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Chapter 1

Context

Early work on Machine Learning (ML) often focused on learning deterministic logical con-

cepts. This approach of machine learning fell out of vogue for many years because of problems

in handling noise and large-scale data. During that time, the ML community shifted attention

to statistical methods that ignored relational aspects of the data (e.g., neural networks, decision

trees, and generalized linear models). These methods led to major boosts in accuracy in many

problems in low-level vision and natural language processing. However, their focus was on the

propositional or attribute-value representation.

The major exception has been the inductive logic programming (ILP) community. Specifically,

ILP is a research field at the intersection of machine learning and logic programming. The

ILP community has concentrated its efforts on learning (deterministic) first-order rules from

relational data (Lavrac and Dzeroski, 1994). Initially the ILP community focused its attention

solely on the task of program synthesis from examples and background knowledge. However,

recent research has tackled the discovery of useful rules from larger databases. The ILP com-

munity has had successes in a number of application areas including discovery of 2D structural

alerts for mutagenicity/carcinogenicity (Srinivasan et al., 1997, 1996), 3D pharmacophore dis-

covery for drug design (Finn et al., 1998) and analysis of chemical databases (Turcotte et al.,

1998). Among the strong motivations for using a relational model is its ability to model de-

pendencies between related instances. Intuitively, we would like to use our information about

one object to help us reach conclusions about other, related objects. For example, in web data,

we should be able to propagate information about the topic of a document to documents it has

links to and documents that link to it. These, in turn, would propagate information to yet other

documents.
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Recently, both the ILP community and the statistical ML community have begun to in-

corporate aspects of their complementary technology. Many ILP researchers are developing

stochastic and probabilistic representations and algorithms (Cussens, 1999; Kersting et al.,

2001; Muggleton, 2000). In more traditional ML circles, researchers who have in the past

focused on attribute-value or propositional learning algorithms are exploring methods for in-

corporating relational information.

We refer to this emerging area of research as statistical relational learning (SRL). SRL

research attempts to represent, reason, and learn in domains with complex relational and rich

probabilistic structure. Other terms that have been used recently include probabilistic logic

learning. Learning is the third fundamental component in any SRL approach: the aim of

SRL is to build rich representations of domains including objects, relations and uncertainty,

that one can effectively learn and carry out inference with. Over the last 25 years there has

been a considerable body of research to close the gap between logical and statistical Artificial

Intelligence (AI).

We overview in the following the foundations of the SRL area - learning, logic and proba-

bility - and give some research problems, representations and applications of SRL approaches.

1.1 Learning

Machine learning and data mining techniques essentially search a space of possible patterns,

models or regularities. Depending on the task, different search algorithms and principles apply.

Data mining is the process of computing the set of patterns Th(Q,D,L) (Mannila and

Toivonen, 1997). The search space consists of all patterns expressible within a language of

patterns L; the data set D consists of the examples that need to be generalized; and, finally, the

constraint Q specifies which patterns are of interest.

A slightly different perspective is given by the machine learning view, which is often for-

mulated as that of finding a particular function h (again belonging to a language of possible

functions L) that minimizes a loss function l(h,D) on the data. An adequate loss function is

the accuracy, that is, the fraction of database queries that is correctly predicted. The machine

learning and data mining views can be reconciled, for instance, by requiring that the constraint

Q(h,D) succeeds only when l(h,D) is minimal.

Machine learning algorithms are described as either ‘supervised’ or ‘unsupervised’. The dis-

tinction is drawn from how the learner classifies data. In supervised algorithms, the classes
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are predetermined. These classes can be conceived of as a finite set, previously arrived at by a

human. In practice, a certain segment of data will be labeled with these classifications. Unsu-

pervised learners are not provided with classifications. In fact, the basic task of unsupervised

learning is to develop classification labels automatically. Unsupervised algorithms seek out

similarity between pieces of data in order to determine whether they can be characterized as

forming a group. These groups are termed clusters.

The computation of the solutions proceeds typically by searching the space of possible

patterns or hypotheses L according to generality. One pattern or hypothesis is more general

than another if all examples that are covered by (satisfy) the latter pattern are also covered by

the former.

1.2 Logic

Using logical description languages provides not only a high expressivity in representation,

useful in relational domains, but also an excellent theoretical foundation for learning.

Logical learning typically employs a form of reasoning known as inductive inference. This

form of reasoning generalizes specific facts into general laws. The idea is that knowledge can

be obtained by careful experimenting, observing, generalizing and testing of hypotheses. Rela-

tional learning has investigated computational approaches to inductive reasoning, i.e. general-

purpose inductive reasoning systems that could be applied across different application domains.

Supporting the discovery process across different domains requires a solution to two important

computational problems. First, an expressive formalism is needed to represent many learned

theories. Second, the inductive reasoning process should be able to employ the available back-

ground knowledge to obtain meaningful hypotheses. These two problems can be solved to a

large extent by using logical representations for learning. For logical learning the set of patterns

expressible in the language L will typically be a set of clauses.

Since the mid-1960s a number of researchers proposed to use (variants of) predicate logic

as a formalism for machine learning. Theoretical properties of generalization and specializa-

tion were also studied by various researchers. In the 1990s inductive logic programming (ILP)

developed firm theoretical foundations, built on logic programming concepts, for logical learn-

ing and various well-known inductive logic programming systems (Muggleton, 1987, 1995;

Muggleton and Buntine, 1988; Muggleton and Feng, 1990).
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The vast majority of statistical learning literature assumes the data is represented by points

in a high-dimensional space. For many task, such as learning to detect a face in an image

or classify an email message as spam or not, we can usually construct the relevant low-level

features (e.g., pixels, filters, words, URLs) and solve the problem using standard tools for the

vector representation. This abstraction hides the rich logical structure of the underlying data

that is crucial for solving more general and complex problems. We may like to detect that

an email message is not only not-spam but is a request for a meeting tomorrow with three

colleagues, etc. We are ultimately interested in not just answering an isolated yes/no question,

but in producing structured representations of the data, involving objects described by attributes

and participating in relationships, actions, and events. The challenge is to develop formalisms,

models, and algorithms that enable effective and robust reasoning about this type of object-

relational structure of the data.

Logic is inherently relational, expressive, understandable, and interpretable, and it is well

understood. It provides solid theoretical foundations for many developments within artificial

intelligence and knowledge representation. At the same time, it enables one to specify and

employ background knowledge about the domain, which is often also a key factor in many

applications of artificial intelligence. Predicate logic adds relations, individuals and quantified

variables, allowing to treat cases where the values in the database are names of individuals,

and it is the properties of the individuals and the relationship between the individuals that are

modeled. We often want to build the models before we know which individuals exist in a

domain, so that the models can be applied to diverse populations. Moreover, we would like to

make probabilistic predictions about properties and relationships among individuals; this issue

is tackled under probability theory, see next Section.

1.3 Probability

Probability theory provides an elegant and formal basis for reasoning about uncertainty.

Dealing with real data, like images and text, inevitably requires the ability to handle the un-

certainty that arises from noise and incomplete information (e.g., occlusions, misspellings). In

relational problems, uncertainty arises on many levels. Beyond uncertainty about the attributes

of an object, there may be uncertainty about an object’s type, the number of objects, and the

identity of an object (what kind, which, and how many entities are depicted or written about),

as well as relationship membership, type, and number (which entities are related, how, and
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how many times). Solving interesting relational learning tasks robustly requires sophisticated

treatment of uncertainty at these multiple levels of representation.

In the past few decades, several probabilistic knowledge representation formalisms have

been developed to cope with uncertainty, and many of these formalisms can be learned from

data. Unfortunately, most such formalisms are propositional, and hence they suffer from the

same limitations as traditional propositional learning systems. In the 1990s a development took

place also in the uncertainty in artificial intelligence community. Researchers started to develop

expressive probabilistic logics and to study learning in these frameworks soon afterward, see

next Section.

1.4 Probabilistic Logic Learning Formalisms

Probability-logic formalisms have taken one of two routes to defining probabilities.

In the directed approach there is a nonempty set of formulae all of whose probabilities are

explicitly stated: they are called probabilistic facts, similarly to Sato (Sato, 1995). Other prob-

abilities are defined recursively with the probabilistic facts acting as base cases. A probability-

logic model using the directed approach will be closely related to a recursive graphical model

(Bayesian net).

Most probability-logic formalisms fall into this category: for example, probabilistic logic

programming (PLP) by Ng and Subrahmanian (Ng and Subrahmanian, 1992); probabilistic

Horn abduction (PHA) by Poole (Poole, 1993) and its later expansion the independent choice

logic (ICL) (Poole, 1997); probabilistic knowledge bases (PKBs) by Ngo and Haddawy (Ngo

and Haddawy, 1996); Bayesian logic programs (BLPs) by Kersting and De Raedt (Kersting

and Raedt, 2001); relational Bayesian networks (RBNs) by (Jaeger, 1997); stochastic logic

programs (SLPs) by Muggleton (Muggleton, 2000); the PRISM system by Sato (Sato and

Kameya, 2001); Logic Programs with Annotated Disjunctions (LPADs) by (Vennekens et al.,

2004); ProbLog by (De Raedt et al., 2007) and CP-logic by (Vennekens et al., 2009). This wide

variety of probabilistic logics that are available today are described in two recent textbooks

(Getoor and Taskar, 2007; Raedt, 2008).

In order to upgrade logic programs to a probabilistic logic, two changes are necessary:

1. The most basic requirement of such formalisms is to explicitly state that a given ground

atomic formula has some probability of being true: clauses are annotated with probability

values;
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2. the “covers” relation (a rule covers an example, if the example satisfies the body of

the rule) becomes a probabilistic one: rather than stating in absolute terms whether the

example is covered or not, a probability will be assigned to the example being covered.

The logical coverage relation can be re-expressed as a probabilistic one by stating that

the probability is 1 or 0 of being covered.

In all these cases, possible worlds semantics are explicitly invoked: these programs define a

probability distribution over normal logic programs (called instances or possible worlds). They

differ in the way they define the distribution over logic programs.

The second approach is undirected, where no formula has its probability explicitly stated.

Relational Markov networks (RMNs) (Taskar et al., 2002) and Markov Logic networks (MLNs)

(Richardson and Domingos, 2006) are examples of this approach. In the undirected approach,

the probability of each possible world is defined in terms of its “features” where each feature

has an associated real-valued parameter.

To understand the needs for such a combination between predicate logic and probabil-

ity, consider learning from the two datasets in Figure 1.1 (taken from (Poole and Mackworth,

2010)).

Figure 1.1: Two examples of datasets from which one may want to capture characteristics of
interest of the unknown underlying probability distribution.

Dataset (a) can be used by supervised learning algorithms to learn a decision tree, a neural

network, or a support vector machine to predict UserAction. A belief network learning algo-

rithm can be used to learn a representation of the distribution over all of the features. Dataset
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(b), from which we may want to predict what Joe likes, is different. Many of the values in the

table cannot be used directly in supervised learning. Instead, it is the relationship among the

individuals in the world that counts: for example, we may want to learn that Joe likes resorts

that are near sandy beaches.

Reasoning tasks

One typically distinguishes two problems within the statistical learning community:

• Learning: there are two variants of the learning task: parameter estimation and structure

learning. In the parameter estimation task, we assume that the qualitative structure of the

SRL model is known; in this case, the learning task is simply to fill in the parameters

characterizing the model. In the structure learning task, there is no additional required

input (although the user can, if available, provide prior knowledge about the structure,

e.g., in the form of constraints). The goal is to extract structure as well as parameters,

from the training data (database) alone; the search can make use of certain biases defined

over the model space.

• Inference: having defined a probability distribution in a logic-based formalism there re-

mains the problem of computing probabilities to answer specific queries, such as “What’s

the probability that Tweety flies?”. The major problem is the computational complex-

ity of probabilistic inference. For a large number of models, in fact, exact inference is

intractable and we resort to approximations.

Applications

Statistical relational models have been used for estimating the result size of complex database

queries, for clustering gene expression data, and for discovering cellular processes from gene

expression data. They have also been used for understanding tuberculosis epidemiology. Prob-

abilistic relational trees have discovered publication patterns in high-energy physics. They have

also been used to learn to rank brokers with respect to the probability that they would commit

a serious violation of securities regulations in the near future. Relational Markov networks

have been used for semantic labeling of 3D scan data. They have also been used to compactly

represent object maps and to estimate trajectories of people. Relational hidden Markov models

have been used for protein fold recognition. Markov logic networks have been proven to be
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successful for joint unsupervised coreference resolution and unsupervised semantic parsing.

for classification, link prediction and for learning to rank search results.

1.5 Ontologies and Probability

Ontology in Computer Science is a way of representing a common understanding of a domain.

Informally, an ontology consists of a hierarchical description of important and precisely defined

concepts in a particular domain, along with the description of the properties (of the instances)

of each concept and the relations among them. In the AI perspective, an ontology refers to the

specification of knowledge in a bounded universe of discourse only. As a result, a number of

bounded-universe ontologies have been created over the last decade: the Chemicals ontology

in the chemistry area, the Enterprise ontologies for enterprise modeling, an ontology of air

campaign planning in the defense area, the GALEN ontology in the medical informatics area.

Data that are reliable and people care about, particularly in the sciences, are being represented

using the vocabulary defined in formal ontologies (Fox et al., 2006).

The next stage in this line of research is to represent scientific hypotheses as formal ontolo-

gies that are able to make probabilistic predictions that can be judged against data (Poole et al.,

2008).

Ontologies play also a crucial role in the development of the Semantic Web as a means for

defining shared terms in web resources. Semantic Web aims at an extension of the current Web

by standards and technologies that help machines to understand the information on the Web so

that they can support richer discovery, data integration, navigation, and automation of tasks.

Ontologies in the Semantic Web are formulated in web ontology languages (such as OWL),

which are based on expressive Description Logics (DL). Description logics aim at providing a

decidable first-order formalism with a simple well-established declarative semantics to capture

the meaning of structured representations of knowledge.

However, classical ontology languages and Description Logics are less suitable in all those

domains where the information to be represented comes along with (quantitative) uncertainty.

Formalisms for dealing with uncertainty and vagueness have started to play an important role

in research related to the Web and the Semantic Web. For example, the order in which Google

returns the answers to a web search query is computed by using probabilistic techniques. Fur-

thermore, formalisms for dealing with uncertainty in ontologies have been successfully applied

in ontology matching, data integration, and information retrieval. Vagueness and imprecision
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also abound in multimedia information processing and retrieval. To overcome this deficiency,

approaches for integrating probabilistic logic and fuzzy logic into Description Logics have been

proposed.

Reasoning tasks: inference

In addition to the ability to describe (uncertain) concepts formally, one also would like to

employ the description of a set of concepts to ask questions about the concepts and instances

described. The most common inference problems are basic questions like instance checking (is

a particular instance a member of a given concept?) and relation checking (does a relation/role

hold between two instances?), and global questions like subsumption (is a concept a subset of

another concept?), and concept consistency (the concept is necessarily empty?).

These works combine all of the issues of relational probabilistic modeling as well as the

problems of describing the world at multiple level of abstraction and detail and handling mul-

tiple heterogeneous data sets.

Applications

As pointed out, there is a plethora of applications with an urgent need for handling probabilistic

knowledge in ontologies, especially in areas like web, medicine, biology, defense, and astron-

omy. Some of the arguments for the critical need of dealing with probabilistic uncertainty in

ontologies are:

• in addition to being logically related, the concepts of an ontology are generally also

probabilistically related. For example, two concepts either may be logically related via a

subset or disjointness relationship, or they may show a certain degree of overlap. Proba-

bilistic ontologies allow for quantifying these degrees of overlap, reasoning about them,

and using them in semantic-web applications. The degrees of concept overlap may also

be exploited in personalization and recommender systems;

• like the current Web, the Semantic Web will necessarily contain ambiguous and contro-

versial pieces of information in different web sources. This can be handled via proba-

bilistic data integration by associating a probability describing the degree of reliability

with every web source;
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• an important application for probabilistic ontologies is information retrieval: fuzzy de-

scription logics, that are not treated in this thesis, have first been proposed for logic-based

information retrieval, for multimedia data, in the medical domain, for the improvement

of search and comparison of products in electronic markets, etc.
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Chapter 2

Thesis Aims

Statistical relational learning is a young field. There are many opportunities to develop new

methods and apply the tools to compelling real-world problems. Today, the challenges and

opportunities of dealing with structured data and knowledge have been taken up by the artificial

intelligence community at large and form the motivation for a lot of ongoing research.

First, this thesis addresses the two problems of parameter estimation and structure

learning for the probabilistic logic language of Logic Programs with Annotated Disjunc-

tions (LPADs) (Vennekens and Verbaeten, 2003), a formalism based on disjunctive logic pro-

grams and the distribution semantics. The basis provided by disjunctive logic programs makes

LPADs particularly suitable when reasoning about actions and effects, where we have causal

independence among the possible different outcomes for a given action. In this formalism,

each of the disjuncts in the head of a logic clause is annotated with a probability, for instance:

heads(Coin) : 0.6 ∨ tails(Coin) : 0.4 ← toss(Coin), biased(Coin). states that a biased

coin lands on heads with probability 0.6 and on tails with probability 0.4. Viewing such set

of probabilistic disjunctive clauses as a probabilistic disjunction of normal logic programs al-

lows to derive a possible world semantics. This semantics offers a natural way of describing

complex probabilistic knowledge in terms of a number of simple choices.

The distribution semantics is one of the most prominent approaches to define the semantics

of probabilistic logic languages, in fact it underlies Probabilistic Logic Programs, Probabilistic

Horn Abduction, PRISM, Independent Choice Logic (ICL), pD, Logic Programs with Anno-

tated Disjunctions, ProbLog and CP-logic. The approach is particularly appealing for its in-

tuitiveness and because efficient inference algorithms have been developed, which use Binary

Decision Diagrams (BDDs) for the computation of the probability of queries.
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LPADs are not a radically new formalism with respect to other probabilistic logic lan-

guages, but, although they may be similar in terms of theoretical expressive power, they are

quite different in their practical modeling properties. For example, ICL (Poole, 1997) is suited

for problem domains such as diagnosis or theory revision, where we express uncertainty on the

causes of certain effects; the more flexible syntax of LPADs makes them also suited for mod-

eling indeterminate actions, in which it is most natural to express uncertainty on the effects of

certain causes. The algorithms developed for LPADs are also applicable to other probabilis-

tic programming languages, since there are transformations with linear complexity that can

convert each one into the others. We exploit the graphical structures of BDDs for efficient

inference.

The goal of the thesis is also to show how techniques of Logic Programming for inference

and learning of probabilistic logic languages following the distribution semantics can compete

with the techniques for inference and learning of Markov Logic Networks. MLNs combine

probabilistic graphical models and first-order logic but are not logic programming-based.

The effectiveness of the algorithms developed for LPADs is tested on several machine

learning tasks: text classification, entity resolution, link prediction, information extraction,

recommendation systems.

Second, the thesis addresses the issues of (1) integrating probability in SHOIN(D) De-

scription Logic and (2) performing efficient inference in probabilistic ontologies expressed in

this language. SHOIN(D) is an expressive description logic which plays an important role in

the Semantic Web, being the theoretical counterparts of OWL DL, a sublanguage of the Web

Ontology Language for the Semantic Web.

Both issues draw inspiration from the SRL field in terms of semantics and inference tech-

niques. To our knowledge, there are no other approaches to probabilistic DLs based on the

distribution semantics.
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Chapter 3

Structure of the text

The thesis is divided into six parts: Introduction, preliminaries of Logic and Probability, Sta-

tistical Relational Learning, where our algorithms for Logic Programs with Annotated Dis-

junctions are described, preliminaries on Description Logics and Semantic Web, Probabilistic

Description Logics, where a new semantics and inference algorithm are proposed, Summary

and Future works.

Part I starts with an introductory chapter clarifying the nature, motivations and goals of this

thesis. Chapter 4 lists the publications related to the themes treated herein.

Part II recalls basic concepts required in the course of this thesis. In particular, Chapter 5

provides an introduction to logic and logic programming, which will be used throughout the

thesis as the representation language. Chapter 6 provides an introduction to probability theory

to understand the probabilistic component of SRL formalisms. Chapter 7 reviews Decision Di-

agrams and in particular the Binary ones (BDDs) that are used by LPADs inference techniques.

Chapter 8 describes the Expectation Maximization (EM) algorithm, which is the core of our

learning algorithms, since it is the basis of parameter optimization in LPAD’s clauses.

Part III covers statistical relational learning and the new contributions promoted by this

thesis. Chapter 9 illustrates the probabilistic logic language of LPADs and its semantic basis,

the so-called Distribution Semantics. Chapters 10 and 11 present one parameter estimation

algorithm (EMBLEM) and two structure learning algorithms (SLIPCASE and SLIPCOVER)

for LPADs, respectively; detailed descriptions of the algorithms are provided, together with

the descriptions of the real world datasets used for testing, the performance estimation mea-

sures and an extensive comparison among these algorithms and many state-of-the-art learning

systems. Chapters 10 compares EMBLEM’s performance with the following systems: Rela-
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tional Information Bottleneck (RIB), created for a sub-class of SRL languages that can be

converted to Bayesian networks, CEM, an implementation of EM based on the cplint infer-

ence library (Riguzzi, 2007b, 2009), a learning algorithm for Causal Probabilistic-Logic (CP-

Logic), LeProblog and LFI-Problog for the ProbLog language, Alchemy for Markov

Logic Networks. Chapter 11 compares SLIPCASE and SLIPCOVER with the following sys-

tems: Aleph, SEM-CP-Logic, which applies structural EM to CP-Logic, LSM for Learning

MLNs using Structural Motifs, ALEPH++ExactL1, which incorporates Aleph for structure

learning and an evolution of the basic algorithm in Alchemy for weight learning.

Part IV recalls basic concepts on ontologies and their languages (DLs). Chapter 12 begins

with a forecast on the future of the current Web. Chapter 13 summarizes the meaning of the

word ‘ontology’ in Computer Science, its building blocks, the languages for Semantic Web

ontologies and application fields. Chapter 14 covers knowledge representation in description

logics in terms of syntax, semantics and inference.

Part V is dedicated to probabilistic approaches to description logics and the new contri-

butions presented by this thesis. In particular, after an introduction regarding previous proba-

bilistic extensions in Chapter 15, Chapter 16 illustrates how, inspired by the work of (Halpern,

1990) about the different interpretations of the meaning of probability, a probabilistic frame-

work based on the distribution semantics for probabilistic logic languages can be built for the

SHOIN(D) DL. Chapter 17 presents a probabilistic reasoner (BUNDLE) built upon this frame-

work for computing the probability of queries. It also presents experimental evaluations of

inference performances in comparison with another state-of-the-art system for P− SHIQ(D)

DL on a real world probabilistic ontology.

Part VI summarizes the research work conducted in this dissertation and presents directions

for future work.

Implementation

The parameter learning algorithm EMBLEM and the structure learning algorithm SLIPCASE

are available in the cplint package in the source tree of Yap Prolog, which is open source;

user manuals can be found at http://sites.google.com/a/unife.it/ml/emblem and

http://sites.unife.it/ml/slipcase.
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The structure learning algorithm SLIPCOVER will be available in the source code reposi-

tory of the development version of Yap. More information on the system, including a user man-

ual and the datasets used, will be published at http://sites.unife.it/ml/slipcover.

As regards the SRL algorithms, the BDDs are manipulated by means of the CUDD library
1 and the experiments were conducted by means of the YAP Prolog system (COSTA et al.,

2012).

As regards the probabilistic DL reasoner, the BDDs are manipulated by means of the

CUDD library through JavaBDD2, which is used as an interface to it; the system was built

upon the Pellet reasoner (Sirin et al., 2007), which is written in Java. BUNDLE is available

for download from http://sites.unife.it/ml/bundle together with the datasets used

in the experiments.

1http://vlsi.colorado.edu/~fabio/
2http://javabdd.sourceforge.net/
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Chapter 4

Publications

Papers containing the work described in this thesis were presented in various venues:

• Journals

– Bellodi, E. and Riguzzi, F. (2012a). Expectation Maximization over binary deci-

sion diagrams for probabilistic logic programs. Intelligent Data Analysis, 16(6).

– Bellodi, E. and Riguzzi, F. (2012b). Experimentation of an expectation maximiza-

tion algorithm for probabilistic logic programs. Intelligenza Artificiale, 8(1):3-18.

– Riguzzi, F. and Bellodi, E. (submitted). Structure learning of probabilistic logic

programs by searching the clause space. Theory and Practice of Logic Program-

ming.

• Conferences

– Bellodi, E. and Riguzzi, F. (2011a). EM over binary decision diagrams for proba-

bilistic logic programs. In Proceedings of the 26th Italian Conference on Compu-

tational Logic (CILC2011), Pescara, Italy, 31 August 31-2 September, 2011.

– Bellodi, E. and Riguzzi, F. (2011b). Learning the structure of probabilistic logic

programs. In Inductive Logic Programming, 21th International Conference, ILP

2011, London, UK, 31 July-3 August, 2011.

– Bellodi, E., Riguzzi, F., and Lamma, E. (2010a). Probabilistic declarative process

mining. In Bi, Y. and Williams, M.-A. editors, Proceedings of the 4th International

Conference on Knowledge Science, Engineering & Management (KSEM 2010),
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Belfast, UK, September 1-3, 2010, volume 6291 of Lecture Notes in Computer

Science, pages 292-303, Heidelberg, Germany. Springer.
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Chapter 5

Logic

This chapter is dedicated to introducing the language of logic. In particular Section 5.1 presents

propositional logic, Section 5.2 first order logic, Section 5.3 logic programming and finally

Section 5.4 Inductive Logic Programming. For a detailed coverage of these aspects see (Nilsson

and Maluszynski, 1990), (Lobo et al., 1992).

5.1 Propositional Logic

In this section, we introduce propositional logic, a formal system whose original purpose,

dating back to Aristotle, was to model reasoning. In more recent times, this system has proved

useful as a design tool. Many systems for automated reasoning, including theorem provers,

program verifiers, and applications in the field of artificial intelligence, have been implemented

in logic-based programming languages. These languages generally use predicate logic, a more

powerful form of logic that extends the capabilities of propositional logic. We shall meet

predicate logic in the next Section.

Syntax

In propositional logic there are atomic assertions (or atoms, or propositional symbols) and

compound assertions built up from the atoms. The atomic facts stand for any statement that can

have one of the truth values, true or false. Compound assertions express logical relationships

between the atoms and are called propositional formulae.

The alphabet for propositional formulae consists of:

1. A countable set PS of propositional symbols or variables: P0, P1, P2,...;
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2. The logical connectives: ∧ (and), ∨ (or),→ or ⊃ (implication), ¬ (not), ≡ or↔ (equiv-

alence) and the constant ⊥ (false);

3. Auxiliary symbols: “(”(left parenthesis), “)”(right parenthesis).

The set PROP of propositional formulae (or “propositions”) is defined inductively as the

smallest set of strings over the alphabet, such that:

1. Every proposition symbol Pi and ⊥ are in PROP; these are the atomic operands;

2. Whenever A is in PROP, ¬ A is also in PROP;

3. Whenever A, B are in PROP, (A ∨ B), (A ∧ B), (A→ B) and (A≡ B) are also in PROP.

4. A string is in PROP only if it is formed by applying the rules (1),(2),(3).

The proposition (A ∧ B) is called conjunction and A,B conjuncts. The proposition (A ∨
B) is called disjunction and A,B disjuncts. The proposition (A→ B) is called implication, A

(to the left of the arrow) is called the antecedent and B (to the right of the arrow) is called the

consequent.

Example 1 The following strings are propositions.
P1 P2 (P1 ∨ P2)

((P1→ P2) ≡ (¬P1 ∨ P2)) (¬P1 ≡ (P1→ ⊥)) (P1 ∨ ¬P1)

On the other hand, strings such as (P1 ∨ P2)∧ are not propositions, because they cannot be
constructed from PS and ⊥ and the logical connectives.

In order to minimize the number of parentheses, a precedence is assigned to the logical

connectives and it is assumed that they are left associative. Starting from highest to lowest

precedence we have:

¬

∧

∨

→,≡
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Semantics

The semantics of propositional logic assigns a truth function to each proposition in PROP.

First, it is necessary to define the meaning of the logical connectives. The set of truth values is

the set BOOL = {T,F}. Each logical connective is interpreted as a function with range BOOL.

The logical connectives are interpreted as follows.

P Q ¬P P ∧Q P ∨Q P → Q P ≡ Q
T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

The logical constant ⊥ is interpreted as F.

The above table is what is called a truth table. A truth assignment or valuation is a function

assigning a truth value in BOOL to all the propositional symbols. Once the symbols have

received an interpretation, the truth value of a propositional formula can be computed, by

means of truth tables. A function that takes truth assignments as arguments and returns either

TRUE or FALSE is called Boolean function.

If a propositional formula A contains n propositional letters, one constructs a truth table

in which the truth value of A is computed for all valuations depending on n arguments. Since

there are 2n such valuations, the size of this truth table is 2n.

Example 2 The expression A = P ∧ (P ∨ Q), for the truth assignment P = T and Q = F,
evaluates to T. One can evaluate A for the other three truth assignments, and thus build the
entire Boolean function that A represents.

A proposition is satisfiable if there is a valuation (or truth assignment) v such that v(A) =

T. A proposition is unsatisfiable if it is not satisfied by any valuation. The proposition A in

example 2 is satisfied with the given assignment.

5.2 First Order Logic

Propositional logic is not powerful enough to represent all types of assertions that are used in

computer science and mathematics, or to express certain types of relationship between propo-

sitions.
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If one wants to say in general that, if a person knows a second person, then the second

person knows the first, propositional logic is inadequate; it gives no way of encoding this more

general belief. Predicate Logic solves this problem by providing a finer grain of representation.

In particular, it provides a way of talking about individual objects and their interrelationships.

It introduces two new features: predicates and quantifiers. In particular we shall introduce

First Order predicate logic.

Syntax

The syntax of First Order Logic is based on an alphabet.

Definition 1 A first order alphabet Σ consists of the following classes of symbols:

1. variables, denoted by alphanumeric strings starting with an uppercase character;

2. function symbols (or functors), denoted by alphanumeric strings starting with a lower-
case character;

3. predicate symbols, alphanumeric strings starting with a lowercase character;

4. propositional constants, true and false;

5. logical connectives (negation, disjunction, conjunction, implication and equivalence;

6. quantifiers, ∃ (there exists or existential quantifier) and ∀ (for all or universal quantifier);

7. punctuation symbols, ‘(’ and ‘)’ and ‘,’.

Associated with each predicate symbol and function symbol there is a natural number

called arity. If a function symbol has arity 0 it is called a constant. If a predicate symbol

has arity 0 it is called a propositional symbol.

A term is either a variable or a functor applied to a tuple of terms of length equal to the

arity of the functor.

Definition 2 A (well-formed) formula (wff) is defined as follows:

1. If p in an n-ary predicate symbol and t1, ...tn are terms, then p(t1, ...tn) is a formula
(called atomic formula or more simply atom);

2. true and false are formulas;
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3. If F and G are formulas, then so are (¬F ), (F ∧G), (F ∨G), (F → G), (F ← G) and
(F ↔ G);

4. If F is a formula and X is a variable, then so are (∃XF ) and (∀XF ).

Definition 3 A First Order language is defined as the set of all well-formed formulas con-
structible from a given alphabet.

A literal is either an atom a or its negation ¬a. In the first case it is called a positive literal,

in the latter case it is called a negative literal.

An occurrence of a variable is free if and only if it is not in the scope of a quantifier of

that variable. Otherwise, it is bound. For example, Y is free and X is bound in the following

formula: ∃Xp(X,Y ).

A formula is open if and only if it has free variables. Otherwise, it is closed. For example,

the formula ∀X∀Y path(X,Y ) is closed.

The following precedence hierarchy among the quantifiers and logical connectives is used

to avoid parentheses in a large formula:

¬,∀,∃

∨

∧

→,←,↔

A clause is a formula C of the form

∀Xh1 ∨ . . . ∨ hn ← b1, . . . , bm

where X is the set of variables appearing in C, h1, . . . , hn and b1, . . . , bm are atoms, whose

separation by means of commas represents a ; usually the quantifier is omitted. A clause can

be seen as a set of literals, e.g., C can be seen as

{h1, . . . , hn,¬b1, . . . ,¬bm}.

In this representation, the disjunction among the elements of the set is left implicit.

Which form of a clause is used in the following will be clear from the context. h1∨ . . .∨hn
is called the head of the clause and b1, . . . , bm is called the body. We will use head(C) to
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indicate either h1 ∨ . . . ∨ hn or {h1, . . . , hn}, and body(C) to indicate either b1, . . . , bm or

{b1, . . . , bm}, the exact meaning will be clear from the context.

When m = 0 and n = 1, C is called a fact. When n = 1, C is called a definite clause and

represents a clause with exactly one positive literal. When n = 0 - that is, the head is empty

- C is called a goal; each bi(i = 1, ...m) is called a subgoal of the goal clause. The empty

clause, denoted as �, is a clause with both head and body empty; it is interpreted as false. A

query is a formula of the form

∃(A1 ∧ ... ∧An)

where n ≥ 0 and A1, ...An are atoms with all variables existentially quantified. Observe that a

goal clause

← A1, ...An

is the negation of the query defined above. The logical meaning of a goal can be explained by

referring the equivalent universally quantified formula:

∀X1...∀Xn¬(A1 ∧ ... ∧An)

where X1, ..., Xn are all variables that occur in the goal. This is equivalent to:

¬∃X1...∃Xn(A1 ∧ ... ∧An)

This, in turn, can be seen as an existential question and the system attempts to deny it by

constructing a counter-example. That is, it attempts to find terms t1, ..., tn such that the formula

obtained from A1 ∧ ... ∧ An when replacing the variable Xi by ti (1 ≤ i ≤ n), is true in any

model of the program, i.e. to construct a logical consequence of the program which is an

instance of a conjunction of all subgoals in the goal.

A clause is range restricted if all the variables that appear in the head appear as well in

positive literals in the body.

A term, atom, literal, goal, query or clause is ground if it does not contain variables. A

substitution θ is an assignment of variables to terms: θ = {V1/t1, . . . , Vn/tn}. The application

of a substitution to a term, atom, literal, goal, query or clause C, indicated with Cθ, is the

replacement of the variables appearing in C and in θ with the terms specified in θ.

A theory P is a set of clauses. A definite theory is a finite set of definite clauses.

The Herbrand universe HU (P ) of a theory P is the set of all the ground terms that can be

built from functors and constants appearing in P . The Herbrand base HB(P ) is the set of all
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the ground atomic formulas. It is assumed that the theory contains at least one constant (since

otherwise, the domain would be empty). A Herbrand interpretation of P is a set of ground

atoms, i.e. a subset of HB(P ). A Herbrand model of a set of (closed) formulas is a Herbrand

interpretation which is a model of every formula in the set. In order to determine if a Herbrand

interpretation I is a model of a universally quantified formula ∀F it is necessary to check if all

ground instances of F are true in I . For the restricted language of definite theories, in order

to determine whether an atomic formula A is a logical consequence of a definite theory P it

suffices to check that every Herbrand model of P is also a Herbrand model of A. The least

Herbrand modelMP of a definite theory P is the set of all ground atomic logical consequences

of the theory. That is, MP = {A ∈ HB(P ) | P |= A}. In the following, we will omit the word

‘Herbrand’.

A grounding of a clause C is obtained by replacing the variables of C with terms from

HU (P ). The grounding g(P ) of a theory P is the program obtained by replacing each clause

with the set of all of its groundings.

Semantics

The semantics of a First Order theory provides the meaning of the theory based on some in-

terpretation. Interpretations provide specific meaning to the symbols of the language and are

used to provide meaning to a set of well-formed formulas. They also determine a domain of

discourse that specifies the range of the quantifiers. The result is that each term is assigned to

an object, and each formula is assigned to a truth value.

The domain of discourse D is a nonempty set of “objects” of some kind. Intuitively, a First

Order formula is a statement about these objects; for example, ∃Xp(X) states the existence of

an object X such that the predicate p is true. The domain of discourse is the set of considered

objects. For example, one can take it to be the set of integer numbers. The interpretation of

a function symbol is a function. For example, if the domain of discourse consists of integers,

a function symbol f of arity 2 can be interpreted as the function that gives the sum of its

arguments. In other words, the symbol f is associated with the function I(f) which, in this

interpretation, is addition.

An interpretation I is a model of a closed formula φ if φ evaluates to true with respect to I.

Let us now define the truth of a formula in an interpretation.

Let I be an interpretation and φ a formula, φ is true in I , written I |= φ if
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• a ∈ I , if φ is a ground atom a;

• a ̸∈ I , if φ is a ground negative literal ¬a;

• I |= a and I |= b, if φ is a conjunction a ∧ b;

• I |= a or I |= b, if φ is a disjunction a ∨ b;

• I |= ψθ if φ = ∀Xψ for all θ that assign a value to all the variables of X;

• I |= ψθ if φ = ∃Xψ for a θ that assigns a value to all the variables of X.

Let S be a set of closed formulas, then I is a model of S if I is a model of each formula of

S. This is denoted as I |= S. Let S be a set of closed formulas and F a closed formula. F is a

logical consequence of S if for each model M of S, M is also a model of F. This is denoted as

S |= F .

A clause C of the form

h1 ∨ . . . ∨ hn ← b1, . . . , bm

is a shorthand for the formula

∀X h1 ∨ . . . ∨ hn ← b1, . . . , bm

where X is a vector of all the variables appearing in C. Therefore, C is true in an interpretation

I iff, for all the substitutions θ grounding C, if I |= body(C)θ then I |= head(C)θ, i.e., if

(I |= body(C)θ)→ (head(C)θ ∩ I ̸= ∅). Otherwise, it is false. In particular, a definite clause

is true in an interpretation I iff, for all the substitutions θ grounding C, (I |= body(C)θ) →
h ∈ I .

A theory P is true in an interpretation I iff all of its clauses are true in I and we write

I |= P.

If P is true in an interpretation I we say that I is a model of P . It is sufficient for a single

clause of a theory P to be false in an interpretation I for P to be false in I .

We usually are interested in deciding whether a query Q is a logical consequence of a

theory P , expressed as

P |= Q
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This means thatQ must be true in every modelM(P ) of P that is assigned to P as its meaning

by one of the semantics that have been proposed for normal logic programs (e.g. (Clark, 1978;

Gelfond et al., 1988; Van Gelder et al., 1991)).

For theories, we are interested in deciding whether a given theory or a given clause is true

in an interpretation I . This will be explained in the next paragraph.

5.3 Logic Programming

The idea of logic programming is to use a computer for drawing conclusions from declarative

descriptions. Thus, the idea has its roots in research on automatic theorem proving. The first

programs based on logic were developed in 1972 at the University of Marseilles where the

logic programming language Prolog was developed. Kowalski (Kowalski, 1974) published the

first paper that formally described logic as a programming language in 1974. Van Emden and

Kowalski laid down the theoretical foundation for logic programming.

Disjunctive logic programming is an extension of logic programming and is useful in rep-

resenting and reasoning with indefinite information.

A disjunctive logic program consists of a finite set of implicitly quantified universal clauses of

the form

a1, . . . , an ← b1, . . . , bm n > 0 and m ≥ 0 (5.1)

where the ai and the bj are atoms. The formula is read as “a1 or a2 or ... or an if b1 and b2 and

... and bm.” If the body of the formula is empty and the head is not, it is referred to as a fact.

If both are not empty the formula is referred to as a procedure. A procedure of a fact is also

referred to as a logic program clause. A finite set of such logic program clauses constitutes

a disjunctive logic program. If clauses of the form 5.1 contain literals in the body (the bi),

they are referred to as normal (when the head is an atom) or general disjunctive logic program

clauses.

A definite logic program is a special case of disjunctive logic program, where the head of

a logic program clause consists of a single atom. This is stated by the following definitions.

Definition 4 A definite logic program clause is a program clause of the form:

a← b1, . . . , bm(m ≥ 0)

where a is an atom and b1, . . . , bm are literals. Looking at these clauses in conjunctive normal
form one can see that each clause has only one positive literal.
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Definition 5 A definite logic program (or Horn program) is a finite set of definite logic program
clauses.

Such a delineation provides a declarative meaning for a clause in that the consequent is true

when the antecedent is true. It also translates into a procedural meaning where the consequent

can be viewed as a problem which is to be solved by reducing it to a set of sub-problems given

by the antecedent. This is tackled in the next section.

Definite Logic Programming

In 1976 paper, van Emden and Kowalski (van Emden and Kowalski, 1976) defined different

semantics for a definite logic program. These are referred to as model-theoretic, proof theoretic

(or procedural) and fixpoint (or denotational) semantics. Since we are dealing with logic, a

natural semantics is to state that the meaning of a definite logic program is given by a Herbrand

model of the theory. Hence, the meaning of the logic program is the set of atoms that are in the

model. However, this definition is too broad as there may be atoms in the Herbrand model that

one would not want to conclude to be true. For example, in the logic program given in Example

3, M2 includes atoms edge(c, c), path(b, a), path(a, a). It is clear that the logic program does

not state that any of these atoms are true.

Example 3 Consider the following definite logic program P :

path(X,Y )← edge(X,Y ).

path(X,Y )← edge(X,Z), path(Z, Y ).

edge(a, b).

edge(b, c).

M1 = {edge(a, b), edge(b, c), path(a, b), path(b, c), path(a, c)}
M2 = {edge(a, b), edge(b, c), edge(c, c), path(a, b), path(b, c), path(a, c), path(b, a),
path(a, a)}

are two Herbrand models of P.

The authors showed that for definite logic programs, the intersection of all Herbrand mod-

els of a logic program is a Herbrand model of the logic program. This property is called the

Herbrand model intersection property: the intersection is the least Herbrand model as it is con-

tained within all models. The least model captures all the ground atomic logical consequences
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of the logic program and represents the least amount of information that can be specified as

true.

Example 4 Consider the definite logic program P given in Example 3. The least Herbrand
model of P is given by MP = {edge(a, b), edge(b, c), path(a, b), path(b, c), path(a, c)}.
These are the only ground atoms which are logical consequences of P .

A second semantics that can be associated with logic programs is a procedural semantics.

Gödel showed that one obtains the same results with proof theory as one does from model

theory. Van Emden and Kowalski showed that if one uses a proof procedure called linear res-

olution with selection function for definite logic programs (SLD-resolution), the ground atoms

that are derivable using SLD from the logic program, forming the SLD-success set of the logic

program, are exactly the same atoms in the least Herbrand model MP . SLD-resolution is a

reduction type of processing and derives a sequence of queries, starting from a query.

A third semantics is obtained by defining a mapping, T , from Herbrand interpretations to

Herbrand interpretations. By a fixpoint of a mapping T , we mean an element I of the domain

of T that satisfies the formula T (I) = I . The least fixpoint of T exists if the domain over

which T is defined is a complete lattice and the mapping is continuous, in fact it is computed

by applying T on the lattice. Herein we are not interested in this kind of semantics.

The major result is that the model theoretic, the procedural and fixpoint semantics, all cap-

ture the same meaning to a logic program: the set of ground atoms that are logical consequences

of the logic program.

SLD resolution principle

Reasoning can be seen as the process of manipulating formulas, which from a given set of

formulas, called the premises, produces a new formula called the conclusion. One of the objec-

tives is to formalize reasoning principles as formal re-write rules that can be used to generate

new formulas from given ones. These rules are called inference rules. It is required that the

inference rules correspond to correct ways of reasoning - whenever the premises are true in

any world under consideration, any conclusion obtained by the application of an inference rule

should also be true in this world. The transition from experimental theorem proving to applied

logic programming requires improved efficiency of the system. This is achieved by introducing

restrictions on the language of formulas, restrictions that make it possible to use the powerful
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inference rule called SLD-resolution principle.

Logic programs consist of logical formulas and computation is the process of deduction or

proof construction. One of the main ingredients in this inference mechanism is the process of

making two atomic formulas syntactically equivalent. This process is called unification.

Definition 6 (Unifier) Let s and t be terms. A substitution θ such that sθ and tθ are identical
(denoted sθ = tθ) is called a unifier of s and t.

For instance, the substitution {X/a, Y/a} is a unifier of terms f(X, g(Y )), f(a, g(X)).

Definition 7 (Generality of substitutions) A substitution θ is said to be more general than a
substitution σ (denoted σ ≼ θ) iff there exists a substitution ω such that σ = θω.

Definition 8 (Most general unifier) A unifier θ is said to be a most general unifier (mgu) of
two terms iff θ is more general than any other unifier of the terms.

Definition 9 (Renaming) A substitution {X1/Y1, ..., Xn/Yn} is called a renaming substitution
iff Y1, ..., Yn are new variables.

Such a substitution always preserves the structure of a term.

The reasoning method at the base of SLD-resolution is summarized as the following infer-

ence rule (using logic programming notation):

← a1, ...ai−1, ai, ai+1, ..., am b0 ← b1, ..., bn
← (a1, ...ai−1, b1, ..., bn, ai+1, ..., am)θ

where

1. a1, ..., am are atomic formulas;

2. b0 ← b1, ..., bn is a (renamed) definite clause in P (n ≥ 0);

3. mgu(ai, b0) = θ.

The rule has two premises - a goal clause and a definite clause. The goal clause may include

several atomic formulas which unify with the head of some clause in the program. In this case it

may be desirable to introduce some deterministic choice of the selected atom ai for unification.
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In what follows it is assumed that this is given by some function which for a given goal selects

the subgoal for unification. This function is called selection function or computation rule. For

example, Prolog’s computation rule always selects the leftmost subgoal.

This is a version of the inference rule called resolution principle, which was introduced

by J. A. Robinson in 1965. The resolution principle applies to clauses. Since definite clauses

are restricted clauses the corresponding restricted form of resolution presented is called SLD-

resolution (Linear resolution for Definite clauses with Selection function).

In the following the use of the SLD-resolution principle is discussed for a given definite

program P. The starting point is a definite goal clause G0 of the form:

← a1, ..., am(m ≥ 0)

From this goal a subgoal ai is selected by the computation rule. A new goal clause G1

is constructed by selecting (if possible) some renamed program clause b0 ← b1, ..., bn whose

head unifies with ai (resulting in an mgu θ). If so, G1 will be of the form:

(a1, ...ai−1, b1, ..., bn, ai+1, ..., am)θ1

(the variables of the program clause are being renamed so that they are different from those of

G0). Now it is possible to apply the resolution principle to G1 thus obtaining G2, etc. This

process may or may not terminate. There are two cases when it is not possible to obtain Gi+1

from Gi:

• when the selected subgoal cannot be resolved (i.e. is not unifiable) with the head of any

program clause;

• when Gi = � (i.e. the empty goal).

A goal Gi+1 is said to be derived (directly) from Gi and Ci via the computation rule (or

alternatively, Gi and Ci resolve into Gi+1).

Definition 10 (SLD-derivation) Let G0 be a definite goal, P a definite program and R a com-
putation rule. An SLD-derivation of G0 (using P and R) is a finite or infinite sequence of
goals:

G0 ❀
C0 G1 · · ·Gn−1 ❀

Cn−1 Gn...

where each Gi+1 is derived directly from Gi and a renamed program clause Ci via R.
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A finite SLD-derivation where Gn+1 = � is called an SLD-refutation of G0.

SLD-derivations that end in the empty goal (and the bindings of variables in the initial goal of

such derivations) are of special importance since they correspond to refutations of (and provide

answers to) the initial goal. If the initial goal is seen as a query, the computed substitutions θ

of the refutation restricted to its variables is an answer to this query.

Not all SLD-derivations lead to refutations. If the selected subgoal cannot be unified with

any clause, it is not possible to extend the derivation any further and the derivation is called

failed.

By a complete derivation we mean a refutation, a failed derivation or an infinite derivation.

A given initial goal clause G0 may have many complete derivations via a given computation

rule R. This happens if the selected subgoal of some goal can be resolved with more than one

program clause. All such derivations may be represented by a possibly infinite tree called the

SLD-tree of G0 (using P and R).

Example 5 Consider the following definite program:

1 : grandfather(X,Z)← father(X,Y ), parent(Y, Z).

2 : parent(X,Y )← father(X,Y ).

3 : parent(X,Y )← mother(X,Y ).

4 : father(a, b).

5 : mother(b, c).

The SLD-tree of the goal← grandfather(a,X) is depicted in Figure 5.1.

The SLD-trees of a goal clause G0 are often distinct for different computation rules. It

may even happen that the SLD-tree for G0 under one computation rule is finite whereas the

SLD-tree of the same goal under another computation rule is infinite. A refutation corresponds

to a complete path in the SLD-tree that end in �. Thus the problem reduces to a systematic

search of the SLD-tree. Existing Prolog systems often exploit some ordering on the program

clauses, e.g. the textual ordering in the source program (Prolog). This imposes the ordering on

the outgoing edges of the SLD-tree. The tree is then traversed in a depth-first manner follow-

ing this ordering. Whenever a leaf node of the SLD-tree is reached the traversal continues by

backtracking to the last preceding node of the path with unexplored branches. If it is the empty

goal the answer substitution of the completed refutation is reported.
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Figure 5.1: SLD-tree of← grandfather(a,X) (using Prolog’s computation rule).

The soundness of SLD-resolution is an essential property which guarantees that the con-

clusions produced by the system are correct. Correctness in this context means that they are

logical consequences of the program. That is, that they are true in every model of the program.

Moreover the refutation completeness of resolution can be demonstrated, that is, if a goal G

can be solved by a program P, then there is a refutation of P ∪ {G} by resolution.

Prolog is incomplete, since even if a formula is a logical consequence of the program, the

interpreter may go into an infinite loop on infinite SLD-trees, because of depth-first traversal

and not because of resolution. Consider for example the definite program:

sibling(X,Y ) : −sibling(Y,X).
sibling(b, a).

When trying to answer sibling(a,X) the subgoal is unified with the rule yielding a new goal,

identical to the initial one, which is again resolved with the rule yielding the same initial goal.

This process will obviously go on forever. The misbehavior can, to some extent, be avoided by

moving the rule textually after the fact. By doing so it is possible to find all refutations before

going into an infinite loop.
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5.4 Inductive Logic Programming

Inductive Logic Programming (ILP) has been defined by (Muggleton and De Raedt, 1994) as a

research field at the intersection of Machine Learning and Logic Programming. It is concerned

with the development of learning algorithms that adopt logic programs for representing the

input data and learn a general theory from specific examples (induction). Logic proved to be

a powerful tool for representing the complexity that is typical of the real world. In particular,

logic can represent in a compact way domains in which the entities of interest are composed of

subparts connected by a network of relationships. Logic has some important advantages over

other approaches used in machine learning:

• Logic in general, and First Order Logic in particular, is a very well developed mathemat-

ical field, providing ILP with a large stock of concept, techniques and results.

• Logic provides a uniform and very expressive means of representation: the background

knowledge, the examples and the induced theory can all be represented as formulas in a

clausal language. Theory and background knowledge just derive from different sources:

the first comes from inductive learning, the second in provided by the user of the system.

See (Nienhuys-Cheng and de Wolf, 1997) for an introduction to ILP.

The problem that is faced by ILP can be expressed as follows:

Given:

• a space of possible theories H;

• a set E+ of positive examples;

• a set E− of negative examples;

• a background theory B.

Find a theory H ∈ H such that

• all the positive examples are covered by H (completeness);

• no negative example is covered by H (consistency).

If a theory does not cover an example we say that it rules the example out so the last condition

can be expressed by saying the “all the negative examples are ruled out by H”.

38



Learning settings The general form of the problem can be instantiated in different ways by

choosing appropriate forms for the theories in input and output, for the examples and for the

covering relation (Raedt, 1997).

1. In the learning from entailment setting, the theories are normal logic programs, the ex-

amples are (most often) ground facts and the coverage relation is entailment, i.e., a theory

H covers an example e iff

H ∪B |= e.

Example 6 Let us consider the domain of animals and assume that we have a blackbird
that flies. This bird could be represented using the following clause e:

flies← black, bird, hasFeathers, hasWings, normal, laysEggs

Let H be the theory:

flies← bird, normal

flies← insect, hasWings, normal

Because H |= e, the hypothesis H covers the example e.

2. In the learning from interpretations setting, the theories are composed of clauses, the

examples are Herbrand interpretations and the coverage relation is truth in an interpreta-

tion, i.e., a theory H covers an example interpretation I iff

I |= H.

Similarly, we say that a clause C covers an example interpretation I iff I |= C.

In this setting examples are a kind of partial interpretations I (set of facts) and are com-

pleted by taking the minimal Herbrand model M(B ∪ I) of background theory B plus

I . The minimal Herbrand model of a definite clause theory contains the set of all ground

facts that are logically entailed by that theory. The formal and specific definition for

learning from interpretations is the following.

Given:

• a space of possible theories H;

• a set E+ of positive interpretations;
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• a set E− of negative interpretations;

• a background theory (normal logic program) B,

Find a clausal theory H ∈ H such that;

• for all P ∈ E+, H is true in the interpretation M(B ∪ P ) (completeness);

• for all N ∈ E−, H is false in the interpretation M(B ∪N) (consistency).

