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Introduction  

 

Semiconductor materials exist in many structural forms and therefore require a large 

range of experimental techniques for their analysis. However, for investigation of structure on 

the atomic scale, X-ray diffraction is a very sensitive analysis tool. It has been used for a long 

time and has successfully helped scientists to reveal and study the structure of a wide range of 

materials.  

This thesis focuses on experimental work, carried out both at Sensor and Semiconductor 

Laboratory (SSL, Ferrara, Italy) and at European Synchrotron Radiation facility (ESRF, 

Grenoble, France), in which X-ray diffraction technique has been used to probe and study the 

properties of semiconductor crystals for applications in astrophysics and photovoltaics. 

In the last years, the field of soft gamma-ray telescopes aimed to studying violent 

phenomena occurring in galaxy has received a tremendous impulse by the advent of a new 

generation of semiconductor crystals, which resulted in a significant increase of performance 

with respect to traditional instruments operating in this part of the electromagnetic spectrum. 

In particular, for realization of a Laue lens as focusing optics to concentrate X and gamma 

rays coming from the sky, the key factor was the usage of silicon and germanium crystals 

exploiting deformations, which provide extremely uniform bending throughout the whole 

crystal thickness.  

X-ray diffraction has been applied to silicon and germanium bent crystals with the aim 

to study their structural deformation and diffraction properties, for the purpose of diffracting 

high-energy photons for astrophysical observations through a Laue lens. In the framework of 

“Laue project”, devoted to build a broadband (80-600 keV) focusing lens and financed by the 

Italian Space Agency (ASI), a thorough X-ray characterization allowed accurate adjustment 

of the experimental parameters for crystal fabrication and certification of its quality of 

diffraction properties prior to installation as optical element onto the lens. 

With regard to photovoltaics, semiconductors crystals are still under investigation as 

efficient heteroepitaxial structures for multi-junction solar cells.  

Several characterization techniques have been used for the evaluation of heteroepitaxial 

semiconductors, and have enabled the advancement of the field to its present state. X-ray 

diffraction is the most widely used technique for the characterization of heteroepitaxial layers. 

In fact, it is nondestructive and yields a wealth of structural information, including the lattice 

constants and strains, composition and defect densities.  

In this thesis it will be shown main experimental results of X-ray characterization of 

semiconductor crystals of silicon and germanium as well as their applications to astrophysics 

and material science.  

Chapter 1 contains a theoretical background on X-ray diffraction in perfect and in 

specifically deformed crystals. Chapter 2 highlights the equipment which have been used for 

X-ray characterization of the samples analyzed in the framework of this thesis. Chapter 3 is 
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devoted to the investigation of Si and Ge crystals fabricated at SSL for the realization of a 

Laue lens for astrophysics. With this aim, main experimental results of X-ray diffraction 

obtained at ESRF are presented. In particular, it will be pointed out that crystals diffracted 

photons from 150 to 700 keV with efficiency peaking 95% at 150 keV for Si. Chapter 4 

presents heteroepitaxial SiGe samples, their fabrication and investigation of structural 

properties by X-ray analysis at SSL, for their usage as solar cells in photovoltaics. Finally, an 

Appendix shows results of X-ray study on ceramic coatings for applications of wear resistant 

materials in metallurgy.  
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1. X-ray diffraction in crystals 

 
1.1. Theory of X-ray diffraction in ideal crystals 

 

In the present chapter, the basics of the theory of X-ray diffraction in crystals will be 

described. The following concepts and equations are mainly taken from Refs. [1.1-1.5]. 

Please, refer to these documents for further details as well as to other articles in this volume 

for a good coverage of recent works on hard X-ray diffraction, both theoretical and 

experimental. The possibility of using crystals as natural diffraction gratings for X rays was 

conceived by von Laue in 1912, and the subsequent experiments immediately proved that the 

idea was correct. In fact, von Laue showed that the observed effects could be interpreted as 

due to diffraction of electromagnetic waves in a three-dimensional grating [1.6, 1.7] and his 

discovery gave convincing proof of both the wave nature of X rays and of the periodic 

structure of crystals. Thus, the foundation was laid for two important fields of scientific 

research, i.e., the study of X rays and the study of crystal structure. The improved 

experimental technique due to W. H. and W. L. Bragg [1.8, 1.9] greatly contributed to the 

rapid development of both fields and their work clearly proved the far reaching consequences 

of Von Laue‘s discovery. 

 

1.1.1. The Laue and Bragg Equations 

 

As stated in Ref. [1], a linear diffraction grating may conveniently be defined as a 

straight line along which the scattering power is a periodic function of position, i.e.,  

 

                   1.1.  

where    is any integer and     is the period and measures the vector separation of 

neighboring points. An electromagnetic plane wave of monochromatic radiation incident onto 

the grating will be then scattered in all directions by a line element. Since the scattering power 

of the grating has a periodic nature, the diffraction maxima will take place in the directions 

corresponding to path differences equal to an integral number of wavelengths. 

This diffraction problem leads to the formula 

 

          
          1.2.  

 

    is the wave vector of incident X-ray beam and     
that of the diffracted beam, i.e.,  
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 1.3.  

 

Here   is the wavelength while     and     
represent unit vectors along the directions of 

incident and maximum diffraction, respectively. 

On the other hand, a three-dimensional grating corresponds to a spatial distribution of 

matter for which the scattering power is a triply periodic function of position or 

 

                               1.4.  

 

Thus, the three-dimensional grating can be considered as consisting of three sets of 

linear gratings with periods         and    . In order to find the diffraction maxima for such a 

three-dimensional grating, the wave vectors must simultaneously satisfy equation 1.2. for 

each of the components, i.e.,  

 

 

             
          

             
          

             
          

1.5.  

 

These are Laue’s equations, where   ,    and    are integers associated with each 

diffraction maximum. These three scalars equations can be rearranged in more convenient 

form as a single vector equation, leading to  

 

             1.6.  

 

that is called the Laue vector equation, where the abbreviated form of       

        
  has been used. Here             

                   , where              

represents the vector set in reciprocal lattice space, i.e., reciprocal to             . Thus, 

according to Eq. 1.6.,      is associated with each diffraction maximum. If the first two 

equations in 1.5. are rearranged and subtracted from each other, we will have 

 

  
   
  

 
   

  
        1.7.  
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which means that   
   

  
 

   

  
  must be perpendicular to    , and similarly for all the 

combinations. If one considers a plane in lattice space that intercepts the       axis at    
 , 

the       axis at    
 and the       axis at    

 , the quantities          may accordingly be 

denoted as Miller indices of a family of lattice planes. Therefore, equation 1.7. can only be 

satisfied if     is normal to the plane         .  

Since                    the Laue vector equation expresses the fact that the vectors 

    and     are edges of a rhomb whose     is a diagonal as shown in Fig. 1.1. In the lattice 

space the sequence of planes represented by     makes equal angles with     and    . One can 

thus considers the diffracted beam to be produced by a reflection of the incident beam in the 

family of planes normal to    . The magnitude of left side of equation 1.6. results to be 

 
      

 
 where    is the Bragg angle and     the scattering angle. On the other hand, the 

magnitude of the right side is         
 where    is the spacing between the sets of crystal 

planes. Therefore we have  

 

  
      

 
 

 

  
 1.8.  

 

i.e., the Bragg equation. For a cubic crystal with lattice constant  , the spacing of the 

      planes is given by formula 

 

                    
 

   1.9.  

 

The h   Bragg angle is then 

 

               
           

 
  

  
   1.10.  
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 Figure 1.1: The Bragg condition for diffraction [1.1]. 

 

 

1.1.2.  Construction of the diffracted wave vectors in the reciprocal lattice  

 

To deepen the understanding Bragg’s formulation of diffraction phenomenon, a simple 

geometric construction in the reciprocal lattice of the diffracted wave vectors associated with 

a given direction of incidence and a given wavelength was reported in Ref. [1.10]. As shown 

in Fig. 1.2, since the three vectors          and     form a closed triangle (see equation 1.6.), a 

vector     which satisfies the Laue equation must terminates on the sphere of reflection or the 

Ewald sphere. In fact, if the incident wave vector     is chosen at random, the Ewald sphere 

will not pass through any reciprocal lattice point in general. Thus, in order to produce 

diffraction maxima, it becomes necessary to adjust the wavelength or the incident direction in 

such a way that one or more of the reciprocal lattice points fall on the Ewald sphere. Indeed, 

as depicted in Fig. 1.2. when the wavelength or the direction of incidence       is varied, there 

will be a corresponding variation in the radius vector in the reciprocal lattice. If the Laue 

vector equation is satisfied a diffraction maximum will be produced.  
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 Figure 1.2: The Ewald sphere construction [1.1].  

 

With this regard, there are several experimental methods which are being used to 

produce X-ray diffraction maxima. Since     is a function of three scalar variables, it is 

sufficient to vary only one of the three variables in the incident wave vector, while the other 

two are being fixed. However, two or all three variables may be varied at the same time.  

With this aim, let      and   be the three scalar variables of the incident wave vector, 

where   is the wavelength, while    and   are two parameters describing the direction of 

incidence of the plane wave. As said above, in order to produce diffraction maxima, it is 

necessary to allow at least one of the three quantities      and   to vary continuously. 

Therefore, the different experimental methods can be depicted as follows: 

I. The wavelength is variable, but the direction of incidence is fixed, i.e.,   

variable,     ,      

II. The wavelength is fixed, but the direction of incidence varies with one degree of 

freedom, i.e.,     ,     ,   variable or     ,     ,   variable.  

III. The wavelength is fixed, but the direction of incidence changes with two degrees 

of freedom, i.e.,     ,   and   vary independently. 

In cases I and II, the incident wave vector has one degree of freedom and the diffraction 

direction is then uniquely determined. The diffraction maxima are sharply defined, being 

recorded as spots on a photographic plate. The first method is called the Laue method, 

because it was used by Laue in its original experiments, and can be experimentally carried out 

by using continuous X rays. Since this technique is based on sharply defined direction of 

incidence, a single crystal must be used as sample under analysis. On the other hand, the 

second method consists in variation of the direction of incidence with one degree of freedom, 

thus the best way of achieving it is to rotate the sample relative to the incident X-ray beam, 

this latter being monochromatic. In this case a single crystal can be employed but one can also 

uses substances in the form of aggregates where the direction of incidence with respect to 
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such an aggregate will have one degree of freedom. This latter method is also called the 

rotating crystal method. 

The third method consists in variation of the direction of incidence with two degrees of 

freedom. If a single crystal is available, one of the two parameters   and   can be changed at 

a time, i.e., it results to be the rotating crystal method again. However, the third method is of 

importance only in connection with the study of substances in the form of aggregates or 

powders having random orientation because the observed diffraction effects are the same as 

for a single crystal will all combinations of   and  . This method is commonly called the 

powder method and the diffraction maxima will draw out a line on a photograph film located 

on focal plane. Indeed, each diffraction pattern is made up of a large number of small spots, 

each from a separate crystallite of the aggregate and every spot is so small as to give the 

appearance of a continuous line.  

For the sake of simplicity, there have been reported only the main methods for production 

of X-ray diffraction maxima. For more information, see Ref. [1.1]. 

 

1.1.3. X-ray scattering by a single electron and by a single atom 

 

 
Fig. 1.3: Scattering of a randomly polarized X-ray beam from an electron [1.5]. 

 

 

As stated in Ref. [1.5], X rays are scattered in all directions by a single electron, with 

the scattered intensity strongly dependent on the scattering angle,  . This dependence was 

derived by J. J. Thomson and is given by formula 

 

       
  

  
 
 

 
  

    
       1.11.  

 

where    is the intensity of scattering from a single electron at a distance  ,       

         ,   is the charge of electron (             ), and   is the electron rest mass, 

i.e.,             .   is the angle between the scattering direction and the direction of 

acceleration for the electron, thus depending on the polarization of the X-ray beam. If the 

incident wave is unpolarized, the angle   becomes indeterminate and the term       must be 

replaced by its average value. Considering Fig. 1.3, an unpolarized X-ray beam diffusing 
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from point N encounters an electron at the origin O and the scattered beam is consequently 

observed at point P. Electric vector    can be divided into two orthogonal components,   and 

  , where the first is perpendicular to both the line NO and the scattering plane NOP and    

is the component parallel to this plane. Because of the random nature of the direction of   , the 

mean square values are equal, i.e.,   
      =   

      =    . The scattered intensity is thus divided 

between the two polarization, leading to 

 

          
  

   1.12.  

 

At point P the scattered intensity is the sum of the intensities for the two polarizations. 

In particular, for   polarization,    
  , but for   polarization,   

     , where   is 

the scattering angle. Then the intensity scattered to the point P results to be 

 

    
  
 

 
  

  
 
 

 
  

    
            1.13.  

 

This is the familiar Thomson scattering formula for an unpolarized X-ray beam by a 

single electron. In an X-ray diffraction experiment, all of the terms in this equation are 

constant except for           , which is called the polarization factor. 

 

The total effect of the electrons which scatter an X-ray beam in an atom is taken into 

account by the atomic scattering factor  , which is defined as the ratio between the amplitude 

of a wave scattered by an atom and that scattered by a single electron. The atomic scattering 

factor depends on the atomic number, the scattering Bragg angle and the wavelength of X-ray 

beam. As highlighted in Ref. [1.2], the exact calculation of the atomic scattering factor is 

usually difficult because it requires to consider the coherent diffusion by each electron of an 

atom, taking into account quantum physics. Numerical values can be obtained by using 

analytic expressions available in the International Tables for X-ray Crystallography [1.11]. 

These expressions are best fits to experimentally determined atomic scattering factors and are 

in the form   

 

          
 

  

     
 

 

   

 1.14.  

 

where the       and    in     coefficients are tabulated in [1.11] for many elements. 
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While the atomic scattering factor provides for the intensity of the beam as diffused by a 

given atom, the structure factor   is the sum of all scattering contributions from individual 

atoms in a unit cell, i.e., the scattering power of a unit cell 

 

                                         

 

   

 1.15.  

 

where   represents the number of atoms per elementary lattice, and the    atom has 

been considered to be at the position             in the unit cell defined by the lattice 

vectors              .    is the atomic scattering factor of the      atom. If the atoms of the 

lattice are of the same kind (e.g., silicon germanium, copper, etc.) the structure factor can be 

written as: 

 

                                    

 

   

    1.16.  

 

where   is the geometrical factor which depends on the positions of the atoms in the 

lattice and on the Miller indexes and shows that, due to destructive interferences, some 

crystallographic planes can not reflect the beam. Theoretical computation of the geometrical 

factor can be found in [1.2].  

Finally, the amplitude of scattering from a single unit cell can be written as 

 

     1.17.  

 

   being the amplitude of scattering from a free (Thomson) electron. 

 

1.1.4.  X-ray scattering from a single ideal crystal 

 

 Under the assumptions highlighted in Ref. [1.1], the amplitude of scattering due to a 

single ideal crystal will be given by the sum of the contributions from the various unit cells, 

taking into account the phase differences. Considering an entire ideal crystal, if the origin is 

chosen at a corner of one unit cell, the location of any other unit cell can be described in terms 

of a lattice vector   
                   . In fact, the contribution to the total amplitude 

from the unit cell positioned at   
  is     

       , where                     and      
  is 

the difference in phase with respect to the radiation reflected by the unit cell located at the 

origin. Thus, the total amplitude is simply given by  
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 1.18.  

 

where the summation must be extended all over the unit cells of the crystal under 

consideration. If one considers a crystal with parallelepiped shape having edges 

                 , the total number of unit cells in the crystal is therefore          and 

the expanded form of the summation in equation 1.19. becomes  

 

          

 

                       

    

 

           

    

 

    

 

  1.19.  

 

which is the one of a geometric series and hence equation 1.19. turns out to be 

 

 
  

  
   

            

          
 

 1.20.  

 

The intensity ratio can be obtained from the amplitude ratio by multiplication with the 

complex conjugate, thus leading to  

 

 
  
  

      
     

 
        

     
        

 1.21.  

 

Hence, due to the periodicity of the crystal, the intensity of the diffracted beam is 

essentially zero unless  

 

 

 

            

            

            

 

1.22.  

this latter being identical to the Laue vector equation. Finally, the intensity of scattering 

from an ideal crystal is    

 

       
    1.23.  
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where   is the number of unit cells in the crystal and    the structure factor.  

It is worth to note that equation 1.21. has been obtained assuming that the incident wave 

is not affected by the presence of the crystal medium. In fact, an X-ray beam traversing matter 

will suffer absorption, i.e., there will be a deviation in energy from the incident beam. The 

absorption phenomena which occur in crystal matter are of two main types. The first type is 

the photoelectric absorption where the incident radiation energy is converted into the kinetic 

energy of an ejected electron. The second type of absorption is based on a transfer of energy 

from the incident to the scattered radiation and in this latter case, there are two scattering 

processes, i.e., the Compton scattering and the coherent scattering. According to equation 

1.21., the intensity of the coherent scattering from a crystal is negligible except when the Laue 

conditions are satisfied. When the Laue equation is not fulfilled, the incident beam will 

undergo the absorption due to the ejection of photoelectrons and Compton scattering, 

hereinafter referred to as normal absorption. On the other hand, the absorption which arises 

when the Laue conditions are satisfied and diffracted waves are produced is called extinction. 

Normal absorption is described by means of the linear absorption coefficient   which is 

defined as the fractional intensity decrease per unit length of path through the crystal medium. 

Since equation 1.21. shows that diffracted intensity decreases as the crystal size decreases, in 

the limit of very small crystals, both normal absorption and extinction can be neglected. Later 

studies proved that extinction must be taken into account when the linear dimension of the 

crystal is of the order of         or greater. Thus, the intensity formula in equation 1.21. 

represents an asymptotic solution which holds true only for crystals having linear dimensions 

of         or smaller. 

 

1.1.5. The dynamical theory of X-ray diffraction: basic concepts  

 

As highlighted in the above section, the main concepts of X-ray diffraction theory 

presented so far neglected both normal absorption and extinction, thus being valid only in the 

limiting case of small crystals. On the other hand, the dynamical diffraction model has to be 

considered for best describing the physics of incident and diffracted waves within the crystal. 

With this regard, let’s consider a crystal with a series of atomic planes which are parallel to 

each other as in Fig. 1.4.  
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Fig. 1.4: Dynamical interaction of X rays with a perfect parallel-sided set of diffracting planes [1.3]. 

