore, the randomness of the configurations
is preserved by exploiting an LFSR bit to drive the enable signal of the ring
counter. Thus the counter moves from a configuration to the next one when the
LFSR pseudo-random bit is set to 1.

The above mentioned optimizations finally guaranteed a fault coverage and a
testing period for the cascaded crossbar-channel similar to the results obtained
by the stand-alone channel (i.e. a 99.5% of coverage in 250 clock cycles).

5.5.4 Testing LBDR

Unlike the crossbar module, the LBDR block associated with the port under
test lies in the downstream switch. Thus, it is fed by the input buffer and it
is directly connected to the MISR as showed in Fig.5.18(c). In this case, the
MISR was extended to 39 bits in order to compress also the LBDR outputs.

However, since the LBDR consists of a many-input hard-to-test combinational
logic, the implementation of an effective testing is challenging. As a result, the
following three optimizations were introduced to rise the fault coverage of the
routing mechanism:

1. Some of the LBDR inputs were directly driven by the local LFSR to
restore the highest randomness of the test patterns.

2. The probability to inject a packet to the local port is negligible when
exploiting pseudo-random patterns. In fact the LBDR routes the packet
in the direction of the local port only when the local ID (SID bits) is
equal to the destination ID of the packet. Then we connected the SID
bits to the input 0 of the crossbar multiplexer. As a result, all the packets
forwarded by the port 0 of the crossbar multiplexer are routed to the
local port of the receiver switch. Thus, this solution allows to test all the
routing scenarios.

3. Since the LBDR logic performs its computation only when stimulated by
header flits, the test patterns bits at the input 0 of the crossbar multiplexer
were connected in order to generate exclusively header or tail flits (i.e.
the flit type bits were driven by the same MISR output bit thus assuming
only the 11/00 configuration associated to a header/tail flit type). As a
consequence, payload flits are not longer forwarded by the port 0 of the
multiplexer. In this way, the number of header flits was increased and
the routing logic efficiently stimulated and tested.

137

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

(a) Testing communication channel.

(b) Testing crossbar.

(c) Testing LBDR routing logic.

Figure 5.18: Optimization steps of the pseudo-random testing framework.

138

5.5. BUILT-IN PSEUDO-RANDOM SELF-TESTING

Finally the testing framework achieved a 97.2% of total fault coverage for the
cascaded blocks in 1000 clock cycles.

5.5.5 Testing Arbiters

The test did not achieve a high coverage when the arbiter was directly con-
nected to the existing testing framework following the approach taken so far.
The reason lies in the poor efficiency in testing the arbiter FSM. As a result, in
the final testing framework the arbiter logic is directly driven by the LFSR and
its test responses feed a dedicated 11 bits MISR. Although some area overhead
was introduced with the additional MISR, we found it necessary to achieve the
maximum coverage for such a strategic module.

5.5.6 BIST-enhanced switch architecture

The switch architecture enriched with the BIST infrastructure is illustrated in
Fig.5.19. A test wrapper consisting of multiplexers can be clearly seen, which
enables test pattern injection of the LFSR in the modules it tests. A unique
34 bits LFSR generates the pseudo-random patterns to test in parallel every
switch port. Moreover a dedicated 11 bits MISR for every port collects the
test response from the output port arbiters and a 38 bits MISR for every port
performs the signature analysis of the test responses from the crossbar, the
channel and the LBDR blocks.

Test diagnosis results in the setting of 10 bits (one for every MISR), indicating
whether each input/output port is faulty or not. This meets the requirements of
the LBDR configuration algorithm in [152]. Interestingly, the testing frame-
work is able to reveal the correct position of multiple faulty channels since a
MISR is dedicated to each port. Obviously, it is not possible to distinguish the
elementary faulty module inside the faulty port. However, the proposed testing
framework is based on the assumption that the functionally coupled modules
for an input port are its routing block, its upstream communication channel,
the port arbiter and the crossbar multiplexer in the upstream switch associated
with that channel. Thus, when one of the above mentioned functionally cou-
pled modules fails then the associated safe logic would be unusable anyway.

139

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

Figure 5.19: BIST-enhanced switch architecture.

5.5.7 Experimental Results

We performed logic synthesis of a 5x5 switch on an industrial 40nm Infineon
technology library. The baseline switch architecture of Fig.5.1 and the pro-
posed switch augmented with the pseudo-random testing framework give ap-
proximately the same maximum operating speed of 600 MHz when synthe-
sized for maximum performance, thus proving that our BIST-enabled switch
is capable of at-speed testing.

Fig.5.30(a) reports the total number of test patterns (clock cycles) generated for
the 5x5 switch and the associated coverage for both the deterministic and the
pseudo-random testing framework. It can be seen that the proposed pseudo-
random framework exploits a further degree of freedom with respect to the
deterministic solution. In fact, it can trade latency for coverage. Interestingly,
in all the analyzed latency scenarios, the coverage for single stuck-at faults
is above 94%. Especially the deterministic framework achieves a 99.3% of
coverage in 1104 clock cycles while the coverage of the proposed framework
ranges between 94.2% and 98.2% achieved in 500 and 10.000 clock cycles
respectively.

These numbers prove that it is possible to achieve a coverage and a testing
latency with pseudo-random test vectors that approach those of deterministic

140

5.5. BUILT-IN PSEUDO-RANDOM SELF-TESTING

94,23% 95,65%
99,30% 96,69% 97,02% 97,19% 98,24%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

500 1000 1104 2000 3000 4000 10000

Fa
u

lt
 C

o
ve

ra
ge

Clock Cycles

RANDOM RANDOM RANDOM RANDOM RANDOM RANDOM DETERMINISTIC

Figure 5.20: Coverage for single stuck-at faults as a function of the test latency.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

22%

24%

26%

28%

30%

32%

34%

36%

38%

40%

Deterministic Testing Framework Proposed Pseudo-Random Testing Framework

A
re

a
(%

)

Test Wrapper

LFSR

TPG

MISR

Diagnosis

Comparators

Figure 5.21: Area overhead for BIST implementation.

vectors, although not entirely achieving the same quality metrics. This was
made possible by the performed optimizations which take advantage of the
knowledge of the architecture under test to some extent, without reverting to
full deterministic vectors. The remaining difference in quality metrics with
respect to them can be considered as the price to pay for reduced area over-
head, as proved hereafter. Also, it should be mentioned that a pseudo-random
approach to testing is more appealing in terms of shorter design time and adap-
tivity to architecture, library and technology changes.

Fig.5.30(b) shows the area overhead for the proposed testing framework and
the reference one based on deterministic patterns when applied to a 5x5 NoC
switch. Both of them were synthesized on an 40nm Infineon technology li-

141

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

brary. Area overhead is referred to the baseline BIST-less switch in Fig.5.1.
The area overhead of the proposed framework based on pseudo-random pat-
terns is 16.3%, which rises to 37.1% for the framework based on deterministic
patterns. Interestingly, in the proposed framework most of the overhead comes
from the MISR modules; on the other hand, the test wrappers and the TPGs
(i.e. the LFSRs) prove extremely lightweight when compared with their de-
terministic framework counterparts. To note that the removal of most of the
test wrappers in the pseudo-random framework was possible thanks to the pro-
posed exploitation of test responses to test other cascaded modules.

5.6 Testing Framework Comparison

All the testing frameworks proposed so far have been synthesized on an indus-
trial 40nm Infineon technology library. This section performs a comparison
between them in terms of area overhead, stuck-at-fault coverage, testing la-
tency and routing delay. Thus, the section evaluates (1) the testing framework
with algorithmically generated deterministic test patterns and scan-chain con-
trol, (2) the testing framework based on handcrafted deterministic test patterns
and (3) the testing framework based on pseudo-random test patterns.

5.6.1 Stuck-at-faults coverage and testing latency

Figure 5.22 reports the total number of test patterns (clock cycles) generated
for a 5x5 switch and the associated coverage for the 3 testing frameworks
above mentioned. It can be seen that the solution (3) based on pseudo-random
test patterns exploits a further degree of freedom with respect to the other so-
lutions. In fact, it trades latency for coverage without affecting TPG architec-
ture and area footprint of the framework. The highest coverage is achieved
by the frameworks based on deterministic test patterns: (1) and (2) achieve
respectively 99.9% and 99.3% of coverage in 5104 and 1104 clock cycles.
Handcrafted generated deterministic test patterns achieve a worst coverage
than algorithmically generated deterministic test patterns but they guarantee a
lower testing latency. The coverage achieved by frameworks based on pseudo-
random test patterns approaches those of deterministic vectors, although not
entirely achieving the same quality metrics. Indeed, the coverage of (3) ranges
between 94.2% and 98.2% in 500 and 10.000 clock cycles respectively.

These numbers prove that it is possible to achieve a high coverage and a low
testing latency with both pseudo-random test vectors and deterministic vectors.

142

5.6. TESTING FRAMEWORK COMPARISON

Figure 5.22: Coverage for single stuck-at faults as a function of the test latency.

This was made possible by exploiting a high degree of testing control and
taking advantage of optimizations based on the knowledge of the architecture
under test.

5.6.2 Routing delay

The baseline switch architecture of Figure 5.1 and the switch augmented with
the 3 proposed testing frameworks have been synthesized for maximum perfor-
mance to estimate their critical paths. The critical path of the baseline switch
architecture starts from the input buffer, crosses the internal switch logic and
ends into the output buffer. As represented by Figure 5.23, the time penalty
introduced by the testing frameworks is low. Indeed the critical path of (1)
and (3) lays on the same path as the baseline solution although additional test
wrappers worsens the final routing delay. Differently, the testing logic com-
plexity brought by the testing phases in (2) brings a new critical path. This
latter starts in the arbiter TPG and ends in the diagnosis logic after crossing
the comparator tree. Finally (2) comes with a 37% longer critical path and
results the slowest testing alternative.

143

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

Figure 5.23: Routing delay for BIST implementations.

5.6.3 Area overhead

Figure 5.24 shows the area overhead for the 3 testing frameworks when applied
to a 5x5 NoC switch. The area overhead is referred to the baseline BIST-less
switch in Figure 5.1.

Algorithmically generated deterministic test patterns lack of efficiency when
exploited to test a complex design. In order to restore their efficiency in terms
of coverage then wide scan-chains must be adopted. (1) exploits algorithmi-
cally generated deterministic test patterns augmented with scan chains. In
order to reduce the area overhead introduced by the associated test patterns
generators, the intrinsic redundancy of the switch was exploited to implement
dedicated scan chains to each switch input/output ports and finally a single
TPG was required for testing all the switch ports. Despite the effectiveness of
the proposed optimizations, a built-in self-test can not still be envisioned due
to the severe area overhead required by TPGs for algorithmically generated
deterministic patterns associated with scan chains. In fact, (1) requires 137%
of area overhead with respect to a switch without testing capabilities.

The alternative approaches outperform the deterministic algorithmic patterns-
based solution in terms of area footprint as depicted in Figure 5.24. Although
the effort required by a hardware designer to implement (1) by means of auto-
matic tools is low, the resulting design does not represent a valid solution for a
highly-constrained and performance-critical NoC.

In particular, the deterministic handcrafted patterns-based solution cuts down
the area overhead to 37.1%. Concerning pseudo-random approaches, (3) re-
sults the lightest testing framework with 16.3% of area overhead. In partic-

144

5.6. TESTING FRAMEWORK COMPARISON

Figure 5.24: Area overhead for BIST implementations.

ular, the most of area overhead comes from TPGs, test wrappers and com-
parators modules in (2). On the contrary, test wrappers and the TPGs prove
extremely lightweight in (3). In fact, (3) implements TPGs by means of a sin-
gle LFSR furthermore it removes the most of the test wrappers by exploiting
longer chains of modules than (2).

Awareness of the architecture under test enabled testing framework optimiza-
tions that improved coverage while reducing latency. As a result, the quality
metrics of a testing framework based on handcrafted deterministic test patterns
were approached by pseudo-random patterns alternatives while materializing
significant area savings and enhanced flexibility. Getting precisely the same
coverage numbers is however not affordable for pseudo-random testing within
reasonable testing times. Therefore, the small percentage increase in fault cov-
erage that deterministic test patterns are able to provide represents an advan-
tage that should be strictly traded off with a larger area footprint and a lower
flexibility. Finally, it should be mentioned that a pseudo-random approach, like
(3), is more appealing than a handcrafted deterministic approach, like (2), in
terms of shorter design time and library and technology changes.

145

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

5.7 Testing Framework for Multi-Synchronous Net-
works

Traditional globally synchronous clocking circuits have become increasingly
difficult to design with growing chip size, clock rates, relative wire delays and
parameter variations. The globally asynchronous locally synchronous (GALS)
clocking style [131] separates processing blocks such that each block is
clocked by an independent clock domain and is an effective strategy to address
global clock design challenges [82]. In this context, the multi-synchronous de-
sign style is as a special case of GALS systems where the system is partitioned
into individual islands of synchronicity, each operating at a different frequency
and connected with each other by an on-chip network which implements syn-
chronization interfaces at island boundaries. In this section, we provide testing
support for multi-synchronous networks.

Although it is an appealing alternative to the common design practice, the
GALS NoC paradigm heavily impacts the architecture of the chip-wide com-
munication infrastructure. When a multi-synchronous design style is consid-
ered then circuitry to reliably and efficiently move data across clock domain
boundaries needs to be integrated into the NoC channels. For this purpose,
source synchronous interfaces are adopted. Source synchronous interfaces
route the source clock along with the data for correct synchronization at the
receiving end. The source transmits data words without individual acknowl-
edgments and it halts transfers when the destination indicates it can no longer
accept new data via a backward propagating stall signal. We will hereafter re-
fer to a source synchronous channel connecting two islands of synchronicity
together as a bisynchronous channel.

This link architecture has a number of implications on the BIST/BISD frame-
work for bisynchronous channel testing. First, the framework must tackle the
test of a complex control logic introduced by the source synchronous inter-
faces. Second, the test pattern analyzer lies in a different frequency domain
with respect to the test pattern generator, when the same cooperative testing
strategy considered so far is selected. Since the frequency ratio of the domains
can change during the NoC life-time, the test pattern analyzer has not a priori
knowledge of the arrival time of the test responses. Thus, the testing frame-
work needs to support additional mechanisms for the flow control of the test
patterns.

This section presents a built-in testing and diagnosis framework for multi-
synchronous NoCs. Following the implementations of the previous sections,

146

5.7. TESTING FRAMEWORK FOR MULTI-SYNCHRONOUS NETWORKS

it exploits a cooperative testing framework redesigned under relaxed synchro-
nizations constraints. Since the pseudo-random and the deterministic-based
approaches were the best performing in the fully synchronous system then
both of them are considered for the sake of comparison in the final experimen-
tal section.

5.7.1 Extension to Multisynchronous Networks

The fundamental difference between synchronous and multisynchronous sys-
tems consists of the clock domain crossing between clock domains. A clock
domain may comprise a single switch (and attached IP cores) or span multi-
ple switches. The testing methodologies presented so far can be applied in a
straightforward way inside each clock domain, while the proper course of ac-
tion should be taken at domain boundary. In fact, a switch tests the incoming
communication channels from its north/south/west/east neighbors and local
port. Since connected switches may potentially operate at different speeds,
then test data may arrive at different rates from the different switch ports.

While this is not an issue for testing arbiters, since their TPGs and response
analyzers are local to the switch and hence do not incur any clock domain
crossing, this is a problem for the testing of all other switch sub-blocks. The
key concern is the different relative speed between TPGs and response analyz-
ers that are placed in different switches although they cooperate for the NoC
testing.

Whenever comparator trees are used as response analyzers, the comparator tree
needs to assess its inputs only when all switch input ports have delivered a test
response, which should be in principle the same. Unfortunately, this occurs
at different points in time, depending on the speed ratio between upstream
switches and the local one. The workaround we propose in this manuscript
consists of an asynchronous handshaking protocol regulating the transmission
of test data on bisynchronous channels and synchronizing the comparison of
test responses in the local switch.

Even in case MISRs are used to analyze responses at each input port, such
handshaking protocol is needed. In fact, a pseudo-random sequence from an
upstream TPG would be guaranteed to provide a specific coverage only un-
der given frequency settings in the upstream and downstream switch. Should
the frequency ratio change, the coverage would change as well and sequences
of different lengths might be needed depending on the operating conditions.
In the end, designers would have no other choice other than conservatively

147

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

Figure 5.25: Cooperative testing framework for bisynchronous communication chan-
nels.

implementing the worst case sequence length, which is a clearly inefficient ap-
proach. Going for the asynchronous control signaling across bisynchronous
channels would be the only way to get the expected coverage out of a pseudo
random sequence of test patterns independently of the frequency ratio between
TPGs and response analyzers.

Observe that in fine-grained multisynchronous NoCs (i.e., each switch is as-
sociated with a different frequency domain) comparator trees or MISRs can
be used interchangeably, while in coarse-grained (more switches in each fre-
quency domains) ones MISRs should be preferred, since with comparator trees
even the synchronous channels should be augmented with the handshaking
protocol for the sake of correct comparison with bisynchronous ones.

Finally, the proposed multisynchronous testing framework can be seen as an
extension of the synchronous frameworks presented so far. In particular, it ex-
tends the synchronous framework based on pseudo-random patterns (see Sec-
tion 5.5) with an extra asynchronous handshaking protocol to tackle the testing
of the bisynchronous channels. It integrates TPGs for pseudo-random test pat-
terns generation and Auto Test Analyzers (ATA) where comparator trees or
MISRs are integrated to perform the test response diagnosis. Following the
strategy of the synchronous mechanism, a cooperative framework is devised,
such that each switch tests the block instances of its neighboring switches.
Fig.5.25 illustrates the cooperative testing framework for bisynchronous com-
munication channels. Faults in the TPG, in the output buffer, in the link and in
the input buffer will be revealed in the downstream switch. Each switch ends
up testing its input links, while its output links will be tested by their respective

148

5.7. TESTING FRAMEWORK FOR MULTI-SYNCHRONOUS NETWORKS

Figure 5.26: Baseline bisynchronous communication channel.

downstream switches.

5.7.2 Target GALS Architecture

The bisynchronous channel under test includes input/output buffers and their
intermediate links. We consider two neighboring switches belonging to dif-
ferent clock domains thus the link is bisynchronous and communication in it
is asynchronous. Bi-synchronous FIFO synchronizers are therefore used to
connect the switches in a reliable way (see Figure 5.26).

The xpipesLite switch architecture introduced in Section 5.2 and the source-
synchronous interface presented in Section 3.6 are used as baseline experimen-
tal setting to implement the multi-synchronous communication. As described
in Chapter 3, the synchronizers are typically inserted between two connected
network building blocks belonging to different clock domains. In practice, they
break the switch-to-switch or the network interface-to-switch connections de-
pending on the decisions about clock domain partitioning. However, there is
typically no co-optimization of the synchronizer with the following/preced-
ing NoC sub-module, therefore a significant latency, area and power overhead
materializes. This design practice can be denoted as the loose coupling of
synchronization interfaces with the NoC. In contrast, the bisynchronous chan-
nel under test exploits a synchronizer tightly integrated into the NoC switch
taking care of synchronization but also of other tasks such as switch input
buffering and flow control (see Figure 3.20). The consequent reuse of buffer-
ing resources for different purposes in turn leads to large energy savings that
make a GALS NoC affordable at almost the same area and power cost of its

149

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

synchronous counterpart. Moreover, by moving the synchronizer inside the
switch, the communication latency at the clock domain boundary reduces to
the ideal synchronization latency. While a tightly coupled solution results ex-
tremely appealing in terms of performance, it comes with a challenging testing
framework. This latter needs to test both the buffer, the synchronization and
the flow control logic.

5.7.3 Bisynchronous Channel Testing

In our multi-synchronous testing framework, bisynchronous channels are
tested by means of a Test Pattern Generator (TPG), an Auto Test Analyzer
(ATA) and some brute force synchronizers as illustrated in Fig.5.27(a). The
test phases are regulated by three asynchronous signals (full , ready and
go). The TPG generates the test patterns for the channel while the ATA reads
its responses.

A TPG dedicated to each channel is placed at the sender side. It injects the
test traffic to the channel output buffer exploiting some control signals (the
valid TPG and the stall ATA) and communicates with the ATA through two
forward signals (the full TX and the ready TX) and one backward signal
(the go ATA). These latter signals cross two frequency domains thus they
are synchronized by dedicated brute force synchronizers before feeding the
ATA and the TPG. At the receiver side, the ATA drives the stall ATA signal
and analyzes the valid RX and the data RX signals from the channels. It
manages asynchronous control signals and implements a timer and a response
analyzer.

A reliable synchronization of the ready , the full and the go control signals
is essential for a successful communication between TPG and ATA. In our
framework, we synchronize channel control signals with a three stage brute-
force synchronizer, which should guarantee a sufficiently high MTTF despite
the degrading resolution time constant of synchronizers with technology scal-
ing [88].

However, the straightforward implementation of the brute-force synchronizer
did not guarantee a correct TPG-to-ATA communication. In fact, an input sig-
nal asserted for few clock cycles was filtered by the synchronization circuit if
the receiver domain was slower than the sender counterpart. The synchronizer
was not able to sample the incoming signal if any positive receiver clock edge
occurred during its assertion (see Figure 5.28(c)). In this latter scenario, the
TPG/ATA missed the control signal and the testing framework operations were

150

5.7. TESTING FRAMEWORK FOR MULTI-SYNCHRONOUS NETWORKS

(a) Bisynchronous channel enhanced with the BIST framework.

(b) BIST-enhanced switch architecture.

Figure 5.27: Multisynchronous testing framework.

151

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

(a)

clk-TX

clk-Rx

Data_in

Data-out

(b)

clk-TX

clk-Rx

Data_in

Data-out

(c)

Figure 5.28: Proposed triple-stage brute-force synchronizer (a) and waveforms of
synchronizers without (b) and with (c) set port.

152

5.7. TESTING FRAMEWORK FOR MULTI-SYNCHRONOUS NETWORKS

compromised. As a solution, we designed the first flip-flop of the brute-force
synchronizer enabled with a set port. Thus the incoming control signal presets
the first flip-flop as soon as it is asserted at the synchronizer input. As Figure
5.28(b) shows, this latter solution allows the correct control signal sampling
even when the receiver is slower than the sender and a positive receiver clock
edge does not occur. Afterwards, the synchronizer output is deasserted at the
next positive receiver clock edge.

The brute-force synchronizers have a further objective in the testing frame-
work. The correctness of the operation is preserved only when the ready and
the full control signals arrive together with or later than the test patterns.
Thus the triple-stage synchronizer avoids the arrival of those control signals in
advance with respect to the test patterns. The proposed brute-force synchro-
nizer is illustrated in Figure 5.28(a).

5.7.4 Operating Principle

The testing framework of the bisynchronous channel is designed to start at
boot-time after the reset phase of the system completes. Thus both permanent
faults due to fabrications defects and wear-out effects that arise during device
lifetime are tackled.

At the falling edge of the reset signal, all ATAs send a Go signal to the TPGs
integrated into the neighboring switches in order to communicate the start of
the testing phase. Afterwards, each ATA enters into a wait state and when the
Go signal reaches the receiver (after being synchronized by means of the brute-
force synchronizer) then the TPG starts the injection of the first test pattern.
The patterns are composed of 32 bits of data, the valid and the full signal.
When the TPG injects the pattern then it asserts the ready and enters an idle
state waiting for the next go assertion by the ATA. During the idle state, the
TPG deasserts the valid signal.

Each ATA enables a timer when it sends the go signal. Therefore the timer
generates a timeout flag if the ready signal is not received within a maximum
period of time, indicating that the communication channel is unreliable.

On the contrary, when the pattern arrives, then the diagnosis phase can start.
In this case, the incoming full signal is exploited by the ATA to drive the
stall signal of the dc-FIFO for a single clock cycle. The full signal has
to be considered as an integral part of the test pattern and is used by the TPG
to randomly span the FSM states of the input buffer by making its input stall
signal controllable.

153

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

The diagnosis procedure then depends on the chosen response analysis strat-
egy. In case of a MISR, the buffer output is sampled by the MISR one cycle
after the arrival of the synchronized ready signal.

In case of comparator trees, port-ATAs can be merged into a single ATA (this is
the case of Fig.5.27(a)) since operations on each port need to be synchronized.
The incoming full signals are stored by the ATA and applied to the dc-FIFOs
as stall signals only when all test patterns have been received (i.e., all synchro-
nized ready signals on each port have been sampled). Thus, test responses are
compared between each other in the global comparator tree and the diagnosis
is performed. Interestingly the dc-FIFO stall signals are driven high by de-
fault (forcing a stall condition) if the ATA is not evaluating the channel test
responses in order to freeze the channel state avoiding misalignments between
the other channel states of the same switch.

In all cases, after a response analysis step the ATA resets its timer and asserts
the go signal to the TPG to allow the dispatch of the next test pattern. When an
error is revealed, the information about the failure is stored in a local register
and the faulty channel output is no longer considered at the test restart. Figure
5.29 models the above mentioned procedure in a purely illustrative scenario
where an ATA collects the test responses from a slower (TX2) and a faster
(TX1) bisynchronous channel. Comparator trees are assumed for test response
analysis. For this reason, the stall signal (a go condition in this case) is applied
to the two dc-FIFOs only when both synchronized ready signals are sampled
by the unified switch ATA.

5.7.5 BIST-Enhanced Switch Architecture in a Multisynchronous
Scenario

The switch architecture enriched with the BIST infrastructure is illustrated in
Fig.5.27(b). Similarly to the synchronous scenario, test wrapper consisting
of multiplexers enables test pattern injection and the test of every switch port
is performed in parallel. However while a unique 34 bits LFSR generates
the pseudo-random patterns in the synchronous scenario, multiple LFSRs are
required in a multisynchronous environment. In fact, 5 dedicated LFSRs to
each switch channel are required to support the asynchronous handshaking
protocol. The internal switch sub-blocks of the control-path (i.e. arbiters and
LBDRs) can still exploit a single LFSR shared among all the instances. Finally
the whole switch comes with 6 LFSRs.

In the multisynchronous solution, the LBDR is tested in isolation without be-

154

5.7. TESTING FRAMEWORK FOR MULTI-SYNCHRONOUS NETWORKS

Figure 5.29: Bisynchronous channel operating principle.

ing fed by the channel test responses. In such a way, the LBDR testing was
unrelated to the asynchronous handshaking of the channel increasing the final
LBDR coverage. Clearly, this latter strategy requires additional resources for
the sake of the diagnosis. This latter can be performed implementing response
analyzers either with MISRs or with comparator trees. To note that the testing
of the arbiter was not modify with respect to the synchronous solution and the
multiplexers of the crossbar are cascaded to the channel testing.

5.7.6 Experimental Results

We performed placement-aware logic synthesis of a 5x5 switch on an indus-
trial 40nm technology library. The baseline switch architecture of Fig.5.1 and
the proposed switch augmented with the multisynchronous testing framework
gave approximately the same maximum operating speed of 600 MHz when
synthesized for maximum performance, thus proving that asynchronous test-
ing extensions are decoupled from normal operation and do not impact the

155

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

at-speed testing capability of the switch.

In the following characterization experiments, two fully synchronous NoC
testing frameworks are considered for the sake of comparison: the framework
based on pseudo-random test patterns of Section 5.5 and the framework based
on handcrafted test patterns of Section 5.3.

Coverage Vs Test Pattern

Fig.5.30(a) reports the total number of test patterns generated for the 5x5
switch and the associated coverage for both the deterministic and the pseudo-
random testing framework, this latter in its fully synchronous and bisyn-
chronous variants. It can be seen that the proposed synchronous pseudo-
random framework exploits a further degree of freedom with respect to the
deterministic solution. In fact, it can trade latency for coverage without affect-
ing the test pattern generator design. The deterministic framework achieves
99.3% coverage in 1104 clock cycles while the coverage of the proposed fully-
synchronous framework ranges between 94.2% and 98.2% achieved in 500 and
10.000 test patterns respectively.