The background knowledge B is used to encode each interpretation parsimoniously, by

storing separately the rules that are not specific to a single interpretation but are true for

every interpretation.

The truth of a range restricted clause C on a finite interpretation I can be tested by

asking the goal ?-body(C),¬head(C) on a database containing the atoms of I as facts,

using a theorem prover (such as Prolog). By ¬head(C) we mean ¬h1, . . . ,¬hm. If

the query finitely fails, C is true in I , otherwise C is false in I . When we are not

given an interpretation I completely but only a partial one, if B is composed only of

range restricted clauses one can test the truth of a clause C on M(B ∪ I) by running

the query ?-body(C),¬head(C) against a Prolog database containing the atoms of I as

facts together with the rules of B. If the query fails, C is true in M(B ∪ I), otherwise C

is false in M(B ∪ I).

Example 7 The previous example can be represented using the interpretation I:

{flies, black, bird, hasFeathers, hasWings, normal, laysEggs}

This interpretation is a model for the theory H shown in the previous example.

There is a subtle difference in meaning between the two representations (Raedt, 2008). By

representing the bird using an interpretation, it is assumed that all propositions not in the inter-

pretation are false. Thus, in the example, the interpretation implies that the proposition insect

is known to be false. This assumption is not made using the clausal representation of the bird.

A further difference is that in the clausal representation, there is a distinguished predicate, the

predicate flies, that is entailed by the set of conditions. In contrast, using interpretations, all

predicates are treated uniformly. The former representation can be more natural when learn-

ing a specific concept as a predicate definition, such as the concept of flying things: positive
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examples describe the desired input-output behavior of the unknown target program, and neg-

ative ones specify a wrong output for a given input; the latter representation is more natural to

describe a set of characteristics of the examples.

Learning from entailment setting is more popular than the learning from interpretations, and

represents the setting adopted in Part III for the development of learning algorithms.

Structuring the Search Space

Within this view, the goal is to discover those hypotheses in the search space that satisfy

desiderable properties and that provide information about the examples. Finding a satisfac-

tory theory means that we have to search among the permitted clauses: learning is searching

for a correct theory.

The two basics steps in the search for a correct theory are specialization and generaliza-

tion. If the current theory together with the background knowledge does not imply all positive

examples, one needs to weaken the theory, finding a more general theory such that all positive

examples are implied. This is called generalization. On the other hand, if the current the-

ory together with the background knowledge contradicts the negative examples, one needs to

strengthen it, finding a more specific theory such that is consistent with respect to the negative

examples. This is specialization. In general, finding a correct theory amounts to repeatedly

adjusting the theory to the examples by means of steps of both kinds. If we start with an initial

non-empty theory to be corrected, the learning task is also called theory revision.

One natural way to structure the search space is to employ the generality relation. Let the

set of examples covered by hypothesis h be denoted as c(h). The generality relation is defined

as follows:

Definition 11 Let h1, h2 ∈ H. Hypothesis h1 is more general than hypothesis h2, notation
h1 ≼ h2, if and only if all examples covered by h2 are also covered by h1, that is, c(h2) ⊆
c(h1).

We also say that h2 is a specialization of h1, h1 is a generalization of h2. Furthermore, when

h1 ≼ h2 but h1 covers examples not covered by h2, we say that h1 is a proper generalization

of h2, and we write h1 ≺ h2. The hypotheses can be single clauses or sets of clauses (that is,

clausal theories).

When learning from entailment, the following property holds:
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Definition 12 A hypothesis D is more general than a hypothesis C iff D logically entails C,
that is, D |= C.

Indeed, D is more general than C iff c(C) ⊆ c(D), if and only if for all examples e: (C |=
e)→ (D |= e), and this happens iff D |= C.

However, using logical implication as a generality relation is impractical because of its

high computational cost. Therefore, the syntactic relation of θ-subsumption is used in place of

implication.

Definition 13 D θ-subsumes C (written D ≥ C) if there exist a substitution θ such that Dθ ⊆
C. If D ≥ C then D |= C and thus D is more general than C.

The opposite, however, is not true, so θ-subsumption is only an approximation of the generality

relation.

Example 8 The clause

father(X, john)← male(X),male(john), parent(X, john)

is θ-subsumed (with substitution {Y/X,Z/john}) by

father(Y, Z)← male(Y ), parent(Y,Z)

The clause

p(X,Y,X)← q(Y )

θ-subsumes (with substitution {X/U, Y/U})

p(U,U, U)← q(U), r(a)

Refinements Operators Refinements operators generate a set of specializations (or general-

izations) of a given hypothesis for traversing the search space.

Definition 14 A generalization operator ρg : H→ 2H is a function such that

∀h ∈ H : ρg(h) ⊆ {k ∈ H | k ≽ h}

This operator maps a hypothesis onto a set of its generalizations.

From the definition of θ-subsumption, it follows that a clause can be generalized by apply-

ing one of the following operations:
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• deleting antecedents from the body, such that the remaining literals are linked;

• adding a new atom to the head;

• turning constants into variables.

Example 9 Generalizations of

student(S) : −advisedBy(S, ford), professor(ford)

include

student(S) ∨ assistant(S) : −advisedBy(S, ford), professor(ford)

by adding a new atom to the head,

student(S) : −advisedBy(S, P ), professor(P )

by turning constants into variables,

student(S) : −advisedBy(S, ford)

by deleting a literal.

Definition 15 A specialization operator ρs : H→ 2H is a function such that

∀h ∈ H : ρs(h) ⊆ {k ∈ H | h ≽ k}

This operator maps a hypothesis onto a set of its specializations.

A clause can be specialized by applying one of the following operations:

• adding a literal to the body of a clause;

• removing an atom from the head;

• grounding variables.

Example 10 Specializations of

student(S) : −advisedBy(S, P )

include
student(S) : −advisedBy(S, ford)

by grounding variables,

student(S) : −advisedBy(S, P ), professor(P )

by adding a literal.
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While top-down approaches successively specialize a very general starting hypothesis,

bottom-up approaches successively generalize a very specific hypothesis.

Thus, ILP approaches iteratively modify the current hypothesis syntactically and test it repeat-

edly against the examples and background theory. The syntactic modifications are done using

the refinement operators.

Biases Practical ILP systems fight the inherent complexity of the problem by imposing con-

straints, mostly of syntactic in nature. Such constraints include language and search biases,

and are sometimes summarized as declarative biases. Bias is typically defined as anything

other than the training instances that influences the results of the learner.

The language bias imposes syntactic or semantic restrictions on the hypotheses to be in-

duced. The syntactic ones define the well-formed elements in the language of hypotheses by

employing some type of grammar. A great variety of formalisms to specify such grammars has

been developed in the inductive logic programming literature, but there exist a few principles

that underlie all syntactic biases employed. These include the use of predicate, type and mode

declarations.

The predicate declarations specify the predicates to be used, the type declarations the corre-

sponding types of the arguments of the predicates, the modes declarations the restrictions on the

order of literals in clauses. The first two are written as type(pred(type1, ..., typen)), where

pred denotes the name of the predicate and typeis denote the names of the types. Mode

declarations are used to describe the input-output behaviour of predicate definitions through

the form mode(pred(m1, ..., mn)), where the mi are different modes. Three modes are distin-

guished: input (denoted by ‘+’), output (denoted by ‘-’) and ground (denoted by ‘#’). The input

mode specifies that at the time of calling the predicate the corresponding argument must be in-

stantiated, the output mode specifies that the argument will be instantiated after a successful

call to the predicate, and the constant mode specifies that the argument must be ground (and

possibly belong to a specified type). A clause h← b1, . . . , bn is mode-conform if and only if

1. any input variable in a literal bi appears as an output variable in a literal bj (with j < i)

or as an input variable in the literal h,

2. any output variable in h appears as an output variable in some bi,

3. any arguments of predicates required to be ground are ground.
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The following example show mode-conform clauses.

Example 11 Given the declarations:

mode(molecule(-)). mode(atom(+,-,#,#)). mode(bond(+,+,-,#)).

type(molecule(m)). type(atom(m,a,at,r)). type(bond(m,a,a,bt)).

Then the clauses

molecule(M) :- atom(M,A,c,3).

molecule(M) :- atom(M,A,c,3), bond(M,A,B,double).

are mode-conform.

There are also syntactic biases in which the language of hypotheses is defined as a function

of a set of parameters: for instance, one can restrict the number of literals, variables or simply

the size of clauses.

Search bias has to do with the way a system searches its space of permitted clauses. One

extreme is exhaustive search, which searches the space completely, but it would take far too

much time, so the search has to be guided by certain heuristics. These indicate which parts of

the space are searched, and which are ignored: this may cause the system to overlook some

good theories, so here there is a trade-off between efficiency and the quality of the final theory.

If a system has found that a correct theory is not available using its present language and search

bias, it can try again using a more general language and/or a more thorough search procedure.

This is called a bias shift.

Progol Aleph

Aleph1 is an acronym for A Learning Engine for Proposing Hypotheses and is an Inductive

Logic Programming (ILP) system. Earlier incarnations (under the name P-Progol) originated

in 1993 at Oxford University. The main purpose was to understand ideas of inverse entailment

which eventually appeared in Stephen Muggleton’s 1995 paper: Inverse Entailment and Pro-

gol (Muggleton, 1995). Since then, the implementation has evolved to emulate some of the

functionality of several other ILP systems. Some of these of relevance to Aleph are: CProgol,

FOIL, FORS, Indlog, MIDOS, SRT, Tilde, and WARMR.

Aleph follows a very simple procedure that can be described in 4 steps:

1http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
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1. Select example. Select an example to be generalized. If none exist, stop, otherwise

proceed to the next step.

2. Build most-specific-clause. Construct the most specific clause that entails the example

selected, and is within language restrictions provided. This is usually a definite clause

with many literals, and is called the “bottom clause”. This step is sometimes called the

saturation step.

3. Search. Find a clause more general than the bottom clause. This is done by searching

for some subset of the literals in the bottom clause that has the best score. Two points

should be noted. First, confining the search to subsets of the bottom clause does not

produce all the clauses more general than it, but is good enough for this thumbnail sketch.

Second, the exact nature of the score of a clause is not really important here. This step is

sometimes called the reduction step.

4. Remove redundant. The clause with the best score is added to the current theory, and all

examples made redundant are removed. This step is sometimes called the cover removal

step. Note here that the best clause may make clauses other than the examples redundant.

Again, this is ignored here. Return to Step 1.

A more advanced use of Aleph allows alteration to each of these steps.

Background knowledge is in the form of Prolog clauses that encode information relevant

to the domain. Also language and search restrictions have to be specified for Aleph. The most

basic amongst these refer to modes, types and determinations.

Mode declarations These declare the mode of call for predicates that can appear in any

clause hypothesized by Aleph. They take the form:

mode(RecallNumber,PredicateMode).

where RecallNumber bounds the non-determinacy of a form of predicate call, and

PredicateMode specifies a legal form for calling a predicate.

RecallNumber can be either (a) a number specifying the number of successful calls to the

predicate; or (b) *, specifying that the predicate has bounded non-determinacy. It is usually

easier to specify RecallNumber as *. PredicateMode is a template of the form:

p(ModeType, ModeType,...)

46



Each ModeType is either (a) simple or (b) structured. A simple ModeType is one of: (a) +T

specifying that when a literal with predicate symbol p appears in a hypothesized clause, the

corresponding argument should be an input variable of type T ; (b) −T specifying that the

argument is an output variable of type T ; or (c) #T specifying that it should be a constant

of type T . A structured ModeType is of the form f(..) where f is a function symbol, each

argument of which is either a simple or structured ModeType.

With these directives Aleph ensures that for any hypothesized clause of the form

H : −B1, B2, ..., Bm:

1. Input variables. Any input variable of type T in a body literal Bi appears as an output

variable of type T in a body literal that appears beforeBi, or appears as an input variable

of type T in H .

2. Output variables. Any output variable of type T in H appears as an output variable of

type T in Bi.

3. Constants. Any arguments denoted by #T in the modes have only ground terms of type

T .

Type specifications Types have to be specified for every argument of all predicates to be used

in constructing a hypothesis. This specification is done within a mode(..., ...) statement (see

previous paragraph). For Aleph types are just names, and no type-checking is done. Variables

of different types are treated distinctly, even if one is a sub-type of the other.

Determinations Determination statements declare the predicates that can be used to con-

struct a hypothesis. They take the form:

determination(TargetName/Arity,BackgroundName/Arity).

The first argument is the name and arity of the target predicate, that is, the predicate that

will appear in the head of hypothesized clauses. The second argument is the name and arity

of a predicate that can appear in the body of such clauses. Typically there will be many de-

termination declarations for a target predicate, corresponding to the predicates thought to be

relevant in constructing hypotheses. If no determinations are present Aleph does not construct

any clauses. Determinations are only allowed for 1 target predicate on any given run of Aleph:

if multiple target determinations occur, the first one is chosen.
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Positive and negative examples of a concept to be learned with Aleph are provided as

input. Aleph is capable of learning from positive examples only. This is done using a Bayesian

evaluation function.

Earlier incarnations of Aleph (called P-Progol) have been applied to a number of real-world

problems. Prominent amongst these concern the construction of structure-activity relations

for biological activity. In particular, the results for mutagenic and carcinogenic activity have

received some attention. Also prominent has been the use for identifying pharmacophores –

the three-dimensional arrangement of functional groups on small molecules that enables them

to bind to drug targets. Applications to problems in natural language processing have been also

done.
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Chapter 6

Probability Theory

Causality connotes lawlike necessity, whereas probabilities connote exceptionality, doubt, and

lack of regularity. There are two compelling reasons for probabilistic analysis of causality:

• The first reason rests on the observation that causal expressions are often used in situa-

tions that are plagued with uncertainty: for example, if we say “you will fail the course

because of your laziness”, we know quite well that the antecedents merely tend to make

the consequences more likely, not absolutely certain. Any theory of causality that aims at

accommodating such expressions must use a language that distinguishes various shades

of likelihood - namely, the language of probabilities, which accounts for the relative

strengths of those causal connections;

• Even the most assertive causal expressions in natural language are subject to exceptions,

for instance “My neighbor’s roof gets wet whenever mine does, except when it is cov-

ered with plastic, or when my roof is hosed, etc.”. Probability theory is able to tolerate

unexplicated exceptions.

This chapter discusses the basic concepts and terminology of probability theory. For a

detailed view see (Pearl, 2000), (Neapolitan, 2003) and (Koller and Friedman, 2009).

6.1 Event Spaces

Before discussing the representation of probability, we need to define what the events are to

which a probability is assigned. Probability theory has to do with experiments that have a set

of distinct outcomes: the different outcomes of throwing a die, the outcome of a horse race,
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etc. The collection of all outcomes is called the sample space, denoted as Ω; for example, if we

consider dice, Ω = {1, 2, 3, 4, 5, 6}. In addition, there is a set of measurable events S to which

assigning probabilities. Each event α ∈ S is a subset of Ω; in the die example, the event {6}
represents the outcome 6. The event space satisfies three basic properties:

• It contains the empty event ∅ and the trivial event Ω;

• If α, β ∈ S, then so is α ∪ β (union);

• If α ∈ S, then so is Ω− α (complementation).

6.2 Probability Distributions

Definition 16 A probability distribution P over (Ω, S) is a mapping from events in S to real
values that satisfies the following conditions:

• P (α) ≥ 0 for all α in S

• P (Ω) = 1

• If α, β ∈ S and α ∩ β = ∅, then P (α ∪ β) = P (α) + P (β).

Probabilities are not negative. The maximal possible probability is 1. The probability that

one of two mutually disjoint events will occur is the sum of their probabilities. These conditions

imply that P (∅) = 0 and P (α ∪ β) = P (α) + P (β)− P (α ∩ β).

6.3 Interpretations of Probability

There are two common interpretations for probabilities.

The frequentist interpretation views probabilities as frequencies of events: the probability

of an event is the fraction of times the event occurs if we repeat the experiment indefinitely. If

we consider the outcome of a particular die roll, the statement P (α) = 0.3 for α = {1, 3, 5}
states that if we repeatedly roll this die and record the outcome, the limit of the sequence

of fractions of times the outcomes in α will occur is 0.3. This interpretation fails when we

consider events such as “It will rain tomorrow”, since we expect it to occur exactly once.

An alternative interpretation views probabilities as subjective degrees of belief : the state-

ment P (α) = 0.3 represents one’s own degree of belief that the event α will come about,

although the event occurs only once.

50



Both interpretations lead to the same mathematical rules, so the technical definitions hold

for both.

6.4 Conditional Probability

Example 12 Consider a distribution over a population of students taking a certain course. The
space of outcomes is the set of all students. We define the event α to denote “all students with
grade A” and event β to denote “all students with high intelligence”. Using the distribution,
one can consider the probability of these events and the probability of α∩β (the set of intelligent
students who got grade A).

If new evidence α is given - a student has received grade A - we want to update our belief
about her intelligence (β). The answer is given by conditional probability:

P (β | α) = P (α ∩ β)
P (α)

The probability that β is true given that we know α is the relative proportion of outcomes

satisfying β among these that satisfy α.

From the definition of the conditional distribution, it results that

P (α ∩ β) = P (α)P (β | α)

known as the chain rule of conditional probabilities. More generally, if α1, ..., αk are events,

one can write

P (α1 ∩ ... ∩ αk) = P (α1)P (α2 | α1) · · ·P (αk | α1 ∩ ... ∩ αk−1)

The probability of a combination of several events is expressed in terms of the probability of

the first, the probability of the second given the first, etc. This expression may be expanded

using any order of events.

Another immediate consequence of the definition of conditional probability is Bayes’ rule

P (α | β) = P (β | α)P (α)
P (β)

This operation takes one distribution and returns another over the same probability space.

A more general conditional version of this rule, where all our probabilities are conditioned on

some background event γ, also holds:

P (α | β ∩ γ) = P (β | α ∩ γ)P (α | γ)
P (β | γ)

.
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Example 13 Consider the student population, and let Smart denote smart students and
GradeA denote students who got grade A. We believe (perhaps based on estimates from past
statistics) that P (GradeA | Smart) = 0.6, and now we learn that a particular student re-
ceived grade A. Estimating the probability that the student is smart, according to Bayes’ rule,
depends on our prior probability for students being smart (before we learn anything about
them) and the prior probability of students receiving high grades. For example, suppose that
P (Smart) = 0.3 and P (GradeA) = 0.2, then we have that P (Smart | GradeA) =

0.6 ⋆ 0.3/0.2 = 0.9. That is, an A grade strongly suggests that the student is smart. On the
other hand, if the test was easier and high grades were more common, say P (GradeA) = 0.4,
then we would get that P (Smart | GradeA) = 0.6 ⋆ 0.3/0.2 = 0.45.

6.5 Random Variables and Distributions

Random Variables

In many cases, it would be more natural to consider attributes of the outcome of an event. In the

example of a distribution over a population of students in a course, one can use an event such

as ‘GradeA’ to denote the subset of students who received the grade A; however it becomes

rather cumbersome if we also want to consider students with grade B, grade C, and so on.

The formal way for discussing attributes and their values in different outcomes are random

variables, so called because their value is subject to variations due to chance. For example, if a

random variable Grade reports the final grade of a student, than the statement P (Grade = A)

is another notation for P (GradeA).

A random variable is a function that associates with each outcome in Ω a value. For exam-

ple, Grade is defined by a function fGrade that maps each person in Ω to his/her grade (say,

one of A, B, C). The event Grade = A is a shorthand for the event {ω ∈ Ω : fGrade(ω) = A}.
Random variables can be classified as either discrete (i.e. may assume any of a specified list

of exact values) or as continuous (i.e. may assume any numerical value in an interval or col-

lection of intervals). The mathematical function describing the possible values of a random

variable and their associated probabilities is the probability distribution. Val(X) denotes the

set of discrete values that a random variable X can take. Uppercase letters X, Y, Z are used to

denote random variables; lowercase letters refer to a value of a random variable. Thus, we use

x to refer to a generic value of X. The distribution over such a variable is called a multinomial.

In the case of a binary-valued random variable X, where Val(X)={false, true}, the distribution

is called a Bernoulli distribution. Sets of random variables are denoted by boldface type (X,
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Y, Z). P (x) is a shorthand for P (X = x);


x refers to a sum over all possible values that

X can take. Finally, with conjunction, rather than write P ((X = x) ∩ (Y = y)) we write

P (X = x, Y = y) or just P (x, y).

When we want to reason about continuous quantities such as weight, height, duration that

take real numbers, in order to define probability over a continuous random variable we have to

define probability density functions.

Definition 17 A function p : R →→ R is a probability density function or PDF for a random
variable X if it is a non negative integrable function such that

V al(X)
p(x)dx = 1

The integral over the set of possible values of X is 1.

The PDF defines a distribution for X as follows:

P (X ≤ a) =
a

−∞

p(x)dx.

Marginal and Joint Distributions

The distribution over events that can be described using a random variable X is referred to as

the marginal distribution over X; it is denoted by P (X).

Example 14 Consider the random variable Intelligence for the student population example,
taking the discrete values {high,low}. The marginal distribution over Intelligence assigns
probability to specific events P (Intelligence = high) and P (Intelligence = low), as well
as to the trivial event P (Intelligence ∈ {high, low}). The marginal distribution is a proba-
bility distribution satisfying the properties of definition 16.

When we are interested in questions that involve values of several random variables, for

example “Intelligence = high and Grade = A”, we need to consider the joint distribution over

these two random variables. The joint distribution over a set χ = {X1, ..., Xn} is denoted by

P (X1, ..., Xn) and assigns probabilities to events that are specified in terms of these random

variables. ξ refers to a full assignment to the variables in χ. The marginal distribution P (x)

can be computed from the joint distribution of two random variables as:

P (x) =

y

P (x, y).
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Given a joint distribution over the variables χ and a choice of values x1, ..., xn for all the

variables, the outcome space is a space where each outcome corresponds to a joint assignment

to X1, ..., Xn. For example, if χ = {Intelligence,Grade} and Grade takes values in {A,B,C}

there are six atomic outcomes (all combinations of intelligence and grade).

The notion of conditional probability seen above for events extends to induced distributions

over random variables. The following notations are often used:

• P (X | Y ): a set of conditional probability distributions. For each value of Y , this object

assigns a probability to values of X;

• chain rule: P (X,Y ) = P (X)P (Y | X);

• chain rule for multiple variables: P (X1, ..., Xk) = P (X1)P (X2 | X1) · · ·P (Xk |
X1, ..., Xk−1);

• Bayes’ rule:

P (X | Y ) =
P (X)P (Y | X)

P (Y )

Note that the conditional distribution over a random variable given an observation of the

values of another one is not the same as the marginal distribution. The latter represents our

prior knowledge before learning anything else, while the conditional distribution represents

our more informed distribution after learning something. There is a particular case in which

the two probabilities coincide, as it is explained in the next subsection.

Independence

Definition 18 An event α is independent of an event β in P , denoted P |= (α ⊥ β), if P (α |
β) = P (α) or if P (β) = 0.

Definition 19 Let X,Y,Z be sets of random variables. X is conditionally independent of Y
given Z in a distribution P if P (X = x,Y = y | Z = z) = P (X | Z)P (Y | Z) for all values
of X,Y,Z. The variables in the set Z are said to be observed. If the set Z is empty, then
(X ⊥ Y) and we say that X and Y are marginally independent.

An independence statement over random variables is a universal quantification over all

possible values of the random variables.

The distribution P satisfies (X ⊥ Y | Z) iff P (X,Y | Z) = P (X | Z)P (Y | Z). The

following properties must also hold in the distribution.
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• Simmetry: (X ⊥ Y | Z)⇒ (Y ⊥ X | Z)

• Decomposition: (X ⊥ Y,W | Z)⇒ (X ⊥ Y | Z)

• Weak union: (X ⊥ Y,W | Z)⇒ (X ⊥ Y | Z,W)

• Contraction: (X ⊥W | Z,Y)&(X ⊥ Y | Z)⇒ (X ⊥ Y,W | Z)

6.6 Querying a Distribution

Often a joint distribution over multiple random variables is used to answer queries of interest.

Probability Queries

A common query type is the probability query. It consists of two parts:

• The evidence: a subset E of random variables in the model, and an instantiation e to

these variables;

• the query variables: a subset Y of random variables.

The task is to compute

P (Y | E = e)

that is, the posterior probability distribution over the values y of Y, conditioned on the fact

that E = e.

MAP Queries

A second type of task is that of finding a high-probability joint assignment to some subset

of variables. This is called the MAP (Maximum A Posteriori) query (also most probable ex-

planation (MPE)), whose aim is to find the most likely assignment to all of the non-evidence

variables.

If W = χ−E, the task is to find the most likely assignment to the variables in W given

the evidence E = e :

MAP (W | e) = argmaxwP (w, e)

where in general argmaxxf(x) represents the value of x for which f(x) is maximal.
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In a MAP query one is finding the most likely joint assignment to W. To find the most

likely assignment to a single variable A, one could simply compute P (A | e) and then pick

the most likely value. However, the assignment where each variable individually picks its

most likely value can be quite different from the most likely joint assignment to all variables

simultaneously.

Example 15 Consider two binary variables A and B and the assumed values as ax and bx,
with x = {0, 1}. Assume that:

a0 a1

0.4 0.6

A b0 b1

a0 0.1 0.9
a1 0.5 0.5

P (a1) > P (a0), so that MAP (A) = a1. However, MAP (A,B) = (a0, b1): both values
of B have the same probability given a1. Thus, the most likely assignment containing a1 has
probability 0.6 · 0.5 = 0.3. On the other hand, the distribution over values of B is more skewed
given a0, and the most likely assignment (a0, b1) has probability 0.4 · 0.9 = 0.36. Thus,
argmaxa,bP (a, b) ̸= (argmaxaP (a), argmaxbP (b)).

Marginal MAP Queries

Consider a medical diagnosis problem, where the most likely disease has multiple possible

symptoms, each of which with some not overwhelming probability. On the other hand, a

somewhat rare disease might have only a few symptoms, each of which is very likely given the

disease. The MAP assignment to the data and the symptoms might be higher for the second

disease than for the first one. The solution here is to look for the most likely assignment to the

disease variable(s) only, rather than to both the disease and symptom variables.

In the marginal MAP query there is a subset of variables Y that forms the query. The task

is to find the most likely assignment to the variables in Y given the evidence E = e:

MAP (Y | e) = argmaxyP (y | e).

If Z = χ−Y −E the marginal MAP task is to compute:

MAP (Y | e) = argmaxY

Z

P (Y,Z | e).

It contains elements of both a conditional probability query and a MAP query.
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6.7 Expectation of a Random Variable

Let X be a discrete random variable that takes numerical values; the expectation of X under

the distribution P is

EP [X] =

x

x · P (x)

For example, if X is the outcome of rolling a fair die with probability 1/6 for each outcome,

then E[X] = 1 · 1/6 + 2 · 1/6 + · · · + 6 · 1/6 = 3.5. On the other hand, if we consider

a biased die where P (X = 6) = 0.5 and P (X = x) = 0.1 for x < 6, then E[X] =

1 · 0.1 + · · ·+ 5 · 0.1 + 6 · 0.5 = 4.5.

Often we are interested in expectations of a function of a random variable, such as a func-

tion that map values of one or more random variables to numerical values: one such function

used quite often is the indicator function, denoted by I{X = x}, which takes value 1 when

X = x and 0 otherwise.

Some properties of expectations of a random variable hold:

• E[a ·X + b] = aE[X] + b;

• E[X+Y ] = E[X]+E[Y ]: the expectation of a sum of two random variables is the sum

of expectations (linearity); this is true even when the variables are not independent, and

is key in simplifying many complex problems;

• E[X · Y ] = E[X] · E[Y ], if X and Y are independent.

The conditional expectation of X given some evidence y is

EP [X | y] =

x

x · P (x | y).
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Chapter 7

Decision Diagrams

Decision diagrams are graphical structures that have been extensively used for representing and

manipulating logic functions in varied areas. This chapter describes first Multivalued and then

Binary Decision Diagrams, that are used by the inference and learning algorithms on LPADs.

7.1 Multivalued Decision Diagrams

A Multivalued Decision Diagram (MDD) (Thayse et al., 1978) is able to represent a function

f(X) taking Boolean values on a set of multivalued variables X by means of a rooted, directed

acyclic graph that has one level for each variable. Each node is associated with the variable

of its level and has one child for each possible value of the variable. The leaves store either 0

(false) or 1 (true). Given values for all the variables X, one can compute the value of f(X)

by traversing the graph starting from the root and returning the value associated with the leaf

that is reached. MDDs can be built by combining simpler MDDs using Boolean operators.

While building MDDs, simplification operations can be applied that delete or merge nodes.

Merging is performed when the diagram contains two identical sub-diagrams, while deletion

is performed when all arcs from a node point to the same node. In this way a reduced MDD is

obtained, often with a much smaller number of nodes with respect to the original MDD.

Most packages for the manipulation of decision diagrams are however restricted to work

on Binary Decision Diagrams (BDD).

7.2 Binary Decision Diagrams

A Binary Decision Diagram is a rooted, directed acyclic graph with
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• two terminal nodes of out-degree zero labeled 0 or 1, and

• a set of variables nodes of out-degree two. Given a variable node n, the two outgoing

edges are given by two functions low(n) and high(n) (in pictures, these are shown as

dotted and solid lines, respectively). A variable var(n) is associated with each variable

node.

A BDD is Ordered (OBDD) if on all paths through the graph the variables respect a given

linear order X1 < X2 < · · · < Xn. An (O)BDD is Reduced (R(O)BDD) if

• (uniqueness) no two distinct nodes u and v have the same variable name and low- and

high child, and

• (non-redundancy tests) no variable node u has identical low- and high- child

ROBDDs have some interesting properties. They provide compact representations of

Boolean functions, and there are efficient algorithms for performing all kinds of logical opera-

tions on them. They are all based on the crucial fact that for any function f : Bn → B there is

exactly one ROBDD representing it.

The ordering of variables chosen when constructing an (RO)BDD has a great impact on

the size of the (RO)BDD. State-of-the-art BDD implementations therefore employ heuristics

to automatically reorder the variables during BDD construction, which help to control the com-

binatorial explosion and make it representable in memory.

Since BDDs represent a Boolean formula as a decision graph, one can compute the value

of the function given an assignment to the Boolean variables by navigating the graph from the

root to a leaf. The next node is chosen on the basis of the value of the variable associated to

that level: if the value is 1 the high child is chosen, if the value is 0 the low child is. When a

leaf is reached the value stored there is returned.

An example of ROBDD is shown in Figure 7.1, representing the Boolean function (X1 ⇔
X2) ∧ (X3 ⇔ X4). The logical equivalence is true if the operands are both true or if they are

both false. Nodes are represented as numbers 0,1,2,...with 0 and 1 reserved for the terminal

nodes. The variables in the ordering X1 < X2 < · · · < Xn are represented by their indexes.

The ROBDD is stored in a table T : n →→ (i, l, h) which maps a node n to its three attributes

var(n) = i, low(n) = l, high(n) = h.
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Figure 7.1: Representing an ROBDD with ordering x1 < x2 < x3 < x4. The numbers in the var
column show the index of the variables in the ordering. The constants are assigned an index which
is the number of variables in the ordering plus one (4+1=5).
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Chapter 8

Expectation Maximization Algorithm

The Expectation-Maximization (EM) algorithm is a broadly applicable approach to the iterative

computation of maximum likelihood (ML) estimates, useful in a variety of incomplete data

problems. On each iteration of the EM algorithm, there are two steps - called the Expectation

step or the E-step and the Maximization step or the M-step. Because of this, the algorithm

is called the EM algorithm. This name was given by Dempster, Laird, and Rubin (1977) in

their fundamental paper. The situations where the EM algorithm is profitably applied can be

described as incomplete-data problems, where ML estimation is made difficult by the absence

of some part of data. The basic idea of the EM algorithm is to associate the given incomplete-

data problem with a complete-data problem for which ML estimation is computationally more

tractable; for instance, the complete-data problem chosen may yield a closed form solution

to the maximum likelihood estimate (MLE) or may be amenable to ML computation with a

standard computer package. Even when a problem does not at first appear to be an incomplete-

data one, computation of the MLE is often greatly facilitated by artificially formulating it to be

as such. In ML estimation, we wish to estimate the model parameter(s) for which the observed

data are the most likely.

The E-step consists in manufacturing data for the complete-data problem, using the ob-

served data set of the incomplete-data problem and the current value of the model parameters,

so that the simpler M-step computation can be applied to this “completed data set”. More

precisely, it is the log likelihood of the complete-data problem that is “manufactured” in the

E-step. As it is based partly on unobservable data, it is replaced by its conditional expectation

given the observed data, where this E-step is effected using the current fit for the unknown

parameters. In the M-step, the likelihood function is maximized under the assumption that the
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missing data are known. Starting from suitable initial parameter values, the E- and M-steps are

repeated until convergence.

In the next two Sections we formally define the algorithm and its main properties. See

(McLachlan and Krishnan, 1996) and (Dempster et al., 1977) for a detailed introduction.

8.1 Formulation of the algorithm

Let Y be a p-dimensional random vector with probability density function (p.d.f.) g(y;Ψ) on

Rp, corresponding to the observed data y, where Ψ = (Ψ1, ...,Ψd)
T is the vector containing

the unknown parameters with parameter space Ω.

For example, if w1, ...,wn denotes an observed random sample of size n on some random

vector W with p.d.f f(w;Ψ), then

y = (wT
1 , ...,w

T
n )

T

and

g(y;Ψ) =
n

j=1

f(wj ;Ψ)

The vector Ψ is to be estimated by maximum likelihood. The likelihood function for Ψ formed

from the observed data y is given by

L(Ψ) = g(y;Ψ).

An estimate Ψ̂ of Ψ can be obtained as a solution of the likelihood equation

∂L(Ψ)/∂Ψ = 0,

or equivalently,

∂logL(Ψ)/∂Ψ = 0.

The aim of ML estimation is to determine an estimate Ψ̂, so that it defines a sequence of

roots of the likelihood equation corresponding to local maxima in the interior of the parameter

space.
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The observed data vector y is viewed as being incomplete and is regarded as an observable

function of the so-called complete data. The notion of ‘incomplete data’ includes the conven-

tional sense of missing data, but it also applies to situations where the complete data represent

what would be available from some hypothetical experiment. In the latter case, the complete

data may contain some variables that are never observable in a data sense. Within this frame-

work, we let x denote the vector containing the augmented or so-called complete data, and we

let z denote the vector containing the additional data, referred to as the unobservable or missing

data. gc(x;Ψ) will denote the p.d.f. of the random vector X corresponding to the complete-

data vector x . Then the complete-data log likelihood function that could be formed for Ψ if x

were fully observable is given by

log Lc(Ψ) = log gc(x;Ψ).

Formally, we have two samples spaces X and Y and a many-to-one mapping from X to Y.

Instead of observing the complete-data vector x in X, we observe the incomplete-data vector

y = y(x) in Y.

The EM algorithm approaches the problem of solving the incomplete-data likelihood equa-

tion indirectly by proceeding iteratively in terms of the complete-data log likelihood function,

log Lc(Ψ). As it is unobservable, it is replaced by its conditional expectation given y, using

the current fit for Ψ.

More specifically, let Ψ(0) be some initial value for Ψ. Then on the first iteration, the

E-step requires the calculation of

Q(Ψ;Ψ(0)) = EΨ(0) [log Lc(Ψ) | y].

The M-step requires the maximization of Q(Ψ;Ψ(0)) with respect to Ψ over the parameter

space Ω. That is, we choose Ψ(1) such that

Q(Ψ(1);Ψ(0)) ≥ Q(Ψ;Ψ(0))

for all Ψ ∈Ω. The E- and M-steps are then carried out again, but this time with Ψ(0) replaced

by the current fit Ψ(1). On the (k+1)th iteration, the E- and M-steps are defined as follows:

E-step. Calculate Q(Ψ;Ψ(k)), where

Q(Ψ;Ψ(k)) = EΨ(k) [log Lc(Ψ) | y].
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M-step. Choose Ψ(k+1) to be any value of Ψ ∈ Ω that maximizes Q(Ψ;Ψ(k)); that is,

Q(Ψ(k+1);Ψ(k)) ≥ Q(Ψ;Ψ(k))

for all Ψ ∈ Ω.

The E- and M-steps are alternated repeatedly until the difference

L(Ψ(k+1))− L(Ψ(k))

changes by an arbitrarily small amount.

Another way of expressing M-step is to say that Ψ(k+1) belongs to

M(Ψ(k)) = arg maxΨQ(Ψ;Ψ(k)),

which is the set of points that maximize Q(Ψ;Ψ(k)).

In the case of a discrete random vector, we wish to find Ψ such that P(Y | Ψ) is a maxi-

mum, and the log likelihood function is defined as

L(Ψ) = log P (Y | Ψ).

P(Y | Ψ) may be written in terms of the hidden variables z as

P (Y | Ψ) =

z

P (Y | z,Ψ)P (z | Ψ).

Since we want to maximize the difference

L(Ψ)− L(Ψ(k)) = P (Y | Ψ)− P (Y | Ψ(k)),

we may substitute P (Y | Ψ) with the above equivalence. It can be shown that the following

expression for the E-step is reached:

Q(Ψ;Ψ(k)) =

z

P (z | Y,Ψ(k))log P (Y, z | Ψ) = EZ|Y,Ψ(k) [log P (Y, z | Ψ)].

All that is necessary is the specification of the complete-data vector x and the conditional

probability density of X given the observed data vector y. Specification of this conditional

probability density is needed in order to carry out the E-step. As the choice of the complete-

data vector x is not unique, it is chosen for computational convenience with respect to carrying

out the E- and M-steps.

64



8.2 Properties of the algorithm

• The EM algorithm is numerically stable, with each EM iteration increasing the likelihood

(except at a fixed point of the algorithm); since log(x) is a strictly increasing function,

the value of Ψ which maximizes g or P also maximizes L.

• The EM algorithm is typically easily implemented, because it relies on complete-data

computations: the E-step of each iteration only involves taking expectations over com-

plete data conditional distributions and the M-step of each iteration only requires com-

plete data ML estimation, which is often in simple closed form.

• The EM algorithm is generally easy to program, since no evaluation of the likelihood nor

its derivatives is involved.

• The cost per iteration is generally low, which can offset the larger number of iterations

needed for the EM algorithm compared to other competing procedures.

• By watching the monotone increase in likelihood (if evaluated easily) over iterations, it

is easy to monitor convergence.

• The EM algorithm can be used to provide estimated values of the missing data.

• The EM algorithm does not guarantee convergence to the global maximum when there

are multiple maxima. Further, in this case, the estimate obtained depends upon the initial

value Ψ(0).
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Part III

Statistical Relational Learning
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Chapter 9

Distribution Semantics and Logic
Programs with Annotated
Disjunctions

This chapter reviews LPADs, the probabilistic logic programming language used in this thesis.

We begin by outlining the basic concepts of its semantics in Section 9.1, and then describing

syntax, semantics and inference in this language in Section 9.2.

9.1 Distribution Semantics

The concept of Distribution Semantics has been introduced by (Sato, 1995), with the objective

to provide basic components for a unified symbolic-statistical information processing system

in the framework of logic programming. It provides a semantic basis for probabilistic compu-

tation: the possibility of learning the parameters of a distribution.

A definite clause program DB = F ∪ R in a first order language is composed of a set of

facts F and a set of rules R. It is assumed that DB is ground (if not, it is reduced to the set of

all possible ground instantiations of clauses), infinite and no atom in F unifies with the head of

a rule in R (disjoint condition). A ground atom A is treated as a random variable taking value

1 (when A is true) or 0 (when A is false).

A basic distribution for F PF is a probability measure on the algebra of the sample space

ΩF of all possible interpretations ω (assignments of truth values) for F . The corresponding

distribution function if P (n)
F (A1 = x1, ..., An = xn), where xi is the truth value of Ai. ω, by
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assigning xi to atoms Ai, identifies a Herbrand model. Each interpretation ω ∈ ΩF determines

a set Fω ⊂ F of true ground atoms. So the logic program is Fω ∪ R and its least model

MDB(ω).

Example 16 We show MDB(ω) for a finite program DB1.

DB1 = F1 ∪R1

F1 = {A1, A2}

R1 = {B1 ← A1, B1 ← A2, B2 ← A2}

ΩF1 = {0, 1}1 × {0, 1}2 and ω = (x1, x2) ∈ ΩF1 means Ai takes xi(i = 1, 2) as its truth
value. The MDB is:

ω F1ω MDB1(ω)

(0,0) {} {}
(1,0) {A1} {A1, B1}
(0,1) {A2} {A2, B1, B2}
(1,1) {A1, A2} {A1, A2, B1, B2}

To move from PF to PDB , the distribution over the logic program, we do not have to

consider the atoms Ai ∈ F anymore, but all the atoms Ai ∈ DB. PF can be extended to a

probability measure PDB over ΩDB , the set of all possible interpretations for ground atoms

appearing in DB. If ωF ′ is a sample from PF and F ′ the set of atoms made true by ωF ′ , it

is possible to construct the least Herbrand model MDB(ω)F ′ of the definite program F ′ ∪ R.

It determines the truth value of every ground atom and by construction every ground atom is

a measurable function of ωF ′ with respect to PF . It follows that PF can be extended to PDB

on the set of possible Herbrand models for DB. If PF puts the probability mass on a single

interpretation, PDB puts the probability mass on the least model MDB(ω)F ′ also. Intuitively,

PDB is identified with an infinite joint distribution PDB = (A1 = x1, A2 = x2, ...) on the

probabilistic ground atoms A1, A2, ... in the Herbrand base of DB where xi ∈ {0, 1} (Sato,

2009). This way, a program denotes a distribution in this semantics.

If G is an arbitrary formula whose predicates are among DB, [G] = {ω ∈ ΩDB | ω |=
G}. Then the probability of G is defined as PDB([G]). Intuitively, PDB([G]) represents the

probability mass assigned to the set of interpretations (possible worlds) satisfying G.
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Example 17 Considering example 16 again, ω = (x1, x2, y1, y2) ∈ ΩDB1 indicates that
xi (i = 1, 2) is the value of Ai and yj (j = 1, 2) is the value of Bj , respectively.

PDB1(x1, x2, y1, y2) can be computed from PF1(x1, x2).

9.2 LPADs

This section presents Logic Programs with Annotated Disjunctions (LPADs), the probabilistic

logic programming language used in this thesis, which was introduced by J. Vennekens and S.

Verbaeten in (Vennekens and Verbaeten, 2003; Vennekens et al., 2004).

Causality

The formalism of LPADs is based on disjunctive logic programming where probabilistic ele-

ments are added; for this reason it is referred as a “probabilistic logic programming language”.

These languages are the natural way of representing causal knowledge about probabilistic pro-

cesses. The choice of disjunctive logic programs itself, i.e. of sets of rules h1 ∨ · · · ∨ hn ← φ,

allows to represent a kind of uncertainty. They are highly inspired by the concept of experi-

ment:

• a simple experiment (a “part” of the program) is represented by a single logical disjunc-

tion in which the disjuncts correspond to all its possible outcomes; by adding precondi-

tions φ to the disjunctions through logical implication, the relationship between causes

and indeterminate results of the experiment is established;

• these simple experiments are combined into a more complex one: the meaning of an

entire program.

The fundamental idea is that a reason is represented for some event E by a formula φ, by

writing “φ causes E” as: r = E ← φ (Vennekens et al., 2006). This is called a Causal

Probabilistic event (CP-event). The head E of r is a disjunction of effects hi, so that its

intuitive reading is “φ causes a non-deterministic event, that causes precisely one of h1, ..., hn.

Many events might be involved in determining the truth of the same proposition, that is, the

same effect might have a number of independent causes: this will be represented by a number

of rules r with the same head E and different causes φ. If each atom hi appearing in the event

E is assigned a probability αi, such that


n αi ≤ 1, we get a probabilistic logic disjunction

(h1 : α1) ∨ · · · ∨ (hn : αn) read as: “At most one of the hi will become true as a result of this
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event with probability αi”. An atom hi does not represent an outcome of one particular event,

but rather the effect of this outcome on the domain, i.e., if different events can have the same

effect on the domain, they might share the same atom.

If an event has a deterministic effect, i.e., it always causes some atom h with probability

1, we write h instead of (h : 1). A normal logic program P is a set of rules h ← φ, with h

an atom and φ a conjunction. This kind of program can be viewed as a description of causal

information about a deterministic process: we can read the rule as “φ causes a deterministic

event, that causes h.” Its semantics assigns a probability of 1 to a single interpretation and 0 to

all other interpretations.

Syntax

A Logic Program with Annotated Disjunctions consists of a finite set of annotated disjunctive

clauses. An annotated disjunctive clause Ci is of the form

hi1 : Πi1; . . . ;hini : Πini : −bi1, . . . , bimi .

hi1, . . . hini are logical atoms and bi1, . . . , bimi are logical literals, Πi1, . . . ,Πini are real num-

bers in the interval [0, 1] such that
ni

k=1Πik ≤ 1. hi1 : Πi1, . . . , hini : Πini is called the

head and is indicated with head(Ci); bi1, . . . , bimi is called the body and is indicated with

body(Ci). Note that if ni = 1 and Πi1 = 1 the clause corresponds to a non-disjunctive clause.

If
ni

k=1Πik < 1 the head of the annotated disjunctive clause implicitly contains an extra atom

null that does not appear in the body of any clause and whose annotation is 1−
ni

k=1Πik.

Example 18 The following LPAD encodes the result of tossing a coin, on the base of the fact
that it is biased or not:

C1 = heads(C) : 0.5; tails(C) : 0.5 : −toss(C),¬biased(C).
C2 = heads(C) : 0.6; tails(C) : 0.4 : −toss(C), biased(C).
C3 = fair(coin) : 0.9; biased(coin) : 0.1.

C4 = toss(coin) : 1.

This program models the fact that a fair coin lands on heads or on tails with probability
0.5, while a biased coin with probabilities 0.6 and 0.4 respectively. The third clause says that
a certain coin coin has a probability of 0.9 of being fair and of 0.1 of being biased, the fourth
one that coin in certainly tossed.
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C1, for instance, expresses the fact that for each coin c, precisely one of the following
clauses will hold: heads(c) : −toss(c),¬biased(c) or tails(c) : −toss(c),¬biased(c), both
with a probability of 0.5.

Semantics

An LPAD rule containing variables represents a number of simple experiments, one for each

ground instantiation of this rule. The semantics of a LPAD program P will be defined using

its grounding and restricting to its Herbrand base HB(P ) and to the set of all its Herbrand

interpretations IP . We denote the set of all ground LPADs as PG and by ground(P ) the

grounding of one LPAD P . The semantics is defined by a probability distribution π on IP : π

is a mapping from IP to real numbers in [0,1] such that


I∈IP π(I) = 1.

Each ground instantiation of a clause represents a probabilistic choice between a number

of non-disjunctive clauses, equal to the number of the atoms in its head. This choice is made

according to a selection function; some preliminary concepts have to be introduced now. An

atomic choice is a triple (Ci, θj , k) where Ci ∈ P , θj is a substitution that grounds Ci and

k ∈ {1, . . . , ni}. (Ci, θj , k) means that, for ground clause Ciθj , the head hik was chosen. A

set of atomic choices κ is consistent if (C, θ, i) ∈ κ, (C, θ, j) ∈ κ⇒ i = j, i.e., only one head

is selected for a ground clause. A composite choice κ is a consistent set of atomic choices. The

probability P (κ) of a composite choice κ is the product of the probabilities of the individual

atomic choices, i.e. P (κ) =


(Ci,θj ,k)∈κΠik.

A selection σ is a composite choice that, for each clause Ciθj in ground(P ), contains an

atomic choice (Ci, θj , k). We denote the set of all selections σ of a program P by SP and we

let g(i) be the set of indexes of substitutions grounding Ci, i.e., g(i) = {j|θj is a substitution

grounding Ci}. Each selection σ defines an instance of the LPAD, that is a normal logic

program wσ defined as wσ = {(hik ← body(Ci))θj |(Ci, θj , k) ∈ σ}. wσ is also called a world

of P . This semantics means that a probabilistic rule in an LPAD expresses the fact that exactly

one atom in the head holds with a certain probability as a consequence of the body of the

rule being true.

Each selection σ in SP is assigned a probability, which induces a probability on the corre-

sponding program wσ. We assume independence between the selections made for each rule.

The probability P (σ) of a selection σ is the probability of a composite choice κ, thus is given
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by the product of the probabilities of its individual atomic choices:

P (σ) =


(Ci,θj ,k)∈σ

Πik.

Moreover P (σ) is equal to the probability of the world P (wσ), since selections define worlds.

Example 19 If we consider the grounding of the LPAD in Example 18 with the variable C
assuming value coin, 8 different instances (2 · 2 · 2) can be generated by choosing one of the
possibilities for each clause, for example one is:

C1 = heads(coin) : −toss(coin),¬biased(coin).
C2 = heads(coin) : −toss(coin), biased(coin).
C3 = fair(coin).

C4 = toss(coin).

Each rule is independent of the other, since dependence is modeled within a rule, and a
probability can be assigned to each instance: 0.5 · 0.6 · 0.9 · 1 = 0.27.

The meaning of the above instance of the coin program is given by the interpretation

{toss(coin), fair(coin), heads(coin)}. The instances of an LPAD therefore define a prob-

ability distribution on the set of interpretations of the program: the probability of a certain

interpretation I is the sum of the probability of all instances for which I is a model.

Example 20 Returning to the example, there is one other instance of this LPAD which has
{toss(coin), fair(coin), heads(coin)} as its model, namely

C1 = heads(coin) : −toss(coin),¬biased(coin).
C2 = tails(coin) : −toss(coin), biased(coin).
C3 = fair(coin).

C4 = toss(coin).

The probability of this instance is 0.5 · 0.4 · 0.9 · 1 = 0.18. Therefore the probability of the
interpretation is 0.27+0.18=0.45.

We consider only sound LPADs, where the meaning of an instance wσ is given by its well

founded model WFM(wσ) and require that all these models are two-valued.

Given a sound LPAD P , for each of its interpretations I in IP , the probability π∗P (I)

assigned by P to I is the sum of the probabilities of all selections which lead to I , with S(I)
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being the set of all selections σ for which WFM(wσ) = I:

π∗P (I) =


σ∈S(I)

P (σ).

There is a strong connection between the interpretations for which π∗P (I) > 0 and the well

established non-probabilistic semantics of logic programming, since each interpretation I for a

program P is a traditional logic model for P (when ignoring the probabilities); moreover each

logic program is also an LPAD and its semantics will assign probability 1 to its well founded

model (and zero to all other interpretations).

Inference

Besides probabilities of interpretations, the basic inference task of probabilistic logic programs

under the semantics π∗P is calculating probabilities of queries, i.e., of existentially quantified

conjunctions, according to a LPAD and possibly some evidence.

The set of all instances of a LPAD P is denoted as WP . A composite choice κ identifies

a set of instances ωκ = {wσ|σ ∈ SP , σ ⊇ κ}. A set of composite choices K identifies a

set of instances ωK =


κ∈K ωκ. A composite choice κ is an explanation for a query Q if Q

is entailed by every instance (world) of ωκ. A set of composite choices K is covering with

respect to Q if every world wσ in which Q is true is in ωK .

The probability of a queryQ given an instancew is the conditional probability P (Q | w) =
1 if w |= Q and 0 otherwise.

The probability of a query Q is thus given by:

P (Q) =


w∈WP

P (Q,w) =


w∈WP

P (Q|w)P (w) =


w∈WP :w|=Q

P (w). (9.1)

The probability distribution over normal logic programs (instances) P (w) is extended to

queries and the probability of a query is obtained by marginalizing the joint distribution of the

query and the programsP (Q,w). The trivial way of computingP (Q) proceeds by enumerating

all possible ground instances of a LPAD P , that is often unfeasible for large programs. Instead,

the number of proofs for a query is much more limited, as shown in Example 21.

Example 21 Consider the following LPAD P inspired by the morphological characteristics of
the Stromboli Italian island, on which we want to compute the probability of the query eruption:
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C1 = eruption : 0.6 ; earthquake : 0.3 :− sudden_energy_release,
fault_rupture(X).

C2 = sudden_energy_release : 0.7.
C3 = fault_rupture(southwest_northeast).
C4 = fault_rupture(east_west).

The Stromboli island is located at the intersection of two geological faults, one in the southwest-
northeast direction, the other in the east-west direction, and contains one of the three volcanoes
that are active in Italy. This program models the possibility that an eruption or an earthquake
occurs at Stromboli. If there is a sudden energy release under the island and there is a fault
rupture (C1), then there can be an eruption of the volcano on the island with probability 0.6, an
earthquake in the area with probability 0.3 or no event (the implicit null atom) with probability
0.1. The energy release occurs with probability 0.7 while we are sure that ruptures occur in
both faults.