 

If the beam path    of a photon is at an incident angle      in such a way to scatter it in 

the direction   , then it will also be at the correct incident angle to be scattered from the 

underside of these crystallographic planes. Therefore a dynamic situation occurs inside the 

crystal, where the energy of the incident beam decreases with depth due to losses and 

interferences between the multiple scattered beams along the direction   . Clearly, normal 

absorption occurs for all directions of incidence, while extinction is important only when the 

incident wave vector has such a value that the Laue equation is satisfied.  

This represents the basis of the dynamical scattering model proposed by Darwin in 

Refs. [1.12, 1.13]. The foundation of the dynamical theory is a solution of Maxwell’s 

equations in the periodic electron density of the crystal. This theory has enabled the 

calculation of the intensities and shapes of diffraction profiles from thick, perfect and real 

crystals.  

To understand how the photon is scattered within a crystal and generates an internal 

wave-field, the physical description given by Ewald or Laue can be followed [1.3]. In fact, 

each atomic site is considered to be occupied by a dipole which oscillates and emits radiation 

when a photon passes nearby. Due to the periodicity of the crystal, there will be an array of 

oscillating dipoles (also called “dipole-waves”) all emitting electromagnetic radiation, which 

adds to the total radiation field and interacts with other dipoles. Each dipole has been assumed 

to emit in phase, thus producing two plane waves: an electromagnetic wave which is created 

by the dipole and the dipole itself. Nevertheless, since Ewald did not consider that the crystal 

has a distributed electron density and should hence be considered as a dielectric, Laue made 

another approach but obtaining the same results. Indeed, he thought the crystal to be formed 

by continuous negative charge with shielded positive charges, these latter being the atomic 

nuclei, in a periodic array. When no incident photon exists, any atomic site in the crystal can 

be seen as neutrally charged. On the other hand, when an electric field is applied there will 

occur a relative displacement of the charges which would result in an electric polarization and 

thus the induced electric field will be given by  
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             1.24.  

 

or  

 

            1.25.  

 

where    is the applied electric field and    is the polarizing field.    is the polarizability 

or the electric susceptibility of the crystal as given by  

 

    
    

    
       1.26.  

 

where   is the electric charge,   the wavelength,   the mass of the electron,   the speed 

of light in vacuum and        is the variable electron density given by the formula 

 

        
 

 
    

   

            1.27.  

 

where   is the volume of the unit cell and the assumption that the electron density is 

strongly associated to the atomic sites, i.e., the inner electrons dominate has been made. The 

crystal can be therefore considered as a structure with an anisotropic periodic complex 

polarizability.  

The electric field within the crystal must obey Maxwell’s equations, thus the resulting 

electromagnetic field is the sum of plane waves, i.e.,  

 

 

             

 

            

             

 

            

1.28.  

 

which represent the total electric displacement and magnetic field at time   and position 

  for a total of   waves propagating within the crystal.    
   is the frequency of the 

electromagnetic wave while     is the scattered wave vector satisfying the Laue equation. 

       and     have to be determined on the basis of the boundary conditions and Maxwell’s 

equations.  
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1.2. Theory of X-ray diffraction in mosaic and curved crystals 

 

1.2.1. Definitions and assumptions 

 

In this section two physical quantities should be introduced because they will be 

employed in the following. Such quantities, typically used to qualify the diffraction properties 

of a crystal, are reflectivity and diffraction efficiency. According to Ref. [1.2, 1.14], 

reflectivity is defined as the ratio of diffracted beam intensity over incident beam intensity 

while diffraction efficiency is the ratio of diffracted beam intensity over the transmitted one 

when no diffraction occurs.  

In the previous section it was assumed that an incident wave entered a crystal through a 

plane boundary and produced a diffracted wave inside the crystal. In fact, the diffraction 

inside the crystal can either occur near the surface, this being referred to as Bragg geometry or 

“in volume", while the beam is propagating through the entire crystal (Laue geometry, see 

Fig. 1.5). Indeed, considering a parallel-plane bounded crystal of thickness    with unlimited 

lateral dimension, the equations of the two boundary planes are         and         . 

Although the incident wave enters the crystal through the plane        , the diffracted wave 

may emerge either through the plane         or through         . Because the boundary 

conditions are different, this distinction is sharp and gives rise to the two geometries, i.e., the 

Bragg and Laue case respectively. 

 
Figure 1.5: Distinction between Laue and Bragg geometries [1.1]. 

 

Since the framework of this thesis will mainly deal with X-ray diffraction in the Laue 

case, theoretical formulas in the following sections will be given for the Laue geometry.   

 

1.2.2. Mosaic crystals 

 

Mosaic crystals have been described by using Darwin’s model [1.15], i.e., as an 

assembly of small perfect crystals, the crystallites, each slightly misaligned with respect to 
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each other according to an angular Gaussian distribution. For mosaic crystals the reflectivity 

is given by the formula [1.1, 1.14] 

 

 

   
 

 
                

 
   

     
 

 

 

1.29.  

where the second factor is for diffraction efficiency, and the latter is the attenuation 

factor due to linear absorption   within the crystal.    is the crystal thickness traversed by the 

radiation,    the difference between the angle of incidence and the Bragg angle     and 

      the distribution function of crystallite orientations, namely 

 

 

        
   

 
 

 
   

  
 

     
  

  
  
 

 

 

 

1.30.  

where    is the mosaicity of the crystal, i.e. the angular distribution of the crystallites. 

Finally,   represents the integrated intensity diffracted by a single perfect crystal per unit of 

thickness. Considering the kinematical theory approximation [1.1],   is simply given by 

   
      

  
      

 1.31.  

 

  

 

where      is the   spacing of planes     and    the extinction length as defined by 

Authier [1.4] for the Laue case.  

 

 

 

1.2.3. Curved crystals  

 

Crystals having curved diffracting planes (CDP) are nowadays under investigation by 

the scientific community as an innovative concept because they appear very useful for several 

applications spanning from astrophysics to nuclear medicine [1.16-1.22].  

Theory of X-ray diffraction in CDP crystals was widely developed in the past half 

century in the frame of dynamical theory of diffraction, with particular contribution by C. 

Malgrange [1.23]. The equations given by Malgrange represent an extension of the PPK 

theory of diffraction in distorted crystals [1.24, 1.25] for the case of a large and homogeneous 
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curvature. In this theory, the deformation of diffracting planes is described by the strain 

gradient   which, in the case of uniform curvature, can be written as 

 

   
 

    
 1.32.  

 

where   is the FWHM of the angular distribution of planes, i.e. the bending angle of the 

crystal and    the Darwin width, namely the angular range around the Bragg angle for a flat 

crystal where diffraction is possible. When the orientation of the diffracting planes 

consistently changes over an extinction length owing to its curvature, the probability of 

diffraction parallel to the incident beam drops, so that Eq. 1.32 holds. Formally, this occurs 

when the strain gradient   is larger than a critical value         
 . The reflectivity for a 

curved crystal in Laue geometry is given by  

 

 

            
 
   

 
 
  

 
    
     

 
 

 

1.33.  

where the first factor is for diffraction efficiency, and the latter is the attenuation factor 

due to linear absorption ɛ throughout the crystal. Here   is interpreted as the angular variation 

of the diffracting planes over the extinction length (in unit of Darwin width) and can be 

expanded as  

 

   
    

   
 

   
 

      
 1.34.  

 

 

Thereby, the reflectivity becomes  

 

 

            
 
         

   
  

  
 

    
     

 
 

 

1.35.  

It is worth noting that there are two main differences between diffraction properties of 

mosaic and CDP crystals. Firstly, perfect crystals thicker than the extinction length and 

mosaic crystals suffer a maximum diffraction efficiency of 50% because of re-diffraction of 

the incident beam onto lattice planes (Fig. 1.6a). Conversely, curved crystals prevent this 
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effect due to continuous change of the incidence angle so that only a single diffraction occurs 

onto curved crystalline planes (Fig. 1.6b). Hence, diffraction efficiency in CDP crystals can 

ideally reach the unity. Secondly, unlike for mosaic crystals, which normally exhibit a 

Gaussian-like reflectivity passband, a curved crystal offers a continuum of possible diffraction 

angles over a finite range, leading to a rectangular-shape energy passband directly owing to 

its curvature.  

 

 
 Figure 1.6: X-ray diffraction in Laue geometry in case of an unbent (a) and of a bent crystal (b). 

 Multiple reflections in case (a) results in maximum 50% diffraction efficiency while in case (b) 

 diffraction efficiency can reach 100% [1.17].  
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2. Equipment for measuring diffraction 

patterns 
2.1. High-resolution X-ray diffractometer (HRXRD) 

 

At Sensors and Semiconductor Laboratory (SSL, Ferrara, Italy), a high-resolution X-ray 

diffractometer (HRXRD, X’Pert Pro MRD XL PANalytical
TM

) has been used for structural 

characterization of semiconductor crystals and ceramic materials.  

The instrument, as illustrated in Fig. 2.1, consists of basic features: an X-ray source, incident 

beam conditioning, sample stage and diffracted beam optics. The nature of these features have to be 

selected to best meet the needs of the material property to be analyzed.  

 

 
Figure 2.1: the high-resolution X-ray diffractometer at SSL (Ferrara, Italy) [2.1]. 

 

2.1.1.  X-ray source  

 

In a laboratory source of X rays, i.e., X-ray tube (see Fig. 2.2), photons are generated by 

electron energy transitions to the innermost electron orbitals in a solid and are characteristic of the 

atom concerned. The emission lines arise from excitations that transfer sufficient energy to remove 

an inner electron and allow the more loosely bound to transfer to the vacant inner states. As with 

any vacuum tube, there is a cathode, which emits electrons into the vacuum and an anode to collect 

the electrons, thus establishing a flow of electrical current, known as the beam, through the tube. A 

http://en.wikipedia.org/wiki/Cathode
http://en.wikipedia.org/wiki/Anode
http://en.wikipedia.org/wiki/Charged_particle_beam
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high voltage power source, for example 30 to 150 kV, is connected across cathode and anode to 

accelerate the electrons. The X-ray spectrum depends on the anode material and the accelerating 

voltage. 

 

 
Figure 2.2: sketch of X-ray tube. 

 

For the diffractometer under study, the material of the anode is copper, thus generating a 

spectrum of radiation as shown in Fig. 2.3.  

 

 
Figure 2.3: the Cu radiation spectrum.  

 

 

For maximum intensity of the beam and focus stability, typical values of voltage and current 

are 45 kV and 40 mA, respectively.  

http://en.wikipedia.org/wiki/Voltage
http://en.wikipedia.org/wiki/X-ray
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The filament of the X-ray tube is a small linear coil and its dimension partially defines the 

focus, being approximately rectangular in shape. The advantage of this shape is that the projection 

normal and parallel to the long axis produces two very useful configurations of the X-ray source 

(see Fig. 2.4), i.e., line and point focus. Depending on the geometry of the focus of the anode, the 

thermal load from high-energy electrons impacting onto the anode can be very high, therefore, a 

balance between focus size and power is strictly necessary. Nevertheless, efficient cooling is used 

for correct operation of the X-ray tube. 

 

 
Figure 2.4: the different projections available from the HRXRD [2.1]. 

 

 

2.1.2. Incident beam conditioning  

2.1.2.1. Incident beam slits and filters  

 

In order to reduce the divergence of the X-ray beam, thus the irradiated length of the sample 

under analysis, incident beam slits with variable size are normally used during measurements. 

Indeed, divergence slits are fitted in the incident beam path to control the equatorial divergence of 

the beam and thus the amount of sample that is irradiated by the X-ray beam. In particular, the size 

of the divergence slit can be set to one of these fixed values:                 and      . 

Moreover, it is also possible to adjust the beam size by means of two knobs within the accessory 

“Crossed Slits Assembly”. The knobs, one vertical and one horizontal, allow a gap of the aperture 

between 0 and 10 mm to be set. The knob scales are graduated in steps of 20 µm, thereby a size of 

the beam as small as       µm
2
 can be achieved. The knob nearest to the X-ray tube controls the 

width of the beam while the knob furthest away from the tube controls the height of the beam. 

In order to prevent the saturation of the detector due to a high photon flux, especially when 

the detector is positioned along the path of direct beam, absorbing filters or automatic beam 

attenuator placed in front of the X-ray source are required. However, by placing an absorbing 

material of an appropriate thickness, that has an absorption edge very close to the characteristic 

radiation of the X-ray tube, the spectral distribution can be dramatically changed, thus improving 

working operation of the whole diffractometer. In fact, as seen in Fig. 2.3, the X-ray source has 

several characteristic peaks due to the    doublet and a complex    line though with lower 

intensity. Because several radiation peaks may add complications to diffraction patterns of samples 
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under analysis, the filter must be chosen in such a way that its elemental material has an absorption 

edge just on the high side of the    line. In particular, for the Cu anode tube, nickel fits the 

requirement, so that the    line is almost completely eliminated but also the broad white radiation 

is reduced and a sharp absorption edge can be seen.  

A parabolic X-ray mirror (see Fig. 2.5), just positioned after the filter, enhances the 

performance because it parallelizes the beam from the focus by accepting nearly 0.8° of divergence 

and thus the Cu    is virtually eliminated (only 0.5% diffracted).  

 
Figure 2.5: sketch of the parabolic X-ray mirror. 

 

On the other hand, the energy difference in the    doublet is small, thus high-energy 

resolution is required to separate these contributions. With this aim, a high-resolution crystal 

monochromator is used, its features being described in the following section. 

 

2.1.2.2.  Monochromator  

Depending on the geometry of the tube, i.e., either line or point focus, the monochromator 

(see Fig. 2.6) of the HRXRD uses four symmetric 220 or 440 reflections from two channel-cut Ge 

crystals with (110) faces.  

 

 
 

Figure 2.6: scheme of the Bartels monochromator 

 

The beam is just conditioned by four diffracting crystals arranged according to the so-called 

Bartels monochromator. Indeed, as depicted in Ref. [2.2], each of the crystals acts as a double-

crystal diffractometer in the (+, –) configuration. In the first channel-cut crystal, the first reflection 

passes a wide range of wavelengths, but each wavelength is diffracted at a particular angle. The 
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second reflection accepts this entire wavelength spread, but bends the beam back into line with the 

source beam. The third reflection (from the first surface of the second channel-cut crystal) can 

accept a narrow piece of this spectrum, because this crystal is antiparallel with the second and its 

acceptance angle for a particular wavelength is approximately the Darwin width for this reflection. 

The fourth reflection brings the beam back into the line of the source beam. Therefore, the 

monochromator produces a conditioned beam with a divergence and wavelength spread that are 

both determined by the Darwin width of the reflections from the channel-cut crystals.  

In particular, by using Ge 440 reflections, the conditioned beam exiting the monochromator 

has a divergence of few arcsec and a monocromaticity of about  
  

 
        .  

2.1.3. Sample stage  
 

The sample stage of the HRXRD is a goniometer having optical encoders on the axes, leading 

to angular resolution of about      degrees. The angles associated with the diffractometer 

movements are shown in Fig. 2.7.  

 

 
Figure 2.7: angles associated with the HRXRD movements [2.1]. 

 

The   tilt axis allows for 180° rotation and the   rotation axis, being normal to sample 

surface, can rotate through 360°. Sample can also be translated by xyz stage. The    angle has a 

defined zero angle related to the direction of incident beam, while the   angle can be conveniently 

be defined with respect to sample surface, this latter supposed to be flat.  

2.1.4.  X-ray detector  

To reveal the energy of incident photons, the X-ray diffractometer at SSL uses a proportional 

gas counter, which is one of the most reliable detectors capable to record every X-ray photon and 

produce a measurable signal proportional to the flux of photons over a large range. Its scheme is 

shown in Fig. 2.8 and the working principle is the following: in a proportional counter the fill gas of 

the chamber which is usually an inert gas, to prevent rections, is ionised by incident radiation. 

http://en.wikipedia.org/wiki/Inert_gas
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Indeed, an ionizing particle entering the gas collides with a molecule of the inert gas and ionises it 

to produce an electron and a positively charged atom, commonly known as an "ion pair". As the 

charged particle travels through the chamber, it leaves a trail of ion pairs along its trajectory, the 

number of which is proportional to the energy of the particle if it is fully stopped within the gas.  

 

 
Figure 2.8: the proportional gas detector. The incoming photon impinges onto an X-ray transparent Be window 

and ionizes the gas inside the chamber. Electrons and ions are accelerated by an intense electric field towards the 

anode and cathode, respectively, creating further impact ionization events and thus an electric signal being 

proportional to the energy of the incoming photon [2.1]. 

 

Indeed, to obtain a highly efficient counter, the absorption of X-ray photons must occur 

within the chamber and this fact partially determines the choice of the inert gas. In particular, for 

the case of the HRXRD at SSL, a gas of Xe is employed, giving about 93% of absorption efficiency 

for X rays coming from the Cu X-ray tube. Further advantage of the usage of Xe as inert gas is the 

creation of electrons owing to Auger process, which is the favoured absorption mechanism for 

reliable counting. Finally, one of the most important aspects of any detector is the relationship 

between the signal and the incoming photon flux. Fig. 2.9 highlights the good energy resolution of 

the detector, for a stable and proportional response.  
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Figure 2.9: the energy distribution for discriminating CukŬ X rays with the proportional detector [2.1].  

. 

2.1.4.1. Combination with scattered beam analyzer 

In order to reduce the angular acceptance of X-ray beam scattered from sample, thus 

increasing the instrumental resolution, an analyzer crystal is positioned between sample and 

detector. The analyzer consists of two channel-cut Ge (220) crystals oriented in such a way to 

diffract the beam from the specimen, with an angle of acceptance equal to the Darwin width of the 

crystals. Indeed, by selecting only parallel X rays scattered from the sample, i.e., those which 

satisfy the Bragg condition for the analyzer, the angular acceptance is significantly reduced. The 

scheme of the analyzer is depicted in Fig. 2.10.  