As regards the multisynchronous testing framework, we notice that a high cov-
erage (∼98%) is achieved with few test patterns (∼500). On the other hand,
the coverage remains approximately constant with the injection of further test
patterns. Interestingly, the bisynchronous framework performs better than the
fully-synchronous counterpart when few test patterns are considered while the
gap between the two frameworks is closed when a high amount of patterns is
injected. This effect is mainly due to the high coverage achieved for the dc-
FIFO of the bisynchronous channel. This latter result confirms the efficiency
of the pseudo-random test patterns when applied to buffer-intensive data paths.
Finally, the dc-FIFO comes with a relevant area footprint thus its coverage con-
tributes to increase the total coverage of the switch.

Area Overhead

Fig.5.30(b) shows the area overhead of the considered testing frameworks for
the 5x5 switch with respect to its baseline BIST-less implementation. The
area overhead of the proposed fully-synchronous framework based on pseudo-
random patterns is 16.3%, which raises to 37.1% for the framework based on
deterministic patterns. The test wrappers and the TPGs (i.e. the LFSRs) of the
pseudo-random based synchronous solution prove extremely lightweight when

156

5.7. TESTING FRAMEWORK FOR MULTI-SYNCHRONOUS NETWORKS

compared with the deterministic framework counterpart.

When the bisynchronous framework is considered then the area overhead hits
the 27.9% since the contribution of LFSRs to switch area footprint is no longer
negligible. In fact, LFSRs dedicated to each switch port were required in the
multisynchronous solution to support the asynchronous handshaking, as op-
posed to a unified LFSR per switch in the fully synchronous scenario.

To note that most of the comparator trees area of the fully-synchronous frame-
work is replaced by the ATA module taking care of test response analysis in
the bisynchronous channel for the cascaded crossbar multiplexer and channel
link.

In all architectures, we have experimentally verified that the use of MISRs in
place of comparator trees for response analysis only marginally affects switch
area figures and their breakdown, hence such results are not reported for lack
of space.

Latency

In the fully-synchronous frameworks a test pattern is injected every clock cy-
cle while in the bisynchronous solution some latency overhead is introduced
by the asynchronous protocol. As a result, the number of clock cycles required
for testing the fully-synchronous switches is equal to the number of injected
test patterns. On the contrary, the test of the switches in the multisynchronous
scenario does not only depend on the number of test patterns but also on ad-
ditional parameters, such as the receiver/sender frequency ratio. Figure 5.31
shows the test time as a function of the TPG (Test Pattern Generator) and ATA
(Auto-Test Analyzer) operating frequencies. As expected, when the frequen-
cies of the TPG and the ATA are both low (as an example, 10MHz), the test
time is very high. Vice versa, when the frequencies are both high (as an ex-
ample, 1GHz), the test time is the smallest. In the case that only one of the
frequencies is low than this latter dictates the final test time.

Comparison with State-of-the-Art Framework

The results achieved by the proposed multisynchronous testing framework
compares favorably with previous work in [154]. In fact, the proposed frame-
work introduces almost half of the area overhead required by the counterpart
(50% of area overhead is required by [154] when the BIST-enhanced channel
is considered with respect to the baseline one without testing support).

157

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

500 1000 1104 2000 3000 4000 10000

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

Test Pattern

Fa
u

lt
 C

o
ve

ra
ge

Pseudo-Random
Synchronous

Pseudo-Random
Multy-Synchronous

Deterministic
Synchronous

(a)

0%

5%

10%

15%

20%

25%

30%

35%

40%

Pseudo-Random
Synchronous

Pseudo-Random
Multy-Synchronous

Deterministic
Synchronous

A
re

a
O

ve
rh

e
ad

 [
%

]

Deterministic TPG

Comparators

Diagnosis

ATA

Test Wrapper

LFSR

(b)

Figure 5.30: Single stuck-at faults coverage as a function of test pattern count (a) and
area overhead for BIST implementation (b).

158

5.7. TESTING FRAMEWORK FOR MULTI-SYNCHRONOUS NETWORKS

Figure 5.31: Bisynchronous framework test time as function of ATA and TPG fre-
quencies.

On the contrary, coverage and latency are not directly comparable. In fact,
they depend on the number of test patterns which is strictly associated with the
microarchitecture under test. Especially, [154] implements both output buffers
and dc-FIFOs with 4 slots while we exploit 6 slots output buffers [110] and 5
slots dc-FIFOs to guarantee the highest throughput at runtime despite of the
testing complexity. The work in [154] took the opposite approach. Moreover,
our and [154]’s dc-FIFOs are implemented by means of different architectures
(namely [137] and [155] respectively).

However, some key considerations can be drawn just at the same. When a
standalone channel is considered, the latency of the two frameworks under
test scales in the same way with varying transmitter/receiver frequency ratios.
Differently, when the entire network is analyzed then our approach delivers
all the network diagnosis information at the end of the test due to the switch
cooperation strategy while each channel in [154] completes independently the
test. Anyway, the two frameworks require an equal number of clock cycles to
test the whole network since the total test time in both solutions is ultimately
dictated by the slowest frequency domain. We can get a similar mechanism
by using MISRs in place of comparator trees in our test architecture, which
therefore turns out to be extremely flexible. Overall, our approach saves half
of the area overhead introduced by [154] while providing the same network test

159

CHAPTER 5. DESIGN SPACE EXPLORATION FOR REDUNDANCY-AWARE

NOC TESTING

latency and latency scalability with operating speeds of NoC clock domains.

5.8 Conclusions

Modern Network-on-Chip should be integrated into a reliable framework tak-
ing care of fault detection, diagnosis and network reconfiguration. In this sce-
nario, external testers for nanoscale chip testing face severe concerns: lack of
scalability of test data volumes, high cost for full clock speed testing, poor
suitability for the extension of production testing to lifetime testing. As an
effect, a migration from external testers to built-in self-test (BIST) infrastruc-
tures becomes a must.

In this direction, this chapter presented four scalable built-in self-test and self-
diagnosis infrastructures for NoCs providing a wide exploration of different
testing strategies. Table-less logic based distributed routing was the foundation
of all our approaches, and enabled network reconfiguration with only 10 diag-
nosis bits per switch. Customizations for the NoC environment of conventional
testing strategies were proposed taking full advantage of the intrinsic network
structural redundancy through cooperative testing and diagnosis frameworks:

• First, NoC switch was enhanced with a conventional scan chain-based
mechanism. When the scan chain was automatically implemented by
means of synthesis tool then a huge amount of test patterns was required
to support the load and unload of the chains. Thus, the switch area
overhead was not affordable due to the size of the built-in TPG.

Therefore, a novel customized framework was envisioned to reduce the
test pattern number. Dedicated scan chains were reserved for each
switch port. Then the same test patterns could be reused for multiple
scan chains cutting down the TPG area footprint. Although 5 times less
test patterns were required for a 5x5 switch, the area overhead was still
higher than the 130%. As a result the scan-based approach proved un-
suitable for use within a built-in self-testing strategy in NoCs.

• Second, the switch was tested by means of conventional pseudo-random
patterns generated by a built-in LFSR module. The solution materializes
relevant area savings and enhanced flexibility. However, pseudo-random
patterns suffer from low coverage on the control path. The coverage
only increases logarithmically with the number of clock cycles. A low
coverage is achieved with a high testing latency.

160

5.8. CONCLUSIONS

In order to tackle the intrinsic drawbacks of the pseudo-random pat-
terns, test responses of switch sub-blocks were reused and test pattern
optimizations were introduced. Finally the 96% of switch coverage was
reached in 2000 clock cycles with a 16% of area overhead. The pseudo-
random pattern framework proved an appealing solution for a low-area
highly-flexible NoC solution, provided the devised customizations are
applied.

• Third, a low-latency alternative to the pseudo-random approach was pro-
posed. Differently from the previous solutions, the framework relied on
a non-conventional strategy based on deterministic test patterns. The
test patterns were handcrafted exploiting the knowledge of the device
under test. Thus a coverage close to 100% was achieved by means of
few test patterns (i.e. 1104 clock cycles). Clearly, these latter results
were achieved at the cost of lower flexibility and higher area overhead
(37%) with respect to the pseudo-random counterpart. As a conclusion,
the deterministic test pattern-based strategy represents the best solution
for high-performance high-reliability NoCs.

• Finally, we proposed one of the first BIST/BISD framework for GALS
Network-on-Chips. In particular, we extended the proposed pseudo-
random pattern framework through an asynchronous handshaking pro-
tocol on bisynchronous channels. We exploited the outcome of the pre-
vious testing explorations to achieve a high coverage and a low area
overhead by means of cooperative diagnosis and efficient test strategies.
The final implementation is more area-efficient than state-of-the-art so-
lutions while providing comparable performance, thus paving the way
for testable on-chip networks in mixed timing nanoscale integrated sys-
tems.

The testing exploration performed in this chapter will drive the implementa-
tion of the final fault-tolerant and self-testable GP-NaNoC switch for next-
generation embedded systems that will be presented in Section 7.

161

6
OSR-Lite: NoC Reconfiguration

Framework

CURRENT and future on-chip networks will feature an enhanced degree
of reconfigurability. Power management and virtualization strategies as
well as the need to survive to the progressive onset of wear-out faults

are root causes for that. In all these cases, a non-intrusive and efficient recon-
figuration method is needed to allow the network to function uninterruptedly
over the course of the reconfiguration process while remaining deadlock-free.
The work presented in this chapter is inspired by the overlapped static recon-
figuration (OSR) protocol developed for off-chip networks. However, in its
native form its implementation in NoCs is out-of-reach. Therefore, we provide
a careful engineering of the NoC switch architecture and of the system-level
infrastructure to support a cost-effective, complete and transparent reconfigu-
ration process. Performance during the reconfiguration process is not affected
and implementation costs (critical path and area overhead) are proved to be
fully affordable for a constrained system. The chapter will provide the imple-
mentation details for the proposed reconfiguration protocol and present both
high-level and synthesis results.

6.1 Introduction

The new mobile usage models that are coming about require the execution of
multiple use cases on the same device while optimizing resource consumption
for each of them. On the other hand, the hardware and software design conver-
gence in todays complex embedded systems call for an upgrade of architecture
building blocks in the direction of runtime reconfigurability and adaptivity. As
a result, applications should be able to frequently reconfigure the underlying

163

CHAPTER 6. OSR-LITE: NOC RECONFIGURATION FRAMEWORK

(a) Configuration A (b) Configuration B

Figure 6.1: Two NoC configurations where the routing algorithm needs to be adapted.

hardware platform on-the-fly and in a cost-effective way, thus selecting the
most convenient operating point that suits their needs and allows an efficient
use of system resources.

Modern multi-core integrated systems achieve scalable computation horse-
power and power efficiency by integrating a large number of processing cores
on the same silicon die. This trend is unmistakable since current products al-
ready include tens and even hundreds of processing cores, such as the Tilera
multicore processor [25]. In this context, on-chip interconnection networks
(networks-on-chip, NoCs) are typically used to provide communication paral-
lelism and the reference integration infrastructure for the whole system.

To address the new functionalities, the NoC must be enriched with an efficient
reconfiguration process which enables the smooth and transparent transition
between system configurations. For instance, Figure 6.1 shows two different
configurations of a multicore system over time. In the first one (configuration
A) different applications are mapped to the NoC nodes and execute concur-
rently, while other resources are powered down. Later, the resource manager
may trigger a chip reconfiguration to power on unused resources and thus ac-
tivate a new application (configuration B).

The transition between configurations needs a careful design of the NoC rout-
ing algorithm, which establishes the paths for every packet in the network. At
each configuration a different routing algorithm is needed. In both cases, the
algorithm must be deadlock-free (should not introduce cycles in its channel

164

6.1. INTRODUCTION

dependency graph). However, in the transition between configurations, both
algorithms can induce extra dependencies that lead to deadlock.

Therefore, in order to migrate from one configuration to the other, one pos-
sible approach is to drain the network, then changing the routing algorithm
to the new one and finally resuming traffic injection with the new algorithm.
This is the case of the so called traditional static reconfiguration (TSR). In this
case system performance is likely to be heavily impacted by the reconfigu-
ration process due to the temporarily low resource utilization. Alternatively,
the network can be dynamically reconfigured, in the sense that traffic is not
stopped during the reconfiguration process, but an effort is needed to avoid
deadlock situations. This is typically achieved by devoting extra resources to
the network. We refer to this case as the dynamic reconfiguration.

In this chapter we advance state-of-the-art in reconfiguration frameworks for
NoC-based systems. However, instead of designing a brand new reconfigura-
tion mechanism, we recognize the large amount of bibliography and proposals
made for reconfiguration mechanisms in high-performance off-chip networks.
In this sense, we pick the approach that better suits the NoC domain and the
tight resource budgets of the on-chip environment.

The Overlapping Static Reconfiguration process (OSR) in [48] enables a trans-
parent system reconfiguration process. However, in [48] only the protocol was
described while at the same time highlighting the key architectural require-
ments to properly support it (namely virtual channels, routing tables, event
notification, involvement of end-nodes in the reconfiguration process). Unfor-
tunately, no practical implementation insights were provided, thus raising the
reader’s skepticism on the applicability of OSR to an on-chip setting.

In this chapter we report on the first-time implementation of the native
OSR protocol in an on-chip network, proving that the needed network over-
provisioning is such to make the protocol not viable in practice. As a conse-
quence, the thesis targets the modification of OSR to better match the require-
ments of the resource-constrained NoC setting, thus resulting into the OSR-
Lite framework. Such modifications concern both selected protocol features
(without giving up the goodness of the underlying idea) and relevant imple-
mentation techniques.

With OSR-Lite in place, it is possible to reconfigure a whole 64-node network
in a few hundreds of cycles, enabling the entire and transparent transition be-
tween any pair of independent and unrelated configurations. Moreover, this
is achieved with no impact on network latency and with no impact on switch
delay. The reconfiguration performance of OSR-Lite makes it the enabling

165

CHAPTER 6. OSR-LITE: NOC RECONFIGURATION FRAMEWORK

tool for planned reconfigurations in multicore systems. The following specific
scenarios can be therefore materialized by the outcome of this work:

• Virtualization of the system. Our method enables the runtime division of
the entire network into sets of virtual regions for assignment to different
applications running concurrently.

• Power management. The reconfiguration mechanism can be exploited
for powering down unused resources; such functionality becomes com-
pulsory to keep power consumption levels to reasonable bounds.

• Reliability. When a NoC is augmented with transient fault tolerance,
then this kind of faults can be tolerated without any loss of information.
However, intermittent faults are likely to be an indicator of the grad-
ual onset of a permanent fault (typically, a wear-out fault). In this case,
OSR-Lite can be used to reconfigure the network so to exclude the af-
fected link/switch component, before the permanent fault shows up and
causes packet loss.

The rest of the chapter is organized as follows. In Section 6.2 the OSR tech-
nique is briefly described. Section 6.3 focuses on the OSR-Lite proposal and
shows the reconfiguration steps performed in an OSR-Lite environment. Sec-
tion 6.4 deals with implementation issues by describing how the mechanism
affects the micro-architecture of the switch sub-modules. Then, Sections 6.5
deal with high-level results thus it shows the time propagation of OSR-Lite
and the average message latency during reconfiguration. Section 6.6 proposes
area and routing delay results of the mechanism. The chapter is concluded in
Section 6.7 with conclusions and future work.

6.2 Native OSR technique

Typically, a routing algorithm is deadlock-free when its channel dependency
graph (CDG) is acyclic (we do not consider fully adaptive routing algorithms).
The CDG is set by representing the resources of the network by vertices
(mainly the buffers associated with the ports of each switch) and the depen-
dencies between two resources by arcs. There is a dependency between two
resources r1 and r2 if a message can use r1 and request r2.

Two routing algorithms R1 and R2 are deadlock-free when they have an acyclic
channel dependency graph. However, when using both algorithms at the same

166

6.2. NATIVE OSR TECHNIQUE

time new extra dependencies are induced potentially leading to deadlock. This
can be seen in Figure 6.2 where a cycle is formed when using two routing
algorithms (XY and YX) at the same time. During a reconfiguration process
we refer to Rold as the old routing function and Rnew as the new routing func-
tion. Similarly, packets routed with Rold will be referred to as old packets and
packets routed with Rnew will be referred to as new packets.

The native OSR method is based on the fact that those cycles are created only
when old packets using Rold are routed after new messages using Rnew . If old
packets are guaranteed to never go behind new packets the extra dependencies
do not occur in practice and then no deadlock can be formed. Indeed, in a
static reconfiguration process the entire network is drained thus guaranteeing
old packets will never go behind new ones.

OSR is a static reconfiguration process but localized at link/router level, and
not at network level. Indeed, it guarantees that new packets are only forwarded
via links that have been drained from old packets. This is achieved by trigger-
ing a token that separates old packets from new packets. The token is triggered
by all the end nodes and tokens advance through the network hop by hop. In-
deed, tokens follow the CDG of the old routing function, draining the network
from old packets. However, in contrast with static reconfiguration, the new
packets can enter the network at routers where the token already passed. Figure
6.3 shows the complete native OSR mechanism, involving a central manager.
In a first step, a reconfiguration action is triggered, either by the detection of
a malfunctioning component or by a higher level manager in the system stack
requiring a reconfiguration, e.g. a new application is admitted. In any case,
when needed the central manager may receive event notifications through the

Figure 6.2: Channel dependency graph for two routing algorithms and the combina-
tion of both.

167

CHAPTER 6. OSR-LITE: NOC RECONFIGURATION FRAMEWORK

network (step 1). Then, in step 2, the new algorithm for the new configuration
is computed by the central manager. The resulting information is disseminated
to all the switches in step 3. In step 4 the end nodes trigger the token and the
OSR reconfiguration spreads throughout the network (step 5).

Figure 6.4 shows how tokens advance in a network. At a given output port, a
token is triggered to the next downstream router indicating the output port has
been drained from old packets. This is guaranteed when the token has been
received through all the input ports of the switch that have old (Rold) output
dependencies with the output port. These port dependencies can be extracted
from the Rold routing algorithm. However, how to perform this is not explained
in [48], although it is key to obtaining an efficient implementation.

Notice that the token divides two epochs in the network, the old epoch (when
packets are routed with the Rold routing function) and the new epoch (when
packets are routed with the Rnew routing function).

Figure 6.3: Reconfiguration steps performed in an OSR environment.

168

6.3. OSR-LITE

(a) (b)

Figure 6.4: Token advance in a network: (a) check for absence of old messages and
input ports epoch, (b) token signal propagation. The token separates old traffic from
new traffic.

6.3 OSR-Lite

The OSR mechanism needs to be modified in order to better suit the NoC
environment so to become an efficient and plausible mechanism for planned
reconfigurations. Indeed, the main issues addressed in this chapter are the
following:

• Codification of the routing information. During the reconfiguration pro-
cess both routing algorithms coexist at the same time at routers. This
means resources need to be sized for both algorithms. In OSR, routing
tables were used to store the routing info. In NoCs, however, routing ta-
bles are an expensive resource in terms of access time, area, and power
consumption. Therefore, hosting two routing tables per switch input
port does not appear to be a cost-effective solution for OSR-Lite.

• Control virtual channel (VC) used in OSR. Different actions (sending
routing information to routers, triggering the reconfiguration process)
are performed during the OSR reconfiguration which imply the ex-
change of information between a central manager and the routers or the

169

CHAPTER 6. OSR-LITE: NOC RECONFIGURATION FRAMEWORK

Figure 6.5: Reconfiguration steps performed in an OSR-Lite environment.

endnodes. In [48] this was implemented by means of a control VC.
Unfortunately, using VCs only for that purpose has a large impact on
router implementation (will be seen later) and is not fully justified in an
on-chip.

• Reliable control VC assumed in OSR. A different (spanning-tree) algo-
rithm is assumed in OSR to effectively route control packets through the
control VC.

• Involvement of end nodes in the reconfiguration process. In OSR the
end nodes were notified to trigger the reconfiguration. This is done by
end nodes injecting the token directly as a new packet. In NoCs, reach-
ing the end nodes via dedicated packets from the central manager would
be a time-consuming course of action. In order to cut down on the re-
configuration latency, involving only switches and not endnodes in the
reconfiguration would be an appealing property in a NoC setting.

In order to address all these issues, we propose the OSR-Lite approach. Figure
6.5 shows all the steps and the main modifications performed. In particular,
we exploit a control network through which routers can inform about expected
topology changes (e.g., an output link is having frequent transient failures and
is going to fail soon, or a region of the NoC is overheated and needs to be
powered down). The control network collects all the notification events and

170

6.4. OSR-LITE IMPLEMENTATION

sends them to a central manager (step 1). If the reconfiguration is instead
initiated by a resource manager in the context of power management or virtu-
alization strategies, step 1 can be skipped. The central manager then computes
the new configuration (step 2) and disseminates the new routing information to
the switches (step 3). Then, every switch starts the OSR-Lite reconfiguration
process in step 4. Notice that end nodes are not involved in the reconfiguration
process.

The control network can be used also in step 3 for routing bit dissemination
to the switches. In [156], we have presented the design of a dual network for
switch-to-global manager bidirectional signaling, thus offloading critical con-
trol tasks from the main data network. In that work, the dual network was
used to notify diagnosis information to the manager following the main NoC
testing phase, and to notify configuration bits of the routing mechanism to the
switches. The same network could be reused for other purposes, such as con-
gestion management, deadlock recovery and software debugging. In [156] it
is showed to be a cost-effective solution for control signaling, which can be
easily and effectively made reliable through a combination of fault-tolerant
and online testing strategies. For this reason, this work relies on such a fault-
tolerant dual network to convey control information of the reconfiguration pro-
cess. Furthermore, [156] also reports an efficient computation algorithm that
comes up with the routing configuration bits of a new network partitioning or
topology shape. This is the algorithm the controller runs in step 2. Given that
the control network and the computation algorithm are covered by previous
work, from now on we focus on the core reconfiguration process of the net-
work and on the microarchitectural support for that. The reader should keep in
mind that all these mechanisms will work together in the complete reconfigu-
ration framework. In the next section we describe the router implementation
in more detail.

6.4 OSR-Lite implementation

Without lack of generality, we use the xpipesLite switch architecture [110] al-
ready illustrated in Figure 5.1 to prove viability of our OSR-Lite mechanism.
The switch implements both input and output buffering, relies on wormhole
switching and on a stall/go flow control protocol. As described in Section
5.2, the switch architecture is extremely modular and implements logic-based
distributed routing (LBDR) [152]: instead of relying on routing tables, each
switch has simple combinational logic that computes target output ports from

171

CHAPTER 6. OSR-LITE: NOC RECONFIGURATION FRAMEWORK

Figure 6.6: Switch input buffer enhanced with the OSR-Lite logic and a new set of
routing mechanism.

packet destinations. The support for different routing algorithms and topology
shapes is achieved by means of 16 configuration bits for the routing mecha-
nism of the switch (hereafter denoted as LBDR bits). LBDR bits carry the
routing algorithm information (expressed in terms of routing restrictions), the
connectivity information of switch output ports and special detour bits. Such
bits make LBDR a flexible routing mechanism while at the same time signifi-
cantly cutting down on the memory requirements of routing tables. LBDR bits
are computed by a central NoC manager and disseminated to the switch input
ports through the dual control network. Indeed, two sets of LBDR bits are
allocated at each router for OSR-Lite. Upon receiving the new routing bits, a
router triggers the reconfiguration process by auto-generating initial tokens at
its local input port (port connected to an end node) and processing the tokens
accordingly.

The logic enabling the OSR-Lite mechanism was integrated into the above
mentioned baseline switch taking care to preserve its modularity together with
its performance. Thus, the OSR-Lite logic was designed in new modules
plugged into the switch without affecting the existing blocks. Moreover, the
new modules were instantiated for each switch port following the modularity
of the baseline blocks (the OSR-Lite mechanism can be extended for switches
of every arity by means of simple logic replication).

172

6.4. OSR-LITE IMPLEMENTATION

6.4.1 OSR-Lite at the Input Ports

As a first step, the baseline switch was enhanced with a second routing logic
unit (LBDR1) collecting the new routing info coming from the central man-
ager. This unit is connected to the input buffer as the baseline LBDR0 block
(see Figure 6.6) although is used exclusively for routing packets in the new
epoch (new packets). The switch arbiters need to select the routing info from
the appropriate routing logic block (either LBDR0 or LBDR1). This is ob-
tained from a multiplexer configured by the current epoch of the input port
(in a flip-flop). In order to reduce the reconfiguration latency, the input port
evolves to the new epoch as soon as there are no stored header flits at the in-
put port with the epoch bit set to zero (Epoch 0 headers signal) and the token
has been received from the upstream switch (upstream epoch signal). Notice
that in the case of the ports connected to end node (local port; local port flag),
the token is assumed to arrive with the arrival of the new configuration bits
(LBDR1 flag). In this case, the header flits located in the buffers are consid-
ered of the new epoch when the new configuration bits have arrived and the
routing mechanism (LBDR1) is set. Notice that local ports do not introduce
dependencies between channels that may lead to deadlocks, therefore is safe
to assume all the injected flits as belonging to the new routing function. To
notice that the token propagation will always start from local ports at switches,
not involving end nodes.

The number of flit headers to be routed by LBDR0 and stored in the buffer
is detected by a 2 bits counter monitoring the incoming and outgoing headers
of the input buffer module. The counter increases its value when a header is
accepted and the incoming token is low and decreases its value when a header
is sent. In order to preserve the max performance of the baseline switch, se-
quential logic stages were exploited to avoid impacting the critical path in the
OSR-Lite mechanism.

Notice that the implementation prevents possible race conditions from occur-
ring. For instance, a token may be received from the upstream switch be-
fore the new routing bits are received. In that case, the header flits in the
input buffers are stalled and declared not valid to the internal switch logic until
LBDR1 is set.

6.4.2 OSR-Lite at the Arbiters

OSR-Lite requires a lightweight new module plugged around the baseline ar-
biters. The logic is reported in Figure 6.7. Basically, a set of AND/OR logic

173

CHAPTER 6. OSR-LITE: NOC RECONFIGURATION FRAMEWORK

Figure 6.7: Switch arbiter enhanced with the OSR-Lite logic.

blocks together with a set of EXOR blocks allow the arbiter to process an in-
coming header exclusively when the epoch of the switch input port is the same
as the one of the destination output port. On the contrary, a packet residing in
an input port with the new epoch is stalled until the output port evolves to the
new epoch (guaranteeing old packets go first and then new packets).

6.4.3 OSR-Lite at the Output Ports

Concerning the output port, an output port evolves to the new epoch when all
the input ports with output dependencies to this output port have evolved to

Figure 6.8: Switch output buffer enhanced with the OSR-Lite logic.

174

6.5. SYSTEM-LEVEL EVALUATION

the new epoch. In order to efficiently deal with the dependencies, OSR-Lite
takes profit of the routing bits used in LBDR. Routing bits indicate the routing
restrictions that exist at neighboring switches. Therefore, they can be seen
also as channel dependencies. If the Rxy bit is set it means that there is a link
dependency between the output port x and the output port y at the next switch.
On the contrary, if the bit is reset it means there is no dependency and in that
case we can safely assume no packets will come through the port x requesting
output port y . Therefore, the output port needs to receive both the epochs of
the input ports and the routing restrictions located at the neighboring switches.
The mechanism is enabled by a set of OR blocks (each of them belonging to a
different input port) followed by an AND block, as represented in Figure 6.8.

In contrast with the baseline OSR technique (where the routing restriction in-
formation was saved in the routing table), the OSR-Lite mechanism needs
to obtain channel dependencies from the routing logic located at neighbor
switches. As a result, three additional routing bits are sent by the LBDR0
logic of the upstream switch together with the token bit. To note that LBDR0
received its routing bits information through the control network in an earlier
configuration stage. In addition, the input port needs to send the incoming
routing restriction signals to the appropriate output ports. Thus every link is
extended by 4 additional wires (i.e. 1 token wire + 3 routing restriction wires).
See Figure 6.9.