P defines 18 (3 · 3 · 2) possible instances: the first rule with three head atoms has two
possible groundings X = southwest_northeast and X = east_west (3 · 3) and the second
rule has two head atoms. The query eruption is true only in 5 of them. Its probability, according
to Equation 9.1, is P (eruption) = 0.6 · 0.6 · 0.7 + 0.6 · 0.3 · 0.7 + 0.6 · 0.1 · 0.7 + 0.3 · 0.6 ·
0.7 + 0.1 · 0.6 · 0.7 = 0.588.

For instance, the first term 0.6 · 0.6 · 0.7 is obtained from the instance:
eruption : 0.6 :− sudden_energy_release, fault_rupture(southwest_northeast).
eruption : 0.6 :− sudden_energy_release, fault_rupture(east_west).

sudden_energy_release : 0.7.

fault_rupture(southwest_northeast).
fault_rupture(east_west).

while the last term 0.1 · 0.6 · 0.7 from the instance:
null : 0.1 :− sudden_energy_release, fault_rupture(southwest_northeast).
eruption : 0.6 :− sudden_energy_release, fault_rupture(east_west).

sudden_energy_release : 0.7.

fault_rupture(southwest_northeast).
fault_rupture(east_west).

Since it is often unfeasible to find all the instances where the query is true, inference al-

gorithms search for covering set of explanations for the query instead. If we establish the

following correspondences:

Ciθj → multivalued random variable Xij

atomic choice (Ci, θj , k) → assignment Xij = k, k ∈ {1, . . . , ni}

the problem of computing the probability of a query Q can be reduced to computing the prob-
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ability of the Boolean function defined over the vector of variables X:

fQ(X) =


κ∈E(Q)


(Ci,θj ,k)∈κ

Xij = k (9.2)

It is a Disjunctive Normal Form (DNF) formula (a disjunction of conjunctive clauses), where

E(Q) is a covering set of explanations for Q and Xij = k indicates that the kth atom has

been chosen in the head of clause Ci grounded with substitution θj . Equations for a single

explanation κ are conjoined and the conjunctions for the different explanations are disjointed.

The probability that goal Q succeeds equals to the probability that the disjunction of these

conjunctions is true (takes value 1), and this happens if the values of the variables correspond

to an explanation for the query.

Example 22 (Example 21 cont.) Clause C1 has two groundings, C1θ1 with
θ1 = {X/southwest_northeast} and C1θ2 with θ2 = {X/east_west}, corresponding to the
random variables X11 and X12 respectively. Clause C2 has only one grounding C2∅ instead
and it corresponds to the single random variableX21. X11 andX12 can take three values since
C1 has three head atoms; similarly X21 can take two values since C2 has two head atoms.

The query eruption has the covering set of explanations E(eruption) = {κ1, κ2} where:

κ1 = {(C1, {X/southwest_northeast}, 1), (C2, {}, 1)}
κ2 = {(C1, {X/east_west}, 1), (C2, {}, 1)}

Each atomic choice (Ci, θj , k) ∈ κi is represented by the propositional equationXij = k:

(C1, {X/southwest_northeast}, 1) → X11 = 1

(C2, {}, 1) → X21 = 1

(C1, {X/east_west}, 1) → X12 = 1

The set of explanations E(eruption) can be encoded, according to the formula 9.2, by the
function:

feruption(X) = (X11 = 1 ∧X21 = 1) ∨ (X12 = 1 ∧X21 = 1)

While each of these explanations can be assigned a probability, it is incorrect to sum them up in

order to compute P(Q), since they are not statistically independent, differently from instances.

In fact, the probability of the DNF formula

P (feruption(X)) = P ((X11 = 1 ∧X21 = 1) ∨ (X12 = 1 ∧X21 = 1))
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is

P (feruption(X)) = P (X11 = 1 ∧X21 = 1) + P (X12 = 1 ∧X21 = 1) −

P (X11 = 1 ∧X21 = 1)P (X12 = 1 ∧X21 = 1).
(9.3)

If we simply summed up P (X11 = 1 ∧X21 = 1) and P (X12 = 1 ∧X21 = 1) we would

get 0.6 · 0.7+0.6 · 0.7 = 0.84 ̸= 0.588, while according to Equation 9.3 we correctly compute

0.6 ·0.7+0.6 ·0.7−0.6 ·0.6 ·0.7 = 0.588, cf Example 21. The third product term in Equation

9.3 represents a joint event, indicating that explanations have first to be made disjoint (mutually

exclusive) so that a summation can be computed. In the literature, the problem of computing

the probability of DNF formulae is an NP-hard problem even if all variables are independent,

and this is the problem of transforming sum-of-products into sum-of-disjoint-products. Some

algorithms have been developed, however they seem to be limited to a few dozens of variables

and a few hundreds of sums.

The most efficient technique up to now is represented by Multivalued Decision Diagrams

(MDD). The advantage of MDDs is that they represent the Boolean function f(X) by means

of a generalization of the Shannon’s expansion

f(X) = (X1 = 1) ∧ fX1=1(X) ∨ · · · ∨ (X1 = n) ∧ fX1=n(X)

where X1 is the variable associated with the root node of the diagram and fX1=i(X) is the

function associated to the i−th child of the root node. The expansion can be applied recursively

to the functions fX1=i(X). This expansion allows the probability of f(X) to be expressed by

means of the following recursive formula

P (f(X)) = P (X1 = 1) · P (fX1=1(X)) + ...+ P (X1 = n) · P (fX1=n(X))

because the disjuncts are mutually exclusive due to the presence of the X1 = i equations. In

this way the MDD split paths on the basis of the values of a multi-valued variable and the

branches are mutually disjoint, thus the probability of f(X) can be computed by means of

a dynamic programming algorithm that traverses the MDD and sums up probabilities. The

reduced MDD corresponding to the query eruption from Example 21 is shown in Figure 9.1a.

The labels on the edges represent the values of the variable associated with the source node.

Since most packages for the manipulation of decision diagrams are restricted to work

on Binary Decision Diagrams, multivalued variables have to be represented by means of bi-

nary variables (De Raedt et al., 2008a; Sang et al., 2005). For a multi-valued variable Xij ,
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(a) MDD.

X111 n1

X121 n2

X211 n3

1 0

(b) BDD.

Figure 9.1: Decision diagrams for Example 21.

corresponding to ground clause Ciθj , having ni values, we use ni − 1 Boolean variables

Xij1, . . . , Xijni−1 and we represent the equation Xij = k for k = 1, . . . ni − 1 by means

of the conjunction Xij1 ∧ . . . ∧ Xijk−1 ∧ Xijk, and the equation Xij = ni by means of the

conjunction Xij1 ∧ . . . ∧ Xijni−1. The high and low child of each node of the BDD are dis-

joint, that is, following the edge to the high child corresponds to assigning the value true to

the Boolean variable, while following the edge to the low child corresponds to the value false.

Each Boolean variable Xijk is associated a parameter πik that represents P (Xijk = 1). The

parameters are obtained from those of multivalued variables in this way:

πi1 = Πi1

. . .

πik =
P (Xij = k)k−1
j=1(1− πij)

=
Πikk−1

j=1(1− πij)
. . .

up to k = ni − 1.

Example 23 (Example 21 cont.) According to the above transformation, X11 and X12 are 3-
valued variables and are converted into two Boolean variables each one (X111 and X112 for
the former, X121 and X122 for the latter); X21 is a 2-valued variable and is converted into the
Boolean variable X211. The set of explanations E(eruption) = {κ1, κ2} can be now encoded
by the equivalent function

f ′eruption(X) = (X111 ∧X211) ∨ (X121 ∧X211) (9.4)

with the first disjunct representing κ1 and the second disjunct κ2. The BDD encoding of
f ′eruption(X), corresponding to the MDD of Figure 9.1a, is shown in Figure 9.1b. A value

78



of 1 for the Boolean variables X111 and X121 means that, for the ground clauses C1θ1 and
C1θ2, the head h11 = eruption is chosen and the 1-branch from nodes n1 and n2 must be
followed, regardless of the other variables for C1 (X112, X122) that are in fact omitted from
the diagram.

Having built the BDD representing the Boolean function f ′Q(X), in order to compute the

probability a dynamic programming algorithm traverses the diagram from the root node to

all leaves (De Raedt et al., 2007). At each inner node, probabilities from both children are

calculated recursively and combined afterwards as it is done in Algorithm 1.

Algorithm 1 Probability of a query computed by traversing a BDD.
1: function BDD_PROBABILITY(node n)
2: if n is 1-terminal then
3: return 1
4: end if
5: if n is 0-terminal then
6: return 0
7: end if
8: let h and l be the high and low children of n
9: prob(h) = BDD_PROBABILITY(h)

10: prob(l) = BDD_PROBABILITY(l)
11: return pn · prob(h) + (1− pn) · prob(l)
12: end function

For each node, the probability that the sub-BDD starting at that node is true is computed by

summing the probability of the high and low child, weighted by the probability of the node’s

variable being assigned true and false respectively. Intermediate results are cached, and the

algorithm has a time and space complexity linear in the size of the BDD. The probability of

the root node corresponds to the probability of the query P (Q), i.e., the probability of f ′Q(X)

taking value 1. The application of the Algorithm 1 to the BDD of Example 23 is illustrated in

Figure 9.2. The probabilities computed by Algorithm 1 on the two sub-BDDs can be summed

up as the corresponding events are statistically independent.

Even if BDDs allow to compactly represent explanations for queries, they might have an

exponential growth in large programs characterized by many random variables. In order to

contain the number of variables and thus simplify inference, we may consider grounding only

some of the variables of clauses, at the expenses of the accuracy in modeling the domain. A

typical compromise between accuracy and complexity is to consider the grounding of variables

in the head only: in this way, a ground atom entailed by two separate ground instances of a

clause is assigned the same probability, all other things being equal, of a ground atom entailed
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P = 0.588
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X121 n2
P = 0.42

= 0.6 · 0.7+0.4 · 0
0.6

0.4X211 n3
P = 0.7

= 0.7 · 1 + 0.3 · 0
0.7

0.3

1 0

Figure 9.2: BDD built to compute the probability of the query Q = eruption for Example 21.
The probabilities P of each node represent the intermediate values computed by Algorithm 1 when
traversing the BDD. The probability of the query (0.588) is returned at the root node.

by a single ground clause, while in the full semantics the first would have a larger probability,

as more evidence is available for its entailment. This simplified semantics can be interpreted as

stating that a ground atom is entailed by a clause with the probability given by its annotation if

there is a substitution for the variables appearing in the body only such that the body is true.

Example 24 (Example 21 cont.) In the simplified semantics, C1 is associated with a single
random variable X11. In this case T has 6 (3 · 2) instances, the query eruption is true in 1 of
them and its probability is P (eruption) = 0.6 · 0.7 = 0.42. So eruption is assigned a lower
probability with respect to the full semantics because the two independent groundings of clause
C1, differing in the fault name, are not considered separately anymore.

Reducing the size of the BDD allows to apply parameter learning for LPADs on large-scale

real world datasets.

One of the algorithms developed in this thesis is a variant of the BDD traversal algorithm

for computing the probability of a query. In Section 10.2 we extend the computation on the

BDD to optimize the parameters of an LPAD program with respect to a training set, by adding

a “forward” traversal of the diagram to the current recursive “backward” traversal.
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Chapter 10

Parameter Learning of LPADs

One typically distinguishes two problems within the statistical learning field. First, there is

the problem of parameter estimation, where the goal is to estimate appropriate values for the

parameters of a model, whose structure is fixed, and second, there is the problem of structure

learning, where the learner must infer both the structure and the parameters of the model from

data (Raedt, 2008). The first problem is tackled is this chapter, the second one in the next

Chapter.

This chapter presents, after a general introduction about the parameter estimation problem

in probabilistic models (Section 10.1), the parameter learning algorithm EMBLEM for LPADs

based on the Expectation Maximization approach, where the expectations are computed di-

rectly using BDDs (Section 10.2). The chapter also features related works (Section 10.3) and

experimental results on real world datasets (Section 10.4). Conclusive considerations can be

found in Section 10.5.

10.1 Parameter Learning of Probabilistic Models

The problem of parameter estimation can be formalized as follows:

Given

• a set of examples E,

• a probabilistic model M = (S, λ) with structure S and parameters λ,

• a probabilistic coverage relation P (e|M) that computes the probability of observing the

example e given the model M ,
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• a scoring function score(E,M) that employs the probabilistic coverage relationP (e|M)

Find the parameters λ∗ that maximize score(E,M), that is,

λ∗ = arg maxλ score(E, (S, λ))

This problem specification abstracts the specific class of models considered, and actually can

be instantiated w.r.t. the different representation languages. The problem specification shows

that parameter estimation is essentially an optimization problem that depends on the scoring

function and type of model employed.

The standard scoring function is the probability of the model or hypothesis given the data.

This yields the maximum a posteriori hypothesis HMAP

HMAP = arg maxHP (H|E) = arg maxH
P (E|H)P (H)

P (E)

It can be simplified into the maximum likelihood hypothesis HML by applying Bayes’ law and

assuming that all hypotheses H are, a priori, equally likely, yielding:

HML = arg maxHP (E|H) (10.1)

which is called the likelihood function.

It is typically assumed that the examples are independently and identically distributed

(i.i.d.), which allows one to rewrite the expression in the following form (where the ei cor-

respond to the different examples):

HML = arg maxH

ei∈E

P (ei|H)

The probabilistic coverage relation P (e|H) is employed, and it indicates the likelihood of

observing e given the hypothesis (model)H . Typically, the goal is to learn a generative model,

that is, a model that could have generated the data.

This contrasts with the traditional inductive logic programming setting, which is discrim-

inative: positive examples have a strictly positive probabilistic coverage (P (e|H) > 0), the

negative ones have a 0 probabilistic coverage. Within the above problem specification discrim-

inative learning can be modeled by choosing an alternative scoring function, that maximizes

the conditional likelihood function

HCL = arg maxH

ei∈E

P (class(ei)|des(ei), H) (10.2)
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where the examples ei are split up into the class of interest (also called target) class(ei) and

the description of the example des(ei). This function can be maximized by maximizing its

logarithm instead, which is easier because the logarithm is a monotonic function. In literature

it is thus referred as the conditional log likelihood (LL) function.

10.2 The EMBLEM Algorithm

The parameter estimation algorithm for LPADs, which is presented in the following, tackles a

problem of discriminative learning defined as follows.

Given

• a set of training examplesQi, corresponding to ground atoms for a set of target or output

predicates,

• a background knowledge with ground facts for other non-target or input predicates, or-

ganized as a set of logical interpretations or “mega-examples”,

• a probabilistic logical model M corresponding to a LPAD program P , composed of

annotated disjunctive clauses Ci with unknown parameters (probabilities) λ = Π =

⟨Πi1, ...,Πini⟩ in the heads,

Find the maximum likelihood probabilities Π∗, i.e. those that maximize the conditional prob-

ability of the examples given the model and the input predicates.

EMBLEM algorithm learns maximum likelihood parameters of a LPAD by applying the

Expectation Maximization algorithm where the expectations are computed directly on BDDs.

It is based on the algorithms proposed in (Inoue et al., 2009; Ishihata et al., 2008a,b; Thon

et al., 2008).

The application of the EM algorithm has the following justifications. Each training example

Qi corresponds to a query to the LPAD and the background data. In order to determine the

probabilities Πik, the number of times a head hik has been chosen in an application of a rule

Ci to find an explanation for the query is required. This frequency is indicated as cik and

is not directly observable. Given the set of clauses involved in the SLD-derivation of the

query, there are many possible selections σ which allows one to find a proof for the query: the

information about which selection has been used is unknown. The Expectation Maximization

(EM) algorithm deals with the case where the data are not fully observable, but only partially
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observable; if values for some variables are occasionally unobserved, there is missing data,

while if values for some variables are always unobserved, the variables are called latent. In

our case, the mega-examples record the truth value of all ground facts, but not the selections

(that is, the atomic choices) which represent the latent variables, and the random variables cik
represent a sufficient statistics, whose value contains all the information needed to compute any

estimate of the unknown parameters. As introduced in Chapter 8, we would like to maximize

the (log-)likelihood L of the data, which is a function of the parameters Π of the model L(Π).

This function depends on the unobserved values and a way of dealing with these values is to

compute the expected likelihood functionQ(Π), where the expectation is taken over the hidden

variables. The algorithm assumes that there is a current model M(Π) and uses it to compute

the expected values of the variables cik, that is E[cik|M,Π]. After randomly initializing the

model parameters, the EM algorithm repeatedly performs the following two operations until

the parameters have converged:

• E Step: Uses the current model and the observed data to determine the conditional dis-

tribution of the unobserved random variables cik;

• M Step: Uses the observed random variables together with the distribution of the unob-

served random variables to estimate the model parameters using frequency counting;

In the following the two steps of the algorithm are described in detail.

Construction of the BDDs

Among all predicates describing the domain, some of them have to be specified as target by

the user, while the remainder are referred as background. The ground atoms in the mega-

examples for the target predicates correspond to as many queries Qi for which the BDDs are

built, encoding the disjunction of their explanations; these atoms will be referred afterwards

as (target) examples. The mega-examples must contain also negative atoms for target predi-

cates, expressed as neg(atom). These predicates are called target or output since EM tries

to maximize the conditional log-likelihood only for the positive and negative facts of those

predicates.

The predicates can be treated as closed-world or open-world. In the first case, the body

of clauses is resolved only with facts in the mega-example. In the second case, the body of

clauses is resolved both with facts and with clauses in the theory. If the latter option is set
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and the program is cyclic (see Def. 20), EMBLEM uses a depth bound on SLD-derivations to

avoid going into infinite loops, as proposed by (Gutmann et al., 2010a), withD the value of the

bound: derivations exceeding the limit D are cut.

Definition 20 (Acyclic programs) A level mapping for a program T is a function
| |: HB(T )→ N of ground atoms to natural numbers. For A ∈ HB(T ) | A | is the level of A.

Given a level mapping | |, we extend it to ground negative literals by defining | ¬A |=| A |.

• A clause of T is called acyclic with respect to a level mapping | |, if for every ground
instance A ← B of it, the level of A is greater then the level of each literal in the body
B.

• A program T is called acyclic with respect to a level mapping | |, if all its clauses are. T
is called acyclic if it is acyclic with respect to some level mapping.

We extend this definition to LPADs by requiring that the level of each atom in the head is

greater than the level of each literal in the body. This ensures that each instance of the LPAD

is an acyclic logic program.

Example 25 Consider the program T that defines the predicate path/2 such that path(x, y)
is true if there is a path from x to y in a directed graph. Such a program contains the clauses

path(X,Y )← edge(X,Y ).

path(X,Y )← edge(X,Z), path(Z, Y ).

plus a set E of ground facts for the edge/2 relation that represent the edges between nodes of
the graph. path/2 defines the transitive closure of edge/2.
Suppose E contains the only fact edge(a, b). This program is not acyclic because it contains
the ground rule

path(a, a)← edge(a, a), path(a, a).

that imposes the contradictory constraint |path(a, a)| > |path(a, a)|.

The search for proofs of a query Q is performed in practice by employing SLD-resolution

in Prolog, against a database composed of the mega-examples. The paths from the root to

individual leaves of the SLD-tree represent either a successful or a failed proof. Each successful

proof in the SLD-tree has a set of clauses (and head atoms) employed in that proof, represented

by a covering set of explanations, that is independent of other clauses in the LPAD. The set

of composite choices leading to successful proofs is graphically represented as the set of paths

from the root the the 1-leaf of a BDD.
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Program transformation into a BDD For generating the BDD for a query (example) Q the

algorithm “Probabilistic Inference with Tabling and Answer subsumption” (PITA) (Riguzzi

and Swift, 2010) is applied, which builds explanations for every subgoal encountered during a

derivation of the query. The input LPAD is transformed into a normal logic program in which

the subgoals have an extra argument storing a BDD that represents their explanations.

The first step of the algorithm is to apply a program transformation to a LPAD to create a

normal program that contains calls for manipulating BDDs. In the implementation, these calls

provide a Prolog interface to the CUDD1 C library, where BDDs are represented as pointers to

their root node, and use the following predicates:

• init, end: for allocation and deallocation of a BDD manager, a data structure used to keep

track of the memory for storing BDD nodes;

• zero(-BDD), one(-BDD), and(+BDD1,+BDD2,-BDDO), or(+BDD1,+BDD2, -BDDO),

not(+BDDI,-BDDO): Boolean operations between BDDs;

• add_var(+NVal,+Probs,-Var): addition of a new multi-valued variable with NVal values

and parameters Probs;

• equality(+Var,+Value,-BDD): BDD represents V ar = V alue, i.e., the random variable

V ar is assigned V alue in the BDD;

• ret_prob(+BDD,-P): returns the probability of the formula encoded by BDD.

add_var(+NVal,+Probs,-Var) adds a new random variable associated with a new instan-

tiation of a rule with NV al head atoms and parameters list Probs. The auxiliary predicate

get_var_n/4 is used to wrap add_var/3 and avoid adding a new variable when one already ex-

ists for an instantiation. As shown below, a new fact var(R,S,Var) is asserted each time a new

random variable is created, where R is an identifier for the LPAD rule, S is a list of constants,

one for each variable of the clause, and V ar is a integer that identifies the random variable

associated with clause R under a specific grounding. The auxiliary predicate has the following

definition:

get_var_n(R,S, Probs, V ar)← (var(R,S, V ar)→ true;

length(Probs, L), add_var(L,Probs, V ar), assert(var(R,S, V ar))).

1http://vlsi.colorado.edu/~fabio/
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where Probs is a list of real numbers that stores the parameters in the head of rule R. R,S and

Probs are input arguments while V ar is an output argument.

The transformation applies to clauses, literals and atoms:

• If h is an atom, PITAh(h) is h with the variable BDD added as the last argument;

• If bj is an atom, PITAb(bj) is bj with the variable Bj added as the last argument.

• If bj is negative literal ¬aj , PITAb(bj) is the conditional

(PITA′b(aj)→ not(BNj , Bj); one(Bj)), where PITA′b(aj) is aj with the

variable BNj added as the last argument; the BDD BNj for a is negated if it exists (i.e.

PITA′b(aj) succeeds); otherwise the BDD for the constant function 1 is returned.

• A non-disjunctive fact Cr = h is transformed into the clause

PITA(Cr) = PITAh(h)← one(BDD).

• A disjunctive fact Cr = h1 : Π1; . . . ;hn : Πn. where the parameters sum to 1, is

transformed into the set of clauses PITA(Cr)
PITA(Cr, 1) = PITAh(h1)← get_var_n(r, [], [Π1, . . . ,Πn], V ar),

equality(V ar, 1, BDD).
. . .
P ITA(Cr, n) = PITAh(hn)← get_var_n(r, [], [Π1, . . . ,Πn], V ar),

equality(V ar, n,BDD).

When the parameters do not sum to one, the clause is first transformed into h1 : Π1∨. . .∨

hn : Πn∨null : 1−
n

1 Πi and then into the clauses above, where the list of parameters

is [Π1, . . . ,Πn, 1−
n

1 Πi] but the (n + 1)-th clause (for null) is not generated.

• The definite clause Cr = h← b1, b2, . . . , bm. is transformed into the clause
PITA(Cr) = PITAh(h)← PITAb(b1), P ITAb(b2), and(B1, B2, BB2),

..., P ITAb(bm), and(BBm−1, Bm, BDD).

• The disjunctive clause Cr = h1 : Π1; . . . ;hn : Πn ← b1, b2, . . . , bm.

where the parameters sum to 1, is transformed into the set of clauses PITA(Cr)
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PITA(Cr, 1) = PITAh(h1)← PITAb(b1), P ITAb(b2), and(B1, B2, BB2),
...,
P ITAb(bm), and(BBm−1, Bm, BBm),
get_var_n(r, V C, [Π1, ...,Πn], V ar),
equality(V ar, 1, B), and(BBm, B,BDD).

. . .
P ITA(Cr, n) = PITAh(hn)← PITAb(b1), P ITAb(b2), and(B1, B2, BB2),

...,
P ITAb(bm), and(BBm−1, Bm, BBm),
get_var_n(r, V C, [Π1, ...,Πn], V ar),
equality(V ar, n,B), and(BBm, B,BDD).

where V C is a list containing each variable appearing in Cr. If the parameters do not

sum to 1, the same technique used for disjunctive facts is used.

In order to answer queries, the goal solve(Goal, P ) is used, which is defined for the cases

a depth D is used or not to derive the goal:
solve(Goal, P )← init, retractall(v(_, _, _)),

add_bdd_arg(Goal,BDD0, GoalOut),
(bagof(BDD0, GoalOut, L)→ or_list(L,BDD); zero(BDD)),
ret_prob(BDD,P ),
end.

solve(Goal, P )← init, setting(depth_bound, true), !,
setting(depth,DB), retractall(v(_, _, _)),
add_bdd_arg_db(Goal,BDD0, DB,GoalOut),
(bagof(BDD0, GoalOut, L)→ or_list(L,BDD); zero(BDD)),
ret_prob(BDD,P ),
end.

Example 26 Clause C1 from the LPAD of Example 21 is translated into
eruption(BDD) ← sudden_energy_release(B1), fault_rupture(X,B2),

and(B1, B2, BB2),

get_var_n(1, [X], [0.6, 0.3, 0.1], V ar),

equality(V ar, 0, B), and(BB2, B,BDD).

earthquake(BDD) ← sudden_energy_release(B1), fault_rupture(X,B2),

and(B1, B2, BB2),

get_var_n(1, [X], [0.6, 0.3, 0.1], V ar),

equality(V ar, 1, B), and(BB2, B,BDD).

Clause C2 is translated into
sudden_energy_release(BDD) ← get_var_n(2, [], [0.7, 0.3], V ar),

equality(V ar, 0, BDD).
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Clause C3 is translated into

fault_rupture(southwest_northeast,BDD) ← one(BDD).

EM Cycle

After building the BDDs for each target example Q, EMBLEM starts the EM cycle, in which the

steps of Expectation and Maximization are repeated until the LL of the examples reaches a local

maximum or a maximum number of steps (NEM ) is reached. EMBLEM is shown in Algorithm

2, where with Theory we mean the LPAD program: it consists of a cycle where the procedures

EXPECTATION and MAXIMIZATION are repeatedly called; procedure EXPECTATION returns

the LL of the data that is used in the stopping criterion. EMBLEM stops when the difference

between the LL of the current and the previous iteration drops below a threshold ϵ or when this

difference is below a fraction δ of the current LL.

Algorithm 2 Function EMBLEM
1: function EMBLEM(Theory,D,NEM, ϵ, δ)
2: Build BDDs by SLD derivations with depth bound D

3: LL = −inf
4: N = 0

5: repeat ◃ Start of EM cycle
6: LL0 = LL

7: LL = EXPECTATION(BDDs)
8: MAXIMIZATION

9: N = N + 1

10: until LL− LL0 < ϵ ∨ LL− LL0 < −LL · δ ∨N > NEM

11: Update parameters of Theory

12: return LL, Theory

13: end function

Expectation Step

The Expectation phase (see Algorithm 3) takes as input a list of BDDs, one for each target fact

Q, and computes the probabilities P (Xijk = x|Q) for all Cis, k = 1, . . . , ni − 1, j ∈ g(i) :=
{j|θj is a substitution grounding Ci} and x ∈ {0, 1}. From P (Xijk = x|Q) one can compute

the expectations E[cik0|Q] and E[cik1|Q] where cikx is the number of times a Boolean variable

Xijk takes value x for x ∈ {0, 1} and for all j ∈ g(i). i.e, the ground head hik has been used

(1) or not (0) in a proof. E[cikx|Q] is given by

E[cikx|Q] =

j∈g(i)

P (Xijk = x|Q)
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Finally, the expectations E[cik0] and E[cik1] of the counts over all queries are computed as

E[cikx] =

Q

E[cikx|Q]

Algorithm 3 Function Expectation
1: function EXPECTATION(BDDs)
2: LL = 0

3: for all BDD ∈ BDDs do
4: for all i ∈ Rules do
5: for k = 1 to ni − 1 do
6: η0(i, k) = 0; η1(i, k) = 0

7: end for
8: end for
9: for all variables X do

10: ς(X) = 0

11: end for
12: GETFORWARD(root(BDD))
13: Prob=GETBACKWARD(root(BDD))
14: T = 0

15: for l = 1 to levels(BDD) do
16: Let Xijk be the variable associated with level l
17: T = T + ς(l)

18: η0(i, k) = η0(i, k) + T × (1− πik)

19: η1(i, k) = η1(i, k) + T × πik

20: end for
21: for all i ∈ Rules do
22: for k = 1 to ni − 1 do
23: E[cik0] = E[cik0] + η0(i, k)/Prob

24: E[cik1] = E[cik1] + η1(i, k)/Prob

25: end for
26: end for
27: LL = LL+ log(Prob)

28: end for
29: return LL

30: end function

The conditional probability P (Xijk = x|Q) is given by P (Xijk=x,Q)
P (Q) (cf. Section 6.4),

where

P (Xijk = x,Q) =


wσ∈WP :wσ |=Q

P (Q,Xijk = x, σ)

=


wσ∈WP :wσ |=Q

P (Q|σ)P (Xijk = x|σ)P (σ)

=


wσ∈WP :wσ |=Q

P (Xijk = x|σ)P (σ)
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Now suppose only the merge rule is applied when building the BDD, fusing together iden-

tical sub-diagrams. The resulting diagram, that we call Complete Binary Decision Diagram

(CBDD), is such that every path contains a node for every level.

Since there is a one to one correspondence between the instances whereQ is true (wσ |= Q)

and the paths to a 1 leaf in a CBDD,

P (Xijk = x,Q) =


ρ∈R(Q)

P (Xijk = x|ρ)

d∈ρ

π(d)

where ρ is a path, R(Q) is the set of paths in the CBDD for query Q that lead to a 1 leaf and,

if the selection σ corresponds to ρ, then P (Xijk = x|σ) = P (Xijk = x|ρ). d is an edge of

ρ and π(d) is the probability associated with the edge: if d is the 1-branch outgoing of a node

associated with a variable Xijk, then π(d) = πik, if d is the 0-branch, then π(d) = 1 − πik.

See subsection 9.2 for the definition of πik.

Given a path ρ ∈ R(Q), P (Xijk = x|ρ) = 1 if ρ contains an x-branch from a node

associated with variable Xijk and 0 otherwise, so P (Xijk = x,Q) can be further expanded as

P (Xijk = x,Q) =


ρ∈R(Q)∧(Xijk=x)∈ρ


d∈ρ

π(d)

where (Xijk = x) ∈ ρ means that ρ contains an x-branch from the node associated with Xijk.

We can then write

P (Xijk = x,Q) =


n∈N(Q)∧v(n)=Xijk∧ρn∈Rn(Q)∧ρn∈Rn(Q,x)


d∈ρn

π(d)

d∈ρn

π(d)

where N(Q) is the set of BDD nodes for query Q, v(n) is the variable associated with node n,

Rn(Q) is the set containing the paths from the root to n and Rn(Q, x) is the set of paths from

n to the 1 leaf through its x-child. So

P (Xijk = x,Q) =


n∈N(Q)∧v(n)=Xijk


ρn∈Rn(Q)


ρn∈Rn(Q,x)


d∈ρn

π(d)

d∈ρn

π(d)

=


n∈N(Q)∧v(n)=Xijk


ρn∈Rn(Q)


d∈ρn

π(d)


ρn∈Rn(Q,x)


d∈ρn

π(d)

=


n∈N(Q)∧v(n)=Xijk

F (n)B(childx(n))πikx (10.3)
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where πikx is πik if x = 1 and (1− πik) if x = 0,

F (n) =


ρn∈Rn(Q)


d∈ρn

π(d)

is the forward probability (Ishihata et al., 2008b), the probability mass (i.e., sum of the proba-

bilities) of the paths from the root to n, and

B(n) =


ρn∈Rn(Q)


d∈ρn

π(d)

is the backward probability (Ishihata et al., 2008b), the probability mass of paths from n to the

1 leaf.

The intuitive meaning of equation (10.3) is the following. Each path from the root of the

BDD to the 1 leaf corresponds to an assignment of values to the variables that satisfies the

Boolean formula represented by the BDD. The expression F (n)B(childx(n))πikx represents

the sum of the probabilities of all the paths passing through the x-edge of node n. In every

node n, the backward probability is the probability that starting from n one will reach the 1

leaf and represents the probability that the logical formula encoded by the sub-BDD rooted at

n is true; the forward probability is the probability that starting at the root one will reach n.

Hence in equation (10.3) we compute the probability that a person starting at the root reaches

n, and ends up in the 1 leaf when leaving n through the x child.

By indicating with ex(n) the product in equation (10.3) we get

P (Xijk = x,Q) =


n∈N(Q),v(n)=Xijk

ex(n) (10.4)

The counts of equation (10.4) are stored in the variables ηx(i, k) for x ∈ {0, 1} in Algorithm

5, i.e., in the end ηx(i, k) contains 
j∈g(i)

P (Xijk = x,Q).

Formula (10.4) is correct only for CBDDs, while for BDDs - generated by applying also

the deletion rule - it is no longer valid since also paths where there is no node associated to

Xijk can contribute to P (Xijk = x,Q): the contribution of deleted paths must be taken into

account. Suppose that levels are numbered in increasing order from top to bottom and that a

node n is associated with variable Y , that has a level lower than variable Xijk, and child1(n)

is associated with variable W , that has a level higher than variable Xijk. The nodes associated
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with variable Xijk have been deleted from the paths from n to child1(n). In Figure 9.1b this

happens with n = n1, Y = X111, Xijk = X121, child1(n) = n3, W = X211: the path

connecting n1 to n3 does not contain a node at the level of X121. One can imagine that the

current BDD has been obtained from a BDD having a node m associated with variable Xijk

that is a descendant of n along the 1-branch and whose outgoing edges both point to child1(n).

The original BDD can be reobtained by applying a deletion operation that merges the two paths

passing throughm. The probability mass of the two paths that were merged was e0(n)(1−πik)

and e0(n)πik for the paths passing through the 0-child and 1-child of m respectively.

Formally, let Delx(X) be the set of nodes n such that the level of X is higher than that

of n and is lower that of childx(n), i.e., X is deleted between n and childx(n). For the BDD

in Figure 9.1b, for example, Del1(X121) = {n1}, Del0(X121) = {}, Del1(X221) = {},

Del0(X221) = {n2}. Then

P (Xijk = 0, Q) =


n∈N(Q),v(n)=Xijk

ex(n) +

(1− πik)

 
n∈Del0(Xijk)

e0(n) +


n∈Del1(Xijk)

e1(n)


P (Xijk = 1, Q) =


n∈N(Q),v(n)=Xijk

ex(n) +

πik

 
n∈Del0(Xijk)

e0(n) +


n∈Del1(Xijk)

e1(n)


EXPECTATION Function (Algorithm 3) This function first calls GETFORWARD and GET-

BACKWARD and computes ηx(i, k) for non-deleted paths only. Then it updates ηx(i, k) to take

into account deleted paths.

Procedure GETFORWARD, shown in Algorithm 4, computes the value of the forward prob-

abilities. It traverses the diagram one level at a time starting from the root level and propagating

the values downwards. For each level it considers each node n and computes its contribution to

the forward probabilities of its children. Then the forward probabilities of its children, stored

in table F , are updated.

Forward probabilities express the likelihood of reaching a node n when starting from the

root node and following edges according to their probability. It is defined as F (root) = 1 for
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the root node of the BDD. For any other node it is defined as:

F (n) =


p∈Nodes
n=child1(p),var(p)=Xijk

F (p) · πik +


p∈Nodes
n=child0(p),var(p)=Xijk

F (p) · (1− πik).

The first sum considers all possible parent nodes p of n connected by a 1-branch. When be-

ing in p one will choose this edge to reach n with probability πik; the second sum considers all

possible parent nodes that are linked to n by a 0-branch, which will be chosen with probability

1− πik. At the beginning F (n) is 0 for all nodes n except the root.

Function GETBACKWARD, shown in Algorithm 5, computes the backward probability of

nodes by traversing recursively the tree from the root to the leaves. When the calls of GET-

BACKWARD for both children of a node n return, values are propagated upwards from the

leaves,and we have all the information that is needed to compute the ex(n) values and update

the values of ηx(i, k) for non-deleted paths.

The backward probabilities express the likelihood of reaching the 1 leaf when starting from

a particular node n and proceeding to the high child child1(n) with probability πik and to the

low child child0(n) with probability 1− πik. For the terminal nodes they are defined as

B(0) = 0 B(1) = 1,

and for inner nodes, as

B(n) = B(child1(n)) · πik +B(child0(n)) · (1− πik).

Computing the forward and the backward probabilities of BDD nodes requires two traver-

sals of the graph, so the cost is linear in the number of nodes. If root is the root of a tree for

a query Q then B(root) = P (Q), i.e., the backward probability at the root node corresponds

to the probability of the query, as was computed by Algorithm 1 in subsection 9.2. P (Q) is

needed to compute P (Xijk = x|Q). Moreover, P (Q) = F (1) and 1− P (Q) = F (0).

Finally the problem of deleted paths is solved, as in (Ishihata et al., 2008a), by keeping an

array ς with an entry for every level l, that stores an algebraic sum of ex(n): those for nodes in

lower levels that do not have a descendant in level l minus those for nodes in lower levels that

have a descendant in level l. In this way it is possible to add the contributions of the deleted

paths by starting from the root level and accumulating ς(l) for the various levels in a variable

T : an ex(n) value which is added to the accumulator T for level l means that n is an ancestor

for nodes in this level. When the x-branch from n reaches a node in a level l′ such that l′ ≥ l,
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ex(n) is subtracted from the accumulator, as it is not relative to a deleted node on the path

anymore. This is implemented in a post processing phase in Algorithm 3.

Algorithm 4 Computation of the forward probability F (n) in all BDD nodes n.
1: procedure GETFORWARD(root)
2: F (root) = 1

3: F (n) = 0 for all nodes
4: for l = 1 to levels do ◃ levels is the number of levels of the BDD rooted at root
5: Nodes(l) = ∅
6: end for
7: Nodes(1) = {root}
8: for l = 1 to levels do
9: for all node ∈ Nodes(l) do

10: Let Xijk be v(node), the variable associated with node

11: if child0(node) is not terminal then
12: F (child0(node)) = F (child0(node)) + F (node) · (1− πik)
13: Add child0(node) to Nodes(level(child0(node))) ◃ level(node) returns the level of node
14: end if
15: if child1(node) is not terminal then
16: F (child1(node)) = F (child1(node)) + F (node) · πik

17: Add child1(node) to Nodes(level(child1(node)))

18: end if
19: end for
20: end for
21: end procedure

Execution Example

Suppose you have the program of Example 21 and you have the single exampleQ = eruption.

The BDD of Figure 9.1b is built and passed to EXPECTATION in the form of a pointer to its

root node n1. F and B values computed by this function are shown in Figure 10.1.

After initializing the η counters to 0, GETFORWARD is called with argument n1. The F

table for n1 is set to 1 since this is the root. F is computed for the 0-child, n2, as 0+1·0.4 = 0.4

and n2 is added to Nodes(2), the set of nodes for the second level. Then F is computed for

the 1-child, n3, as 0 + 1 · 0.6 = 0.6, and n3 is added to Nodes(3). At the next iteration of the

cycle, level 2 is considered and node n2 is fetched from Nodes(2). The 0-child is a terminal

so it is skipped, while the 1-child is n3 and its F value is updated as 0.6 + 0.4 · 0.6 = 0.84. In

the third iteration, node n3 is fetched but, since its children are leaves, F is not updated.

Then GETBACKWARD is called on n1. The function calls GETBACKWARD(n2) that in

turn calls GETBACKWARD(0). The latter call returns 0 because it is a terminal node. Then

GETBACKWARD(n2) calls GETBACKWARD(n3) that in turn calls GETBACKWARD(1) and
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Algorithm 5 Computation of the backward probability B(n) in all BDD nodes n, updating of
η and ς .
1: function GETBACKWARD(node)
2: if node is a terminal then
3: return value(node)

4: else
5: Let Xijk be v(node)

6: B(child0(node)) =GETBACKWARD(child0(node))
7: B(child1(node)) =GETBACKWARD(child1(node))
8: e0(node) = F (node) ·B(child0(node)) · (1− πik)

9: e1(node) = F (node) ·B(child1(node)) · πik

10: η0(i, k) = η0t (i, k) + e0(node)

11: η1(i, k) = η1t (i, k) + e1(node)

12: l = l(node)) ◃ l(node) returns the level of node
13: ς(l + 1) = ς(l + 1) + e0(node) + e1(node)

14: ς(l(child0(node))) = ς(l(child0(node)))− e0(node)

15: ς(l(child1(node))) = ς(l(child1(node)))− e1(node)

16: return B(child0(node)) · (1− πik) +B(child1(node)) · πik

17: end if
18: end function

GETBACKWARD(0), returning respectively 1 and 0. Then GETBACKWARD(n3) computes

e0(n3) and e1(n3) in the following way:

e0(n3) = F (n3) ·B(0) · (1− π21) = 0.84 · 0 · 0.3 = 0

e1(n3) = F (n3) ·B(1) · (π21) = 0.84 · 1 · 0.7 = 0.588

whereB(n) and F (n) are respectively the backward and forward probabilities of node n. Now

the counters for clause C2 are updated:

η0(2, 1) = 0

η1(2, 1) = 0.588

while we do not show the update of ς since its value for the level of the leaves is not used

afterwards. GETBACKWARD(n3) now returns the backward probability of n3:

B(n3) = 1 · 0.7 + 0 · 0.3 = 0.7. GETBACKWARD(n2) can proceed to compute

e0(n2) = F (n2) ·B(0) · (1− π11) = 0.4 · 0.0 · 0.4 = 0

e1(n2) = F (n2) ·B(n3) · (π11) = 0.4 · 0.7 · 0.6 = 0.168

and η0(1, 1) = 0, η1(1, 1) = 0.168. The level following the one of X121 is 3 so ς(3) =

e0(n2) + e1(n2) = 0 + 0.168 = 0.168. Since X121 is also associated with the 1-child n3,

ς(3) = ς(3)− e1(n2) = 0. The 0-child is a leaf so we do not show the update of ς .

GETBACKWARD(n2) then returns B(n2) = 0.7 · 0.6 + 0 · 0.4 = 0.42 to GETBACK-

WARD(n1), that computes e0(n1) and e1(n1) as
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e0(n1) = F (n1) ·B(n2) · (1− π11) = 1 · 0.42 · 0.4 = 0.168

e1(n1) = F (n1) ·B(n3) · (π11) = 1 · 0.7 · 0.6 = 0.42

and updates the η counters as η0(1, 1) = 0.168, η1(1, 1) = 0.168 + 0.42 = 0.588.

Finally ς is updated:

ς(2) = e0(n1) + e1(n1) = 0.168 + 0.42 = 0.588

ς(2) = ς(2)− e0(n1) = 0.42

ς(3) = ς(3)− e1(n1) = −0.42.
GETBACKWARD(n1) returns B(n1) = 0.7 · 0.6 + 0.42 · 0.4 = 0.588 to EXPECTATION,

that adds the contribution of deleted nodes by cycling over the BDD levels and updating T .

Initially T is set to 0, then for level 1/variable X111 it is updated to T = ς(1) = 0 which

implies no modification of η0(1, 1) and η1(1, 1). For level 2/variable X121 T is updated to

T = 0 + ς(2) = 0.42 and the η table is modified as

η0(1, 1) = 0.168 + 0.42 · 0.4 = 0.336

η1(1, 1) = 0.588 + 0.42 · 0.6 = 0.84.

For level 3/variable X211 T becomes 0.42+ ς(3) = 0 so η0(2, 1) and η0(2, 1) are not updated.

At this point the expected counts for the two rules can be computed:

E[c110] = 0 + 0.336/0.588 = 0.5714285714

E[c111] = 0 + 0.84/0.588 = 1.4285714286

E[c120] = 0

E[c121] = 0

E[c210] = 0 + 0/0.588 = 0

E[c211] = 0 + 0.588/0.588 = 1.

X111 n1
F = 1

B = 0.588

0.6

0.4

X121 n2
F = 0.4

B = 0.42

0.6

0.4X211 n3
F = 0.84

B = 0.7

0.7

0.3

1
F = 0.588

B = 1
0

F = 0.412

B = 0

Figure 10.1: Forward and Backward probabilities for Example 3. F indicates the Forward proba-
bility and B the Backward probability of each node n.
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Maximization Step

In the Maximization phase (see Algorithm 6), the πik parameters are computed for all rules Ci

and k = 1, . . . , ni − 1 as

πik =
E[cik1]

E[cik0] +E[cik1]

for the next EM iteration.

Algorithm 6 Procedure Maximization
1: procedure MAXIMIZATION

2: for all i ∈ Rules do
3: for k = 1 to ni − 1 do
4: πik =

E[cik1]
E[cik0]+E[cik1]

5: end for
6: end for
7: end procedure

10.3 Related Work

Binary Decision Diagrams

The use of Binary Decision Diagrams for probabilistic logic programming inference is related

to their use for performing inference in Bayesian Networks. (Minato et al., 2007) presented a

method for compiling BNs into exponentially-sized Multi-Linear Functions using a compact

Zero-suppressed BDD representation. (Ishihata et al., 2011) compiled a BN with multiple

evidence sets into a single Shared BDD, which shares common sub-graphs in multiple BDDs.

(Darwiche, 2004) described an algorithm for compiling propositional formulas in conjunctive

normal form into Deterministic Decomposable Negation Normal Form (d-DNNF) - a tractable

logical form for model counting in polynomial time - with techniques from the Ordered BDD

literature.

(Ishihata et al., 2008a,b) proposed an EM algorithm for learning the parameters of Boolean

random variables given observations of a Boolean function over them, represented by a BDD.

EMBLEM is an application of that algorithm to probabilistic logic programs. (Inoue et al., 2009)

applies the algorithm of (Ishihata et al., 2008a,b) to the problem of computing the probabilistic

parameters of abductive explanations.
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Parameter Learning in Probabilistic Logic Languages

The approaches for learning probabilistic logic programs can be classified into three categories:

those that employ constraint techniques, those that use EM and those that adopt gradient de-

scent.

In the first class, (Riguzzi, 2004, 2007a, 2008) learn a subclass of ground programs by first

finding a large set of clauses satisfying certain constraints and then applying mixed integer

linear programming to identify a subset of the clauses that form a solution.

The following works fall into the second category.

(Thon et al., 2008) proposed an EM algorithm which computes expectations over decision

diagrams; it learns parameters for the CPT-L language, a simple probabilistic logic language

for describing sequences of relational states, that is less expressive than LPADs.

In (Koller and Pfeffer, 1997) the authors start out with a knowledge base consisting of

partially specified first-order probabilistic logic rules with probabilistic parameters unknown;

given a set of data cases they use a standard KBMC (Knowledge-Based Model Construction)

algorithm to generate the network structure for each case. The conditional probability tables in

the resulting networks are related to the parameters corresponding to the rules in the knowledge

base. They use an extension to the standard EM algorithm for learning the parameters of these

belief networks with fixed structure and hidden variables.

PRISM is a probabilistic logic (Sato, 1995; Sato and Kameya, 2001) introduced to im-

prove the efficiency of the inference procedure under the distribution semantics, by imposing

restrictions on the language. The same philosophy was followed by Probabilistic Horn Ab-

duction (PHA) (Poole, 1993) and the Independent Choice Logic (ICL) (Poole, 1997). The key

assumption is that the explanations for a goal are mutually exclusive, which overcomes the

disjoint-sum problem. If the different explanations of a fact do not overlap, then its probability

is simply the sum of the probabilities of its explanations.

In addition, PHA, ICL and PRISM employ disjoint statements of the form

disjoint(p1 : a1; . . . ; pn : an), where the ai are atoms for a particular predicate, and the pi
probability values that sum up to 1. For instance, the statement

disjoint(0.3 : gene(P, a); 0.15 : gene(P, b); 0.55 : gene(P, o))←

states that 1) the probabilities that (an instance) of the corresponding fact for gene is true, and

2) an atom of the form gene(P,X) instantiates to exactly one of these options.
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The PRISM system is one of the first learning algorithms based on EM: it exploits logic pro-

gramming techniques for computing expectations.

Causal Probabilistic Logic (CP− logic) (Vennekens et al., 2009) is a probabilistic mod-

eling language that is especially designed for representing causal relations. A CP-theory is a

set of CP-events or rules of the same form of LPADs, hence these two languages are syntacti-

cally equivalent but define their semantics quite differently. (Blockeel and Meert, 2007; Meert

et al., 2007, 2008) proposed to use the EM algorithm to induce parameters of ground CP-Logic

theories, which works on the underlying Bayesian network.

Relational Information Bottleneck (RIB) (Riguzzi and Di Mauro, 2012) is an algorithm

that learns the parameters of SRL languages reducible to Bayesian Networks. In particular, it is

presented by the authors the specialization of RIB to LPADs, so this system will be compared to

EMBLEM in the next Section relative to experiments. Since the resulting network involve hidden

variables, the use of techniques for learning from incomplete data such as the Expectation

Maximization algorithm is required. RIB has shown good performances especially when some

logical atoms are unobserved and is particularly suitable when learning from interpretations

that share the same Herbrand base.

CEM is an implementation of EM based on the cplint inference library (Riguzzi,

2007b, 2009); this library allows to compute the probability of LPADs and CP-logic queries

by using BDDs, when the program in one of these languages is acyclic. This system will be

compared to EMBLEM in the next experimental Section.

ProbLog is a probabilistic extension of Prolog where some probabilistic facts f are la-

beled with a probability value. This value indicates the degree of belief, that is the probability

that any ground instance fθ of f is true. It is also assumed that the fθ are marginally indepen-

dent. The probabilistic facts are then augmented with a set of definite clauses defining further

predicates (which should be disjoint from the probabilistic ones). An example is the program:
0.9 : edge(a, c).
0.6 : edge(d, c).
0.9 : edge(d, b).
0.7 : edge(c, b).
path(X,Y )← edge(X,Y ).
path(X,Y )← edge(X,Z), path(Z, Y ).

which specifies, with the first probabilistic fact, that with probability 0.9 there is an edge from

a to c.

(Gutmann et al., 2011) presented the LFI-ProbLog algorithm that performs EM for learning
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the parameters of a ProbLog program. EMBLEM differs from this work in the construction

of BDDs: while they build a BDD for an interpretation we focus on a target predicate, the

one for which we want to obtain good predictions, and we build BDDs starting from atoms

for the target predicate. Moreover, while we compute the contributions of deleted paths with

the ς table, LFI-ProbLog treats missing nodes as if they were there and updates the counts

accordingly. This system will be compared with EMBLEM in the next experimental Section.

Among the works that use a gradient descent technique, LeProbLog (Gutmann et al.,

2010a, 2008) is a system developed again for ProbLog language. It starts from a set of queries

annotated with a probability and from a ProbLog program. It tries to find the values of the

parameters of the program that minimize the mean squared error of the probabilities of the

queries. LeProbLog uses the Binary Decision Diagrams that represent the queries to compute

the gradient.

Markov Logic Networks A different approach is taken by Markov Logic (Richardson and

Domingos, 2006), that combines first-order logic with Markov networks. The idea is to view

logical formulae as soft constraints on the possible worlds. The more formulae a world satisfies,

the more likely it becomes. In a Markov logic network (MLN), this is realized by associating a

weight with each formula that reflects how strong the constraint is, for example:
1.5 : cancer(P )← smoking(P )
1.1 : smoking(X)← friends(X,Y ), smoking(Y )
1.1 : smoking(Y )← friends(X,Y ), smoking(X)

The first clause states the soft constraint that smoking causes cancer. So, interpretations in

which persons that smoke have cancer are more likely than those where they do not (under

the assumptions that other properties remain constant). Note that, with respect to all previous

probabilistic languages, Markov Logic attaches to formulae weights, which are not probabili-

ties but reflect how a world is probable depending on the number of formulae that it violates.

For MLNs, Alchemy is a state-of-the-art system that offers various tools for inference, weight

learning and structure learning of MLNs. (Lowd and Domingos, 2007) discusses how to per-

form weight learning by applying gradient descent of the conditional likelihood of queries for

target predicates. This system will be compared with EMBLEM in the next experimental Sec-

tion.

101



10.4 Experiments

The experiments are directed at verifying:

• the quality of the estimated parameters

• the algorithm performance in comparison with other state of the art SRL systems.

In the following a description of the datasets and performance evaluation metrics used is

provided.

Datasets

The Internet Movie DataBase (Mihalkova and Mooney, 2007)1 contains five mega-examples,

each of which describes four movies, their directors, and the first-billed actors who appear in

them. Each director is ascribed genres based on the genres of the movies he or she directed.

The ‘gender’ predicate is used to state the genders of actors.

Cora (McCallum et al., 2000) is a collection of 1295 different citations to 112 computer

science research papers from the Cora Computer Science Research Paper Engine. We used the

version of the dataset of (Singla and Domingos, 2005)2. For each citation we know the title,

authors, venue and the words that appear in it. The dataset encodes a problem of information

integration from multiple sources and in particular an entity resolution problem: citations of the

same paper often appear differently and the task is to determine which citations are referring

to the same paper. The database is composed of five mega-examples and contains facts for the

predicates samebib(Citation1, Citation2), sameauthor(Author1, Author2),

sametitle(Title1, Title2), samevenue(Venue1, Venue2) and

haswordauthor(Author, Word), haswordtitle(Title, Word),

haswordvenue(Venue, Word).