 

 
Figure 2.10: scheme of the analyzer crystal made by two channel-cut Ge (220) crystals. The beam undergoes 

three internal reflections within the analyzer before entering the detector. Indeed, odd numbers of reflections 

reduces the chance of the directly scattered beam from reaching the detector. Only X-rays which satisfy Bragg 

condition for the analyzer will enter the detector. For the analyzer of the HRXRD acceptance angle is about 11 

arcsec. 
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A further method of controlling the divergence of the scattered beam is the usage of a 

parallel-plate collimator as analyzer (see Fig. 2.11). In this case, the advantage is that small 

divergence can be preserved while still maintaining high intensity of photons by using a large X-ray 

source. Capture of scattering from large regions on the sample is allowed, and this method is often 

used in applications of thin film analysis, where very low angle of incidence are required, or powder 

diffraction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2.11: on the left side, sketch of the parallel-plate collimator while the right side shows the variation of 

divergence as a function of the separation between plates [2.1]. 

 

2.1.5. Configuration of the HRXRD for characterization of samples by rocking 

curve  

The rotating crystal method, which has been described in previous chapter (section 1.1.2.), 

represents the basis of X-ray characterization of samples at SSL by rocking curve (RC) 

measurement. Indeed, a RC measurement involves rotating the specimen in the monochromatic X-

ray beam in order to plot the diffracted intensity as a function of the incidence angle of the beam.  

The configuration of the HRXRD for measuring a RC, thus a diffraction profile of the sample 

under analysis, is depicted in Fig. 2.12.  
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Figure 2.12: configuration of the high-resolution X-ray diffractometer at SSL for measurement of a RC of 

sample in Bragg geometry with respect to incident beam. 

 

Either point or line focus can be used as geometry of the X-ray source. Because in line focus 

configuration the divergence is higher than for point focus, the X-ray mirror is required to 

parallelize the beam. Then, the monochromator controls the scattering plane divergence and 

wavelength dispersion, producing a well-defined incident beam. The analyzer crystal only passes 

scattered X rays coming from the sample in the specific direction defined by its rotation about an 

axis common with the sample rotation. However, it is worth noting that depending on the 

application of the specimen under analysis, the analyzer can be used or not, this latter case being the 

so-called open detector mode. As an example, with the aim to reveal mosaic crystallites in an 

imperfect sample, the introduction of the analyzer crystal before the detector allows for scanning 

along the direction normal to the plane that is sensitive to strain, because it selects only parallel X 

rays coming from the sample. Therefore, it results possible to separate the mosaic block orientation 

from other contributions of imperfections of the specimen, e.g., bending, strain variation and 

intrinsic scattering, consequently revealing mosaicity of the sample. On the other hand, an open 

detector scan would result in a very broad profile, many times that of the intrinsic scattering profile 

of the sample, because all contributions are mixed, the major contributing factor to the width of an 

open detector scan being normal to this direction. In Fig. 2.13, RCs obtained with the HRXRD 

show the difference between a scan in open detector mode and that with an analyzer.  
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Figure 2.13: RCs obtained on a GaAs sample in open detector mode (black dotted line) and with analyzer (black 

line) by using the HRXRD at SSL.  

 

 

2.2. Beamline ID15A at European Synchrotron Radiation Facility 

(ESRF) 
 

At European Synchrotron Radiation Facility (ESRF, Grenoble, France, see Fig. 2.14), 

beamline ID15A has been used to carry out experiments of X-ray diffraction on curved crystals of 

Si and Ge material.  

The working principle of synchrotron light source is very different from that of an X-ray tube. 

A synchrotron is a storage ring for electrons, which are contained by magnetic fields to prevent 

excessive divergence and consequent energy loss. When the electrons are deviated from a straight 

line using auxiliary components such as bending magnets and insertion devices (undulators or 

wigglers), the consequent acceleration towards the centre of the curve creates an energy orbital 

jump thus producing electromagnetic radiation. If this energy change is large, then X rays can be 

produced. The X-rays from the synchrotron are emitted tangentially from the radius and 

concentrated into a narrow cone with the electric field vector predominately confined to the plane of 

the orbit, i.e., the beam is horizontally polarised. 
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Figure 2.14: European Synchrotron Radiation Facility (Grenoble, France) 

 

On beamline ID15A, high energy, high flux and flexibility in the energy tuning are well 

combined with significantly high spatial and spectral beam definition. For X-ray characterization of 

curved Si and Ge crystals, a highly monochromatic and quasi-parallel beam (50×50 µm
2
 or 100×50 

μm
2
) was tuned to the desired energy, ranging from 150 to 700 keV. This was done thanks to a two-

reflection Laue Si (111) unbent monochromator with a sharp monochromaticity of the order of   

  
         . A high-purity Ge detector was used to reveal X rays. The beam intensity was 

constantly monitored by the current of electrons in the storage ring of the synchrotron. The 

experimental setup at beamline ID15A is shown in Fig. 2.15.  

 
Figure 2.15: experimental set-up at the beam line ID15A at the ESRF 

 

The characterization of the samples was carried out by performing RCs in Laue geometry, 

i.e., by recording either the transmitted or diffracted beam intensity while the crystal was rotated in 

the beam around the position where the Bragg condition is satisfied. Transmitted beam intensity 

was recorded by keeping the sample in diffraction condition and shifting the detector in such a way 

to measure the beam intensity passing through the crystal without undergoing diffraction. 

Moreover, the sample holder was set far enough from the detector in order to allow for sufficient 

separation of diffracted and transmitted beams even at highest energy. Diffraction and transmission 

RCs were recorded one after the other, resulting in two complementary curves as a function of the 

beam incidence angle (Fig. 2.16). An advantage of this configuration is that diffracted and 
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transmitted RCs exhibited diffraction efficiency of the sample under analysis. Efficiency is defined 

as in Ref. [2.3, 2.4] (see also chapter 1), namely the ratio of diffracted beam intensity over the 

transmitted one.  

The FWHM of the RC is a direct measurement of the angular distribution of diffracting planes 

(hereinafter referred to as angular spread), namely the bending angle of the crystal. In Laue 

geometry the Bragg angles are small and therefore a possible broadening of the RCs due to a 

variation of the lattice parameter can be negligible. Furthermore, the shape of the RCs was not 

modified by extinction phenomena, which were negligible in such curved crystals.  

 

 
Figure 2.16: RCs obtained at beamline ID15A on a Si CDP crystal [2.5]. The energy of the photon beam  was 

150 keV. Filled circles plot the intensity of the transmitted beam, whereas the empty circles plot the  intensity of 

the diffracted beam. The FWHM of the RCs is of the order of crystal bending. 

 

2.3. Hard X-ray diffractometer at Institute Laue Langevin (ILL) 
 

At Institute Laue Langevin (ILL, Grenoble, France) X-ray characterization on two stacks of Si 

curved crystals has been carried out by using a hard X-ray diffractometer (see Fig. 2.17) based on 

the method of X-ray focusing for transmission (Laue) geometry [2.6-2.9]. A schematic diagram of 

this technique is shown in Fig. 2.18. The diffractometer uses a polychromatic and divergent X-ray 

beam (energy range between 80 and 450 keV) emitted from a high-voltage and fine-focus X-ray 

tube commonly used for industrial radiographs. Since Bragg angles were small (0.5 – 1 degree), 

diffraction peaks were located close to the direct beam, thus allowing the observation of peaks from 

several crystallographic planes. These latter were observed thanks to a high-resolution and sensitive 

X-ray image intensifier coupled with a CCD camera, featuring a spatial resolution of about 0.35 

mm (pixel size).  

For the experiment on curved Si multi-crystals, the distance between sample and generator 

focus, this latter being 1×1 mm
2
, was set to be 4.45 m, thus determining a lattice tilt maximum 
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sensitivity of 8.1 arcsec. Moreover, a slit with variable size positioned just before the sample 

delimited the width of the X-ray beam.  

 

  
Figure 2.17: left side: X-ray generator and diffractometer. Right side: sample orientation table and  detector.  

 

 

 

 
Figure 2.18: schematic representation of the in-plane focusing of a divergent polychromatic x-ray beam by a 

crystal in Laue geometry. If the distance from the source to the crystal is equal to that from the crystal to the 

focal point, all diffracted rays converge to a point and a distribution of wavelengths is selected [2.10]. 

 

 Under the assumptions highlighted in Ref. [2.11], for a diffractometer based on the method 

of X-ray focusing in Laue geometry with a divergent and polychromatic beam, all diffracted rays 

converge to a point (Fig. 2.18) and a distribution of wavelengths from the white beam is selected. 

The focusing effect only occurs in the scattering plane while in the perpendicular direction the 

radiation propagates straight. In fact, scattering from a perfect thin crystal will result in a line profile 

onto a detector located at the focusing position. The FWHM of the intensity Gaussian profile 

perpendicular to the line is solely determined by the size of the X-ray source and the thickness of 

the crystal. Conversely, for a curved crystal the width of the intensity profile is also related to the 
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deformation of diffracting planes, i.e., to its bending angle [2.5]. In particular, from a crystal with 

CDP the width of a converging or diverging beam at the detector (small-angle approximation) is 

given by  

 

 

                
 

 
   

2.1.  

 

where the ± sign holds for the converging or diverging mode of diffraction, a is the size of the 

X-ray source, t is the thickness of the crystal (traversed by radiation), f is the sample-to-detector 

distance, l is the length of the crystal which undergoes bending and R is the curvature radius of the 

crystal. The term      is the contribution of broadening due to the thickness of the sample,    the 

broadening due to the variation of incidence angle while  
 

 
 represents the bending contribution. 

This result has been obtained by revisiting the formulas of the focal spot size in Refs. [2.11, 2.12].  

A typical diffraction pattern produced by the hard X-ray diffractometer is shown in Fig. 2.19.  

 

 

 

 

 

 

 

 

 

 

Figure 2.19: Diffraction patterns recorded from a Si crystal with CDP (a). Horizontal average cross-section of 

the focal spot corresponding to (111)-diffraction is highlighted (b). 
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3. X-ray characterization of curved Si and Ge 

crystals for realization of a Laue lens 

 
 

3.1. A Laue lens for astrophysics  
 

A Laue lens is an optical component to focus hard X- and soft gamma-ray photons through 

Bragg diffraction in Laue geometry within a properly arranged array of crystals disposed as 

concentric rings with radii spanning a certain range [3.1-3.3] (see Fig. 3.1). For a Laue lens a 

significantly important field of application is represented by astrophysics. In fact, in hard X-ray 

astronomy many celestial sources emitting high-energy photons are very interesting candidates for 

investigation. As an example, a hot topic in astrophysics that may benefit from usage of a Laue lens 

is high-precision mapping of celestial positron sources [3.4], through the study of the e+ - e− 

annihilation line at 511 keV. Despite a 511 keV emission has been observed for more than 30 years 

towards the Galactic center [3.5], the origin of the positrons still remains a mystery. Stellar 

nucleosynthesis [3.6-3.8], accreting compact objects [3.9-3.12], and even the annihilation of exotic 

dark matter particles [3.13] have all been suggested, thus a deeper investigation has to be done. A 

Laue lens would enable the study of the location of positron sources in our Galaxy by concentrating 

the annihilation line at 511 keV with high resolution, thus bringing new clues concerning these still 

elusive sources of antimatter. As another, the focalization of 847-keV photons produced by the 

decay chain of the radionuclide 56Ni would enable the study of Type Ia Supernovae events, thus 

unveiling the physical processes in these cosmological standard candles [3.14].  

It is widely acknowledged by the scientific community that a Laue lens would achieve a gain 

in sensitivity by one or two orders of magnitude with respect to existing telescopes in the hard X-

ray/soft gamma-ray domain (>100 keV). In fact, in order to improve our knowledge of the violent 

celestial processes responsible of the emission of high-energy photons more sensitive telescopes are 

needed. Current instruments operating in this part of the electromagnetic spectrum do not use 

focusing optics. They reconstruct the incidence direction of detected events thanks to either an 

aperture modulation (coded mask) or by tracking the multiple (Compton) interactions of photons in 

a sensitive volume [3.15]. The common point of these two techniques is that the signal is collected 

onto an area which is itself the sensitive area. With the existing kind of telescopes more sensitive 

means larger in order to collect more signal. However, the improvement of sensitivity only scales 

with the square root of the collection surface since the instrumental background scales with the 

volume of detectors. This is why it appears impossible to achieve the required sensitivity leap of a 

factor 10-100 with the existing principles of soft gamma-ray telescopes. On the other hand, by 

concentrating photons from a large collection area of a crystal diffraction lens onto a very small 

detector volume, background noise would be extremely low leading to a significantly high gain in 

sensitivity.  
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Figure 3.1: sketch of a Laue lens. X- and gamma-ray photons are diffracted by an array of crystals,  disposed as 

concentric rings spanning a certain energetic range, towards a common focal point [3.15]. 

 

Since in most cases a Laue lens is requested to concentrate radiation over a broad energy 

range, a typical component for wide-passband focusing is a mosaic crystal [3.16]. However, this 

latter suffers a 50%-limit in diffraction efficiency. With this aim, crystals with curved diffracting 

planes (CDP) have been deeply studied as high-efficiency optical components for the realization of 

a Laue lens for satellite-borne experiments. CDP crystals exhibit a uniform energy distribution with 

a passband proportional to the curvature and their diffraction efficiency can ideally reach the unity 

[3.17, 3.18].  

For fabrication of a CDP crystal, several techniques have been worked out. Bending can be 

accomplished by mechanical means, i.e., by deforming a perfect single crystal [3.19] through an 

external device. As an example, mechanically bent crystals have been used in synchrotrons for 

many years as high-efficiency monochromators. However, the usage of an external device leads to 

excessive weight, which is to be avoided especially in satellite-borne experiments with a Laue lens. 

Thus, self-standing CDP crystals are mandatory for practical implementation of a focusing 

telescope as a Laue lens. Such curved crystal can be produced by applying a thermal gradient to a 

perfect single crystal [3.20] but, this method is energy consuming and not adapted to a space-borne 

observatory as well. CDP crystals can also be obtained by concentration-gradient technique, i.e., by 

growing a two-component crystal with graded composition along the growth axis [3.20–3.23]. 

However, crystals bent by such a method are not easy to manufacture, this making the technique 

hardly applicable for a Laue lens application, for which serial production of crystals should be 

envisaged.  

It was proven that a promising technique for bending crystals is surface grooving [3.24, 3.25]. 

Grooves manufactured on the surface of a crystal by a diamond saw induce a permanent curvature 

within the crystal, with no need for external device. This technique is based on plastic deformation 

of the crystal induced by the grooves. As a result of deformation, a permanent curvature is 

produced, resulting in self-standing CDP crystals. Such method is cheap, simple and very 

reproducible, thus compatible with mass production.  
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Within the framework of the “Laue project” as financed by the Italian Space Agency, at 

Sensor and Semiconductor Laboratory (SSL, Ferrara, Italy) silicon and germanium plates are 

plastically deformed by grooving one of their major surfaces with very good control of the 

curvature. Grooved crystals were characterized at ESRF (Grenoble, France) under X-ray diffraction 

experiments and exhibited significantly high performance up to 700 keV, peaking 95% at 150 keV 

[3.18]. Moreover, it resulted that measured angular spread of the diffracted beam was always very 

close to the morphological curvature of the sample under investigation, proving that the energy 

passband of CDP crystals can be controlled by simply imparting a selected curvature to the sample. 

Next sections describe the possible arrangements of CDP crystals in a Laue lens, their 

fabrication through surface grooving technique and experimental results of X-ray characterization 

obtained on Si and Ge grooved crystals, showing their functionality as optical elements for a Laue 

lens. 

 

3.2. Configurations of crystals in a Laue lens  
 

For the sake of better understanding, some concepts about diffraction in curved crystals are 

reviewed.  

CDP crystals are innovative for the realization of a Laue lens because they offer a continuum 

of possible diffraction angles, directly owing to their curvature. Thus, it becomes possible to diffract 

X-rays over a broad energy passband. According to dynamical theory of diffraction [3.26], their 

reflectivity can be significantly high [3.17, 3.18], being 

 

 

            
 
         

   
  

  
 

    
     

 
 

 

3.1.  

where the first factor is for diffraction efficiency, and the latter is the attenuation factor due to 

linear absorption   throughout the crystal.    is the crystal thickness traversed by radiation,      the 

d-spacing of diffracting planes (hkl) and   the angular spread, i.e., the bending angle of the crystal. 

   is the Bragg angle and    the extinction length as defined in Ref. [16]. For curved Si (111) 

crystal with radius of curvature of the order of 10
2 

meters,         and photon energy of the 

order of 10
2
 keV, a reflectivity about 70 - 80% can be obtained. 

In Ref. [3.25], a model, which completely relies on the theory of elasticity, has been 

developed to predict the curvature of grooved samples, thus obtaining the appropriate value of   

that maximizes the reflectivity of a Laue lens.  

 



 
 

44 

3.2.1. Geometry 1: stack of equally curved crystal plates  
 

With the aim of wide-passband focusing, CDP crystals must be disposed vs. impinging 

photons as in Fig.3.2a, hereinafter called ”geometry 1”. In particular, in order to maximize 

diffraction efficiency of the whole lens, self-standing curved crystal plates thicker than some 

millimeters are required. However, realization of such thick CDP crystals is technologically 

demanding.  

A possible solution can be a multi-crystal, i.e., a stack of equally curved crystal plates, aligned 

with each other with high accuracy (Fig. 3.2a) [3.27, 3.28]. In a Laue lens scheme, the stack should 

be positioned with the diffracting planes parallel to the major surface of the crystalline plate and 

perpendicular to the lens surface. Photons enter the stack nearly parallel to the diffracting planes, 

suffer diffraction and undergo focusing onto the detector. This technique opens up a viable way to 

build up optical components for X- or gamma-ray diffraction without any size constraint, which 

may be useful in Laue lens application, where weight constraint is mandatory.  

 

 
Figure 3.2: (a) Geometry 1. (b) A stack of plate-like curved crystals is proposed as an optical component for  a 
Laue lens in geometry 1. (c) Geometry 2 with a quasi-mosaic crystal as optical element for focusing  through a 
Laue lens. Arrows represent X-ray beam. In both geometries, curved diffracting planes are the  (111) due to 
their high reflectivity. 

 

3.2.1.1. Misalignment effects  

 

Proper bonding of neighboring plates in a stack (Fig 3.3a) is mandatory to ensure a good 

alignment of the diffracting planes and thus a well-defined focal spot on the detector. In fact, 

neighboring plates can be affected by a misalignment with respect to each other as shown in Figs. 