Finally, the token is sent by the output port to the downstream switch when all
the input ports with dependencies with the output port have evolved to the new
epoch, meaning all these input ports have drained all the old packets from their
buffers (see the LocalEpoch signal in Figure 6.8).

Once the network has completely migrated to Epoch 1, the central manager can
safely fill LBDR0 bits with a copy of LBDR1 bits, and instruct all the switches
to safely swap to Epoch0 again. This allows for the system to be ready in few
cycles for a new reconfiguration process.

6.5 System-Level Evaluation

In this section, we evaluate OSR-Lite. First, we show how the OSR-Lite prop-
agates over the network. Then, we evaluate the reconfiguration time overhead
under different injection rates using synthetic traffic. Moreover, we compare
the proposed reconfiguration with a static reconfiguration process in terms of
network latency.

175

CHAPTER 6. OSR-LITE: NOC RECONFIGURATION FRAMEWORK

Figure 6.9: Configuration information from neighbor switches and control network

6.5.1 Propagation

In order to simulate the reconfiguration process, we have modeled the OSR-
Lite scheme in our event-driven cycle-accurate network simulator. A 8 × 8

mesh is used with wormhole switching (although the proposed method also
works for virtual cut-through switching). Flit size is set to 4 byte and messages
are 5-flit long. For the transient state, 50K messages are assumed and results
are collected after 50K messages are received.

Figure 6.10 shows how OSR-Lite tokens propagate over a mesh when there
is no traffic traveling through the network. The diagonal arrows represent the
bidirectional restrictions imposed by the routing algorithm (Segment-Based
routing [157] in this case). In this figure, the numbers inside the switches repre-
sent the cycle when the token signal is propagated to its neighbors. Moreover,
the arrows among switches depict the direction of the token signal propaga-
tions. As we can see, the token signals propagate among switches through-
out the network in the order of the routing channel dependency graph, where
Figure 6.10.(a) follows a scrolling up zig-zag direction, and Figure 6.10.(b)
follows a scrolling down zig-zag direction.

When no messages are traveling through the network and a regular 2D mesh is
considered then the number of clock cycles required for the OSR-Lite recon-

176

6.5. SYSTEM-LEVEL EVALUATION

(a) (b)

Figure 6.10: OSR-Lite propagation over a 4× 4 2D mesh topology: (a) scrolling up,
and (b) scrolling down.

figuration process is modeled by the following formula:

PropagationTime = (4xDx(D − 1))− 1 (6.1)

where D represents the mesh dimension. As we can see, it is a very fast pro-
cess as the protocol uses only 223 cycles when a 8 × 8 mesh is considered.
The high speed of the OSR-Lite reconfiguration process allows to perform fre-
quent planned reconfigurations without affecting the integrity of the system
operations. However, when there are messages traveling through the network
the switches must drain the input queues of old messages before propagating
the token signal as explained in Section 6.2. This fact delays the OSR-Lite
propagation depending on the network load. In the following, we analyze this
effect taking into account different injection rates.

6.5.2 Time Overhead

In order to analyze the impact of the network load over the OSR-Lite recon-
figuration framework, we have performed different simulations varying the
injection rate. For each rate, we assume a constant packet generation rate for
all end nodes. Moreover, in order to ensure that start-up instabilities do not
affect our evaluation results, reconfiguration is not invoked until the network
is completely stabilized. Figure 6.11.(a) shows the performance obtained in a

177

CHAPTER 6. OSR-LITE: NOC RECONFIGURATION FRAMEWORK

 0

 20

 40

 60

 80

 100

 0 0.25 0.50 0.75

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Traffic (flits/cycles/switch)

Low Medium

High

(a)

(b)

Figure 6.11: (a) Average message latency at different injection rates for SR routing on
8× 8 2D mesh (b) OSR-Lite propagation over a 8× 8 2D mesh topology at different
injection rates.

8 × 8 2D mesh network under uniform traffic when no reconfiguration pro-
cess is triggered. The figure indicates the three network injection rates that are
used in the simulations. In what follows, the three rates are referred to as Low,
Medium, and High, respectively.

Figure 6.11.(b) shows the number of cycles involved in the propagation of
the OSR-Lite process taking into account the three different injection rates.

178

6.5. SYSTEM-LEVEL EVALUATION

Each bar depicts the mean of 30 simulations varying the seed. Moreover, we
show the error bars that represent the 95% confidence interval. As we can
see, the propagation time does not exceed 242 cycles for the High injection
rate. Moreover, the difference between both the minimum and the maximum
network loads is only 14 cycles, and therefore, the network traffic condition
has a minimal effect on the OSR-Lite token propagation.

Finally, the contribution in terms of cycles for event notification (A), algo-
rithm computation (B), configuration bits delivery (C) and OSR-Lite prop-
agation (D) should be taken into account to determine the total latency for a
complete reconfiguration process. In particular, (A) and (C) latencies depend
on the position of the components to reconfigure with respect to the central
manager. On the other hand, (B) and (D) latencies are related to the number
of components to reconfigure and the traffic injection rate respectively. As an
example, when we consider a 8×8 mesh then at most 66 cycles are required to
cross the control network. Moreover, if 7 switches need to be reconfigured (i.e.
the scenario of Figure 6.1) then 195 cycles are required by the computation al-
gorithm in [156]. Finally, 242 cycles are spent by (D) in a High injection rate
scenario. Summing up, the total amount of cycles for a complete reconfigura-
tion process is the following:

66(A) + 195(B) + 66(C) + 242(D) = 569 Cycles (6.2)

For dissemination of new LBDR bits to the switches, the dual network has to
carry 17 bits per switch. However, not all switches need to be reconfigured,
since the algorithm in [156] is able to evolve a system configuration into a new
one while updating the minimum amount of LBDR configuration bits.

6.5.3 Comparison

In this section we compare the OSR-Lite protocol and the traditional static
reconfiguration process (TSR). Figures 6.12.(a), 6.12.(b), and 6.12.(c) repre-
sent the average network latency respectively under hotspot traffic and uniform
traffic with Medium and High injection rates, where both reconfiguration pro-
cesses (OSR-Lite and TSR) are invoked after 150K cycles. Moreover, we have
plotted two additional lines: the average message latency for the full mesh
(Full-Mesh), and the average message latency for the mesh which has one link
disabled from the beginning of the simulation (1-Fail-Mesh). Notice the y-axis
is in logarithmic scale. Moreover, we have selected a random link in the 8× 8

mesh as faulty. Under hotspot traffic pattern, 5 nodes are randomly chosen as

179

CHAPTER 6. OSR-LITE: NOC RECONFIGURATION FRAMEWORK

 10

 20

 40

 100

 500

150K 250K 350KA
v
e
ra

g
e
 L

a
te

n
c
y
 (

c
y
c
le

s
,
lo

g
 s

c
a
le

)

Time (cycles)

Full-Mesh
1-Fail-Mesh

TSR
OSR-Lite

(a)

 10

 20

 40

 100

150K 250K 350KA
v
e
ra

g
e
 L

a
te

n
c
y
 (

c
y
c
le

s
,
lo

g
 s

c
a
le

)

Time (cycles)

Full-Mesh
1-Fail-Mesh

TSR
OSR-Lite

(b)

 10

 20

 40

 100

 500

150K 250K 350KA
v
e
ra

g
e
 L

a
te

n
c
y
 (

c
y
c
le

s
,
lo

g
 s

c
a
le

)

Time (cycles)

Full-Mesh
1-Fail-Mesh

TSR
OSR-Lite

(c)

Figure 6.12: Average message latency with (a) hotspot traffic and uniform traffic ((b)
medium network load and (c) high network load).

180

6.6. SYNTHESIS RESULTS

hot spots which receive an extra proportion of traffic (30%) in addition to the
regular uniform traffic.

The first observation is that both Full-Mesh and 1-Fail-Mesh obtain a differ-
ent message latency. This is normal because the 1-Fail-Mesh suffers a latency
degradation due to the disabled link. On the other hand, the two reconfigura-
tion processes (OSR-Lite and TSR) start at the same time at the 150K cycle.
At this point, the reconfiguration process moves from the Full-Mesh to the 1-
Fail-Mesh topology. This effect can be estimated by the figures as the latency
evolves from the latency obtained for the Full-Mesh to the latency obtained
for the 1-Fail-Mesh. However, an important result based on the figures is that
OSR-Lite performs the reconfiguration without degrading the obtained perfor-
mance. In this case, the obtained latency grows up to the 1-Fail-Mesh line.
Therefore, the latency is always near the maximum obtained with the 1-Fail-
Mesh topology. In the TSR case, on the contrary, the latency is degraded due
to the reconfiguration process overhead (need to drain the network). In the
three cases, the latency grows above the 1-Fail-Mesh latency until it stabilizes.
Specifically, in the Figure 6.12.(c) the latency of the TSR line grows to more
than 500 cycles, and then stabilizes after 350K cycles. In this period of time,
the TSR reconfiguration is degrading the obtained latency more than the link
failure degradation produces. On the other hand, the OSR-Lite latency is upper
bounded by the 1-Fail-Mesh latency.

Interestingly, the hotspot traffic and the uniform traffic with a High load have
similar reconfiguration performance. Then, we can observe that the OSR-Lite
has no impact on the message generation while the TSR process does. In fact,
the TSR process increases considerably the obtained latency for all the cases.
The main reason is that TSR queues all the messages at end nodes during
reconfiguration while that need disappears in the OSR-Lite scheme.

6.6 Synthesis results

The implementation of a switch enhanced with the OSR-Lite mechanism has
been compared in terms of area and routing delay with a switch based on the
native OSR mechanism described in Section 6.2 and the baseline xpipesLite
switch architecture [110]. The evaluation will demonstrate the infeasibility of
the native OSR mechanism for an on-chip setting because of the need for VCs
and the low scalability of routing tables.

For the experiments, an industrial memory compiler for a 40nm process tech-
nology was used to generate the memory macros required by the routing ta-

181

CHAPTER 6. OSR-LITE: NOC RECONFIGURATION FRAMEWORK

0

0,5

1

1,5

2

2,5

3

OSR-LITE SW BASELINE SW OSR SW

CONFIGURATION
LOGIC
ROUTING TABLES

LBDR

VIRTUAL CHANNEL
OVERHEAD
CONTROL NETWORK

BASELINE SWITCH

A
R

EA
 (

 %
)

(a)

(b)

Figure 6.13: 5x5 switch (a) area and (b) routing delay comparison.

bles of the OSR mechanism. The switches together with their reconfiguration
mechanisms were synthesized for the same 40nm industrial library.

6.6.1 Area Comparison

The description of the OSR mechanism in [48] focuses on the protocol de-
tails and it lacks of practical implementation details. Thus we exploited the
information provided in [48] to model the OSR mechanism at RTL level and
evaluate this latter solution in an on-chip constrained system. Especially, the
OSR mechanism relies on 1 data VC supported by an additional control VC,
and it adopts routing tables. As a result, we implemented the OSR mechanism
into a 5x5 switch augmented with VCs by following the design techniques for
area efficiency in [158] and we enhanced the switch with the 40nm memory

182

6.6. SYNTHESIS RESULTS

macros to model the routing tables.

The 8 × 8 mesh topology of Section 6.5 was considered. Thus, 64 end-nodes
are the total number of destinations in the system. When routing tables are used
for distributed routing, each switch input port has a memory module with a
number of words equal to the amount of destinations. Every word is composed
of 3 bits, matching the switch radix. Given a destination ID, the switch selects
the target output port based on look-up table. The minimum word width that
the memory compiler, at the 40nm technology node, can generate is 4 bits. As
a result, above all the available memory cuts, a single-port low-power RAM
with 64 words of 4 bits was the memory cut showing the lowest routing delay
and area footprint.

Finally, Figure 6.13.(a) shows the area footprint of this latter solution (the OSR
SW) with respect to a baseline switch and our proposed solution (OSR -LITE
SW). In particular, the OSR-Lite area overhead takes into account also the
contribution of the control network carrying the information from the global
manger to the routing mechanisms. For this purpose, we exploited the fault-
tolerant control network proposed in [156].

The OSR-Lite reconfiguration mechanism requires a 14% of area overhead
with respect to the baseline switch. This result is mainly due to the additional
LBDR routing mechanism (+12%) contribute. On the other hand, the area
overhead of the remaining reconfiguration logic (detailed in Section 6.4) is
negligible when integrated into the switch.

Interestingly the OSR-Lite switch outperforms the baseline OSR switch: this
latter requires approximately two times larger area than the counterpart solu-
tion. This result is mainly due to the severe area penalty introduced by the VCs
and the 65% area saving achieved by the LBDR mechanism with respect to the
routing table.

As a last consideration, the routing mechanism of the OSR-Lite solution scales
with network size. In fact, while the memory macro suffers from increasing
area and delay penalties, the logic complexity of the distributed routing algo-
rithms does not depend on the number of destinations, hence it stays constant.
Indeed, the distributed routing algorithms just grow with the switch radix.

6.6.2 Routing Delay Comparison

In order to evaluate the effects of the OSR-Lite mechanism on the switch rout-
ing delay, we performed the 5x5 switch synthesis for maximum performance.
The same experiment was repeated for both the baseline switch and the switch

183

CHAPTER 6. OSR-LITE: NOC RECONFIGURATION FRAMEWORK

augmented with the baseline OSR mechanism. The OSR -LITE switch and the
baseline switch achieved a similar maximum operating speed of 750 MHz. As
described in Section 6.4, the reconfiguration scheme was designed to avoid
long critical path and preserve the baseline switch performance. Our OSR-
Lite-enabled switch is thus capable of an at-speed reconfiguration.

On the other hand, the OSR switch is the 35% slower than our proposed so-
lution as showed by Figure 6.13.(b). This result is mainly due to the intrinsic
complexity added by the VC logic and the delay required to access the 64
words RAM routing tables.

6.7 Conclusion

The goal of this chapter was to provide reconfigurability design methods for
next-generation embedded systems and drive the implementation of the con-
figurable GP-NaNoC switch presented in the next chapter. Finally, we have
proposed a fast and transparent reconfiguration mechanism in NoCs. The
strict constraints found in on-chip networks demand for efficient and compact
mechanisms that do not excess in area and latency demands. The native OSR
reconfiguration mechanism has been proven to be unsuitable for this purpose
although proposing an interesting intuition. Therefore, in this chapter we have
engineered the proper protocol and implementation modifications to fit rea-
sonable area budgets, with no impact on performance while retaining the same
underlying principle for fast reconfiguration. The final mechanism, OSR-Lite,
is able to support a transparent NoC reconfiguration with as little as less than
250 cycles when an 8x8 2D mesh is considered.

184

7
Co-Optimized Design Methods for

General Purpose System

THIS chapter presents the GP-NaNoC switch: it integrates the most rele-
vant and innovative design methods conceived throughout the thesis and
makes sure they co-exist together in a runtime reconfigurable switch-

ing fabric supporting network partitioning and isolation as well as irregular-
ities stemming from power/thermal/fault-tolerance management frameworks.
Finally, the GP-NaNoC switch guarantees support for static and dynamic ir-
regularities, for detection of network status and for control signaling. The
OSR-Lite reconfiguration method proposed in Chapter 6, the outcome of the
exploration of built-in self-testable strategies in Chapter 5 and state-of-the-art
fault-tolerance techniques are co-designed together and integrated in the final
GP-NaNoC switch presented in this chapter.

7.1 Introduction

In past years, the differentiation between network-on-chip switch architec-
tures was achieved through relevant parameters such as supported topologies,
switching technique, flit size, buffering styles, supported routing algorithms,
etc.

The reason for this stems from the fact that NoC technology took only ten
years from the research vision to the industrial uptake. Such a fast evolution
has been driven by two converging trends. First, Moore’s law has maintained
its pace in terms of logic (and storage) density, but it has finally reached hard
limits in terms of power consumption and synchronization. Hence, SOCs to-
day heavily rely on multi-core parallelism and locally synchronous, globally
asynchronous power domains. Second, the complexity of large-scale SoCs

185

CHAPTER 7. CO-OPTIMIZED DESIGN METHODS FOR GENERAL

PURPOSE SYSTEM

combined with the ever-increasing time-to-market pressure have pushed for
a strong componentization and modularization of silicon platforms, to reduce
design effort though massive reuse combined with hierarchical, divide-and-
conquer design flows. NoCs meet all the key requirements imposed by these
converging trends: they facilitate the modular construction of heterogeneous
multi- and many-core architectures, they provide communication abstractions
and services across component boundaries and they enable the top-down de-
sign of highly power-manageable architectures.

Today, NoCs are a mainstream industrial interconnect solution and basic de-
sign techniques for switch architectures are consolidated. Therefore, we are
at the stage where the features of the on-chip network can be matched with
the requirements of the system management framework(s) for cross-layer op-
timization and efficient system control. This is bringing awareness of new key
requirements that the interconnect fabric should meet and that are out-of-reach
of current NoC realizations.

In fact, microelectronic system design, as never before, is evolving under the
influence of its two main drivers, the broadening complexity of applications
and the opportunities along with the constraints of nanoscale technologies. The
concept of use case is becoming mainstream in embedded computing: not only
applications can run in several modes, but also the combinations of applica-
tions that can be executed concurrently in a system are manyfold and changing
over time. Moreover, some mainstream concepts from the high-performance
computing domain such as system virtualization are making inroads also in
the embedded computing domain, thus calling for partitioning and isolation
capabilities in system resources. At the same time, while technology is provid-
ing unprecedented levels of system integration, it is also bringing new severe
constraints to the forefront: power budget restrictions, overheating concerns,
circuit delay and power variability, permanent faults affecting the system right
from the beginning (manufacturing faults) or with progressive onset (wear-out
faults), increased probability of transient faults.

The inherent tension between these trends leads to the explosion not only in
the design space, but also in the runtime reconfiguration space. The on-chip in-
terconnection network is obviously affected by these converging trends, which
are driving it to the migration into new forms and shapes of synchronicity, re-
configurability, testability and fault-tolerance. A reconfigurable interconnect
fabric is in fact at the core of a system aiming at runtime adaptation; the capa-
bility to reliably bring data across component boundaries is key to the reliable
operation of the system as a whole; the support for multi-synchronous fre-

186

7.1. INTRODUCTION

quency domains enables power optimizations and guarantees the integration
of heterogeneous components featuring differentiated operating speeds.

This thesis wants to propose a timely answer to the above concerns. It has iden-
tified the basic design requirements needed to augment NoC architectures with
an enhanced degree of dynamism and flexibility and to let them successfully
cope with the increasing uncertainty of the technology platform. In essence,
such requirements are:

• Support for static irregularities. These are deviations of the physical
topology from the logic topology planned at design time and that can
be found out during post-silicon testing or at boot-time testing. The
proper course of recovery action is somehow simplified by the fact that
no traffic is crossing the network yet and that in this pre-use mode of the
electronic device a somewhat larger activation latency can be supported.

• Support for dynamic irregularities. These are intentional topology
reconfiguration decisions taken at runtime in the context of more gen-
eral system management strategies. For instance, power management
decisions or the need to contain overheating of selected areas may lead
to power them off at runtime. Also, some links or components may
be detected to start failing too often, thus denoting the onset of perma-
nent faults in them that requires their prompt disconnection. Finally, the
topology may be broken down into smaller subsets of irregular shape
requiring traffic isolation, as requested by virtualization strategies. In all
these cases, the NoC has to deal with wanted reconfigurations that af-
fect ongoing traffic, thus requiring smooth and safe transitions between
network states within stringent latency requirements.

• Support for the detection of network status and for control signal-
ing. Unwanted effects in the network (manufacturing faults, intermittent
faults) have to be promptly detected to allow the resource management
framework to take the proper course of recovery and/or reconfiguration
action. This goes through the implementation of network status detec-
tion mechanisms specialized for the target event they want to detect. For
instance, testing frameworks are key to gain awareness of permanent
faults in the network, while an error notification framework should be
able to capture transient and intermittent faults. The final outcome is the
network status information that needs to be delivered to the final decision
point. This brings the issue of a system-level notification infrastructure
to the forefront, with extension capability to carry reconfiguration com-

187

CHAPTER 7. CO-OPTIMIZED DESIGN METHODS FOR GENERAL

PURPOSE SYSTEM

mands to network components.

• Support for multiple frequency domains. Application-specific sys-
tems are typically composed by assembling together heterogeneous
components featuring differentiated operating speeds. The maximum
operating speed of the system should not be constrained by the speed of
the slowest component. This calls for proper decoupling at the network
boundary by means of synchronization interfaces. This is a key require-
ment also for power management strategies in the embedded computing
domain, requiring each core to run at an independent and runtime vari-
able voltage and speed.

The above requirements led us to design a next-generation switch, called GP-
NaNoC switch, with the following characteristics:

• Logic-based distributed routing. It has been proven the poor scalabil-
ity of routing tables with the silicon technology node and with the num-
ber of network nodes. Using distributed routing logic instead of routing
tables is appealing for its better scalability properties but also challeng-
ing when the network connectivity pattern is (or becomes) highly irreg-
ular. LBDR is an appealing solution in this domain and is therefore
implemented in the GP-NaNoC switch. Obviously, system management
frameworks, manufacturing issues or physical degradation effects may
affect the regularity of the topology, but this thesis has conceived robust
design methods to effectively handle this in the presence of a logic based
distributed routing framework.

• Fault-tolerant flow control. The simple stall/go flow control protocol
was known to effectively backpressure in case of congestion but to lack
of any kind of support for fault-tolerance. This thesis has therefore inte-
grated the Nack/go flow control protocol [58], which is implemented in
the GP-NaNoC switch. Nack/go combines the pros of stall/go (prompt
flow resumption, low power) with the pros of ack/nack (fault-tolerance
support through the retransmission of faulty flits with go-back-N policy).
Nack/go envisions retransmission of corrupted flits on the datapath, thus
minimally affecting the critical path of the switch (no error correction
on it), while introducing only a few cycles overhead in the rare cases of
actual retransmissions. Nack/go targets transients faults and single event
upsets in switch buffers. Nonetheless, in case a permanent fault shows
up at runtime, it may end up in an endless retransmission loop. This

188

7.1. INTRODUCTION

was however not considered to be a problem, since the target NoC has
reconfiguration capability to work around the faulty link or switch com-
ponent. In practice, such an unfortunate case would not affect system
lifetime but would result only into its graceful degradation.

• Fault-tolerant control path. While Nack/go effectively protects the
datapath, the traditional solution to protect the control path against tran-
sient faults consists of triple modular redundancy. However, we devised
a joint fault-tolerance framework that exploits the Nack/go flow control
protocol to use dual modular redundancy instead of the triple modu-
lar one in the control path. In essence, since control information travel
inside flits or together with flits (i.e., as their extensions), in case dis-
crepancies are found between the behaviour of duplicated control paths,
retransmissions are scheduled thus feeding refreshed inputs to the switch
FSMs.

• Boot-time built-in self-testing support making use of pseudo-
random test patterns. Chapter 5 has performed a design space explo-
ration of testing strategies for NoC switches. The experimental setting
for this study was an overly simple switch, far away from the complex-
ity of the GP-NaNoC switch. Given a new switch architecture, we gave
priority to the designer’s need of coming up with a testing framework in
the shortest possible time frame. Therefore, we excluded the use of de-
terministic test patterns in spite of their proven capability to materialize
lower test application times and implementation overheads. In contrast,
we reverted to pseudo-random test patterns, and applied them follow-
ing the guidelines devised in Chapter 5 to contain testing latency and
to feed as many blocks as possible with the same LFSR. Nonetheless,
the GP-NaNoC switch deals with the testing of complex FSMs and of
retransmission circuitry and an interesting testing case study for future
switches. GP-NaNoC supports built-in post-silicon and boot-time test-
ing as well as distributed diagnosis, resulting in the indication of which
switch input or output port (and associated links) is corrupted.

• Centralized resource manager. The GP-NaNoC architecture assumes
a centralized entity which collects state information from the network
and notifies reconfiguration commands backs to the NoC components.
Intuitively, a distributed control would result in faster reaction times to
network changes but in an overly more complex implementation. This
is confirmed by the substantial network overprovisioning that works in
the open literature have reported so far whenever distributed control has

189

CHAPTER 7. CO-OPTIMIZED DESIGN METHODS FOR GENERAL

PURPOSE SYSTEM

been implemented: virtual channels, timers, additional inter-switch sig-
naling, etc. At the same time, such solutions are not able to avoid sub-
optimal or inefficient or even wrong reconfigurations in some corner
cases, due to the lack of visibility of global network state. For these rea-
sons, in NaNoC we have developed an entire system level infrastructure
and reconfiguration methodology for a system with centralized control.
In the future, we plan to overcome scalability limitations through hier-
archical control schemes.

• Dual NoC for control signaling. Given the item above, the GP-NaNoC
switch implements a read and a write interface to a dual NoC which
is used to convery diagnosis information from switches to the global
controller and reconfiguration instructions back from the controller to
the switches. The dual NoC consists of a ring which connects all the
switches together and where the global controller closes the ring, so that
it can either receive diagnosis packets and send reconfiguration ones.
Each GP-NaNoC switch therefore implements a routing primitive (es-
sentially a 2x2 input-buffered mini-switch), which is the basic building
block of the dual NoC.

• Fault-tolerant control signaling. The routing primitive of the dual NoC
illustrated above is quite small with respect to the whole GP-NaNoC
switch, therefore TMR could be implemented in it without significantly
impacting the switch footprint. Voting is performed at the output of
each routing primitive, since this gives more reliability than voting at
the global controller only. Inter-primitive links are therefore also tripli-
cated, with negligible impact on the sizing of the routing channel. The
reader and writer interfaces also implement a protocol for the trustwor-
thy reconfiguration of the network, combining a mix of fault-tolerance
and online testing strategies that will be discussed in Chapter 8.

• Segment-based routing. Three key components are required to prop-
erly deal with a NoC system reconfiguration. The first component re-
quired to properly deal with a NoC system reconfiguration is the routing
algorithm. It is very important to select the right routing algorithm in
order to maximize its support to new topologies emerging from the oc-
currence of failures or of wanted changes of the connectivity pattern. In
this work, without lack of generality we selected segment based rout-
ing, which features a good match with logic based distributed routing
mechanism and which lends itself to some simple case for ultra-fast re-
configurations (e.g., a network could support one failure for each seg-

190

7.1. INTRODUCTION

ment without the need for any resegmentation process). The GP-NaNoC
switch can be instructed to implement the SR algorithm (or any other of
choice) by simply setting the connectivity, routing and deroute bits of
LBDR.

• Overlapped static reconfigurations. The second component needed
for NoC reconfigurations is a nonintrusive and efficient reconfiguration
mechanism to allow the routing algorithm to change uninterruptedly
over system lifetime (to match associated changes in the connectivity
pattern) while always remaining deadlock-free. The GP-NaNoC switch
implements OSR-Lite (overlapped static reconfigurations), which en-
able such a deadlock free network reconfiguration without stopping net-
work traffic or draining the network. The guiding principle consists of
preventing packets with the new routing function from crossing links
which packets with the old function still have to cross. While OSR-Lite
was illustrated in Chapter 6, its integration with the other switch compo-
nents and into a real network setting required a number of optimizations
and enhanced flexibility provisions to support a truly arbitrary number
of safe reconfigurations over time.

The GP-NaNoC switch supports also the multi-synchronous design methods
proposed in Chapter 3. However such design methods have been already
validated on silicon in the 40nm testchip presented in Chapter 4. Since the
proposed methods consist of a straightforward integration of dual-clock FI-
FOs and mesochronous synchronizers into the input buffers of downstream
switches, they have not been implemented in this chapter to simplify the de-
sign of the GP-NaNoC switch.