UW-CSE (Richardson and Domingos, 2006)3 records information about the Department of

Computer Science and Engineering at the University of Washington; the domain is described

through 10 types, that include: publication, person, course, project, academic quarter, etc.

Instead, predicates include: professor(Person), student(Person), area(X, Area) (with X

ranging over publications, persons, courses and projects), publication(Title, Person),

1Available at http://alchemy.cs.washington.edu/data/imdb.
2Available at http://alchemy.cs.washington.edu/data/cora.
3Available at http://alchemy.cs.washington.edu/data/uw-cse.
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advisedBy(Person, Person), yearsInProgram(Person, Years),

courseLevel(Course, Level), taughtBy(Course, Person, Quarter), etc. Additionally,

there are some equality predicates: samePerson(Person, Person),

sameCourse(Course, Course), etc. which always have known, fixed values that are true iff

the two arguments are the same constant. Here the problem is one of link prediction, as we

wish to infer the truth of advisedBy(Person, Person). The database is split into five mega-

-examples, each with data for a particular departmental area (AI, graphics, programming lan-

guages, systems and theory).

WebKB (Craven and Slattery, 2001)1 consists of labeled web pages from the Computer

Science departments of four universities, along with the words on the web pages and the links

among them. We used the same set of training examples of (Craven and Slattery, 2001) which

differs from the one used in (Gutmann et al., 2011; Lowd and Domingos, 2007). The dataset

is split into four mega-examples, one for each university. Each web page is labeled with some

subset of the following categories: student, faculty, research project and course. This dataset

may be seen as a text classification problem, since we wish to infer the page’s class given the

information about words and links.

MovieLens (Herlocker et al., 1999) contains information about movies, users and ratings

that users expressed about movies. We used the version of the dataset of (Khosravi et al.,

2010)2. For each movie the dataset records the genres to which it belongs, by means of predi-

cates of the form <genre>(Movie,

<gen_value>), where< genre > can be either drama, action or horror and gen_value

is either <genre>_0, if the movie does not belong to the genre, or <genre>_1, if the movie

belongs to the genre. Users’ age, gender and occupation are recorded. Ratings from users

on the movies range from 1 to 5. This dataset can be used to build a recommender system,

i.e. a system that suggests items of interest to users based on their previous preferences, the

preferences of other users, and attributes of users and items. We split the dataset into five

mega-examples.

Mutagenesis (Srinivasan et al., 1996) contains information about a number of aromatic

and heteroaromatic nitro drugs, including their chemical structures in terms of atoms, bonds

and a number of molecular substructures such as six and five membered rings, benzenes,

phenantrenes and others. The problem here is to predict the mutagenicity of the drugs. The

1Available at http://alchemy.cs.washington.edu/data/webkb.
2Available at http://www.cs.sfu.ca/~oschulte/jbn/dataset.html.
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prediction of mutagenesis is important as it is relevant to the understanding and prediction of

carcinogenesis, and not all compounds can be empirically tested for mutagenesis, e.g. antibi-

otics. Of the compounds, those having positive levels of log mutagenicity are labeled “active”

and constitute the positive examples, the remaining ones are “inactive” and constitute the neg-

ative examples. The data is split into two subsets (188+42 examples). We considered the

first one, composed of 125 positive and 63 negative compounds. We split the dataset into ten

mega-examples.

Estimating Classifier Performance

The recommended procedure for evaluating a Machine Learning algorithm considers:

1. Use of k-fold cross-validation (k=5 or 10) for computing performance estimates;

2. Report of mean values of performance estimates with their standard deviations and 95%

confidence intervals.

1. Use of k-fold cross-validation for computing performance estimates Given a model

with unknown parameters and a data set which the model has to fit (the training data set), the

fitting process optimizes the model parameters to make the model fit the training data as well

as possible. If we then take an independent sample of validation data from the same population

as the training data, it will generally turn out that the model does not fit the validation data as

well as it fits the training data. This is called overfitting, and is particularly likely to happen

when the size of the training data set is small, or when the number of parameters in the model

is large. Cross-validation is a way to predict the fitting of a model to a hypothetical validation

set when an explicit validation set is not available. One round of cross-validation involves

partitioning the data set into complementary subsets, performing the analysis on one subset

(called the training set), and validating the analysis on the other subset (called the validation

set or testing set). To reduce variability, multiple rounds of cross-validation are performed

using different partitions, and the validation results are averaged over the rounds to produce a

single estimation. K-fold cross-validation needs to get k training/validation set pairs as follows:

the dataset is randomly divided into k parts. To get each pair, k-1 parts are combined to form

the training set and the remaining part is the validation set. This is done k times where for each

pair, another of the k parts is left out as the validation set. The advantage of this method over

repeated random sub-sampling is that all observations are used for both training and validation,
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and each observation is used for validation exactly once. 10-fold cross-validation is commonly

used.

2. Report mean values of performance estimates with their standard deviations and 95%

confidence intervals

• Performance estimates. In recent years Receiver Operating Characteristics (ROC) graphs

and Precision Recall (PR) graphs have been increasingly adopted in the machine learning

and data mining research communities, to visualize classifiers performance. In particular,

the Area Under the Curve (AUC) for both the PR curve (AUCPR) and the ROC curve

(AUCROC) are computed to numerically compare performances.

The use of these graphs is widespread when evaluating algorithms that output proba-

bilities of binary class membership values. In our case, the class is given by the target

predicate(s) chosen for each dataset: for instance, for the Cora dataset, the predicate

samebib(citation1,citation2) discriminates ground examples among those

representing the same citation (positive instances) and those representing different ones.

ROC graphs are two-dimensional graphs in which True Positive (TP) rate (also called

recall) is plotted on the Y axis and False Positive (FP) rate is plotted on the X axis.

These rates of a classifier are estimated as:

tp rate =
Positives correctly classified

Total positives

fp rate =
Negatives incorrectly classified

Total negatives

A ROC graph depicts relative trade-offs between benefits (true positives) and costs (false

positives). The AUCROC is equal to the probability that a classifier will rank a randomly

chosen positive instance higher than a randomly chosen negative one. Given two classi-

fiers and their AUCROC, the one with the greater area has better average performance.

The parameter learning algorithms are probabilistic classifiers that output a probability

that each test set example is positive: we can next sort this list in ascending order to rank

the examples from the least positive ones (which are more likely to belong to the negative

class) to the most positive ones (which are more likely to belong to the positive class).

These probabilities give an indication of how likely it is that the positive class label

applies. Such probability estimators are used with a threshold on the output probabilities
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to produce a discrete binary classifier: if their output is above the threshold a Yes is

returned, else a No is returned, and each threshold value produces a different point in

ROC space. One may imagine varying a threshold from 0 to 1 and tracing a curve through

ROC space. Each point in the space represents a specific classifier, with a threshold for

calling an example positive: this means that we have obtained a set of discrete classifiers.

When dealing with highly skewed datasets, Precision-Recall (PR) curves have been

found to give a more informative picture of an algorithm’s performance: when the num-

ber of negative examples greatly exceeds the number of positives examples, a large

change in the number of false positives can lead to a small change in the false posi-

tive rate used in ROC analysis. In PR space one plots Recall on the X axis and Precision

on the Y axis. Precision - defined as Positives correctly classified
True and false positives - by comparing false pos-

itives to true positives rather than true negatives, mitigates the effect of the large number

of negative examples on the algorithm’s performance. Given two algorithms with com-

parable area in ROC space, in PR space one of them can show a clear advantage over the

other by having a larger area.

• 95% Confidence Intervals. They are a common way to describe the uncertainy associated

with an estimate. In this context it is utilized in relation to a paired two-tailed t-test.

A paired t-test is used to compare two population means, where there are two samples in

which observations in one sample can be paired with observations in the other sample.

Examples of where this might occur are: (1) before-and-after observations on the same

subjects; (2) a comparison of two different methods of measurement or two different

treatments where the measurements are applied to the same subjects. The experiments

belong to case (2), where a comparison of different SRL algorithms over the same data

sets is performed: the variations in AUCROC and AUCPR of EMBLEM compared to the

other systems are computed and differences are reported as significant if a two-tailed,

paired t-test produces a p-value less than 0.05.

The null hypothesis is the statement that we want to test, stating, in general, that things

are the same as each other, i.e., the two evaluated methods are equivalent. One has to

take into account that almost certainly some difference in the means, just due to chance,

may appear. So we need to consider “what’s the probability of getting a difference in the

means of a certain value, just by chance, if the null hypothesis is really true”. Only when

that probability is low we can reject the null hypothesis that the two methods (algorithms)
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are equivalent. The goal of statistical hypothesis testing is to estimate the probability of

getting the observed results under the null hypothesis.

Given the pairs i = 1, ..., k from k-fold validation, two classifiers are trained on the

training set and are tested on the validation set, and their errors are recorded as xi, yi,

where x, y indicate the two classifiers. The difference is di = yi − xi; when this is

done k times we have a distribution of di containing k points. For large samples the

corresponding error estimates follow the Normal distribution, and their difference di is

also Normal. The null hypothesis is equivalent to say that this distribution has zero mean:

H0 : µ = 0, while the alternative hypothesis is H1 : µ ̸= 0.

To test the null hypothesis that the mean difference is zero (i.e. the two classifiers have

the same error rate and so are equivalent), the complete procedure is as follows:

– Compute the difference (di) between the two observations in each pair;

– Compute the mean difference, d̄;

– Compute the standard deviation of the differences, sd, and use this to calculate the

standard error of the mean difference, SE(d̄) = sd√
k

;

– Compute the t-statistic T = d̄/SE(d̄); under the null hypothesis that µ = 0, this

statistic follows a t-distribution with k − 1 degrees of freedom;

– Use tables of the t-distribution to compare the value of T to the tα,k−1 distribution

and rejects the null hypothesis if |T | > tα,k−1, with α significance level (see be-

low). The value of α such that |T | = tα,k−1 is the p-value for the paired t-test,

defined as the probability of accepting that the null hypothesis is true. The t-test

has been applied in the experiments to the differences in AUCROC and AUCPR,

i.e, the xi/yi values correspond to the area values computed for each fold i and for

each algorithm.

So for example p = 0.03 is a shorthand way of saying “The probability of accepting the

null hypothesis that the two methods are equivalent, is 0.03; the probability that a method, not

by chance, performs better than the other one, is 1− p”. A convention in most research is used

which sets a significance level α of 0.05. This means that if the probability value p is less than

α, the null hypothesis is rejected and an algorithm is better than another one; such results are

referred to as ‘statistically significant’. If p is greater than or equal to α, the null hypothesis

is accepted. In some situations it is convenient to express the statistical significance as 1 − α:
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this value is called the test confidence, since statistical significance can be considered to be the

confidence one has in a given result. A 95% confidence interval for the true mean difference

is an interval of values that is expected with probability 95% to contain the true difference

(where the true mean difference is likely to lie). Smaller levels of α increase confidence in the

determination of significance, but run an increased risk of failing to reject a false null hypothesis

(false negative determination), and so have less statistical power. Statistical significance is a

statistical assessment of whether the observations reflect a pattern rather than just chance, since

any given hypothesis is subject to random error. A result is deemed statistically significant if

it is so extreme (without external variables which would influence the correlation results of the

test) that such a result would be expected to arise simply by chance only in rare circumstances.

Hence the result provides enough evidence to reject the hypothesis of ‘no effect’.

Finally, the test is named after the tail of data under the far left and far right of a bell-shaped

Normal data distribution, or bell curve. However, the terminology is extended to tests relating

to distributions other than Normal. In general a test is called two-tailed if the null hypothesis

is rejected for values of the test statistic falling into either tail of its sampling distribution, and

it is called one-sided or one-tailed if the null hypothesis is rejected only for values of the test

statistic falling into one specified tail of its sampling distribution. For example, if the alternative

hypothesis is µ ̸= µ0, the null hypothesis of µ = µ0 is rejected for small or for large values

of the sample mean, the test is called two-tailed or two-sided. If the alternative hypothesis is

µ > µ0, the null hypothesis of µ ≤ µ0 is rejected only for large values of the sample mean

and the test is called one-tailed or one-sided. If a 5% significance level is used, both tests

have a region of rejection, 0.05, however, in the two-tailed case the rejection region must be

split between both tails of the distribution - 0.025 in the upper tail and 0.025 in the lower tail -

because the hypothesis specifies only a difference, not a direction.

Methodology

EMBLEM is implemented in Yap Prolog1 and is compared with

• a few systems for parameter learning of Probabilistic Logic Programs:

– RIB (Riguzzi and Di Mauro, 2012)

– CEM (Riguzzi, 2007b, 2009)

1http://www.dcc.fc.up.pt/~vsc/Yap/
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– LeProbLog (Gutmann et al., 2010a, 2008)

– LFI-ProbLog (Gutmann et al., 2010b, 2011)

• one system for parameter learning of Markov Logic Networks (MLNs):

– Alchemy (Richardson and Domingos, 2006)

All experiments were performed on Linux machines with an Intel Core 2 Duo E6550 (2333

MHz) processor and 4 GB of RAM.

To compare the results with LeProblog, the translation of LPADs into ProbLog proposed

in (De Raedt et al., 2008a) is exploited, in which a disjunctive clause with k head atoms and

vector of variables X⃗ is modeled with k ProbLog clauses and k − 1 probabilistic facts with

variables X⃗ .

To compare the results with Alchemy, the translation between LPADs and MLN of

(Riguzzi and Di Mauro, 2012) is exploited, inspired by the translation between ProbLog and

MLNs proposed in (Gutmann et al., 2010a). An MLN clause is translated into an LPAD clause

in which the head atoms of the LPAD clause are the null atom plus the positive literals of the

MLN clause while the body atoms are the negative literals.

For the Probabilistic Logic Programming systems we consider various options:

1. The first consists in choosing between associating a distinct random variable to each

grounding of a probabilistic clause or a single random variable to a non-ground proba-

bilistic clause expressing whether the clause is used or not. The latter case makes the

problem easier. All experiments have been run first with the most difficult setting (a

single random variable for each grounding) and have been re-run with the second easy

setting only if EMBLEM failed to terminate under the first one.

2. The second option allows to set a limit on the depth of derivations as done in (Gutmann

et al., 2010a), thus eliminating explanations associated to derivations exceeding the depth

limit. This is necessary for problems that contain cyclic clauses, such as transitive closure

clauses.

3. The third option allows to set the number of restarts for EM based algorithms. EMBLEM

has been run with a number of restarts chosen to match its execution time with that of

the fastest other algorithm.

109



All experiments except one (see below) for the Probabilistic Logic Programming systems

have been performed using open-world predicates, meaning that, when resolving a literal for a

target predicate, both facts in the database and rules are used to prove it. All experiments use

the same value of the thresholds ϵ and δ for stopping the EM cycle.

The parameter settings for the PLP systems on the domains can be found in Table 10.2.

The datasets are divided into four, five or ten mega-examples, where each mega-example

contains a connected group of facts and individual mega-examples are independent of each

other. A k-fold (k = 4, 5, 10) cross-validation approach is adopted. The terms “fold” and

“mega-example” will be used interchangeably in the following. Statistics on the domains are

reported in Table 10.1. The number of negative testing examples is sometimes different from

that of negative training examples because, while in training we explicitly provide negative ex-

amples, in testing we consider as negatives all the ground instantiations of the target predicates

that are not positive.

As part of the test, Precision-Recall and Receiver Operating Characteristics curves are

drawn using the methods reported in (Fawcett, 2006) and (Davis and Goadrich, 2006), the

Area Under the Curve (AUCPR and AUCROC) is computed and, finally, average values on the

k folds are reported in Tables 10.3 and 10.4. Table 10.5 shows the learning times in hours.

Tables 10.6 and 10.7 show the p-value of a paired two-tailed t-test at the 5% significance

level of the difference in AUCPR and AUCROC between EMBLEM and the other systems on

all datasets (significant differences in favor of EMBLEM in bold).

IMDB Four different LPADs are used, two for predicting the target predicate

sameperson(Person1, Person2), and two for predicting samemovie(Movie1, Movie2), on

the basis of the relations among actors, their movies and their directors. There is one positive

example for each fact that is true in the data, while we sampled from the complete set of false

facts three times the number of true facts in order to generate negative examples.

1. For predicting sameperson/2 this LPAD is used:

sameperson(X,Y):p:- movie(M,X),movie(M,Y).

sameperson(X,Y):p:- actor(X),actor(Y),workedunder(X,Z),

workedunder(Y,Z).

sameperson(X,Y):p:- gender(X,Z),gender(Y,Z).

sameperson(X,Y):p:- director(X),director(Y),genre(X,Z),genre(Y,Z).
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Table 10.1: Characteristics of the datasets used with EMBLEM: target predicates, number of con-
stants, of predicates, of tuples (ground atoms), of positive and negative training and testing exam-
ples for target predicate(s), of folds. The number of tuples includes the target positive examples.

Dataset Target Predicate(s) Const Preds Tuples Pos.Ex.
Training
Neg.Ex.

Testing
Neg.Ex.

Folds

IMDB sameperson(X,Y)(SP)
samemovie(X,Y)(SM)

316 10 1540 SP:268
SM:20

SP:804
SM:60

SP:14350
SM:60

5

Cora samebib(X,Y)
sameauthor(X,Y)
samevenue(X,Y)
sametitle(X,Y)

3079 10 378589 63262 27764 304748 5

UW-CSE advisedBy(X,Y) 1323 15 2673 113 4079 16601 5
WebKB <course,faculty,

researchProject,
student>Page(P)

4942 8 290973 1039 15629 16249 4

Movielens rating(U,M,R) 2627 7 169124 129779 50000 50000 5
Mutagenesis active(D) 7045 20 15249 125 63 63 10

where p is a placeholder indicating a tunable parameter to be learned by EMBLEM. These

rules state that two persons are the same if they appear in the same movie, or they worked

under the same director, or they have the same gender, or they direct movies of the same

genre.

For LeProblog, the queries given as input are obtained by annotating with 1.0 each

positive example and with 0.0 each negative example, those given as input to

LFI-ProbLog by annotating with true each positive example and with false each neg-

ative example. The same procedure has been adopted in all experiments. LeProblog

and LFI-ProbLog have been run for a maximum of 100 iterations or until the differ-

ence in Mean Squared Error (MSE) (for LeProblog) or log likelihood (for

LFI-ProbLog) between two iterations got smaller than 10−5. Except where otherwise

noted, these parameters are used in all experiments.

For Alchemy, it is applied the preconditioned rescaled conjugate gradient discrimina-

tive algorithm (Lowd and Domingos, 2007) on every dataset. Here sameperson/2 is

the only non-evidence predicate.

A second LPAD, taken from (Riguzzi and Di Mauro, 2012), has been created to evaluate
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Table 10.2: Parameter settings for the experiments with EMBLEM, RIB, CEM, LeProbLog
LFI-ProbLog. NR indicates the number of restarts only for EMBLEM, NI indicates the maxi-
mum number of iterations only for LFI-ProbLog.

.
Dataset NI(LFI-ProbLog) NR(EMBLEM) LPAD cyclicity depth D semantics
IMDB-SP 100 500 no no standard
IMDBu-SP 100 40 no no standard
IMDB-SM 100 1 no no standard
IMDBu-SM 100 1 no no standard
CORA 10 120 no no standard
CORAT 10 1 yes 2 simplified
UW-CSE 100 1 yes 2 simplified
WebKB 10 1 yes no(close-world) standard
Movielens 100 1 yes 2 simplified
Mutagenesis 100 1 no no standard

the algorithms’ performance when some atoms are unseen:

sameperson_pos(X,Y):p:- movie(M,X),movie(M,Y).

sameperson_pos(X,Y):p:- actor(X),actor(Y),workedunder(X,Z),

workedunder(Y,Z).

sameperson_pos(X,Y):p:- director(X),director(Y),genre(X,Z),genre(Y,Z).

sameperson_neg(X,Y):p:- movie(M,X),movie(M,Y).

sameperson_neg(X,Y):p:- actor(X),actor(Y),workedunder(X,Z),

workedunder(Y,Z).

sameperson_neg(X,Y):p:- director(X),director(Y),genre(X,Z),genre(Y,Z).

sameperson(X,Y):p:- \+sameperson_pos(X,Y),sameperson_neg(X,Y).

sameperson(X,Y):p:- \+sameperson_pos(X,Y),\+sameperson_neg(X,Y).

sameperson(X,Y):p:- sameperson_pos(X,Y),sameperson_neg(X,Y).

sameperson(X,Y):p:- sameperson_pos(X,Y),\+sameperson_neg(X,Y).

The sameperson_pos/2 and sameperson_neg/2 predicates are unseen in the data.

Alchemy has been run with the −withEM option that turns on EM learning. The other

parameters for all systems are set as before.

Results are shown respectively in the IMDB-SP and IMDBu-SP rows of tables 10.3, 10.4,

10.5. Learning time matches CEM time, the fastest system among the others.

2. For predicting samemovie/2 this LPAD is used:

samemovie(X,Y):p:- movie(X,M),movie(Y,M),actor(M).
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samemovie(X,Y):p:- movie(X,M),movie(Y,M),director(M).

samemovie(X,Y):p:- movie(X,A),movie(Y,B),actor(A),director(B),

workedunder(A,B).

samemovie(X,Y):p:- movie(X,A),movie(Y,B),director(A),director(B),

genre(A,G),genre(B,G).

To test the behavior when unseen predicates are present, the program for samemovie/2

is transformed as for sameperson/2, thus introducing the unseen predicates

samemovie_pos/2 and samemovie_neg/2. The systems have been run with the same

settings as IMDB-SP and IMDBu-SP, replacing sameperson/2 with samemovie/2. Re-

sults are shown respectively in the IMDB-SM and IMDBu-SM rows of tables 10.3, 10.4,

10.5. RIB and LFI-Problog in this case give a memory error (indicated with “me”),

due to the exhaustion of the available stack space during the execution of the algorithm.

Cora The Cora database contains citations to computer science research papers, and the task

is to determine which citations are referring to the same paper, by predicting the predicate

samebib(Citation1, Citation2).

From the MLN proposed in (Singla and Domingos, 2006)1 two LPADs have been obtained.

The MLN contains 26 clauses stating regularities like: if two citations are the same, their

authors, venues, etc., are the same, and vice-versa; if two fields of the same type have many

words in common, they are the same.

The first LPAD contains 559 rules and differs from the direct translation of the MLN be-

cause rules involving words are instantiated with the different constants, only positive literals

for the hasword predicates are used and transitive rules are not included:

samebib(B,C):p:- author(B,D),author(C,E),sameauthor(D,E).

samebib(B,C):p:- title(B,D),title(C,E),sametitle(D,E).

samebib(B,C):p:- venue(B,D),venue(C,E),samevenue(D,E).

samevenue(B,C):p:- haswordvenue(B,word_06), haswordvenue(C,word_06).

...

sametitle(B,C):p:- haswordtitle(B,word_10), haswordtitle(C,word_10).

....

sameauthor(B,C):p:- haswordauthor(B,word_a), haswordauthor(C,word_a).

.....

The dots stand for the rules for all the possible words. Positive and negative examples for

the four target predicates are already available in the version of the dataset.
1Available at http://alchemy.cs.washington.edu/mlns/er.
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In this case LFI-ProbLog has been run for a maximum of only 10 iterations (or until the

difference in MSE between two iterations got smaller than 10−5) due to its long learning time.

The second LPAD adds to the previous one the transitive rules for the predicates samebib/2,

samevenue/2, sametitle/2 and sameauthor/2:

samebib(A,B):p:- samebib(A,C), samebib(C,B).

sameauthor(A,B):p:- sameauthor(A,C), sameauthor(C,B).

sametitle(A,B):p:- sametitle(A,C), sametitle(C,B).

samevenue(A,B):p:- samevenue(A,C), samevenue(C,B).

for a total of 563 rules. In this case stricter settings are imposed for EMBLEM, LeProbLog,

CEM and LFI-ProbLog, since the theory is cyclic (cf. table 10.2).

For LeProbLog, the four predicates are separately learned because learning the whole

theory at once gives a lack of memory error. This is equivalent to using a closed-world setting.

For Alchemy, the four predicates are specified as non-evidence.

Results are shown respectively in the Cora and CoraT (Cora Transitive) rows of Tables

10.3, 10.4, 10.5. On CoraT Alchemy, CEM and LFI-ProbLog give a memory error, for a

segmentation fault the first one (by the learnwts command) and for memory exhaustion the

others, while RIB is not applicable because it is not possible to split the input examples into

smaller independent interpretations as required by it.

UW-CSE The interest in this dataset has emerged in the context of social network analysis,

where one seeks to reason about a group of people: in particular link prediction tackles the

problem of predicting relationships from people’s attributes, and UW-CSE represents a bench-

mark in that direction if we try to predict which professors advise which graduate students.

Hence, the target predicate is advisedBy(Person1, Person2).

The theory used has been obtained from the MLN of (Singla and Domingos, 2005)1 and

contains 86 rules, such as (S stands for student and P for professor):

advisedby(S,P):p:- courselevel(C,level_500), taughtby(C,P,Q), ta(C,S,Q).

advisedBy(S,P):p:- publication(Pub,S), publication(Pub,P), student(S).

student(S):p:- advisedBy(S,P).

1Available at http://alchemy.cs.washington.edu/mlns/uw-cse.
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As one can see from this example, the theory is cyclic. The negative examples have

been generated by considering all couple of persons (a,b) where a and b appear in an

advisedby/2 fact in the data and by adding a negative example advisedBy(a,b) if

it is not in the data.

For Alchemy, advisedBy/2 is the only non-evidence predicate. RIB and LFI-ProbLog

in this case exhaust the available memory.

WebKB The goal is to predict the four predicates coursePage(Page), facultyPage(Page),

studentPage(Page) and researchProjectPage(Page), representing the various possible

pages’ classes, for which the dataset contains both positive and negative examples.

The theory is obtained by translating the MLN of (Lowd and Domingos, 2007)1 into an

LPAD with 3112 rules. It contains a rule of the form

<class1>Page(Page1):p:- linkTo(Page2,Page1), <class2>Page(Page2).

for each couple of classes (<class1>,<class2>), and rules of the form

<class>Page(Page):p:- has(<word>,Page).

for each possible page class and word. The first type of rule states that Page1 of class class1

is linked to Page2 of class class2 with probability p; the second type states that the page Page

of class class contains the word word with probability p. Examples of rules are:

coursePage(Page1):p:- linkTo(Page2,Page1),coursePage(Page2).

coursePage(Page):p:- has(‘abstract’,Page).

As one can see from this example, the theory is cyclic. Running EMBLEM with a depth bound

equal to the lowest value (two) and an open-world setting gives a lack of memory error, so

a closed-world setting is needed for the target predicates in the body of clauses (target pred-

icates are resolved only with facts in the database). LeProbLog and LFI-ProbLog have

been run on a sample containing respectively 5% and 1% of the training set since the com-

plete set leads to exceedingly long learning times, and in addition LFI-ProbLog has been

run for a maximum of 10 iterations; despite that, it spends anyway a considerable time. For

Alchemy, the four target predicates are specified as non-evidence predicates; we also set the

flag −noAddUnitClauses to 1 (unit predicates are not added to the MLN) since otherwise

inference would give a lack of memory error. RIB and CEM in this case terminate for lack of

memory.
1Available at http://alchemy.cs.washington.edu/mlns/webkb.
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MovieLens The target predicate is rating(User, Movie, Rating): we wish to predict the

rating on a movie by a user. The LPAD contains 4 rules:

rating(A,B,R):p:- rating(A,C,R),B\==C,drama(B,drama_1),drama(C,drama_1).

rating(A,B,R):p:- rating(A,C,R),B\==C,action(B,action_1),action(C,action_1).

rating(A,B,R):p:- rating(A,C,R),B\==C,horror(B,horror_1),horror(C,horror_1).

rating(A,B,R):p:- rating(C,B,R),A\==C.

The first three rules state that a user A assigns the same rating R to two different movies B and

C, if they belong to the same genre, either drama or action or horror, with probability p; the

last one states that two different users equally rate the same movie with probability p.

In this case stricter settings are imposed for EMBLEM, LeProbLog, CEM and LFI-ProbLog,

since the theory is cyclic (cf. table 10.2). For Alchemy, rating/3 is specified as non-

evidence predicate.

RIB, CEM, Alchemy and LFI-ProbLog give a memory error.

Mutagenesis To predict the mutagenicity of the drugs, we remind that the compounds having

positive levels of log mutagenicity are labeled “active”, so the goal is to predict if a drug is

active, i.e. the target predicate active(Drug).

The fundamental Prolog facts are bond(compound,atom1,atom2,bondtype) -

stating that in compound a bond of type bondtype can be found between the atoms atom1 and

atom2 - and atm(compound,atom,element,atomtype,charge), stating that com-

pound’s atom is of element element, is of type atomtype and has partial charge charge. From

these facts many elementary molecular substructures can be defined, and we used the tabula-

tion of these, available in the dataset, rather than the clause definitions based on bond/4 and

atm/5. This greatly sped up learning.

The theory has been obtained by running Aleph1 on the database with a ten-fold cross-

validation and choosing randomly one of the ten theories for parameter learning. The selected

theory contains 17 rules, such as:

active(A):p:- bond(A,B,C,2), bond(A,C,D,1), ring_size_5(A,E).

relating the activity of drug A to its atoms’ bonds and its structure. Predicates representing

molecular substructures use function symbols to represent lists of atoms, for example, in

ring_size_5(Drug, Ring), Ring is a list of atoms composing a 5-membered ring in the drug’s

1http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
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structure. Alchemy is not applicable to this dataset because it does not handle function sym-

bols.

Table 10.3: Results of the experiments on all datasets in terms of Area Under the ROC Curve
averaged over the folds. me means memory error during learning; no means that the algorithm was
not applicable.

Dataset EMBLEM LeProbLog Alchemy RIB CEM LFI-ProbLog

IMDB-SP 0.93 0.87 0.91 0.93 0.93 0.89
IMDBu-SP 0.90 0.92 0.50 0.90 0.89 0.50
IMDB-SM 1.00 0.98 0.93 me 0.71 me
IMDBu-SM 1.00 0.98 0.54 me 0.44 me
Cora 1.00 0.99 0.70 0.99 0.99 0.99
CoraT 0.999 0.998 me no me me
UW-CSE 0.99 0.94 0.96 me 0.87 me
WebKB 0.85 0.51 0.88 me me 0.55
MovieLens 0.84 0.77 me me me me
Mutagenesis 0.99 0.98 no 0.90 0.92 0.89

Table 10.4: Results of the experiments on all datasets in terms of Area Under the PR Curve
averaged over the folds. me means memory error during learning; no means that the algorithm was
not applicable.

Dataset EMBLEM LeProbLog Alchemy RIB CEM LFI-ProbLog

IMDB-SP 0.20 0.1 0.11 0.19 0.20 0.14
IMDBu-SP 0.18 0.13 0.02 0.17 0.12 0.02
IMDB-SM 1.00 0.93 0.82 me 0.54 me
IMDBu-SM 1.00 0.93 0.34 me 0.56 me
Cora 0.995 0.91 0.47 0.94 0.995 0.996
CoraT 0.99 0.98 me no me me
UW-CSE 0.75 0.28 0.29 me 0.64 me
WebKB 0.34 0.07 0.50 me me 0.07
MovieLens 0.87 0.82 me me me me
Mutagenesis 0.992 0.991 no 0.95 0.96 0.93

Overall remarks From the results we can observe that:

• on IMDB-SP EMBLEM has better performance than the other systems in both AUCPR

and AUCROC (except for CEM/AUCPR), with six differences out of ten statistically
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Table 10.5: Execution time in hours of the experiments, averaged over the folds.

Dataset EMBLEM LeProbLog Alchemy RIB CEM LFI-ProbLog

IMDB-SP 0.010 0.350 1.540 0.016 0.010 0.037
IMDBu-SP 0.010 0.230 1.540 0.0098 0.012 0.057
IMDB-SM 3.6e-4 0.005 0.003 - 0.005 -
IMDBu-SM 3.220 0.012 0.011 - 0.047 -
Cora 2.480 13.25 1.300 2.490 11.95 44.07
CoraT 0.380 5.670 - - - -
UW-CSE 2.810 2.920 1.950 - 0.530 -
WebKB 0.048 0.114 0.052 - - 11.32
MovieLens 0.070 20.01 - - - -
Mutagenesis 2.49e-5 0.130 - 0.040 0.040 0.019

significant. Moreover, it takes less time than all other systems except CEM. On IMDBu-

SP EMBLEM has the best performance except for LeProbLog/AUCROC, again with six

significant differences.

• On IMDB-SM, EMBLEM reaches value 1 for PR and ROC areas with only one restart, in

less time than the other systems, so in this case we did not execute it to match the learning

time of another algorithm. Two out of six differences are significant; on IMDBu-SM, it

still reaches the highest area but with the longest execution time associated with one

restart, so it was not possible to match its time with the one of another system. One out

of six differences are significant. RIB and LFI-ProbLog are not able to terminate on

this dataset.

• On Cora, EMBLEM shows the best performance along with CEM and LFI-ProbLog,

but in much less time, with four significant differences out of ten. On CoraT, it has

comparable performance, but with a much lower learning time, than LeProbLog - the

only other system able to complete learning on this more complex theory.

• On UW-CSE, it has better performance with respect to all the algorithms for AUCPR and

AUCROC with five out of six differences significant. Again RIB and LFI-ProbLog

are not able to terminate.

• On WebKB, EMBLEM shows significantly better areas with respect to LeProbLog and

LFI-ProbLog, and worse areas with respect to Alchemy, with the differences being
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Table 10.6: Results of t-test on all datasets, relative to AUCROC. p is the p-value of a paired two-
tailed t-test between EMBLEM and the other systems (significant differences in favor of EMBLEM
at the 5% level in bold). E is EMBLEM, LeP is LeProbLog, A is Alchemy, C is CEM, LFI is
LFI-ProbLog.

Dataset E-LeP E-A E-R E-C E-LFI

IMDB-SP 0.001 0.015 0.344 0.351 0.006
IMDBu-SP 0.140 1e-5 0.217 0.002 5.3e-7
IMDB-SM 0.374 0.256 - 0.018 -
IMDBu-SM 0.374 0.256 - 0.055 -
Cora 0.069 0.033 0.049 0.457 0.766
CoraT 0.131 - - - -
UW-CSE 0.028 0.005 - 0.291 -
WebKB 0.002 0.171 - - 0.005
MovieLens 7.6e-7 - - - -
Mutagenesis 0.199 - 0.109 0.196 5.4e-4

statistically significant except one case. We remind that this dataset is one of the most

problematic: it is the only one where EMBLEM has been run with a closed-world setting

for the target predicates (simpler than an open-world setting, which failed in this case)

and the size of the training set for LeProbLog and LFI-ProbLog has been reduced

in order to contain the computation time.

• On MovieLens, EMBLEM achieves higher areas with respect to LeProbLog in a sig-

nificantly lower time, with the differences statistically significant, while all the others

systems are not able to complete.

• On Mutagenesis, EMBLEM shows better performance than all other systems, with the

differences being statistically significant in three out of eight cases. Moreover, it is the

fastest.

Looking at the overall results, LeProbLog seems to be the closest system to EMBLEM

from the point of view of performances, being able to always complete learning as EMBLEM, but

with longer times (except for two cases). On the contrary, RIB and LFI-ProbLog incurred in

many difficulties in treating the datasets. EMBLEM’s AUCPR and AUCROC are higher or equal

than those of the other systems except on IMDBu-SP, where LeProbLog achieves a non-

statistically significant higher AUCROC, WebKB, where Alchemy achieves a non-statistically

significant higher AUCROC and a statistically significant higher AUCPR, and Cora, where
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Table 10.7: Results of t-test on all datasets, relative to AUCPR. p is the p-value of a paired two-
tailed t-test between EMBLEM and the other systems (significant differences in favor of EMBLEM
at the 5% level in bold). E is EMBLEM, LeP is LeProbLog, A is Alchemy, C is CEM, LFI is
LFI-ProbLog.

Dataset E-LeP E-A E-R E-C E-LFI

IMDB-SP 0.013 0.013 0.217 0.374 0.004
IMDBu-SP 0.199 4.5e-5 0.127 0.001 5.5e-5
IMDB-SM 0.374 0.179 - 0.024 -
IMDBu-SM 0.374 2.2e-4 - 0.278 -
Cora 0.073 0.007 0.011 1.000 0.681
CoraT 0.104 - - - -
UW-CSE 2.6e-4 4.9e-4 - 0.009 -
WebKB 0.018 0.001 - - 0.016
MovieLens 8e-7 - - - -
Mutagenesis 0.16 - 0.046 0.097 0.001

LFI-ProbLog achieves a non-statistically significant higher AUCPR. Differences between

EMBLEM and the other systems are statistically significant in favor of it in 34 out of 64 cases at

the 5% significance level and in 21 out of 64 cases at the 1% significance level.

10.5 Conclusions

We have proposed a technique which applies a EM algorithm to BDDs for learning the pa-

rameters of Logic Programs with Annotated Disjunctions. The problem is, given an LPAD,

to efficiently learn parameters for the disjunctive heads of the program clauses. The resulting

algorithm EMBLEM returns the parameters that best describe the data and can be applied to all

probabilistic logic languages that are based on the Distribution Semantics. EMBLEM exploits

the BDDs that are built during inference to efficiently compute the expectations for the hidden

variables.

We tested the algorithm over the real world datasets IMDB, Cora, UW-CSE, WebKB,

MovieLens, Mutagenesis, and evaluated its performance through the AUCPR, the AUCROC,

the learning times and the t-test for the statistical significance. Then we compared EMBLEM in

terms of these metrics with other five parameter learning systems.

These results show that EMBLEM achieves higher ROC areas on all datasets except two

and higher PR areas on all datasets except two, and that the improvements are statistically
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significant in 34 out of 66 cases. Its speed allows to perform a large number of restarts making it

escape local maxima and achieve higher AUCPR and AUCROC. Moreover it uses less memory

than RIB, CEM, LFI-ProbLog and Alchemy, allowing it to solve larger problems, and often

in lower time. Finally, all the other systems except Le-ProbLog are not able to terminate on

some domains, differently from EMBLEM.

EMBLEM is available in the cplint package in the source tree of Yap Prolog and infor-

mation on its use can be found at http://sites.google.com/a/unife.it/ml/emblem.
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Chapter 11

Structure Learning of LPADs

So far, we have addressed only the parameter estimation problem, and have assumed that the

structure of the probabilistic model is given and fixed.

This chapter presents, after a general introduction about the problem of learning the struc-

ture of probabilistic models (Section 11.1), two structure learning algorithms for LPADs called

SLIPCASE and SLIPCOVER (Sections 11.2 and 11.3) - the second being an evolution of the

first. The chapter also features related works (Section 11.4) and experimental results (Section

11.5).

The algorithms learn both the structure and the parameters of Logic Programs with An-

notated Disjunctions, by exploiting the EM algorithm over Binary Decision Diagrams pro-

posed in (Bellodi and Riguzzi, 2012a). They can be applied to all probabilistic logic lan-

guages that are based on the distribution semantics. We tested them over the real datasets HIV,

UW-CSE, WebKB, Mutagenesis and Hepatitis and evaluated its performance - in comparison

with SEM-CP-Logic, LSM, Aleph and ALEPH++ExactL1 - through the AUCPR, the AU-

CROC and the AUCNPR on Mutagenesis and Hepatitis, the learning times and the t-test for

the statistical significance.

SLIPCOVER achieves the largest values under all metrics in most cases; SLIPCASE often

follows SLIPCOVER.

This shows that the application of well known ILP and PLP techniques to the SRL field

gives results that are competitive or superior to the state of the art.
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11.1 Structure Learning of Probabilistic Models

The structure learning problem can be defined as follows:

Given

• a set of examples E,

• a language LM of possible models of the form M = (S, λ) with structure S and param-

eters λ,

• a probabilistic coverage relation P (e|M) that computes the probability of observing the

example e given the model M ,

• a scoring function score(E,M) that employs the probabilistic coverage relationP (e|M)

Find the model M∗ = (S, λ) that maximizes score(E,M), that is,

M∗ = argmaxM score(E,M)

This problem is essentially a search problem. There is a space of possible models to be con-

sidered, defined by LM , and the goal is to find the best one according to the scoring function.

So solution techniques traverse the space of possible models in LM , by using operators for

traversing the space and determining extreme points in the search space. For instance, in the

case of Bayesian networks, the extreme points could be fully connected Bayesian networks

(where there is an edge between any random variable and those that precede it in a given order)

and one that contains no links at all. One of the possible techniques to evaluate a candidate

structure S is based first on estimating the parameters λ (using the methods developed earlier),

and then using the scoring function to determine the overall score of the resulting model.

Structure Learning in Logic Programs with Annotated Disjunctions

The structure learning algorithms for LPADs, which are presented in the next Section, tackle a

problem of discriminative learning defined as follows.

Given

• a set of training examplesQi, corresponding to ground atoms for a set of target or output

predicates,
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• a background knowledge with ground facts for other non-target or input predicates, or-

ganized as a set of logical interpretations or “mega-examples”,

• a probabilistic logical model M corresponding to a trivial LPAD or an empty LPAD P,

with unknown parameters (probabilities) Π,

• a language bias to guide the construction of the refinements of the models,

Find the maximum likelihood LPAD P∗ and probabilities Π∗ such that maximize the condi-

tional probability of the atoms for the output predicates given the atoms of the input predicates.

11.2 The SLIPCASE Algorithm

SLIPCASE learns the structure and the parameters of an LPAD by starting from an initial

user-defined one: a good starting point is a trivial theory composed of one probabilistic clause

with empty body of the form target_predicate(V ) : 0.5. for each target predicate, where V is

a tuple of variables. The algorithm performs a beam search in the space of refinements of the

theory guided by the log likelihood of the data.

First the parameters of the initial theory are optimized by EMBLEM and the theory is inserted

in the beam (see Algorithm 7). Then an iterative phase begins, where at each step the theory

with the highest log likelihood is drawn from the beam. Such a theory is the first since the

theories are kept ordered in the beam according to decreasing LL.

Then SLIPCASE finds the set of refinements of the selected theory that are allowed by

the language bias: modeh and modeb declarations in Progol style are used to this purpose (see

below). Following (Ourston and Mooney, 1994; Richards and Mooney, 1995) the admitted

refinements are: the addition of a literal to a clause, the removal of a literal from a clause

and the addition of a clause with an empty body, in order to generalize the current theory;

the removal of a clause to specialize the current theory. For each refinement, a log likelihood

estimate is computed by running the procedure BOUNDEDEMBLEM (see Algorithm 8) that

performs a limited number of Expectation-Maximization steps. BOUNDEDEMBLEM differs

from EMBLEM only in line 10, where it imposes that iterations are at most NMax. The eval-

uated refinements are inserted in order of LL in the beam and if they exceed the maximum

allowed beam size b, those with the lowest LL (at the bottom of the beam) are removed. The

highest-LL refinement is recorded as the Best Theory found so far.
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Beam search ends when one of the following occurs first: the maximum number of steps

is reached, the beam is empty, the difference between the LL of the current theory or the best

previous LL drops below a threshold ϵ. At that stage the parameters of theBest Theory found

so far are re-computed with EMBLEM and the resulting theory is returned.

Algorithm 7 Function SLIPCASE
1: function SLIPCASE(Th,MaxSteps, ϵ, ϵ1, δ, b,NMax)
2: Build BDDs

3: (LL, Th) =EMBLEM(Th, ϵ,δ) ◃ Th = initial theory

4: Beam = [(Th, LL)]

5: BestLL = LL

6: BestTh = Th

7: Steps = 1

8: repeat
9: Remove the first couple (Th, LL) from Beam

10: Find all refinements Ref of Th

11: for all Th′ in Ref do
12: (LL′′, Th′′) =BOUNDEDEMBLEM(Th′, ϵ, δ,NMax)
13: if LL′′ > BestLL then
14: Update BestLL,BestTh

15: end if
16: Insert (Th′′, LL′′) in Beam in order of LL′′

17: if size(Beam) > b then
18: Remove the last element of Beam

19: end if
20: end for
21: Steps = Steps+ 1

22: until Steps > MaxSteps or Beam is empty or (BestLL− Previous_BestLL) < ϵ1

23: (LL, ThMax) =EMBLEM(BestTh, ϵ,δ)
24: return ThMax

25: end function

The Language Bias

The language bias is used to limit the search space of theories since the algorithm knows that

certain restrictions must apply to the output theory. These are expressed by means of:

• input/output modes: they specify the output (target) and the input (non-target) predi-

cates of the domain (with their arity), by means of the declarations output/1, input/1;

• mode declarations: following (Muggleton, 1995), a mode declaration m is either a head

declaration

modeh(r, s) or a body declaration modeb(r, s), where s, the schema, is a ground literal

and r is an integer called the recall. A schema is a template for literals in the head or body
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Algorithm 8 Function BoundedEMBLEM
1: function BOUNDEDEMBLEM(Theory, ϵ, δ,NMax)
2: Build BDDs

3: LL = −inf
4: N = 0

5: repeat
6: LL0 = LL

7: LL = EXPECTATION(BDDs)
8: MAXIMIZATION

9: N = N + 1

10: until LL− LL0 < ϵ ∨ LL− LL0 < −LL · δ ∨N > NMax

11: Update the parameters of Theory

12: return LL, Theory

13: end function

of a clause and can contain constants of the domain or the placemarker terms of the form

#type, +type and −type, which stand, respectively, for ground terms, input variables

and output variables of a type (cf. Section 5.4). An input variable in a body literal must

be either an input variable in the head or an output variable in a preceding body literal of

a clause in the language bias. If M is a set of mode declarations, L(M) is the language

of M , i.e. the set of clauses C = h1; . . . ;hn :− b1, . . . , bm such that the head atoms hi
(resp. body literals bi) are obtained from some head (resp. body) declaration in M by

replacing all # placemarkers with ground terms and + (resp. -) placemarkers with input

(resp. output) variables and by maintaining the constants.

An example of language bias for the UW-CSE domain is:

/* input/output modes */

output(advisedby/2). (target predicate)

input(student/1).

input(professor/1).

input(inphase/2).

input(hasposition/2).

input(publication/2).

input(yearsinprogram/2).

input(taughtby/3).

input(ta/3).

input(courselevel/2).

input(tempadvisedby/2).

input(projectmember/2).

input(sameperson/2).

input(samecourse/2).

input(sameproject/2).
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/* mode declarations */

modeh(*,advisedby(+person,+person)). (allowed in the head)

modeb(*,professor(+person)). (allowed in the body)

modeb(*,student(+person)).

modeb(*,courselevel(+course, -level)).

modeb(*,hasposition(+person, -position)).

modeb(*,inphase(+person, -phase)).

modeb(*,tempadvisedby(+person, -person)).

modeb(*,yearsinprogram(+person, -year)).

modeb(*,publication(-title, +person)).

modeb(*,hasposition(+person, faculty)).

modeb(*,hasposition(+person, faculty_affiliate)).

modeb(*,hasposition(+person, faculty_adjunct)).

modeb(*,hasposition(+person, faculty_visiting)).

modeb(*,hasposition(+person, faculty_emeritus)).

modeb(*,projectmember(-project, +person)).

modeb(*,taughtby(+course, -person, -quarter)).

modeb(*,ta(+course, -person, -quarter)).

modeb(*,taughtby(-course, +person, -quarter)).

modeb(*,ta(-course, +person, -quarter)).

...

11.3 The SLIPCOVER Algorithm

SLIPCOVER learns an LPAD by first identifying good candidate clauses and then searching

for a theory guided by the LL of the data. As EMBLEM, it takes as input a set of mega-examples

and an indication of which predicates are target. The mega-examples must contain positive

and negative examples for all predicates that may appear in the head of clauses, either target or

non-target (background predicates).

Search in the Space of Clauses

SLIPCOVER performs a cycle on the set of predicates that can appear in the head of clauses,

either target or background, and, for each predicate, it performs a beam search in the space of

clauses. The set of initial beams is returned by function INITIALBEAMS shown in Algorithm

9.

Function INITIALBEAMS The search over the space of clauses is performed according to a

language bias expressed by means of mode declarations, as done for SLIPCASE, cf. Section
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11.2.

Algorithm 9 Function INITIALBEAMS

1: function INITIALBEAMS(NInt,NS,NA)
2: IB ← ∅
3: for all predicates P/Ar do
4: Beam← []

5: for all modeh declarations modeh(r, s) with P/Ar predicate of s do
6: for i = 1→ NInt do
7: Select randomly a mega-example I

8: for j = 1→ NA do
9: Select randomly an atom h from I matching schema(s)

10: Bottom clause BC ←SATURATION(h, r,NS), let BC be Head :− Body

11: Beam← [((Head,Body),−∞)|Beam]

12: end for
13: end for
14: end for
15: for all modeh declarations modeh(r, [s1, . . . , sn], [a1, . . . , an], PL) with P/Ar in PL appearing in s1, . . . , sn

do
16: for i = 1→ NInt do
17: Select randomly a mega-example I

18: for j = 1→ NA do
19: Select randomly a set of atoms h1, . . . , hn from I matching schema(s1), . . . , schema(sn)

20: Bottom clause BC ←SATURATION((h1, . . . , hn), r,NS), let BC be Head :− Body

21: Beam← [((Head,Body),−∞)|Beam]

22: end for
23: end for
24: end for
25: IB ← IB ∪ {(P/Ar,Beam)}
26: end for
27: return IB

28: end function

We extend this type of mode declaration with placemarker terms of the form “-#” which are

treated as “#” when defining L(M) but differ in the creation of the bottom clauses (see below).

The initial set of beams IBs, one for each predicate appearing in a head declaration, is gen-

erated by SLIPCOVER by building a set of bottom clauses as in Progol (Muggleton, 1995), see

Algorithm 9. In order to generate a bottom clause for a mode declaration m = modeh(r, s),

an input mega-example is selected and an answer h for the goal schema(s) is selected, where

schema(s) denotes the literal obtained from s by replacing all placemarkers with distinct vari-

ables X1, . . . , Xn. Then, h is saturated with body literals using Progol’s saturation method

(see Algorithm 10), a deductive procedure used to find atoms related to h. The terms in h are

used to initialize a growing set of input terms InTerms: these are the terms corresponding to

+ placemarkers in s. Then, each body declaration m is considered in turn. The terms from t
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Algorithm 10 Function SATURATION

1: function SATURATION(Head, r,NS)
2: InTerms = ∅,
3: BC = ∅ ◃ BC: bottom clause
4: for all arguments t of Head do
5: if t corresponds to a +type then
6: add t to InTerms

7: end if
8: end for
9: Let BC’s head be Head

10: repeat
11: Steps← 1

12: for all modeb declarations modeb(r, s) do
13: for all possible subs. σ of variables corresponding to +type in schema(s) by terms from InTerms do
14: for j = 1→ r do
15: if goal b = schema(s) succeeds with answer substitution σ′ then
16: for all v/t ∈ σ and σ′ do
17: if v corresponds to a −type or −#type then
18: add t to the set InTerms if not already present
19: end if
20: end for
21: Add b to BC’s body
22: end if
23: end for
24: end for
25: end for
26: Steps← Steps+ 1

27: until Steps > NS

28: Replace constants with variables in BC, using the same variable for equal terms
29: return BC

30: end function

are substituted into the + placemarkers of m to generate a set Q of goals. Each goal is then ex-

ecuted against the database and up to r (the recall) successful ground instances (or all if r = ⋆)

are added to the body of the clause. Each term corresponding to a - or -# placemarker in m

is inserted into InTerms if it is not already present. This cycle is repeated for a user defined

number NS of times.

The resulting ground clause h :− b1, . . . , bm is then processed to obtain a program clause

by replacing each term in a + or - placemarker with a variable, using the same variable for

identical terms. Terms corresponding to # or -# placemarker are instead kept in the clause. The

initial beam associated with predicate P/Ar of h will contain the clause with the empty body

h : 0.5. for each bottom clause h :− b1, . . . , bm (cf. line 15 of Algorithm 9). This process

is repeated for a number NInt of input mega-examples and a number NA of answers, thus

obtaining NInt ·NA bottom clauses.
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We extended the mode declaration by allowing head declarations of the form

modeh(r, [s1, . . . , sn], [a1, . . . , an], [P1/Ar1, . . . , Pk/Ark]). These mode declarations are

used to generate clauses with more than two head atoms. In them, s1, . . . , sn are schemas,

a1, . . . , an are atoms such that ai is obtained from si by replacing placemarkers with variables,

Pi/Ari are the predicates admitted in the body with their arity. a1, . . . , an is used to indicate

which variables should be shared by the atoms in the head: in order to generate the head, the

goal a1, . . . , an is called and NA answers that ground all ais are kept. From these, the set of

input terms t is built and body literals are computed as above. The resulting bottom clauses

then have the form a1 ; . . . ; an :− b1, . . . , bm and the initial beam will contain clauses with

an empty body of the form a1 :
1

n+1 ; . . . ; an : 1
n+1 .