3.3b, c and d. With this regard, let us consider a parallel x-ray beam undergoing Laue diffraction 

from curved crystalline planes (parallel to the major surface of the plates), which are misoriented by 

a constant angle   with respect to each other. In the case of Fig. 3.3b, if a photon with wavelength   

is diffracted at Bragg angle,   , by one of the crystalline plates, another photon impinging onto the 

other plate at the same point is being diffracted provided that its wavelength is 
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3.2.  

where   is the angle of misalignment between the plates under small-angle approximation. If 

instead one considers the misalignment as depicted in Fig. 3.3c, if a photon with wavelength   is 

diffracted at θB by one of the crystalline plates, another photon impinging onto the other plate at the 

same point is being diffracted provided that its wavelength is 

 

 

   
 

    
     

  

 
  

 

3.3.  

 

For the case of photons impinging onto the plates misaligned as in Fig. 3.3d, the relationship 

between wavelengths reads 

 

 

     for all   

 

3.4.  

It turns out that misalignment is unimportant for an x-ray beam impinging as in Fig. 3.3d, less 

important for the configuration in Fig. 3.3c, while critical for the case in Fig. 3.3b. Therefore, for 

fabrication of a stack of plate-like curved crystals, special care must be paid to avoid this latter 

misalignment.  
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Figure 3.3: perfect bonding of neighboring plates in a stack is mandatory to ensure a good alignment of  the 

diffracting planes and thus a well-defined focal spot on the detector (a). For a parallel x-ray beam  (red arrow) 

undergoing diffraction from curved crystals with plates misoriented of an angle ű, the  misalignment is 

critical (b), less important (c) and indifferent (d). 

 

3.2.2. Geometry 2: quasi mosaic crystals  
 

The “geometry 2” as in Fig.3.2c has been proposed in [3.29] because of the larger crystal 

surface exposed to the photon flux, which means fabrication of about 10
2
 samples vs. 10

3
-10

4
 

samples for geometry 1. The necessary curvature to yield CDP is provided by quasi-mosaic (QM) 

effect as a secondary curvature.  

Quasi-mosaicity is an anisotropic effect that manifests itself when a properly oriented crystal 

plate is bent along a given direction, i.e., quasi-mosaicity depends on the crystallographic 

orientation of the plate undergoing bending. Indeed, a primary curvature imparted to a crystal 

results in a secondary (quasi-mosaic) curvature of a different plane direction due to the quasi-

mosaic effect. The curvature induced by the phenomenon of quasi mosaicity has been studied in the 

framework of linear elasticity and can be predicted [3.29].  

Historically, quasi-mosaicity was discovered by Sumbaev in a seminal work [3.30]. More 

recently, this phenomenon was introduced by Ivanov [3.31] to bend Si crystals for steering high-

energy particles via coherent effects in crystals [3.32, 3.33].  

The use of QM crystals allows positioning of the crystals in a Laue lens in the same way as 

for mosaic crystals, i.e., with the diffracting planes perpendicular to the major faces of the crystal 

(Fig. 3.4). However, in Ref. [3.29] it has been shown that the signal-to-noise ratio attained for QM 

crystals can be about an order of magnitude larger than that for mosaic crystals, highlighting the 

functionality of exploitation of QM crystals in efficient focusing of high-energy photons in a Laue 

lens.  
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For a Laue lens composed of crystals with diffracting planes perpendicular to the major face 

of the crystal, focusing can be fully provided by bending the crystals to a primary curvature equal to 

that of the whole lens. However, even for such a curved crystal, if the diffracting planes were 

perfectly flat, the reflectivity of the whole lens would be the same as that for an unbent single 

crystal, i.e., a relatively low figure. By using QM crystals, it is possible to combine the focusing 

action due to primary curvature with the high reflectivity of CDP built up by quasi-mosaicity. Due 

to quasi mosaicity, the photon flux can be focused down to a spot smaller than the size of the 

diffracting crystal, in contrast to diffraction by a traditional crystal, the spot of which is no smaller 

than its size exposed to the photons. Thus, since the size of the focal spot of the photons diffracted 

can be controlled by secondary curvature, QM crystals allow focusing with high resolution, 

increasing the sensibility of the Laue lens. 

 

 
Figure 3.4: the primary curvature of a properly oriented crystal leads to a secondary curvature owing to quasi-

mosaicity. For a Laue lens, quasi-mosaic curvature of the (111) lattice planes resulting from primary bending of 

the (112) crystal plates is proposed for diffraction. In this configuration the (111) diffracting planes are 

perpendicular to the main surface of the plate; thus positioning of the crystals in the lens would be the same as 

for mosaic crystals.   and    are the primary and secondary bending angles, respectively [3.29]. 
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3.3. Material and methods  

3.3.1. Surface grooving technique  

Grooves manufactured on the surface of a Si plate by a diamond saw is known to deform the 

whole crystal, leading to a net and permanent curvature [3.17, 3.18]. The origin of permanent 

deformation can be intuitively interpreted in terms of irreversible compression of the crystal beside 

and beneath the grooves. This region is rich in dislocations, partly amorphous and its extent is 

generally limited to some microns, depending on dicing parameters, e.g., grit and advance speed of 

the blade [3.24, 3.25]. Such a highly defected region acts as a solid wall for the crystalline material 

between the grooves and prevents it from full mechanical relaxation. Thus, the array of elastically 

compressed regions behaves as an “active plasticized layer”, imparting internal forces to the whole 

crystal, thus bending the remaining crystal below them. It ultimately results in a net and uniform 

curvature within the crystal without the usage of any external device. In Ref. [3.25], a model based 

on the theory of elasticity has been developed to foresee measured curvature of grooved samples. 

The model is based on the assumption that the plasticized layer behaves as a compressive film. 

Indeed, the Stoney approach was used to determine the curvature of grooved samples. 

Fabrication of curved Si and Ge crystals has been developed through the method of surface 

grooving by the usage of a high precision dicing machine (DISCO
TM

 DAD3220), equipped with a 

rotating blade of various width, geometry and diamond grit size. Depending on the geometry of 

CDP crystals, grooves were manufactured on the surface of the plates along either one or two 

perpendicular directions. 

In order to verify the possibility to deform a sample through the grooving method, a 

preliminary test was done on a 10×10×2 mm
3
 silicon sample. A single groove, 160 μm wide and 

1680 μm deep, was done parallel to the sides passing through the center of its surface (see left side 

of Fig. 3.5). Analysis of the deformation of the crystal, i.e., of its crystallographic planes, has been 

investigated at several positions along x axis, by usage of the high-resolution X-ray diffractometer 

at Sensor and Semiconductor Laboratory (Ferrara, Italy) in Bragg geometry (Cu K  radiation, λ = 

1.54   ). For every step, the crystal was rotated around the angle where Bragg diffraction occurs, 

thus recording the so-called rocking curve (RC) (see right side of Fig. 3.5). As can be noticed, the Si 

plate takes the shape of a dihedron bent by 30 arcsec just beneath the groove. If instead of an 

individual groove, a regular grid of grooves is done on the same surface, a net curvature can be 

achieved. This is the key idea about deformation of a Si plate by the method of surface grooving.  
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Figure 3.5: Left side: photos of the 10×10×2 mm

3
 Si plate. The clearer rectangles represent the areas where X-

ray beam impinges and diffracts. The groove is centered at x = 0 mm. Seven measures was  done, at (a) = -4 mm, 

(b) = -2.5 mm, (c) = -1 mm, (d) = 0 mm, (e) = 1 mm, (f) = 2.5 mm, (g) = 4 mm. Right side: Rocking curves relative 

to each position as specified by the photo on the left. X-axis is the angle between X-rays and crystallographic 

planes [3.25]. 
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3.3.2. Fabrication of single Si and Ge curved crystals for X-ray 

characterization at ESRF  
 

With regard to “geometry 1”, production of single curved crystals has been carried out. 

Commercially available pure Si and Ge wafers were diced to form plates using a high precision 

dicing saw, equipped with rotating diamond blades of various width and grain size.  

Grooves were manufactured on the surface of the plates along one direction, i.e., either x or y 

(Fig. 3.6a). Si and Ge single plates were 1 mm and 2 mm thick, respectively, and their orientation 

was the (111), these planes being normally selected for X/gamma-ray focusing because of their high 

reflectivity. Fabrication parameters of all the samples are reported in Table 1 and an image of one of 

the samples is shown in Fig. 3.7.  

 

 
Figure 3.6: Grooves were manufactured on the surface of a Si or Ge plate along one direction, either x or  y 

(a). The probe x-ray beam enters the sample parallel (b) or perpendicular (c) to the grooves [3.18]. 

 

 
Figure 3.7: Side view of sample S71 with a series of grooves as taken by scanning electron microscope.  The 

black arrow indicates the pitch of the grooves [3.18]. 

 

For every crystal, the curvature induced by grooves was measured using an optical 

profilometer (VEECO
TM

 NT1100) with 1 μm lateral and 1 nm vertical resolution. The profilometer 

is equipped with a stitching system that allows scanning over as wide an area as 10 × 10 cm
2
. In 

order to account for the initial morphological non-planarity of the samples (wafers are generally not 

perfectly flat), subtraction of profile before and after the grooves was done. Moreover, since the 

profile of a surface with grooves is altered by their presence, thus making the analysis more 

difficult, profilometric characterization was carried out on the back face of each sample. As a result 

of the grooving process, an ellipsoidal surface appeared, with the shortest radius of curvature 

perpendicular to the grooves. A typical profilometric pattern of one of the samples is shown in Fig. 

3.8. Production and optical characterization of all samples have been carried out at Sensor and 

Semiconductor Laboratory (Ferrara, Italy).  
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Figure 3.8: Optical profilometry scanning of the surface without grooves of crystal S71 (a).  Falsecolor  

epresentation of deformation is highlighted. Cross sections of the deformation pattern along y = [211] (b) and x = 

[110] (c) directions as taken on the center of the sample with indications of the two main curvature radii [3.18]. 

 

Single Si and Ge grooved crystals were tested under X-ray diffraction experiment at European 

Synchrotron Radiation Facility (Grenoble, France). At beamline ID15A, a highly monochromatic 

and quasi-parallel beam was tuned to the desired energy, ranging from 150 to 700 keV. All samples 

were analyzed by diffraction of their (111) planes, the pencil beam entering the sample at different 

depths from the grooved surface (coordinate z). Two different configurations were used, i.e., the 

beam was set quasiparallel (hereinafter referred to as parallel) or perpendicular to the grooves, its 

size being 50 × 50 μm
2
 and 100 × 50 μm

2
, respectively. A sketch of the two configurations is shown 

in Figs. 3.6b and c. 

3.3.3. Fabrication of stacks of Si curved crystals for X-ray characterization at 

ILL  

3.3.3.1.  Stack_1 

Commercially available pure Si wafer was diced to form three plates by using the dicing 

machine at Sensor and Semiconductor Laboratory. The plates were 1 mm thick and their orientation 

was (111), these planes being normally selected for X/γ-ray focusing because of their high 

reflectivity. Once cleaved from the same wafer, grooves were manufactured on the surface of the 

plates along one direction. Preliminary characterization of every plate through optical profilometry 

guaranteed that they were morphologically equivalent (Figs. 3.9a and b). In order to account for the 

initial morphological non-planarity of the samples (wafers are generally not perfectly flat), 

subtraction of the profiles before and after the grooving process was done for every plate. 

Profilometric characterization was carried out on the back face of each plate. As a result of 

grooving, an ellipsoidal surface appeared, with the smallest curvature radius perpendicular to the 

grooves. The crystals were finally mounted on a hot plate and bonded one over the other to form a 

stack (Fig. 3.9c) by using a low-stress thermal paste. At nominal temperature, the glue melts and 

solidifies on cooling, yielding a stack of plates in a stable way. To verify that bonding has not 

altered the morphology of the crystals, subtraction of the morphological profiles before and after the 
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bonding was done to the crystal on the top of the stack. Fabrication parameters of the multi-crystal 

are reported in Table 1.  

 
Figure 3.9: Stack_1. Optical profilometric scanning of the surface without grooves of one of the Si plates. Cross 

sections of the deformation pattern along x (a) and y (b) directions are highlighted, as taken on the center of the 

sample. Two main curvature radii are 110 m and 540 m along x and y, respectively. Stacking of Si crystals was 

obtained by bonding the plates one over the other thanks to a low-stress thermal paste. As visible, grooves were 

manufactured on the surface of each plate along y direction (c) [3.27]. 

 

3.3.3.2. Stack_2 

Fabrication of a stack of two Si curved crystal plates, coded as stack_2, was carried out in the 

same way as for stack-1. At Sensor and Semiconductor Laboratory commercially available pure Si 

wafer was diced to form two plates by using the dicing machine. The plates were 1 mm thick and 

their orientation was (111). Once cleaved from the same wafer, grooves were manufactured on the 

surface of the plates along one direction. In order to guarantee that the plates were morphologically 

equivalent, a preliminary characterization of every plate (on their back face) was carried out by 

optical profilometry (Figs. 3.10a and b). Moreover, to account for the initial morphological non-

planarity of the samples, subtraction of the profiles before and after the grooving process was done 

for every plate. As a result of grooving, an ellipsoidal surface appeared, with the smallest curvature 

radius perpendicular to the grooves. Then, the crystals were finally mounted on a hot plate and 

bonded one over the other to form a stack (Fig. 3.10c) by using the low-stress thermal paste. 

Finally, to verify that bonding has not altered the morphology of the crystals, subtraction of the 

morphological profiles before and after the bonding was done to the crystal on the top of the stack. 

Fabrication parameters of stack_2 are reported in Table 1.  
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Figure 3.10: Stack_2. Optical profilometric scanning of the surface without grooves of one of the Si  plates. Cross 

sections of the deformation pattern along x (a) and y (b) directions are highlighted, as taken on the center of the 

sample. Two main curvature radii are 130 m and 940 m along x and y, respectively. Stacking of Si crystals was 

obtained by bonding the plates one over the other thanks to a low-stress thermal paste. As visible, grooves were 

manufactured on the surface of each plate along y direction (c). 

The stacks were tested through X-ray diffraction at Laue Langevin Institute (ILL, Grenoble, 

France) by using a hard X-ray diffractometer based on the method of X-ray focusing for 

transmission (Laue) geometry. The diffractometer used a polychromatic and divergent X-ray beam 

having energy between 80 and 450 keV, emitted from a high-voltage and fine-focus X-ray tube. 

Main features of the instrument can be found in Chapter 2. The multi-crystals were measured in two 

different configurations, i.e., the beam was set parallel to the (    ) or (111) planes, its size being 

chosen 10×1 mm
2
 and 10×0.5 mm

2
, respectively. A sketch of the two configurations is shown in 

Figs. 3.11a and b. 

 

 
Figure 3.11: Probe x-ray beam (red arrow) enters the stack quasi-parallel to the (    ) (a) or to the (111) 

crystallographic planes (b). In case (a), collimated-beam size dimension was 1 mm on the diffraction plane xz and 

10 mm on the plane yz. In case (b), beam size was 0.5 mm on xz plane and 10 mm on yz plane [3.27]. 
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With the aim to check the reciprocal alignment of the (111) diffracting planes in the stack, the 

multi-crystal was measured in the configurations sketched in Figs. 3.10a and b. Indeed, X-ray 

diffraction by both (    ) and (111) planes are most sensitive to the critical misalignment of the 

(111) planes because the photons impinging onto such misoriented planes would be diffracted 

according to Eq. (1.38). In case of (111) planes misaligned as in Fig. 3.3d, the relationship between 

two diffracted photons satisfies Eq. (1.39), thus (     )-diffraction is less sensitive to this 

misorientation. On the other hand, X-ray diffraction by (    ) planes cannot reveal the less 

important misalignment depicted in Fig. 3.3c, this behavior being described in Eq. (1.40). X-ray 

diffraction by (111) planes is less sensitive to the misalignment in Fig. 3.3c, while no detection of 

the misorientation in Fig. 3.3d can be obtained. For both the configurations in Fig. 3.11, analysis 

with the beam undergoing Laue diffraction by (    ) planes is most sensitive to the misalignment 

shown in Fig. 3.3c, while it is less sensitive to the misorientation as in Fig. 3.3d. Finally, no 

detection of the misorientation in Fig. 3.3b can be observed. 

 

   Table 1 (i): Fabrication parameters of the samples  

Code S24  S31  S71  S72 

Size (mm
3
) 

Material 

Number of grooves 

Grooves step (µm) 

Depth of grooves (μm) 

Blade 

9.8×9.8×1 

Silicon 

15 

650 

500 

Very Hard 

 12.2×12.2×1 

Silicon 

15 

780 

500 

Hard 

 25.5×25.5×1 

Silicon 

31 

790 

500 

Hard 

 25.5×36.6.×1 

Silicon 

25 

1000 

400 

Hard 

 

   Table 1 (ii): Fabrication parameters of the samples  

Code S81  2_G32  Stack_1 Stack_2  G3 

Size (mm
3
) 

Material 

Number of grooves 

Grooves step (µm) 

Depth of grooves (μm) 

Blade 

54.2×30.6×1 

Silicon 

30 

1000 

400 

Hard 

 18.6×9.8×2 

Germanium 

11 

800 

1000 

Hard 

 45×10×3 

Silicon 

43 

1050 

120 

Hard 

45×10×2 

Silicon 

43 

1050 

120 

Hard 

 15×15×1 

Silicon 

15×15 

1000 

500 

Hard 
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3.3.4. Fabrication of a quasi mosaic Si crystal for X-ray characterization at ILL  
 

On the basis of “geometry 2” for Laue lens, a quasi-mosaic Si crystal has been produced 

through the manufacture of a grid of superficial grooves on one of the largest surfaces of the crystal 

at Sensor and Semiconductor Laboratory (Ferrara, Italy). Crystallographic orientations are indicated 

in Fig. 3.2c. In fact, commercially available pure Si wafer was diced to form a plate using the high-

precision dicing saw at Sensor and Semiconductor Laboratory, equipped with rotating diamond 

blades of 150 µm width and 5 µm diamond grain size (G1A 320). Thanks to the grooving method, a 

permanent primary curvature was induced. This latter was morphologically measured by optical 

profilometry and then its crystallographic structure was verified through X-ray diffractometry at 

Sensor and Semiconductor Laboratory. Main features of the crystal are reported in Table 1.  