As regards the usage model, the GPNanoC switch is conceived for boot-time
testing. In case a manufacturing fault is detected, diagnosis information is
notified through the dual NoC to the global controller, which runs an online
configuration algorithm to adapt the routing function to the actual connectivity
pattern. The new LBDR configuration bits (coding the new routing function)
are dispatched to the switches again via the dual NoC. For all control sig-
naling, fault-tolerance and online testing ensure that the probability of wrong
configurations is marginal (to stay on the safe side, the controller may want to
discard switches in case doubts arise on the capability of the manager to reli-
ably communicate with it). At runtime, when traffic is crossing the network,
two kinds of events may occur. On one hand, wanted reconfigurations may be
initiated by the global controller to selectively switch off part of the network
or to partition the network into isolated domains. On the other hand, unwanted

191

CHAPTER 7. CO-OPTIMIZED DESIGN METHODS FOR GENERAL

PURPOSE SYSTEM

reconfigurations may be needed when intermittent faults are captured by the
fault-tolerance support of the GP-NaNoC switch and notified to the controller
via the dual NoC. In both cases, the online configuration algorithm iterates and
devises the routing function to evolve the connectivity pattern from the old one
to the new one. An interesting option consists of using the OSR-Lite mecha-
nism to partition the network into isolated regions, where different applications
may be mapped without any traffic interference with each other. Examples of
this usage model on an FPGA implementation will be provided in Chapter 8.

The rest of the chapter is organized as follow. Section 7.2 presents fault toler-
ant extensions introduced into the switch architecture. The focus will be on a
novel fault-tolerant arbiter and the fault-tolerant NACK/GO flow control [58].
Section 7.3 optimizes the proposed reconfiguration method, OSR-Lite, for the
target fault-tolerant switch. Therefore, the new input and output buffer will be
illustrated. Next, Section 7.4 shows the system level notification framework
enhanced with a fault-tolerant dual-network and Section 7.5 presents a novel
built-in self-testing framework handcrafted for the GP-NaNoC switch based
on pseudo-random patterns. Then, results in terms of area, stuck-at faults cov-
erage and routing delay are highlighted in Section 7.6. Last, the conclusions
are presented in Section 7.7.

7.2 Switch Architecture Extensions for Fault-Tolerant
NoC Design

Fault-tolerance represents the first feature required by a general-purpose
switch in order to satisfy the high reliability constraints imposed by modern
systems. As a result we picked the ×pipesLite switch of Figure 5.1 and we
incrementally extended its baseline architecture.

The switch has been enhanced with the fault-tolerant flow control protocol
(NACK/GO) proposed in [58]. It uses the NACK/GO protocol on the data path
to notify error detection and trigger link-level data retransmissions, and also on
the internal switch data path, to ask for data retransmissions from switch input
to output buffers (see Section 7.2.1). Interestingly, on-demand correctors are
used to repair corrupted values in the source buffers, which a retransmission
would not fix. Thanks to the retransmission capability of the data path, the
control path can implement a simpler dual-modular redundancy: in case of
differences between the replicated paths, the current transfer is invalidated and
a retransmission is required in the next cycle (see Section 7.2.2). Logic-based
distributed routing (LBDR) is implemented. The support for different routing

192

7.2. SWITCH ARCHITECTURE EXTENSIONS FOR FAULT-TOLERANT NOC
DESIGN

algorithms and topology shapes is achieved by means of 16 configuration bits
for the routing mechanism of the switch (hereafter denoted as LBDR bits).
LBDR bits are computed by a central NoC manager and disseminated to the
switch input ports through the dual control network proposed in [156]. Next,
the NACK/GO protocol proposed to trigger data retransmissions is derived,
and later on the control path is detailed accordingly.

7.2.1 The New Fault-Tolerant Flow Control: NACK/GO

STALL/GO is one of the simplest flow control protocols that can be found in
the open literature. It leverages only one forward signal, that flags the avail-
ability of new valid data (Valid signal) and one backward signal, used to stop
the communication flow when a new flit cannot be accepted due to conges-
tion in the downstream node (Stall signal). Conversely, ACK/NACK is a flow
control protocol with error detection/notification capabilities. It exploits a Go-
back-N policy to manage and control correctness of the transmitted data. When
an error is detected in a transmitted flit, the receiver signals this event to the
sender, who will retransmit the flit with the corrupted information and all the
(N) successive ones.

Unfortunately, the ACK/NACK protocol does not make a clear distinction be-
tween the backpressure phenomenon and the occurrence/detection of transient
faults. As a consequence, a nack received by the upstream switch means that
the flit should be retransmitted for some reason. In case of congestion of down-
stream paths, the protocol keeps retransmitting the same flit indefinitely re-
gardless of the receiver state, thus proving power-inefficient. On the contrary
when a STALL/GO protocol is considered then transmission freezes until a
go arrives, in case a stall notification is received upstream. This protocol is
much more power efficient but does not provide any kind of support for fault
tolerance and data retransmission.

Augmenting the protocol in this direction we comes up with the NACK/GO
flow control protocol. NACK/GO is a new protocol, and associated switch
implementation, that offers full error detection and notification capabilities of
ACK/NACK while preserving the power efficiency of STALL/GO for error-
free operation.

NACK/GO leverages four control signals to control transmission of data and
achieve fault tolerance. There are two signals going in the same direction of
the data stream, and two backward propagating signals.
Valid: this signal flags availability of new data, and it triggers the data transfer.

193

CHAPTER 7. CO-OPTIMIZED DESIGN METHODS FOR GENERAL

PURPOSE SYSTEM

Trash: this control signal notifies that the data currently being transmitted is
corrupted and should be discarded. The reason why the valid signal is not used
for this is to optimize the internal critical path of the switch and avoid multi-
cycle switch traversal.
Stall: it stalls the transmission in case of traffic congestion. The Stall signal
stops the communication flow, freezing all the forwarding control signals and
data to their current value.
Nack: Nack signal is de-asserted low when a valid flit has been received in the
previous clock cycle (Acknowledgement). In contrast, Nack is asserted high
whenever no valid flit is received, either because no transmission took place or
because the accepted flit is detected as corrupted.

NACK/GO combines the best of STALL/GO and ACK/NACK. Like STAL-
L/GO, it exploits an efficient methodology to block the communication traffic
in case of congestion, avoiding the unnecessary switching activity for flit re-
transmission as in ACK/NACK. It uses a signal to notify the availability of
free buffer positions inside the receiver, so communication can be frozen when
congestion occurs. Furthermore, a Stall signal avoids the roundtrip necessary
to resume communication from the packet that was not accepted like in ACK-
/NACK, leading to a better average performance.
In addition, it features the error flagging capability not exposed by STALL/GO.
In this way the system can re-establish a correct working point and resume its
correct operating condition.

These advantages come at the cost of extra channel wiring, since a total of 4
control signals are needed, rather than the 2 of STALL/GO, and a more com-
plex control logic inside the buffers and the switches. NACK/GO features
worse minimum buffer slot requirements than STALL/GO, since it requires a
minimum of 3 buffer slots. In addition, every pipeline stage inside the link
should have not only flow control capabilities, but also error detection/correc-
tion capabilities. For this reason, every repeater must have at least three buffer
positions, more than the two required for STALL/GO.

7.2.2 Novel Low-Power Fault-Tolerant Arbiter

By exploiting the retransmission capability provided by NACK/GO, we de-
signed the fault-tolerant control path that supports NACK/GO flow control op-
eration.

The novel fault-tolerant arbiter was designed following Figure 7.1. It repre-
sents an effective variant of a baseline TMR arbiter. As showed in Figure

194

7.2. SWITCH ARCHITECTURE EXTENSIONS FOR FAULT-TOLERANT NOC
DESIGN

Figure 7.1: Fault tolerant arbiter implementation.

7.1, the transition logic , representing the arbiter combinational logic for
computing the next FSM state, is doubled. Therefore, the outputs of the two
transition logic instances are compared in a Two-Rail Checker (TRC)
module (i.e. a redundant comparator block with fault tolerance capability) and
feed the state memory register of the arbiter. The state memory register is trip-
licated as in a conventional TMR strategy although it is enabled by the TRC
module output. When the two transition logic blocks generate the same
result, then they are not affected by an error and the state memory register can
sample the new state. On the other hand, the TRC block freezes the state of
the arbiter registers when the transition logic blocks provide different re-
sults. In this latter case, the valid signal to the output port is deasserted. As a
consequence, the output port will not read the incoming information affected
by errors, and since no valid data has been stored in the current clock cycle,
the Nack signal will be asserted high in the following clock cycle. This will be
interpreted by the input buffer as a request of retransmission.

Thus, the outputs of the three state memory registers are voted before feed-
ing two instances of the output combinational logic with the arbiter current
state. Then, the outputs of the combinational logic modules are compared
in a TRC comparator following the previous implementation adopted for the
transition logic modules. Finally, when the above mentioned comparator
reveals an error, then the valid signal to the output port is deasserted and the
information coming from the output combinational logic is discarded.

The baseline behavior of the arbiter remains the same: it selects between dif-
ferent inputs competing for the same output port, operating with a round robin

195

CHAPTER 7. CO-OPTIMIZED DESIGN METHODS FOR GENERAL

PURPOSE SYSTEM

arbitration policy in order to enforce fairness between all the requests. New
conditions and events had to be managed in order to cope with error detection:
whenever an error is detected in the output buffer, the Nack signal must be
routed to the correct destination. If this takes place on the head flit of a packet,
that stores the information about destination, in order to avoid misrouting the
current source will lose the grant acquired by the arbiter. In the following clock
cycle, the route will be re-computed and the arbitration process will take place
again. On the other hand, when an error is signaled for the last flit of a packet
(tail flit), the sender has already lost the grant given by the arbiter and has no
longer exclusive access to the output port. For this reason, the arbiter does
not consider any new request, and the sender that had the grant in the previous
clock cycle acquires again access to the output port. In this way the correct
status of the various actors is re-established, and the corrected flit can now be
retransmitted. Lastly, when a flit is signaled as corrupted while being trans-
mitted (Trash signal asserted high), the arbiter must propagate this condition
to the output port, and ignore the current transaction taking place. The trash
signal is forwarded to the output buffer, that will ignore the current incoming
flit.

7.2.3 Fault-Tolerance of Routing logic and Buffer FSMs

In order to protect routing logic, two LBDR replicas directly feed the com-
binational logic cascaded to the TRC of the arbiter. A failure in the LBDR
logic will be tackled by the arbiter’s Two Rail Checkers, thus exploiting the
cooperation with the arbiter to achieve fault-tolerance by means of an effective
lightweight solution.

The status registers of buffer FSMs need additional protection. For this pur-
pose, the simplest thing was to implement TMR in light of the low-complexity
of replicated circuits.

Figure 7.2 depicts the final NACK/GO switch architecture, where emphasis is
given to the fault-tolerance support.

7.3 Reconfiguration Mechanism

The OSR-Lite mechanism, initially proposed in Chapter 6 for the baseline
×pipesLite switch, needs to be modified in order to better suit the target NoC
environment. In fact, it should be upgraded to guarantee fault-tolerance, effec-
tive support for frequent reconfigurations and tight exploitation of the in-situ

196

7.3. RECONFIGURATION MECHANISM

Figure 7.2: Nack-Go switch

control network. Indeed, this chapter targets such upgrades especially address-
ing the following issues:

• Codification of the routing information. During the reconfiguration pro-
cess both routing algorithms coexist at the same time at routers. This
means resources need to be sized for both algorithms. In OSR-Lite, two
logic-based distributed routing blocks (LBDR) per input port were used
to store the routing info. Anyway, optimizations can be envisioned to
further reduce the area overhead introduced by routing blocks.

• Involvement of neighboring switches in the reconfiguration process.
Three additional routing bits are sent by each upstream switch to ex-
pose the dependencies between output and input ports. Thus every link
needs to be extended with 3 additional wires. Exploiting the in-situ con-
trol network, such link extension can be avoided and the link width of
the main data-network preserved.

• Transparent support for multiple reconfigurations. Once the network
has been reconfigured and migrated to Epoch 1 then all the switches
need to swap to Epoch 0 again in order to support a new reconfiguration

197

CHAPTER 7. CO-OPTIMIZED DESIGN METHODS FOR GENERAL

PURPOSE SYSTEM

process. OSR-Lite should be capable to migrate from an epoch to the
next one without need to bring its logic back to initial state.

• Extension for fault tolerant design. The OSR-Lite mechanism should
be extended in order to suit the fault-tolerant environment in which it
is integrated. In particular, its logic should be reliable and support the
fault-tolerant NACK/GO protocol of the target switch.

The switch architecture described in Section 7.2 is extremely modular. A fault-
tolerant port-arbiter, a crossbar multiplexer and an output buffer are instanti-
ated for each output port, while a fault-tolerant routing module is cascaded to
the buffer stage of each input port. The logic enabling the OSR-Lite mecha-
nism was integrated into the Section 7.2 switch taking care of preserving its
modularity together with its performance. Thus, the OSR-Lite logic was de-
signed in new modules plugged into the switch without affecting the existing
blocks. Moreover, the new modules were instantiated for each switch port fol-
lowing the modularity of the baseline blocks (the OSR-Lite mechanism can be
extended for switches of every arity by means of simple logic replication). In
the next sections we describe in more detail how the above mentioned upgrades
are materialized and how they affect the baseline OSR-Lite implementation.

7.3.1 OSR-Lite at the Input Ports

In Chapter 6, the OSR-Lite mechanism was designed on top of a baseline
switch without fault-tolerance features based on a STALL/GO flow-control. In
this latter scenario, the STALL/GO switch is enhanced with a second routing
logic unit (LBDR1) collecting the new routing info coming from the central
manager. This unit is connected to the input buffer as the baseline LBDR0
block (see Chapter 6) although is used exclusively for routing packets in the
new epoch (new packets).

The switch arbiters need to select the routing info from the appropriate routing
logic block (either LBDR0 or LBDR1). This is obtained from a multiplexer
configured by the current epoch of the input port (in a flip-flop).

The baseline OSR-Lite architecture should be now upgraded in order to suit the
NACK/GO switch of Section 7.2 and allow effective frequent reconfigurations.
We firstly remove a routing block instance for input port. In fact, two routing
functions can coexist in the same switch but they will never run concurrently at
input port level. Thus, we can exploit the same LBDR instance in all epochs.
In particular, the LBDR is uploaded with new routing function information

198

7.3. RECONFIGURATION MECHANISM

Figure 7.3: OSR-Lite logic extended for the NACK/GO input buffer.

as soon as its input port migrates to new epoch. The new routing function
information are contained in a register which is shared between all the LBDR
instances and stores the incoming configuration bits from control network.

A local register stores the current epoch of the input port while an additional
register triggered by control network stores the switch epoch. The switch and
input port epoch are compared in an exor logic block to reveal a reconfiguration
request (New Epoch flag). When the reconfiguration request is asserted then
the input port evolves to the new epoch if there are no stored flits from current
epoch (Current Epoch Packet signal) and the token in compliance with current
switch epoch has been received from the upstream switch (Comparison Epoch
signal). Finally the Change Epoch flag enables to set the LBDR with new
configuration bits and to switch the local epoch register to new epoch.

Figure 7.3 depicts the new OSR-Lite mechanism at the input port. To note that
it shows a single routing block for the sake of clarity but the routing block is
actually fault-tolerant (i.e., it is composed by two replicas of LBDR following
the fault-tolerant solution of Section 7.2). Interestingly, we would need to
double the routing resources by means of four replicas of LBDR if we would
want to still exploit the baseline OSR-Lite mechanism.

The OSR-Lite mechanism for NACK/GO switch requires extensions also to
the counter monitoring incoming and outgoing packets. In particular, two
counters are integrated to respectively monitor epoch 0 and epoch 1 packets.
The counter 0 (counter 1) increases its value when a header is accepted, the

199

CHAPTER 7. CO-OPTIMIZED DESIGN METHODS FOR GENERAL

PURPOSE SYSTEM

Figure 7.4: Counter of packets of the two epochs.

incoming token is 0 (token is 1) and the input port does not assert a NACK dur-
ing the next clock cycle. On the contrary, the counter 0 (counter 1) decreases
its value when a tail is sent, the local epoch is 0 (local epoch is 1) and the
input port does not receive a NACK during the next clock cycle. Finally, the
Current Epoch Packet flag is asserted if the counter 0 or the counter 1 register
packets in accord with the current input port epoch. Figure 7.4 depicts the two
epoch counters.

7.3.2 OSR-Lite at the Output Ports

An output port evolves to the new epoch when all the input ports with output
dependencies to this output port have evolved to the new epoch. In order to
efficiently deal with the dependencies, OSR-Lite takes profit of the routing bits
used in LBDR. Therefore, the output port needs to receive both the epochs of
the input ports and the routing restrictions located at the neighboring switches.

The baseline OSR-Lite mechanism presented in Chapter 6 obtains channel de-
pendencies directly from the routing logic located at neighbor switches. As
a consequence, three additional routing bits are required to be sent by the
LBDR0 logic of the upstream switch together with the token bit. To note that
LBDR0 received its old routing bits information through the control network
in an earlier configuration stage. In addition, the input port needs to send the
incoming routing restriction signals to the appropriate output ports. Thus every
link is extended by 4 additional wires (i.e. 1 token wire + 3 routing restriction
wires).

However, the OSR-Lite mechanism needs to be upgraded to support the
NACK/GO protocol and exploit the in-situ control network. In fact, the routing

200

7.3. RECONFIGURATION MECHANISM

Figure 7.5: Configuration information from neighbor switches and control network

Figure 7.6: OSR-Lite logic extended for the NACK/GO output buffer.

201

CHAPTER 7. CO-OPTIMIZED DESIGN METHODS FOR GENERAL

PURPOSE SYSTEM

restriction information of the upstream switch can be delivered together with
new configuration information through the control network. As a result, the
links do not longer need to be extended with 3 additional wires cutting down
the area overhead of the OSR-Lite mechanism. Finally, only the epoch token
needs to travel in the communication channels. See Figure 7.5 for the final
solution.

In order to effectively support frequent reconfigurations, a set of OR blocks
followed by an AND block signals the migration from epoch 0 to epoch 1
(Epoch 1 Flag) and, vice versa, a set of OR blocks followed by an AND block
signals the migration from epoch 1 to epoch 0 (Epoch 0 Flag). A local regis-
ter triggered by the Epoch 1 Flag and the Epoch 0 Flag stores the local epoch
value. The local epoch will change when all the input ports with dependencies
with the output port have evolved to the new epoch, meaning all these input
ports have drained all the old packets from their buffers.

Similarly to input ports also output ports integrate two counters for mon-
itoring incoming and outgoing packets. In this case, a flag is asserted
(Old Epoch Packet) when output ports have migrated to new epoch but their
buffers have still not drained from old packets. As soon as, output ports have
drained then the Old Epoch Packet flag drives a multiplexer which enables the
propagation of the new epoch token (Output Epoch) to the downstream switch.
Figure 7.6 depicts the architecture of OSR-Lite for NACK/GO output ports.

As regards the lightweight OSR-Lite module plugged around the arbiters, it is
preserved when a NACK/GO switch is considered instead of its STALL/GO
counterpart.

7.3.3 Fault-Tolerant Reconfiguration Mechanism

The OSR-Lite mechanism must be reliable in order to meet the NACK/GO
switch requirements. For this purpose, the simplest way to guarantee fault-
tolerance was to implement TMR in light of the low-complexity of replicated
circuits. Finally, the circuit outputs are voted before feeding the switch internal
logic as showed in Figure 7.7. This solution is the same adopted for FSMs of
the input and output ports of the switch.

202

7.4. SWITCH EXTENSIONS FOR SYSTEM LEVEL NOTIFICATION

Figure 7.7: Fault-tolerant OSR-Lite logic.

7.4 Switch Extensions for System Level Notification

If a link or a switch experience frequent transient errors with an occurrence
probability that exceeds that expected in the case of uncorrelated transient
faults, they could be disabled for safety reasons. In order to do this, the switch
should be able to know the frequency of error occurrences, to be able to dis-
able itself, and be smart enough to notify to all the neighboring switches its
new state, so that the whole system can be reconfigured accordingly. This is
a lot of work to be done by an element that should be as simple as possible.
In order to avoid large counters and complex control logic inside each switch,
we exploit the control network infrastructure to notify a global controller every
time a transient fault is detected inside the switch. In Section 7.3, the control
network was used to notify configuration bits of the routing mechanism to the
switches. The same network could be reused for other purposes, such as con-
gestion management, deadlock recovery and software debugging. In [156] it is
showed to be a cost-effective solution for control signaling, which can be easily
and effectively made reliable through a combination of fault-tolerant and on-
line testing strategies. For this reason, this work relies on such a fault-tolerant
control network for transient faults notification.

Transient fault detection can be performed by the error detectors at switch
ports or by the TRC blocks and voters in the control path. See Figure 7.8. For

203

CHAPTER 7. CO-OPTIMIZED DESIGN METHODS FOR GENERAL

PURPOSE SYSTEM

instance, when a Detector of an input buffer reveals an error, the error report
contains only the associated input channel. On the other hand, if a detector
inside an output buffer reveals an error, not only the associated output channel
is notified, but also the input port from where the flit was coming is included
in the error report. The reason of this is that, while for an input port the place
of origin of the flit is always the output port of the previous switch, the source
of a flit inside a switch is not unique, and different errors revealed by different
output channels can be caused by the same faulty input port. Signaling the path
the flit was following allows the global controller to gather a more accurate and
effective information about the status of the switch. Similarly, each replicated
arbiter inside the switch has a one-to-one correspondence with a switch output
port and its intermittent malfunctioning may lead the controller to disable that
output port. On the other hand, each replicated LBDR belongs to a switch input
port and its malfunctioning contributes to disable that input port. Notifications
from voters of OSR-Lite mechanism take part to the diagnosis of associated
ports. Given this, the global controller can compute the frequency of fault
events and take the appropriate course of action before a permanent fault shows
up.

Figure 7.8: Transient fault notification.

Switches and global controller communicate through a dual network. The dual
network is composed by a set of replicated routing primitives, each one associ-
ated with, and connected to, a switch of the main data NoC. Unlike the full fea-
tured and richly connected main NoC, the dual NoC implements a straightfor-
ward ring topology where the routing primitives are simply cascaded. From an

204

7.4. SWITCH EXTENSIONS FOR SYSTEM LEVEL NOTIFICATION

architecture viewpoint (see Fig.7.9), the routing primitive resembles an over-
simplified version of an input buffered clocked switch. An input decoder dis-
criminates between packets destined to the controller (collision between these
latter and packets originating from the local switch is solved by an allocator)
and those destined to the local switch. All packets on the dual network have a
fixed 3 flit length. Flit width is 15 bits. The input buffer has 2 slots (for stal-
l/go flow control management) while the allocator implements a fixed priority
algorithm in light of the operating principle of the dual network.

���������

��		
�
	���

�� 	���

���

���������

����

���	���������

����

����
�

��
�

�
�
�

�

�

�

�

�

�

Figure 7.9: Dual network routing primitive.

As an example, the controller transmits configuration bits in 3 flits. The header
contains target switch ID and flit type. The second and third flits contain LBDR
bits. Whenever the primitive receives a configuration packet, the reader inter-
face eliminates the header information and extracts the LBDR bits.

The dual network is a critical component for the correct configuration of the
system. Therefore, we decided to provide fault-tolerance capability to it by
means of triple modular redundancy (TMR). This latter has been preferred to
information redundancy (e.g., error correcting codes, ECCs) for ease of design.

The simplest approach to TMR implementation consists of replicating the
dual-network three times and to vote it at the input of the controller interface
(for switch-to-controller signaling). This approach, however, has a probability
of failure that does not scale well with the size of the network. To overcome
this limitation, the scheme in Fig. 7.10 is adopted, where voting is performed
at the output of each stage of the dual network. It should be noted that also
flow control signals (valid and stall/go) are voted. Voting of the incoming con-
figuration bits is also demonstrated in the figure.

Interestingly, switches are designed to send back the received configuration
bits to the controller, so that this latter can check whether the transmission was

205

CHAPTER 7. CO-OPTIMIZED DESIGN METHODS FOR GENERAL

PURPOSE SYSTEM

�

�

�

�

����

����

����

���	

����

���

����

�����

����

����	

����

����

���������

����

�������������

����

Figure 7.10: TMR approach with per-primitive voting system.

successful. Finally, the reconfiguration procedure is able to detect when a fault
affect dual network voters, since configuration bits by the controller would not
match the bits that the switch sends back to the controller for a double check
(see Chapter 8 for more details).

7.5 The Built-In Self-Testing Framework

This section presents a low area footprint and low-latency testing framework
designed by optimizing the built-in pseudo-random self-testing framework
presented in Chapter 5 for the microarchitecture of the fault-tolerant and re-
configurable GP-NaNoC switch. The choice of pseudo-random testing over
the other strategies was primarily dictated by its potentially lower area over-
head and higher flexibility. Following the outcome of Chapter 5, the test time
concern has been tackled by reusing test responses of switch sub-blocks as test
patterns for cascaded blocks combined with specific test pattern optimizations
for selected blocks to preserve coverage.

First of all, we decompose the network (i.e. the switch and the channel) into
its building blocks: the arbiters, the crossbar multiplexers, the input buffer, the
output buffer, the LBDR, the OSR-Lite mechanism and the link. Then, we ex-
ploit a Linear-Feedback-Shift-Register (LFSR) for test pattern generation and
Multiple-Input Signature Registers (MISR) for compression of test responses.
Finally we cascade switch sub-blocks to the LFSR: then test responses of the
upstream block are test patterns for the downstream one. The testing frame-
work is detailed hereafter.

206

7.5. THE BUILT-IN SELF-TESTING FRAMEWORK

7.5.1 The Data-Path

Data-path includes crossbar, input/output buffers and their intermediate links.
We cascaded the circuits of the data-path under test exploiting the synergies
between them in order to cut down on test wrapper and TPGs complexity. Es-
pecially the cascade is composed by crossbar and output buffer of the upstream
switch, input buffer of the downstream switch and inter-switch link. All these
elements are jointly tested by means of a single LFSR placed at the beginning
of the cascade. Since test responses of one block become test patterns for the
next one then the LFSR is responsible for the injection of test vectors for the
whole cascade. Such optimization allowed us to exploit a single test-wrapper
for the data injection and avoid additional data test-wrappers located in front
of the input/output buffer.

In practice, testing of NoC switches is engineered in such a way that all
switches are tested in parallel. The key enabler is to implement a cooperation
mechanism between switches for testing their inter-switch links. In fact, each
switch sends test patterns across its outgoing links and response analysis will
be performed in the neighboring switches. The opposite holds for incoming
links, which are analyzed locally. See Figure 7.11.

Figure 7.11: Pratical implementation of data-path testing.

When naive application of pseudo-random test patterns from LFSR was
adopted to test the cascaded data-path elements a low coverage was achieved.

207

CHAPTER 7. CO-OPTIMIZED DESIGN METHODS FOR GENERAL

PURPOSE SYSTEM

This coverage result pointed to the need of exploiting the knowledge of ele-
ments implementation to increase test efficiency.

Testing multiplexers of the crossbar

The multiplexers of the crossbar are directly fed by the LFSR while its test
responses feed the output buffer of the channel. Following the outcome of
Chapter 5, interesting optimizations were introduced to limit the LFSR area
overhead and to preserve a high fault coverage.

In order to tackle the LFSR area overhead, we fed each input port of the multi-
plexer with the same 39 pseudo-random bits exploiting a data shift of 7 · N bits
for every input port. We designed a ring counter driving multiplexer control
signals to data transparent configurations (10..0, 01..0, 00..1).

Testing communication channel

Communication channels include input/output buffers and their intermediate
links. All these elements are cascaded to the crossbar and fed by the crossbar
test responses. As first optimization to guarantee a high coverage, we increased
the controllability and the observability of the channel by driving and reading
the incoming and outgoing flow control signals.