Clause Beam Search After having built the initial bottom clauses, SLIPCOVER, shown in

Algorithm 11, performs a cycle for each predicate that can appear in the head of clauses, either

target or background. In each iteration, it performs a beam search in the space of clauses for

the predicate (line 9).

For each clause Cl of the form Head :− Body, with Literals admissible in the body, the

CLAUSEREFINEMENTS function, shown in Algorithm 12, computes refinements by adding a

literal from Literals to the body. Furthermore, the refinements must respect the input-output

modes of the bias declarations, must be connected (i.e., each body literal must share a variable

with the head or a previous body literal) and their number of variables must not exceed a user

defined number NV . The tuple (Cl′, Literals′) indicates a refined clause Cl′ together with

the new set Literals′ of literals allowed in its body.

At line 13 of Algorithm 11, parameter learning is executed for a theory composed of the

single refined clause. For each goal for the current predicate, EMBLEM builds the BDD encod-

ing its explanations by deriving them from the single-clause theory (together with the facts in

the mega-examples); derivations exceeding the depth limit D are cut. Then the parameters and

the LL of the data are computed by the EM algorithm; LL is used as score of the updated clause

(Cl′′, Literals′). This clause is then inserted into a list of promising clauses.
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Algorithm 11 Function SLIPCOVER
1: function SLIPCOVER(NInt,NS,NA,NI,NV,NB,NTC,NBC,D,NEM, ϵ, δ)
2: IBs =INITIALBEAMS(NInt,NS,NA)
3: TC ← []

4: BC ← []

5: for all (PredSpec,Beam) ∈ IBs do
6: Steps← 1

7: NewBeam← []

8: repeat ◃ Clause search
9: while Beam is not empty do

10: Remove the first couple ((Cl, Literals), LL) from Beam ◃ Remove the first bottom clause
11: Refs←CLAUSEREFINEMENTS((Cl, Literals), NV ) ◃ Find all refinements Refs of (Cl, Literals)

with at most NV variables
12: for all (Cl′, Literals′) ∈ Refs do
13: (LL′′, {Cl′′})←EMBLEM({Cl′}, D,NEM, ϵ, δ)
14: NewBeam←INSERT((Cl′′, Literals′), LL′′, NewBeam,NB)
15: if Cl′′ is range restricted then
16: if Cl′′ has a target predicate in the head then
17: TC ←INSERT((Cl′′, Literals′), LL′′, TC,NTC)
18: else
19: BC ←INSERT((Cl′′, Literals′), LL′′, BC,NBC)
20: end if
21: end if
22: end for
23: end while
24: Beam← NewBeam

25: Steps← Steps+ 1

26: until Steps > NI

27: end for
28: Th← ∅, ThLL← −∞ ◃ Theory search
29: repeat
30: Remove the first couple (Cl, LL) from TC

31: (LL′, Th′)←EMBLEM(Th ∪ {Cl}, D,NEM, ϵ, δ)
32: if LL′ > ThLL then
33: Th← Th′, ThLL← LL′

34: end if
35: until TC is empty
36: Th← Th


(Cl,LL)∈BC{Cl}

37: (LL, Th)←EMBLEM(Th,D,NEM, ϵ, δ)
38: return Th

39: end function

Two lists are used, TC for target predicates andBC for background predicates. The clause

is inserted in TC if a target predicate appears in its head, otherwise in BC. The insertion is in

order of LL. If the clause is not range restricted, i.e., if some of the variables in the head do not

appear in a positive literal in the body, then it is inserted neither in TC nor in BC. These lists

have a maximum size: if an insertion increases the size over the maximum, the last element is

removed. In Algorithm 11, the function INSERT(I, Score, List,N ) is used to insert a clause
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Algorithm 12 Function CLAUSEREFINEMENTS

1: function CLAUSEREFINEMENTS((Cl, Literals), NV ) ◃ Cl = h : 0.5 :− true.

2: Refs = ∅, Nvar = 0; ◃ Nvar: number of different variables in a clause
3: for all b ∈ Literals do
4: Literals′ ← Literals \ {b}
5: Add b to Cl body obtaining Cl′

6: Nvar ← number of Cl′ variables
7: if Cl′ is connected ∧Nvar < NV then
8: Refs← Refs ∪ {(Cl′, Literals′)}
9: end if

10: end for
11: return Refs

12: end function

I with score Score in a list List with at most N elements. Beam search is repeated until the

beam becomes empty or a maximum number NI of iterations is reached.

The separate search for clauses has similarity with the covering loop of ILP systems such as

Aleph and Progol. Differently from the ILP case, however, the test of an example requires the

computation of all its explanations, while in ILP the search stops at the first matching clause.

The only interaction among clauses in probabilistic logic programming happens if the clauses

are recursive. If not, then adding clauses to a theory only adds explanations for the example

increasing its probability, so clauses can be added individually to the theory. If the clauses are

recursive, the examples for the head predicates are used to resolve literals in the body, thus the

test of examples on individual clauses approximates the case of the test on a complete theory.

As will be shown by the experiments, this approximation is often sufficient for identifying good

clauses.

Search in the Space of Theories

After the clause search phase, SLIPCOVER performs a greedy search in the space of theories:

it starts with an empty theory and adds a target clause at a time from the list TC. After each

addition, it runs EMBLEM and computes the LL of the data as the score of the resulting theory. If

the score is better than the current best, the clause is kept in the theory, otherwise it is discarded.

This is done for each clause in TC.

Finally, SLIPCOVER adds all the clauses in BC to the theory and performs parameter

learning on the resulting theory. The clauses that are never used to derive the examples will

get a value of 0 for the parameters of atoms in their head and are removed in a post processing

phase.
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Execution Example

We now show an example of execution on the UW-CSE dataset.

Language bias The language bias contains modeh declarations for one-head clauses such as

modeh(*,advisedby(+person,+person)). (target p.)

modeh(*,taughtby(+course, +person, +quarter)). (background p.)

and modeh declarations for disjunctive head clauses such as

modeh(*,[advisedby(+person,+person),tempadvisedby(+person,+person)],

[advisedby(A,B),tempadvisedby(A,B)],

[professor/1,student/1,hasposition/2,inphase/2,

taughtby/3,ta/3,courselevel/2,yearsinprogram/2]).

modeh(*,[student(+person),professor(+person)],

[student(P),professor(P)],

[hasposition/2,inphase/2,taughtby/3,ta/3,courselevel/2,

yearsinprogram/2,advisedby/2,tempadvisedby/2]).

modeh(*,[inphase(+person,pre_quals),inphase(+person,post_quals),

inphase(+person,post_generals)],

[inphase(P,pre_quals),inphase(P,post_quals),inphase(P,post_generals)],

[professor/1,student/1,taughtby/3,ta/3,courselevel/2,

yearsinprogram/2,advisedby/2,tempadvisedby/2,hasposition/2]).

Moreover, the bias contains modeb declarations such as

modeb(*,courselevel(+course, -level)).

modeb(*,courselevel(+course, #level)).

Bottom clauses An example of a bottom clause that is generated from the first modeh decla-

ration and the example advisedby(person155,person101) is

advisedby(A,B):0.5 :- professor(B),student(A),hasposition(B,C),

hasposition(B,faculty),inphase(A,D),inphase(A,pre_quals),

yearsinprogram(A,E),taughtby(F,B,G),taughtby(F,B,H),taughtby(I,B,J),

taughtby(I,B,J),taughtby(F,B,G),taughtby(F,B,H),

ta(I,K,L),ta(F,M,H),ta(F,M,H),ta(I,K,L),ta(N,K,O),ta(N,A,P),

ta(Q,A,P),ta(R,A,L),ta(S,A,T),ta(U,A,O),ta(U,A,O),ta(S,A,T),

ta(R,A,L),ta(Q,A,P),ta(N,K,O),ta(N,A,P),ta(I,K,L),ta(F,M,H).

An example of a bottom clause generated from the second modeh declaration for disjunctive

head clauses and the atoms student(person218),professor(person218) is

student(A):0.33; professor(A):0.33 :- inphase(A,B),inphase(A,post_generals),

yearsinprogram(A,C).
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Search in the space of clauses When searching in the space of clauses for the advisedby/2

predicate, an example of a refinement generated from the first bottom clause is

advisedby(A,B):0.5 :- professor(B).

EMBLEM is then applied to the theory composed of this single clause, using the positive and

negative facts for advisedby/2 as queries for which to build BDDs. The only parameter is

updated obtaining:

advisedby(A,B):0.108939 :- professor(B).

Successively, the clause is further refined in

advisedby(A,B):0.108939 :- professor(B),hasposition(B,C).

An example of a refinement that is generated from the second bottom clause is

student(A):0.33; professor(A):0.33 :- inphase(A,B).

The updated refinement after EMBLEM is

student(A):0.5869;professor(A):0.09832 :- inphase(A,B).

Search in the space of theories When searching the space of theories, SLIPCOVER gener-

ates the program

advisedby(A,B):0.1198 :- professor(B),inphase(A,C).

advisedby(A,B):0.1198 :- professor(B),student(A).

with a LL of -350.01. After EMBLEM we get

advisedby(A,B):0.05465 :- professor(B),inphase(A,C).

advisedby(A,B):0.06893 :- professor(B),student(A).

with a LL of -318.17. Since the LL increased, the last clause is retained and at the next iteration

a new clause is added:

advisedby(A,B):0.12032 :- hasposition(B,C),inphase(A,D).

advisedby(A,B):0.05465 :- professor(B),inphase(A,C).

advisedby(A,B):0.06893 :- professor(B),student(A).
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11.4 Related Work

SLIPCASE & SLIPCOVER

Our work on structure learning for Probabilistic Logic Programs makes extensive use of well

known ILP techniques: the Inverse Entailment algorithm (Muggleton, 1995) for finding the

most specific clauses allowed by the language bias and the strategy for the identification of

good candidate clauses are exploited by the SLIPCOVER algorithm. This makes SLIPCOVER

closely related to the ILP systems Progol (Muggleton, 1995) and Aleph (Srinivasan, 2012),

that perform structure learning of a pure logical theory by building a set of clauses where spec-

ified background predicates can appear in the body. Aleph is compared with SLIPCOVER in

the experimental Section.

The use of log likelihood as heuristics rather than a scoring function as proposed in (Fried-

man, 1998) for SEM depends on the fact that it was giving better results with a limited additional

cost. We think that is due to the fact that, while in SEM the number of incomplete or unseen

variables is fixed, in SLIPCASE/SLIPCOVER the revisions can introduce or remove unseen

variables from the underlying Bayesian Network.

SLIPCOVER is based on SLIPCASE - of which it is an evolution - (Bellodi and Riguzzi,

2012b) and on EMBLEM (Bellodi and Riguzzi, 2012a) for performing parameter learning. The

two algorithms for structure learning differ mainly in the search strategy: SLIPCASE performs

a beam search in the space of theories, starting from a trivial LPAD and using the LL of the

data as the guiding heuristics. At each step of the search, the theory with the highest LL is

removed from the beam and a set of refinements is generated and evaluated by means of LL;

then they are inserted in order of LL in the beam.

SLIPCOVER search strategy differs because is composed of two phases: (1) beam search in

the space of clauses in order to find a set of promising clauses and (2) greedy search in the space

of theories. The beam searches performed by the two algorithms differ because SLIPCOVER

generates refinements of a single clause at a time, which are evaluated through LL. The search

in the space of theories starts from an empty theory which is iteratively extended with one

clause at a time from those generated in the previous beam search. Moreover, in SLIPCOVER

background clauses, the ones with a non-target predicate in the head, are treated separately,

by adding them en bloc to the best theory for target predicates. SLIPCOVER search strategy

allows a more effective exploration of the search space, resulting both in time savings and in a

higher quality of the final theories, as shown by the experiments.
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Structure Learning in Probabilistic Logic Languages

Previous works on learning the structure of probabilistic logic programs include (Kersting and

De Raedt, 2008) that proposed a scheme for learning both the probabilities and the structure

of Bayesian Logic Programs, by combining techniques from the learning from interpretations

setting of ILP with score-based techniques for learning Bayesian Networks. We share with this

approach the scoring function, the LL of the data given a candidate structure and the greedy

search in the space of structures.

(De Raedt et al., 2008b) presented an algorithm for performing theory compression on

ProbLog programs. Theory compression means removing as many clauses as possible from

the theory in order to maximize the likelihood w.r.t. a set of positive and negative examples.

No new clause can be added to the theory.

SEM−CP− Logic (Meert et al., 2008) learns parameters and structure of ground CP-

logic programs. It performs learning by considering the Bayesian networks equivalent to CP-

logic programs and by applying techniques for learning Bayesian networks. In particular, it

applies the Structural Expectation Maximization (SEM) algorithm (Friedman, 1998): it itera-

tively generates refinements of the equivalent Bayesian network and it greedily chooses the one

that maximizes the BIC score (Schwarz, 1978). In SLIPCOVER, we use the LL as a score be-

cause experiments with BIC were giving inferior results. Moreover, SLIPCOVER differs from

SEM-CP-Logic because it searches the clause space and it refines clauses with standard ILP

refinement operators, which allow to learn non ground theories. This system will be compared

with SLIPCASE and SLIPCOVER in the experimental Section.

(Getoor et al., 2007) described a comprehensive framework for learning statistical models

called Probabilistic Relational Models (PRMs). These extend Bayesian networks with the

concepts of objects, their properties, and relations between them, and specify a template for

a probability distribution over a database. The template includes a relational component, that

describes the relational schema for the domain, and a probabilistic component, that describes

the probabilistic dependencies that hold in it. A method for the automatic construction of a

PRM from an existing database is shown, together with parameter estimation, structure scoring

criteria and a definition of the model search space.

(Costa et al., 2003) presented an extension of logic programs that makes it possible to

specify a joint probability distribution over missing values in a database or logic program,

in analogy to PRMs. This extension is based on constraint logic programming (CLP) and is
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called CLP(BN). Existing ILP systems like Aleph can be used to learn CLP(BN) programs

with simple modifications.

(Paes et al., 2006) described the first theory revision system for SRL, PFORTE for “Prob-

abilistic First-Order Revision of Theories from Examples”, which starts from an approxi-

mate initial theory and applies modifications in places that performed badly in classification.

PFORTE uses a two step-approach. The completeness component uses generalization opera-

tors to address failed proofs and the classification component addresses classification problems

using generalization and specialization operators. It is presented as an alternative to algorithms

that learn from scratch.

Markov Logic Networks Structure learning has been thoroughly investigated for Markov

Logic Networks (MLN): in (Kok and Domingos, 2005) the authors proposed two approaches.

The first is a beam search that adds a clause at a time to the theory using weighted pseudo-

likelihood as a scoring function. The second is called shortest-first search and adds the k best

clauses of length l before considering clauses with length l + 1.

(Mihalkova and Mooney, 2007) proposed a bottom-up algorithm for learning Markov Logic

Networks (MLNs) called BUSL that is based on relational pathfinding: paths of true ground

atoms that are linked via their arguments are found and generalized into First Order rules.

(Huynh and Mooney, 2008) introduced a two-step method for MLNs structure learning:

(1) learning a large number of promising clauses through a specific configuration of Aleph

(ALEPH++), followed by (2) the application of a new discriminative MLN parameter learning

algorithm. This algorithm differs from the standard weight learning one (Lowd and Domingos,

2007) in the use of an exact probabilistic inference method and of a L1-regularization of the

parameters, in order to encourage assigning low weights to clauses. The complete method is

defined ALEPH++ExactL1; it is compared with SLIPCOVER in the experimental Sec-

tion.

In (Kok and Domingos, 2009), the structure of Markov Logic theories is learned by ap-

plying a generalization of relational pathfinding. A database is viewed as a hypergraph with

constants as nodes and true ground atoms as hyperedges. Each hyperedge is labeled with a

predicate symbol. First a hypergraph over clusters of constants is found, then pathfinding is

applied on this “lifted” hypergraph. The resulting algorithm is called LHL.

(Kok and Domingos, 2010) presented the algorithm “Learning Markov Logic Networks

using Structural Motifs” (LSM). It is based on the observation that relational data frequently
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contain recurring patterns of densely connected objects called structural motifs. LSM limits

the search to these patterns. Like LHL, LSM views a database as a hypergraph and groups

nodes that are densely connected by many paths and the hyperedges connecting the nodes into

a motif. Then it evaluates whether the motif appears frequently enough in the data and finally

it applies relational pathfinding to find rules. This process, called createrules step, is followed

by weight learning with the Alchemy system. LSM was experimented on various datasets and

found to be superior to other methods, thus representing the state of the art in Markov Logic

Networks’ structure learning and in Statistical Relational Learning in general. It is compared

with SLIPCOVER in the experimental Section.

A different approach is taken in (Biba et al., 2008) where the algorithm “Discriminative

Structure Learning” (DSL) is presented, that performs learning of MLNs by repeatedly adding

a clause to the network through iterated local search, which performs a walk in the space of

local optima. We share with this approach the discriminative nature of the algorithm and the

scoring function.

11.5 Experiments

The experiments are directed to verify:

• the quality of the estimated LPAD structure and parameters;

• the algorithm performance in comparison with other state of the art SRL systems.

Datasets

HIV (Beerenwinkel et al., 2005) records mutations in HIV reverse transcriptase gene in patients

that are treated with the drug zidovudine. It contains 364 examples, each of which specifies the

presence or not of six classical zidovudine mutations, denoted by atoms of the form “41L”.

These atoms indicate the location where the mutation occurred (e.g., 41) and the amino acid to

which the position mutated (e.g., L for Leucine). The goal is to discover causal relations be-

tween the occurrences of mutations in the virus. The database is split into five mega-examples.
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For UW-CSE (Richardson and Domingos, 2006)1, WebKB (Craven and Slattery, 2001)2 and

Mutagenesis(Srinivasan et al., 1996) cf. Section 10.4.

Hepatitis3 (Khosravi et al., 2012) is derived from the PKDD02 Discovery Challenge database

(Berka et al., 2002) and contains information on the laboratory examinations of hepatitis B and

C infected patients. Seven tables are used to store this information. The goal is to predict the

type of hepatitis of a patient. The database is split into five mega-examples.

Estimating Performance

Similarly to the experiments for EMBLEM,

• A k-fold (k = 4, 5, 10) cross-validation approach is adopted;

• Precision-Recall and Receiver Operating Characteristics curves are drawn, and the Area

Under the Curve (AUCPR and AUCROC respectively) is computed. Recently, (Boyd

et al., 2012) showed that the AUCPR is not adequate to evaluate the performance of

learning algorithms when the skew is larger than 0.5: skew is the ratio between the num-

ber of positive examples and the total number of examples. Since for Mutagenesis and

Hepatitis domains the skew is close to 0.5, it has been computed for them the Normalized

Area Under the PR Curve (AUCNPR) (Boyd et al., 2012);

• a paired two-tailed t-test at the 5% significance level is performed.

Methodology

SLIPCASE and SLIPCOVER exploit EMBLEM, that learns LPAD parameters and is described

in detail in Section 10.2. They are implemented in Yap Prolog4 and are compared with

• two systems for structure learning of Probabilistic Logic Programs:

– SEM-CP-Logic (Meert et al., 2008)

– Aleph (Srinivasan, 2012)

• two systems for structure learning of Markov Logic Networks:

1Available at http://alchemy.cs.washington.edu/data/uw-cse.
2Available at http://alchemy.cs.washington.edu/data/webkb.
3http://www.cs.sfu.ca/~oschulte/jbn/dataset.html
4http://www.dcc.fc.up.pt/~vsc/Yap/
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– LSM (Kok and Domingos, 2010)

– ALEPH++ExactL1 (Huynh and Mooney, 2008)

All experiments were performed on Linux machines with an Intel Core 2 Duo E6550 (2333

MHz) processor and 4 GB of RAM.

SLIPCASE offers the following options:

1. the options provided by EMBLEM for parameter learning, in particular we recall: the limit

on the depthD of derivations, for structures that contain cyclic clauses, such as transitive

closure clauses; ϵ and δ for stopping the EM cycle;

2. the number of theory refinement iterations, NIT ;

3. the number of iterations for BOUNDEDEMBLEM, NMax;

4. the size of the beam, NB;

5. the maximum number of variables in a clause, NV ;

6. the maximum number of rules in the learned theory, NR;

7. ϵs, δs, which are respectively the minimum difference and relative difference between

the LL of a theory in two consecutive refinement iterations;

8. the semantics (standard or simplified).

All experiments with SLIPCASE have been performed using ϵs = 10−4 and δs = 10−5

(except Mutagenesis where we set ϵs = 10−20 and δs = 10−20) and NMax = +∞ since

EMBLEM usually converges quickly. EMBLEM’s parameters ϵ, δ for stopping the EM cycle are

always set as ϵ = 10−4 and δ = 10−5.

SLIPCOVER offers the following options:

1. the options provided by EMBLEM for parameter learning, in particular we recall: the limit

on the depthD of derivations, for structures that contain cyclic clauses, such as transitive

closure clauses; ϵ and δ for stopping EM cycle; NEM , maximum number of steps of

the EM cycle;

2. the number of mega-examples from which to build the bottom clauses, NInt;
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3. the number of bottom clauses to be built for each mega-example, NA;

4. the number of saturation steps, NS; it is always set to 1 to limit the size of the bottom

clauses;

5. the maximum number of clause search iterations, NI;

6. the maximum number of variables in a rule, NV ;

7. the size of the beam, NB;

8. the maximum numbers NTC and NBC of target and background clauses, respectively;

9. the semantics (standard or simplified).

The parameters NV , NB and the semantics are shared with SLIPCASE.

For all experiments with SLIPCOVER, we set ϵ = 10−4, δ = 10−5 and NEM = +∞,

since we observed that EMBLEM usually converges quickly.

All the other parameters have been chosen to avoid lack of memory errors and to keep

computation time within 24 hours. This is true also for the depth bound D used in domains

where the language bias allows recursive clauses. The values for D are typically 2 or 3; when

the theory is not cyclic this parameter is not relevant.

Statistics on the domains are reported in Table 11.1.

Table 11.1: Characteristics of the datasets used with SLIPCASE and SLIPCOVER: target predi-
cates, number of constants, of predicates, of tuples (ground atoms), of positive and negative train-
ing and testing examples for target predicate(s), of folds. The number of tuples includes the target
positive examples.

Dataset Target Predicate(s) Const Preds Tuples Pos.Ex.
Training
Neg.Ex.

Testing
Neg.Ex.

Folds

HIV
41L,67N,70R,
210W,215FY,
219EQ

0 6 2184 590 1594 1594 5

UW-CSE advisedby(X,Y) 1323 15 2673 113 4079 16601 5
WebKB <course,faculty,

researchProject,
student>Page(P)

4942 8 290973 1039 15629 16249 4

Mutagenesis active(D) 7045 20 15249 125 63 63 10
Hepatitis type(X,T) 6491 19 71597 500 500 500 5
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The parameter settings for for SLIPCASE and SLIPCOVER on the domains can be found

in Tables 11.2 and 11.3.

Table 11.2: Parameter settings for the experiments with SLIPCASE. ‘-’ means the parameter is
not relevant.

Dataset NIT NV NB NR D semantics
HIV 10 - 5 10 3 standard
UW-CSE 10 5 20 10 - standard
WebKB 10 5 20 10 - simplified
Mutagenesis 10 5 20 10 - standard
Hepatitis 10 5 20 10 - standard

Table 11.3: Parameter settings for the experiments with SLIPCOVER. ‘-’ means the parameter is
not relevant.

Dataset NInt NS NA NI NV NB NTC NBC D semantics
HIV 1 1 1 10 - 10 50 - 3 standard
UW-CSE 1 1 1 10 5 100 10000 200 2 simplified
WebKB 1 1 1 5 4 15 50 - 2 standard
Mutagenesis 1 1 1 10 5 20 100 - - standard
Hepatitis 1 1 1 10 5 20 1000 - - simplified

For Aleph, we modified the standard settings as follows: the maximum number of literals

in a clause is set to 7 (instead of the default 4) for UW-CSE and Mutagenesis, since here clause

bodies are generally long. The minimum number of positive examples covered by an acceptable

clause is set to 2. The search strategy is forced to continue until all remaining elements in

the search space are definitely worse than the current best element (normally, search would

stop when all remaining elements are no better than the current best), by setting the explore

parameter to true. The induce command is used to learn the clauses.

We report results only for UW-CSE, WebKb and Mutagenesis since on HIV and Hepatitis

Aleph returns the set of examples as the final theory, not being able to find good enough

generalizations. In the tests, the head of each learned clause is annotated with probability

0.5 in order to turn the sharp logical classifier into a probabilistic one and to assign higher

probability to those examples that have more successful derivations.

For SEM-CP-logic, we report the results only on HIV as the system learns only ground

theories and the other datasets require theories with variables.
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For LSM, the weight learning step can be generative or discriminative, according to whether

the aim is to accurately predict all or a specific predicate respectively; for the discriminative

case we use the preconditioned scaled conjugate gradient technique, because it was found to

be the state of the art (Lowd and Domingos, 2007).

For ALEPH++ExactL1, we use the induce_cover command and the parameter settings

for Aleph specified in (Huynh and Mooney, 2008), on the datasets on which Aleph can

return a theory.

Tables 11.4 and 11.5 show respectively the AUCPR and AUCROC averaged over the folds

for all algorithms and datasets. Table 11.6 shows the AUCNPR for all algorithms tested on

the datasets Mutagenesis and Hepatitis. Table 11.7 shows the learning times in hours; times

for SEM-CP-logic on HIV cannot be included since they are not mentioned in (Meert et al.,

2008).

Tables 11.8 and 11.9 show the p-value of a paired two-tailed t-test at the 5% significance

level of the difference in AUCPR and AUCROC between SLIPCOVER and SLIPCASE/LSM/

SEM-CP-logic/Aleph/ALEPH++ExactL1 on all datasets (significant differences in fa-

vor of SLIPCOVER in bold).

Figures 11.1, 11.3, 11.5, 11.7 and 11.9 show the PR curves for all datasets, while Fig-

ures 11.2, 11.4, 11.6, 11.8 and 11.10 show ROC curves. These curves have been obtained

by collecting the testing examples, together with the probabilities assigned to them in testing,

in a single set and then building the curves with the methods of (Davis and Goadrich, 2006;

Fawcett, 2006).

HIV The goal is to discover causal relations between the occurrences of mutations in the

virus, so all the predicates 41L, 67N, 70R, 210W, 215FY and 219EQ corresponding to the muta-

tions are set as target. We created each fold as the grouping of 72 or 73 examples.

The input trivial theory for SLIPCASE is composed of six probabilistic clauses of the form

<mutation>:0.2. The language bias allows each of the six atoms to appear in the head and

in the body, so the theory is recursive.

The language bias for SLIPCOVER allows each atom to appear in the head and in the body

(cyclic theory). NBC is not relevant since all predicates are target.
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For testing, we compute the probability of each mutation in each example given the value of

the remaining mutations. The presence of a mutation in an example is considered as a positive

example, while its absence as a negative example.

For SEM-CP-Logic, we test the learned theory reported in (Meert et al., 2008) over each

of the five folds.

For LSM, we use the generative training algorithm to learn weights, because all the predi-

cates are target, and the MC-SAT algorithm for inference over the test fold, by specifying all

the six mutations as query atoms.

Results The medical literature states that 41L, 215FY and 210W tend to occur together,

and that 70R and 219EQ tend to occur together as well. SLIPCASE and LSM find only one

of these two connections and the simple MLN learned by LSM may explain its low AUCs.

SLIPCOVER instead learns many more clauses where both connections are found, with higher

probabilities than the other clauses. The longer learning time with respect to the other systems

mainly depends on the theory search phase, since the TC list can contain up to 50 clauses and

the final theories have on average 40, so many theory refinement steps are executed.

In the following we show examples of rules that are learned by the systems, focusing on

those expressing the above connections.

SLIPCOVER learns the clauses

70R:0.950175 :- 219EQ.

41L:0.24228 :- 215FY,210W.

41L:0.660481 :- 210W.

41L:0.579041 :- 215FY.

219EQ:0.470453 :- 67N,70R.

219EQ:0.400532 :- 70R.

215FY:0.795429 :- 210W,219EQ.

215FY:0.486133 :- 41L,219EQ.

215FY:0.738664 :- 67N,210W.

215FY:0.492516 :- 67N,41L.

215FY:0.475875 :- 210W.

215FY:0.924251 :- 41L.

210W:0.425764 :- 41L.

SLIPCASE instead learns

41L:0.68 :- 215FY.

215FY:0.95 ; 41L:0.05 :- 41L.

210W:0.38 ; 41L:0.25 :- 41L, 215FY.
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Figure 11.1: PR curves for HIV.

The clauses learned by SEM-CP-Logic that include the two connections are

70R:0.30 :- 219EQ.

215FY:0.90 :- 41L.

210W:0.01 :- 215FY.

LSM learns

1.19 !g41L(a1) v g215FY(a1)

0.28 g41L(a1) v !g215FY(a1)

UW-CSE The goal is to predict the advisedby(X, Y) predicate, namely the fact that a person

X is advised by another person Y.

The input theory for SLIPCASE is composed of two clauses of the form

advisedby(X,Y):0.5. The language bias allows advisedby/2 to appear only in the head

and all the other predicates only in the body, so the algorithm can be run with no depth bound.

The language bias for SLIPCOVER allows all predicates to appear in the head and in the

body of clauses; all except advisedby/2 are background predicates. Moreover, nine modeh

facts declare disjunctive heads, as shown in Section 11.3. These modeh facts have been defined

by looking at the hand crafted theory used for parameter learning in (Bellodi and Riguzzi,

2012a): for each disjunctive clause in the theory, a modeh fact is derived. The clauses of the
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Figure 11.2: ROC curves for HIV.

final theories have one to five head atoms. The simplified semantics has been used to limit

learning time.

For LSM, we use the discriminative training algorithm for learning the weights, by specify-

ing advisedby/2 as the only non-evidence predicate, and the MC-SAT algorithm for inference

over the test folds, by specifying advisedby/2 as the query predicate.

For Aleph and ALEPH++ExactL1 the language bias allows advisedby/2 to appear in

the head only and all the other predicates in the body only.

Results SLIPCASE, due to the restrictive language bias (only advisedby/2 in the clauses’

head), learns simple programs composed by a single clause per fold; this also explains the low

learning time. In two folds out of five it learns the theory

advisedby(A,B):0.264403 :- professor(B), student(A).

An example of a theory learned by LSM is

3.77122 professor(a1) v !advisedBy(a2,a1)

0.03506 !professor(a1) v !advisedBy(a2,a1)

2.27866 student(a1) v !advisedBy(a1,a2)

1.25204 !student(a1) v !advisedBy(a1,a2)

0.64834 hasPosition(a1,a2) v !advisedBy(a3,a1)

1.23174 !advisedBy(a1,a2) v inPhase(a1,a3)
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Figure 11.3: PR curves for UW-CSE.

SLIPCOVER learns theories able to better model the domain, at the expense of a longer

learning time, which is however the lowest after SLIPCASE. Examples of clauses learned

by SLIPCOVER are

advisedby(A,B):0.205829 ; tempadvisedby(A,B):0.20422 :- inphase(A,C),

professor(B).

advisedby(A,B):0.0750594 :- hasposition(B,C),inphase(A,D).

advisedby(A,B):0.118801 :- hasposition(B,C),student(A).

hasposition(A,faculty):0.3197;hasposition(A,fac_affiliate):0.2174;

hasposition(A,fac_adjunct):0.1479;hasposition(A,fac_emeritus):0.1006;

hasposition(A,fac_visiting):0.0684751 :- professor(A).

hasposition(A,faculty):0.5673;hasposition(A,fac_affiliate):0.2454;

hasposition(A,fac_adjunct):0.1061;hasposition(A,fac_emeritus):0.0459;

hasposition(A,fac_visiting):0.0198 :- taughtby(B,A,C),courselevel(B,D).

hasposition(A,faculty):0.5984 :- professor(A),taughtby(B,A,C).

professor(A):0.402283 :- hasposition(A,B).

professor(A):0.936545 :- taughtby(B,A,C),taughtby(D,A,E),

hasposition(A,faculty).

student(A):0.869182 :- ta(B,A,C).

student(A):0.737475 ; professor(A):0.193594 :- ta(B,A,C).

yearsinprogram(A,year_1):0.4151;yearsinprogram(A,year_2):0.2428:-student(A).

Aleph and ALEPH++ExactL1 mainly differ in the number of learned clauses, while body

literals and their ground arguments are essentially the same. ALEPH++ExactL1 works on

more complex MLNs than LSM, and performs slightly better.
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Figure 11.4: ROC curves for UW-CSE.

WebKB The goal is to predict the web pages four categories coursePage, studentPage,

facultyPage, researchProjectPage.

The input theory for SLIPCASE is composed of four clauses of the form

< class > Page(P) : 0.5. with class = {course, faculty, researchProject, student}.

The language bias allows predicates representing the four categories both in the head and in

the body of clauses, so the theory is recursive. Moreover, the body can contain the atom

linkTo(Id, Page1, Page2) (linking two pages) and the atom has(word, Page) with word a

constant. The target predicates are treated as closed world, so their literals in clause bodies are

resolved only with examples in the background and not with other clauses to limit execution

time, therefore the depth D is not relevant. We use a single random variable for each clause in-

stead of one for each grounding of each clause as on option for EMBLEM (simplified semantics)

to limit the learning time.

The language bias for SLIPCOVER allows predicates representing the four categories both

in the head and in the body of clauses.

LSM fails on this dataset because the weight learning phase quickly exhausts the available

memory on our machines (4 GB). This dataset is in fact quite large, with 15 MB input files on

average.

For Aleph and ALEPH++ExactL1, we overcame the limit of one target predicate per

run by executing Aleph four times on each fold, once for each target predicate. In each run,
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Figure 11.5: PR curves for WebKB.

we remove the target predicate from the modeb declarations to prevent Aleph from testing

cyclic theories and going into a loop.

Results A fragment of a theory learned by SLIPCOVER is

studentPage(A):0.9398:- linkTo(B,C,A),has(paul,C),has(jame,C),has(link,C).

researchProjectPage(A):0.0321475:- linkTo(B,C,A),has(project,C),

has(depart,C), has(nov,A),has(research,C).

facultyPage(A):0.436275 :- has(professor,A),has(comput,A).

coursePage(A):0.0630934 :- has(date,A),has(gmt,A).

Aleph and ALEPH++ExactL1 learn many more clauses for every target predicate than

SLIPCOVER. For the coursePage predicate for example ALEPH++ExactL1 learns

coursePage(A) :- has(file,A), has(instructor,A), has(mime,A).

coursePage(A) :- linkTo(B,C,A), has(digit,C), has(theorem,C).

coursePage(A) :- has(instructor,A), has(thu,A).

coursePage(A) :- linkTo(B,A,C), has(sourc,C), has(syllabu,A).

coursePage(A) :- linkTo(B,A,C), has(homework,C), has(syllabu,A).

coursePage(A) :- has(adapt,A), has(handout,A).

coursePage(A) :- has(examin,A), has(instructor,A), has(order,A).

coursePage(A) :- has(instructor,A), has(vector,A).

coursePage(A) :- linkTo(B,C,A), has(theori,C), has(syllabu,A).

coursePage(A) :- linkTo(B,C,A), has(zpl,C), has(topic,A).

coursePage(A) :- linkTo(B,C,A), has(theori,C), has(homework,A).

coursePage(A) :- has(decemb,A), has(instructor,A), has(structur,A).
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Figure 11.6: ROC curves for WebKB.

coursePage(A) :- has(apr,A), has(client,A), has(cours,A).

...

In this domain SLIPCASE learns fewer clauses (many with an empty body) for each fold than

SLIPCOVER. Moreover, SLIPCASE search strategy generates thousands of refinements for

each theory extracted from the beam, while SLIPCOVER beam search generates less than a

hundred refinements from four bottom clauses (one for each target predicate), thus achieving a

lower learning time.

Mutagenesis The goal is to predict if a drug is active, i.e. the target predicate active(drug).

For a more detailed description of the dataset see Section 10.4.

The input theory for SLIPCASE is composed of two clauses of the form active(A):0.5.

The language bias for SLIPCASE and SLIPCOVER allows active/1 only in the head, so D

is not relevant.

LSM failed on this dataset because the structure learning phase (createrules step) quickly

gives a memory allocation error when generating bond/4 groundings.

Results On this dataset, SLIPCOVER learns more complex programs with respect to those

learned by SLIPCASE, that contain only two or three clauses for each fold.
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Figure 11.7: PR curves for Mutagenesis.

(Srinivasan et al., 1994) report the results of the application of Progol to this dataset. In

the following we presents the clauses learned by Progol paired with the most similar clauses

learned by SLIPCOVER and ALEPH++ExactL1.

Progol learned

active(A) :- atm(A,B,c,10,C),atm(A,D,c,22,E),bond(A,D,B,1).

where a carbon atom c of type 22 is known to be in an aromatic ring.

SLIPCOVER learns

active(A):9.41508e-06 :- bond(A,B,C,7), atm(A,D,c,22,E).

active(A):1.14234e-05 :- benzene(A,B), atm(A,C,c,22,D).

where a bond of type 7 is an aromatic bond and benzene is a 6-membered carbon aromatic ring.

Progol learned

active(A) :- atm(A,B,o,40,C), atm(A,D,n,32,C).

SLIPCOVER instead learn:

active(A):5.3723e-04 :- bond(A,B,C,7), atm(A,D,n,32,E).

The clause learned by Progol

active(A):- atm(A,B,c,27,C),bond(A,D,E,1),bond(A,B,E,7).
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Figure 11.8: ROC curves for Mutagenesis.

where a carbon atom c of type 27 merges two 6-membered aromatic rings, is similar to

SLIPCOVER’s

active(A):0.135014 :- benzene(A,B), atm(A,C,c,27,D).

ALEPH++ExactL1 instead learns from all the folds

active(A) :- atm(A,B,c,27,C), lumo(A,D), lteq(D,-1.749).

The Progol clauses

active(A) :- atm(A,B,h,3,0.149).

active(A) :- atm(A,B,h,3,0.144).

mean that a compound with a hydrogen atom h of type 3 with partial charge 0.149 or 0.144 is

active. Very similar charge values (0.145) are found by ALEPH++ExactL1.

SLIPCOVER learns

active(A):0.945784 :- atm(A,B,h,3,C),lumo(A,D),D=<-2.242.

active(A):0.01595 :- atm(A,B,h,3,C),logp(A,D),D>=3.26.

active(A):0.00178048 :- benzene(A,B),ring_size_6(A,C),atm(A,D,h,3,E).

SLIPCASE instead learned clauses that relate the activity mainly to benzene compounds and

energy and charge values; for instance the theory learned from one fold is:

active(A):0.299495 :- benzene(A,B),lumo(A,C),lteq(C,-1.102),benzene(A,D),

logp(A,E),lteq(E,6.79),gteq(E,1.49),gteq(C,-2.14),gteq(E,-0.781).

active(A) :- lumo(A,B),lteq(B,-2.142),lumo(A,C),gteq(B,-3.768),lumo(A,D),

gteq(C,-3.768).
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Figure 11.9: PR curves for Hepatitis.

Hepatitis The goal is to predict the type of hepatitis of a patient, so the target predicate is

type(patient, type) where type can be type_b or type_c. We generated negative exam-

ples for type/2 by adding, for each fact type(patient, type_b), the fact

neg(type(patient, type_c)) and for each fact type(patient, type_c), the fact

neg(type(patient, type_b)).

The input theory for SLIPCASE contains the two clauses type(A,type_b):0.5. and

type(A,type_c):0.5.

The language bias for SLIPCASE and textttSLIPCOVER allows type/2 only in the head

and all the other predicates in the body of clauses, hence the depth D is not relevant. NBC

is not relevant as only type/2 can appear in clause heads and the simplified semantics is

necessary to limit learning time.

For LSM, we use the discriminative training algorithm for learning the weights, by specify-

ing type/2 as the only non-evidence predicate, and the MC-SAT algorithm for inference over

the test fold, by specifying type/2 as the query predicate.

Results Examples of clause learned by SLIPCOVER are

type(A,type_b):0.344348 :- age(A,age_1).

type(A,type_b):0.403183 :- b_rel11(B,A),fibros(B,C).

type(A,type_c):0.102693 :- b_rel11(B,A),fibros(B,C),b_rel11(D,A),

fibros(D,C),age(A,age_6).

type(A,type_c):0.0933488 :- age(A,age_6).
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Figure 11.10: ROC curves for Hepatitis.

type(A,type_c):0.770442 :- b_rel11(B,A),fibros(B,C),b_rel13(D,A).

Examples of clauses learned by SLIPCASE are

type(A,type_b):0.210837.

type(A,type_c):0.52192 :- b_rel11(B,A),fibros(B,C),b_rel11(D,A),fibros(B,E).

type(A,type_b):0.25556.

LSM long execution time is mainly affected by the createrules phase, where LSM counts

the true groundings of all possible unit and binary clauses to find those that are always true in

the data: it takes 17 hours on all folds; moreover this phase produces only one short clause in

every fold.

Table 11.4: Results of the experiments in terms of the Area Under the PR Curve averaged over the
folds. ‘-’ means that the algorithm is not applicable. The standard deviations are also shown.

System HIV UW-CSE WebKB Mutagenesis Hepatitis

SLIPCOVER 0.82± 0.05 0.11± 0.08 0.47± 0.05 0.95± 0.01 0.80± 0.01

SLIPCASE 0.78± 0.05 0.03± 0.01 0.31± 0.21 0.92± 0.08 0.71± 0.05

LSM 0.37± 0.03 0.07± 0.02 - - 0.53± 0.04

SEM-CP-L. 0.58± 0.03 - - - -
Aleph - 0.07± 0.02 0.15± 0.05 0.73± 0.09 -
ALEPH++ - 0.05± 0.006 0.37± 0.16 0.95± 0.009 -
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Table 11.5: Results of the experiments in terms of the Area Under the ROC Curve averaged over
the folds. ‘-’ means that the algorithm is not applicable. The standard deviations are also shown.

System HIV UW-CSE WebKB Mutagenesis Hepatitis

SLIPCOVER 0.95± 0.01 0.95± 0.01 0.76± 0.01 0.89± 0.05 0.74± 0.01

SLIPCASE 0.93± 0.01 0.89± 0.03 0.70± 0.03 0.87± 0.05 0.66± 0.06

LSM 0.60± 0.003 0.85± 0.21 - - 0.52± 0.06

SEM-CP-L. 0.72± 0.02 - - - -
Aleph - 0.55± 0.001 0.59± 0.04 0.53± 0.04 -
ALEPH++ - 0.58± 0.07 0.73± 0.27 0.90± 0.004 -

Table 11.6: Normalized Area Under the PR Curve for the high-skew datasets. The skew is the
proportion of positive examples on the total testing examples.

System Mutagenesis Hepatitis

Skew 0.66 0.5
SLIPCOVER 0.91 0.71
SLIPCASE 0.86 0.58
LSM - 0.32
Aleph 0.51 -
ALEPH++ 0.91 -

Overall remarks From the results we can observe that:

• On HIV, SLIPCOVER achieves significantly higher areas with respect to SLIPCASE,

SEM-CP-Logic and LSM; in turn, SLIPCASE is able to achieve higher AUCPR and

AUCROC with respect to LSM and SEM-CP-logic;

• On UW-CSE, SLIPCOVER achieves higher AUCPR and significantly higher AUCROC

than all other systems. SLIPCASE achieves higher AUCROC after SLIPCOVER, but

the lowest AUCPR. This is a difficult dataset, as testified by the low values of areas

achieved by all systems, and represents a challenge for structure learning algorithms;

• On WebKB, SLIPCOVER achieves higher AUCPR and AUCROC than the other systems

but the differences are not statistically significant;

• On Mutagenesis, SLIPCOVER achieves higher AUCPR and AUCROC than the other

systems, except ALEPH++ExactL1, which achieves the same AUCPR as SLIPCOVER
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Table 11.7: Execution time in hours of the experiments on all datasets. ‘-’ means that the algorithm
is not applicable.

System HIV UW-CSE WebKB Mutagenesis Hepatitis

SLIPCOVER 0.115 0.040 0.807 20.924 0.036
SLIPCASE 0.010 0.018 5.689 1.426 0.073
LSM 0.003 2.653 - - 25
Aleph - 0.079 0.200 0.002 -
ALEPH++ - 0.061 0.320 0.050 -

Table 11.8: Results of t-test on all datasets relative to AUCPR. p is the p-value of a paired
two-tailed t-test between SLIPCOVER and the other systems (significant differences in favor of
SLIPCOVER at the 5% level in bold). SC is SLIPCASE, SO is SLIPCOVER, L is LSM, SEM is
SEM-CP-Logic, A is Aleph, A++ is ALEPH++ExactL1.

System Couple HIV UW-CSE WebKB Mutagenesis Hepatitis

SO-SC 0.02 0.13 0.24 0.15 0.04
SO-L 4.11e-5 0.40 - - 3.18e-4
SO-SEM 4.82e-5 - - - -
SO-A - 0.11 0.06 2.84e-4 -
SO-A++ - 0.18 0.57 0.90 -

Table 11.9: Results of t-test on all datasets relative to AUCROC. p is the p-value of a paired
two-tailed t-test between SLIPCOVER and the other systems (significant differences in favor of
SLIPCOVER at the 5% level in bold). SC is SLIPCASE, SO is SLIPCOVER, L is LSM, SEM is
SEM-CP-Logic, A is Aleph, A++ is ALEPH++ExactL1.

System Couple HIV UW-CSE WebKB Mutagenesis Hepatitis

SO-SC 0.008 0.025 0.14 0.49 0.050
SO-L 2.52e-5 0.29 - - 0.003
SO-SEM 6.16e-5 - - - -
SO-A - 4.26e-6 0.11 3.93e-5 -
SO-A++ - 3.15e-4 0.88 0.66 -
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and non statistically significant higher AUCROC. The differences between SLIPCOVER

and Aleph are instead statistically significant. SLIPCASE has lower areas than

SLIPCOVER and ALEPH++ExactL1.

• On Hepatitis, SLIPCOVER achieves significantly higher AUCPR and AUCROC than

SLIPCASE and LSM. Our algorithms are both much faster than LSM, which takes several

hours.

Thus SLIPCOVER achieves larger areas than all the other systems in both AUCPR and

AUCROC, for all datasets except Mutagenesis, where ALEPH++ExactL1 behaves slightly

better in terms of AUCROC. SLIPCOVER always outperforms SLIPCASE due to the more

advanced language bias and search strategy. SLIPCASE outperforms the remaining systems

on three datasets out of five for AUCROC and two datasets for AUCPR.

We experimented with various SLIPCASE parameters in order to obtain an execution time

similar to SLIPCOVER’s and the best match we could find is the one shown. Increasing the

number of SLIPCASE iterations often gave a memory error when building BDDs so we could

not find a closer match.

Both SLIPCOVER and SLIPCASE always outperform Aleph, showing that a probabilis-

tic ILP system can better model the domain than a purely logical one.

SLIPCOVER’s advantage over LSM lies in a smaller memory footprint, that allows it to be

applied in larger domains, and in the effectiveness of the bottom clauses in guiding the search,

in comparison with the more complex clause construction process in LSM.

SLIPCOVER improves on ALEPH++ExactL1 by being able to learn disjunctive clauses

and by more tightly combining the structure and parameter searches.

The similarity in learning times between HIV and UW-CSE for SLIPCASE despite the

difference in the number of predicates for the two domains is due to the different specifications

in the language bias for the theory refinements’ generation: every predicate in HIV can be used

in the clauses’ body and in the head, while in UW-CSE only one is allowed for the head.

The long learning time spent on WebKB is probably due to the knowledge base size and to the

cyclicity of the LPAD.

The area differences between SLIPCOVER and the other systems are statistically signifi-

cant in its favor in 15 out of 30 cases at the 5% significance level.
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Part IV

Foundations of Description Logics
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Chapter 12

The Present and the Future of the Web

Today the Web provides the simplest way to share information and literally everyone writes

Web pages. The Hypertext Markup Language (HTML) is typically the language used to code

information about renderization (font size, color, position on screen, etc.) and hyperlinks to

other Web pages or resources (files, e-mail addresses, etc.) on the Web. The Web keeps grow-

ing very fast, however most pages are still designated for human consumption and cannot be

processed by machines. Computers are used only to display the information, that is to decode

the color schema, headers and links.

Web search engines, the most popular tools to help retrieve Web pages, do not offer support

to interpret the results; this situation is progressively getting worse as the size of search results

is becoming too large, since most users only browse through the top results, discarding the

remaining ones. Finding relevant information on the Web is not as easy as we would desire.

In the next two Sections we discuss the characteristics of the current “syntactic” Web and

of its (possible) future “semantic” Web. For a detailed coverage of these aspects see (Breitman

et al., 2007).

12.1 The Syntactic Web

Today’s Web may be defined as the Syntactic Web, where information presentation is carried

out by computers, and the interpretation and identification of relevant information is delegated

to human beings. Because the volume of digital data is growing at an exponential rate, it is

becoming impossible for human beings to manage its complexity. This phenomenon, called

information overload, poses a question: why can’t computers do this job for us?
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One of the reasons resides in the fact that Web pages do not contain information about

themselves, i.e., about their contents and the subjects to which they refer.

Web search engines help identify relevant Web pages, but they suffer from the following

limitations:

• Search results might contain a large number of entries, but they might have low precision

(being of little interest);

• Search results are sensitive to the vocabulary used. Indeed, users frequently formulate

their search in a vocabulary different from that which the relevant Web pages adopt;

• Search results are a list of references to individual Web pages but, among them, there are

many entries that belong to the same Web site.

The semantic content, that is, the meaning of the information in a Web page, is coded in

a way that is accessible to human beings alone. There is a need to add more semantics to the

Web pages so that they can be processed by machines as well as by humans.

12.2 The Semantic Web

In 2001, Berners-Lee, Hendler and Lassila published a revolutionary article in Scientific Amer-

ican, entitled “The Semantic Web: a new form of Web Content That Is Meaningful to Com-

puters Will Unleash a Revolution of New Possibilities”, where they describe future scenarios

in which the Semantic Web will have a fundamental role in the day life of individuals.

In one of these scenarios, Lucy needs to schedule a series of medical consultations for her

mother. A series of restrictions applies to this scenario: Lucy’s tight schedule, geographical

location constraints, doctor’s qualifications, adherence to their Social Security plan. To help

Lucy find a solution, there is a software agent, capable of negotiating among different parties:

the doctor, Lucy’s agenda and medical services directory. Although each party codes its infor-

mation in a different way, because of a semantic layer, they are able to interact and exchange

data in a meaningful way. The enabling technology is what the authors called the Semantic

Web. Most of the actions described in the scenario can be achieved in the Syntactic Web of

today, but with many comes-and-goes between different Web sites.

In order to organize Web content, artificial intelligence researchers proposed a series of

conceptual models. The central idea is to categorize information similarly to classify living
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beings: biologists use the Linnaean taxonomy, adopted by the scientific community worldwide.

On the other hand, in the same environment we can find Web sites designed for specialists,

personal Web pages, vendors’ Web sites: in this anarchical scenario it is difficult to imagine

that a single organization model could prevail. Hendler’s prediction is that every business,

enterprise, university and organization on the Web of the future will have its own organizational

model.

The most important concepts of Semantic Web are discussed in the remainder of this sec-

tion and are graphically represented in Figure 12.1.

Figure 12.1: Themes related to the Semantic Web.

Metadata Metadata are data about data and serve to index Web pages in the Semantic Web,

allowing other computers to acknowledge what the Web page is about. The number of institu-

tions and objects - Web pages - to be catalogued are both enormous and distributed all over the

world, coded in different languages, by different groups.

Ontologies The word ontology comes from the Greek ontos (being) + logos (word). It was

introduced in philosophy in the XIX century by German philosophers:

The subject of Ontology is the study of the categories of things that exist in some domain.

The product of such a study, called an ontology, is a catalogue of the types of things that are

assumed to exist in a domain of interest D from the perspective of a person who uses a language

L for the purpose of talking about D. The types in the ontology represent the predicates, word

senses, or concept and relation types of L. (Sowa 1997)

In computer science, ontologies were adopted in AI to facilitate knowledge sharing and

reuse. Today they are used in areas such as intelligent information integration, cooperative
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information systems, agent-based software engineering and electronic commerce. Ontologies

are conceptual models that capture the vocabulary used in semantic applications, guaranteeing

communication free of ambiguities. They will be the language of the Semantic Web. In Chapter

13 we discuss ontologies, their formalisms, types and basic elements.

Formal Systems Formal systems provide the ability to deduce new sentences from existing

sentences using specific inference rules. Logical inference is an essential component of a

Semantic Web ontology formalism. Because First Order Logic is intractable, the Semantic

Web community has been exploring Description Logic as the paradigm formal system. In

Chapter 14 we introduce Description Logic.