The sample, coded as G3, was tested through X-ray diffraction at the Institute Laue-Langevin 

(ILL) at DIGRA facility, with a γ-ray beam with energy = 181.931 keV and monochromaticity 

 E/E ≈10
−6
. The γ-ray flux was produced by neutron capture in a gadolinium target inserted close 

to the nuclear reactor of ILL at a temperature of about  00  C. Beam divergence after the Si (220) 

monochromator was 1 arcsec, as measured by recording a rocking curve (RC) of the 

monochromator itself. Collimated-beam size dimension was 1 mm on the diffraction plane (xz) and 

3 mm on the plane (yz), z being the direction of the beam. The detector was a 25% HPGe from 

Canberra.  

 

3.4. Experimental results and discussion  

3.4.1. Si crystals S71, S72 and S81  
 

The main characteristics of each measured sample are summarized in Table 2. As an example, 

the features of samples S71 and S81 are extensively described.  

The crystal S71 was initially measured at 150 keV with the beam penetrating the sample 

through its 25.5 × 1 mm
2
 surface at different depths from the grooved side, parallel and 

perpendicular to the grooves. Bending angles of the sample, as measured by optical profilometry, 

averaged 15.7 and 66.6 arcsec along the [110] and [211] directions, respectively. Figure 3.12 shows 

both diffracted and transmitted RCs as normalized to transmitted beam intensity (so that diffraction 

efficiency is readily displayed). All RCs exhibited flat-topped and uniform shapes with FWHM of 

the order of crystal bending, i.e., it averaged 14.1 and 57.1 arcsec for parallel and perpendicular 

cases, respectively. This sample features significantly high efficiency when the beam is parallel to 

the grooves, highlighting very homogeneous diffraction pattern with efficiency about 93.4% over 

the whole depth. This performance highlights that a bent crystal can amply break the 50%-

efficiency limit. With the beam perpendicular to the grooves, diffraction efficiency is still a good 

performance though it varies over the crystal depth, i.e., it is nearly 50% close to the grooved 

region, and raises up to 71% deeper into the crystal.  
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Table 2: Main performance of all the samples under analysis 

Code S24 S31 S71 S71 S72 S81 

Photon Energy (keV) 150 150-500 150-700 150-700 150-600 300 

Beam configuration Perp. to the 

grooves 

Perp. to the 

grooves 

Par. to the 

grooves 

Perp. to the 

grooves 

Perp. to the 

grooves 

Par. to the 

grooves 

Bending angle (arcsec) 32.2 35.1 15.7 66.6 55.0 29.5 

Angular spread (arcsec) 26.2 23.6 14.1 57.1 49.9 25.7 

Max diffraction efficiency 

at lowest energy  

81.7% 69.1% 94.9% 71.1% 79.4% 86.4% 

Averaged diffraction 

efficiency at lowest energy 

54.9% 51.1% 93.4% 56.1% 60.3% 81.8% 
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Figure 3.12: RCs of crystal S71 with the beam parallel to the grooves at several distances from the indented face, 

i.e., at (a) z = 0.4 mm, (b) z = 0.6 mm, (c) z = 0.8 mm; all the RCs were recorded at y = 13.9 mm. RCs of the same 

crystal with the beam perpendicular to the grooves at (d) z = 0.15 mm, (e) z = 0.55 mm, (f) z = 0.85 mm; all the 

RCs were recorded at x = 15 mm. The filled red circles plot the intensity of the transmitted beam, whereas the 

empty blue circles plot the intensity of the diffracted beam. RCs with rectangular and homogenous shapes were 

achieved in all cases, with an energy passband of the order of crystal bending (about 16 arcsec for the parallel 

case and 57 arcsec for the perpendicular case). Efficiency is significantly high in all cases and close to the unity in 

the parallel case. Notice that in (d) the sum of the transmitted and diffracted beams is bigger than 1 in the left 

part of the RCs. This artefact is due to the proximity of the surface where the diffracted beam leaves the crystal 

through its large face before reaching the edge. Thereby, the path of the diffracted beam does not cross the whole 

thickness of the crystal, resulting in smaller absorption [3.18]. 

 

Such features are better pointed out in Fig. 3.13a and b, where diffraction efficiency is shown 

as a function of coordinates z and y (z and x), for the parallel (perpendicular) case. Efficiency 

results constantly close to the unity in the parallel case while it smoothly varies over the whole 

depth in the other configuration. However, no dependence on coordinate y (or x) was recorded in 

any case. The same dependence was recorded for angular spread for parallel and perpendicular 
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cases (Fig. 3.13c and d, respectively). It follows that the curvature is uniform along coordinate y (or 

x), though its dependence on coordinate z shows different profile. Indeed, as the distance from the 

grooved face increases, the angular distribution slightly increases for the parallel case. 

Perpendicularly to the grooves, the variation of the angular spread within the crystal is stronger, i.e., 

it increases across the groove depth and decreases outside. This evidence can be ascribed to the 

fabrication process of indentations. In fact, generation of mosaicity perpendicularly to the advance 

speed of the blade is easier to form than longitudinally because of the stronger action exerted by the 

blade on the side walls of the groove. This effect leads to an increase in angular spread, and 

consequently in energy bandwidth, resulting in efficiency decrease throughout the whole depth of 

the grooves. Indeed high efficiency is restored beneath the grooves, meaning that the curvature of 

diffracting planes is homogeneous and its structure is not significantly affected by mosaicity.  

 

 
Figure 3.13: Diffraction efficiency of crystal S71 vs. coordinate z (mm) at several positions within the crystal 

(coordinate y or x) for parallel (a) and perpendicular (b) cases. Same dependence of angular spread is shown for 

parallel (c) and perpendicular (d) cases. No dependence on coordinate y (or x) was recorded in any case. 

Efficiency near the polished side of the sample is close to the unity while it gently decreases close to the grooved 

side in the parallel case and more strongly in the perpendicular case [3.18]. 

 

Finally the sample was measured at several energies, the beam entering the crystal far from 

the grooved region, parallel and perpendicular to the grooves. RCs are shown here for parallel case 

(Fig. 3.14). The sample features significant diffraction efficiency up to 700 keV, ranging from 92% 

down to 29%. With the beam perpendicular to the grooves, efficiency keeps lower than 60% above 

200 keV. Next section compares experimental performance to theoretical expectations, showing 

that the decrease in efficiency with energy is completely in agreement with the dynamical theory of 

diffraction.  
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Figure 3.14: RCs of crystal S71 with the beam parallel to the grooves, measured at z = 0.8 mm and y = 13.9 mm. 

Beam energy was set at 200 keV (a), 300 keV (b), 400 keV (c), 500 keV (d), 600 keV (e) and 700 keV (f). The filled 

red circles plot the intensity of the transmitted beam, whereas the empty blue circles plot the intensity of the 

diffracted beam. Efficiency falls off with photon energy according to the dynamical theory of diffraction though 

a rectangular shape of the distribution is preserved [3.18]. 

 

Si crystal S81 was measured at 300 keV with the beam penetrating the sample through its 

30.6 × 1mm
2
 surface, at fixed depth from the grooved side (coordinate z) and at different 

coordinates y. The beam was set parallel to the grooves. Bending angle of the sample, as measured 

by optical profilometry, averaged 29.5 arcsec along [110] direction. Figures 3.15a, b and c show 

both diffracted and transmitted RCs as normalized to transmitted beam intensity, so that diffraction 

efficiency is readily displayed. RCs exhibited flat-topped rectangular and uniform shapes with a 

FWHM of 26 arcsec, close to the optically determined crystal bending. This sample features a 

significantly high efficiency, about 82% constantly over the whole sample, showing that a curved 

crystal can amply break the 50%-efficiency limit, which holds true for an unbent crystal. No 
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dependence on coordinate y was recorded, meaning that curvature is homogeneous throughout the 

sample.  

With the beam perpendicular to the grooves of sample S72, efficiency showed different 

behavior from the previous case. This sample was measured at 150 keV with the beam entering the 

Si crystal through its 25.5×1 mm
2
 at different depths from the upper grooved side. Bending angle of 

the sample was measured by optical profilometry to be 55 arcsec along [211] direction. The RCs in 

figs. 3.15d, 4e and 4f still highlight flat-topped and uniform shapes though efficiency varies over 

the crystal depth, i.e. it is nearly 50% close to the grooved region, and raises up to 79% deeper into 

the crystal. As for sample S71, this feature is ascribed to the fabrication process of grooves and in 

particular to the generation of mosaicity perpendicularly to the advance speed of the blade. This 

leads to an efficiency decrease throughout the whole depth of the grooves while outside the grooved 

area, high efficiency is restored, meaning that crystal structure is not significantly affected by 

mosaicity.  

Sample S72 was also characterized vs. energy, the beam entering the crystal far from the 

grooved region and perpendicular to the grooves (fig. 3.16). The sample features significant 

diffraction efficiency up to 600 keV, ranging from 80% down to nearly 20%.  
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Figure 3.15: The left-hand side shows RCs of crystal S81 with the beam parallel to the grooves at a fixed distance 

from the grooved face and at y = 5.0 mm (a), y = 5.9 mm (b), y = 6.8 mm (c). The right-hand side shows RCs of 

crystal S72 with the beam perpendicular to the grooves at different depths from the grooved surface, i.e. at z = 

0.05 mm (d), z = 0.55 mm (e), z = 0.75 mm (f). RCs with rectangular and homogenous shapes were achieved in all 

cases, with an energy passband of the order of crystal bending (about 26 arcsec for the sample S81 and 55 arcsec 

for S72). Efficiency is significantly high in all cases and up to 82% for sample S81 [3.35]. 
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Figure 3.16: RCs of crystal S72 with the beam perpendicular to the grooves, measured at z = 0.75mm and x = 

0.15 mm. Beam energy was set at 150 keV (a), 200 keV (b), 300 keV (c), 400 keV (d), 500 keV (e) and 600 keV (f). 

Efficiency falls off with photon energy according to dynamical theory of diffraction though a rectangular shape 

of the distribution is preserved [3.35]. 
 

3.4.1.1. Simulations 

In order to deepen the understanding of diffraction properties of the samples, a custom-made 

software specifically designed for CDP crystals and inspired to the code in Ref. [3.3] has been 

developed. This latter was developed through Python programming language, which takes 

advantage of a very large and comprehensive standard library and is largely used by the scientific 

community. 

The software describes diffraction in both curved and mosaic crystals and generates the 

physical quantities of interest. Such quantities, typically used to qualify the diffraction properties of 

a crystal, are diffraction efficiency and reflectivity as defined in Chapter 1. For any set of 

parameters such as crystalline material, set of reflection planes and thickness of curved or mosaic 
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crystal, the code computes reflectivity and diffraction efficiency as a function of photon energy and 

angular spread (or mosaicity). Expected performance is then compared to experimental data.  

The results of the simulations will be shown here for sample S71. In Fig. 3.17, experimental 

diffraction efficiency vs. z is compared to the theoretical efficiency in case of a perfectly curved 

crystal and a mosaic crystal. These latter were calculated taking into account the FWHM of the 

RCs, thus an experimental uncertainty is included. Due to generation of mosaicity perpendicularly 

to the grooves, measured efficiency varies over the crystal depth, being always lower than the 

theoretical limit for a perfectly bent crystal, especially within the groove depth. However, this 

performance keeps always higher or at worst equal to the theoretical efficiency for a mosaic crystal, 

meaning that the grooves allow obtaining a homogeneous curvature with no significant damage of 

the crystal.  

 

 
 

Figure 3.17: Experimental efficiency (blue circles) vs. coordinate z (mm) for crystal S71 with the 150 keV probe 

beam perpendicular to the grooves. Red dashed and dotted lines represent theoretical efficiencies in case of a 

curved and of a mosaic crystal, respectively. An experimental uncertainty is included in both cases. Due to 

generation of mosaicity, experimental efficiency varies within the crystal, being lower over the whole groove 

depth and increasing outside. However, diffraction efficiency is always higher or at worst equal to the theoretical 

contribution given by a mosaic crystal [3.18]. 

 

In order to better understand the behavior of diffraction response, the crystal has been 

modeled as it were made by two coexisting structures at any coordinate z, i.e., a mosaic crystal and 

a perfectly curved crystal. Based on this model, diffraction efficiency was considered as the 

superposition of the contributions of the two kinds of crystal. Here, C(z) is the fraction of perfectly 

curved crystal-like behavior and [1-C(z)] the contribution of mosaicity, such that 

 

 

                           

 

3.5.  
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where Ů(z) is the experimental diffraction efficiency obtained at a given distance from the top 

of the crystal, Ů(c) the expected diffraction efficiency for a perfectly curved crystal and Ů(m) the 

expected diffraction efficiency in case of a mosaic crystal. As a result, for the perpendicular case, 

the fraction of mosaicity [1-C(z)] is close to the unity in the region of the grooves, and vanishes 

outside (see Fig. 3.18). For the parallel configuration the mosaicity fraction keeps about 8% 

throughout the entire thickness of the sample. Indeed, in the parallel case, experimental efficiency is 

constantly close to the theoretical limit of a perfectly curved crystal.  

 
Figure 3.18:  Contribution of mosaicity vs. depth for perpendicular (black crosses) and parallel cases (red 

squares), respectively. 

 

Diffraction efficiency was studied vs. photon energy. Figures 3.19 and 3.20 show the 

response of sample S71, measured with the beam parallel and perpendicular to the grooves. In the 

parallel case (Fig. 3.19), experimental efficiency is very close to its theoretical limit over about 15 

arcsec angular spread, namely the morphological curvature of the sample. With the beam 

perpendicular (Fig. 3.20) to the grooves, efficiency is slightly lower than its theoretical limit but still 

higher than the theoretical efficiency for a mosaic crystal. 
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Figure 3.19: Experimental (black crosses) and theoretical (black line) diffraction efficiencies vs. energy, for 

parallel case for crystal S71. RCs were carried out at 0.8 mm from the grooved face.  

 

 
Figure 3.20: Experimental (black crosses) and theoretical (black line) diffraction efficiencies vs. energy, for 

perpendicular case for crystal S71. RCs were carried out at 0.85 mm from the grooved face.  

  

3.4.2. Ge crystal 2_G32  
 

Ge crystal 2_G32 was measured at 300 keV with the beam penetrating the sample through its 

9.8 × 2 mm
2
 surface at different depths from the grooved side and quasi-parallel to the (111) planes. 

Morphological bending angle of the sample was 42.4 arcsec along beam direction. RCs of the 

sample in Fig. 3.21 show that diffraction efficiency was about 61%. Though this is still a good 

performance, it is less than the 93% theoretically expected, this fact being probably due to a non-

perfect crystalline quality of the base material. 
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Figure 3.21: RCs of Ge crystal 2_G32 measured at z = 0.65 mm, in ñgeometry 1ò with respect to the beam. Beam 

energy was set at 300 keV. Diffraction efficiency was 61% [3.30]. 

 

3.4.3. Stack-1  
 

In order to verify the alignment of the (111) diffracting planes in the stack, the multi-crystal 

was initially analyzed with the beam penetrating through its 45×10 mm
2
 surface at different 

distances from the edge of the sample, parallel to the (    ) planes (see Fig. 3.11a) and in diverging 

mode, i.e., the beam left the concave side of the stack and diverged. Figs. 3.22a, b, c, d and e show 

the diffraction patterns while Figs. 3.22f, g, h, i and j highlight the cross-section area of the focal 

spot due to diffraction by (    ) planes. As can be seen, a single and well-defined spot on the 

detector is shown up to 10 mm from the other side of the stacking, i.e., under X-ray diffraction the 

stack of plates behaves as it were a single crystal. Thus, it turned out that (    ) planes are coplanar, 

this fact meaning that the critical misalignment of the (111) crystallographic planes can be 

excluded. Moreover, at each position, the FWHM of the Gaussian intensity profile satisfies Eq. 

(1.36.) for the case of diverging mode. At nearly 8 mm from the other edge of the multi-crystal and 

throughout its remaining side, the profile of the focal spot was no longer a single Gaussian but 

another diffraction peak appeared at an angle shifted by nearly 27 arcsec (1.15 mm), meaning that 

Bragg angle depends on each plate in the stack. In fact, two of the plates were misaligned by nearly 

27 arcsec probably because they were not properly bound near the edge of the stack.  
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Figure 3.22: Diffraction patterns obtained with the beam (10×1 mm

2
) quasi-parallel to the (    ) crystallographic 

planes at several distances from the edge of the sample, i.e., at (a) x = 1 mm, (b) x = 21 mm, (c) x = 35 mm, (d) x = 

39 mm, (e) x = 43 mm, associated with horizontal average cross-sections corresponding to the (    )-diffraction 

(f, g, h, i and j). A single and well-defined focal spot is recorded up to 35 mm from the edge of the Si stack. 

Misalignment of (    ) planes, as visible by the presence of another diffraction peak, starts at nearly 8 mm from 

the other edge of the multi-crystal and keeps constant throughout its remaining side [3.27]. 

 

Although bending of (111) diffracting planes induces a shift of the peak position with respect 

to the position on the stack, no detection of the bending angle of the stack was obtained because 

higher accuracy should be needed.  

The stack was then investigated with the beam parallel to the (111) diffracting planes (see Fig. 

3.11b), penetrating the sample through its 3×10 mm
2
 surface. The first analysis was done with the 

beam 10×10 mm
2
, in converging mode with respect to the (111) planes, i.e., the beam left the 

convex side of the (111) planes and converged. In fact, this measurement represents the scheme for 

functional operation of a multi-crystal as an optical component in a Laue lens, through diffraction 

by (111) planes (see Fig. 3.2b). Results in Figs. 3.23a and b show the diffraction spots from several 

crystallographic planes and the cross-section area corresponding to the (111) planes. As can be 

noticed, diffraction from (111) planes results in a single and well-defined focal spot on the detector, 

meaning that these planes are coplanar and that the critical misalignment can be excluded 

throughout the whole volume of the sample. The multi-crystal behaves as it were a single crystal 
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from the point of view of diffraction by (111) planes, hence this performance highlights that the 

stack of grooved Si crystals can efficiently work as optical element for satellite-borne experiments 

with a Laue lens. Furthermore, the FWHM of the intensity profile due to (111) planes is in 

agreement with Eq. (1.36.), i.e., 1.75 mm (5 pixels).  