In particular, the LFSR drives the stall , the nack , the trash and the valid
signal of both the input and output buffer. From an implementation viewpoint,
there are several practical issues. In fact, the flow control signals of the input
buffer, which lies in the downstream switch, should be driven by the LFSR
as well. This would require additional wires in the switch-to-switch link. To
avoid the extra wires, we opted for the solution in Fig.7.11 where the flow
control signals of the input buffer are driven by the LFSR of the downstream
switch. From the testing viewpoint nothing changes, since all the pseudo-
random LFSRs inject the same patterns synchronously. In order to achieve a
high observability, two MISR are adopted. A first MISR observes the outputs
of the output port while a second MISR observes the outputs of the input port.

Interestingly, encoded words cross the data path during nominal operation and
detector and corrector modules guarantee the correctness of transmitted data.
In particular, detectors reveal failures in the data and trigger retransmissions
and corrections. During testing time, we could suppose to inject encoded
words by means of a LFSR and an encoder. However, this latter solution would
never properly stimulate correctors since the encoded words are intrinsically

208

7.5. THE BUILT-IN SELF-TESTING FRAMEWORK

safe. In order to guarantee an effective testing also for correctors, we inject ran-
dom bit sequences in the data path. As a result, the corrector will actually find
failures to correct when the NACK signal is asserted. However, detectors would
never allow data to progress through the data-path since errors will be always
revealed in the packets. Thus, we randomly control the detection flag from
detectors to buffer FSMs. As a consequence, the data can progress although
the detection flag of the detector is asserted. Finally, the detection flags
are still observed by MISRs to increase detector observability.

7.5.2 The Control-Path

Control-path includes arbiters, routing blocks and OSR-Lite logic. To note
that the test of the control-path modules result challenging due to the intrinsic
FSMs and combinational logic complexity.

Testing LBDR

Unlike the crossbar module, the LBDR block associated with the port under
test lies in the downstream switch. It is fed by the input buffer and it is directly
connected to the input MISR. In this case, the input MISR of the data path was
extended in order to compress also the LBDR outputs.

The implementation of an effective testing for fault-tolerant LBDRs is not
straightforward. As a result, optimizations similar to the ones already pro-
posed in Chapter 5 for the baseline LBDR were introduced to rise the fault
coverage of the fault-tolerant routing mechanism (see Chapter 5 for further
details).

Testing Arbiters and OSR-Lite logic

The test did not achieve a high coverage when the arbiter and the OSR-Lite
logic was directly connected to the existing testing framework following the
approach taken so far. The reason lies in the poor efficiency in testing the
arbiter FSM and the OSR-Lite combinational logic. As a result, in the final
testing framework the arbiter and the OSR-Lite logic are directly driven by the
LFSR and its test responses feed dedicated MISRs.

209

CHAPTER 7. CO-OPTIMIZED DESIGN METHODS FOR GENERAL

PURPOSE SYSTEM

Figure 7.12: BIST-enhanced switch architecture.

7.5.3 BIST-enhanced switch architecture

The switch architecture enriched with the BIST infrastructure is illustrated in
Fig.7.12. A test wrapper consisting of multiplexers can be clearly seen, which
enables test pattern injection of the LFSR in the modules it tests. A unique 39
bits LFSR generates the pseudo-random patterns to test in parallel every switch
port. Moreover two dedicated MISRs for every port collects the test response
from the output and input ports. On one hand, the first MISR performs the
signature analysis of the test responses from the link, the LBDR blocks and the
input buffer together with its OSR-Lite logic. On the other hand, the second
MISR performs the signature analysis of the test responses from the crossbar,
the output buffer, the arbiter and their associated OSR-Lite logic.

Test diagnosis results in the setting of 10 bits (one for every MISR), indicating
whether each input/output port is faulty or not. This meets the requirements of
the LBDR configuration algorithm. The testing framework is able to reveal the
correct position of multiple faulty channels since a MISR is dedicated to each
port.

210

7.6. EXPERIMENTAL RESULTS

7.6 Experimental Results

In this section we illustrate the experimental results carried out for the GP-
NaNoC switch. Especially, we progressively add features to the switch point-
ing out the area and routing delay penalty each feature comes with. Finally,
we will compare 5 switches:

• The fault tolerant switch.

• The fault tolerant switch with reconfiguration capabilities.

• The fault tolerant switch with reconfiguration capabilities enhanced with
control network.

• The fault tolerant switch capable to reconfigure, interact with a control
network, perform a built-in self-test at boot-time.

• The reference STALL/GO TMR switch illustrated in Chapter 6 without
any support for reconfiguration, notification and testing.

Detector and corrector modules were implemented by means of a Hsiao code.
They respectively guarantee a double-error detection and a single error correc-
tion exploiting 7 check bits. These latter bits are bundled with the 32 data bits
of the network. As previously mentioned, each input and output switch port
integrates a detector and a corrector instance. The correctors associated to the
input ports correct the data transmitted in the switch data path while the cor-
rectors into the output ports correct data routed through the link. Vice versa,
the detectors integrated into the input ports detect the errors of the incoming
data from the link and the detectors of the output ports detect the errors of the
switch data path. The corrector modules have been implemented with a single-
stage pipeline, because this is not affecting the critical path. It is anyway worth
recalling that the three clock cycles latency penalty required for error recovery
(error signaling, flit correction and retransmission) will be paid only on the
rare occasions where a transient fault is detected.

All the analyzes discussed in this work have been carried out by means of a
low-power standard-Vth 40nm Infineon technology library.

7.6.1 Area and Critical Path

The area results are shown in figure 7.13, while critical path comparison is
presented in figure 7.14. Please note that all the results are normalized with

211

CHAPTER 7. CO-OPTIMIZED DESIGN METHODS FOR GENERAL

PURPOSE SYSTEM

respect to the TMR switch solution.

As far the fault-tolerant Nack-Go switch is concerned, a non-negligible area
contribution comes from detector and corrector modules. These count for al-
most 13% of the total area. In many works in the literature targeting transient
faults the problem of data corruption inside buffers is typically omitted, there-
fore the overhead of correctors is not accounted for. When the reconfiguration
mechanism is integrated into the NACK/GO switch, a 11% of area overhead
is introduced. Interestingly the OSR-Lite mechanism proposed for the NACK-
/GO switch outperforms the baseline OSR-Lite mechanism illustrated in Chap-
ter 6 for a baseline ×pipesLite switch. In fact, the novel OSR-Lite solution in-
troduces a lower area overhead (11% instead of 14%) thanks to the removal of
the second routing logic required by the baseline OSR-Lite solution for each
port. In addition, the novel mechanism guarantees fault-tolerance, an efficient
support for multiple reconfiguration and better preserves the nominal data link
width. Concerning the switch enhanced with notification system, it comes with
an additional 5% area overhead. In particular, the notification system results
lightweight since it takes advantages by the diagnosis logic already made avail-
able for fault-tolerance purposes. Finally, the switch capable of built-in self-
test and self-diagnosis brings a 27% of area overhead. The area penalty mainly
comes from MISRs and test-wrappers. This latter result exposes a area trade-
off between the testing frameworks based on pseudo-random and deterministic
test patterns proposed in Chapter 5 which respectively introduce a 16% and a
37% area penalty. In fact, the testing framework for the general purpose switch
is based on pseudo-random patterns but it exploits a high amount of testing
logic to increase the controllability and the observability as the deterministic
approach. To note that the testing frameworks in Chapter 5 were designed for

Figure 7.13: Area of the GP-NaNoC switch.

212

7.6. EXPERIMENTAL RESULTS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

TMR NACKGO NACKGO+OSR NACKGO+OSR
CONTROL_NETWORK

NACKGO+OSR
CONTROL_NETWORK+BIST

R
O

U
TI

N
G

 D
EL

A
Y

Figure 7.14: Routing delay.

a baseline STALL/GO switch with simpler FSMs and control logic. When we
consider a baseline TMR switch which implements only fault-tolerance on top
of a baseline xPipeslite switch, we can clearly see that the GP-NaNoC switch
(rightmost bar in the plot) provides many more functionalities and provisions
at even lower area footprint.

In order to evaluate the effects of each additional feature on the switch routing
delay, we performed a 5x5 switch synthesis for maximum performance for all
the 5 solutions. The switch with OSR -Lite mechanism and the fault-tolerant
NACK/GO switch achieved a similar maximum operating speed. As described
in Section 7.3, the reconfiguration scheme was designed to avoid long critical
path and preserve the baseline switch performance. The OSR-Lite-enabled
switch is thus capable of an at-speed reconfiguration. Moreover, the routing
mechanism of the OSR-Lite solution scales with network size. In fact, while
memory macro-based solutions could suffers from increasing area and delay
penalties, the logic complexity of the distributed routing algorithms does not
depend on the number of destinations, hence it stays constant. Indeed, the
distributed routing algorithms just grow with the switch radix. The maximum
operating speed is similarly preserved also when the switch with notification
system is considered. As already demonstrated by the area results, the noti-
fication mechanism is seamless introduced in the design. Finally, the testing
framework degraded by 13% the maximum performance of the NACK/GO
switch. The performance of the switch is limited by the test-wrappers placed
on the critical path. When we look at the TMR solution, we notice that the GP-
NaNoC switch delivers far more functionalities at the cost of a longer critical
path (+13%) but within the same area budget.

213

CHAPTER 7. CO-OPTIMIZED DESIGN METHODS FOR GENERAL

PURPOSE SYSTEM

7.6.2 Optimized Reconfiguration Support

First of all, we assess the efficiency of the routing resource optimization per-
formed in section 7.3 to enable reconfigurability of the routing function. Fig.
7.15 illustrates the normalized area results of three 5x5 switches that make
use of a stall/go flow control protocol. From left to right we have respectively
the baseline xpipesLite switch, the same switch endowed with a normal OSR-
Lite mechanism (two LBDR modules, like in Chapter 6) or with the single-
LBDR implementation and support for multiple reconfigurations proposed in
this chapter. Clearly, our optimization reduces the area overhead from 14% to
6%. Further support for fault-tolerance would then only amplify the savings,
since less logic would have to be replicated.

7.6.3 Coverage for single stuck-at faults

Table 7.1 reports the total number of cells associated to each tested module,
and the related achieved coverage. This latter was derived by means of an in-
house made gate-level fault simulation framework: faults are applied to any or
selected gate inputs, then our testing procedure is run on the affected netlist
and the diagnosis outcome is compared with the expected one.

It can be seen that in all cases the coverage for single stuck-at faults exceeds
the 90%. While single stuck-at faults in the crossbar, input and output buffer
feature a coverage higher than 97%, worse results are obtained for the OSR-
Lite mechanism and especially for the LBDR. Their lower coverage is a direct
consequence of FSMs and combinational logic complexity. Such complexity
brings a gap in terms of coverage between control and data path. In fact, Table
7.2 reports the coverage breakdown of data and control path. The coverage for
data path closely tracks the 100% while the coverage for control path tracks

Figure 7.15: Efficiency of Single-LBDR implementation.

214

7.7. CONCLUSIONS

Switch sub-block Cells Coverage
OSR-Lite 360 95.0%

Arbiter 334 96.7%
Crossbar 154 97.4%

Input Buffer 1272 97.6%
Output Buffer 1855 97.4%

LBDR 289 91.0%
TOT 4264 96.8%

Table 7.1: Coverage for single stuck-at faults.

Cells Coverage
Data-Path 2337 99.1%

Control-Path 1927 94.0%

Table 7.2: Coverage breakdown of data and control path.

94%. To note that the output and input buffers belong to the data path of the
switch but they internally consist of an actual data path (data registers with
selection input demux and output mux) and of a control FSM driving the read
and write pointers of the mux and demux. In order to build Table 7.2, these
two internal blocks have been separated and respectively associated to data and
control path.

Concerning the testing latency, a network composed of the general purpose
switches, as assumed so far, would take 10.000 clock cycles for testing, re-
gardless of the network size.

7.7 Conclusions

Modern computing systems require an enhanced degree of (re-)configurability
and robustness/tolerance with respect to the uncertainty of the technology plat-
form. For this reason, switch architectures cannot be compared any more only
in terms of their microarchitectural parameters, but especially in terms of sup-
port or lack of support for such advanced features. The GP-NaNoC switch
integrates design methods especially targeted to runtime configurability and
reconfigurability of the routing function, to fault-tolerance (permanent faults,
transient faults, intermittent faults) and to testing. The GP-NaNoC switch
can therefore target the advanced system management requirements of gen-

215

CHAPTER 7. CO-OPTIMIZED DESIGN METHODS FOR GENERAL

PURPOSE SYSTEM

eral purpose systems such as selective power down of unused or overheated
regions, disconnection of malfunctioning components and links, and/or net-
work partitioning and possibly isolation. The proposed switch has provisions
for event notification to a central manager and a complete system infrastruc-
ture is provided to disseminate reconfiguration commands of the distributed
routing logic.

In the next chapter, the GP-NaNoC switch will serve for demonstrating on
FPGA the capability of a general purpose NoC to perform boot-time testing,
runtime detection of faults, runtime reconfiguration of the routing function and
dynamic virtualization.

216

8
The FPGA Demonstrator

TODAY the converging trend toward multifunction integrated architec-
tures is slowed down by the lack of a proper runtime reconfiguration
framework of the on-chip interconnect. A runtime reconfiguration is

needed whenever the occurrence of events at runtime causes the need for a
different resource allocation, such as in the cases for graceful degradation of
system performance, power management, thermal control, etc. This thesis has
been focused on developing design methods to introduce such a dynamism into
the on-chip network. This chapter reports about the prototyping of such design
methods on a Xilinx Virtex-7 FPGA. Boot-time testing and configuration, run-
time detection of faults, runtime reconfiguration of the routing function, dy-
namic virtualization of the interconnect fabric are especially validated on the
FPGA prototype, where a 4x4 multi-core system has been implemented and
managed. The advanced form of platform control is achieved via hardware/-
software co-design and co-optimization.

8.1 Introduction

NoC design principles have recently reached a stage where they start to stabi-
lize, in correspondence to their industrial uptake. In fact, NoCs are an indis-
putable reality since they implement the communication backbone of virtually
all large-scale system-on-chip (SoC) designs in 45nm and below.

On the other hand, the requirements on embedded system design are far from
stabilizing and an unmistakable trend toward enhanced reconfigurability is
clearly underway. Reconfigurability of the HW/SW architecture would in fact
enable several key advantages, including on-demand functionality, on-demand
acceleration, shorter time-to-market, extended product life cycles and low de-
sign and maintenance costs. Supporting different degrees of reconfigurabil-

217

CHAPTER 8. THE FPGA DEMONSTRATOR

ity in the parallel hardware platform cannot be however achieved with the
incremental evolution of current design techniques, but requires a disruptive
and holistic approach, and a major increase in complexity. At the same time,
fault tolerance was previously an issue only for specific applications such as
aerospatial. Today, due to the increased variability of components and breadth
of operating environments, reliability becomes relevant to mainstream appli-
cations. Similarly, new reliability challenges cannot be solved by using tradi-
tional fault tolerance techniques alone: the reliability approach must be part of
the overall reconfiguration methodology.

In the highly parallel landscape of modern embedded computing platforms,
the system interconnect serves as the framework for platform integration and
is therefore key to materializing the needed flexibility and reliability properties
of the system as a whole. Therefore, time has come for a major revision of
current NoC architectures in the direction of increased reconfigurability and
reliability.

In addition, a key property that novel NoCs cannot miss is to guarantee a po-
tentially fast path to industry, since NoC deployment is today a reality. An
important requirement for this purpose is the efficient testability of candidate
NoC architectures. This property is very challenging due to the distributed na-
ture of NoCs and to the difficult controllability and observability of its internal
components. When we also consider the pin count limitations of current chips,
we derive that NoCs will be most probably tested in the future via built-in
self-testing (BIST) strategies.

Finally, there is an increasing need in embedded systems for implementing
multiple functionalities upon a single shared computing platform. The main
motivation for this are the constraints set for systems size, power consumption
and/or weight. This forces tasks of different criticality to share resources and
interfere with each other. Integration of multiple software functions on a sin-
gle multi- and many-core processor (multifunction integration) is the most ef-
ficient way of utilizing the available computing power. For a mixed-criticality
multifunction integration, the NoC should be augmented to support partition-
ing and isolation, so that software functions can be protected from unintended
interferences coming from other software functions executing on the same
hardware platform. This feature is a key enabler for the virtualization of em-
bedded systems, that is, an effective and clean way of isolating applications
from hardware.

This chapter reports on the first-time prototyping of a Network-on-Chip capa-
ble of supporting all of the advanced features described above. The presented

218

8.1. INTRODUCTION

prototype builds on the GP-NaNoC switch (i.e., the outcome of the design
methods presented in this thesis) and raises the level of abstraction to the net-
work as a whole. Then, it validates the (re-) configuration capabilities that
preserve safe network operation in the presence of wanted (e.g., virtualization)
and unwanted (e.g., manufacturing defects, intermittent faults) effects. The
prototyped system implemented inside the FPGA is a homogeneous multicore
processor, which resembles programmable hardware accelerators of hierarchi-
cal, high-end embedded systems, or basic computation clusters of many-core
processors. The validated design methods include:

• Boot-time testing and diagnosis of the 4x4 2D mesh NoC, targeting per-
manent faults;

• Switch-level and network-level fault-tolerance, targeting transient faults
and intermittent faults (i.e., those faults that rapidly anticipate the break-
down of links or switch components);

• Runtime reconfiguration of the network routing function, with logic-
based distributed routing as the underlying routing mechanism. The
validated reconfiguration procedures are twofold: at boot-time, without
background traffic, and at runtime, with background traffic.

• Dynamic virtualization, i.e., partitioning of the whole NoC into isolated
partitions running different applications.

The rest of the chapter is organized as follow. The prototyping platform is rep-
resented by the Xilinx Virtex-7 evaluation board named VC707, described in
Section 8.2. The high-level view of the platform can be found in Section 8.3.
This section provides an overview of the design-flow for platform implemen-
tation; then it presents the basic components adopted in the demonstrator that
is composed of a NoC-based system and a supervision system; finally it de-
scribes the application and the reconfiguration algorithm running respectively
on top of these latter systems. Next, Section 8.4 validates the boot-time test-
ing and configuration while Section 8.5 demonstrates runtime reconfiguration
of the routing function upon transient failures. These sections also highlight
the fault-tolerant protocol exploited by the dual-network for control signaling.
Last, Section 8.6 describes the dynamic virtualization of the interconnect fab-
ric and Section 8.7 presents the conclusions.

219

CHAPTER 8. THE FPGA DEMONSTRATOR

Figure 8.1: VC707 baseline prototyping board.

8.2 FPGA Platform

The target system to prototype is overly complex, hence calling for high-end
FPGAs and development boards, not to incur integration capacity limits.

The Virtex-7 FPGA VC707 Evaluation Kit was selected for our task. It is a
full-featured, highly-flexible, high-speed serial base platform using the Virtex-
7 XC7VX485T-2FFG1761C and includes basic components of hardware, de-
sign tools, IP, and pre-verified reference designs for system designs that de-
mand high-performance, serial connectivity and advanced memory interfac-
ing. The included pre-verified reference designs and industry-standard FPGA
Mezzanine Connectors (FMC) allow scaling and customization with daugh-
ter cards. The XC7VX485T FPGA features 485760 logic cells, 75900 CLB
slices, 2800 DSP slices, 37080 kb of block RAM, 14 total I/O banks and 700
max. user I/O.

The key features of the evaluation board (see Figure 8.1) are as follows:

• GA VC707 Evaluation Kit: ROHS compliant VC707 kit including the
XC7VX485T-2FFG1761 FPGA

• Configuration: Onboard JTAG configuration circuitry to enable config-
uration over USB, JTAG header provided for use with Xilinx download
cables such as the Platform Cable USB II, 128MB (1024Mb) Linear BPI
Flash for PCIe Configuration, 16MB (128Mb) Quad SPI Flash.

• Memory: 1GB DDR3 SODIMM 800MHz / 1600Mbps, 128MB
(1024Mb) Linear BPI Flash for PCIe Configuration, SD Card Slot, 8Kb

220

8.3. THE SYSTEM UNDER TEST

IIC EEPROM.

• Communication and Networking: GigE Ethernet RGMII/G-
MII,SGMII, SFP+ transceiver connector, GTX port (TX, RX) with four
SMA connectors, UART To USB Bridge, PCI Express x8 gen2 Edge
Connector (lay out for Gen3).

• Display: HDMI Video OUT, 2 x16 LCD display, 8X LEDs.

• Expansion Connectors: FMC1 - HPC (8 XCVR, 160 single ended or
80 differential, user-defined pins), FMC2 - HPC (8 XCVR, 116 single
ended or 58 differential user-defined pins), Vadj supports 1.8V, IIC.

• Clocking: Fixed Oscillator with differential 200MHz output used as
the system clock for the FPGA, programmable oscillator with 156.250
MHz as the default output, default frequency targeted for Ethernet ap-
plications but oscillator is programmable for many end uses, differential
SMA clock input, differential SMA GTX reference clock input, Jitter at-
tenuated clock used to support CPRI/OBSAI applications that perform
clock recovery from a user-supplied SFP/SFP+ module.

• Control and I/O: 5X Push Buttons, 8X DIP Switches, Rotary Encoder
Switch (3 I/O), AMS FAN Header (2 I/O).

• Power: 12V wall adapter or ATX, Voltage and Current measurement
capability.

• Debug and Analog Input: 8 GPIO Header, 9 pin removable LCD, Ana-
log Mixed Signal (AMS) Port.

8.3 The System Under Test

An ambitious Virtex 7 FPGA-based platform was conceived for this reserach
project. The high-level view of the design can be found in Figure 8.2.

The system comprises a large number of components within the FPGA. As can
be seen on the left side of the diagram, a relatively standard Xilinx subsystem
is instantiated first; this comprises an AXI interconnect linking together a Mi-
croBlaze (to run the supervision software), a small memory and an external
DRAM controller, and several peripheral controllers required to run software
on the MicroBlaze and to communicate with a laptop.

221

CHAPTER 8. THE FPGA DEMONSTRATOR

A
X

I B
u

s

Supervisor
MicroBlaze

Memory

DRAM
Controller

Interrupt
Controller

UART

Debug
Module

Timer

GPIO

FPGA

Dual NoC
Receiver

Dual NoC
Driver

Traffic
Sniffers

M

M S

S

S

S

S

S

S

S

S

= Xilinx IP = NaNoC IP

Main NoC

Dual NoC

μB μB μB μB

μB μB μB μB

μB μB μB μB

μB μB μB μB

Progr.
Fault

Injector

NI NI NI NI

NI NI NI NI

NI NI NI NI

NI NI NI NI

Figure 8.2: FPGA platform overview.

The right side of the diagram depicts the components that have been proposed
in this thesis, including some that were specially developed for the FPGA pro-
totype and will be presented in this chapter. This part of the system is the
“Device Under Test” (DUT) of the platform, whose functionality is to be veri-
fied. It comprises mainly:

• The main NoC, built as a 4x4 mesh of the GP-NaNoC switch architec-
ture presented in the previous chapter.

• The dual NoC, built as a chain that follows the topology of the main
NoC. The dual NoC is in charge of configuring the main NoC and of
collecting status information (e.g. fault detections) from the main NoC.

• At each node of the main NoC (see also Figure 8.4), a MicroBlaze and
a memory (by Xilinx) are connected to the switch by means of Network
Interfaces. The MicroBlaze NI has an AMBA AXI NI while the memory
is given an AMBA AHB NI.

• Two special blocks have been designed in this thesis to connect the dual
NoC to the supervision subsystem. These blocks allow the supervision

222

8.3. THE SYSTEM UNDER TEST

MicroBlaze to receive notifications by the dual NoC, and to reprogram
it.

• A sniffer module monitors traffic along all links of the main NoC mesh,
computing link utilization. It is designed so that the supervision subsys-
tem can probe it at regular intervals and transfer its contents towards a
user’s laptop.

• A fault injection module has been instantiated along a mesh link. This
simple module, connected to a physical button on the FPGA board, pro-
vides a method to inject faults on that link to test the platform’s fault
tolerance and the NoC reconfiguration capability.

To build this platform, we proceed in steps (Figure 8.3). First, we instantiate
within Xilinx Platform Studio (XPS) a complete design comprising all the su-
pervision subsystem, the 16 additional MicroBlazes, and the corresponding 16
memories. At this stage, no NoC is instantiated yet. Using XPS for this task
allows us to efficiently connect and configure all the Xilinx blocks, and facil-
itates the instantiation of the toplevel HDL files. Additionally, this makes it
possible to subsequently load the applications into all 17 MicroBlazes’ mem-
ories, and to debug those processor step-by-step, directly through the Xilinx
toolchain, which is Eclipse-based. After the first pass of synthesis, however,
we remove from the design the Xilinx AXI subsystem which is connecting
the 16 additional MicroBlazes and memories, and swap in the NoC (main and
dual) in its place. We then proceed to finish the implementation flow within
Xilinx ISE by performing mapping, placement and routing, and generating the
final bitstream.

We leverage some key features of the Virtex 7 board, apart from the FPGA
chip. The on-board DRAM is used to provide sufficient space for the software
running on the supervision MicroBlaze to work. Physical buttons and switches
of the board are connected to an on-chip GPIO controller to allow the user to
interact with the platform. Finally, a laptop can be connected to the board by
means of two cables to monitor the platform’s operation; one cable carries se-
rial port signals (piggybacked onto a USB port) and the other carries JTAG
signals (also piggybacked onto a USB port). The former is used to read the
board’s outputs, while the latter allows for programming the board and inter-
actively debugging the on-FPGA MicroBlazes. An Ethernet cable had initially
been considered instead of the serial interface, in light of its higher throughput,
but the Ethernet PHY of the board was found to be defective.

223

CHAPTER 8. THE FPGA DEMONSTRATOR

Platform
Instantiation

Netlist
Generation

Manual
Toplevel
Editing NoC RTL

Netlist
Generation

Map, Place,
Route,

Bitstream Gen

In Xilinx Platform Studio (XPS)

In Xilinx Integrated
Synthesis Environment (ISE)

Figure 8.3: Design flow for platform implementation.

Custom-written software runs in three locations of the system: on the supervi-
sion MicroBlaze, on the 16 MicroBlazes connected to the main NoC, and on
the external laptop.

• The software on the supervision MicroBlaze is tasked with oversight of
the main NoC and data NoC, with regular polling of the Traffic Sniffers,
and with interfacing with the external world through the serial interface.

• The 16 MicroBlazes connected to the mesh run micro-benchmarks de-
veloped in this thesis. These micro-benchmarks have the main role of
generating traffic on the mesh, so that the various platform features
can be tested. Real functional behaviour was implemented: the nodes
perform pipelined matrix multiplications, exchanging data in producer-
consumer fashion. More advanced applications could not be imple-
mented due to the lack of I/O interfaces on these nodes and due to lack
of memory to instantiate a full C library.

• The user’s laptop is connected to the board through a JTAG-over-USB
cable and a serial-over-USB cable. The former can be leveraged mainly
by the Xilinx toolchain, allowing for board programming and debug-

224

8.3. THE SYSTEM UNDER TEST

Figure 8.4: Basic components of the on-chip network.

ging. The latter is monitored to display in real-time the platform status
and link utilization.

8.3.1 Basic components: the on-chip network

A 4x4 mesh with one core and one memory per switch has been chosen as
target on-chip network of the FPGA platform. In particular, Figure 8.4 repre-
sents the basic components instantiated to realize the 4x4 mesh. A MicroBlaze
and a memory are connected to each switch through two Network Interfaces.
Finally, a sniffer is placed on each bidirectional network link to monitor the
network traffic. The sniffers collect information about the traffic crossing the
switch-to-switch and NI-to-switch links and deliver such information to the
global manager (i.e., the supervision MicroBlaze).

Both the NIs and the switches have been designed ad-hoc to support the target
on-chip network where fault-tolerance, testing capability and reconfigurability
features are guaranteed.