Ontology description languages Ontology description languages are designed to define on-

tologies. They are sometimes called lightweight or markup or Web-based ontology languages.

The Resource Description Framework (RDF) is a general purpose language for representing

information about resources in the Web and, to some extent, a lightweight ontology language.

The lack of expressiveness of RDF was partly eased with the introduction of the RDF Vo-

cabulary Description Language 1.0: RDF Schema, which offers primitives to model hierar-

chies of classes and properties. The Ontology Inference Layer (Oil) is the result of the On-

To-Knowledge Project and is based on Description Logic. The Defense Advanced Research

Projects Agency (DARPA) sponsored the DARPA Agent Markup Language (DAML) Program.

These two languages were amalgamated into DAML+Oil. A reformatted version of it served

as a starting point for the Web Ontology Language (OWL). In Section 13.4 we review OWL.

Methodologies and Tools for Ontology Development The number of tools for ontology

editing, visualization and verification grows. The best examples are the Protégé and OilEd

tools, which sprung from large cooperation projects involving many universities and countries.

Crafting an ontology today is possibly no harder than creating a Web page. The number of

lightweight ontologies, that is, developed by independent groups and organizations rather than

by knowledge engineers, is rapidly growing as can be verified by visiting some of the public

ontology repositories, such as the DAML one.

163



Applications of Semantic Web Technologies Applications are not limited to indexing Web

pages. Other areas provide challenges, for example consider software agents, defined as au-

tonomous software applications that act for the benefit of their users. A personal agent in the

Semantic Web will be responsible for understanding the desired tasks and user preferences,

searching for information on available resources, communicating with other agents, and com-

paring information to provide adequate answers. So the solution developed must allow infor-

mation sharing and have efficient communication. In Section 13.5 examples of applications are

provided.
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Chapter 13

Ontologies in Computer Science

This chapter introduces the fundamental building blocks about ontologies. Section 13.1 sum-

marizes the various uses of the term ontology in computer science. Section 13.2 reports differ-

ent classifications of ontologies known in literature. Section 13.3 describes the main compo-

nents of an ontology and Section 13.4 the background for a better understanding of ontology

description languages and tools. Section 13.5 illustrates application fields of ontologies.

13.1 Defining the term Ontology

The word ontology can be used as an uncountable noun (“Ontology” with the uppercase initial)

and as a countable noun (an “ontology” with lowercase initial).

In the first case it refers to a philosophical discipline, that deals with the nature and structure

of things per se, even independently of their actual existence.

In the second case, used in Computer Science, it refers to a special kind of information

object or computational artifact. The path followed by the Ontology concept from Philosophy

to Computer Science was the result of different requirements in various fields:

• In the field of Artificial Intelligence (AI) the need for knowledge representation came

from the goal to make an agent do tasks autonomously and systematically: the agent’s

decisions must be made based on knowledge. So it was necessary to find a method for

representing knowledge in a computational environment.

• The object-oriented paradigm gave Software Engineering a new style of representing

elements, by classifying the world into objects with attributes (properties) and methods
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(possible actions that they could do). Object-orientation is a hierarchical way of thinking

about the world where an object inherits properties and methods from its parents. At a

higher level, software engineers found that representing concepts - the meaning of things

- may also help to simplify some problems like systems interoperability.

• The Database community needed conceptual high level models to give an abstract rep-

resentation of a problem domain without considering implementation issues.

Therefore, three different areas have the same problem of representation of concepts. This

representation is a starting point to generate knowledge. Differently from Philosophy, Com-

puter Science assumes that everything that can be represented is real: concepts are primary

principles and all the things that exist in the world are susceptible to being represented by a

concept which captures its meaning (process of conceptualization).

Currently, the most common definition of ontology in Computer Science is Gruber’s: on-

tology is an “explicit specification of a conceptualization”.

Example 27 A computational ontology can be used to formally model the structure of a sys-
tem, the relevant entities and relations: an example can be a company with all its employees
and their interrelationships. The ontology engineer analyzes the relevant entities (subjects,
objects, processes, etc.) and organizes them into concepts and relations. The backbone of an
ontology consists of a generalization/specialization hierarchy of concepts, i.e., a taxonomy.

Here Person, Manager and Researcher might be relevant concepts, where the first is su-
perconcept of the latter two. Cooperates-with can be a relevant relation. A concrete person
working in a company would then be an instance of some concepts.

For detailed references on ontologies see (Staab and Studer, 2009) and (Sharman et al.,

2007).

13.2 Classification of Ontologies

There are several classifications of ontologies, based on different parameters. Guarino (1998)

classifies them by their level of generality in:

• top-level ontologies, which describe domain-independent concepts such as space, time,

etc., and which are independent of specific problems;
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• domain and task ontologies which describe, respectively, the vocabulary related to a

generic domain and a generic task;

• application ontologies, which describe concepts depending on a particular domain and

task.

Van Heijst, Schreiber and Wielinga (1997) classify them according to their use in:

• terminological ontologies, which specify which terms are used to represent the knowl-

edge;

• information ontologies, which specify storage structure data;

• knowledge modeling ontologies, which specify the conceptualization of the knowledge.

Fensel (2004) classifies ontologies in:

• domain ontologies, which capture the knowledge valid for a particular domain;

• metadata ontologies, which provide a vocabulary for describing the content of on-line

information sources;

• generic ontologies, which capture general knowledge about the world providing basic

notions for things like time, space, state, etc;

• representational ontologies, that define the basic concepts for the representation of

knowledge;

• method and tasks ontologies, which provide terms specific for particular tasks and meth-

ods.

Gomez-Perez, Fernandez-Lopez and Corcho (2003) classify ontology based on the level of

specification of relationships among the terms, in:

• lightweight ontologies, which include concepts, concept taxonomies, relationships be-

tween concepts and properties that describe concepts;

• heavyweight ontologies, which add axioms and constraints to lightweight ontologies.

Those axioms and constraints clarify the intended meaning of the terms involved into the

ontology.
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13.3 Ontology Representation

Ontology comprises four main components: concepts, instances, relations and axioms. A gen-

eral definition of these components is provided in the following.

• A Concept (also known as a class or a term) is an abstract group, set or collection of

objects. It is the fundamental element of the domain and usually represents a group

or class whose members share common properties. This component is represented in

hierarchical graphs that look similar to object-oriented systems. A concept can be a

“super-class”, representing a parent class, or a “subclass” which represents a subordinate

or child class. For instance, person could represent a class with many subclasses, such

as students, employees, retirees.

• An Instance (also known as an individual) is the ‘ground-level’ component of an ontol-

ogy which represents a specific object or element of a concept or class. For example,

“Italy” could be an instance of the class “European countries” or simply “countries”.

• A Relation (also known as a slot) is used to express relationships between instances of

two concepts. More specifically, it describes the relationship between instances of a first

concept, representing the domain, and instances of a second concept, representing the

range. For example, “study” could be a relationship between individuals of the concept

“person” (which is a domain concept) and individuals of “university” or “college” (which

is a range concept).

• An Axiom is used to impose constraints on classes or instances, so axioms are generally

expressed using logic-based languages; they are used to verify the consistency of the

ontology.

13.4 Ontology Description Languages

Ontology description languages are specifically designed to define ontological knowledge sys-

tems. They recently received considerable attention, boosted by the emergence of the Semantic

Web. Such languages should be easily understood by computers.

On 10 February, 2004, the World Wide Web Consortium (W3C) announced its support for

two Semantic Web technology standards, RDF and OWL. A layered model for the Semantic

168



Web can be constructed to correlate ontology description languages, OWL, RDF and RDF

Schema, XML, as depicted in Figure 13.1.

Figure 13.1: An architecture for the Semantic Web.

The bottom layer offers character encoding (Unicode) and referencing (URI) mechanisms.

The second introduces XML as the document exchange standard. The third layer accommo-

dates RDF and RDF Schema as mechanisms to describe the resources available on the Web.

XML is designed for syntax, while RDF is intended for semantics. RDF can be used in sev-

eral applications, one of the most important being resource discovery, used to enhance search

engine capabilities. The RDF model is based on triples: a resource (the subject), the object

and the predicate. It is possible to say that <subject> has a property <predicate> valued by

<object>. RDFS is used to define RDF vocabularies.

Ontology description languages appear in the fourth layer to capture more semantics; they

are also called ontology languages, Web ontology languages or markup ontology languages.

Examples are:

• Ontology Interchange Language (OIL), which provides modelling primitives used in

frame-based and DL-oriented ontologies.

• DARPA Agent Markup Language (DAML) + Ontology Inference Layer (OIL), or

DAML+OIL. DAML+OIL has many limitations: it lacks property constructors, it has no

composition or transitive closure, its only property types are transitive and symmetrical,

sets are the only collection type (there are no bags or lists), there is no comparison in

data value, it allows only unary and binary relations, and there are neither default values

nor variables.
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• Web Ontology Language (OWL): was built using RDF to remedy the weaknesses in

DAML+OIL. It provides a richer integration and interoperability of data between com-

munities and domains. OWL is an extension of RDF Schema; in other words, it builds

on RDF and RDFS, using XML syntax and the RDF meaning of classes and properties.

W3C classifies OWL into three sublanguages: OWL Lite, OWL DL and OWL Full.

OWL Lite is the simplest version of OWL and provides a classification hierarchy and

simple constraints; it permits only the expression of relationships with maximum cardi-

nality equal to 0 or 1, thus being designed for easy implementation. The disadvantage of

this sublanguage is restricted expressiveness.

OWL DL is so called because it uses Description Logic to represent the relations be-

tween objects and their properties. Indeed, it provides maximum expressiveness while

preserving the completeness of reasoning. OWL Lite is a sublanguage of OWL DL.

The sublanguage OWL Full provides the highest expressiveness and the syntactic free-

dom of RDF but without preserving guarantees on computational complexity. OWL Lite

and OWL DL are sublanguages of OWL Full.

OWL is supported by tools and infrastructure:

– APIs (e.g., OWL API, Thea, OWLink)

– Development environments (e.g., Protégé, Swoop, TopBraid Composer, Neon)

– Reasoners and Information Systems (e.g., Pellet, Racer, HermiT, Quonto, etc.)

The topmost layer introduces expressive rule languages, that provide knowledge represen-

tation structures. In practical applications, as well as in human communication, we need to use

a language L to refer to the elements of a conceptualization: for instance, to express the fact

that person a cooperates with b, we have to introduce a specific symbol (a predicate symbol),

cooperates-with, which is intended to represent a certain conceptual relation.

Looking at Figure 13.2, at one extreme we have rather informal approaches for the language

L that may allow the definitions of terms only, with little or no specification of the meaning

of the term. At the other end, we have formal approaches, i.e., logical languages that allow

specifying formal logical theories. As we move along the spectrum, the amount of meaning

specified and the degree of formality increases (reducing ambiguity); there is also increasing

support for automated reasoning.
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Figure 13.2: Different approaches to the language according to (Uschold and Gruninger, 2004).
Typically, logical languages are eligible for the formal, explicit specification, and thus for ontolo-
gies.

In practice, the rightmost category of logical languages is usually considered as formal.

Here one encounters the trade-off between expressiveness and efficiency:

• higher-order logic, full First Order Logic or modal logic are very expressive, but do

often not allow for sound and complete reasoning and if they do, reasoning sometimes

remains intractable. Gruber proposes using frames and First Order Logic. This schema

uses classes, relations, functions, formal axioms and instances. Classes are the represen-

tation of relevant concepts in the domain; classes are organized in taxonomies. Relations

represent different types of associations between individuals in a domain. Functions are

a special case of relations. Formal axioms are sentences always true and are used to gen-

erate new knowledge and to verify the consistency of the ontology. Instances represent

elements in the ontology.

• just before the above logics, there are less stringent subsets of First Order Logic, which

feature decidable and more efficient reasoners. They can be split in two major paradigms.

1. First, languages from the family of Description Logics (DL), e.g., OWL-DL, are

strict subsets of First Order Logic; the proposal of their use for modeling ontologies

comes from (Baader, Horrocks and Sattler, 2004): they are described in detail in

Chapter 14.

2. The second comes from the tradition of logic programming with one prominent

representative being F-Logic. Though logic programming (LP) often uses a syntax
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comparable to First Order Logic, it assumes a different interpretations of formulae:

LP selects only a subset of models to judge semantic entailment of formulae.

In the middle of the spectrum one can find some other relevant languages:

• Software Engineering techniques like Unified Modeling Language (UML) are used for

modeling ontologies, in particular the lightweight ones; for heavyweight ontologies it

is necessary to enrich UML with, for example, the Object Constraint Language (OCL),

which is the language for describing constraints in UML. In UML class diagrams each

class represents a concept. The instances of classes are represented by objects. Concept

taxonomies are represented through generalization relationships. Binary relations are

represented through association relationships.

• Database technologies are another possibility to represent ontologies using for example

Entity-Relationship (ER) diagrams. Concepts can be represented using entities, which

have attributes that are properties of the concept, with name and type. Relations between

concepts are represented by relationships, which have a cardinality.

13.5 Applications

Database systems, Software Engineering and Artificial Intelligence are the three most impor-

tant fields where ontologies have been used to construct solutions.

The main purpose for using ontologies is as means of integrating several platforms or ap-

plications, by looking for the most natural way to inter-communicate. So, it is important to

have a set of concepts that form the vocabulary used by the applications and a set of rules for

solving semantic heterogeneity. This allows transforming data from one application to another.

Another use of ontologies is for domain modelling. Ontologies hope to represent an objective

point of view of a part of the reality, and they include the main characteristics that would be

used by any application that gives a particular solution in a modeled domain.

In Database systems, the ontologies help to model a specific domain and facilitate the

integration with other databases, and improve information search.

In Software Engineering, a specific ontology could be taken as a reference point to validate

a system acting over a particular domain.

In Artificial Intelligence ontologies help to ease the inference process.
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Chapter 14

Knowledge Representation in
Description Logics

Description Logic denotes a family of knowledge representation (KR) formalisms that model

the application domain by defining the relevant concepts of the domain and using them to spec-

ify properties of objects and individuals in the domain (Baader and Nutt, 2003). Description

Logics received attention recently because they provide a formal framework for the Web on-

tology language OWL, proposed as a standard (cf. Section 13.4). The history of Description

Logics goes back to the discussion about knowledge representation formalisms in the 1980s.

At the heart of the discussion was the categorization into non-logic-based and logic-based for-

malisms.

The non-logic-based formalisms claimed to be closer to one’s intuition and easier to compre-

hend: they include semantic networks, frames, rule-based representations. Most of them lack

a consistent semantics and adopt ad-hoc reasoning procedures.

The second category borrows the basic syntax, semantics and proof theory of First Order Logic,

which is considered to be able to describe facts about the real world, so these formalisms have

a solid foundation. The full power of First Order Logic was not necessary to achieve an ad-

equate level of expressiveness. As a result, research on the so-called terminological systems

began. Recently, the term Description Logics (DLs) was adopted to emphasize the importance

of the underlying logical system. It is considered to define subsets of First Order Logic (FOL).

Like FOL, syntax defines which collections of symbols are legal expressions in a Description

Logic, and semantics determines the meaning. Unlike FOL, a DL may have several well known

syntactic variants.

173



Section 14.1 introduces the basic concepts about DLs general syntax, with a dedicated

subsection relative to SHOIN(D). Section 14.2 explains general semantics, principles of the

satisfaction of axioms, translation of DL axioms to first order logic predicates, semantics of

SHOIN(D) DL. Section 14.3 discusses the kinds of reasoning that one can perform on a DL

knowledge base and the practical available algorithmic approaches, among which Pellet.

14.1 Syntax

The basic syntactic building blocks are the following three disjoint sets:

• atomic concepts, which denote types, categories, or classes of entities, usually charac-

terized by common properties, e.g., Cat, Country,Doctor; they are equivalent to FOL

unary predicates;

• atomic roles, which denote binary relationships between individuals of a domain, e.g.,

hasParent, loves, locatedIn; they are equivalent to FOL binary predicates;

• individuals, that correspond to all names used to denote singular entities (be they persons,

objects or anything else) in the domain, like Mary,Boston, Italy; they are equivalent

to FOL constants.

According to a convention widely adopted, we capitalize concept names’ initial whereas

individual and role names are written with lower case initial. Camelcase is used for names

corresponding to multi-word units in natural language.

Elementary descriptions are atomic concepts and atomic roles, which constitute the

vocabulary or signature of an application domain. Complex descriptions of concepts and roles

can be built from them inductively with concept and role constructors, the range of which is

dependent on the particular Logic. Some constructors are related to logical constructors in

First Order Logic, other constructors have no corresponding construction in FOL, including

restrictions on roles, inverse, transitivity and functionality for example. In abstract notation,

A denotes an atomic concept and C,D denote concept descriptions (complex concepts); P

denotes an atomic role and R a role description (complex role); a denote an individual.
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Concept and Role constructors

For concepts, the available operators usually include some or all of the standard logical connec-

tives, conjunction (denoted ⊓), disjunction (denoted ⊔) and negation (denoted ¬). In addition,

the universal concept top (denoted⊤, and equivalent to A⊔¬A) and the incoherent concept bot-

tom (denoted⊥, and equivalent to A⊓¬A) are often predefined. Top contains all the individuals

of the domain, while bottom is the empty concept.

Other commonly supported operators include restricted forms of quantification called exis-

tential role restrictions (denoted ∃R.C) and universal role restrictions (denoted ∀R.C). Some

DLs also support qualified number restrictions (denoted ≤ n.PC and ≥ n.PC), operators that

place cardinality restrictions on the roles relating instances of a concept to instances of some

other concept. Cardinality restrictions are often limited to the forms ≤ n.P⊤ and ≥ n.P⊤,

that are called unqualified number restrictions, or simply number restrictions, and are often

abbreviated to ≤ n.P and ≥ n.P. The roles that can appear in cardinality restriction concepts

are usually restricted to being atomic.

Role forming operators may also be supported, and in some very expressive logics roles can

be expressions formed using union (denoted ⊔), composition (denoted ◦), reflexive-transitive

closure (denoted *) and identity operators (denoted id), possibly augmented with the inverse

(also known as converse) operator (denoted −). In most implemented systems, however, roles

are restricted to being atomic names.

Given these constructors, we now inductively define complex concepts or concepts expres-

sions (also simply called concepts).

Let NC, NR and NI be sets of atomic concepts (or concept names), roles and individuals,

respectively. Then the ordered triple (NC,NR,NI) is the signature.

1. The following are concepts:

• ⊤ (top)

• ⊥ (bottom)

• every A ∈ NC (all atomic concepts are concepts)

• for every finite set {a1, . . . , an} ∈ NI of individual names, {a1, . . . , an} is a con-

cept; they are called nominal concepts

2. If C and D are concepts and R ∈ NR then the following are concepts:
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• (C ⊓D) (the intersection of two concepts is a concept)

• (C ⊔D) (the union of two concepts is a concept)

• ¬C (the complement of a concept is a concept)

• ∃R.C (the existential restriction of a concept by a role is a concept)

• ∀R.C (the universal restriction of a concept by a role is a concept)

• for a natural number n, ∃R.Self (self restriction, which expresses reflexivity of a

role); ≥ nR (at-least restriction) and ≤ nR (at-most restriction) (the unqualified

number restrictions on roles are concepts); ≥ nR.C and ≤ nR.C (the qualified

number restrictions on roles are concepts)

In Table 14.1 are illustrated some examples of complex concepts.

Table 14.1: Examples of Description Logic concept expressions.

Construct Example Meaning

intersection Person ⊓ Female those persons that are female
union Mother ⊔ Father individuals are mother or father
complement ¬Male those individuals who are not males
{a1, ..., an} {john,mary} the set of individuals john,mary
∀R.C ∀hasChild.Female those individuals all of whose children are female
∃R.C ∃hasChild.Female those individuals whose child is a female
∃R.{a} ∃citizenOf.{USA} those individuals who are USA citizens
∃R.Self ∃likes.Self those individuals who are narcist (like themselves)
≥ nR(minCardinality) ≥ 2hasChild those individuals who have at least 2 children
≤ nR(maxCardinality) ≤ 1hasChild those individuals who have no more than one child
≥ nR.C ≥ 2hasChild.Female those individuals who have at least 2 daughters
≤ nR.C ≤ 1hasChild.Male those individuals who have no more than one son

Knowledge Bases

A KR system based on Description Logic provides facilities to set up knowledge bases, to

reason about their content, and to manipulate them. A knowledge base (KB) comprises two

components, the intensional knowledge (TBox and RBox), i.e., general knowledge about the

problem domain, and extensional knowledge (ABox), i.e., knowledge about a specific situation.

The TBox introduces the terminology, i.e., the vocabulary of an application domain, while the

ABox contains assertions about named individuals in terms of this vocabulary.
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TBox

The TBox (terminological box) contains all the concept definitions. Moreover, it is built

through declarations that describe general properties of concepts. Terminological axioms make

statements about how concepts are related to each other. The axioms of a TBox can be divided

into:

• definitions: C ≡ D

• subsumptions: C ⊑ D

where C,D are concepts.

Definitions Axioms of the first kind are called concept equalities, since they state that a

concept C is equivalent to another concept D (atomic or complex). Definitions are used to

introduce symbolic names for complex descriptions. For instance, by the axiom

Mother ≡Woman ⊓ ∃hasChild.Person.

we associate to the description on the right-hand side the name Mother. Symbolic names

may be used as abbreviations in other descriptions. If, for example, we have defined Father

analogously to Mother, we can define Parent as

Parent ≡ Mother ⊔ Father.

We call a finite set of definitions T a terminology or TBox if no symbolic name is defined more

than once, that is, if for every atomic conceptA there is at most one axiom whose left-hand side

is A. We divide the atomic concepts in T into two sets, the name symbols NT that occur on the

left-hand side of some axiom and the base symbols BT that occur only on the right-hand side of

axioms. Name symbols are often called defined concepts and base symbols primitive concepts.

We expect that the terminology defines the name symbols in terms of the base symbols.

Subsumptions For certain concepts we may be unable to define them completely. In this

case, we can still state necessary conditions for concept membership using an inclusion. In

particular, axioms of the second kind are called concept inclusions since state that a concept

C is a subclass of the concept D and is often read “C is subsumed by D”. We call an in-

clusion whose left-hand side is atomic a specialization. Sometimes, this axiom type is also
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referred to as an is-a relationship (e.g. “a cat is a mammal" would be a typical verbalization of

Cat ⊑ Mammal). We use C ≡ D to abbreviate C ⊑ D and D ⊑ C.

For example, if one thinks that the definition of Woman as Woman ≡ Person ⊓ Female is

not satisfactory, but if one also feels that is not able to define the concept in all detail, one can

require that every woman is a person with the specialization

Woman ⊑ Person.

A set of axioms T is a generalized terminology if the left-hand side of each axiom is an

atomic concept and for every atomic concept there is at most one axiom where it occurs on the

left-hand side.

A TBox T is a finite set of general concept inclusion axioms (GCIs). The kind of axioms

that can appear in T depends on the DL.

RBox

The RBox (Role box) is a set of statements about the characteristics of roles. A role is either a

universal role U , an atomic role R ∈ NR or the inverse R− of an atomic role R. The universal

role interconnects any two individuals of the domain and also every individual with itself. We

use N−R to denote the set of all inverses of roles in NR.

An RBox R is a finite set of statements of the form

• Func(R) or R ∈ F, where F ⊆ NR is the set of functional roles (e.g., since one can

have at most one father, the role hasFather is functional);

• Trans(R) or R ∈ NR+ , where NR+ ⊆ NR is the set of transitive roles (e.g., the role

partOf );

• R ⊑ S, called role inclusions (e.g. isComponent ⊑ partOf ); R ≡ S, called role

equivalence, which is an abbreviation for (R ⊑ S) and (S ⊑ R). R and S are roles in

NR ∪NR
−.

Statements in R are called role axioms. The kinds of role axioms that can appear in R

depend on the expressiveness the Description Logic. Many DLs, e.g. ALC, do not provide any

role axioms at all; for the S-family of DLs, however, the RBox is a very important component

in a DL knowledge base, since S itself provides transitive role axioms.
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ABox

The ABox (assertional box) provides the world description, a specific state of affairs of an

application domain in terms of concepts and roles. Some of the concept and role atoms in the

ABox may be defined names of the TBox. In the ABox, one introduces individuals (instances),

by giving them names, and one asserts properties of these individuals. We denote individual

names as a, b, c. Using concepts C and rolesR, one can make assertions of the following kinds

in an ABox:

1. a : C, called concept assertions, stating that a belongs to C;

2. (a, b) : R, called role assertions, stating that c is a filler of the role R for b, i.e., b is

R-related to c;

3. equality assertions a = b between individuals;

4. inequality axioms a ̸= b between individuals.

An ABox, denoted as A, is a finite set of such assertions. Sometimes, it is convenient to

allow individual names (also called nominals) not only in the ABox, but also in the description

language. Some concept constructors employing individuals occur in systems and have been

investigated in the literature. The most basic one is the set (or one-of ) constructor, written

{a1, . . . , an}, where a1, . . . an are individual names, cf. subsection 14.1. With sets in the

description language one can for instance define the concept of permanent members of the UN

security council as {CHINA,FRANCE,RUSSIA,UK,USA}.
In Table 14.2 are illustrated some examples of TBox, RBox and ABox axioms.

Table 14.2: Examples of axioms of a DL Knowledge Base.

Construct Example Box

Subsumption Human ⊑ Animal ⊓ Biped TBox
Definition Man ≡ Human ⊓Male TBox
Role inclusion hasDaughter ⊑ hasChild RBox
Role equiv. & Inversion hasChild ≡ hasParent− RBox
Role incl. & Transitivity ancestor+ ⊑ ancestor RBox
Individuals Equality PresidentBush = GWBush ABox
Individuals Inequality john ̸= peter ABox
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Description Logics Nomenclature

There is a well-established naming convention for DLs. The naming scheme for mainstream

DLs can be summarized as follows:

((ALC | FL | EL | S) [ H ] | SR) [ O ][ I ][ F | E | U | N | Q ] (D)

The meaning of the name constituents is as follows:

• ALC is an abbreviation for attributive language with complements. This is the base

language which allows atomic negation, concept intersection, complex concept negation

(letter C), universal restrictions, limited existential quantification. This DL disallows

RBox axioms as well as role inverses, cardinality constraints, nominal concepts, and self

concepts.

• FL is an abbreviation for frame based description language. This DL allows concept in-

tersection, universal restrictions, limited existential quantification, role restriction. FL−

is a sub-language of FL, which is obtained by disallowing role restriction. FLo is a sub-

language of FL−, which is obtained by disallowing limited existential quantification.

• EL allows concept operators and concept axioms (⊑,≡), but no role/axioms operators.

EL++ is an alias for ELRO.

• By S we denote ALC where we additionally allow transitivity statements. The name

goes back to the name of a modal logic called S.

• ALC and S can be extended by role hierarchies (obtaining ALCH or SH) which allow

for simple role inclusions, i.e., role chain axioms of the form R ⊑ S.

• SR denotes ALC extended with all kinds of RBox axioms as well as self concepts, e.g.,

hasParent ◦ hasBrother ⊑ hasUncle.

• The letter O in the name of a DL indicates that nominal concepts are supported, e.g.

{Italy}.

• When a DL contains I then it features role inverses, e.g. isChildOf ≡ hasChild−.

• The letter F at the end of a DL name enables support for role functionality statements

which can be expressed as ≤ 1R.⊤, e.g. ≤ 1hasMother.
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• The letter E enables full existential quantification.

• The letter U allows concept union.

• N at the end of a DL name allows for unqualified cardinality restrictions, i.e., concepts

of the shape ≥ 2hasChild and ≤ 3hasChild.

• Q indicates support for arbitrary qualified cardinality restrictions, i.e.,

≥ 2hasChild.Doctor.

• (D) indicates the use of datatype properties.

Example 28 Some examples belonging to the family of Description Logics are (M., 2011):

• ALC, which is a centrally important Description Logic;

• SHOIN(D): it is a type of Description Logic that provides a high level of expressivity and
offers full negation, disjunction within inverse roles and a restricted form of existential
quantification; it is therefore called “concept description”. It additionally supports rea-
soning with concrete data-types. At present, OWL DL is correspondent to SHOIN(D).
The Protégé ontology editor supports SHOIN(D).

• SHIQ(D): it is distinguished from SHOIN(D) essentially by not supporting nominal
concepts (or named objects), allowing qualified number restrictions of the concept and
simple roles. There is a mapping or translation from DAML+OIL to the SHIQ(D) lan-
guage. SHIQ is the logic ALC plus extended cardinality restrictions, and transitive and
inverse roles.

• SHIF(D): it is just SHOIN(D) with the exclusion of the oneOf constructor and the
inclusion of the (at-least) and (at-most) constructors limited to 0 and 1. In fact, OWL
Lite can be translated to SHIF(D) to allow for reasoning.

• Three major bioinformatic terminology bases, Snomed, Galen, and GO, are expressible
in EL (with additional role properties).

Syntax of SHOIN(D)

This subsection illustrates the syntax of SHOIN(D) DL, which will be the subject of Chapter

16.

The Description Logic SHOIN is the logic underlying OWL-DL, and results from ALC

plus all constructs and syntax of the S, H, O, I and N languages:
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• S: Role transitivity (e.g. Trans(ancestor))

• H: Role hierarchy (e.g. parent ⊑ ancestor)

• O: Nominals of the form {a} and {a1, . . . , an} (one-of construct) (cf. subsection

14.1)

• I: Role Inverses (e.g. parent−)

• N: Unqualified number restrictions

A knowledge base KB in SHOIN consists of a TBox T, an RBox R and an ABox A.

The Description Logic SHOIN(D) is a generalization of SHOIN by datatypes, such as

strings and integers. The elementary ingredients are as follows. We assume a set of data

values, a set of elementary datatypes, and a set of datatype predicates, where each datatype

predicate has a predefined arity n ≥ 1. A datatype is an elementary datatype or a finite set

of data values. So we can define four disjoint sets NC,NRA
,NRD

,NI for atomic concepts,

abstract roles, datatype roles and individuals, respectively.

For example, over the integers, ≥20 may be a unary predicate denoting the set of integers

greater or equal to 20, and thus Person ⊓ ∃age. ≥20 may denote a person whose age is at least

20.

To consider datatypes we extend:

• The inductive definition of concepts. IfD is an n-ary datatype predicate and T, T1, ..., Tn
∈RD, then ∃T1, ..., Tn.D, ∀T1, ..., Tn.D,≥ nT , and≤ nT are concepts (called datatype

exists, value, at-least, and at-most restriction, respectively) for an integer n ≥ 0. For

example, we may write the concept

Flower ⊓ ∃hasPetalWidth. ≥20mm ⊓ ∃hasPetalWidth. ≤ 40mm ⊓ ∃hasColor.Red

to denote the set of flowers having petal’s dimension within 20mm and 40mm (where

we assume that every flower has exactly one associated petal width) whose color is red.

Here, ≥20mm and ≤40mm are datatype predicates.

• the RBox content. It consists of a finite set of transitivity axioms and role inclusion

axioms R ⊑ S, where either R,S ∈ NRA
∪NR−

A
or R,S ∈ NRD

.

• the ABox content. It is a finite set of axioms as specified in subsection 14.1 plus role

membership axioms (a, v) : T , where a ∈ NI and v is a data value.
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14.2 Semantics

Like for any other logic, the definition of a formal semantics for DLs aims at providing a

consequence relation that determines whether an axiom logically follows from (also: is entailed

by) a given set of axioms. The semantics of Description Logics is defined in a model-theoretic

way and concepts are given a set-theoretic interpretation: a concept is interpreted as a set of

individuals and roles are interpreted as sets of pairs of individuals. The domain of interpretation

can be chosen arbitrarily, and it can be infinite. The non-finiteness of the domain and the open-

world assumption are distinguishing features of Description Logics.

One central notion is that of an interpretation. An interpretation, normally denoted with

I, provides

• a nonempty set ∆I, called the domain or also universe of discourse, which can be under-

stood as the entirety of individuals or things existing in the ‘world’ that I represents,

• a function ·I, called interpretation function, which connects the vocabulary elements

(i.e., the individual, concept, and role names) to ∆I, by providing

– for each individual name a ∈ NI a corresponding individual aI ∈ ∆I from the do-

main,

– for each atomic concept A ∈ NC a corresponding set AI ⊆ ∆I of domain elements

(as opposed to the domain itself, AI is allowed to be empty), and

– for each atomic role R ∈ NR a corresponding (also possibly empty) set

R ⊆ ∆I ×∆I of ordered pairs of domain elements,

where NI,NC,NR are respectively the set of individual names, of concept names and of role

names. Figure 14.1 depicts this definition graphically. For domain elements δ, δ′ ∈ ∆I, the

intuitive meaning of δ ∈ AI is that the individual δ belongs to the class described by the concept

name A, while (δ, δ′) ∈ RI means that δ is connected to δ′ by the relation denoted by the role

name R.

To avoid confusion, it is important to strictly separate syntactic notions (referring to the

vocabulary and axioms) from the semantic notions (referring to the domain and domain ele-

ments). Individual names, concept names and role names are syntactic entities and so are roles

and concepts. Individuals are elements of ∆I and hence semantic entities. In order to refer

to the semantic counterparts of concepts and roles, one would use the terms concept extension
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Figure 14.1: Structure of DL interpretations.

or role extension, respectively. Single elements of the extension of a concept or role are also

called concept instances or role instances.

The domain is not required to be finite, but can also be an infinite set. It is also possible

to consider only interpretations with finite domains, but then one explicitly talks about finite

models or finite satisfiability. There are logics where infinite interpretations are “dispensable”

as there are always finite ones that do the same job, these logics are said to have the finite model

property. SHOIN does not have the finite model property.

Example 29 As an example of an interpretation, with an infinite domain, consider the follow-
ing vocabulary:

• NI = {zero}

• NC = {Prime,Positive}

• NR = {hasSuccessor, lessThan,multipleOf}

We define I as follows: let ∆I = N = {0, 1, 2, ...}, i.e., the set of all natural numbers
including zero.

Furthermore, we let zeroI = 0, as well as PrimeI = {n|n is a prime number} and
PositiveI = {n|n > 0}.

For the roles, we define:

• hasSuccessorI = {(n, n+ 1) | n ∈ N}

• lessThanI = {(n, n′) | n < n′, n, n′ ∈ N}
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• multipleOfI = {(n, n′) | ∃k.n = k · n′, n, n′, k ∈ N}

We have seen that an interpretation determines the semantic counterparts of vocabulary el-

ements. However, in order to determine the truth of complex axioms, it is necessary to also find

the counterparts of complex concepts and roles. The semantics of a complex language expres-

sion can be obtained from the semantics of its constituents (thereby following the principle of

compositional semantics): atomic concepts are subsets of the interpretation domain, while the

semantics of the other concepts is then specified on the basis of the construct. Formally, this is

done by extending the interpretation function to these complex expressions:

1. ·I is extended from role names to roles by letting uI = ∆I×∆I (that is: the universal role

interconnects any two individuals of the domain and also every individual with itself),

and the set of all pairs (δ, δ′) of domain elements for which (δ′, δ) is contained in RI is

assigned to inverted role names R−.

2. ·I is extended to concept descriptions this way

• ⊤ is the concept which is true for every individual of the domain, hence ⊤I = ∆I

• ⊥ is the concept which has no instances, hence ⊥I = ∅

• {a1, . . . , an} is the concept containing exactly the individuals denoted by

a1, . . . , an, therefore {a1, . . . , an}I = {aI1, . . . , aIn}

• ¬C is supposed to denote the set of all those domain individuals that are not con-

tained in the extension of C, i.e., (¬C)I = ∆I \ CI

• C ⊓ D is the concept comprising all individuals that are simultaneously in C and

D, thus (C ⊓D)I = CI ∩DI

• C⊔D contains individuals being present inC orD (or both), therefore (C⊔D)I =

CI ∪DI

• ∀R.C denotes the set of individuals δ ∈ ∆I with the following property: whenever

δ is connected to some domain individual δ′ ∈ ∆I via the relation denoted by R,

then δ′ belongs to the extension of the concept C, formally: (∀R.C)I = {δ ∈ ∆I |
∀δ′ ∈ ∆I.((δ, δ′) ∈ RI → δ′ ∈ CI)}

• ∃R.C is the concept that holds for an individual δ ∈ ∆I exactly if there is some

domain individual δ′ ∈ ∆I such that δ is connected to δ′ via the relation denoted
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by R and δ′ belongs to the extension of the concept C, formally: (∃R.C)I = {δ ∈
∆I | ∃δ′ ∈ ∆I.((δ, δ′) ∈ RI ∧ δ′ ∈ CI)}

• ∃R.Self comprises those domain individuals which are R-related to themselves,

thus we let (∃R.Self)I = {x ∈ ∆I | (x, x) ∈ RI}

• ≤ nR refers to the domain elements δ ∈ ∆I for which no more than n individuals

exist to which δ is R-related, formally: (≤ nR)I = {δ ∈ ∆I | #{δ′ ∈ ∆I |
(δ, δ′) ∈ RI} ≤ n} (#S is used to denote the cardinality of a set S),

• ≤ nR.C refers to the domain elements δ ∈ ∆I for which no more than n indi-

viduals exist to which δ is R-related and that are in the extension of C, formally:

(≤ nR.C)I = {δ ∈ ∆I | #{δ′ ∈ ∆I | (δ, δ′) ∈ RI ∧ δ′ ∈ CI} ≤ n},

• ≥ nR and≥ nR.C, duals to the case before, denote those domain elements having

at least n such R-related elements: (≥ nR)I = {δ ∈ ∆I | #{δ′ ∈ ∆I | (δ, δ′) ∈
RI} ≥ n}; (≥ nR.C)I = {δ ∈ ∆I | #{δ′ ∈ ∆I | (δ, δ′) ∈ RI ∧ δ′ ∈ CI} ≥ n}.

Satisfaction of Axioms

The final purpose of the extended interpretation function is to determine the satisfaction of

axioms. In the following, we define when an axiom E is true (holds), given a specific interpre-

tation I. If this is the case, we also say that I is a model of E or that I satisfies E and we write

I |= E.

• A role inclusion axiom R ⊑ S holds in I (I |= R ⊑ S) iff RI ⊆ SI

• A role transitivity statement Trans(R) is true in I iff RI is transitive, i.e., if, for every

individual x, y, z, (x, y) ∈ RI, (y, z) ∈ RI → (x, z) ∈ RI

• A general concept inclusion C ⊑ D is satisfied by I, if every instance of C is also an

instance of D. An alternative wording would be that the extension of C is contained in

the extension of D, formally CI ⊆ DI

• A general concept equality C ≡ D is satisfied by I, if the instances of C and D refer to

the same set of domain elements

• A concept assertion a : C holds in I (I |= a : C) if the individual with the name a is an

instance of the concept C, that is aI ∈ CI
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• A role assertion (a, b) : R holds in I if the individual denoted by a is R-connected to

the individual denoted by b, i.e. the extension of R contains the corresponding pair of

domain elements: (aI, bI) ∈ RI

• The equality statement a = b holds in I if the individual names a and b refer to the same

domain individual, i.e. aI = bI; I is a model of a ̸= b exactly if it is not a model of a = b

(aI ̸= bI)

Now that we have defined when an interpretation I is a model of an axiom, we can easily

extend this notion to whole knowledge bases: I is a model of a given knowledge base KB

(also: I satisfies KB), written I |= KB, if it satisfies all the axioms of KB, i.e., if I |= E for

every E ∈ KB. In particular:

• An interpretation I is a model of a Tbox T (denoted by I |= T) iff it satisfies all GCIs of

T.

• An interpretation I is a model of a RBox R (denoted by I |= R) iff it satisfies all role

inclusion axioms of R.

• An interpretation I is a model of an ABox A (denoted by I |= A) iff it satisfies all

assertions in A. An ABox A is consistent with respect to a Rbox R and a Tbox T if there

is a model I for R and T such that I |= A.

A knowledge base KB is called satisfiable or consistent if it has a model, and unsatisfiable

or inconsistent or contradictory otherwise.

An axiom E is a logical consequence of (also entailed by) a knowledge base KB (written:

KB |= E) if every model of KB is also a model of E, i.e. for every I with I |= KB, it also

holds I |= E.

A concept C is satisfiable relative to KB iff there exists an interpretation I such that CI ̸=
∅.

Semantics via Embedding into FOL

Most description logics are fragments of First Order predicate Logic (FOL). This statement

may be somewhat misleading since, from a syntax point of view, most DL axioms are not FOL

formulae. However, DL interpretations have the same structure as FOL interpretations if one

conceives individual names as constants, concept names as unary predicates and role names as
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binary predicates. Under this assumption, one can define an easy syntactic translation π which,

applied to a DL axiom E, yields a FOL sentence π(E) such that the model sets of E and π(E)

coincide, that is an interpretation I is a model of E exactly if it is a model of π(E). An atomic

concept A is translated into the formulaA(x); the constructors intersection, union, and negation

are translated into logical conjunction, disjunction, and negation, respectively. Consequently,

every reasoning problem in a DL is easily transferable to an equivalent reasoning problem in

FOL. The semantics of Description Logics can - as an alternative to the previously introduced

way - be defined by reducing it to the semantics of FOL via the mentioned translation.

We provide here a definition of π. Every knowledge base KB thus translates via π to a

theory π(KB) in First Order predicate Logic with equality. We define

π(KB) =


E∈KB

π(E),

i.e., we translate every axiom of the knowledge base separately into a FOL sentence. How

exactly π(E) is defined depends on the type of the axiom E.

First we have to define auxiliary translation functions πR : R× V ar × V ar → FOL for

roles and πC : C×V ar → FOL for concepts (where V ar = {x0, x1, ...} is a set of variables):

πR(u, xi, xj) = true

πR(R, xi, xj) = R(xi, xj)

πR(R−, xi, xj) = R(xj , xi)

πC(A, xi) = A(xi)

πC(⊤, xi) = true

πC(⊥, xi) = false

πC({a1, . . . , an}, xi) =


1≤j≤n xi = aj

πC(¬C, xi) = ¬πC(C, xi)

πC(C ⊓D,xi) = πC(C, xi) ∧ πC(D,xi)

πC(C ⊔D,xi) = πC(C, xi) ∨ πC(D,xi)

πC(∃R.C, xi) = ∃xi+1.(πR(R, xi, xi+1) ∧ πC(C, xi+1))

πC(∃R−.C, xi) = ∃xi+1.(πR(R, xi+1, xi) ∧ πC(C, xi+1))

πC(∀R.C, xi) = ∀xi+1.(πR(R, xi, xi+1)→ πC(C, xi+1))

πC(∀R−.C, xi) = ∀xi+1.(πR(R, xi+1, xi)→ πC(C, xi+1))

πC(∃R.Self, xi) = πR(R, xi, xi)

πC(≥ nR.C, xi) = ∃xi+1...xi+n.(


i+1≤j<k≤i+n(xj ̸= xk)∧
i+1≤j≤i+n(πR(R, xi, xj) ∧ πC(C, xj)))

πC(≥ nR, xi) = ∃xi+1...xi+n.(


i+1≤j<k≤i+n(xj ̸= xk)∧
i+1≤j≤i+n πR(R, xi, xj))

πC(≥ nR−, xi) = ∃xi+1...xi+n.(


i+1≤j<k≤i+n(xj ̸= xk)∧
i+1≤j≤i+n πR(R, xj , xi))

πC(≤ nR.C, xi) = ¬πC(≥ (n+ 1)R.C, xi)

πC(≤ nR, xi) = ¬πC(≥ (n+ 1)R, xi)

πC(≤ nR−, xi) = ¬πC(≥ (n+ 1)R−, xi)
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Obviously, the translation assigns a FOL formula with (at most) two free variables to a role

and a FOL formula with (at most) one free variable to a concept.

Now it is possible to translate axioms:

π(R ⊑ S) = ∀x0, x1(πR(R, x0, x1)→ πR(S, x0, x1))
π(Trans(R)) = ∀x, y, z(πR(R, x, z) ∧ πR(R, z, y)→ πR(R, x, y))

π(C ⊑ D) = ∀x0(πC(C, x0)→ πC(D,x0))
π(a : C) = πC(C, x0)[x0/a] = C(a)

π((a, b) : R) = πR(C, x0, x1)[x0/a, x1/b] = R(a, b)
π(a = b) = a = b
π(a ̸= b) = a ̸= b

We can now define instantiations of FOL formulas obtained by translating a DL knowledge

base. Here we assume a fixed interpretation domain ∆I that is non-empty and possibly infinite.

Given a predicate logic formula F and a domain ∆I, a substitution θ is a set of couples x/a

where x is a variable universally quantified in the outermost quantifier in F and a ∈ NI.

The application of θ to F , indicated by Fθ, is called an instantiation of F and is obtained by

replacing x with a in F and by removing x from the external quantification for every couple

x/a in θ. Moreover, given a substitution θ, let V ar(θ) = {x|x/a ∈ θ} be the set of variables

of θ and let θ|V ar = {x/i|x ∈ V ar} be the restriction of θ to the variables of V ar. Formulas

not containing variables are called ground. A substitution θ is grounding for a formula F if Fθ

is ground.

Semantics of SHOIN(D)

This subsection illustrates the semantics of SHOIN(D), as done in Subsection 14.1 for the

syntax. The SHOIN(D) semantics is a simple generalization of all the previous definitions

with datatypes, such as strings and integers.

A datatype theory D = (∆D, ·D) consists of a datatype domain ∆D and a mapping ·D

that assigns to each data value an element of ∆D, to each elementary datatype a subset of ∆D,

and to each datatype predicate of arity n a relation over ∆D of arity n. We extend ·D to all

datatypes by {v1, ...}D = {vD1 , ...}.
Let NC,NRA

,NRD
,NI be four disjoint sets of atomic concepts, abstract roles, datatype

roles and individuals, respectively.

An interpretation I = (∆I, ·I) relative to a datatype theory consists of a nonempty abstract

domain ∆I, disjoint from ∆D, and an interpretation function ·I that assigns to each a ∈ NI an

element in ∆I, to each C ∈ NC a subset of ∆I, to each R ∈ NRA
a subset of ∆I × ∆I, to
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each T ∈ NRD
a subset of ∆I ×∆D and to every data value, datatype, and datatype predicate

the same value as ·D. The mapping ·I is extended to all roles and concepts as usual:

(∀T1, . . . , Tn.d)I = {x ∈ ∆I | T I
1(x)× . . .× T I

n(x) ⊆ dI}
(∃T1, . . . , Tn.d)I = {x ∈ ∆I | T I

1(x)× . . .× T I
n(x) ∩ dI ̸= ∅}

The satisfaction of an axiom E in an interpretation I is defined, for a data value v, as:

I |= (a, v) : T iff (aI, vD) ∈ T I.

14.3 Reasoning Tasks

A knowledge representation system based on DLs is able to perform specific kinds of reason-

ing. A knowledge base comprising TBox and ABox has a semantics that makes it equivalent

to a set of axioms in First Order predicate Logic. Thus, like any other set of axioms, it contains

implicit knowledge that can be made explicit through inferences. The different kinds of rea-

soning performed by a DL system are defined as logical inferences. In the following, we shall

discuss these inferences, first for concepts, then for TBoxes and ABoxes. It will turn out that

there is one main inference problem, namely the consistency check for ABoxes, to which all

other inferences can be reduced.

The inference services provided by DL systems for concept consistency and TBox rea-

soning can be summarized as follows:

• Concept Satisfiability or Consistency (w.r.t a TBox): given a TBox T, a concept C is

called satisfiable with respect to T, if it may contain individuals, i.e. there is a model I

of T that maps C to a nonempty set, formally: CI ̸= ∅. We get yes or no as an answer.

A concept is unsatisfiable if CI = ∅, which can be rewritten into CI ⊆ ∅, and further

into CI ⊆ ⊥I for every model I of T. This means I |= C ⊑ ⊥ for every model I of T.

Hence, unsatisfiability of a conceptC with respect to a TBox can be decided by checking

whether T entails the GCI C ⊑ ⊥.

• Concept subsumption (w.r.t. a TBox): given a TBox T, a concept C is subsumed by a

concept D if in every model of T the set denoted by C is a subset of the set denoted by

D, formally: CI ⊆ DI for every model I of T. In this case we write T |= C ⊑ D.

Algorithms that check subsumption are also employed to organize the concepts of a

TBox in a taxonomy according to their generality.
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• Consistency of a TBox: this task verifies that there exists at least one interpretation I for

a given TBox T (T ̸|= ⊥).

Traditionally, the basic reasoning mechanism provided by DL systems checked the sub-

sumption of concepts. This is, in fact, sufficient to implement also the other inferences, as can

be seen by the following reductions.

For concepts C,D we have:

• C is unsatisfiable⇔ C is subsumed by ⊥;

• C and D are equivalent⇔ C is subsumed by D and D is subsumed by C;

• C and D are disjoint⇔ C ∩D is subsumed by ⊥.

The inference services for the ABox are:

• ABox consistency (w.r.t. a TBox): An ABox A is consistent with respect to a TBox T, if

there is an interpretation that is a model of both A and T.

• Instance check w.r.t. an ABox, also called Axiom entailment: checking whether an as-

sertion E is entailed by an ABox (A |= E) can be seen as the prototypical reasoning

task for querying knowledge. If E is of the form C(a) - i.e. we want to check if a given

individual a belongs to a particular concept C - we can reduce the instance check to the

consistency problem for ABoxes because there is the following connection: A |= C(a)

iff {A ∪ ¬C(a)} is inconsistent. The problem of checking axiom entailment in general

can be reduced to consistency checking, i.e., whether a concept is (un)satisfiable. The

idea behind this reduction is proof by contradiction: we show that something holds by

assuming the opposite and deriving a contradiction from that assumption. The corre-

spondences for all types of axioms are given in Table 14.3.

• Instance retrieval is the problem of finding all individuals a mentioned in an ABox that

are an instance of a given concept C w.r.t. a TBox, formally A |= C(a).

• The set of fillers of a role R for an individual i w.r.t. a TBox T and an ABox T is defined

as {x | (T,A) |= (i, x) : R}.

• The set of roles between two individuals i and j w.r.t. a knowledge base (T,A) is defined

as {R | (T,A) |= (i, j) : R}.
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In many DL systems, there are some auxiliary supported queries: retrieval of concept

names or individuals mentioned in a knowledge base, retrieval of the set of roles, retrieval

of the role parents and children, retrieval of the set of individuals in the domain and in the

range of a role, etc.

Table 14.3: Definition of axiom sets AE s. t. KB |= E iff KB ∪AE is unsatisfiable.

E AE

R ⊑ S {¬S(x, y), R(x, y)}
C ⊑ D {(C ∩ ¬D(x)}
C(a) {¬C(a)}

R(a, b) {¬R(a, b)}
a = b a ̸= b

a ̸= b a = b

Other reasoning tasks, called non-standard, have a somewhat different goal:

• Induction: as opposed to the aforementioned deductive methods, inductive approaches

usually take an amount of factual (assertional) data and try to generalize them by gen-

erating hypotheses expressed as terminological axioms or complex concepts. This task

draws inspiration from inductive logic programming;

• Abduction: In ontology engineering, abductive reasoning services come handy when a

wanted consequence (say E) is not entailed by the knowledge base KB and one wants

to determine what information KB′ is missing, such that KB ∪KB′ |= E;

• Explanation: the goal is to give an account on the cause why some axiom is entailed

by the knowledge base, in other words to give an explanation for it. More precisely, a

justification for the entailment is a knowledge base KB′ ⊆ KB such that KB′ |= E.

There might be more than one justification for an entailment.

Closed- vs. Open-world Semantics

Often, an analogy is established between databases on the one hand and DL knowledge bases

on the other hand. The schema of a database is compared to the TBox and the instance with

the actual data is compared to the ABox. However, the semantics of ABoxes differs from the
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usual semantics of database instances. While a database instance represents exactly one in-

terpretation, namely the one where classes and relations in the schema are interpreted by the

objects and tuples in the instance, an ABox represents many different interpretations, namely

all its models. As a consequence, absence of information in a database instance is interpreted as

negative information, while absence of information in an ABox only indicates lack of knowl-

edge. For example, if the only assertion about Peter is hasChild(PETER,HARRY), then in

a database this is understood as a representation of the fact that Peter has only one child. In

an ABox, the assertion only expresses that, in fact, Harry is a child of Peter. However, the

ABox has several models, some in which Harry is the only child and others in which he has

brothers or sisters. The only way of stating in an ABox that Harry is the only child is by adding

the assertion (≤ 1hasChild)(PETER). The semantics of ABoxes is therefore an open-world

semantics, while the traditional semantics of databases is a closed-world semantics.

This view has consequences for the way queries are answered. A database (in the sense

introduced above) is a listing of a single finite interpretation. Answering a query, represented

by a complex concept C, over that database amounts to computing CI, which is equivalent to

evaluate a formula in a fixed finite model. Since an ABox represents possibly infinitely many

interpretations, namely its models, query answering is more complex.