When the beam impinged onto the stack in diverging mode with respect to the (111) planes, 

X-ray diffraction from CDP resulted in a nearly well-defined focal spot on the detector (Fig. 3.23c), 

the width of the intensity profile (Fig. 3.23d) being approximately 4 mm (10.5 pixels).  

Nevertheless, although (111) planes are not critically misaligned, diffraction from (    ) 

planes resulted in three focal spots, meaning that all the plates probably suffer from some 

misalignment as depicted in Figs. 3.3c and d. In fact, all the plates were misaligned by nearly 30 

arcsec each other probably because they were not perfectly bound. However, this misorientation did 

not affect the efficiency of the (111) diffraction, showing that a tolerance is allowed in the 

alignment of the CDP crystals inside the stack while non affecting the total performance. 
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Figure 3.23: Diffraction patterns recorded with the beam 10×10 mm

2
, quasi-parallel to the convex side of (111) 

crystallographic planes (a). Horizontal average cross-section of the focal spot corresponding to (111)-diffraction 

is highlighted (b). Notice that diffraction from (111) planes results in a single and well-defined focal spot (FWHM 

= 1.75 mm) on the detector. As the beam (10×10 mm
2
) is in diverging mode with respect to the CDP (c and d), the 

focal spot from (111) planes is nearly well-defined, its FWHM being approximately 4 mm. Here the diffraction 

peaks correspond to energies of 247 keV and 169 keV for converging and diverging mode, respectively. On the 

other hand, diffraction from (      planes results in three focal spots, thus all the plates probably suffer from 

some misalignment as depicted in Figs. 5c and d. However, this misalignment does not affect the efficiency of X-

ray diffraction by (111)  planes [3.27]. 

 

It is worth noting that for the converging configuration the focal spot on the detector was 

smaller than for the diverging case. This result is representation that the stack should be positioned 

with the beam impinging onto the convex side of CDP for focusing in a Laue lens. 

The alignment of the plates in the stack was also investigated by X-ray characterization of the 

multi-crystal with the beam being 10×0.5 mm
2
, quasi-parallel to the convex side of (111) planes and 

at several distances from the edge of the sample. Results in Figs. 3.24a, b, c and d confirm that the 
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stacking of Si crystals behaves as it were a single crystal and no critical misalignment of the CDP 

occurs. 

 

 
 

Figure 3.24: Diffraction patterns recorded with the beam 10×0.5 mm
2
, incident quasi-parallel to the convex side 

of (111) planes at several distances from the edge of the stack, i.e., at (a) z = 1.5 mm, (b) z = 2.5 mm. The 

horizontal cross-sections (c and d) of the profile due to (111)-diffraction confirm that the stack behaves as it were 

a single crystal. For both cases, the energy at which diffraction by (111) planes occurs is about 250 keV [3.27]. 

 

3.4.4. Stack-2  

The alignment of the (111) diffracting planes in stack_2 has been verified by measuring the 

multi-crystal with the beam penetrating through its 45×10 mm
2
 surface at different distances from 

the edge of the sample, parallel to the (    ) planes (see Fig. 3.11a) and in diverging mode. Figs. 

3.25a, b, c, d, e, f, g and h show the diffraction patterns while Figs. 3.25i, l, m, n, o, p, q and r 

highlight the cross-section area of the focal spot due to diffraction by (    ) planes. As can be seen, 

a single and well-defined spot on the detector is shown up to nearly 20 mm from the edge of the 
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stack, i.e., under X-ray diffraction the stack of plates behaves as it were a single crystal. Hence, it 

resulted that (    ) planes are coplanar, meaning that the critical misalignment of the (111) 

crystallographic planes can be excluded at least up to nearly the middle of the sample. Moreover, at 

each position, the FWHM of the Gaussian intensity profile satisfies Eq. (1.36.) for the case of 

diverging mode. At nearly 24 mm from the other edge of the multi-crystal and throughout its 

remaining side, the profile of the focal spot was no longer a single Gaussian but another diffraction 

peak appeared. In fact, the plates were misaligned by nearly 40 arcsec probably because they were 

not perfectly bound, thus Bragg angle depends on each plate in the stack.  

 

 
Figure 3.25: Diffraction patterns obtained with the beam (10×1 mm

2
) quasi-parallel to the (    ) crystallographic 

planes at several distances from the edge of the sample, i.e., at (a) x = 1 mm, (b) x = 4 mm, (c) x = 12 mm, (d) x = 

16 mm, (e) x = 20 mm, (f) x = 26 mm, (g) x = 32 mm, (h) x = 44 mm, associated with horizontal average cross-

sections corresponding to the (    )-diffraction (i, l, m, n, o, p, q and r). A single and well-defined focal spot is 

recorded up to 20 mm from the edge of the Si stack. Misalignment of (    ) planes, as visible by the presence of 
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another diffraction peak, starts at nearly 24 mm from the other edge of the multi-crystal and keeps constant 

throughout its remaining side. 

 

This stack was then analyzed with the beam parallel to the (111) diffracting planes (see Fig. 

3.11b), penetrating the sample through its 2×10 mm
2
 surface. In order to demonstrate the 

functionality of the stack as optical component onto a Laue lens (see Fig. 3.2b), the first analysis 

was done with the wide beam 10×10 mm
2
, in converging mode with respect to the (111) planes. 

Results in Figs. 3.26a and b show the diffraction spots from several crystallographic planes and the 

cross-section area corresponding to the (111) planes. As can be seen, diffraction from (111) planes 

results in a single and well-defined focal spot on the detector, showing that the stack behaves as it 

were a single crystal from the point of view of diffraction by (111) planes. This performance is a 

further representation that a stack of grooved Si crystals can efficiently work as optical element for 

satellite-borne experiments with a Laue lens. Furthermore, the FWHM of the intensity profile due to 

(111) planes is in agreement with Eq. (1.36.). 

As for the previous case, although (111) planes are not critically misaligned, diffraction from 

(    ) planes resulted in two spots on the detector, meaning that Bragg angle depends on each plate 

in the stack. In fact, all the plates probably suffer from some misalignment as depicted in Figs. 3.3c 

and d. However, this misalignment did not affect the performance of the (111)-diffraction, showing 

that a tolerance is allowed in the alignment of the CDP crystals inside the stack. 

 

 
Figure 3.26: Diffraction patterns recorded with the beam 10×10 mm

2
, quasi-parallel to the convex side of (111) 

crystallographic planes (a). Horizontal average cross-section of the focal spot corresponding to (111)-diffraction 

is highlighted (b). Notice that diffraction from (111) planes results in a single and well-defined focal spot on the 

detector. On the other hand, diffraction from (      planes results in two focal spots, thus all the plates probably 

suffer from some misalignment as depicted in Figs. 5c and d. However, this misalignment does not affect the 

efficiency of X-ray diffraction by (111) planes.  
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The alignment of the plates in the stack was then investigated by X-ray characterization of the 

sample with the beam being 10×0.5 mm
2
, quasi-parallel to the convex side of (111) planes and at 

several distances from the edge of the sample. Results in Figs. 3.27a, b, c, d and e show the 

diffraction patterns from several crystallographic planes while the cross-section area of the spot due 

to (111)-diffraction is highlighted in Figs. 3.27f, g, h, i and j. As pointed out by the presence of the 

double peak, critical misalignment of the CDP occurred up to nearly 0.75 mm from the edge of the 

sample while the stack behaved as it were a single crystal throughout its remaining side. Indeed, a 

well-defined and single spot was produced. 

 

 
Figure 3.27: Diffraction patterns recorded with the beam 10×0.5 mm

2
, incident quasi-parallel to the convex side 

of (111) planes at several distances from the edge of the stack, i.e., at (a) z = 0 mm, (b) z = 0.5 mm, (c) z = 1 mm, 

(d) z = 1.5 mm (e) z = 2 mm. The horizontal cross-sections (f, g, h, i and l) of the profile due to (111)-diffraction 

show that critical misalignment of the CDP occurred up to nearly 0.75 mm from the edge of the sample while the 

stack behaved as it were a single crystal throughout its remaining side. 
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3.4.5.  Quasi mosaic Si crystal G3 

A square crystal plate subject to mechanical moments applied along x- and y-axis directions 

undergoes primary deformation as depicted in Fig. 3.28.  

 
Figure 3.28: Schematic representation of a square crystal plate. Bent arrows symbolize applied moments  Mx 

and My [3.29]. 

 

In order to verify the primary curvature of the quasi mosaic sample as a result of surface 

grooving, analysis of its        crystallographic planes has been investigated at several positions 

along x and y axes, by usage of the high-resolution X-ray diffractometer at SSL. For every step, the 

crystal was rotated around the incidence angle where Bragg diffraction occurs, thus recording the 

RC. As can be noticed in Figs. 3.29 and 3.30, due to CDP of the crystal, a shift of the peak position 

occurs with respect to the position on the sample along x and y axes, respectively. It resulted that 

the whole angular spread, along both directions, was very close to the morphological curvatures of 

the crystal, as measured by optical profilometry. Since primary curvature is responsible for 

focusing, this evidence is a representation that the capability of quasi mosaic crystals to focalize 

diffracted radiation can be very well controlled by simply imparting a selected curvature to the 

sample. 
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Figure 3.29: Series of RCs of the QM sample vs. x obtained with the HRXRD at SSL . As can be noticed, a shift 

of the peak position occurs with respect to the position on the sample. The whole angular spread was very close 

to the morphological primary curvature of the crystal along x-direction, as measured by optical profilometry on 

the        face.  

 

 

 
Figure 3.30: Series of RCs of the QM sample vs. y obtained with the HRXRD at SSL. As can be noticed, a shift of 

the peak position occurs with respect to the position on the sample. The whole angular spread was very close to 

the morphological primary curvature of the crystal along y-direction, as measured by optical profilometry on the 

       face.  

 

 

As highlighted in Ref. [3.30], characterization of the quasi-mosaic Si sample at Digra facility 

aimed to measure diffraction efficiency of the crystal due to quasi mosaic curvature of the (111) 

diffracting planes. Hence, the sample was tested by performing RCs, with the photon beam hitting 

the         surface of the sample and being diffracted by curved (111) planes. Diffraction efficiency 
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was calculated on the center of the sample and the experimental diffracted RC is reported in Fig. 

3.31. The gray area represents the expected result as calculated by taking into account the 

experimental uncertainties. Instead, dashed black line represents diffraction efficiency if quasi-

mosaic curvature were absent. As highlighted, due to quasi mosaic curvature of diffracting planes, a 

raise in diffraction efficiency occurs. This fact confirms the presence of quasi mosaicity within the 

sample as a result of surface grooving.  

 

 
 

Figure 3.31: Experimental and theoretical RCs for the QM Si sample in ñgeometry 2ò vs. impinging photons (see 

Fig. 3.2c). Red circles plot the intensity of measured diffracted beam with their uncertainty bar. The gray area 

represents the expected result as calculated by taking into account the experimental uncertainties. Dashed black 

line represents diffraction efficiency if QM curvature were absent [3.30]. 

 

In previous sections main experimental results on Si and Ge curved crystals fabricated by 

surface grooving technique, for realization of a high-resolution focusing Laue lens have been shown 

and discussed. The technology of fabrication of the crystals is currently well-established for Si and 

Ge, thereby it can be readily applied to build up a Laue lens.  

Two different geometries of the CDP crystals for Laue lens have been highlighted. Both 

geometries have been tested vs. experiment, yielding significant performance. Indeed, a stack of 

grooved crystals was shown to efficiently work as optical element for wide-passband focusing 

through a Laue lens, thus demonstrating the functionality of “geometry 1”. On the other hand, a 

quasi-mosaic crystal, useful for “geometry 2”, proved to highlight very high diffraction efficiency 

due to QM curvature. In this case, the size of the focal spot of the photons diffracted can be 

significantly small. Thus, QM crystals of this kind are proposed for high-resolution focusing 

through a Laue lens. 
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3.5. Preliminary study of a Laue lens for nuclear medicine 

3.5.1. General background and experimental layout for medical imaging 
 

Nowadays, radioactive materials used as a diagnostic tool can identify the status of a disease 

and minimize the need for surgery by reducing the risks from postoperative infection. Nuclear 

imaging is usually performed by injecting a radiopharmaceutical into the patient and measuring the 

intensity distribution of gamma radiation emitted from the patient’s body.  

Short-lived radioisotopes are preferred for use in these tracers to minimize the radiation dose 

to the patient. In most cases, these radioisotopes decay to stable elements within minutes, hours, or 

days, allowing patients to be released from the hospital in a relatively short time. The radioisotope 

used in about 80 percent of nuclear diagnostic procedures is Tc-99m, emitting gamma rays with a 

characteristic energy of 140 keV. The penetrating properties of its gamma rays and its short half-life 

(6-hours) help in reducing risk to the patient from more prolonged radiation exposure. Short-lived 

radionuclides such as technetium-99m, gallium-67, and thallium-201 are often used to diagnose the 

functioning of the heart, brain, lung, kidney or liver. Cancerous cells have high growth rate and 

multiply very rapidly. The radioactive isotope injected into the body of the patient normally 

migrates to high growth rate locations and will incorporate in this new growth, thus the tumour 

location can be identified from the region of high radioactivity. 

Diagnostic techniques in nuclear medicine usually involves usage of a gamma camera which 

can view organs from many different angles. The camera builds up an image from the points from 

which radiation is emitted; this image is enhanced by a computer and displayed on a monitor for 

indications of abnormal conditions.  

The development of CDP crystals for focusing of gamma rays will find significant application 

in the field of medical imaging. Indeed, CDP crystals are expected to have both high diffraction 

efficiency and relatively broad energy bandwidth and would be capable of detecting the 

radiopharmaceuticals that emit 50–200 keV gamma rays which are generally used in diagnostic 

molecular imaging. CDP crystals would be positioned as optical elements onto a Laue lens which 

would improve gamma-ray detection with better resolution and lead to a lower radioactive dose 

imparted to the patient because tomography scanning would not be needed. As an example, Fig. 

3.32 shows the experimental arrangement of a treatment method based on a Laue lens.  

Development of Laue lens in focusing gamma rays in nuclear imaging has already been 

studied by Roa [3.36]. In his experimental approach CDP crystals, obtained by concentration-

gradient technique, were used to diffract gamma rays from a radioactive source and it was found 

that with the help of this approach one can increase the diffraction efficiency and energy bandwidth 

by a factor of 5 compared to mosaic crystals. 
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Figure 3.32: Pictorial representation of the clinical treatment method. A biological compound carrying a 

radioactive nucleus is injected in the human body and is readily incorporated in cancer cells. Emitted gamma 

radiation is then diffracted by a Laue lens toward a small focal point on a detectorôs sensitive area [3.37]. 

 

3.5.2. Fabrication of bent crystals by Low Energy Plasma Enhanced Chemical 

Vapor. Deposition and preliminary results by optical profilometry 
 

In the present study curved crystals were obtained by Low Energy Plasma Enhanced 

Chemical Vapour Deposition (LEPECVD) technique. The significant features of this technique are 

wide range of epitaxial growth rate at low substrate temperature and high reproducibility [3.38]. 

More details of this method will be given in next chapter.  

With the use of LEPECVD, a crystalline germanium film was grown on the surface of a 

silicon substrate (100) which is tilted 6   towards [111]. The thickness of the silicon substrate was 

 00 μm. Sample details are given in Table 3. The importance of this method was to produce 

intrinsically curved crystals without the usage of any mechanical means. The sample got curved due 

to the lattice mismatch between Si and Ge and the different thermal expansion coefficients [3.39]. 

Thanks to this technique, curved crystals can be obtained by depositing tensile or compressive films 

over bulky substrates. This technique was chosen for its reproducibility and its capability to bend 

the crystal to the desired curvature. Bending is strong due to high stress imparted which can be 

matched with stability without delamination. 

Table 3: Details of the samples with the different thickness of Ge 

Sample       Film thickness (nm) 

1 

2 

3 

4 

      505 

762 

1122 

1800 
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The radius of curvature was measured with the help of surface profilers Wyko NT1100. As an 

example, the optical surface profilometry of sample 4 is shown in Fig. 3.33. The curvature has a 

significant effect on the diffraction efficiency of the crystal.  

 

Figure 3.33: Optical surface profilometry of sample 4. (a) gives the false-colour representation of the 

deformation. The deformation pattern cross-section along the x (b) and y (c) directions is seen with the two 

curvatures. The isotropic bending was achieved. 

 

The bent crystal samples of different thickness of germanium over the silicon substrate were 

grown and characterized. As the thickness of deposition of Ge is increased, the radius of curvature 

is decreased. Table 4 shows the variation of the curvature radius along the y direction with respect 

to the different thickness of Ge.  

 

Table 4: Variation of the curvature radius with respect to the different thickness. 

Sample       Radius of curvature 

(m) 

1 

2 

3 

4 

      24.68 

10.83 

9.21 

4.08 

 

The significance of this study is that it is easy to tailor the curvature to a wanted curvature 

after deposition of a suitable thickness and highly bent crystals can be produced by such a 

technique. All the samples have been produced and optically characterized at Sensor and 

Semiconductor Laboratory (Ferrara, Italy). 
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3.5.3. Simulation to optimize crystal diffraction properties 
 

Performance of Laue medical lens relies on crystals as its most important elements. Hence, in 

order to maximize diffraction properties of the lens, crystal parameters have to be optimized. For 

this aim, a simulation code has been developed. This has been worked out through Python high-

level programming language, and it is specifically designed for bent crystals. Indeed, the software 

describes diffraction in crystals with CDP and generates the physical quantities which are typically 

used to characterize the diffraction properties of a crystal, i.e., diffraction efficiency and reflectivity 

as defined in [3.15]. The former is the ratio of the diffracted beam intensity over the transmitted one 

when no diffraction condition occurs and the latter is the ratio of the diffracted beam intensity to the 

incident beam intensity. Reflectivity can be determined by simply multiplying efficiency to the 

attenuation factor due to linear absorption in the sample. Moreover, for a given atomic number and 

reflection plane, the software code computes the thickness maximizing reflectivity and efficiency as 

a function of photon energy and angular spread, this latter being the bending angle of the crystal. 

Crystal thickness is a crucial parameter for optimization of a Laue lens. In Laue geometry, this is 

considered as the part of the crystal which is totally traversed by the radiation, giving the 

contribution to photon diffraction. In medical imaging applications of Laue lens, the thickness of 

crystal element gives the spatial resolution of the whole lens. Thus, this feature has to be taken into 

account when maximizing reflectivity and diffraction efficiency of the crystals composing the lens.  