Note that the MicroBlaze also includes a directly-connected BRAM of 128 kB
(not shown in the figure) to store its application software; loading the binary

225

CHAPTER 8. THE FPGA DEMONSTRATOR

image of the application into the AHB memory would be unnecessarily prob-
lematic from the toolchain viewpoint. However, we explicitly use the AHB
memory as storage and for inter-processor communication in the application
(Section 8.3.4).

The Network Interfaces

We instantiate two types of NIs: an AXI initiator NI to interface with the
MicroBlaze, and an AHB target NI to interface with the memory. This choice
was deliberate (e.g., both could have been AXI) to demonstrate interoperability
among the two.

Due to the relatively simple needs of the MicroBlaze core, which does not
support multiple transaction IDs, we save area by instantiating a small AXI
initiator NI with support for only one such ID. However, the NI is still sup-
porting all AXI features. Both AXI and AHB NIs, and their interoperability,
were extensively tested in RTL and on the FPGA.

For integration into the platform, a few tweaks to the NI were needed:

• NIs embed routing tables to statically perform source routing. In this
platform, routing is distributed and reconfigurable to work around faults
or to enforce virtualization. Therefore, the routing tables are modified to
instead encode the XY coordinates of the destination core; these will be
processed at the switches. The coordinates are expressed as strings of 9
bits: 4 bits for each coordinate (slightly overprovisioned for a 4x4 mesh)
plus one bit to differentiate among the two local cores at each node, i.e.
MicroBlaze and memory.

• The input and output buffers of the NIs are extended to support the
NACK-GO flow control protocol used by the GP-NaNoC switches pro-
posed in this thesis.

• The AXI initiator NIs are extended with two extra pins, directly con-
nected to FPGA pads, in turn connected to physical switches of the
FPGA board. This means that the user, manually flipping those switches,
can change the value of two bits inside each NI. The NI in turn exposes
these two bits to the MicroBlaze at the reserved address 0x11000000.
The MicroBlaze can poll this location to change among operating
modes, e.g. staying idle, or executing one of multiple pre-programmed
applications. As can be inferred from Figure 8.2, note that in the plat-

226

8.3. THE SYSTEM UNDER TEST

form, the 16 MicroBlazes attached to the mesh have no way to commu-
nicate with the external world except for this facility (although 7 of them
are also connected to the Debug Module - see Section 8.3.2).

The switch

The GP-NaNoC switch architecture adopted in this work is an extension of the
GP-NaNoC switch presented in the previous chapter. The switch implements
logic-based distributed routing (LBDR [152]), relies on wormhole switching
and implements both input and output buffering. The crossing latency is thus 1
cycle in the link and 1 cycle inside the switch. This section briefly summarizes
the key features of the switch together with the extensions introduced to meet
the target FPGA platform requirements.

Routing logic extension. As previously mentioned, the switch implements
logic-based distributed routing by means of LBDR logic modules. The LBDR
modules natively support a single core per switch. Thus this latter logic had
been extended for the target FPGA platform where two cores belong to each
switch, a MicroBlaze and a memory.

In principle, the LBDR selection logic computes the destination output port
by reading the destination address information contained in the header flit of
each packet. In particular, the LBDR logic performs a comparison between
the destination address (Dest ID) and the local switch ID (Local ID). When
the local switch ID matches the destination address, the packet is forwarded
to the local port (i.e., to the core). However, the FPGA platform is enhanced
with two nodes per switch thus each switch integrates two local ports. As a re-
sult, further information must be added to the incoming destination address of
the header flit and the LBDR logic must be extended to determine whether the
packet should be routed to the first or the second local port. The destination ad-
dress information has been extended by 1 bit (Core Flag). The additional bit
is exploited to determine the target core at the destination switch. If Dest ID

matches Local ID , the Core Flag bit is used to distinguish between the two
local ports. Figure 8.5 shows the logic gates added to the native LBDR logic.

8.3.2 Basic components: the supervision subsystem

In order to demonstrate the NoC functionality, a supervision subsystem is re-
quired. We choose to instantiate it within Xilinx Platform Studio, and using as

227

CHAPTER 8. THE FPGA DEMONSTRATOR

Figure 8.5: LBDR routing logic extension for two cores per switch support.

many Xilinx IP cores as possible, for convenience. The subsystem (see Fig-
ure 8.2) includes a Xilinx AXI interconnect, with two masters (a Microblaze
and the Dual NoC Receiver) and numerous AXI, AXI Lite and AHB slaves.

At the heart of this subsystem is a Microblaze running software developed in
this thesis. This software is tasked with:

• Probing the status of the NoC, e.g. after BIST and upon fault occur-
rences.

• In response to the above, configuring or reconfiguring the NoC.

• Awaiting for possible user requests to reconfigure the NoC in a virtual-
ized manner.

• In response to the above, reconfiguring the NoC.

• Polling the link sniffers periodically to monitor activity on the NoC
links.

• Transferring key information about the platform’s functioning outside
the FPGA through the serial port (or, potentially, an Ethernet port).

To perform these actions, multiple support controllers and devices are needed.
First of all, since the supervision software and the required underlying C li-
brary have a non-negligible footprint, incompatible with on-chip resources, a
DRAM controller is advisable to be able to store the software. To support the
basic functionality of the Xilinx C library, a timer and an interrupt controller
must also be present. (Note that, in contrast, the 16 Microblazes connected
to the NoC mesh do not have access to external memory, timer or interrupt
controller; this limits the capabilities of the software that can be run on those).

In order to monitor the NoC, it is necessary for the Microblaze to be able
to access the dual NoC. This is done via three components plugged to the

228

8.3. THE SYSTEM UNDER TEST

AXI bus: a Dual NoC Driver, a Dual NoC Receiver, and a memory. The
first two blocks have been designed in this thesis to exchange packets in the
specific format expected by the dual NoC. The Microblaze can directly write
to the Dual NoC Driver, which is a slave on the AXI bus, to program the
main NoC. Due to the way the dual NoC was designed, the reverse operation
cannot be done with a read to the same device; instead, whenever there is a
message requiring attention (e.g., upon BIST completion or fault detection),
the dual NoC sends a packet to the Dual NoC Receiver, which converts it into
an AXI transaction directed at the on-bus memory (a standard Xilinx core).
The Microblaze can periodically poll this memory to check all notifications.

To supervise the NoC activity, the Microblaze can also poll the Traffic Snif-
fers. These blocks can be connected to up to 16 links of the main NoC on
one side, and to the AXI bus on the other. For maximum thoroughness, we
choose to monitor as many as 80 links of the NoC (almost all, disregarding
just a few whose information is redundant), with five Traffic Sniffers in paral-
lel. The sniffers include a counter that is incremented at the passage of any flit;
whenever the counter is read by the MicroBlaze, it automatically resets itself.
A simple division yields a utilization metric.

Finally, the FPGA needs external interfaces. First of all, a GPIO controller
allows the Microblaze to periodically check the status of a few physical but-
tons and switches on the FPGA board. This allows the user to change oper-
ating modes of the platform; for example, we use this feature to instruct the
software on the Microblaze to initiate the reconfiguration to get into virtual-
ized application mode. Two extra blocks are used to communicate with the
user’s computer. A UART controller is an output-only interface that allows
the platform to transfer information to the laptop. A debug module, relying
on a JTAG-over-USB electrical connection, allows for bidirectional commu-
nication: the user can program the supervision Microblaze, step through its
software, and check the content of certain on-FPGA registers and memories.
Since the debug module allows for monitoring of up to 8 Microblazes, we con-
nect it to the supervision Microblazes and to selected 7 other Microblazes out
of the 16 attached to the main NoC mesh.

8.3.3 Basic components: the reconfiguration algorithm

The supervisor MicroBlaze is constantly monitoring the status of the NoC
through the dual NoC. Whenever a notification is received about a fault on
a link, if deemed necessary (e.g. unless it is assumed to be a transient), the
supervisor triggers the reconfiguration algorithm. This algorithm computes

229

CHAPTER 8. THE FPGA DEMONSTRATOR

Figure 8.6: The matrix multiplication at work.

the required changes in the LBDR bits at specific switches in order to migrate
from the current routing algorithm to a new one that avoids the use of the
notified link. The algorithm is a simple access to two precomputed tables con-
taining all the changes for every possible link failure. Those bits are encoded
and transmitted through the dual NoC together with a triggering notification
to switches to launch the reconfiguration process (the generation of tokens and
their advance through the network).

8.3.4 The application

The MicroBlazes have been programmed in order to start their application after
the 4x4 mesh is configured, upon flipping a physical switch on the board. The
application run by the MicroBlazes is a matrix multiplication consisting of the
product of a pair of matrices. The MicroBlazes sequentially forward the results
to each other in a pipelined producer-consumer fashion. Each MicroBlaze
performs the multiplication of a private matrix and a matrix delivered by the
previous MicroBlaze of the sequence. Once the matrix product is computed
the resulting matrix is forwarded to the next MicroBlaze. The lack of I/O
interfaces and memory does not allow the implementation of more advanced
applications.

The private matrix (mat private) is stored by each Microblaze into its local
(pertaining to its local switch) AHB scratch memory of 4kB and it is simply
initialized as follows:

230

8.3. THE SYSTEM UNDER TEST

for (row = 0; row < LINES; row ++)
for (column = 0; column < LINES; column ++)
(*mat_private)[row][column] = row + column;

Notice that the matrix size can be tuned by means of the LINES parameter.
Moreover the same matrix multiplication can be set to run for a specific num-
ber of times or in an endless fashion. The AHB memory is used as storage and
for inter-processor communication in the application. Indeed the incoming
matrix from the previous Microblaze (mat input) is stored in the AHB mem-
ory connected to the local switch. Each MicroBlaze stores its matrix product
result (mat output) into the AHB memory connected to the switch to which
the next MicroBlaze of the sequence is connected. The first MicroBlaze of
the pipeline initializes its own local AHB memory before performing the ma-
trix product. Each MicroBlaze has local registers storing the address of the
local AHB memory, the addreses of the remote AHB memory of the next Mi-
croBlaze, the position within the pipeline, and the pipeline length. Figure 8.6
depicts the application at work.
The application run by each Microblaze is simply the following:

for (i = 0; i < LINES; i ++)
for (k = 0; k < LINES; k ++) {
(*mat_output)[i][k] = 0;
for (j = 0; j < LINES; j ++)
(*mat_output)[i][k]+=(*mat_input)[i][j]*(*mat_private)[j][k];
}

In order to guarantee the synchronism between the MicroBlazes, custom
semaphores are implemented. Interestingly, these are purely software and do
not need dedicated hardware support. Such a solution slightly increases the
complexity of the code but clearly simplifies the hardware design effort and the
area overhead. Of course this approach is possible only since the application
is fixed and known upfront; more sophisticated synchronization capabilities
would demand hardware-level atomicity support.

The goal of these semaphores is to avoid reading the same incoming matrix
multiple times, and to avoid overwriting output matrices before the next Mi-
croBlaze has been able to process them. Each MicroBlaze has been enhanced
with 4 semaphores:

• Semaphores read is stored in the local AHB memory. It is polled
(and therefore set) by the local MicroBlaze, while it is reset by the next
MicroBlaze of the sequence to notify that it is available to receive new
input. As soon as polling reveals that the semaphore is reset, the local

231

CHAPTER 8. THE FPGA DEMONSTRATOR

Figure 8.7: The semaphores of the matrix multiplication application.

MicroBlaze can forward the matrix product result to the next MicroB-
laze.

• Semaphores write is stored in the local AHB memory. Similarly to
the previous semaphore, it can be polled and set by the local MicroBlaze
while it is reset by the previous MicroBlaze of the sequence to notify that
a new input matrix is incoming.

• Semaphores readprev is stored in the AHB memory of the previous
MicroBlaze. The current MicroBlaze resets it as soon as it has read the
matrix incoming from the previous MicroBlaze.

• Semaphores writenext is stored in the AHB memory of the next Mi-
croBlaze. The current MicroBlaze reset it as soon as it has forwarded
the matrix product result to the next MicroBlaze.

Notice that semaphores to be polled have been placed in the local AHB mem-
ory in order to reduce congestion in the network. Figure 8.7 shows the
semaphores location.

Since hardware support to semaphores has not been implemented, special
care was devoted to guarantee the proper semaphore initialization. Indeed
Semaphores write and Semaphores readprev needs to be respectively
initialized to 1 and 0. Also, semaphore initialization must occur in synchro-
nism otherwise the first MicroBlaze could start operations before the next Mi-
croBlaze is actually ready. Thus, the initialization sequence progresses in re-
verse order with respect to the pipeline: each MicroBlaze only initializes its

232

8.3. THE SYSTEM UNDER TEST

own semaphores once the semaphores of the next MicroBlaze have been al-
ready initialized. The last MicroBlaze of the pipeline is therefore the first
allowed to initialize itself, while the first will be the last. This ensures that
the matrix multiplication starts only when all the MicroBlazes are properly
initialized.

8.3.5 The physical platform implementation

Some steps of the implementation flow described in Figure 8.3 can be paral-
lelized; for example, the initial platform description involves several blocks
which can be independently synthesized in parallel. Even after joining all the
pieces together, the mapping stage can be run on two threads in the Xilinx
toolchain, and the placement and routing in four. Despite this, we measure
end-to-end flow runtimes of about 7 hours on a dual-chip Opteron 6378 (16
threads/core) server with 128 GB of RAM. We observe peak memory utiliza-
tion close to 10 GB during implementation. The layout of the platform imple-
mentation can be seen in the screenshot of Figure 8.8.

The platform fills the FPGA almost completely, as can be seen in Table 8.1.
The left column reports the utilization when the template system generated
in XPS is implemented, the right one is for the same system where the NoC,
dual NoC and associated NaNoC IP (e.g. sniffers, dual NoC interface blocks,
etc.) have been instantiated to replace the simple AXI interconnect. It can
be seen that the NoC represents approximately 17% of the FPGA’s sequential
resources and 66% of the combinational resources (or a little bit more, since
this is the overhead on top of the default bus); it does not occupy any BRAM
nor require external pins.

Due to development timing constraints, no specific optimizations could be
taken to reduce the area of the design; given the large number of blocks and the
redundancy features (e.g. triplication of some components, BIST, datapath en-
coding) built into the NoC, we perceive the resource utilization figures as very
positive. Note that triplicated logic in the adopted switch has to be marked
with special annotations embedded in the RTL, otherwise the Xilinx synthesis
tools would detect it as redundant and prune it away.

The design is not aimed at, and not optimized for, high performance. The very
high resource utilization features also impose a significant timing overhead as
routing necessarily becomes more convoluted and less efficient. We record
a maximum operating frequency of 38 MHz; the critical path is in the BIST
logic of the switch.

233

CHAPTER 8. THE FPGA DEMONSTRATOR

Figure 8.8: Layout of the full FPGA design. Green: data NoC; red: Network Inter-
faces; yellow: dual NoC; cyan: MicroBlazes and other logic.

Resource utilization Supervisor subsystem only Full platform
Slice Registers 5% 22%
Slice LUTs 16% 88%
IOs 20% 20%
36-bit BRAMs 61% 61%

Table 8.1: Resource utilization of the Virtex 7 chip.

234

8.4. VALIDATING BUILT-IN SELF-TESTING AND NOC CONFIGURATION

8.4 Validating Built-in Self-Testing and NoC configu-
ration

In order to validate the Built-in Self-Testing implemented in the 4x4 mesh, a
permanent failure was forced in the network by hard-wiring to zero a link wire.
In this implementation, the failure was injected in the link between switch 11
and 10. However, it could have been freely injected in different locations since
the 4x4 mesh has been based on a switch that guarantees around 97% of stuck-
at-fault coverage.

(a) Cooperative BIST Procedure. (b) Test result notification.

(c) Supervisor polls the memory and com-
putes configuration bits

(d) Network configuration

Figure 8.9: Built-in-Self-Testing at work.

As soon as the FPGA board is booted the BIST automatically starts and the
switches cooperatively exchange test patterns as shown in Figure 8.9(a). When

235

CHAPTER 8. THE FPGA DEMONSTRATOR

the BIST procedure is completed, the BIST managers integrated in each switch
send to the dual NoC the diagnosis information related to the switch they be-
long to. In the FPGA platform under test, the BIST manager of Switch 10
reveals an error on its East input channel where the error has been injected.
Thus it notifies the dual NoC, which takes care of delivering all the BIST di-
agnosis information to the global manager (i.e., the supervision MicroBlaze).
In particular, the diagnosis information crosses the dual NoC and the Dual
NoC Receiver before being stored in the memory connected to the supervision
subsystem (Figure 8.9(b)).

The supervision MicroBlaze has been programmed to periodically check for
dual NoC notifications by polling the control bus memory (Figure 8.9(c)).
It recognizes when the BIST notification information has been stored in the
memory (i.e., the BIST procedure is completed) and it runs the configuration
algorithm described in Section 8.3.3. Thus, it computes configuration bits able
to guarantee deadlock-free routes despite the failed link. The configuration
bits are sent to the Dual NoC Driver through the AXI bus. They cross the dual
NoC and configure the routing mechanism of each switch (Figure 8.9(d)).

8.4.1 Protocol for BIST notification and configuration

The 4x4 mesh is properly configured only once the configuration bits are sent
twice by the supervision MicroBlaze. The exchanged information follows a
sophisticated protocol envisaged to meet multiple requirements:

• The dual NoC is a highly simplified version of the main NoC. The in-
formation travels in small packets composed of 2 or 3 flits as a function
of the notification type. Only head and tail flits are required when a
notification related to transient errors is delivered.

• The information must be exhaustive in order to allow the supervision
MicroBlaze to take a wide range of diagnosis and recovery actions. As
an example, it should be able to identify the kind of fault (fault type)
that has occurred (permanent or transient) and the address of the failed
switch (address sender).

• The notification information should be able to pinpoint the exact loca-
tion of the error inside the switch (bist result) to enable an effective
network configuration.

• The protocol must be intrinsically fault tolerant to guarantee a reliable

236

8.4. VALIDATING BUILT-IN SELF-TESTING AND NOC CONFIGURATION

communication. Thus, the information is sent multiple times or encoded
within the packets.

• The configuration bits generated by the supervision MicroBlaze must
match the specifications of the switch routing mechanism (Sec-
tion 8.3.1).

In the case of BIST notification and configuration the protocol consists of 4
phases. In the first phase, the switches notify the BIST results by means of
three 22-bit flits with the following format:

Head:

flit type(2), priority(2), address sender(8), unused(10);

Body:

flit type(2), fault type(2), ctrl(2), bist result(10), unused(6);

Tail:

flit type(2), ctrl ng(2), fault type ng(2), bist result ng(10), unused(6);

Note that the tail flit contains the body information in its negated ver-
sion for fault tolerance reasons.

During the second phase, the supervision MicroBlazes sends the configuration
bits in compliance with the LBDR specification by means of three flits per
switch:

Head:

flit type(2), priority(2), address receiver(8), unused(10);

Body:

flit type(2), ctrl(2), lbdr configuration(18);

Tail:

flit type(2), lbdr configuration(20);

In the third phase, the switches forward back to the MicroBlaze the
configuration information just received following the same above reported
format.

In the last phase, the MicroBlaze checks the incoming information to ensure
that the configuration information delivered in the second phase has been cor-
rectly received by the switches. If the delivery is confirmed as safe, the Mi-
croBlaze notifies the switches by sending for the second time a replica of the
second phase information.

237

CHAPTER 8. THE FPGA DEMONSTRATOR

Once the 4 phases have been executed, the 4x4 mesh is configured and the
matrix multiplication application described in Section 8.3.4 can run properly.

8.5 Validating Fault Detection and NoC Reconfigura-
tion

(a) Transient fault injection. (b) Fault detection notification.

(c) Notification of network reconfiguration. (d) Overlapped static reconfiguration (OSR-
Lite) at work.

Figure 8.10: Transient fault detection and reconfiguration.

Once the network has been tested and permanent faults have been detected

238

8.5. VALIDATING FAULT DETECTION AND NOC RECONFIGURATION

and tackled by the off-line configuration, the system can be still affected by
run-time transient and intermittent faults. Such faults cannot be handled by
off-line strategies as they appear and disappear unpredictably. As a result,
the network has been designed as fault tolerant to satisfy the high reliability
constraints imposed by modern systems. In particular, the fault-tolerant flow
control protocol (NACK/GO) is used on the data path to notify error detection
and trigger data retransmissions. Although this protocol has been primarily
designed to tackle SEUs (Single Event Upset), the system is also able to tackle
physical effects such as wear-out. Indeed wear-out effects end up in permanent
faults but they are known to have a gradual onset. In practice, frequent transient
faults affecting the same circuitry denote the possible onset of a permanent
fault. Before this happens, the network routing function could be modified
to exclude the affected circuit from communication traffic. NACK/GO lends
itself to such a policy, since its retransmission and/or voting events may be
notified to the supervision MicroBlaze which may monitor the distribution and
frequency of transient faults over time and eventually take the proper course
of recovery action. This exact policy is supported and validated by the FPGA
platform.

Physical buttons and switches of the board are connected to an on-chip GPIO
controller to allow the user to interact with the platform. The physical buttons
have been leveraged to inject transient faults in the network and validate the
above mentioned fault tolerance policy. For this purpose, a fault injection mod-
ule has been instantiated along the link routed from switch 4 to 5. This module
is connected to a physical button on the FPGA board and provides a method to
inject transient faults on that link (see Figure 8.10(a)). Since the link may be
idle when the button is pressed, the fault injection module integrates a simple
FSM that waits until a valid flit is crossing the link to inject the fault, ensuring
that actual important information is corrupted. Therefore, every time the but-
ton is pushed, the error is revealed and notified to the supervision MicroBlaze
(Figure 8.10(b)).

Similarly to the procedure followed by the BIST notification described in Sec-
tion 8.4, the transient notification crosses the dual NoC and it is stored into
the control bus memory. The supervision MicroBlaze periodically polls the
memory also during run-time operations. Thus it reads the transient notifica-
tion and updates its register with distribution and frequency of transient faults
over time. Only when the number of transient notifications from the same link
reaches a threshold its recovery action taken. For the sake of the demonstra-
tion, the MicroBlaze’s software is set to run its reconfiguration procedure after
three notifications (i.e., after the button has been pushed three times). Note that

239

CHAPTER 8. THE FPGA DEMONSTRATOR

the 4x4 mesh at this stage is irregular since a link has been already disabled
due to a previously detected permanent failure. Thus, the algorithm computes
the reconfiguration bits for this irregular network and delivers them to the dual
NoC (Figure 8.10(c) and Section 8.3.3).

The new reconfiguration bits coming from the dual NoC cannot directly update
the existing routing strategy, as during off-line operations, since applications
are now running. Thus, the network implements the OSR-Lite reconfigura-
tion mechanism which avoids stopping or draining network traffic during the
transition from one network configuration to another. As described in Chapter
6, the switches of the FPGA platform start to inject tokens into the network.
The tokens follow the channel dependency graph of the old routing function
and progressively drain the network from old packets, as represented in Figure
8.10(d).

8.5.1 Protocol for transient notification and reconfiguration

As described in the case of BIST notification, also transient notification and
reconfiguration follow a sophisticated protocol able to meet the platform
requirements underlined in Section 8.4.1. The protocol consists again of 4
phases. The protocol moves to the second phase only when the switches
notify multiple times a transient fault on the same link/switch port. Otherwise,
the first phase is repeated until the notification threshold value is reached. The
transient notification is forwarded to the supervision MicroBlaze by means of
two flits with the following format:

Head:

flit type(2), priority(2), address sender(8), time info(10);

Tail:

flit type(2), fault type(2), ctrl(2), trans pos(10), unused(6);

Differently from BIST notification, the head flit contains information
about the error time occurrence (time info), which can be useful to compute
the frequency of the transient. The trans pos field pinpoints the location of
the fault within the switch.

When the number of transient notifications reaches the threshold the second
phase starts. The MicroBlaze sends reconfiguration bits following the same
format of the off-line configuration, previously described:

Head:

240

8.6. VALIDATING NOC VIRTUALIZATION

flit type(2), priority(2), address receiver(8), unused(10);

Body:

flit type(2), ctrl(2), lbdr configuration(18);

Tail:

flit type(2), lbdr configuration(20);

As during configuration, the switches forward back the reconfiguration
information to the MicroBlaze (third phase) and finally the latter sends for a
second time a replica of the reconfiguration information (fourth phase). Once
the 4 phases have been executed, the 4x4 mesh starts to inject the OSR-Lite
tokens to drain the network and migrate to the new routing strategy.

8.6 Validating NoC Virtualization

(a) (b)

Figure 8.11: Network regions before (a) and after virtualization (b). Note that the
arrows indicate the logical application flow, not necessarily the route followed by
packets. For case (b), the arrows are only indicative of partitioning, but the pipeline
sequence is in fact shuffled for verification purposes.

The 4x4 mesh of the FPGA platform is also able to support virtualization. In
order to validate such a feature, the platform is virtualized at run-time. In
particular, the network has a single region when the operations start after the
boot procedure. Thus, the same matrix multiplication application is run by all
the 16 MicroBlazes and it propagates from Switch 0 to Switch 15 in a zig-zag

241

CHAPTER 8. THE FPGA DEMONSTRATOR

fashion, as illustrated in Figure 8.11(a). Since virtualization is not in place,
packets follow the best deadlock-free path available. Note that packets do not
strictly respect the arrow of Figure 8.11(a) but they are routed in compliance
with the actual routing strategy which takes into account also the faults of
the considered scenario. If the user requires a virtualization, the network is
split in three regions, as represented in Figure 8.11(b). In this new mode, a
dedicated matrix multiplication application runs into each region and packets
are constrained to respect virtual boundaries.

(a) Notification of virtualization request. (b) Notification of network reconfiguration.

(c) Overlapped static reconfiguration (OSR-
Lite) at work.

Figure 8.12: Virtualization request and reconfiguration.

242

8.7. CONCLUSIONS

In order to enforce virtualization at the user’s request, external interfaces are
required. Dedicated physical switches on the board serve this purpose. These
are directly connected to the initiator NIs of the 16 data NoC MicroBlazes
(Section 8.3.1). All 16 MicroBlazes periodically check the status of the phys-
ical switches. When they detect a change, they transition operating mode,
interrupting the current application, reading the address map for the new ma-
trix multiplication sequence of Figure 8.11(b), and finally running the new
application.

The status of the physical switches can be polled by the supervision MicroB-
laze too, through the GPIO controller. Therefore, in parallel, the software on
the supervision MicroBlaze detects the request to get into virtualized applica-
tion mode (Figure 8.12(a)). The reconfiguration bits required to virtualize the
network are then computed and sent through the dual NoC (Figure 8.12(b)).
In particular, the routing algorithm modifies the connectivity bits of the switch
routing functions to shape the network in three virtual regions. The token
propagation of the OSR Lite reconfiguration mechanism is triggered (Figure
8.12(c)) as described in the previous section. The packets are eventually forced
to propagate within the region boundaries.

Note that the sequence of the application propagation of Figure 8.11(b) is only
indicative; if the pipeline were as depicted, communication would be strictly
point-to-point across a single hop, and virtualization would be unnecessary. To
verify its effectiveness, each of the three pipelines has been shuffled, so that
producer-consumer traffic would tend to stray out of the geometric shape of
each region, if not for virtualization enforcement. As a consequence, it has
been possible to prove that the packets do not violate the region constraints
even when the theoretical best deadlock-free path goes through a neighboring
region.

The protocol adopted to communicate the reconfiguration bits for virtualiza-
tion matches that for transient reconfiguration (Section 8.5.1). However the
protocol is 3-phase only; the first phase is missing since the reconfiguration is
triggered by external physical switches instead of by a network notification.