Algorithmic Approaches

Various reasoning paradigms have been investigated with respect to their applicability to DLs.

Most of them originate from well-known approaches for theorem proving in a first-order logic

setting. However, in contrast to the unavoidable downside that reasoning methods for first-

order logic cannot be sound, complete, and terminating, approaches to reasoning in DLs aim

at being sound and complete decision procedures, whence the reasoning techniques have to

guarantee termination.

In general, reasoning methods can be subdivided into model-theoretic methods on one hand

and proof-theoretic methods on the other.

Model-theoretic methods essentially try to construct models of a given knowledge base in an

organized way. If this succeeds, the knowledge base has obviously been shown to be satisfiable,

if the construction fails, unsatisfiability has been established. Typical reasoning paradigms of

that sort are tableau procedures and automata-based approaches.

Proof-theoretic approaches operate more on the syntactic side: starting out from a normalized

version of the knowledge base, deduction rules are applied to derive further logical statements
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about a potential model. If, in the course of these derivations a contradiction is derived, the

considered knowledge base has shown to be unsatisfiable.

The majority of state-of-the art OWL reasoners, such as Pellet (Sirin et al., 2007),

FaCT++, or

RacerPro use tableau methods with good performance results, but even those successful

systems are not applicable in all practical scenarios. This motivates the search for alternative

reasoning approaches that employ different methods in order to address cases where tableau

algorithms exhibit certain weaknesses. Successful examples in this respect are the works based

on resolution and hypertableaux as well as consequence-based approaches.

In Chapter 17 we will use Pellet as an OWL-DL reasoner to return explanations of

queries on a (probabilistic) ontology, so a brief illustration of its main services is reported. For

a complete description of its architecture and functionalities see the main reference (Sirin et al.,

2007).

The Tableau Algorithm

Tableau procedures aim at constructing a model that satisfies all axioms of the given knowledge

base. The strategy here is to maintain a set D of elements representing domain individuals (in-

cluding anonymous ones) and acquire information about their concept memberships and role

interrelatedness. D is initialized by all the individual names and the according ABox facts.

Normally, the partial model thus constructed does not satisfy all the TBox and RBox axioms.

Thus, the intermediate model is “repaired” as required by the axioms. This may mean to

establish new concept membership or role interrelatedness information about the maintained

elements, yet sometimes it may also be necessary to extend the set of considered domain indi-

viduals. Now and again, it might be required to make case distinctions and backtrack later. If

we arrive at a state, where the intermediate model satisfies all the axioms and hence does not

need to be repaired further, the knowledge base is satisfiable. If the intermediate model contains

overt contradictions (such as an element marked as instance of a conceptC and its negation ¬C
or an element marked as an instance of ⊥), we can be sure that repairing it further by adding

more information will never lead to a proper model, hence we are in a “dead end” and we need

to backtrack. If every alternative branch thus followed leads into such a “dead end”, we can

be sure that no model can exist. However, note that the continued “repairing” performed in a

tableau procedure does not necessarily terminate, since performing one repair might cause the
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need for another repair and so forth ad infinitum. Therefore, in order to be applicable as a deci-

sion procedure, these infinite computations must be prevented to ensure termination. This can

be achieved by a strategy called blocking, where certain domain elements are blocked (which

essentially means that they are exempt from the necessity of being repaired) by other domain

individuals which “look the same” in terms of concept memberships. For more advanced DLs,

more complicated blocking strategies are needed.

Let’s see how the procedure, shown in Algorithm 13, works in detail.

Tableaux are completion graphs where each node a represents an individual a, labeled with

the set of concepts L(a) it belongs to. Each edge ⟨a, b⟩ in the graph is labeled with the set of

roles to which the couple (a, b) belongs. The reasoner repeatedly applies a set of consistency

preserving tableau expansion rules until a clash (i.e., a contradiction) is detected or a clash-free

graph is found to which no more rules are applicable. Some of the rules are non-deterministic,

i.e., they generate a finite set of tableaux. Thus the algorithm keeps a set of tableaux that is

consistent if there is any tableau in it that is consistent, i.e., that is clash-free.

Given a concept C, to prove the axiom C(a) an individual a is assumed to be in ¬C, thus

¬C is assigned to the label of a. The entailment of any type of axiom by a knowledge base can

be checked by means of the tableau algorithm as shown in Table 14.3.

Formally, a completion graph for a knowledge base KB is a tuple G = (V,E,L, ˙̸=) in

which (V,E) is a directed graph. Each node a ∈ V is labeled with a set of concepts L(a) and

each edge e = ⟨a, b⟩ is labeled with a set L(e) of role names. The binary predicate ˙̸= is used

to specify the inequalities between nodes.

In order to manage non-determinism, the algorithm keeps a set T of completion graphs.

T is initialized with a single completion graph G0 that contains a node for each individual a

asserted in the knowledge base, labeled with the nominal {a} plus all concepts C such that

a : C ∈ KB, and an edge e = ⟨a, b⟩ labeled with R for each assertion (a, b) : R ∈ KB.

At each step of the algorithm, an expansion rule is applied to a completion graph G from

T : G is removed from T , the rule is applied and the results are inserted in T . The rules for

SHOIN(D) are shown in Figure 14.2. For example, if the rule→ ⊓ is applied, a concept C⊓D
in the label of a node a causes C and D to be added to L(a), because the individual that a

represents must be an instance of both C and D.

If a non-deterministic rule is applied to a graph G in T , then G is replaced by the resulting

set of graphs. For example, if the disjunction C ⊔D is present in the label of a node, the rule
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Algorithm 13 Tableau algorithm.
1: function TABLEAU(C, a,KB)
2: Input: C, a (the concept and the individual to test)
3: Input: KB (the knowledge base)
4: Output: S (a set of axioms) or null
5: Let G0 be an initial completion graph from KB containing an anonymous individual a and ¬C ∈ L(a)

6: T ← {G0} ◃ T: set of completion graphs
7: repeat
8: Select a rule r applicable to a clash-free graph G from T

9: T ← T \ {G}
10: Let G = {G′

1, ..., G
′
n} be the result of applying r to G

11: T ← T ∪ G

12: until All graphs in T have a clash or no rule is applicable
13: if All graphs in T have a clash then
14: S ← ∅
15: for all G ∈ T do
16: let sG the result of τ for the clash of G
17: S ← S ∪ sG

18: end for
19: S ← S \ {¬C(a)}
20: return S

21: else
22: return null

23: end if
24: end function

→ ⊔ generates two graphs, one in which C is added to the node’s label and the other in which

D is added to the node’s label.

An event during the execution of the algorithm can be (Kalyanpur, 2006): 1) Add(C, a),

the addition of a concept C to L(a); 2) Add(R, ⟨a, b⟩), the addition of a role R to L(⟨a, b⟩); 3)

Merge(a, b), the merging of the nodes a, b; 4) ˙̸=(a, b), the addition of the inequality a ˙̸=b to

the relation ˙̸=; 5) Report(g), the detection of a clash g. We use E to denote the set of events

recorded during the execution of the algorithm. A clash is either:

• a couple (C, a) whereC and ¬C are present in the label of a node, i.e. {C,¬C} ⊆ L(a);

• a couple (Merge(a, b), ˙̸=(a, b)), where the events Merge(a, b) and ˙̸=(a, b) belong to

E.

Each time a clash is detected in a completion graph G, the algorithm stops applying rules to G.

Once every completion graph in T contains a clash or no more expansion rules can be applied
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to it, the algorithm terminates. If all the completion graphs in the final set T contain a clash,

the algorithm returns unsatisfiable as no model can be found. Otherwise, any one clash-free

completion graph in T represents a possible model for the concept and the algorithm returns

satisfiable.

The Pellet Reasoner

Pellet is the first complete OWL-DL consistency checker, that “takes a document as input,

and returns one word being Consistent, Inconsistent, or Unknown”. OWL-DL is a syntactic

variant of the very expressive Description Logic SHOIN(D). Pellet covers all of OWL-DL

including inverse and transitive properties, cardinality restrictions, datatype reasoning for an

extensive set of built-ins as well as user defined simple XML schema datatypes, enumerated

classes (nominals) and instance assertions.

This practical OWL reasoner provides the “standard” set of Description Logic inference

services, namely Consistency checking of an ontology (checking the consistency of an ABox

with respect to a TBox), Concept satisfiability, Classification (creating the complete class hi-

erarchy), Realization (finding the most specific classes that an individual belongs to). It is

standard to reduce them all to Consistency checking, as Pellet does. These basic services

can be accessed by querying the reasoner. Pellet also supports some less standard services.

The core of the system is the tableaux reasoner, which has only one functionality: checking

the consistency of an ontology. According to the OWL model-theoretic semantics, an ontology

is consistent if there is an interpretation that satisfies all the facts and axioms in the ontology.

Such an interpretation is called a model of the ontology. The tableaux reasoner searches for

such a model.

All other reasoning tasks can be defined in terms of consistency checking. For example,

checking whether an individual is an instance of a concept or not can be tested by assert-

ing that the individual is an instance of the complement of that class and then checking for

(in)consistency.

Pellet is written in Java and is open source. It is used in a number of projects, from pure

research to industrial settings.
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→ unfold: if A ∈ L(a), A atomic and (A ⊑ D) ∈ K, then
if D /∈ L(a), then Add(D,L(a))

(D, a) := ((A, a) ∪ {A ⊑ D})
→ CE: if (C ⊑ D) ∈ K, with C not atomic, a not blocked then

if (¬C ⊔D) /∈ L(a), then Add((¬C ⊔D), a)

((¬C ⊔D), a) := {C ⊑ D}
→ ⊓: if (C1 ⊓ C2) ∈ L(a), a is not indirectly blocked, then

if {C1, C2} ̸⊆ L(a), then Add({C1, C2}, a)
(Ci, a) := ((C1 ⊓ C2), a)

→ ⊔: if (C1 ⊔ C2) ∈ L(a), a is not indirectly blocked, then
if {C1, C2} ∩ L(a) = ∅, then

Generate graphs Gi := G for each i ∈ {1, 2}
Add(Ci, a) in Gi for each i ∈ {1, 2}
(Ci, a) := ((C1 ⊔ C2), a)

→ ∃: if ∃S.C ∈ L(a), a is not blocked then
if a has no S-neighbour b with C ∈ L(b),then create new node b, Add(S, ⟨a, b⟩), Add(C, b)

(C, b) := ((∃S.C), a); (S, ⟨a, b⟩) := ((∃S.C), a)

→ ∀: if ∀(S.C) ∈ L(a), a is not indirectly blocked and there is an S-neighbor b of a, then
if C /∈ L(b), then Add(C, b)

(C, b) := (((∀S.C), a) ∪ (S, ⟨a, b⟩))
→ ∀+: if ∀(S.C) ∈ L(a), a is not indirectly blocked

and there is an R-neighbor b of a, Trans(R) and R ⊑ S, then
if ∀R.C /∈ L(b), then Add(∀R.C, b)

((∀R.C), b) := ((∀S.C), a) ∪ ((R, ⟨a, b⟩) ∪ {Trans(R)} ∪ {R ⊑ S})
→≥: if (≥ nS) ∈ L(a), a is not blocked, then

if there are no n safe S-neighbors b1, ..., bn of a with bi ̸= bj , then
create n new nodes b1, ..., bn; Add(S, ⟨a, bi⟩); ˙̸=(bi, bj)

(S, ⟨a, bi⟩) := ((≥ nS), a); ( ˙̸=(bi, bj)) := ((≥ nS), a)

→≤: if (≤ nS) ∈ L(a), a is not indirectly blocked and there are m S-neighbors b1, ..., bm of a with m > n, then
For each possible pair bi, bj , 1 ≤ i, j ≤ m; i ̸= j then

Generate a graph G′

(Merge(bi, bj)) := (((≤ nS), a) ∪ (S, ⟨a, b1⟩)... ∪ (S, ⟨a, bm⟩))
if bj is a nominal node, then Merge(bi, bj) in G′,
else if bi is a nominal node or ancestor of bj , then Merge(bj , bi)

else Merge(bi, bj) in G′

if bi is merged into bj , then for each concept Ci in L(bi),
(Add(Ci,L(bj))) := (Add(Ci,L(bi))) ∪ (Merge(bi, bj))

(similarly for roles merged, and correspondingly for concepts in bj if merged into bi)
→ O: if, {o} ∈ L(a) ∩ L(b) and not a ˙̸=b, then Merge(a, b)

(Merge(a, b)) := ({o}, a) ∪ ({o}, b)
For each concept Ci in L(a), (Add(Ci,L(b))) := (Add(Ci,L(a))) ∪ (Merge(a, b))

(similarly for roles merged, and correspondingly for concepts in L(b))
→ NN : if (≤ nS) ∈ L(a), a nominal node, b blockable S-predecessor of a and there is no m

s.t. 1 ≤ m ≤ n, (≤ mS) ∈ L(a) and there exist m nominal S-neighbours c1, ..., cm of a s.t. ci ˙̸=cj , 1 ≤ j ≤ m,
then generate new Gm for each m, 1 ≤ m ≤ n and do the following in each Gm:

Add(≤ mS, a), ((≤ mS), a) := ((≤ nS), a) ∪ ((S, ⟨b, a⟩)
create b1, ..., bm; add bi ˙̸=bj for 1 ≤ i ≤ j ≤ m. ( ˙̸=(bi, bj) := ((≤ nS), a) ∪ (S, ⟨b, a⟩)
Add(S, ⟨a, bi⟩); Add({oi}, bi);
(S, ⟨a, bi⟩) := ((≤ nS), a) ∪ (S, ⟨b, a⟩); ({oi}, bi) := ((≤ nS), a) ∪ (S, ⟨b, a⟩)

Figure 14.2: SHOIN(D) Tableau expansion rules.
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Part V

Probability in Description Logics
(DLs)
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Chapter 15

Probabilistic Extensions for DLs

Description Logics have been extended by features not available in the basic framework, but

considered important for using them as a modeling language. Examples concern: concrete

domain constraints; modal, epistemic, and temporal operators; probabilities and fuzzy logic;

defaults. These extensions are “non-classical” in the sense that defining their semantics is not

obvious and requires an extension of the model-theoretic framework considered until now.

In order to represent vague and uncertain knowledge, different approaches based on prob-

abilistic (Heinsohn, 1994; Jaeger, 1994; Koller et al., 1997; Lukasiewicz and Straccia, 2008;

Yelland, 2000), possibilistic (Hollunder, 1994), and fuzzy logics (Straccia, 1998, 2001; Tresp

and Molitor, 1998) have been proposed, since Description Logics whose semantics is based on

classical first-order logic cannot express that kind of knowledge.

We review here the probabilistic extensions that have been proposed lately, before pre-

senting our probabilistic approach applied to the SHOIN(D) Description Logic in the next

Chapter. First, how to extend the terminological (TBox) formalism is considered.

In classical Description Logics, one has very restricted means of expressing (and testing for)

relationships between concepts. Given two concepts C and D, subsumption tells whether C is

contained in D, and the satisfiability test (applied to C ⊓D) tells us whether C and D are dis-

joint. Relationships that are in-between (e.g., 90% of all Cs are Ds) can neither be expressed

nor be derived.

This deficiency is overcome in (Heinsohn, 1994; Jaeger, 1994) by allowing for probabilistic

terminological axioms of the form

P (C | D) = p,
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where C,D are concept descriptions and 0 < p < 1 is a real number. (Heinsohn, 1994)

actually uses a different notation and allows for more expressive axioms stating that P (C | D)

belongs to an interval [pl; pu], with 0 ≤ pl ≤ pu ≤ 1 for the Description Logic ALC. Such an

axiom states that the conditional probability for an object known to be in D to belong to C is

p. A given finite interpretation I satisfies P (C | D) = p iff

|(C ⊓D)I|
|DI|

= p.

More generally, the formal semantics of the extended language is defined in terms of probability

measures on the set of all concept descriptions.

Given a knowledge base P consisting of probabilistic terminological axioms, the main

inference task is then to derive optimal bounds for additional conditional probabilities: P |=
P (C|D) ∈ [p, q] iff in all probability measures satisfying P the conditional probability belongs

to the interval [p, q]. One is interested in finding the maximal p and minimal q such that

P |= P (C|D) ∈ [p, q] is true. (Heinsohn, 1994) introduces local inference rules that can

be used to derive bounds for conditional probabilities, but these rules are not complete, that is,

in general they are not sufficient to derive the optimal bounds. (Jaeger, 1994) only describes

a naive method for computing optimal bounds. A more sophisticated version of that method

reduces the inference problem to a linear optimization problem.

(Jaeger, 1994) also extends the assertional formalism by allowing for probabilistic asser-

tions of the form

P (C(a)) = p,

where C is a concept description, a an individual name, and p a real number between 0 and 1.

This kind of probabilistic statement is quite different from the one introduced by the termino-

logical formalism. Whereas probabilistic terminological axioms state statistical information,

which is usually obtained by observing a large number of objects, probabilistic assertions ex-

press a degree of belief in assertions for specific individuals. The formal semantics of proba-

bilistic assertions is again defined with the help of probability measures on the set of all concept

descriptions, one for each individual name. Intuitively, the measure for a tells for each concept

C how likely it is (believed to be) that a belongs to C.

Given a knowledge base P consisting of probabilistic terminological axioms and assertions,

the main inference task is now to derive optimal bounds for additional probabilistic assertions.

However, if the probabilistic terminological axioms are supposed to have an impact on this
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inference problem, the semantics as sketched until now is not sufficient. In fact, until now

there is no connection between the probability measure used for the terminological part and the

measures for the assertional part. (Jaeger, 1994) uses cross entropy minimization in order to

give a formal meaning to this intuition. Until now, there is no algorithm for computing optimal

bounds for P (C(a)), given a knowledge base consisting of probabilistic terminological axioms

and assertions.

The work reported in (Koller et al., 1997), which is restricted to the terminological compo-

nent, has a focus that is quite different. In the previous works, the probabilistic terminological

axioms provide constraints on the set of admissible probability measures, that may still be sat-

isfied by a large set of distributions. In contrast, (Koller et al., 1997) present a framework for

the specification of a unique probability distribution on the set of all concept descriptions (mod-

ulo equivalence). Since there are infinitely many such descriptions, providing such a (finite)

specification is a nontrivial task. They employ Bayesian networks as the basic representa-

tion language for the required probabilistic specifications. The probability P (C) of a concept

description C can then be computed by using inference algorithms developed for Bayesian

networks. The complexity of this computation is linear in the length of C.

(Yelland, 2000) also combines Bayesian networks and Description Logics. In contrast to

(Koller et al., 1997), this work extends Bayesian networks by Description Logic features rather

than the other way round. The Description Logic used is rather inexpressive, but this allows

the author to avoid restrictions on the network that had to be imposed by (Koller et al., 1997).

The distinction between assertions with statistical information and assertions expressing

a degree of belief dates back to (Halpern, 1990)’s work, which presented two approaches to

giving semantics to first-order logics of probability. The first approach puts a probability on

the domain and is appropriate for giving semantics to formulas involving statistical information

such as “The probability that a randomly chosen bird flies is greater than 0.9”. It is equivalent

to say that 90% of the individuals in a population have the property P of flying. The second

approach puts a probability on possible worlds, and is appropriate for giving semantics to

formulas describing degrees of belief, such as “The probability that Tweety (a particular bird)

flies is greater than 0.9”. The first statement seems to assume only one possible world (the real

one), and some probability distribution over the set of birds: if we consider a bird chosen at

random, with probability greater than 0.9 it will fly. The second statement implicitly assumes

the existence of a number of possibilities (in some of which Tweety flies, while in others

doesn’t), with some probability over these possibilities.
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(Halpern, 1990) also shows how the two approaches can be combined in one framework,

allowing simultaneous reasoning, for example to express the statement “The probability that

Tweety flies is greater than the probability that a randomly chosen bird flies.”

(Ding and Peng, 2004) proposes a probabilistic extension of OWL that admits a translation

into Bayesian networks. This semantics assigns a probability distribution P (a) over individu-

als, i.e.
a P (a) = 1, and assigns a probability to a class C as P (C) =


a∈C P (a).

PR-OWL (Carvalho et al., 2010; Costa et al., 2008) is an upper ontology that provides a

framework for building probabilistic ontologies. It allows to use the first-order probabilistic

logic MEBN (Laskey and Costa, 2005) for representing uncertainty in ontologies.

In (Giugno and Lukasiewicz, 2002; Lukasiewicz, 2002, 2008) the authors use probabilistic

lexicographic entailment from probabilistic default reasoning. They use the DL P-SHIQ(D)

and allow both terminological and assertional probabilistic knowledge about instances of con-

cepts and roles. Probabilistic knowledge is expressed using conditional constraints of the form

(D|C)[l, u] as previously seen in (Heinsohn, 1994). PRONTO (Klinov, 2008) is a system that

allows to perform inference in this semantics; in particular it is the first probabilistic Nilsson-

style (see below) Description Logic reasoner capable of processing knowledge bases containing

about a thousand of probabilistic axioms.

Similarly to (Jaeger, 1994), the terminological knowledge is interpreted statistically while

the assertional knowledge is interpreted in an epistemic way by assigning degrees of beliefs to

assertions. Moreover it also allows to express default knowledge about concepts that can be

overridden in subconcepts and whose semantics is given by Lehmann’s lexicographic default

entailment. These works are based on Nilsson’s probabilistic logic (Nilsson, 1986), where a

probabilistic interpretation Pr defines a probability distribution over the set of interpretations

Int. The probability of a logical formula F according to Pr, denoted Pr(F ), is the sum of

all Pr(I) such that I ∈ Int and I |= F . A probabilistic knowledge base KB is a set of

probabilistic formulas of the form F ≥ p. A probabilistic interpretation Pr satisfies F ≥ p

iff Pr(F ) ≥ p. Pr satisfies KB, or Pr is a model of KB, iff Pr satisfies all F ≥ p ∈ KB.

Pr(F ) ≥ p is a tight logical consequence of KB iff p is the infimum of Pr(F ) subject to all

models Pr of KB. Computing tight logical consequences from probabilistic knowledge bases

can be done by solving a linear optimization problem.

Other approaches, such as (d’Amato et al., 2008; Gottlob et al., 2011), combine a light-

weight ontology language, DL-Lite and Datalog+/- respectively, with graphical models,
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Bayesian networks and Markov networks respectively. In both cases, an ontology is composed

of a set of annotated axioms and a graphical model and the annotations are sets of assignments

of random variables from the graphical model. The semantics is assigned by considering the

possible worlds of the graphical model and by stating that an axiom holds in a possible world

if the assignments in its annotation hold. The probability of a conclusion is then the sum of the

probabilities of the possible worlds where the conclusion holds.
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Chapter 16

Probabilistic DLs under the
Distribution Semantics

This chapter is dedicated to presenting a new approach for the integration of probability theory

and DLs, that draws on the Distribution Semantics (Sato, 1995) described in Chapter 9. The

integrated framework is applied to SHOIN(D), that is the basis of the OWL-DL language, and

takes the name of DISPONTE for DIstribution Semantics for Probabilistic ONTologiEs (Bel-

lodi et al., 2011),(Riguzzi et al., 2012a), (Riguzzi et al., 2012b). This approach is also inspired

by (Halpern, 1990) since DISPONTE allows to represent both statistical and epistemic (i.e.,

about degree of belief) information and combine them in hybrid forms. Syntax and semantics

are illustrated in Sections 16.1 and 16.2 respectively. Inference under DISPONTE semantics is

presented with several examples in Section 16.3.

16.1 Syntax

The basic idea of DISPONTE is to annotate axioms with a probability and assume that each

axiom is independent of the others. We have followed an approach similar to (Halpern, 1990)

for the assignment of probabilities.

A probabilistic knowledge base KB is a set of certain axioms or probabilistic axioms.

• Certain axioms take the form of regular DL axioms;

• Probabilistic axioms take the form

p ::V ar E (16.1)
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Axiom Variables allowed in the subscript
ABox axiom none

C ⊑ D x

R ⊑ S x, y

Trans(R) x, y, z

Table 16.1: Variables which have to be instantiated for each kind of axiom.

where p is a real number in [0, 1], V ar is a set of variables from {x, y, z} and E is a

DL axiom. V ar is usually written as a string, so xy indicates the subset {x, y}. If V ar

is empty, then the :: symbol has no subscript. The variables in V ar must appear in the

FOL version ofE. Variables allowed by the different types of axioms are shown in Table

16.1.

In order to give a semantics to such probabilistic knowledge bases, we consider their trans-

lation into First Order predicate Logic and then we use the model-theoretic semantics of the

resulting theory. The translation functions for roles and concepts are described in Section 14.2,

where the set V ar = {x0, x1, x2} corresponds to the set here referred as {x, y, z}.
in order to associate independent Boolean random variables to (instantiations of) the FOL

formulas. By assigning values to every random variable we obtain a world: in particular, a

world is identified by the set of FOL formulas whose random variables is assigned value 1. We

fix a domain ∆I of interpretation and each individual a appearing in KB is replaced with aI.

Every formula translated from a certain axiom is included in a world w. For each probabilis-

tic axiom, we generate all the substitutions for the variables of the equivalent predicate logic

formula that are indicated in the subscript. There may be an infinite number of instantiations.

Each instantiated formula may be included or not in w.

In this way we obtain a FOL theory to which a model-theoretic semantics may be assigned.

V ar in Formula (16.1) indicates the set of variables of the axiom that should be replaced by

random individuals. In other words, it indicates which instantiated forms of the axiom should

be considered. Similarly to (Halpern, 1990), this allows to assign a different interpretation to

the probabilistic axioms depending on the variables that have to be instantiated and allows for

a fine-grained modeling of the domain.

If V ar is empty, the probability p can be interpreted as an epistemic probability, i.e., as

the degree of our belief in axiom E, while if V ar is equal to the set of all variables appearing
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in E (given in Table 16.1), p can be interpreted as a statistical probability, i.e., as information

regarding random individuals from the domain. If V ar is nor empty neither the set of all

allowed variables, an hybrid interpretation can be given, in which a degree of belief is assigned

to instantiations of the axiom with random individuals.

Probabilistic concept assertions

A probabilistic concept assertion

p :: a : C

means that we have degree of belief p in C(a), i.e., we believe with probability p that the

individual a belongs to concept C. The statement that “Tweety flies with probability 0.9” of

(Halpern, 1990) can be expressed as

0.9 :: tweety : Flies

A probabilistic concept inclusion axiom of the form

p :: C ⊑ D (16.2)

represents the fact that we believe in the truth of C ⊑ D with probability p.

A probabilistic concept inclusion axiom of the form

p ::x C ⊑ D (16.3)

instead means that a random individual x of class C has probability p of belonging to D.

The first two examples use p as an epistemic probability, while the third one represents the

statistical information that a fraction p of the individuals of C belongs to D. In this way, the

overlap between C and D is quantified by the probability p. For example, the statement that

“90% of birds fly"’ (Halpern, 1990) can be expressed as

0.9 ::x Bird ⊑ Flies (16.4)

The difference between axioms 16.2 and 16.3 is that, if two individuals belong to class

C, the probability that they both belong to D according to (16.2) is p, since p represents the

truth of the formula as a whole, while according to (16.3) is p · p, since each randomly chosen

individual has probability p of belonging to class D and the two events are independent.

On the other hand, if a query Q to a knowledge base containing Formula (16.3) can be

proved true in two ways, using axiom C ⊑ D instantiated with individual a or instantiated
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with individual b, and no other probabilistic axiom is used for deriving the query, the truth of

the query is given by the disjunction of two independent random variables (associated to the

two instantiations) each having probability p of being true. Thus the probability of the query

will result in P (Q) = p + p − p · p. If the knowledge base contains axiom (16.2) instead, the

probability of the query would be P (Q) = p.

The larger the number of variables specified in V ar is, the more fine-grained is the model

of the domain, in which different ways of reaching a conclusion are taken into account and

each provides a contribution to the probability. This results in considering more probable

conclusions that have multiple supporting derivations at the expense of complexity, since more

random variables must be considered.

Example 30 Consider the knowledge base KB:

0.7 ::x Schoolchild ⊑ European

0.4 ::x Schoolchild ⊑ OnlyChild

0.6 ::x European ⊑ GoodInMath

0.5 ::x OnlyChild ⊑ GoodInMath

It states that 70% of school children are Europeans, 40% of school children are only children,
60% of Europeans are good in math and 50% of only children are good in math.

Probabilistic role assertions

A role inclusion axiom R ⊑ S can be subscripted with:

• nothing:

p :: R ⊑ S

p expresses a degree of belief in the inclusion in its entirety.

• xy:

p ::xy R ⊑ S

given a random couple of individuals a and b, if R(a, b) holds, then S(a, b) holds with

probability p. In other words, a randomly chosen couple of individuals which is R-

related, has probability p of being S-related.
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• x or y:

p ::x R ⊑ S

given a random individual x, we have degree of belief p in the formula

∀y.R(x, y)→ S(x, y)

• a transitivity axiom can be subscripted with all subsets of {x, y, z}:

p ::xyz Trans(R) (16.5)

means that, given three random individuals a, b and c, if R(a, b) and R(b, c) hold, then

R(a, c) holds with probability p, i.e., the formula

R(a, b) ∧R(b, c)→ R(a, c) (16.6)

has degree of belief p. Note that if two different instantiations of the transitivity formula

are used to derive a query, they are considered as independent random variables with

axiom (16.5).

Instead, the probabilistic transitivity axiom

p′ ::xy Trans(R) (16.7)

indicates that we consider versions in which the variables x and y are instantiated: given

a random couple of individuals a and b, we have degree of belief p′ in the formula

∀z.R(a, b) ∧R(b, z)→ R(a, z)

Note that we may have the same axiom with different subscripts in the knowledge base. In this

case, each probabilistic axiom represents independent evidence for the instantiated versions.

If Formula (16.6) is found to be necessary to entail a query and the knowledge base contains

both (16.5) and (16.7), the probability of such a formula is given by the disjunction of two

Boolean random variables, one with probability p and the other with probability p′.

Example 31 The knowledge base

kevin : ∀friend.Person

(kevin, laura) : friend

(laura, diana) : friend

0.4 ::xyz Trans(friend)
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means that all individuals in the friend relation with kevin are persons, kevin is a friend
of laura, laura is a friend of diana and given three randomly chosen individuals a, b and c,
there is 40% probability that if a is a friend of b and b is a friend of c, a will be a friend of c.
In particular, we have 40% probability that, if kevin is laura’s friend and laura is diana’s
friend, then kevin is diana’s friend. Since the first two are certain facts, kevin is diana’s
friend with probability 40%.

16.2 Semantics

While we follow (Halpern, 1990) with respect to the syntax and to the kinds of information

captured by a probabilistic statement, the semantics in this context is only defined on the basis

of possible worlds, rather than on probability structures with two separate probability measures,

one over the individuals of the domain and the other over possible worlds. The full machinery

of (Halpern, 1990) is not required because possible worlds correspond to sets of formulas rather

than to interpretations and the language is much simpler as it does not allow unlimited nesting

of the operator w, used by (Halpern, 1990) to indicate a statement’s probability.

Instead, the DISPONTE semantics for SHOIN(D) is based on the Distribution Semantics

for Probabilistic Logic Programs (PLP), described in Chapter 9. Since the domain ∆I may be

infinite, we have to apply the Distribution Semantics for PLP with function symbols, that has

an infinite domain of interpretation as well. Here we follow the approach of (Poole, 2000).

An atomic choice in this context is a triple (Fi, θj , k) where Fi is the formula obtained by

translating the ith probabilistic axiom, θj is a substitution and k ∈ {0, 1}; θj instantiates the

variables indicated in the V ar subscript of the ith probabilistic axiom, i.e., V ar(θj) = V ar in

16.1, while k indicates whether Fiθj is chosen to be included in a world (k = 1) or not (k = 0).

Note that, differently from the Distribution Semantics for PLP, substitutions need not ground

formulas but this is not a core requirement of the semantics.

A composite choice κ is a consistent set of atomic choices, i.e., (Fi, θj , k) ∈ κ, (Fi, θj ,m)

∈ κ ⇒ k = m (only one decision for each formula). The probability of composite choice κ

is P (κ) =


(Fi,θj ,1)∈κ pi


(Fi,θj ,0)∈κ(1− pi), where pi is the probability associated to axiom

Fi.

A selection σ is a total composite choice, i.e., it contains an atomic choice (Fi, θj , k) for

every instantiation Fiθj of every probabilistic axiom of the theory. Since the domain may be

infinite, selections may, too. Let us indicate with SK the set of all selections. A selection σ

identifies a theory wσ called a world in this way: wσ = C ∪ {Fiθj |(Fi, θj , 1) ∈ σ} where C is
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the set of the certain axioms translated in FOL. Let WK be the set of all worlds. A composite

choice κ identifies a set of worlds ωκ = {wσ|σ ∈ SK, σ ⊇ κ}. We define the set of worlds

identified by a set of composite choices K as ωK =


κ∈K ωκ.

Properties of Composite Choices

We review in the following a few interesting properties of composite choices for the purposes

of inference tasks.

• A composite choice κ is an explanation for a query Q if Q is entailed by every world of

ωκ. A set K of composite choices is covering with respect to Q if every world wσ ∈ SK

in which Q is entailed is such that wσ ∈ ωK .

• Two composite choices κ1 and κ2 are incompatible if their union is inconsistent. For

example, the composite choices κ1 = {(Fi, θj , 1)} and κ2 = {(Fi, θj , 0)} are incompat-

ible.

A setK of composite choices is mutually incompatible if for all κ1 ∈ K,κ2 ∈ K,κ1 ̸=
κ2 ⇒ κ1 and κ2 are incompatible. For example

K = {κ1, κ2} (16.8)

with

κ1 = {(Fi, θj , 1)}

and

κ2 = {(Fi, θj , 0), (Fl, θm, 1)} (16.9)

is mutually incompatible.

We define the probability of a mutually incompatible set K of composite choices as

P (K) =

κ∈K

P (κ) (16.10)

• Two sets of composite choices K1 and K2 are equivalent if ωK1 = ωK2 , i.e., if they

identify the same set of worlds. For example, K in (16.8) is equivalent to

K ′ = {κ′1, κ′2} (16.11)
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with

κ′1 = {(Fi, θj , 1)}

and

κ′2 = {(Fl, θm, 1)} (16.12)

• If Fθ is an instantiated formula and κ is a composite choice such that

κ ∩ {(F, θ, 0), (F, θ, 1)} = ∅, the split of κ on Fθ is the set of composite choices

Sκ,Fθ = {κ ∪ {(F, θ, 0)}, κ ∪ {(F, θ, 1)}}. It is easy to see that κ and Sκ,Fθ identify

the same set of possible worlds, i.e., that ωκ = ωSκ,Fθ
. For example, the split of κ′2 in

(16.12) on Fiθj contains κ2 of Formula (16.9) and {(Fi, θj , 1), (Fl, θm, 1)}.

Following (Poole, 2000), we can prove the following results.

Theorem 1 (Splitting algorithm) Given a finite set K of finite composite choices, there ex-
ists a finite set K ′ of mutually incompatible finite composite choices such that K and K ′ are
equivalent.

Proof 1 Given a finite set of finite composite choices K, there are two possibilities to form a
new set K ′ of composite choices so that K and K ′ are equivalent:

1. removing dominated elements: if κ1, κ2 ∈ K and κ1 ⊂ κ2, let K ′ = K \ {κ2}.

2. splitting elements: if κ1, κ2 ∈ K are compatible (and neither is a superset of the other),
there is a (F, θ, k) ∈ κ1 \ κ2. We replace κ2 by the split of κ2 on Fθ. Let K ′ =
K \ {κ2} ∪ Sκ2,F θ.

In both cases ωK = ωK′ . If we repeat this two operations until neither of them is applicable
we obtain a splitting algorithm (see Figure 14) that terminates because K is a finite set of
finite composite choices. The resulting set K ′ is mutually incompatible and is equivalent to the
original set. For example, the splitting algorithm applied to K ′ of Formula (16.11) can result
in K of Formula (16.8).

Theorem 2 IfK1 andK2 are both mutually incompatible finite sets of finite composite choices
such that they are equivalent, then P (K1) = P (K2).

Proof 2 The theorem is the same as Lemma A.8 in (Poole, 1993). We report here the proof for
the sake of clarity.

213



Algorithm 14 Splitting algorithm to generate a set K ′ of mutually incompatible composite
choices, equivalent to the input set K.

1: procedure SPLIT(K)
2: Input: finite set of composite choices K
3: Output: mutually incompatible set K ′ of composite choices, equivalent to K
4: loop
5: if ∃κ1, κ2 ∈ K and κ1 ⊂ κ2 then
6: K ← K \ {κ2}
7: else
8: if ∃κ1, κ2 ∈ K compatible then
9: choose (F, θ, k) ∈ κ1 \ κ2

10: K ← K \ {κ2} ∪ Sκ2,F θ ◃ Sκ2,F θ is the split of κ2 on Fθ
11: else
12: exit and return K
13: end if
14: end if
15: end loop
16: end procedure

Consider the setD of all instantiated formulas Fθ that appear in an atomic choice in either
K1 or K2. This set is finite. Each composite choice in K1 and K2 has atomic choices for a
subset of D. For both K1 and K2, we repeatedly replace each composite choice κ of K1 and
K2 with its split K ′ on an Fiθj from D that does not appear in κ. This procedure does not
change the total probability as the probabilities of (Fi, θj , 0) and (Fi, θj , 1) sum to 1.

At the end of this procedure the two sets of composite choices will be identical. In fact, any
difference can be extended to a possible world belonging to ωK1 but not to ωK2 or vice versa.

For example, K in (16.8) and K ′′ = {κ′′1, κ′′2} with κ′′1 = {(Fi, θj , 1), (Fl, θm, 0)} and

κ′′2 = {(Fl, θm, 1)} of (16.9) are equivalent and are both mutually incompatible. Their proba-

bilities are

P (K) = pi + (1− pi)pl = pi + pl − pipl

and

P (K ′′) = pi(1− pl) + pl = pi + pl − pipl

Note that if we compute the probability ofK ′ in (16.11) with Formula (16.10) we would obtain

pi + pl which is different from the probabilities of K and K ′′ above, even if K ′ is equivalent
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to K and K ′′. The reason is that K ′ is not mutually exclusive.

Probability Measure

(Kolmogorov, 1950) defined probability functions (or measures) µ as real-valued functions

over a σ-algebra Ω of subsets of a set W called the sample space. ⟨W,Ω, µ⟩ is called a proba-

bility space. The set Ω of subsets of W is a σ-algebra of W iff

1. W ∈ Ω,

2. Ω is closed under complementation, i.e., ω ∈ Ω→ (W \ ω) ∈ Ω, and

3. Ω is closed under countable union, i.e., if ωi ∈ Ω for i = 1, 2, . . . then


i ωi ∈ Ω.

The elements of Ω are called measurable sets. Not every subset of W need be present in Ω.

Given a sample space W and an algebra Ω of subsets of W, a probability measure is a

function µ : Ω→ R that satisfies the following axioms:

1. µ(ω) ≥ 0 for all ω ∈ Ω,

2. µ(W) = 1,

3. µ is countably additive, i.e., if O = {ω1, ω2, . . .} ⊆ Ω is a countable collection of

pairwise disjoint sets, then ∪ω∈Oω =


i µ(ωi).

Here the finite additivity version of probability spaces (Halpern, 2003) is assumed. In this

version, we impose a stronger condition on Ω, namely that it is an algebra: condition (3) above

is replaced by (3′) Ω is closed under finite union, i.e., ω1 ∈ Ω, ω2 ∈ Ω → (ω1 ∪ ω2) ∈ Ω. In

this case, a measure µ must satisfy the following modification of axiom (3): (3′) µ is finitely

additive, i.e., ω1 ∩ ω2 = ∅ → µ(ω1 ∪ ω2) = µ(ω1) + µ(ω2) for all ω1, ω2 ∈ Ω.

We now define a different unique probability measure µ : ΩK → [0, 1] where ΩK is defined

as the algebra of sets of worlds identified by finite sets of finite composite choices: ΩK =

{ωK |K is a finite set of finite composite choices}. It is easy to see that ΩK is an algebra over

WK.

µ is defined by µ(ωK) = P (K ′) where K ′ is a mutually incompatible set of compos-

ite choices equivalent to K. ⟨WK,ΩK, µ⟩ is a probability space according to Kolmogorov’s

definition.
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16.3 Inference

The basic inference task of probabilistic ontologies in SHOIN(D) DL under the Distribution

Semantics is calculating probabilities of queries, i.e., axioms regarding concept and roles, ac-

cording to a knowledge base KB.

The probability of a query Q - according to the probability measure µ just defined in the

previous subsection - is given by P (Q) = µ({w|w ∈WK ∧ w |= Q}). If Q has a finite set K

of finite explanations such that K is covering then {w|w ∈ WK ∧ w |= Q} = ωK ∈ ΩK and

P (Q) is well-defined. The problem of computing the probability of a query can thus be reduced

to that of finding a covering set of explanations K and then making it mutually incompatible,

so that the probability can be computed with a summation as in Formula (16.10). To obtain a

mutually incompatible set of explanations, the splitting algorithm can be applied.

Alternatively, given a covering set K of explanations (not necessarily mutually incompat-

ible) for a query Q, we can define the Disjunctive Normal Form (DNF) Boolean formula fK

fK(X) =

κ∈K


(Fi,θj ,1)

Xij


(Fi,θj ,0)

Xij (16.13)

The variables X = {Xij | ∃k (Fi, θj , k) ∈ κ, κ ∈ K} are independent Boolean random

variables. The probability that fK(X) assumes value 1 is equal to P (Q). We can now apply

knowledge compilation to the propositional formula fK(X) (Darwiche and Marquis, 2002),

i.e., translate it to a target language that allows to answer queries in polynomial time. A target

language that was found to give good performances is the one of Binary Decision Diagrams

(BDD). From a BDD we can compute the probability of the query P (Q) with a dynamic

programming algorithm that is linear in the size of the BDD (De Raedt et al., 2007). (Riguzzi,

2009) showed that this approach is faster than the splitting algorithm. For a detailed description

of BDDs see Section 7.2.

A BDD performs a Shannon expansion of the Boolean formula fK(X), so that if X is the

variable associated with the root level of a BDD, the formula fK(X) can be represented as

fK(X) = X ∧ fXK (X) ∨ X ∧ fXK (X) where fXK (X) (fXK (X)) is the formula obtained from

fK(X) by setting X to 1 (0). Now the two disjuncts are mutually exclusive and the probability

of fK(X) can be computed as P (fK(X)) = P (X)P (fXK (X)) + (1 − P (X))P (fXK (X)). In

this way BDDs make the explanations mutually incompatible.

Having built the BDD representing the Boolean function of Boolean variables fK(X), in

order to compute its probability and making inference, the dynamic programming algorithm
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traverses the diagram from the leaves, as shown in Figure 15, which it is recalled from subsec-

tion 9.2.

Algorithm 15 Probability of a Boolean function computed by traversing its BDD.

1: function BDD_PROBABILITY(node n)
2: Input: a BDD node
3: Output: the probability of the Boolean function encoded by the BDD
4: if n is 1-terminal then
5: return 1
6: end if
7: if n is 0-terminal then
8: return 0
9: end if

10: let X be v(n) ◃ v(n) is the variable associated with node n
11: let h and l be the high and low children of n
12: Ph =BDD_PROBABILITY(h)
13: Pl ←BDD_PROBABILITY(l)
14: return P (X) · Ph + (1− P (X)) · Pl

15: end function

Examples

In the following we show how inference is performed over different probabilistic knowledge

bases.

Example 32 The following probabilistic knowledge base is inspired by the people+pets
ontology proposed in (Patel-Schneider et al., 2003):

∃hasAnimal.Pet ⊑ NatureLover

(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

0.4 :: fluffy : Cat

0.3 :: tom : Cat

0.6 :: Cat ⊑ Pet

The KB indicates that the individuals that own an animal which is a pet are nature lovers and
that kevin owns the animals fluffy and tom. Moreover, we believe in the fact that fluffy and
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tom are cats and that cats are pets with a certain probability.
The predicate logic formulas (without external quantifiers) equivalent to the probabilistic ax-
ioms are

F1 = Cat(fluffy)

F2 = Cat(tom)

F3 = Cat(x)→ Pet(x)

A covering set of explanations for the query axiom Q = kevin : NatureLover is
K = {κ1, κ2} where κ1 = {(F1, ∅, 1), (F3, ∅, 1)} and κ2 = {(F2, ∅, 1), (F3, ∅, 1)}.

P(Q) may be computed by means of two alternatives:

1. An equivalent mutually incompatible setK ′ of explanations can be obtained by applying
the splitting algorithm. In this case K ′ = {κ′1, κ′2} where
κ′1 = {(F1, ∅, 1), (F3, ∅, 1), (F2, ∅, 0)} and
κ′2 = {(F2, ∅, 1), (F3, ∅, 1)}.

So P (Q) = 0.4 · 0.6 · 0.7 + 0.3 · 0.6 = 0.348.

2. If we associate the random variables X11 with (F1, ∅), X21 with (F2, ∅) and X31 with
(F3, ∅), the BDD associated with the set K of explanations is shown in Figure 16.1.

By applying the dynamic programming algorithm 15 we get

BDD_PROBABILITY(n3) = 0.6 · 1 + 0.4 · 0 = 0.6

BDD_PROBABILITY(n2) = 0.4 · 0.6 + 0.6 · 0 = 0.24

BDD_PROBABILITY(n1) = 0.3 · 0.6 + 0.7 · 0.24 = 0.348

so P (Q) = PROB(n1) = 0.348.

X11 n1

X21 n2

X31 n3

1 0

Figure 16.1: BDD for Example 32.
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Example 33 If we replace the axiom

0.6 :: Cat ⊑ Pet

in Example 32 with
0.6 ::x Cat ⊑ Pet

we are expressing the knowledge that 60% of cats are pets. In this case the query would have
the explanations K = {κ1, κ2} where
κ1 = {(F1, ∅, 1), (F3, {x/fluffy}, 1)} and
κ2 = {(F2, ∅, 1), (F3, {x/tom}, 1)}.

P(Q) may be computed by means of two alternatives:

1. An equivalent mutually incompatible set K ′ of explanations obtained by applying the
splitting algorithm is K ′ = {κ′1, κ′2, κ′3} where
κ′1 = {(F1, ∅, 1), (F3, {x/fluffy}, 1), (F2, ∅, 0)},
κ′2 = {(F1, ∅, 1), (F3, {x/fluffy}, 1), (F2, ∅, 1), (F3, {x/tom}, 0)} and
κ′3 = {(F2, ∅, 1), (F3, {x/tom}, 1)}.

So P (Q) = 0.4 · 0.6 · 0.7 + 0.4 · 0.6 · 0.3 · 0.4 + 0.3 · 0.6 = 0.3768.

2. If we associate the random variables X11 with (F1, ∅), X21 with (F2, ∅), X31 with
(F3, {x/fluffy}) and X32 to (F3, {x/tom}), the BDD associated with the set K of ex-
planations is shown in Figure 16.2.

By applying Algorithm 15 we get

BDD_PROBABILITY(n4) = 0.6 · 1 + 0.4 · 0 = 0.6

BDD_PROBABILITY(n3) = 0.3 · 0.6 + 0.7 · 0 = 0.18

BDD_PROBABILITY(n2) = 0.6 · 1 + 0.4 · 0.18 = 0.672

BDD_PROBABILITY(n1) = 0.4 · 0.672 + 0.6 · 0.18 = 0.3768

so P (Q) = PROB(n1) = 0.3768.

Example 34 Let us consider a slightly different knowledge base:

0.5 ::x ∃hasAnimal.Pet ⊑ NatureLover

(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

fluffy : Cat

tom : Cat

0.6 ::x Cat ⊑ Pet
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X11 n1

X31 n2

X21 n3

X32 n4

1 0

Figure 16.2: BDD for Example 33.

Here the ABox assertions are certain, the overlap between cats and pets is defined as in Exam-
ple 33 and moreover we say that 50% of people who have an animal that is a pet are nature
lovers. The predicate logic formulas (without external quantifiers) equivalent to the probabilis-
tic axioms are

F1 = ∃y.hasAnimal(x, y) ∧ Pet(y)→ NatureLover(x)

F2 = Cat(x)→ Pet(x)

A covering set of explanations for the query axiom Q = kevin : NatureLover is K =

{κ1, κ2} where
κ1 = {(F1, {x/kevin}, 1), (F2, {x/fluffy}, 1)} and
κ2 = {(F1, {x/kevin}, 1), (F2, {x/ tom}, 1)}.

P(Q) may be computed by means of two alternatives:

1. An equivalent mutually incompatible set K ′ of explanations obtained by applying the
splitting algorithm is K ′ = {κ′1, κ′2} where
κ′1 = {(F1, {x/kevin}, 1), (F2, {x/fluffy}, 1), (F2, {x/tom}, 0)} and
κ′2 = {(F1, {x/kevin}, 1), (F2, {x/tom}, 1)}.
So P (Q) = 0.5 · 0.6 · 0.4 + 0.5 · 0.6 = 0.42.

2. If we associate the random variables X31 with (F1, {x/kevin}), X11 with
(F2, {x/fluffy}) and X21 with (F2, {x/tom}), the BDD associated with the set K of
explanations is shown in Figure 16.1.

By applying Algorithm 15 we get

BDD_PROBABILITY(n3) = 0.5 · 1 + 0.5 · 0 = 0.5

BDD_PROBABILITY(n2) = 0.6 · 0.5 + 0.4 · 0 = 0.3

BDD_PROBABILITY(n1) = 0.6 · 0.5 + 0.4 · 0.3 = 0.42
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so P (Q) = PROB(n1) = 0.42.

Example 35 Let us consider the knowledge base from Example 30:

0.7 ::x Schoolchild ⊑ European

0.4 ::x Schoolchild ⊑ OnlyChild

0.6 ::x European ⊑ GoodInMath

0.5 ::x OnlyChild ⊑ GoodInMath

The predicate logic formulas (without external quantifiers) equivalent to the probabilistic ax-
ioms are:

F1 = Schoolchild(x)→ European(x)

F2 = Schoolchild(x)→ OnlyChild(x)

F3 = European(x)→ GoodInMath(x)

F4 = OnlyChild(x)→ GoodInMath(x)

A covering set of explanations for the query axiom Q = Schoolchild ⊑ GoodInMath is
K = {κ1, κ2} where κ1 = {(F1, {x/a}, 1), (F3, {x/a}, 1)} and
κ2 = {(F2, {x/a}, 1), (F4, {x/a}, 1)}, where a is an anonymous member of ∆I.

P(Q) may be computed by means of two alternatives:

1. After splitting we get K ′ = {κ′1, κ′2, κ′3} where
κ′1 = {(F1, {x/a}, 1), (F3, {x/a}, 1)},
κ′2 = {(F1, {x/a}, 0), (F2, {x/a}, 1), (F4, {x/a}, 1)} and
κ′3 = {(F1, {x/a}, 1), (F3, {x/a}, 0), (F2, {x/a}, 1), (F4, {x/a}, 1)}.
So P (Q) = 0.7 · 0.6 + 0.3 · 0.4 · 0.5 + 0.7 · 0.6 · 0.5 = 0.536.

2. If we associate the random variables X11 with (F1, {x/a}), X21 with (F3, {x/a}), X31

with (F2, {x/a}) and X32 with (F4, {x/a}), the BDD associated with the set K of ex-
planations is shown in Figure 16.2.

By applying Algorithm 15 we get

BDD_PROBABILITY(n4) = 0.5 · 1 + 0.5 · 0 = 0.5

BDD_PROBABILITY(n3) = 0.4 · 0.5 + 0.6 · 0 = 0.2

BDD_PROBABILITY(n2) = 0.6 · 1 + 0.4 · 0.2 = 0.68

BDD_PROBABILITY(n1) = 0.7 · 0.68 + 0.3 · 0.2 = 0.536

so P (Q) = PROB(n1) = 0.536.
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Example 36 Let us consider the knowledge base of Example 31:

kevin : ∀friend.Person

(kevin, laura) : friend

(laura, diana) : friend

0.4 ::xyz Trans(friend)

The predicate logic formula (without external quantifiers) equivalent to the transitivity proba-
bilistic axiom is

F1 = friend(x, y) ∧ friend(y, z)→ friend(x, z)

A covering set of explanations for the query axiom Q = diana : Person is K = {κ1} where
κ1 = {(F1, {x/kevin, y/laura, z/diana}, 1)}, so P (Q) = 0.4.