As a result of simulations, 5 mm thickness of sample 1 would diffract 140.5 keV of Tc-99m 

featuring 83% diffraction efficiency (which turns into a reflectivity of 42%), over 42 arcsec angular 

spread. Crystalline planes of Ge have been considered for diffraction. Hence, provided that the 

crystalline planes of the sample are curved, high-efficiency diffraction of gamma rays would be 

attained, with higher spatial resolution than for currently operating devices. 
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4. X-ray characterization of heteroepitaxial 

Ge layers as virtual substrates for solar cell 

applications  

 

 

4.1. Ge virtual substrates 
 

Nowadays, the strong technological development and continuous research in photovoltaic 

solar energy have led to significant advances for solar cells. Currently, the technology that provides 

the best prospects is represented by the concentration photovoltaics systems based on spectral 

separation of the solar radiation, which focalize the different wavelengths of the electromagnetic 

radiation toward small cells having high efficiency: the reduced amount of photovoltaic material, 

the better exploitation of solar radiation and the potential of reducing the cost of optical collectors 

make these systems excellent candidates for power generation on a large scale. 

The cells used in these systems are typically made with different materials belonging to the 

family of compounds III-V, because these are the ones that present the higher yields: as an example 

with the multijunction structure InGaP-InGaAs-Ge, with energy gap equal to 1,84-1,42-0,7 eV, one 

can achieve a conversion efficiency of about 40%.  

The realization of the cells, whether they are single junction or multiple, takes place by 

deposition of materials on a substrate of germanium. In the single-junction cells the substrate  in Ge 

has solely the function of mechanical support and matrix for growth of monocrystalline active 

layers, while in the multijunction cells the substrate participates in the realization of the junction 

with the lowest energy gap.  

Due to high price of Ge material, since twenty years there have been attempts to epitaxially 

integrate III-V compounds with Si substrates, this latter material being low-cost and easier to 

manufacture with respect to Ge [4.1, 4.2]. In particular, this has been the key idea of virtual 

substrates (VS). A thick, uniform buffer layer on a mismatched substrate can be called a virtual 

substrate. As an example, a thick epitaxial layer of Ge on a silicon substrate can serve as a virtual 

Ge substrate, even though conventional Ge substrates are not available in high quality at this time. 

If the Ge buffer layer is very thick, it will behave as a conventional Ge substrate in some respects.  

An important goal has been the realization of silicon wafer with only a thin surface film of 

Ge, having a crystal structure and lattice parameter suitable for the subsequent chemical vapor 

deposition of GaAs and InGaP. 

The realization of these VS, reducing the amount of germanium to be used, allows a reduction 

of costs and moreover the deposition process would give the possibility to realize substrates with 

specific intermediate lattice parameters that is not possible with other techniques. 
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Besides, the usage of Ge VS for the integration of high-efficient III-V concentrator solar cells, 

in the last few years, Ge VS have been employed into strain-engineered microelectronic devices 

(HFET, BiCMOS) in order to enhance the electrical transport properties of Si [4.3].  

In this chapter, the aim is to evaluate the crystalline quality of a deposition of a Ge layer on a 

Si substrate, in order to realize virtual substrates with optimal characteristics to allow the 

subsequent deposition of GaAs or other semiconductor compounds with lattice parameter similar to 

that of Ge. 

 

4.2. Heteroepitaxial deposition by LEPECVD 
 

The basis for the realization of a Ge virtual substrate is represented by heteroepitaxy, which 

can be defined as the single-crystal growth of one semiconductor on another [4.4]. In particular it 

consists in deposition of a thin layer of crystalline material on a substrate massive, also crystalline, 

which directs the growth and determines the structural properties of the whole structure. The 

thickness of the heteroepitaxial layer can vary from the fraction of a nanometer to hundreds of 

microns.  

At Sensor and semiconductor Laboratory (Ferrara, Italy) a crystalline Ge film can be grown 

on the surface of a Si crystal by using Low Energy Plasma Enhanced Chemical Vapour Deposition 

(LEPECVD) method. Fig. 4.1 shows an image of the LEPECVD reactor at SSL. LEPECVD is a 

deposition technique developed for the epitaxy of Si, Ge and SiGe alloys at very high deposition 

rates, up to 10 nm/sec, more than 10 times faster than other growth techniques [4.5, 4.6]. To 

enhance the growth rate while maintaining low substrate temperatures non thermal energy has to be 

provided for the dissociation of the reactive molecules: in LEPECVD this energy is furnished by a 

plasma. The plasma generates highly reactive radicals and energetic ions which strike the sample 

surface and cause a great enhancement of the hydrogen removal rate, which lead to an increased 

grow-rate. The arrival of energetic ions on the sample surface also cause an enhancement in the 

particles mobility, which is of great importance when epitaxial growth is performed at low thermal 

budgets. 

The LEPECVD process at SSL is based on a inductively coupled radio-frequency (RF) 

excitation inside a quartz chamber embedded in the high vacuum reactor. This process is also 

known as radio frequency plasma enhanced chemical vapor deposition (RF-PECDV) and differs 

from other LEPECVD techniques because the substrate is not biased and ions are accelerated in 

every direction. In order to start the plasma reaction the growth chamber have to be filled in with H2 

(or another suitable gas) while precursor gases are added in a subsequent moment, when plasma is 

already presents in the chamber. The plasma source is positioned in the bottom part of the growth 

chamber and the samples have to be introduced in the reactor facing down, so to avoid dust to fall 

and accumulate on the active surface. A few centimeters above the wafer a graphite heater heat the 

sample at the selected temperature, which is measured with a thermocouple.  

Precursor gases (SiH4 and GeH4) are introduced just below the sample and an additional H2 

flow is used to control the pressure inside the growth chamber and to drive precursor gases. With a 
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turbo molecular pump and a rotary prevacuum pump the chamber is pumped at a pressure of about 

10
-7

 mbar, while during the deposition process the working pressure is typically in the range of 5 × 

10
-4

 to 5 × 10
-3

 mbar.  

A load lock prevent contamination of the growth chamber during wafer loading and promote 

desorption of water from the sample surface before the epitaxial growth. Moreover, a scroll 

prevacuum pump and a turbo molecular pump maintain the load lock at the same pressure of the 

growth chamber in order to avoid chamber contamination from external environment. Although 

ion-energies are low (less than 15 eV), the wafer is exposed to a very high intensity plasma, leading 

to epitaxial growth rates of several nm/s through the efficient decomposition of the precursor gases 

and an enhancement of the surface kinetics. The substrate is totally immersed in the plasma and it is 

heated from the backside by a resistance heater: operating temperatures are typically in the range of 

400 to 600°C.  

 

 
Figure 4.1: LEPECVD reactor in the clean room at SSL. 

 

 

 

4.2.1.  Mismatched heteroepitaxial growth and strain relaxation 

This section is concerned with several important aspects of mismatched heteroepitaxial 

growth: mismatch, strain, lattice relaxation, the critical layer thickness, and the introduction of 

dislocation defects as well as few basic concepts on their dynamics.  

In almost cases of interest, heteroepitaxial growth is rarely lattice-matched. Indeed, the 

difference between lattice constants of the substrate and the epitaxial layer, is a direct cause of 

mismatch between the materials. This latter can be defined as 
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4.1.  

where    is the relaxed lattice constant of the substrate and    is the relaxed lattice constant of 

the epitaxial layer. The mismatch may take on either sign, i.e., m > 0 or m < 0, thus the systems 

where mismatch occurs being tensile or compressive respectively.  The same quantity can be also 

defined perpendicularly (or out-of-plane) 

 

 

 

   
  

    

  
 

 

4.2.  

or parallel (in-plane) to the interface between the materials 

 

 

 

   
  

    

  
 

 

4.3.  

If the lattice mismatch between the epitaxial layer and substrate is small and if the growth 

mode is two-dimensional, i.e., layer-by-layer, the initial growth will be coherently strained to match 

the atomic spacings of the substrate in the plane of the interface. This situation is schematically 

depicted in Fig. 4.2a, where the epitaxial layer has a larger lattice constant than the substrate (   > 

   and f < 0). The substrate is also assumed to not constrain the epitaxial layer in the growth 

direction and to be sufficiently thick with respect to the layer so that it can be considered unstrained 

by the growth of the epitaxial layer [4.4]. Hence, in heteroepitaxial systems with low mismatch, 

during the initial growth, a thin epitaxial layer takes on the relaxed lattice constant of the substrate 

within the growth plane and the growth is usually referred to as pseudomorphic. The 

pseudomorphic layer matches the substrate lattice constant in the plane of the interface (  
    ) 

and therefore experiences in-plane biaxial compression. The in-plane strain is defined as  

 

 

   
  

    

  
      

4.4.  



 
 

87 

 

where    is the relaxed lattice constant of the layer at equilibrium condition and R represents 

the lattice relaxation. This latter is an important parameter that denotes the state of growth of the 

epitaxial layer with respect to the substrate and can be defined as 

 

 

  
  

    

     
 

  

  
 

 

4.5.  

It is worth noting that for a pseudomorphic layer, where no lattice relaxation has occurred, 

   , thus     . On the other hand, the out-of-plane strain is given by  

 

 

 

   
  

    

  
        

    

   
   

 

4.6.  

where    is the biaxial relaxation constant relative to the growing epitaxial layer and   the 

elastic stiffness constants as tabulated in [4.4]. During the initial pseudomorphic growth, the unit 

cell of the epitaxial layer is tetragonally distorted with an out-of-plane lattice constant c being 

greater than   .  
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Figure 4.2: Growth of a heteroepitaxial layer on a mismatched substrate: (a) pseudomorphic layer; (b) partially 

relaxed layer [4.4]. 

 

According to the model given by Matthews and Blakeslee [4.7], as the epitaxial layer 

thickness increases, so does the strain energy which is stored in the layer. At a certain thickness, 

which is called critical layer thickness, the heteroepitaxial structure becomes energetically 

favorable for the introduction of misfit dislocations which relax some of the mismatch strain at the 

interface between the materials, thus acting as a plastic strain. Indeed, misfit dislocations form at (or 

near) the interface to relieve strain in a mismatched heteroepitaxial layer, once this latter exceeds 

the critical layer thickness. This new phase of growth is thus characterized by a partial or total 

relaxation of the in-plane lattice constant of the layer to its unstrained value. Associated with these 

misfit dislocations are threading dislocations, which run through the thickness of the heteroepitaxial 

layer. In fact, threading dislocations are typically present in bulk diamond and zinc blende crystals 

due to thermal or mechanical stresses which act on the crystal during growth or cooling. A 

heteroepitaxial layer grown on such a wafer will typically inherit the threading dislocations from the 

substrate, which then propagate through the heteroepitaxial layer to a free surface, gliding to create 

misfit dislocations at the interface. In this case, only if this relaxation mechanism is active, the 

epitaxial film must have a threading dislocation density equal to or less than that of the starting 

substrate. Indeed, the amount of lattice mismatch that may be relieved by this phenomenon depends 

on the substrate dislocation density and the average length for the misfit segments of the 

dislocations.  

All these aspects contribute together to affect the properties of heteroepitaxial semiconductors 

in different ways: as an example, strain can change the band structure of a semiconductor or its 

energy gap, or it can also excites the motion of dislocations during the operation of laser devices, 

thus causing catastrophic failure. For solar cell applications, the presence of dislocations in the 
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material tends to degrade its electrical properties, affecting device performance and lifetime. The 

control of these defects is therefore of considerable interest and represents the aim of next section. 

 

4.3. X-ray analysis applied to heteroepitaxial SiGe structures 
 

The characterization of heteroepitaxial structures by high resolution X-ray diffractometer is a 

non-destructive technique that allows to reveal the structural properties of samples under analysis. 

In fact, application of this method requires an understanding of how the diffraction profile of the 

specimen relates to the crystal structure of the sample. From the rocking curve obtained through the 

HRXRD it is possible to determine the lattice constants (both parallel and perpendicular to the 

interface between layer and substrate) of the cubic cell of the heteroepitaxial layer, the density of 

dislocations present either in the layer or within the substrate and the thickness of the layer 

deposited. All these parameters are very important for the realization of virtual substrates and for 

their applications. Indeed, for multi-junction structures or for the integration of VSs within 

electronic devices, it is mandatory that the layer of Ge at the end of the deposition process features 

high crystalline quality and contains a low density of defects and that the obtained sample is not 

deformed neither structurally nor morphologically. 

 

 

4.3.1. Strain 

By considering Eqs. 1.45. and 1.47., in order to calculate out-of-plane and in-plane strains in a 

heteroepitaxial structure it is necessary to determine the lattice constant of the layer perpendicular 

and parallel to the interface between substrate and film. With this regard, it is usually appropriate to 

assume that the strain is constant as a function of depth. In this case, for a binary heteroepitaxial 

layer such as Ge (over Si substrate), the relaxed lattice constant is known so that there is only one 

independent unknown. Moreover, once the in-plane or out-of plane lattice constant is known, the 

other may be calculated. Another assumption is that the substrate, having Bragg angle    , can be 

considered unstrained, i.e., it is thick with respect to the layer. 

If crystallographic planes of the film are parallel to the surface, symmetric rocking curves are 

normally used to obtain a diffraction profile of the sample under investigation. In particular, for a 

Ge film grown over a (001) Si substrate, the (004) are thus the planes used for symmetric 

diffraction.  

The out-of-plane lattice constant of the epitaxial layer can be determined from the Bragg 

angle for the layer in the rocking curve. For a diamond heteroepitaxial layer, e.g., Ge film, using the 

(00m) reflection it results  

 

 

 

      

4.7.  



 
 

90 

  

where    
           is the d_spacing of (00m) planes for the layer. From Bragg’s 

law one obtains  

 

 

 

 

   
  

                            
 

 

4.8.  

where        is the difference in 00m Bragg angles between the epitaxial film and the 

substrate, i.e.,                                     . It is worth noting that in real 

heteroepitaxial structures a crystallographic tilt between the normals to the surfaces of the epitaxial 

layer and the substrate may occur. Hence, in order to find the strain in the epitaxial film, it is 

necessary to measure rocking curves at two or more azimuths φ. As an example, if RCs are 

measured at azimuths φ =0  and  φ =90 , then the angular separation between the epitaxial layer 

and substrate diffraction peaks turns out to be 

 

 

 

 

       
                   

 
 

 

4.9.  

Finally, the out-of-plane strain can be simply obtained from Eq. 1.47, which also gives the in-

plane strain under assumptions of biaxial stress and tetragonal distorsion. 

An alternative way to measure the strain, both perpendicular and parallel to the interface, is to 

carry out an asymmetric RC, i.e., by recording diffracted intensity from planes which are not 

parallel to the surface. For the case of Ge (001) layer, one can use (224) crystallographic planes as 

sketched in Fig. 4.3. As can be seen, the distance between planes      is directly related to the in-

plane lattice constant, thus allowing for an easy determination of all the strain parameters.   
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Figure 4.3: X-ray diffraction from planes which are not parallel to the surface, thus resulting in asymmetric RC.  

4.3.2. Dislocation density 

X-ray diffraction has been employed to determine the average dislocation density in the 

volume of  heteroepitaxial binary SiGe samples. Indeed, as reported in [4.7], in single-crystal 

semiconductor specimens misfit and threading dislocations broaden the RC in two ways: (i) the 

dislocation introduces a rotation of the crystal lattice, thus directly broadening the FWHM of the 

RC (angular broadening); (ii) the dislocation is bounded by a strain field, in which the Bragg angle 

of the crystal is nonuniform (strain broadening).  

The experimental X-ray rocking curve is assumed to be Gaussian in shape, with FWHM 

       , and to represent the convolution of a number of Gaussian intensity distributions. Hence, 

results from the convolution of Gaussian intensity functions lead to   

 

 

  
 
        

 
        

 
      

  
 
        

 
        

 
        

 
       

 

4.10.  

where         represents the Darwin width for the heteroepitaxial sample under analysis, 

        is the instrumental broadening,         is the broadening due to angular rotation at 

dislocations,         being the width due to strain which surrounds dislocations,         the 

broadening due to crystal thickness and         the spread due to curvature of the specimen. 

According to Ref. [4.7], if the effects of the crystal size broadening and curvature can be considered 

negligible, then the broadening contribution due to dislocations   
    

      can be found from the 

following formula 

 

 

  
    

        
 
        

 
      

  
 
        

 
                   

4.11.  
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where   
 
                   , b being the length of the Burger vector [4.4] and D 

the dislocation density. The strain broadening due to dislocations has been modeled by Warren, 

Hordon and Averbach as   
 
              

          , where   
     represents the mean square 

strain in the direction of the normal to the diffracting planes. 

Hence, in order to calculate dislocation density of SiGe heteroepitaxial samples, the FWHM 

        of the RC has been measured for a number of hkl reflections and the extracted value 

  
    

      has been plotted as a function of       . Then, the values of    and    represent the 

intercept and slope of the obtained function, respectively. Finally, the dislocation density can be 

simply found by using the following equation  

 

 

  
  

      
 

4.12.  

 

It should be highlighted that the measurement of as few as three rocking curves allows 

accurate determination of dislocation density. For most (001) semiconductor crystals, e.g., SiGe 

heteroepitaxial samples, since the (004) RC width is mostly related to the angular broadening of 

dislocations while the (113) width is primarily determined by the strain broadening, then it is 

sufficient to measure the (004), (113) and (115) RCs for the application of this approach. Fig. 4.4 

shows an example of the application of this method.  

 
 

Figure 4.4:   
    

      vs.        for a 1.5-µm thick layer of Ge over Si (100), grown by LEPECVD technique. 

  
    

      is the square of the dislocation broadening, extracted from measured rocking curve widths for 

various hkl reflections.   is the Bragg angle. The filled circles represent the data extracted from measurements, 

and the line is the least squares fit.  
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4.4. Data analysis 
 

The deposition of Ge films of variable thickness was performed on wafers of Si (100), 400 

µm thick and tilted of 6° towards [111] direction. The growth parameters of Ge films are shown in 

Table 1.  