8.7 Conclusions

This chapter reports on the prototyping of a 16-core homogeneous multi-core
processor with a reliable, runtime reconfigurable and dynamically virtualizable
on-chip network exploiting the design methods proposed in this thesis. The
prototyped system has been successfully validated in its capability of boot-

243

CHAPTER 8. THE FPGA DEMONSTRATOR

time testing and configuration, transient or intermittent fault detection, runtime
reconfiguration of the routing function, and dynamic partitioning and isolation
proving the effectiveness and the maturity of the proposed design methods.

The validated NoC prototype is a key enabler for the future evolution of em-
bedded systems. First, it enables the integration of multiple software functions
on a single multi- and many-core processor (multifunction integration). This
is the most efficient way of utilizing the available computing power. Second,
the proposed design methods enable advanced forms of platform control, es-
pecially power management and thermal control. In fact, parts of the network
can be easily powered off, while preserving its global functionality and guar-
anteeing safe transitions between network configurations. Third, the proposed
technology paves the way for an effective graceful degradation of the system
in the presence of permanent and intermittent faults. The routing function can
be reconfigured at runtime to avoid faulty links and switches. Finally, a com-
prehensive reliability framework has been set into place, from switch-level
to network-level, while covering all design aspects (e.g., reliable control sig-
naling) and effectively co-optimizing different architectural features together
(fault-tolerance, testing, runtime reconfiguration, control signaling).

244

9
Conclusions

TODAY, microelectronic system design, as never before, is evolving un-
der the influence of its two main drivers, the broadening complexity

of applications and the opportunities along with the uncertainties of
nanoscale technologies. On one hand, while technology is providing unprece-
dented levels of system integration, it is also also bringing new severe concerns
(overheating, power budget, permanent and transient faults). On the other
hand, the complexity of applications calls for large-scale SoCs and support
for an increasing number of functionalities that must be materialized by ad-
vanced interconnect fabric providing high communication bandwidth together
with an enhanced degree of dynamism and flexibility.

NoCs, as mainstream industrial interconnect solution, are generally believed
to be the answer to such challenges. However relevant parameters such as sup-
ported topologies, switching technique, flit size, buffering styles, supported
routing algorithms, etc. cannot longer represent the key differentiation be-
tween network-on-chip architectures. On the contrary, we are at the stage
where the features of the on-chip network must match with the new complex
requirements driven by application and technology scaling constraints that are
out-of-reach of current NoC realizations.

The constraints introduced by technology scaling require design methods able
to provide fault-tolerance and testability to tackle the uncertainties of aggres-
sive technology node and design methods able to support locally synchronous,
globally asynchronous frequency domains to meet the power budget restric-
tions and the overheating concerns. Finally, NoCs must be envisioned to sup-
port combinations of applications that can run in several modes and that can
be executed concurrently in a system changing over time. Such requirements
call for design methods able to support system virtualization, partitioning and
isolation capabilities of system resources.

245

CHAPTER 9. CONCLUSIONS

This thesis is a timely answer to the above concerns. The thesis has identified
the basic design requirements needed to augment NoC architectures with an
enhanced degree of dynamism and flexibility and to let them successfully cope
with the increasing uncertainty of the technology platform. Such requirements
have been thoroughly investigated throughout the thesis leading to novel de-
sign techniques that have been integrated in a single NoC architecture. The
thesis validates the novel design techniques while at the same time proves
their co-existence in the same switching fabric. In essence, the thesis con-
tributes to the evolution of the NoC concept providing architectures for the
next-generation of multi-synchronous, reliable and reconfigurable embedded
systems relying on:

• Built-in self-test and diagnosis frameworks, to address post-production
and lifetime permanent failures.

• Support for frequent and dynamic reconfiguration processes.

• Reliable synchronization in a multi-frequency environment.

The NoC proposed in this thesis addresses all the modern requirements, by
co-designing all the above mentioned new features on top of a fault-tolerant
NoC architecture. All these features have never been addressed all together,
in a single NoC. Moreover, interdependencies between different NoC features
have been detected ahead of time so to avoid the engineering of highly opti-
mized solutions to specific problems that however coexist inefficiently together
in the final NoC architecture. Finally, the proposed design methods have been
validated by means of ASIC implementation and FPGA prototyping. The ro-
bustness of multi-synchronous methods against process variability and operat-
ing conditions have been proved in the first multi-synchronous ASIC testchip
in 40 nm CMOS process while non silicon-dependent design methods for re-
liability and reconfiguration have been validated on a leading-edge Virtex-7
FPGA.

This chapter is structured in three sections. Section 9.1 summarizes the work
presented in this thesis. In Section 9.2, we present the major contributions of
the thesis.

9.1 Summary

This dissertation began by providing the necessary background of the work
in Chapter 2. It surveyed the architectures of globally-asynchronous locally

246

9.1. SUMMARY

synchronous interfaces for the building of GALS systems, the strategies for
built-in self-testing and fault-tolerance for designing reliable systems and the
reconfiguration mechanism for NoCs. Finally, it summarized the shortcoming
of the presented work to be addressed in subsequent chapters.
Chapter 3 introduced the synchronization design issue. In a first step, the
motivation for the adoption of synchronization mechanisms in the Network-
on-Chip environment was discussed. Next, it was presented the target GALS
platform of this thesis along with the architecture of the basic switch block re-
quired to build it. Last, it is presented the baseline mesochronous synchronizer
and the dual-clock bi-synchronous FIFO with focus on all their improvements
that led to a new fully integrated and flexible switch architecture.
Chapter 4 presented the implementation of the Moonrake chip in 40nm CMOS
process. The design flow followed for the different GALS systems integrated
in the Moonrake chip have been illustrated highlighting compatibility with
mainstream standard cell libraries and design toolflows. Next, the tests
successfully performed on Moonrake chip have been illustrated. Last, the
chapter presented the testchip results evaluating the NoC subsystems in terms
of skew and frequency robustness, power consumption and yield.
Chapter 5 provided an exploration of built-in testing strategies customized
for NoC-based systems comparing them under an area, coverage and latency
point of view. In particular, the chapter proposed four testing design methods.
Deterministic-handcrafted, deterministic-algorithmic and pseudo-random
test patterns have been considered and enhanced with different diagnosis
mechanism based on ROM, signature analysis and comparator trees. The
testing design methods are provided for both fully-synchronous and multi-
synchronous networks.
Chapter 6 presented the implementation of a novel fast and transparent
reconfiguration mechanism called OSR-Lite. The goal of this chapter was
to provide a reconfigurability design method matching the requirements of
next-generation embedded systems. The proposed OSR-Lite mechanism is
a static reconfiguration process localized at link/router level and engineered
to fit area and performance NoC constraints. The chapter described the
complete reconfiguration mechanism at work and the implementation at
micro-architecture level of the logic enabling the mechanism and the propaga-
tion of the reconfiguration tokens.
Chapter 7 collected the outcome of the previous chapters and proposed the
next-generation GP-NaNoC switch. Testability and reconfigurability methods
have been co-designed together with fault-tolerant strategies in a single
optimized architecture. They co-existed together in a runtime reconfigurable

247

CHAPTER 9. CONCLUSIONS

switching fabric supporting network partitioning and isolation as well as
irregularities stemming from power/thermal/fault-tolerance management
frameworks.
Chapter 8 reported about the prototyping of the design methods proposed
in the previous chapters on a Xilinx Virtex-7 FPGA. The FPGA prototype
implemented a 4x4 multi-core system and comprised a large number of
components that enables observability, controllability and debugability of
the system under test. The 4x4 multi-core platform has been described in
detail together with the advanced form of platform control and the testcases
validating the design methods.

9.2 Major Contributions

This section discusses the major contributions of our study.

• GALS design methods: Among several implementation variants,
we selected a source synchronous design style as the choice for
implementing our target GALS platform. Moreover, in order to
migrate from a synchronous to a GALS design style at a negligible
area and power cost, we opted for mesochronous synchronization
within the network domain. In light with this, we designed a novel
mesochronous synchronizer that is fully merged with the switch input
buffer. We explored the design space of the mesochronous link by
characterizing the skew tolerance of such architecture as a function of
several NoC parameters such as switch radix, interswitch link length,
switch operating frequency. Beyond mesochronous synchronizers,
dual-clock FIFO architectures are still required at IP core boundaries.
Thus we designed a library of dual-clock FIFOs for cost-effective
MPSoC design, where each architecture variant in the library has been
designed to match well-defined operating conditions at the minimum
implementation cost. Similarly to the proposed mesochronous syn-
chronizer also the dual-clock FIFO is fully merged with the switch
input buffer. In particular, each FIFO synchronizer is suitable for
plug-and-play insertion into the NoC architecture and selection depends
on the performance requirements of the synchronization interface at
hand. Critical-path, area, power consumption and throughput have
been provided for each dual-clock FIFO variant of the library. Finally,
the mesochronous and the dual-clock FIFO synchronizer have been

248

9.2. MAJOR CONTRIBUTIONS

integrated in a testchip, the Moonrake chip. This latter represents the
first implementation of synchronizer-based GALS NoC technology in
40nm CMOS process. The Moonrake chip validated on silicon the
robustness of the multi-synchronous design methods proposed in the
thesis. The new synchronization technology was successfully tested and
ported to a new manufacturing process. The experience validated the
feasibility and effectiveness of the developed multi-synchronous NoC
concept in nano-scaled technology sub-systems bridging the final gap
to actual silicon implementation.

• Testability and reconfigurability design methods: We provided sup-
port for static irregularities performing an exploration of testing strate-
gies for NoC-based systems. In this direction, we presented four scal-
able built-in self-test and self-diagnosis infrastructures for NoCs provid-
ing a wide exploration of different testing strategies. Customizations
for the NoC environment of conventional testing strategies were pro-
posed taking full advantage of the intrinsic network structural redun-
dancy through cooperative testing and diagnosis frameworks. First, the
NoC switch was enhanced with a conventional scan chain-based mecha-
nism. Although the mechanism was customized to reduce the test pattern
number, we proved that the area overhead was non affordable and the
scan-based approach is unsuitable for use within a built-in self-testing
strategy in NoCs. Second, the switch was tested by means of con-
ventional pseudo-random patterns generated by a built-in LFSR mod-
ule. The pseudo-random pattern framework proved an appealing solu-
tion for a low-area highly-flexible NoC solution, provided the devised
customizations are applied. Third, a low-latency alternative based on
handcrafted-deterministic test patterns was proposed. Lower flexibility
and higher area overhead with respect to the pseudo-random counterpart
was achieved. As a conclusion, the deterministic test pattern-based strat-
egy represents the best solution for high-performance high-reliability
NoCs. Finally, we proposed one of the first BIST/BISD framework
for GALS Network-on-Chips. In particular, we extended the proposed
pseudo-random pattern framework through an asynchronous handshak-
ing protocol on bi-synchronous channels.

Next, we provided design methods for NoC reconfigurations. Thus we
proposed an overlapped static reconfigurations strategy called OSR-Lite.
It represents a non-intrusive and efficient mechanism to allow the rout-
ing algorithm to change uninterruptedly over system lifetime (to match

249

CHAPTER 9. CONCLUSIONS

associated changes in the connectivity pattern) while always remaining
deadlock-free. OSR-Lite enables such a deadlock free network recon-
figuration without stopping network traffic or draining the network.

Last, the thesis integrated the proposed design methods with fault-
tolerant strategies to provide support for dynamic irregularities. The
adopted fault-tolerant strategies are based on the Nack/go flow control
protocol. Nack/go envisions retransmission of corrupted flits on the dat-
apath, thus minimally affecting the critical path of the switch (no error
correction on it), while introducing only a few cycles overhead in the
rare cases of actual retransmissions. While Nack/go effectively protects
the datapath, we devised a joint fault-tolerance framework that exploits
the Nack/go flow control protocol to use dual modular redundancy in-
stead of the triple modular one in the control path

As a result, the most relevant and innovative design methods conceived
throughout the thesis are integrated into the GP-NaNoC switch. This lat-
ter captures the interdependencies between different NoC design meth-
ods and co-optimizes them in a single effective architecture. The GP-
NaNoC switch targets the advanced system management requirements
of next-generation systems such as selective power down of unused or
overheated regions, disconnection of malfunctioning components and
links, and/or network partitioning and possibly isolation. The proposed
switch has provisions for event notification to a central manager and a
complete system infrastructure is provided to disseminate reconfigura-
tion commands of the distributed routing logic.

To conclude, we reports on the prototyping of a 16-core homogeneous
multi-core processor on a Xilinx Virtex-7 FPGA with a fault-tolerant,
runtime reconfigurable and dynamically virtualizable on-chip network
exploiting the GP-NaNoC switch. The prototyped system has been suc-
cessfully validated in its capability of boot-time testing and configura-
tion, transient or intermittent fault detection, runtime reconfiguration of
the routing function, and dynamic partitioning and isolation proving the
effectiveness and the maturity of the proposed design methods. The
validated NoC prototype is a key enabler for the future evolution of em-
bedded systems.

250

Bibliography

[1] L. Benini, G. De Micheli, “Networks on Chips: a New SoC Paradigm”,
IEEE Computer 35(1), pp. 70–78, 2002.

[2] Andriahantenaina, A. et Al, ”SPIN: a Scalable, Packet Switched, On-
chip Micro -network,” DATE03, 2003, pp. 70 73.

[3] Jian, L.; Swaminathan, S.; Tessier, R. ”aSOC: A Scalable, Single -Chip
communications Architecture.“ PACT 2000, pp.37-46.

[4] Dally, W.; Towles, B. ”Route packets, not wires: on-chip interconnec-
tion networks,” DAC01, 2001, pp. 684-689.

[5] Moraes, F. et Al., ”A Low Area Overhead Packet-switched Network on
Chip: Architecture and Prototyping.” VLSI-SOC, 2003.

[6] Erland Nilsson, ”Design and Implementation of a hot-potato Switch in
a Network on Chip,” Master Thesis, IMIT/LECS 2002

[7] Sgroi, M. et Al., ”A. Addressing the System-on-Chip Interconnect Woes
Through Communication-Based Design.” DAC01, 2001, pp. 667 672.

[8] Karim, F.; Nguyen, A.; Dey S. ”An interconnect architecture for net-
work systems on chips.” IEEE Micro v. 22(5), Sep.-Oct. 2002, pp. 36-
45.

[9] M.Radetzki, C.Feng, X.Zhao, and A.Jantsch. ”Methods for fault toler-
ance in networks on chip.“ ACM Computing Surveys - 2012

[10] Dall’Osso, M. et Al. ”Xpipes: a latency insensitive parameterized
network-on-chip architecture for multiprocessor SoCs” ICCD 2003.

[11] Rijpkema, E.; Goossens, K.; Radulescu, A. ”Trade Offs in the Design of
a Router with Both Guaranteed and Best-Effort Services for Networks
on Chip.“ DATE03, Mar. 2003, pp. 350-355.

[12] Jose Flich, Davide Bertozzi ”Designing Network On-Chip Architec-
tures in the Nanoscale Era“ 2010 by Chapman and Hall/CRC

[13] D.Ludovici, et Al. ”Assessing fat-tree topologies for regular network-
on-chip design under nanoscale technology constraints.“ DATE 2009.

[14] E. Flamand, “Strategic Directions Towards Multicore Application Spe-
cific Computing”, Proceedings of Design, Automation and Test in Eu-
rope (DATE’09), pp. 1266, 2009.

251

BIBLIOGRAPHY

[15] D. A. IIitzky, J. D. Hoffman, A. Chun and B. P. Esparza, ”Architec-
ture of the Scalable Communications Core’s Network on Chip”, IEEE
MICRO, 2007, pp. 62-74.

[16] M. Mishra and S. Goldstein, ”Defect tolerance at the end of the
roadmap”, in ITC, pages 1201-1211, 2003.

[17] J.Raik, V.Govind, R.Ubar, ”DfT-based External Test and Diagnosis
of Mesh-like NoCs”, IET Computers and Digital Techniques, October
2009.

[18] J.Raik, V.Govind, R.Ubar, ”An External Test Approach for Network-
on-a-Chip Switches”, Proc. of the IEEE Asian Test Symposium 2006,
pp.437-442, Nov. 2006.

[19] J.Raik, V.Govind, R.Ubar, ”Test Configurations for Diagnosing Faulty
Links in NoC Switches”, Proc. ETS, 2007.

[20] Panda et al., ”Design, Synthesis and Test of Networks on Chips”, IEEE
Design and Test of Computers, vol.22, issue 8, pp.404-413, 2005.

[21] S.Y.Lin, C.C.Hsu, A.Y.Wu, ”A Scalable Built-In Self-Test/Self-
Diagnosis Architecture for 2D-mesh Based Chip Multiprocessor Sys-
tems”, IEEE Int. Symp. on Circuits and Systems, pp.2317 - 2320, 2009

[22] B.Vermeulen, J.Delissen, K.Goossens, ”Bringing Communication Net-
works on a Chip: Test and Verification Implications”, IEEE Communi-
cations Magazine, vol.41-9, pp.74-81, 2003.

[23] V.Bertacco, D.Fick, A.DeOrio, J.Hu, D.Blaauw, D.Sylvester, ”VICIS:
A Reliable Network for Unreliable Silicon”, DAC 2009, pp.812-817.

[24] D.Wentzlaff et al., ”On-Chip Interconnection Architecture of the Tile
Processor”, IEEE Micro, vol.27, no.5, pp.15-31, 2007.

[25] “Tilera Tile-Gx Product Brief,” 2011. Available: http://www.
tilera.com/products/processors/TILE-Gx_Family

[26] K.Petersen, J.Oberg, ”Utilizing NoC Switches as BIST-Structures in 2D
Mesh Network-on-Chip”, Future Interconnects and Network on Chip
Workshop, 2006.

[27] A. Pullini, F. Angiolini, D. Bertozzi, L. Benini, ”Fault Tolerance Over-
head in Network-on-Chip Flow Control Schemes,” Proceedings of 18th

252

http://www.tilera.com/products/processors/TILE-Gx_Family
http://www.tilera.com/products/processors/TILE-Gx_Family

BIBLIOGRAPHY

Annual Symposium on Integrated Circuits and System Design (SBCCI)
2005, Florianpolis, Brazil, Sep 4-7, 2005, pp. 224-229

[28] Young Hoon Kang, Taek-Jun Kwon, Jeffrey Draper. ”Fault-Tolerant
Flow Control in On-Chip Networks.“ Proceedings of the 2010 Fourth
ACM/IEEE International Symposium on Networks-on-Chip.

[29] Nicopoulos, C. ; Kim, J. ; Vijaykrishnan, N. ; Das, C.R. ”Exploring
Fault-Tolerant Network-on-Chip Architectures ”. International Confer-
ence on Dependable Systems and Networks, 2006.

[30] W. J. Dally and B. Towles, Principles and practices of interconnection
networks: Morgan Kaufmann, 2003.

[31] W. J. Dally, L. R. Dennison, D. Harris, K. Kan, and T. Xanthopoulos,
”Architecture and implementation of the reliable router,” Proc. of the
Hot Interconnects II, pp. 197-208, 1994

[32] Nicolaidis M., ”Design for soft error mitigation”, IEEE Transactions
on Devices and Materials Reliability, vol. 5, Issue 3, pp. 405-418, 20

[33] Yu Q., Ampadu P. ”Adaptative Error Control for NoC Switch-to-Switch
Links in a Variable Noise Environment.“ IEEE International Sympo-
sium on Defect and Fault Tolerance of VLSI Systems, pp. 352-360,
2008.

[34] Rossi D., Metra C., Nieuwland K., Katoch A., ”Exploiting ECC Redun-
dancy to Minimize Crosstalk Impact,“ IEEE Desing & Test of Comput-
ers, vol. 222, Issue1, pp. 59-70, 2005.

[35] Frantz A., Kastensmidt F., Cota E., Carro L., ”Dependable Network-
on-Chip Router Able to Simultaneously Tolerate Soft Errors and
Crosstalk.“ Proceedings International Test Conference (ITC), vol. 1,
pp. 1 9, 2006.

[36] Adn Kohler, Gert Schley, and Martin Radetzki ”Fault Tolerant Network
on Chip Switching With Graceful Performance Degradation.”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, June 2010.

[37] Concatto, Caroline; Matos, Debora; Carro, Luigi; Cota, Erika; Kas-
tensmidt, Fernanda; Susin, Altamiro. ”Fault Tolerant Mechanism to
Improve Yield in NoCs Using a Reconfigurable Router”, Symposium
on Integrated Circuits and Systems Design (SBCCI), 2009.

253

BIBLIOGRAPHY

[38] D. Rossi et al., ”Configurable Error Control Scheme for NoC Signal
Integrity,“ Proceedings 12th IEEE International On-Line Testing Sym-
posium, LOS ALAMITOS, M. Nicolaidis, A. Paschalis, 2007, pp. 43 -
48.

[39] D. Bertozzi et al., ”Error control schemes for on-chip communication
links: The energy-reliability tradeoff, IEEE Trans. Comput.-Aided De-
sign Integr. Circuits Syst., vol. 24, no. 6, pp. 818831, Jun. 2005.

[40] S. Murali et al., ”Analysis of error recovery schemes for networks on
chips, IEEE Design Test Comput., vol. 22, no. 5, pp. 434442, Sep. Oct.
2005.

[41] Kypros Constantinides, Stephen Plaza, Jason Blome, Bin Zhang, Vale-
ria Bertacco, Scott Mahlke, Todd Austin and Michael Orshansky. ”Bul-
letProof: A Defect-Tolerant CMP Switch Architecture” International
Symposium on High-Performance Computer Architecture (HPCA),
Austin, TX, February 2006

[42] K.Peterson, J.Oberg, ”Toward a Scalable Test Methodology for 2D-
mesh Network-on-Chip”, DATE 2007, pp.75-80, 2007.

[43] Y.Zorian, ”Embedded Memory Test and Repair: Infrastructure IP for
SoC Yield.”, International Test Conference, pp.340-349,2002.

[44] Y.Zorian, ”Testing the monster chip”, IEEE Spectrum, pp.54-60,1999.

[45] A.M. Amory, E.Briao, E.Cota, M.Lubaszewski, F.G.Moraes, ”A Scal-
able Test Strategy for Network-on-Chip Routers”, Proc. of ITC 2005.

[46] C.Grecu, P.Pande, A.Ivanov, R.Saleh, ”BIST for Network-on-Chip
Interconnect Infrastructures”, VLSI Test Symposium, page 6, 2006.

[47] R.Ubar, J.Raik, ”Testing Strategies for Network on Chip”, in Book:
”Network on Chip”, edited by A.Jantsch and H.Tenhunen, Kluwer Aca-
demic Publisher, pp.131-152, 2003.

[48] O. Lysne, J. Montanana, J. Flich, J. Duato, T. Pinkston, and T. Skeie,
“An efficient and deadlock-free network reconfiguration protocol,”
IEEE Transactions of Computers, vol. 57, no. 6, pp. 762–779, 2008.

254

BIBLIOGRAPHY

[49] W. Dally, L. Dennison, D. Harris, K. Kan, and T. Xanthopoulus, “The
reliable router: A reliable and high-performance communication sub-
strate for parallel computers,” in Proceedings of the Workshop on Par-
allel Computer Routing and Communication (PCRCW), May 1994, pp.
241–255.

[50] C. Glass and L. Ni, “Fault-tolerant wormhole routing in meshes without
virtual channels,” IEEE Transactions Parallel and Distributed Systems,
vol. 7, no. 6, 1996.

[51] M. Gómez, J. Duato, J. Flich, P. López, A. Robles, N. Nordbotten,
O. Lysne, and T. Skeie, “An efficient fault-tolerant routing methodol-
ogy for meshes and tori,” Computer Architecture Letters, vol. 3, no. 1,
pp. 3–3, January-December 2004.

[52] C.-T. Ho and L. Stockmeyer, “A new approach to fault-tolerant worm-
hole routing for mesh-connected parallel computers,” IEEE Transac-
tions on Computers, vol. 53, no. 4, pp. 427–439, 2004.

[53] K. M. et al., “Fibre channel switch fabric-2 (fc-sw-2),” NCITS 321-200x
T11/Project 1305-D/Rev 4. 3 Specification, Tech. Rep., March 2000.

[54] M. Schroeder, A. Birrell, M. Burrows, H. Murray, R. Needham,
T. Rodeheffer, E. Satterthwaite, and C. Thacker, “Autonet: a high-speed,
self-configuring local area network using point-to-point links,” IEEE
Journal on Selected Areas in Communicartions, vol. 9, no. 8, pp. 1318–
1335, October 1991.

[55] R. Casado, A. Bermúdez, , J. Duato, F. Quiles, and J. Sánchez, “A
protocol for deadlock-free dynamic reconfiguration in high-speed local
area networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 2, pp. 115–132, February 2001.

[56] O. Lysne and J. Duato, “Fast dynamic reconfiguration in irregular net-
works,” in Proceedings of the 2000 International Conference of Parallel
Processing (ICPP). IEEE Computer Society, 2000, pp. 449–458.

[57] T. Pinkston, R. Pang, and J. Duato, “Deadlock-free dynamic reconfig-
uration schemes for increased network dependability,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 14, no. 8, pp. 780–794,
2003.

255

BIBLIOGRAPHY

[58] A. Ghiribaldi, A. Strano, M. Favalli, D. Bertozzi. “Power Efficiency
of Switch Architecture Extensions for Fault Tolerant NoC Design,“
Third International Green Computing Conference (IGCC’12). San Jose,
(USA), 2012, pp. 1 – 6.

[59] J. Duato, O. Lysne, R. Pang, and T. Pinkston, “Part I: A theory for
deadlock-free dynamic network reconfiguration,” IEEE Transactions on
Parallel and Distributed Systems, vol. 16, no. 5, pp. 412–427, May
2005.

[60] O. Lysne, T. Pinkston, and J. Duato, “Part II: A methodology for devel-
oping deadlock-free dynamic network reconfiguration processes,” IEEE
Transactions on Parallel and Distributed Systems, vol. 16, no. 5, pp.
428–443, May 2005.

[61] D. Avresky and N. Natchev, “Dynamic reconfiguration in computer
clusters with irregular topologies in the presence of multiple node and
link failures,” IEEE Transactions Computers, vol. 54, no. 5, pp. 603–
615, May 2005.

[62] J. Acosta and D. Avresky, “Intelligent dynamic network reconfigura-
tion,” in Proceedings of the 21st International Parallel and Distributed
Processing Symposium (IPDPS). IEEE Computer Society, 2007, pp.
1–9.

[63] C. Feng, Z. Lu, A. Jantsch, J. Li, and M. Zhang, “A reconfigurable fault-
tolerant deflection routing algorithm based on reinforcement learning
for Network-on-Chip,” in Proceedings of the International Workshop
on Network on Chip Architectures (NocArc), 2010.

[64] Z. Zhang, A. Greiner, and S. Taktak, “A reconfigurable routing algo-
rithm for a fault-tolerant 2D-mesh Network-on-Chip,” in Proceedings
of the 46th Design Automation Conference (DAC). ACM, June 2008,
pp. 441–446.

[65] V. Puente, J. Gregorio, F. Vallejo, and R. Beivide, “Immunet: A cheap
and robust fault-tolerant packet routing mechanism,” in Proceedings of
the 31th Annual International Symposium on Computer Architecture
(ISCA), June 2004, pp. 198–209.

[66] A. Mejia, J. Flich, J. Duato, S.-A. Reinemo, and T. Skeie, “Segment-
based routing: An efficient fault-tolerant routing algorithm for meshes

256

BIBLIOGRAPHY

and tori,” in Proceedings of the 20th International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2006, pp. 1–10.

[67] K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacco, “Ariadne: Agnostic
reconfiguration in a disconnected network environment,” in Proceed-
ings of the International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), 2011.

[68] F. Gurkaynak, S. Oetiker, H. Kaeslin, N. Felber, W. Fichtner, “GALS
at ETH Zurich: Success or Failure?”, Proceedings of Asynch’06, pp.
150–159, 2006.