 

Table 1: Experimental parameters of growth of Ge films 

Precursor gas GeH4 

Temperature on wafer 600° 

Deposition pressure 10
-3

 mbar 

Flux of the precursor gas 50 sccm 

Flux of the activation gas (H2) 50 sccm 

Power of the plasma source 1600 W 

Ion energy 15 eV 

 

X-ray characterization of the heteroepitaxial samples was carried out by using the high-

resolution X-ray diffractometer available at SSL. Here, experimental results are shown for samples 

coded 130, 132 and 166, respectively. All the samples have been analyzed by measuring RCs and 

calculating the parameters of strain, mismatch, relaxation and density of dislocations. In particular, 

for the analysis of strain, mismatch and relaxation, symmetric RCs have been performed by X-ray 

diffraction of (400) planes at two azimuths φ. On the other hand, for calculation of dislocation 

density the method described in previous section has been followed. Thus, asymmetric RCs have 

been carried out by diffraction of (113) and (115) planes of the SiGe samples.  

It is worth noting that in order to assess the crystalline quality of all the samples, the open 

detector mode of the diffractometer has been used for the analysis, because this is the configuration 

which allows to obtain a FWHM of the RC that depends on all the contributions of lattice defects.  
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Figure 4.5: Rocking curve of sample SiGe 130 obtained with the beam incident onto (400)crystallographic 

planes, in open-detector mode and at azimuth ű =0Á. The The FWHM of Gaussian distribution for Ge layer was 

831 arcsec.  

 
 

 
Figure 4.6: Rocking curve of sample SiGe 130 obtained with the beam incident onto (400) crystallographic 

planes, in open-detector mode and at azimuth ű =90°.  
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Figure 4.7: Rocking curve of sample SiGe 132 obtained with the beam incident onto (400) crystallographic 

planes, in open-detector mode and at azimuth ű =0Á. The The FWHM of Gaussian distribution for Ge layer was 

861 arcsec.  

 
 

 
Figure 4.8: Rocking curve of sample SiGe 132 obtained with the beam incident onto (400) crystallographic 

planes, in open-detector mode and at azimuth ű =90°.  
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Figure 4.9: Rocking curve of sample SiGe 166 obtained with the beam incident onto (400) crystallographic 

planes, in open-detector mode and at azimuth ű=0°. The FWHM of Gaussian distribution for Ge layer was 965 

arcsec. 

 
 

 
Figure 4.10: Rocking curve of sample SiGe 166 obtained with the beam incident onto (400) crystallographic 

planes, in open-detector mode and at azimuth ű=90°.  

 
 

All RCs of the samples exhibited a well-defined Gaussian profile for both Si substrate and Ge 

film. This highlights that the layer of Ge grown by LEPECVD was structurally crystalline and not 

amorphous, this fact being important for realization of virtual substrates where a thick crystalline 

Ge film is needed. The FWHM of the two Gaussian distributions showed a considerable 

enlargement at the peak of Ge compared to that of Si. Since this broadening is mainly determined 

by the contribution of dislocations, this evidence means that dislocations slightly deformed the 

crystallographic planes of the substrate but significantly perturbed the planes in Ge film for all the 

samples.  
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From the positions of the diffraction peaks in the symmetric RCs it was possible to determine 

the lattice constants of the layer cubic cell and consequently the mismatch, strain and degree of 

relaxation of the layer with respect to the substrate.  

On the other hand, the FWHM of diffraction RCs allowed to reveal the density of threading 

dislocations present in the SiGe samples. The main characteristics of each measured sample are 

summarized in Table 2. In Figs. 4.11 and 4.12 experimental results of asymmetric RCs for 

calculation of dislocation density are shown for sample 130.  

 

 

 

 
Figure 4.11: Rocking curve of sample SiGe 130 obtained with the beam incident onto (113) crystallographic 

planes, in open-detector mode. The FWHM of Gaussian distribution for Ge layer was 831 arcsec. 

 

 

 
Figure 4.12: Rocking curve of sample SiGe 130 obtained with the beam incident onto (115)crystallographic 

planes, in open-detector mode. The FWHM of Gaussian distribution for Ge layer was 870 arcsec. 
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Figure 4.13:   
    

      vs.        for sample 130.   
    

      is the square of the dislocation broadening, 

extracted from measured rocking curve widths for various hkl reflections.   is the Bragg angle. The filled circles 

represent the data extracted from measurements, and the line is the least squares fit.  

 

 

Table 2: Main features of all samples under analysis 

 

Sample 

FWHM 

Ge-layer 

(arcsec) 

a┴
L 

(Ȧ) 

a||
L 

(Ȧ) 

ε┴ 

(%) 

 

ε|| 

(%) 

 

m┴ 

(%) 

m|| 

(%) 

R 

(%) 

Dislocation 

density D (10
9
 cm

-2
) 

130  

(Ge-1.5 µm) 

831 5.69 5.60 0.65 -0.98 4.85 3.14 75 2.0 

132 

(Ge-1.5 µm) 

861 5.69 5.60 0.64 -0.97 4.84 3.16 75 1.8 

166 

(Ge-0.7 µm) 

965 5.64 5.60 0.61 -0.92 4.81 3.21 77 2.8 

  

As can be seen, all the samples show a partial degree of relaxation of the Ge layer parallel to 

the interface with the Si substrate. Indeed, the lattice constant of the cubic cell of the layer is greater 

than that of the substrate (5. 3 Ȧ  for Si ) but still lower than the lattice constant at balance 

condition or complete relaxation (5.65 Ȧ). This means that the critical thickness of the deposited Ge 

film has been exceeded and consequently misfit dislocations (plastic deformation) occurred to 

relieve the deformation due to the epitaxial constraint, though part of the mismatch has been 

balanced by elastic deformation (relaxation is partial and not total). 

Since the conditions of growth are similar for the samples 130 and 132, the obtained results 

are nearly equal. In particular, the epitaxial layer of Ge is tetragonally distorted with a lattice 

constant perpendicular to the interface that is greater than that at its state of equilibrium. However, 

this is not true for the sample 166, for which the film thickness is lower, thus the cubic cell of the 

layer was probably not properly formed. 
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Finally, the dislocation density for the layer of Ge is of the order of 10
9
/cm

2
 for all the 

samples. Since this parameter decreases as the distance from the interface between Si and Ge 

increases, and also the weighting of diffracted intensity from different parts of the crystal will be 

such that the FWHM of the RC is indicative of the lowest dislocation density inside the crystal, it is 

assumed that the obtained value corresponds to that of the surface. This is a very important fact for 

the realization of multi-junction cells on SiGe structures, because it is the surface to play a decisive 

role in terms of dislocation density. 

For the case of a 3-µm thick layer of GaAs, whose chemical properties are similar to those of 

Ge, grown by Metalorganic Vapor Phase Epitaxy (MOVPE) on a Si substrate, the dislocation 

density is of the order of 10
8
/cm

2
. Indeed, if the deposition thickness increases, defects tend to 

remain confined at the interface, thus leading to a lower dislocation density.  
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Appendix: X-ray characterization of ceramic 

coatings 

 

 

Ceramic coatings and their applications 
 

Ceramic and cermet (a composite material composed of ceramic and metal) materials are 

widely used in industrial applications that require high resistance to friction and wear, thanks to 

their high hardness and resistance to oxidation at high temperatures and their properties of thermal 

barrier [1.1]. Nevertheless, the high cost of production and their fragility limit the application of 

bulk ceramics. Hence, these kinds of materials are most frequently used in form of coatings that are 

applied onto less expensive materials, e.g., steels.  

Ceramic coatings are widely used to protect soft materials from wear and corrosion even at 

high temperatures; due to their resistant and inert properties the main industries that apply this 

technology are chemical, naval and oil industries [1.2]. As an example, ceramic or cermet are 

currently used as thermal protection of gas turbines for civil, military and marine. They are usually 

deposited on "hot" parts of turbine liners or nozzles allowing to raise the operation temperature and, 

consequently, the efficiency of the machine. The required properties of these coatings are high 

resistance to corrosion, oxidation and erosion, good stability, and interfacial adhesion to the metal 

substrate [1.3]. 

For realization of wear resistant coatings, thermal spraying is often considered a valid 

alternative as compared to traditional coating techniques [1.4]. The most commonly methods used 

in thermal spraying are the APS (Air Plasma Spray) and HVOF (High Velocity Oxygen Fuel), as 

they allow obtaining high-quality anti-wear coatings. As an example, the APS is still the most 

widely used technique for the production of ceramic such as Al2O3: easiness of use, popularity of 

technology and lower manufacturing costs are the main advantages of such a technique. However, a 

factor which limits positive assessment of this method is a high level of porosity of coatings and 

low adhesion of the layer to base material. These features result both from the specific nature of 

plasma spraying and properties of used powders [1.5, 1.6]. 

The HVOF was developed to overcome the limitations of plasma spraying. Indeed, the higher 

speed deposition and lower spray flame temperature allows to create coatings with low porosity, 

limited oxidation of fused particles and low decomposition particle [1.1]. However, the HVOF has 

some limitations mainly related to the cost and difficulty of preparation of the starting powders and 

the lack of commercial availability of torches used for the deposition on the substrate.  

APS coatings are more porous and fragile than HVOF sprayed cermet, mainly due to the 

lower speed of impact of particles. Nevertheless, the APS coatings have very high hardness and low 

susceptibility to corrosion in many environments and can resist high temperatures. A precise 

evaluation of the wear mechanisms that occur in APS and / or HVOF coatings can enable their 
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correct use in many applications, even when the environmental conditions of humidity are critical to 

the proper functioning of the tribological system [1.7].  

In general, the formation of the coating consists in using powder particles of various size, 

including nanometric size, which are melted in a torch, ejected and projected at temperature and 

velocity variables in form of droplets on the substrate to be coated. Compared with bulk materials, 

the presence of porosity, oxide inclusions and any other phases or partially molten particles that 

may form during the deposition, may reduce the tribological performance of the coating. In 

addition, the low adhesion coating-substrate that characterizes the obtained coatings by thermal 

spraying, severely limits technological applications.  

For these reasons, in recent years intensive research has been aimed at assessing the influence 

of such typical defects on the performance and quality of these types of coatings. This work reports 

on a microstructural investigation of three types of coatings obtained by X-ray diffraction (XRD) at 

Sensor and Semiconductor Laboratory (SSL, Ferrara, Italy) in order to identify the phases present in 

coatings. The research work has been done in collaboration with the group of Prof. Gianluca 

Garagnani at the Engineering Department and with Prof. Carmela Vaccaro at Geology Department. 

The analysis has been carried out on the entire surface of the samples creating a matrix array of 49 

points (7 7). All samples were fabricated by a company specialized in industrial applications of 

ceramic and cermet coatings. The deposition parameters are therefore confidential. 

Al2O3-13TiO2 
 

One of the main properties of Al2O3-13TiO2 applied with APS, is the wear resistance. Its 

tribological behavior is currently under investigation by the scientific community [1.6, 1.8, 1.9]. 

Main factors that are correlated with the wear process are hardness, porosity and toughness. In fact, 

microhardness and toughness values of Al2O3 coating can be modified by varying its composition 

with addition of TiO2 in plasma spraying in such a way that this can contribute to increase the 

toughness and wear resistance values of the coating. Indeed, Al2O3 with addition of TiO2 

significantly lower the microhardness of the alumina coating, while a decrease in hardness values 

result in an increase in toughness values of the alumina coatings [1.10].   

Many models try to explain the behavior of evolution in the microstructure. Actually, it is 

considered that the phase transformation occurs from   (stable) to γ (metastable) Al2O3-13TiO2 and 

that TiO2 is in solution in γ phase, after APS process [1.11].  

The studied coating, coded as C2, is Al2O3-13TiO2, applied with APS technique onto a steel 

substrate (75 mm in diameter and 6 mm-thick), and the size particle of the powders being around -

45 15 μm. 

WC-12Co 

As highlighted in Ref. [1.12], WC–Co hardmetals are well established as materials highly 

resistant to wear in a wide variety of situations. Main parameters influencing their properties are 

carbide grain size and volume fraction. Sintered nanostructured WC–Co hardmetals, i.e. materials 

which have nanoscale tungsten carbide grains in a cobalt matrix, have been reported to exhibit 

enhanced performance in both sliding and abrasive wear [1.13-1.16]. They also benefit from 



 
 

103 

substantially higher hardness than those which have carbide grain sizes around the micron size 

[1.13, 1.16]. Indeed, the wear resistance of sintered WC–Co hardmetals has been shown to increase 

dramatically as the carbide grain size is reduced [1.13, 1.17]. 

Thermally sprayed WC–Co coatings, of the order of 200–400 µm thick, are widely used in 

many industries as they offer an effective and economic method of conferring wear resistance 

without compromising other attributes of the component. High velocity oxy-fuel (HVOF) thermal 

spraying has shown itself to be one of the better methods for depositing conventional WC–Co 

feedstock powders [1.18-1.20] because the higher velocities and lower temperatures experienced by 

the powder particles, as compared to plasma based routes (e.g., APS), result in less decomposition 

of the WC during spraying [1.21] along with lower levels of porosity, and thus higher wear 

resistance. 

WC-12Co coatings applied by APS and HVOF techniques have been studied in order to 

understand the heterogeneity in the microstructure. Two coatings have been applied on steel plates, 

the size particle of the powders varying depending on application technique, between 88    μm to 

-45 15 μm, respectively. The X-ray analysis shows that the coatings present zones with different 

crystal concentration. 

 

 

XRD patterns for Al2O3-13TiO2 

In Fig. 1.1 the diffraction patterns obtained by XRD analysis show presence of both main 

polymorphic modifications of Al2O3, i.e., both   and γ. A dominating phase in this case is γ- 

Al2O3modification. Reflexes from thermodynamically stable  - Al2O3 modification are distinctly 

weaker. In fact, a partial transformation of the  - Al2O3 to γ- Al2O3phase owing to the APS process 

occurred. The powders used for this kind of process usually have an   phase but the alumina is a 

polymorphic material and high temperatures accomodate phase transformation. The transformation 

from  →γ Al2O3 is due to the fact that nucleation energy of γ- Al2O3 is lower than that of  -Al2O3. 

Indeed, one should consider here thermodynamic aspects of the process and that each arrangement 

tends to reach a state with corresponding possibly lowest level of free energy, regardless of the fact 

if this state will be connected with creation of a metastable or thermodynamically stable 

modification. 

Presence of  - Al2O3 form in the sprayed layer can be explained by uncompleted remelting of 

particles during its spread on base material. An important feature is that as hardness of  -Al2O3 is 

higher than that of γ- Al2O3 it is possible that, by a partial transformation of this phase, wear 

resistance can increase when compared with coatings which present a full transformation.  

The peaks relative to γ- Al2O3 phase exhibit high intensity and they are wider than those 

associated to  - Al2O3 phase, this being probably due to a smaller crystal size of the γ- phase as 

compared to the   one.  

TiO2 does not appear in crystalline form in the diffraction pattern. Indeed, transformation in 

the amorphous state containing crystalline particles of Al2O3 is probably due to the lower melting 

point of TiO2 and high cooling rate of the APS process.  
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Moreover, the X-ray diffraction pattern highlights a result of reaction between powder oxides, 

i.e., Al2TiO5. Indeed, aluminum titanate forms by the additive reaction between alumina and titania 

at temperatures above 1280 ºC [1.22]. However, the creation of this phase  has a negative effect in 

the hardness and toughness of the sample [1.23]. 

 

 
Figure 1.1: X-ray diffraction analysis of sample C2 

 

 
Figure 1.2: Punctual X-ray analysis of sample C2  
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Figure 1.3: Punctual X-ray analysis of sample C2 

 

XRD patterns for WC-12Co 
 

The XRD mapping of the WC-12Co coatings, coded as C4 and C5 and obtained through APS 

and HVOF techniques respectively, are shown in Figs. 1.4 and 1.7 and clearly show the presence of 

WC peaks and prominent peaks of W2C. Results of X-ray characterization at fixed positions on the 

surface of the samples are highlighted in Figs. 1.5 and 1.6, and in Figs. 1.8 and 1.9, for C4 and C5 

respectively.  

For both samples, the analysis presents decomposition due to decarburization of the WC-

12Co. As can be noticed, the decarburization is significantly higher in the APS coating than in the 

coating obtained by HVOF and this fact is ascribed to the higher temperature used in the APS 

process.  

The intensity in peaks is lower for APS than for HVOF process. Indeed, according to Ref. 

[1.24], the higher the amount of transformation, the lower the index of crystallinity. A decrease in 

the intensity of the peaks of WC indicates a decrease in the volume fraction of the primary carbide. 

As a consequence, in the APS process a higher decomposition of WC occurs.  

On the other hand, the higher intensity in HVOF method shows more order in the distribution 

of phases in the coating, less transformation and higher crystal content.  

The XRD patterns for sample C4 show a lower intensity in all cases, as expected. In other 

cases, the presence of W2C and the differences in microstructure are considerable, while for sample 

C5 the analysis shows less dispersion in intensity and broadening. 
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Figure 1.4: X-ray diffraction analysis of sample C4 

 

 
Figure 1.5: Punctual X-ray analysis of sample C4 
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Figure 1.6: Punctual X-ray analysis of sample C4  

 
 

 
Figure 1.7: X-ray diffraction analysis of sample C5 

 

 
Figure 1.8: Punctual X-ray analysis of sample C5 
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Figure 1.9: Punctual X-ray analysis of sample C5  
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Conclusions 

In this work they have been shown main experimental results of X-ray characterization of 

innovative semiconductor crystals for applications in astrophysics and material science. 

In the framework of Laue lens for satellite-borne experiments in astrophysics, curved crystals 

developed at SSL (Ferrara, Italy) by surface grooving have been positively tested at ESRF and ILL 

(Grenoble, France). Indeed, the crystals have shown significantly high efficiency and broad-band 

response when subject to X-ray diffraction, proving that the technology of surface grooving opens 

up a viable way to build up optical components for X- or γ-ray diffraction without any size 

constraint, which may be useful for the realization of a Laue lens for observation of violent events 

in galaxy, where weight constraints do not permit any external mechanical device.  

For realization of solar cells for photovoltaic applications, Ge heteroepitaxial layers 

developed at SSL by LEPECVD technique have been characterized by X-ray diffractometry and 

were proven to exhibit a well-defined Gaussian diffraction profile. This highlights that Ge layers are 

structurally crystalline, meaning that LEPECVD technique is a viable tool to fabricate Ge virtual 

substrates for multi-junction solar cells.  

 

 

 

 

 

 

 

 