[69] S. Borkar, “Thousand Core Chips: a Technology Perspective”, Pro-
ceedings of the Design Automation Conference (DAC), pp. 746–749.
2007.

[70] C. J. Myers et al., “Asynchronous Circuit Design”, Wiley, 2001.

[71] J. Sparso, S. Furber, “Principles of Asynchronous Circuit Design: A
System Perspective”, Kluwer, 2001.

[72] J. M. Rabaey, “Digital Integrated Circuits: a Design Perspective”,
Prentice-Hall, 2003.

[73] S. Herbert, D. Marculescu, “Analysis of Dynarmic Voltage/Frequency
Scaling in Chip Multiprocessors”, Proceedings of the International
Symposium on Low Power Electronics and Design, pp. 38–43. 2007.

[74] A. P. Chandrakasan et al, “Low Power CMOS Digital Design”, IEEE
Journal of Solid State Circuits, Vol. 27, pp. 437–484, 2007.

[75] ARM Ltd., “AMBA AHB Overview”, http://www.arm.com/
products/solutions/AMBA_Spec.html, 2005.

[76] ARM Ltd., “AMBA 3 AXI Overview”, http://www.arm.com/
products/solutions/AMBA3AXI.html, 2005.

[77] A. J. Martin, M. Nystrom, “Asynchronous Techniques for System-on-
Chip Design”, Proceedings of the IEEE, vol.94, no.6, pp. 1089–1120,
2006.

[78] S. Saponara, F. Vitullo, R. Locatelli, P. Teninge, M. Coppola, L.
Fanucci, “LIME: a Low-Latency and Low-Complexity On-Chip
Mesochronous Link with Integrated Flow Control”, Proceedings of Eu-
romicro Conference on Digital System Design (DSD), pp. 32–35, 2008.

257

http://www.arm.com/products/solutions/AMBA_Spec.html
http://www.arm.com/products/solutions/AMBA_Spec.html
http://www.arm.com/products/solutions/AMBA3AXI.html
http://www.arm.com/products/solutions/AMBA3AXI.html

BIBLIOGRAPHY

[79] D. Mangano, G. Falconeri, C. Pistritto, A. Scandurra, “Effective Full-
Duplex Mesochronous Link Architecture for Network-on-Chip Data-
Link Layer”, Proceedings of Euromicro Conference on Digital System
Design (DSD), pp. 519–526, 2007.

[80] F. Vitullo et al. “Low-Complexity Link Microarchitecture for
Mesochronous Communication in Networks-on-Chip”, IEEE Trans. on
Computers, Vol.57, issue 9, pp. 1196–1201, 2008.

[81] D. Wiklund, “Mesochronous Clocking and Communication in On-Chip
Networks”, Proceedings of the Swedish System-on-Chip Conference,
2003.

[82] A.T.Tran, D.N.Truong, B.Baas, “A Reconfigurable Source-
Synchronous On-Chip Network for GALS Many-Core Platforms”,
IEEE Transaction on Computer-Aided Design of Integrated Circuits and
Systems, Vol.29, no.6, 2010.

[83] F. Clermidy, R. Lemaire, X. Popon, D. Ktenas, Y. Thonnart, “An Open
and Reconfigurable Platform for 4G Telecommunication: Concepts and
Application”, Proceedings of Euromicro Conference on Digital System
Design (DSD), pp. 62–74, 2009.

[84] F. Clermidy, C. Bernard, R. Lemaire, J. Martin, I. Miro-Panades, Y.
Thonnart, P. Vivet, N. Wehn, “A 477mW NoC-based Digital Baseband
for MIMO 4G SDR”, ISSCC’2010, pp. 278–279, 2010.

[85] Y. Thonnart, P. Vivet, F. Clermidy, “A Fully-Asynchronous Low-Power
Framework for GALS NoC Integration”, Proceedings of Design, Au-
tomation and Test in Europe (DATE’10), pp. 33–38, 2010.

[86] S. Borkar, “Design Perspectives on 22nm CMOS and Beyond”, Pro-
ceedings of the Design Automation Conference (DAC), 2009.

[87] R. Dobkin, V. Vishnyakov, E. Friedman, R. Ginosar, “An Asynchronous
Router for Multiple Service Levels Networks on Chip”, Proceedings of
ASYNC’05, pp. 44–53, 2005.

[88] S. Beer, R. Ginosar, M. Priel, R. R. Dobkin, A. Kolodny, “The Devolu-
tion of Synchronizers”, Proceedings of ASYNC, pp. 94–103, 2010.

258

BIBLIOGRAPHY

[89] T. Bjerregaard, J. Sparso, “A Router Architecture for Connection-
Oriented Service Guarantees in the MANGO Clockless Network-on-
Chip”, Proceedings of Design, Automation and Test in Europe (DATE),
pp. 1226–1231, 2005.

[90] B. R. Quinton, M. R. Greenstreet, S. J.E. Wilton, “Asynchronous IC
Interconnect Network Design and Implementation Using a Standard
ASIC”, Proceedings of the International Conference of Computer De-
sign (ICCD), pp. 267–274, 2005.

[91] K. Y. Yun, R. P. Donohue, “Pausible Clocking: a First Step Toward
Heterogeneous Systems”, Proceedings of the International Conference
of Computer Design (ICCD), pp. 118–123, 1996.

[92] R. Mullins, S. Moore, “Demystifying Data-Driven and Pausible Clock-
ing Schemes”, Proceedings of the International Symposium on Asyn-
chronous Circuits and Systems, pp. 175–185, 2007.

[93] Z. Yu, B. M. Baas, “Implementing Tile-Based Chip Multiprocessors
with GALS Clocking Styles”, Proceedings of the International Confer-
ence on Computer Design, pp. 174–179, 2006.

[94] B. Mesgarzadeh, C. Svensson, A. Alvandpour, “A New Mesochronous
Clocking Scheme for Synchronization in SoC”, ISCAS, pp.605–609,
2002.

[95] I. M. Panades, F. Clermidy, P. Vivet, A. Greiner, “Physical Implementa-
tion of the DSPIN Network-on-Chip in the FAUST Architecture”, Pro-
ceedings of International Symposium on Networks-on-Chip (NOCS),
pp. 139–148, 2008.

[96] F. Vitullo, N. E. L’Insalata, E. Petri, L. Fanucci, M. Casula, R. Lo-
catelli, M. Coppola, “Low-Complexity Link Microarchitecture for
Mesochronous Communication in Networks-on-Chip”, IEEE Trans. on
Computers, Vol.57, no.9, pp. 1196–1201, 2008.

[97] S. Vangal et al.; “An 80-Tile Sub-100-W TeraFLOPS Processor in 65-
nm CMOS”, IEEE Journal of Solid-State Circuits, Vol.43, Issue 1, pp.
29–41, 2008.

[98] A. M. Scott, M. E. Schuelein, M. Roncken, J. Hwan, J. Bainbridge, J. R.
Mawer, D. L. Jackson, A. Bardsley, “Asynchronous on-Chip Commu-
nication: Explorations on the Intel PXA27x Processor Peripheral Bus”,

259

BIBLIOGRAPHY

Proceedings of the 13th International Symposium on Asynchronous Cir-
cuits and Systems, pp. 60–72, 2007.

[99] M. B. Stensgaard, T. Bjerregaard, J. Sparso, J. H. Pedersen, “A Sim-
ple Clockless Network-on-Chip for a Commercial Audio DSP Chip”,
Proceedings of the 9th EUROMICRO Conference on Digital System
Design, pp. 641–648, 2006.

[100] F. Mu, C. Svensson; “Self-Tested Self-Synchronization Circuit for
Mesochronous Clocking”, IEEE Trans. on Circuits and Systems II:
Analog and Digital Signal Processing, Vol.48, no.2, pp.129–141, 2001.

[101] A. Edmanand, C. Svensson, “Timing Closure through Globally Syn-
chronous, Timing Portioned Design Methodology”, Proceedings of De-
sign Automation Conference (DAC), pp. 71–74, 2004.

[102] P. Caputa, C. Svensson, “An On-Chip Delay- and Skew-Insensitive
Multicycle Communication Scheme”, IEEE Solid-State Circuits Con-
ference (ISSCC), pp. 1765–1774, 2006.

[103] SIA Semiconductor Industry Association “The International Technol-
ogy Roadmap for Semiconductors”, http://public.itrs.net/

[104] K.Arabi, ”Logic BIST and Scan Test Techniques for Multiple Identical
Blocks”, IEEE VLSI Test Symnposium, pp.60-68, 2002.

[105] Wu, Y. and MacDonald, P., ”Testing ASICs with Multiple Identical
Cores”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 22-3, 2003, pp. 327-336.

[106] C.Aktouf, ”A Complete Strategy for Testing an on-Chip Multiprocessor
Architecture”, IEEE Design and Test of Computers, vol.19-1, pp.18-28,
2002.

[107] C.Grecu, P.Pande, B.Wang, A.Ivanov, R.Saleh, ”Methodologies and
Algorithms for Testing Switch-Based NoC Interconnects”, IEEE DFT
2005, pp.238-246, 2005.

[108] M.Hosseinabady, A.Banaiyan, M.N.Bojnordi, Z.Navabi, ”A Concur-
rent Testing Method for NoC Switches”, DATE, pp.1171 - 1176, 2006

[109] I. Loi, F. Angiolini, L. Benini, “Developing Mesochronous Synchroniz-
ers to Enable 3D NoCs”, Proceedings of International Conference on
VLSI Design, 2007.

260

http://public.itrs.net/

BIBLIOGRAPHY

[110] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Bertozzi, G. De Micheli,
“xpipesLite: a Synthesis Oriented Design Library for Networks on
Chips”, Proceedings of the Design Automation and Test in Europe Con-
ference (DATE), pp. 1188–1193, 2005.

[111] F. Angiolini, L. Benini, P. Meloni, L. Raffo, S. Carta, “Contrasting
a NoC and a Traditional Interconnect Fabric with Layout Awareness”,
Proceedings of Design, Automation and Test in Europe (DATE), 2006.

[112] Y. Semiat, R. Ginosar, “Timing Measurements of Synchronization Cir-
cuits”, Proceedings of the International Symposium on Advanced Re-
search in Asynch. Circuits and Systems, pp. 68–77, 2003.

[113] D. Kim, K. Kim, J. Y. Kim, S. Lee, H. J. Yoo, “Solutions for
Real Chip Implementation Issues of NoC and Their Application to
Memory-Centric NoC”, Proceedings of the International Symposium
on Networks-on-Chips (NOCS), 2007.

[114] M. Ghoneima, Y. Ismail, M. Khellah, V. De, “Variation-Tolerant and
Low-Power Source-Synchronous Multi-Cycle On-Chip Interconnection
Scheme”, VLSI Design, 2007.

[115] Zhiyi Yu, Bevan M. Baas, “High Performance, Energy Efficiency, and
Scalability with GALS Chip Multiprocessors”, IEEE Trans. VLSI,
vol.17, no.1, pp. 66–79, 2009.

[116] G. Campobello, M. Castano, C. Ciofi, D. Mangano, “GALS Networks
on Chip: a new solution for asynchronous delay-insensitive links”, Pro-
ceedings of Design, Automation and Test in Europe (DATE), pp. 160–
165, 2006.

[117] S. Kim, R. Sridhar, “Self-Timed Mesochronous Interconnections for
High-Speed VLSI Systems”, Proceedings of GLSVLSI, pp. 122–128,
1996.

[118] M. R. Greenstreet, “Implementing a STARI chip”, Proceedings of
ICCD, pp.3, 1995.

[119] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, M. Renaudin, “An Asyn-
chronous NOC Architecture Providing Low Latency Service and Its
Multi-Level Design Framework”, Proceedings of the 11th IEEE Inter-
national Symposium on Asynchronous Circuits and Systems, pp. 54–63,
2005.

261

BIBLIOGRAPHY

[120] J.Ebergen, “Squaring the FIFO in GasP”, Proceedings of International
Symposium on Asynchronous Circuits and Systems, pp.194–205, 2001.

[121] C.E.Molnar, I.W.Jones, W.S.Coates, J.K.Lexau, “A FIFO ring perfor-
mance experiment”, Proceedings of International Symposium on Asyn-
chronous Circuits and Systems, pp.279–289, 1997.

[122] R.Apperson, Z.Yu, M.Meeuwsen, T.Mohsenin, B.Baas, “A scalable
dual-clock FIFO for data transfers between arbitrary and haltable clock
domains”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 15(10), pp.1125–1134, 2007.

[123] T.Ono, M.Greenstreet, “A Modular Synchronizing FIFO for
NOCs”, Proceedings of International Symposium on Networks-on-Chip
(NOCS), 2009

[124] T.Chelcea, S.M.Nowick, “Robust Interfaces for Mixed-Timing Sys-
tems”, IEEE Transactions on Very Large Scale Integration Systems,
12(8): 857-873, 2004.

[125] E. Beigne, P. Vivet, “Design of on-chip and off-chip interfaces for a
GALS NoC architecture”, Proceedings of the 12th IEEE International
Symposium on Asynchronous Circuits and Systems, pp. 172, 2006.

[126] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, S. Borkar, “A 5-GHz Mesh
Interconnect for a Teraflops Processor”, IEEE Micro, Volume 27:5,
2007.

[127] B. Stackhous et al., “A 65nm 2-Billion Transistor Quad-Core Itanium
Processor”, IEEE Journal of Solid State Circuits, Volume 44, pp. 18–31,
2009.

[128] W. J. Dally, J. W. Poulton, “Digital Systems Engineering”, Cambridge
University Press, 1998

[129] A. Tran, D. Truong, B. Baas, “A GALS Many-Core Heterogeneous
DSP Platform with source-Synchronous On-Chip Interconnection Net-
work”, Proceedings of the International Symposium on Networks-on-
Chip, 2009.

[130] J. Bainbridge, “CHAINWorks”, Silistix, http://www.silistix.com

[131] D. M. Chapiro, “Globally-Asynchronous Locally-Synchronous Sys-
tems”. PhD Dissertation, Stanford University, October 1984.

262

BIBLIOGRAPHY

[132] R. Ginosar, “Fourteen Ways to Fool Your Synchronizer”, Proceedings
of International Symposium on Asynchronous Circuits and Systems, pp.
89–97, 2003.

[133] Xuan-Tu Tran, J. Durupt, F. Bertrand, V. Beroulle, C. Robach, “A DFT
Architecture for Asynchronous Networks-on-Chip”, Proceedings of the
IEEE European Test Symposium, pp. 219–224, 2006.

[134] Xuan-Tu Tran, Y.Thonnart, J.Durupt, V.Beroulle, C.Robach, “A
Design-for-Test Implementation of an Asynchronous Network-on-Chip
Architecture and its Associated Test Pattern Generation and Applica-
tion”, Proceedings of the International Symposium on Networks-on-
Chip, pp. 149–158, 2008.

[135] Circuits Multi-Projects, Multi-Project Circuits; http://cmp.imag.fr

[136] C.Cummings, P.Alfke, “Simulation and Synthesis Techniques for
Asynchronous FIFO Design with Asynchronous Pointer Comparison”,
SNUG-2002, San Josè, CA, 2002.

[137] I.M.Panades, A.Greiner, “Bi-Synchronous FIFO for Synchronous Cir-
cuit Communication Well Suited for Network-on-Chip in GALS Archi-
tectures”, Proceedings of International Symposium on Networks-on-
Chip (NOCS), pp.83–94, 2007.

[138] M. Krstic, et al., Globally Asynchronous, Locally Synchronous Cir-
cuits: Overview and Outlook, IEEE Design & Test of Computers, pp:
430 - 441 , Volume: 24 Issue: 5, Sept.-Oct. 2007

[139] M. Krstic, et al., OFDM Datapath Baseband Processor for 1 Gbps
Datarate, Proc. IFIP/IEEE VLSI-SoC Conference 2008, pp. 156-159.

[140] Lines, A., Asynchronous interconnect for synchronous SoC design,
IEEE Micro, 2004, 24, (1), pp. 3241.

[141] L. Plana, et al., A GALS Infrastructure for a Massively Parallel Multi-
processor, IEEE Design & Test of Computers, Sept.-Oct. 2007, Volume:
24 Issue:5, pp.: 454 - 463

[142] E. Beigne, et al, An asynchronous power aware and adaptive NoC based
circuit, 2008 IEEE Symposium on VLSI Circuits, pp. 190 191.

263

BIBLIOGRAPHY

[143] R. Lemaire, Y. Thonnart, Magali, A Reconfigurable Digital Baseband
for 4G Telecom Applications based on an Asynchronous NoC, In Proc
ACM/IEEE International Symposium on Networks-on-Chip, 2010.

[144] P.Vivet, et al, FAUST, an Asynchronous Network-on-Chip based Archi-
tecture for Telecom Applications, DATE, 2006.

[145] http://techresearch.intel.com/articles/Tera-Scale/1421.htm

[146] http://techresearch.intel.com/articles/Tera-Scale/1449.htm

[147] S. Borkar, Microarchitecture and design challenges for gigascale inte-
gration. Proc. ACM/IEEE MICRO, keynote address, pp. 3-3, 2004.

[148] S. Borkar, Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation, IEEE Micro, Vol.
25, No. 6, pp. 10-16, 2005.

[149] J. W. McPherson, Reliability challenges for 45nm and beyond, Proc.
ACM/IEEE DAC, pp. 176-181, 2006.

[150] T. Bjerregaard, Shankar Mahadevan, A survey of research and practices
of network-on-chip, ACM Computer Survey, Vol. 38, No. 1, 2006.

[151] S.Rodrigo, S.Medardoni, J.Flich, D.Bertozzi, J.Duato, ”Efficient Im-
plementation of Distributed Routing Algorithms for NoCs”, IET-CDT,
pp.460-475, vol.3, issue 5, 2009.

[152] S.Rodrigo, J.Flich, A.Roca, S.Medardoni, D.Bertozzi, J.Camacho,
F.Silla, J.Duato, ”Addressing Manufacturing Challenges with Cost-
Effective Fault Tolerant Routing”, NoCs 2010, pp.35-32, 2010.

[153] P.K. Lala, ”Self-checking and fault tolerant Digital Design”, MK
Publishers 2001.

[154] Zhang, Z., Greiner, A., Benabdenbi, M.: Fully Distributed Initialization
Procedure for a 2D-Mesh NoC, Including Off-Line BIST and Partial
Deactivation of Faulty Components The 16th IEEE International On-
Line Testing Symposium (IOLTS), 2010, pp.194-196.

[155] Strano, A., Ludovici, D., Bertozzi, D.: A Library of Dual-Clock FI-
FOs for Cost-Effective and Flexible MPSoCs Design, Proceedings of
the International Conference on Embedded Computer Systems: Archi-
tectures, MOdeling and Simulation (SAMOS), 2010, pp.20-27.

264

BIBLIOGRAPHY

[156] A. Ghiribaldi, D. Ludivici, F. Triviňo, A. Strano, J. Flich, J. Sánchez,
F. Alfaro, M. Favalli, and D. Bertozzi, “A complete self-testing and self-
configuring noc infrastructure for cost-effective mpsocs,” ACM Trans-
actions on Embedded Computing Systems, 2011.

[157] A. Mejia, J. Flich, and J. Duato, “On the potentials of segment-based
routing for nocs,” in Parallel Processing, 2008. ICPP ’08. 37th Interna-
tional Conference on, sept. 2008, pp. 594 –603

[158] F. Gilabert, M. E. Gómez, S. Medardoni, and D. Bertozzi, “Improved
utilization of noc channel bandwidth by switch replication for cost-
effective multi-processor systems-on-chip,” in Fourth ACM/IEEE Inter-
national Symposium on Networks-on-Chip, 2010, pp. 165–172.

265

List of Publications

Book Chapters

1. D. Bertozzi, A. Strano, D. Ludovici, V. Pavlidis, F. Angiolini, M. Krstic,
The Synchronization Challenge, Chapter 6 in “Designing Network-
on-Chip Architectures in the Nanoscale Era”, pp. 177-235, December
2010, CRC Book, ISBN: 978-1-4398-3710-8.

2. D. Bertozzi, A. Strano, F. Gilabert, D. Ludovici, Technology-Aware
Communication Architecture Design for Parallel Hardware Plat-
forms, Chapter in “Advanced Circuits for Emerging Technology”, CRC
Book, 2011, in press.

International Journals

1. F. O. S. Jacobsen, S. Rodrigo, A. Strano, T. Skeie, D. Bertozzi, F. Gi-
labert. Enabling Power Efficiency through Dynamic Rerouting on-
Chip. ACM Transaction on Embedded Computing Systems (TECS), in
press.

2. M. Krstic, X. Fan, E. Grass, L. Benini, M. R. Kakoee, C. Heer, B.
Sanders, A. Strano, D. Bertozzi. Evaluation of GALS Methods in
scaled CMOS Technology - Moonrake Chip Experience. textitSpe-
cial issue of the International Journal of Embedded and Real-Time Com-
munication Systems (IJERTCS), 2012.

3. F. O. S. Jacobsen, S. Rodrigo, T. Skeie, A. Strano, D. Bertozzi. An
Efficient, Low-Cost Routing Framework for Convex Mesh Partitions
to Support Virtualisation. ACM Transaction on Embedded Computing
Systems (TECS), in press.

4. A. Strano, N. Caselli, S. Terenzi, D. Bertozzi. Optimizing Pseudo-
Random Built-In Self-Testing of Fully Synchronous as well as Mul-
tisynchronous Networks-on-Chip. Special issue of the International
Journal of IET Computers & Digital Techniques, 2012. in press.

5. A. Ghiribaldi, D. Ludovici, F. Triviño, A.Strano, J. Flich, J. L. Sanchez,
F. Alfaro, M. Favalli, D. Bertozzi, A Complete Self-Testing and Self-
Configuring NoC Infrastructure for Cost-Effective MPSoCs, ACM
Transaction on Embedded Computing Systems (TECS), in press.

267

LIST OF PUBLICATIONS

6. A. Strano, D. Ludovici, D. Bertozzi, A Library of GALS Inter-
faces for Cost-Effective and Flexible MPSoC Design, Transaction on
HiPEAC, in press.

7. A. Strano, C. Hernández, F. Silla, D. Bertozzi. Self-Calibrating
Source Synchronous Communication for Delay Variation Toler-
ant GALS Network-on-Chip Design. Special issue of the Interna-
tional Journal of Embedded and Real-Time Communication Systems
(IJERTCS), 2011.

International Conferences (with proceedings)

1. A. Strano, F. Triviño, J. L. Sánchez, F. J. Alfaro, D. Bertozzi, J. Flich.
OSR-Lite: Fast and Deadlock-Free NoC Reconfiguration Frame-
work. International Conference on Embedded Computer Systems: Ar-
chitectures, Modeling, and Simulation (SAMOS XII). Samos (Greece),
2012, pp. 86 – 95. BEST PAPER AWARD.

2. N. Caselli, A. Strano, D. Ludovici, D. Bertozzi. Cooperative Built-
in Self-Testing and Self-Diagnosis of NoC Bisynchronous Channels.
IEEE 6th International Symposium on Embedded Multicore SoCs (MC-
SOC12). Aizu (Japan), 2012, pp. 159 – 166. BEST PAPER AWARD.

3. H. Tatenguem, A. Strano, V. Govind, J. Raik, D. Bertozzi. Ultra-Low
Latency NoC testing via Pseudo-Random Test Pattern Compaction.
International Symposium on System on Chip (SoC), 2012. Tampere (Fin-
land), pp. 1 – 6.

4. A. Ghiribaldi, A. Strano, M. Favalli, D. Bertozzi. Power Efficiency
of Switch Architecture Extensions for Fault Tolerant NoC Design.
Third International Green Computing Conference (IGCC’12). San Jose,
(USA), 2012, pp. 1 – 6.

5. A. Strano, D. Bertozzi, F. Angiolini, L. Di Gregorio, F. O. Sem-
Jacobsen, V. Todorov, J. Flich, F. Silla, T. Bjerregaard. Quest for the
ultimate Network-on-Chip: the NaNoC project. Interconnection Net-
work Architecture: On-Chip, Multi-Chip (INA-OCMC). Paris (France),
2012, pp. 43 – 46.

6. S. Terenzi, A. Strano, D. Bertozzi. Optimizing Built In Pseudo-
Random Self-Testing for Network-on-Chip Switches. Interconnec-
tion Network Architecture: On-Chip, Multi-Chip (INA-OCMC). Paris
(France), 2012, pp. 21 – 24.

268

LIST OF PUBLICATIONS

7. H.F. Tatenguem, D. Ludovici, A. Strano, H. Reinig, D. Bertozzi. Con-
trasting Multi-Synchronous MPSoC Design Styles for Fine-Grained
Clock Domain Partitioning: the Full-HD Video Playback Case
Study. 4th International Workshop on Network on Chip Architectures
(NoCArc’11). Porto Alegre, 2011, pp. 37 – 42.

8. A. Strano, C. G. Requena, D. Ludovici, M. E. Gómez, M. Favalli, D.
Bertozzi, Exploiting Network-on-Chip Structural Redundancy for A
Cooperative and Scalable Built-In Self-Test Architecture, Proceed-
ings of Design, Automation and Test in Europe 2011 (DATE), pp. 661–
666, Grenoble, France, 2011.

9. A. Strano, D. Bertozzi, A. Grasset, S. Yehia. Exploiting struc-
tural redundancy of SIMD accelerators for their built-in self-
testing/diagnosis and reconfiguration. IEEE International Conference
on Application-specific Systems, Architectures and Processors 2011
(ASAP), Santa Monica. pp. 141–148.

10. M. Krstic, X. Fan, E. Grass, L. Benini, M. R. Kakoee, C. Heer, B.
Sanders, A. Strano, D. Bertozzi. Moonrake Chip - GALS Demonstra-
tor in 40 nm CMOS Technology. International Symposium on System
on Chip (SoC), 2011. Tampere (Finland), pp. 9 – 13.

11. D. Ludovici, A. Strano, G. Gaydadjiev, D. Bertozzi. Mesochronous
NoC Technology for Power-Efficient GALS MPSoC, Proceedings of
the Fifth ACM Interconnection Network Architecture, On-Chip Multi-
Chip Workshop (INA-OCMC), pp. 27–30, Heraklion, Greece, 2011.

12. A. Strano, C. Hernández, F. Silla, D. Bertozzi. Process Variation and
Layout Mismatch Tolerant Design of Source Synchronous Links
for GALS Networks-on-Chip. International Symposium on System on
Chip (SoC), 2010. Tampere (Finland), pp. 43 – 48.

13. A. Strano, D. Ludovici, D. Bertozzi, A Library of Dual-Clock FIFOs
for Cost-Effective and Flexible MPSoCs Design, Proceedings of the
International Conference on Embedded Computer Systems: Architec-
tures, MOdeling and Simulation (SAMOS), pp. 20–27, Samos, Greece,
2010.

14. D. Ludovici, A. Strano, G. N. Gaydadjiev, L. Benini, D. Bertozzi, De-
sign Space Exploration of a Mesochronous Link for Cost-Effective
and Flexible GALS NOCs, Proceedings of Design, Automation and
Test in Europe 2010 (DATE), pp. 679–684, Dresden, Germany, 2010.

269

LIST OF PUBLICATIONS

15. D. Ludovici, A. Strano, D. Bertozzi, Architecture Design Principles
for the Integration of Synchronization Interfaces into Network-on-
Chip Switches, Proceedings of the 2nd ACM/IEEE International Work-
shop on Network-on-Chip Architectures (NoCArc), pp. 31–36, New
York, USA, 2009.

16. D. Ludovici, A. Strano, D. Bertozzi, L. Benini, G. N. Gaydadjiev, Com-
paring Tightly and Loosely Coupled Mesochronous Synchronizers
in a NoC Switch Architecture, Proceedings of the 3rd ACM/IEEE In-
ternational Symposium on Networks-on-Chip (NOCS), pp. 244–249,
San Diego, USA, 2009.

270

LIST OF PUBLICATIONS

271