Example 37 The following knowledge base contains transitivity and subrole axioms:

kevin : ∀kin.Person

(kevin, laura) : friend

(laura, diana) : friend

0.8 ::xy friend ⊑ kin

0.4 ::xyz Trans(friend)

The subrole axiom states that, given two randomly chosen individuals a and b, there is 80%
probability that if a is a friend of b then a is kin to b. The predicate logic formulas (without
external quantifiers) equivalent to the probabilistic axioms are F1 as in Example 36 and

F2 = friend(x, y)→ kin(x, y)

A covering set of explanations for the query axiom Q = diana : Person is K = {κ1} where
κ1 = {(F1, {x/kevin, y/laura, z/diana}, 1), (F2, {x/kevin, y/diana}, 1)}.
So P (Q) = 0.4 · 0.3 = 0.12.
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Chapter 17

The Probabilistic Reasoner BUNDLE

This chapter presents the algorithm BUNDLE for Binary decision diagrams for Uncertain rea-

soNing on Description Logic thEories, that performs inference over DISPONTE SHOIN(D)

DL. It exploits an underlying reasoner such as Pellet (Sirin et al., 2007) that returns explana-

tions for queries, introduced in subsection 14.3. BUNDLE, whose preliminary version appeared

in (Riguzzi et al., 2012c), uses the inference techniques developed for Probabilistic Logic Pro-

grams under the Distribution Semantics, in particular Binary Decision Diagrams.

BUNDLE is available for download from http://sites.unife.it/ml/bundle together

with the dataset used in the experiments.

Section 17.1 describes the algorithms on which Pellet is based to return explanations for

queries; Section 17.2 shows how these algorithms have been modified to BUNDLE needs. The

complete system is summarized in Section 17.3. BUNDLE’s complexity is dealt with in Section

17.4, while the results of its application on a real world dataset, in comparison with the system

PRONTO, are illustrated in Section 17.5.

The problem of finding explanations for a query has been investigated by various authors

(Horridge et al., 2009; Kalyanpur, 2006; Kalyanpur et al., 2007; Schlobach and Cornet, 2003).

(Schlobach and Cornet, 2003) call it axiom pinpointing and consider it as a non-standard

reasoning service useful for debugging ontologies. In particular, (Schlobach and Cornet, 2003)

define minimal axiom sets or MinAs for short.

Definition 21 (MinA) Let KB be a knowledge base and E an axiom that follows from it, i.e.,
KB |= E. We call a set M ⊆ KB a minimal axiom set or MinA for E in KB if M |= E and
it is minimal w.r.t. set inclusion.
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The problem of enumerating all MinAs is called MIN-A-ENUM and is characterized by:

Input: A knowledge base KB and an axiom E such that KB |= E.

Output: The set ALL-MINAS(E,KB) of all MinAs for E in KB.

The set of all MinAs can be used to derive a covering set of explanations. Axiom pinpointing

has been thoroughly discussed in (Halaschek-Wiener et al., 2006; Kalyanpur et al., 2005a,

2007, 2005b) for the purpose of tracing derivations and debugging ontologies. The techniques

proposed in these papers have been integrated into the Pellet reasoner (Sirin et al., 2007).

Pellet solves MIN-A-ENUM by finding a single MinA by means of a tableau algorithm and

then uses a hitting set tree algorithm to find all the other MinAs.

BUNDLE is based on Pellet and uses it for solving the MIN-A-ENUM problem. However,

BUNDLE needs, besides ALL-MINAS(E,KB), also the individuals to which axioms were ap-

plied for each probabilistic axiom appearing in ALL-MINAS(E,KB). We call this problem

instantiated axiom pinpointing and Pellet has been modified to solve it.

In the following, first Pellet is illustrated for solving MIN-A-ENUM (Section 17.1), then

the modified version of Pellet for solving instantiated axiom pinpointing follows (Section

17.2). Finally we summarize the whole BUNDLE algorithm in Section 17.3.

17.1 Axiom Pinpointing in Pellet

The algorithm for computing a single MinA (Function SINGLEMINA in Algorithm 16) takes

advantage of (1) Function TABLEAU (Algorithm 13) and (2) Function BLACKBOXPRUNING

(Algorithm 17). TABLEAU exploits the “tableau algorithm” (Schmidt-Schauß and Smolka,

1991), introduced in subsection 14.3: it tries to prove the unsatisfiability of a concept C by

showing that the assumption of non empty C leads to contradiction. This is done by assuming

that C has an instance and by trying to build a model for the knowledge base. If no model can

be built, thenC is unsatisfiable, otherwise the model is a counter example forC unsatisfiability.

Function TABLEAU

In order to find a MinA Pellet modifies the tableau expansion rules so that a tracing function

τ is updated as well (Halaschek-Wiener et al., 2006; Kalyanpur, 2006; Kalyanpur et al., 2005a).

τ associates sets of axioms with events in the derivation. The tracing function τ maps

each event ε ∈ E to a fragment of KB. For example, (τ(Add(C, a)),τ(Add(R, ⟨a, b⟩))) is the

224



Algorithm 16 Algorithm for the computation of a single minimal axiom set MinA.
1: function SINGLEMINA(C, a,KB)
2: Input: C (the concept to be tested for unsatisfiability, an individual a)
3: Input: KB (the knowledge base)
4: Output: S (a MinA for the unsatisfiability of C w.r.t. KB) or null
5: S ←TABLEAU(C, a,KB) ◃ cf. Alg. 13
6: if S = null then
7: return null

8: else
9: return BLACKBOXPRUNING(C, a, S)

10: end if
11: end function

set of axioms needed to explain the event Add(C, a) (Add(R, ⟨a, b⟩)). We can also define τ

for couples (concept, individual) and (role, couple of individuals) as τ(C, a) = τ(Add(C, a))

and τ(R, ⟨a, b⟩) = τ(Add(R, ⟨a, b⟩)) respectively.

The function τ is initialized as the empty set for all the elements of its domain except for

τ(C, a) and τ(R, ⟨a, b⟩) to which the values {a : C} and {(a, b) : R} are assigned, if a : C

and (a, b) : R are in the ABox respectively. The expansion rules (Figure 17.1) add axioms to

values of τ . For a clash g of the form (C, a), τ(Report(g)) = τ(Add(C, a))∪τ(Add(¬C, a)).
For a clash of the form (Merge(a, b), ˙̸=(a, b)), τ(Report(g)) = τ(Merge(a, b))∪τ( ˙̸=(a, b)).

If g1, ..., gn are the clashes, one for each of the elements of the final set of tableaux and

τ(Report(gi)) = sgi , the output of Function TABLEAU is S =


i∈{1,...,n} sgi \ {¬C(a)}
where C(a) is the assertion to test. However, this set may be redundant because additional

axioms are also included in τ (Kalyanpur, 2006), e.g., during the→≤ rule; these axioms are

responsible for each of the S successor edges.

Function BLACKBOXPRUNING

The set S, returned by Function TABLEAU in the previous phase, is pruned using a “black-

box approach” shown in Algorithm 17 (Kalyanpur, 2006). This algorithm executes a loop on

S, from which it removes an axiom at each iteration and checks whether the concept C turns

satisfiable w.r.t. S, in which case the axiom is reinserted into S. The process continues until

all axioms in S have been tested and then returns S.

The output S of Function SINGLEMINA is guaranteed to be a MinA, as established by

Theorem 3 (Kalyanpur, 2006), where ALL-MINAS(C, a,KB) stands for the set of MinAs in
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→ unfold: if A ∈ L(a), A atomic and (A ⊑ D) ∈ K, then
if D /∈ L(a), then Add(D,L(a))

τ(D, a) := (τ(A, a) ∪ {A ⊑ D})
→ CE: if (C ⊑ D) ∈ K, with C not atomic, a not blocked then

if (¬C ⊔D) /∈ L(a), then Add((¬C ⊔D), a)

τ((¬C ⊔D), a) := {C ⊑ D}
→ ⊓: if (C1 ⊓ C2) ∈ L(a), a is not indirectly blocked, then

if {C1, C2} ̸⊆ L(a), then Add({C1, C2}, a)
τ(Ci, a) := τ((C1 ⊓ C2), a)

→ ⊔: if (C1 ⊔ C2) ∈ L(a), a is not indirectly blocked, then
if {C1, C2} ∩ L(a) = ∅, then

Generate graphs Gi := G for each i ∈ {1, 2}
Add(Ci, a) in Gi for each i ∈ {1, 2}
τ(Ci, a) := τ((C1 ⊔ C2), a)

→ ∃: if ∃S.C ∈ L(a), a is not blocked then
if a has no S-neighbor b with C ∈ L(b),then

create new node b, Add(S, ⟨a, b⟩), Add(C, b)

τ(C, b) := τ((∃S.C), a); τ(S, ⟨a, b⟩) := τ((∃S.C), a)

→ ∀: if ∀(S.C) ∈ L(a), a is not indirectly blocked and there is an S-neighbor b of a, then
if C /∈ L(b), then Add(C, b)

τ(C, b) := (τ((∀S.C), a) ∪ τ(S, ⟨a, b⟩))
→ ∀+: if ∀(S.C) ∈ L(a), a is not indirectly blocked and there is an R-neighbor b of a, Trans(R) and R ⊑ S, then

if ∀R.C /∈ L(b), then Add(∀R.C, b)

τ((∀R.C), b) := τ((∀S.C), a) ∪ (τ(R, ⟨a, b⟩) ∪ {Trans(R)} ∪ {R ⊑ S})
→≥: if (≥ nS) ∈ L(a), a is not blocked, then

if there are no n safe S-neighbors b1, ..., bn of a with bi ̸= bj , then
create n new nodes b1, ..., bn; Add(S, ⟨a, bi⟩); ˙̸=(bi, bj)

τ(S, ⟨a, bi⟩) := τ((≥ nS), a); τ( ˙̸=(bi, bj)) := τ((≥ nS), a)

→≤: if (≤ nS) ∈ L(a), a is not indirectly blocked and there are m S-neighbors b1, ..., bm of a with m > n, then
For each possible pair bi, bj , 1 ≤ i, j ≤ m; i ̸= j then

Generate a graph G′

τ(Merge(bi, bj)) := (τ((≤ nS), a) ∪ τ(S, ⟨a, b1⟩)... ∪ τ(S, ⟨a, bm⟩))
if bj is a nominal node, then Merge(bi, bj) in G′,
else if bi is a nominal node or ancestor of bj , then Merge(bj , bi)

else Merge(bi, bj) in G′

if bi is merged into bj , then for each concept Ci in L(bi),
τ(Add(Ci,L(bj))) := τ(Add(Ci,L(bi))) ∪ τ(Merge(bi, bj))

(similarly for roles merged, and correspondingly for concepts in bj if merged into bi)
→ O: if, {o} ∈ L(a) ∩ L(b) and not a ˙̸=b, then Merge(a, b)

τ(Merge(a, b)) := τ({o}, a) ∪ τ({o}, b)
For each concept Ci in L(a), τ(Add(Ci,L(b))) := τ(Add(Ci,L(a))) ∪ τ(Merge(a, b))

(similarly for roles merged, and correspondingly for concepts in L(b))
→ NN : if (≤ nS) ∈ L(a), a nominal node, b blockable S-predecessor of a and there is no m

s.t. 1 ≤ m ≤ n, (≤ mS) ∈ L(a) and there exist m nominal S-neighbors c1, ..., cm of a s.t. ci ˙̸=cj , 1 ≤ j ≤ m,
then generate new Gm for each m, 1 ≤ m ≤ n and do the following in each Gm:

Add(≤ mS, a), τ((≤ mS), a) := τ((≤ nS), a) ∪ (τ(S, ⟨b, a⟩)
create b1, ..., bm; add bi ˙̸=bj for 1 ≤ i ≤ j ≤ m. τ( ˙̸=(bi, bj) := τ((≤ nS), a) ∪ τ(S, ⟨b, a⟩)
Add(S, ⟨a, bi⟩); Add({oi}, bi);
τ(S, ⟨a, bi⟩) := τ((≤ nS), a) ∪ τ(S, ⟨b, a⟩); τ({oi}, bi) := τ((≤ nS), a) ∪ τ(S, ⟨b, a⟩)

Figure 17.1: Pellet tableau expansion rules.
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Algorithm 17 Black-box pruning algorithm.
1: function BLACKBOXPRUNING(C, a, S)
2: Input: C, a (the concept and the individual to test)
3: Input: S (the set of axioms to be pruned)
4: Output: S (the pruned set of axioms)
5: for all axioms E ∈ S do
6: S ← S − {E}
7: if C(a) ∪ S is satisfiable then
8: S ← S ∪ {E}
9: end if

10: end for
11: return S

12: end function

which C is unsatisfiable.

Theorem 3 Let C(a) be an entailed assertion w.r.t. KB and let S be the output of the algo-
rithm SINGLEMINA with input C, a, KB; then S ∈ ALL-MINAS(C, a,KB).

Proof 3 We need to prove that the output S′ of Function TABLEAU includes at least one ex-
planation, i.e., S ∪ {C(a)} is unsatisfiable.
Let E be the sequence of events generated by TABLEAU with inputs C, a and KB. Let T ′, E′

be the corresponding sets of completion graphs and events generated. For each event εi ∈ E,
it is possible to perform εi in the same sequence as before. This is because, for each event εi,
the set of axioms in KB responsible for εi have been included in the output S′ by construction
of the tracing function τ in Figure 17.1. Thus, given E′ = E, a clash occurs in each of the
completion graphs in T ′ and the algorithm finds S ∪ {C(a)} unsatisfiable.
BLACKBOXPRUNING removes axioms while keeping the unsatisfiability.

Hitting Set Algorithm

Function SINGLEMINA returns a single MinA. To compute all MinAs, Pellet uses the hitting

set algorithm (Reiter, 1987).

Formally, let us consider a universal set U and a set of conflict sets CS ⊆ PU , where

P denotes the powerset operator. The set HS ⊆ U is a hitting set for CS if each Si ∈ CS

contains at least one element of HS, i.e. if Ci ∩HS ̸= ∅ for all 1 ≤ i ≤ n. We say that HS

is a minimal hitting set for CS if HS is a hitting set for CS and no HS′ ⊂ HS is a hitting set

for CS. The hitting set problem with input CS, U is to compute all the minimal hitting sets for

CS.
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Reiter’s algorithm for solving this problem (Reiter, 1987) constructs a labeled tree called

Hitting Set Tree (HST). In an HST a node v is labeled with OK or X or a set L(v) ∈ CS and

an edge e is labeled with an element of U . Let H(v) be the set of edge labels on the path from

the root of the HST to node v. For each element E ∈ L(v), v has a successor w connected to

v by an edge with E in its label. If L(v) = OK, then H(v) is a hitting set for CS.

The algorithm, described in detail in (Kalyanpur, 2006) and shown in Algorithm 18, starts

from a MinA S and initializes an HST with S as the label of its root v. Then it selects an

arbitrary axiom E in S, it removes it from KB, generating a new knowledge base KB′ =

KB−{E}, and it tests the unsatisfiability. If KB′ is unsatisfiable, we obtain a new explanation

for C(a). The algorithm adds a new node w in the tree and a new edge ⟨v, w⟩, then it assigns

this new explanation to the label of w and the axiom E to the label of the edge. The algorithm

repeats this process until the unsatisfiability test returns negative, in which case it labels the

new node with OK. The algorithm also eliminates extraneous unsatisfiability tests based on

previous results: once a hitting set path is found, any superset of that path is guaranteed to

be a hitting set as well, and thus no additional unsatisfiability test is needed for that path, as

indicated by X in the label of the node. When the HST is fully built, all leaves of the tree are

labeled with OK or X .

The distinct non-leaf nodes of the tree collectively represent the set ALL-MINAS for the

unsatisfiability of C.

Example 38 Let us consider a knowledge base KB with ten axioms and an entailed assertion
C(a). For the purpose of the example, we denote the axioms in KB with natural numbers.
Suppose ALL-MINAS(C, a,KB) is

ALL-MINAS(C, a,KB) = {{1, 2, 3}, {1, 5}, {2, 3, 4}, {4, 7}, {3, 5, 6}, {2, 7}}

Figure 17.2 shows the HST generated by the algorithm. It starts by computing a single expla-
nation, in our case with the tableau algorithm, that returns S = {2, 3, 4}. The next step is
to initialize a hitting set tree HST with a root node v and S as its label. Then, the algorithm
selects an arbitrary axiom in S, say 2, generates a new node w and a new edge ⟨v, w⟩ with
axiom 2 as its label. The algorithm tests the unsatisfiability of KB− {2}. If it is unsatisfiable,
as in our case, we obtain a new explanation for unsatisfiability of KB − {2}, say {1, 5}. We
add this set to CS and also assign it to the label of the new node w.

The algorithm repeats this process - i.e. removing an axiom, adding a node and checking
unsatisfiability - until the unsatisfiability test turns negative, in which case we mark the new
node with OK. Then, it recursively repeats these operations until the HST is fully built.
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Algorithm 18 Hitting Set Tree Algorithm for computing all minimal axiom sets ALL-MINAS.
1: procedure HITTINGSETTREE(C,KB, CS,HS,w, α, p)
2: Input: C (concept to be tested for satisfiability)
3: Input: KB (knowledge base)
4: Input/Output: CS (a set of conflict sets, initially containing a single explanation)
5: Input/Output: HS (a set of Hitting Sets)
6: Input: w (the last node added to the Hitting Set Tree)
7: Input: E (the last axiom removed from KB)
8: Input: p (the current edge path)
9: if there exists a set h ∈ HS s.t. (L(p) ∪ {E}) ⊆ h then

10: L(w)← X

11: return
12: else
13: if C is unsatisfiable w.r.t. KB then
14: m←SINGLEMINA(C,KB)
15: CS ← CS ∪ {m}
16: create a new node w′ and set L(w′)← m

17: if w ̸= null then
18: create an edge e = ⟨w,w′⟩ with L(e) = E

19: p← p ∪ e

20: end if
21: loop for each axiom F ∈ L(w′)

22: HITTINGSETTREE(A, (KB− {F}), CS,HS,w′, F, p)
23: end loop
24: else
25: L(w)← OK

26: HS ← HS ∪ L(p)

27: end if
28: end if
29: end procedure

The correctness and completeness of the hitting set algorithm is given by the following

theorem.

Theorem 4 (Kalyanpur, 2006) Let KB |= C(a), then the set of explanations returned by the
hitting set algorithm (we will call it EXPHST(C, a,KB)) is equal to the set of all explanations
of C(a) w.r.t. KB, so

EXPHST(C, a,KB) = ALL-MINAS(C, ,KB)

229



{2, 3, 4}
2

3
4

{1, 5}
5

1

{4,7}
7 4

{3,5,6}
3

5
6

{4, 7}
4

7

{4, 7}

4
7

{1, 5}
1

5

{2, 7}
2

7

X {2, 7}
2

7

{1, 5}
1

5

OK OK OK OK {1, 5}
1

5

{1, 5}
1

5
X {2, 7}

2
7

{2, 7}
2

7

{3,5,6}
3

5
6

{3,5,6}

3
5

6
X X X X {1,2,3}

1
2

3
OK OK X {1,2,3}

1

2
3

OK X OK OK X OK OK OK X OK X X

Figure 17.2: Finding ALL-MINAS(C, a,KB) using the Hitting Set Algorithm: each distinct node
is outlined in a box and represents a set in ALL-MINAS(C, a,KB).

17.2 Instantiated Axiom Pinpointing

In instantiated axiom pinpointing we are interested in instantiated minimal sets of axioms that

entail an axiom. We call this type of explanations InstMinA.

An instantiated axiom set is a finite set F = {(F1, θ1), . . . , (Fn, θn)} where F1, . . . , Fn are

axioms and θ1, . . . , θn are substitutions.

Given two instantiated axiom sets F = {(F1, θ1), . . . , (Fn, θn)} and E = {(E1, δ1), . . . ,

(Em, δm)}, we say that F precedes E, written F ≼ E, iff, for each (Fi, θi) ∈ F, there exists an

(Ej , δj) ∈ E and a substitution η such that Fjθj = Eiδiη.

Definition 22 (InstMinA) Let KB be a knowledge base and E an axiom that follows from it,
i.e., KB |= E. We call {(F1, θ1), . . . , (Fn, θn)} an instantiated minimal axiom set or InstMinA
for E in KB if {F1θ1, . . . , Fnθn} |= E and is minimal w.r.t. precedence.

Minimality w.r.t. precedence means that axioms in a InstMinA are as instantiated as possible.

We call INST-MIN-A-ENUM the problem of enumerating all InstMinAs:

Problem: INST-MIN-A-ENUM

Input: A knowledge base KB, and an axiom E such that KB |= E.

Output: The set ALL-INSTMINAS(E,KB) of all InstMinAs for E in KB.
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→ unfold: if A ∈ L(a), A atomic and (A ⊑ D) ∈ K, then
if D /∈ L(a), then Add(D,L(a))

τ(D, a) := τ(A, a) ∪ {(A ⊑ D, a)}
→ CE: if (C ⊑ D) ∈ K, with C not atomic, a not blocked then

if (¬C ⊔D) /∈ L(a), then Add(¬C ⊔D, a)

τ(¬C ⊔D, a) := {(C ⊑ D, a)}
→ ∀: if ∀(S1, C) ∈ L(a1), a1 is not indirectly blocked and there is an S1-neighbor b of a1, then

if C /∈ L(b), then Add(C, b)

if there is a chain of individuals a2, . . . , an and roles S2, . . . , Sn such thatn
i=2{(Trans(Si−1), ai, ai−1), (Si−1 ⊑ Si, ai)} ⊆ τ(∀S1.C, a1)

and ¬∃an+1 : {(Trans(Sn), an+1, an), (Sn ⊑ Sn+1, an+1)} ⊆ τ(∀S1.C, a1) then
τ(C, b) := τ(∀S1.C, a1) \

n
i=2{(Trans(Si−1), ai, ai−1), (Si−1 ⊑ Si, ai)}n

i=2{(Trans(Si−1), ai, ai−1, b), (Si−1 ⊑ Si, ai, b)} ∪ τ(S1, ⟨a1, b⟩)
else

τ(C, b) := τ(∀S1.C, a1) ∪ τ(S1, ⟨a1, b⟩)
→ ∀+: if ∀(S.C) ∈ L(a), a is not indirectly blocked and there is an R-neighbor b of a, Trans(R) and R ⊑ S, then

if ∀R.C /∈ L(b), then Add(∀R.C, b)

τ(∀R.C, b) := τ(∀S.C, a) ∪ τ(R, ⟨a, b⟩) ∪ {(Trans(R), a, b), (R ⊑ S, a)}

Figure 17.3: BUNDLE tableau expansion rules modified in Pellet.

In order to solve INST-MIN-A-ENUM, the Tableau expansion rules have been modified to return

a set of pairs (axiom, substitution) instead of a set of axioms only.

In particular, we modified the rules → unfold , → CE, → ∀ and → ∀+ as shown in Fig-

ure 17.3, where (A ⊑ D, a) is the abbreviation of (A ⊑ D, {x/a}), (Trans(R), a, b, c) of

(Trans(R), {x/a, y/b, z/c}), (Trans(R), a, b) of (Trans(R), {x/a, y/b}) and (R ⊑ S, a) of

(R ⊑ S, {x/a}), with a, b, c individuals and x, y, z variables.

The tracing function τ now stores, together with information regarding concepts and roles,

also information concerning individuals involved in the expansion rules, which will be returned

at the end of the derivation process together with the axioms. For rules→ unfold and→ CE,

the individual to which the subsumption axiom is applied is the one associated with the node.

For rule→ ∀+, the individuals considered are those connected by the role R, while rule→ ∀

makes a distinction between the case in which ∀S1.C was added to L(a1) by ∀+ or not. In the

first case, it fully instantiates the transitivity and subrole axioms. In the latter case, it simply

combines the explanation of ∀S1.C(a1) with that of (a1, b) : S1.

Function BUNDLESINGLEMINA, shown in Algorithm 19, is BUNDLE version of Function

SINGLEMINA and differs from it because it calls specialized versions of Functions TABLEAU

and BLACKBOXPRUNING (indicated with the prefix BUNDLE) and it takes as input an extra

argument, BannedInstAxioms.
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Function BUNDLETABLEAU

Function BUNDLETABLEAU, shown in Algorithm 20, differs from TABLEAU because it uses

the expansion rules of Figure 17.3 and takes an extra argument, BannedInstAxioms, that is

used to specify a set of instantiated axioms to be avoided when expanding the tableau.

For the moment we assume that BUNDLESINGLEMINA is called with an empty set

BannedInstAxioms, the case of a non empty set will be explained below. In this case the

behavior of BUNDLETABLEAU is simply that of TABLEAU with an updated set of rules.

Algorithm 19 BUNDLE SINGLEMINA algorithm, a modified version of Algorithm 16 for the
BUNDLE system.

1: function BUNDLESINGLEMINA(C, a,KB, BannedInstAxioms)
2: Input: C, a (the concept and individual to test)
3: Input: KB (knowledge base)
4: Input: BannedInstAxioms (set of banned instantiated axioms)
5: Output: S (a MinA for C(a)) or null
6: S ←BUNDLETABLEAU(C, a,KB, BannedInstAxioms)
7: if S = null then
8: return null

9: else
10: return BUNDLEBLACKBOXPRUNING(C, S,BannedInstAxioms)
11: end if
12: end function

The following example clarifies how the rules→ ∀ and→ ∀+ work.

Example 39 Let us consider the knowledge base presented in Example 36 with the query Q =

diana : Person.

1. BUNDLE starts from the tableau shown in Figure 17.4a.

2. It applies the → ∀+ rule to kevin, adding ∀friend.Person to the label of laura. In
this case friend is considered as a subrole of itself. The tracing function τ is updated
as:

τ(∀friend.Person, laura) = {
(kevin : ∀friend.Person),
((kevin, laura) : friend),

(Trans(friend), kevin, laura)}

equivalent to the following predicate logic theory:
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Algorithm 20 BUNDLE TABLEAU algorithm, a modified version of Algorithm 13 for the
BUNDLE system.

1: function BUNDLETABLEAU(C, a,KB, BannedInstAxioms)
2: Input: C, a (the concept and individual to test)
3: Input: KB (knowledge base)
4: Input: BannedInstAxioms (set of banned instantiated axioms)
5: Output: S (a set of axioms)
6: Let G0 be an initial completion graph from KB containing an anonymous individual a and ¬C ∈ L(a)

7: T ← {G0}
8: repeat
9: Select a rule r applicable to a clash-free graph G from T such that no axiom

10: from BannedInstAxioms is added to τ

11: T ← T \ {G}
12: Let G = {G′

1, ..., G
′
n} be the result of applying r to G

13: T ← T ∪ G

14: until All graphs in T have a clash or no rule is applicable
15: if All graphs in T have a clash then
16: S ← ∅
17: for all G ∈ T do
18: let sG be the result of τ for the clash of G
19: S ← S ∪ sG

20: end for
21: S ← S \ {¬C(a)}
22: return S

23: else
24: return null

25: end if
26: end function

τ(∀friend.Person, laura) = {
∀y.friend(kevin, y)→ Person(y),

friend(kevin, laura),

∀z.friend(kevin, laura) ∧ friend(laura, z)→ friend(kevin, z)}

3. BUNDLE applies the→ ∀ rule to laura adding Person to diana. The tracing function
τ is modified as:

τ(Person, diana) = {
(kevin : ∀friend.Person),
((kevin, laura) : friend), ((laura, diana) : friend),

(Trans(friend), kevin, laura, diana)}
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equivalent to the following predicate logic theory:

τ(Person, diana) = {
∀y.friend(kevin, y)→ Person(y),

friend(kevin, laura),

friend(laura, diana),

friend(kevin, laura) ∧ friend(laura, diana)→ friend(kevin, diana)}

4. At this point the tableau contains a clash so the algorithm stops and returns the
MinA = τ(Person, diana) ∪ τ(¬Person, diana) \ {diana : ¬Person} =
τ(Person, diana).

The final tableau is shown in Figure 17.4b.

kevin

friend

L(kevin) =
{∀friend.Person}

laura

friend

L(laura) = ∅

diana
L(diana) =
{¬Person}

(a) Initial Tableau.

kevin

friend

L(kevin) =
{∀friend.Person}

laura

friend

L(laura) =
{∀friend.Person,

Person}

diana
L(diana) =

{Person,¬Person}

(b) Final Tableau.

Figure 17.4: Completion Graphs for Example 36. Nominals are omitted from node labels for
brevity.
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Example 40 Let us consider the knowledge base

kevin : ∀kin.Person

(kevin, laura) : relative

(laura, diana) : ancestor

(diana, andrea) : ancestor

Trans(relative)

Trans(ancestor)

relative ⊑ kin

ancestor ⊑ relative

The query andrea : Person has the InstMinA (in predicate logic):
τ(Person, andrea) = {
∀y.kin(kevin, y)→ Person(y),

relative(kevin, laura),

ancestor(laura, diana),

ancestor(diana, andrea),

relative(kevin, laura) ∧ relative(laura, andrea)→ relative(kevin, andrea),

ancestor(laura, diana) ∧ ancestor(diana, andrea)→ ancestor(laura, andrea),

relative(kevin, andrea)→ kin(kevin, andrea),

ancestor(laura, andrea)→ relative(laura, andrea)}

We can prove the analogous of Theorem 3 for our modified tableau algorithm. In the

following, by {(E1, θ1), ..., (En, θn)} |= E we mean {E1θ1, ..., Enθn} |= E.

Theorem 5 Let C(a) be such that KB |= C(a) and let S be the output of Function
BUNDLETABLEAU with input C, a,KB, then S ∈ ALL-INSTMINAS(C(a),KB).

Proof 4 Following the proof of Theorem 3, we need to prove that the output S of
BUNDLETABLEAU (before it is pruned) includes one explanation, i.e., S ∪ {C(a)} is unsatis-
fiable. The sequence of events generated by the tableau algorithm of Figure 14.2 is the same
as the one generated by the algorithm with the rules of Figure 17.3 since only the construction
of τ has changed. To prove that τ , applied to an event, returns a set of instantiated axioms that
entails the event, we proceed by induction on the number of rule applications. We have to do
this only for the rules that have been modified.

Let us consider the case of one rule application.
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For rule → unfold, from A ∈ L(a) and A ⊑ D we conclude that D ∈ L(a) and
we set τ(D, a) = τ(A, a) ∪ {(A ⊑ D, a)}. Since this is the first rule application, then
τ(A, a) = {a : A}. From A(a) and A(a)→ D(a) if follows that D(a) is true.

For rule→ CE, fromC ⊑ D we conclude that ¬C⊔D ∈ L(a) and we set τ(¬C⊔D, a) =
{(C ⊑ D), a)}. From C(a)→ D(a) if follows that ¬C(a) ∨D(a).

For rule→ ∀, since this is the first rule application,
n

i=2{(Trans(Si−1), ai, ai−1), (Si−1 ⊑
Si, ai)} ⊆ τ(∀S1.C, a1) does not hold because these axioms can be added only by rule→ ∀+.
Thus τ is modified as τ(C, b) := τ(∀S1.C, a1) ∪ τ(S1, ⟨a1, b⟩), resulting in τ(C, b) = {a1 :

∀S1.C, (a1, b) : S1). From ∀y.S1(a1, y)→ C(y) and S1(a1, b) it follows that C(b).
For rule→ ∀+, τ is modified as

τ(∀R.C, b) := τ(∀S.C, a) ∪ τ(R, ⟨a, b⟩) ∪ {(Trans(R), a, b), (R ⊑ S, a)}, resulting in
τ(∀R.C, b) := {a : ∀S.C, (a, b) : R, (Trans(R), a, b), (R ⊑ S, a)}.
FromR(a, b), ∀z.R(a, b)∧R(b, z)→ R(a, z), ∀y.R(a, y)→ S(a, y) and ∀y.S(a, y)→ C(y)

it follows that ∀y.R(b, y)→ C(y).

For the inductive case, suppose the thesis is true for m rules applications, we prove that is
true for m + 1 rule applications. Again we have to do this only for the rules that have been
modified.

For rule → unfold, we set τ(D, a) = τ(A, a) ∪ {(A ⊑ D), a)}. For the inductive
hypothesis τ(A, a) |= A(a), so from τ(A, a) and A(a)→ D(a) if follows that D(a) is true.

For rule→ CE, the same reasoning as in the base case can be applied.
For rule→ ∀, if

n
i=2

{(Trans(Si−1), ai, ai−1), (Si−1 ⊑ Si, ai)} ⊆ τ(∀S1.C, a1) (17.1)

does not hold, we can apply the same reasoning as in the base case.
If (17.1) holds, τ(∀S1.C, a1) contains also τ(Si−1, ⟨ai, ai−1⟩) added by previous applications
of → ∀+ to ai having ∀Si.C ∈ L(ai) for i = 2, . . . , n. The completion graph thus looks as
in Figure 17.5. We prove by induction on n that Sn(an, b) holds. From this and the fact that
∀Sn.C ∈ L(an) we can conclude C(b) holds.

For the case of n = 2, τ(∀S1.C, a1) contains

τ(S1, ⟨a2, a1⟩) ∪ {∀z.S1(a2, a1) ∧ S1(a1, z)→ S1(a2, z), ∀y.S1(a2, y)→ S2(a2, y)}

If we replace y and z with b we obtain

τ(S1, ⟨a2, a1⟩) ∪ {S1(a2, a1) ∧ S1(a1, b)→ S1(a2, b), S1(a2, b)→ S2(a2, b)}

that, together with τ(S1, ⟨a1, b⟩), entails S2(a2, b).
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L(an) = {∀Sn.C} L(a2) = {∀S2.C} L(a1) = {∀S1.C} L(b) = {C}

an
Sn−1

. . .
S2

a2
S1

a1
S1

b

Figure 17.5: Completion graph for rule→ ∀.

For the case of n, suppose Sn−1(an−1, b) holds. τ(∀S1.C, a1) contains

τ(Sn−1, ⟨an, an−1⟩)∪
{∀z.Sn−1(an, an−1) ∧ Sn−1(an−1, z)→ Sn−1(an, z), ∀y.Sn−1(an, y)→ Sn(an, y)}

If we replace y and z with b we obtain

τ(Sn−1, ⟨an, an−1⟩) ∪ {Sn−1(an, an−1) ∧ Sn−1(an−1, b)→ Sn−1(an, b), Sn−1(an, b)→ Sn(an, b)}

that, together with the inductive hypothesis Sn−1(an−1, b), entails Sn(an, b).

It is clear that the expansion rules add only maximally instantiated axioms to τ , i.e., if
S = {(F1, θ1), . . . , (Fn, θn)} is returned by BUNDLETABLEAU, no set
S′ = {(F ′1, θ′1), . . . , (F ′n, θ′n)} exists such that S′ entails the query, Fiθiηi = F ′iθ

′
i for i =

1, . . . , n and at least one ηi is non empty.

Function BUNDLEBLACKBOXPRUNING

Since the instantiated axiom set S that is returned by BUNDLETABLEAU may contain redun-

dant instantiated axioms as for TABLEAU, black-box pruning is applied. Function BUNDLE-

BLACKBOXPRUNING, shown in Algorithm 21, uses a specialized version of BUNDLETABLEAU,

called BUNDLEINSTTABLEAU and shown in Algorithm 22, that takes as input also a set of in-

stantiated axioms InstAxioms. BUNDLEINSTTABLEAU checks that every instantiated axiom

added to τ belongs to InstAxioms, so that instantiated axioms can be removed one by one by

the black-box algorithm in order to test their necessity.

237



Algorithm 21 BUNDLE black-box pruning algorithm, for pruning the output of Algorithm 20.
1: function BUNDLEBLACKBOXPRUNING(C, a, S)
2: Input: C, a
3: Input: S (the set of instantiated axiom to be pruned)
4: Input: InstAxioms (set of instantiated axioms)
5: Output: S (the pruned set of axioms)
6: for all axiom (E, θ) ∈ S do
7: S ← S − {(E, θ)}
8: KB← {F |(F, θ) ∈ S}
9: if BUNDLEINSTTABLEAU(C, a,KB, S)= null then

10: S ← S ∪ {(E, θ)}
11: end if
12: end for
13: return S

14: end function

Algorithm 22 BUNDLE TABLEAU for black-box pruning, called from Algorithm 21.
1: function BUNDLEINSTTABLEAU(C, a,KB, InstAxioms)
2: Input: C, a
3: Input: KB (knowledge base)
4: Input: InstAxioms (set of instantiated axioms)
5: Output: S (a set of axioms)
6: Let G0 be an initial completion graph from KB containing an anonymous individual a and ¬C ∈ L(a)

7: T ← {G0}
8: repeat
9: Select a rule r applicable to a clash-free graph G from T such all axioms added to τ are

10: from InstAxioms

11: T ← T \ {G}
12: Let G = {G′

1, ..., G
′
n} be the result of applying r to G

13: T ← T ∪ G

14: until All graphs in T have a clash or no rule is applicable
15: if All graphs in T have a clash then
16: S ← ∅
17: for all G ∈ T do
18: let sG be the result of τ for the clash of G
19: S ← S ∪ sG

20: end for
21: S ← S \ {¬C(a)}
22: return S

23: else
24: return null

25: end if
26: end function
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BUNDLE Hitting Set Algorithm

Algorithm 23 BUNDLE Hitting Set Algorithm.
1: procedure BUNDLEHITTINGSETTREE(C, a,KB, CS,HS,w,E, p,BannedInstAxioms)
2: Input: C, a
3: Input: KB (knowledge base)
4: Input: CS (a set of conflict sets, initially containing a single explanation)
5: Input: HS (a set of Hitting Sets)
6: Input: w (the last node added to the Hitting Set Tree)
7: Input: α (the last axiom removed from KB)
8: Input: p (the current edge path)
9: Input: BannedInstAxioms (a set of instantiated axioms)

10: if there exists a set h ∈ HS s.t. (L(p) ∪ {E}) ⊆ h then
11: L(w)← X

12: return
13: else
14: if C is unsatisfiable w.r.t. KB then
15: m←BUNDLESINGLEMINA(C, a,KB, BannedInstAxioms)
16: CS ← CS ∪ {m}
17: create a new node w′ and set L(w′)← m

18: if w ̸= null then
19: create an edge e = ⟨w,w′⟩ with L(e) = E

20: p← p ∪ e

21: end if
22: loop for each Fθ ∈ L(w′)

23: if F is certain then
24: BUNDLEHITTINGSETTREE(A, (KB− {F}), CS,HS,w′, F, p, BannedInstAxioms)
25: else
26: BUNDLEHITTINGSETTREE(A,KB, CS,HS,w′, F θ, p,BannedInstAxioms ∪ {Fθ})
27: end if
28: end loop
29: else
30: L(w)← OK

31: HS ← HS ∪ L(p)

32: end if
33: end if
34: end procedure

As in Pellet, to compute ALL-INSTMINAS(E,KB) we use the Hitting Set Algorithm that

calls the BUNDLESINGLEMINA algorithm for computing single explanations. BUNDLEHIT-

TINGSETTREE, shown in Algorithm 23, besides removing axioms from the knowledge base

KB, also keeps a set of instantiated banned axioms, BannedInstAxioms, where it stores
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the instantiated axioms that have to be removed from the knowledge base. This set is used by

BUNDLESINGLEMINA and thus by BUNDLETABLEAU (Algorithm 20), in this way: before

applying a rule, BUNDLETABLEAU checks whether one of the instantiated axioms to be added

to τ is in BannedInstAxioms. If so, it does not apply the rule.

In BUNDLEHITTINGSETTREE, if the axiom to be removed is certain, the behavior is the

same as in Pellet. If the axiom is probabilistic, BUNDLEHITTINGSETTREE adds the instan-

tiated axiom to BannedInstAxioms and calls BUNDLESINGLEMINA with this updated set.

The correctness and completeness of this approach is proved by the following theorem, based

on Theorem 4:

Theorem 6 Let C(a) be such that KB |= C(a), then the set of explanations returned by
the hitting set algorithm (we will call it INSTEXPHST(C, a,KB)) is equal to the set of all
explanations of C(a) w.r.t. KB, so

INSTEXPHST(C, a,KB) = ALL-INSTMINAS(C(a),KB)

Proof 5 Theorem 4 can be applied to this case by observing that BUNDLETABLEAU behaves
as if the knowledge base does not contain the instantiated axioms in BannedInstAxioms.

17.3 Overall BUNDLE

BUNDLE, shown in Algorithm 24, first builds a data structure PMap that associates each

DL axiom E with a set of couples (V ar, p), one for each probabilistic axiom p ::V ar E

in the knowledge base KB. Then it calls Functions BUNDLESINGLEMINA and BUNDLE-

HITTINGSETTREE to compute all MinAs for C(a). ALL-INSTMINAS(C(a),KB) will be

assigned to the set of conflict sets CS.
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Algorithm 24 Function BUNDLE: computation of the probability of an axiom Q on a given
ontology.

1: function BUNDLE(KB, C, a)
2: Input: KB (knowledge base)
3: Input: C, a
4: Output: the probability of C(a) w.r.t. KB

5: Build Map PMap from DL axioms to sets of couples (V ar, probability)

6: MinA←BUNDLESINGLAMINA(C,KB, ∅)
7: L(root)←MinA; CS ← {MinA}; HS ← ∅
8: loop for each axiom Fθ ∈ L(root)

9: if F is certain then
10: BUNDLEHITTINGSETTREE(C, (KB− {F}), CS,HS, root, F, ∅, ∅)
11: else
12: BUNDLEHITTINGSETTREE(C,KB, CS,HS, root, Fθ, ∅, {Fθ})
13: end if
14: end loop
15: Initialize V arAxAnn to empty ◃ V arAxAnn is an array of triples (Axiom, θ, Prob)

16: BDD ←BDDZERO

17: for all MinA ∈ CS do
18: BDDE ←BDDONE

19: for all (Ax, θ) ∈MinA do
20: if KB contains a certain axiom Ax then
21: BDDA←BDDONE

22: else
23: Res← the set of all couples (V ar, p) in PMap(Ax) such that V ar ⊆ V ar(θ)

24: BBDA←BDDZERO

25: for all (V ar, p) ∈ Res do
26: θ′ ← θ|V ar

27: Scan V arAxAnn looking for (Ax, θ′)

28: if !found then
29: Add to V arAxAnn a new cell containing (Ax, θ′, p)

30: end if
31: Let i be the position of (Ax, θ′, p) in V arAxAnn

32: B ← BDDGETITHVAR(i)
33: BDDA←BDDOR(BDDA,B)
34: end for
35: end if
36: BDDE ←BDDAND(BDDE,BDDA)
37: end for
38: BDD ←BDDOR(BDD,BDDE)
39: end for
40: return BDD_PROBABILITY(BDD) ◃ V arAxAnn is used to compute P (X) in this function
41: end function
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Two data structures are initialized: V arAxAnn is an array that maintains the association

between Boolean random variables (whose index is the array index) and triples

(axiom, substitution, probability), and BDD stores a BDD. BDD is initialized to the

Zero Boolean function.

Then BUNDLE performs three nested loops that build a BDD representing the set of expla-

nations. To manipulate BDDs we used JavaBDD1 that is an interface to a number of underlying

BDD manipulation packages: as the underlying package we exploit CUDD.

In the outermost loop BUNDLE combines BDDs for different explanations. In the interme-

diate loop, BUNDLE generates the BDD for a single explanation, while in the innermost loop

it generates the BDD associated to each axiom. Since the same axiom can appear multiple

times with different V ar annotations, for each instantiated axiom in a MinA the disjunction of

random variables associated to all the applicable probabilistic axioms is computed, since the

instantiated axiom is true if one of the axiom in the knowledge base is true.

In the outermost loop, BDDE is initialized to the One Boolean function. In the interme-

diate loop, the couples (axiom, substitution) of a MinA are considered one by one. If the

axiom is certain, the One Boolean function is conjoined with BDDE. Otherwise, the set of

couples (V ar, p) associated with the axiom, such that the variables in the substitution are a sub-

set of V ar, are extracted from PMap. Then, BDDA is initialized to the Zero Boolean func-

tion and, for each couple (V ar, p), the restriction of the substitution to V ar is computed and

the tuple (axiom, restrictedsubstitution, probability) is searched for in V arAxAnn

to see if it has already been assigned a random variable. If not, a cell is added to V arAxAnn to

store the tuple. At this point we know the tuple position i in V arAxAnn and so the index of its

Boolean variable Xi in the BDD. A BDD is built representing Xi = 1 with BDDGETITHVAR

and it is disjointed with BDDA. At the end of the innermost loop, BDDA is conjoined with

BDDE and, at the end of the intermediate loop, the BDD for the current explanation,BDDE,

is disjointed with BDD. After the three cycles, function BDD_PROBABILITY of Algorithm

15 is called over BDD and its result is returned to the user.

1Available at http://javabdd.sourceforge.net/
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Example 41 Consider the knowledge base

kevin : ∀kin.Person

anna : ∀kin.Person

(kevin, laura) : friend

(anna, laura) : friend

Trans(friend)

0.8 ::x friend ⊑ kin

The query laura : ∀friend.Person has two InstMinAs, one is

{ ∀y.kin(kevin, y)→ Person(y),

friend(kevin, laura),

∀z.friend(kevin, laura) ∧ friend(laura, z)→ friend(kevin, z),

∀y.friend(kevin, y)→ kin(kevin, y)}

The other is

{ ∀y.kin(anna, y)→ Person(y),

friend(anna, laura),

∀z.friend(anna, laura) ∧ friend(laura, z)→ friend(anna, z),

∀y.friend(anna, y)→ kin(anna, y)}

If we indicate with F the formula of the only probabilistic axiom, we have the covering set
of explanations K = {κ1, κ2} with κ1 = {(F, {x/kevin}, 1} and κ2 = {(F, {x/anna}, 1)}.
Since V ar = x, when building the BDD F{x/kevin} and F{x/anna} are associated with
different random variables so the BDD computes the disjunction of the two variables and the
probability of the query is 0.8 + 0.8− 0.8 · 0.8 = 0.96.

If the subscript of the probabilistic axiom is removed, then when building the BDD the two
instantiated formulae are mapped to the same random variable, thus the BDD computes the
disjunction of two equal variables obtaining the variable itself. Thus the probability of the
query in this case is 0.8.

If the subscript of the probabilistic axiom is changed to xy, then the two instantiated for-
mulae are not valid forms of the axiom and the two explanations are discarded, leading to a 0
probability.
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17.4 Computational Complexity

The computational complexity of computing the probability of an axiom can be studied by

considering the two problems that must be solved:

• The first problem is that of axiom pinpointing, whose computational complexity has been

studied in a number of works (Peñaloza and Sertkaya, 2009, 2010a,b).

(Baader et al., 2007) showed that there can be exponentially many MinAs for a very sim-

ple DL that is a subset of SHOIN(D), thus the number of explanations for SHOIN(D)

may be even larger. Given this fact, we do not consider complexity with respect to the

input only. We say an algorithm runs in output polynomial time (Johnson et al., 1988) if

computes all the output in time polynomial in the overall size of the input and the output.

Corollary 15 in (Peñaloza and Sertkaya, 2010b) shows that MINA-ENUM cannot be

solved in output polynomial time for DL-Litebool TBoxes unless P = NP . Since DL-

Litebool is a sublogic of SHOIN(D), this result also holds for SHOIN(D).

• The second problem is computing the probability of a sum-of-products, that is

Problem: SUM-OF-PRODUCTS

Input: Let S be a Boolean expression in disjunctive normal form (DNF), or a sum-of-

products, in the variables {v1, . . . , vn} and let P (vi) be the probability that vi is true

with i = 1, . . . , n.

Output: The probability of S: P (S), assuming all variables are independent.

This problem was shown to be #P − hard (see e.g. (Rauzy et al., 2003)). The class

#P (Valiant, 1979) describe counting problems associated with decision problems in

NP . More formally, #P is the class of function problems of the form “compute f(x)”,

where f is the number of accepting paths of a nondeterministic Turing machine running

in polynomial time.

#P problems were shown very hard. First, a #P problem must be at least as hard as

the corresponding NP problem. Second, (Toda, 1989) showed that a polynomial-time

machine with a #P oracle (P#P) can solve all problems in PH , the entire polynomial

hierarchy.
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Given that the input of the SUM-OF-PRODUCTS problem is at least of exponential size,

this means that computing the probability of an axiom from a SHOIN(D) knowledge

base is highly intractable.

However, the algorithms that have been proposed for solving the two problems were shown

to be able to work on input of realistic size. For example, all MinAs have been found for

various entailments over many real world ontologies within a few seconds (Kalyanpur, 2006;

Kalyanpur et al., 2007). As regards the SUM-OF-PRODUCTS problem, algorithms based on

BDDs were able to solve problems with hundred of thousand of variables (see e.g. the works

on inference on Probabilistic Logic Programs (De Raedt et al., 2007; Kimmig et al., 2011;

Riguzzi, 2007b, 2009; Riguzzi and Swift, 2010, 2012)). Moreover, Section 17.5 shows that in

practice we can compute the probability of entailments on ontologies of realistic size.

17.5 Experiments

The experiments are directed to verify the performance of the probabilistic Description Logic

reasoner Bundle in comparison with another state of the art system.

In the following a description of the dataset is provided before the experimental part.

Dataset

The dataset is a probabilistic ontology for breast cancer risk assessment (BRCA). The BRCA

ontology was created as an attempt to model the problem of breast cancer risk assessment in a

clear, ontological manner. The central idea behind the design the ontology was to reduce risk

assessment to probabilistic entailment in P− SHIQ(D).

The ontology consists of two major parts: a classical OWL ontology and a probabilistic

part that represents domain uncertainty. The ontology aims at modeling two types of risk of

developing breast cancer. The probabilistic part contains conditional constraints of the form

(D | C)[l, u].
First, the ontology models absolute risk, i.e., the risk that can be measured without refer-

ence to specific categories of women. A statement like “an average woman has up to 12.3% of

developing breast cancer in her lifetime” is an example. Such risk is modeled using subclasses

of WomanUnderAbsoluteBRCRisk. Subclasses distinguish between the risk of developing

cancer over a lifetime vs. in the short term (e.g., ten years).
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Second, the ontology models relative breast cancer risk. This is useful for representing the

impact of various risk factors by describing how they increase or decrease the risk compared

to an average woman. A statements like “having BRCA1 gene mutation increases the risk of

developing breast cancer by a factor of four” is an example.

The ontology defines risk factors that are relevant to breast cancer using subclasses of

RiskFactor. It makes the distinction between the factors that should be known to a woman,

and those that can only be inferred on the basis of other factors or by examination, e.g., BRCA

gene mutation, etc. It also defines different categories of women: first, those that have certain

risk factors (subclasses of WomanWithRiskFactors); and, second, those defined in terms of the

risk of developing cancer (subclasses of WomanUnderBRCRisk).

With this classical ontology, it is possible to assess the risk in terms of probabilistic en-

tailment. The problem is to compute the conditional probability that a certain woman is an in-

stance of some subclass of WomanUnderBRCRisk given probabilities that she is an instance of

some subclasses of WomanWithRiskFactors. This requires probabilistic entailment of ABox

axioms. In addition, it might also be useful to infer the generic probabilistic relationships

between classes under WomanUnderBRCRisk and under WomanWithRiskFactors.

The KB contains a set of probabilistic ABox (PAbox) and TBox (PTbox) axioms. The

PABox axioms define risk factors that are relevant to a particular individual. The PTBox axioms

model generic probabilistic relationships between classes in the ontology, i.e., those that are

assumed to hold for a randomly chosen individual.

The model represents absolute risk using the subclasses of WomanUnderAbsoluteBRCRisk

as conclusions in conditional constraints. For example, the above statement that an average

woman has risk up to 12.3% can be expressed as the following TBox axiom:

(WomanUnderAbsoluteBRCRisk |Woman)[0, 0.123].

Relative risk can be captured analogously by using the subclasses of

WomanUnderRelativeBRCRisk as conclusions.

The model also allows to express various inter-relationships between risk factors. One

possibility is to represent how the presence of one risk factor allows to guess on the presence of

others. This is the principal method of inferring risk factors, i.e., those unknown to a woman.

For example, BRCA gene mutation is more likely to be statistically developed by certain ethnic

groups.
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In addition, the model allows to represent how different risk factors strengthen or weaken

the effect of each other. The classical part of the ontology provides classes that are combina-

tions of multiple risk factors. For example, Woman50PlusMotherBRCA is a subclass of both

WomanAged50Plus and WomanWithMotherBRCA, i.e., it represents women after the age of

50 whose mothers developed breast cancer in the past. The model can define the risk for such

women to be much higher than if they had just one of the factors.

Informally, PTBox axioms for the combination of factors, such as:

(WomanUnderStrongBRCRisk|Woman50PlusMotherBRCA)[0.9, 1]

override the axioms for each individual factor, thus allowing the system to make a more relevant

and objective inference.

Finally, the ontology contains a number of PABoxes that represent risk factors for specific

individuals. The motivation is that, while the generic probabilistic model provides all the nec-

essary statistics that can be developed and maintained by a central cancer research institute,

individual women can supply the knowledge about the risk factors that are known to them,

e.g., age. It is also possible to express uncertainty in having some particular risk factor.

Methodology

In order to evaluate the performance of BUNDLE , we follow the methodology of (Klinov and

Parsia, 2008) where the probabilistic reasoner PRONTO is used to answer queries to increas-

ingly complex ontologies obtained by randomly sampling axioms from the BRCA ontology.

Currently the full version of BRCA ontology cannot be handled by P− SHIQ(D) reasoners,

so in (Klinov and Parsia, 2008) the authors decided to evaluate the performance on selected

fragments.

Problem instances are generated using simple random sampling: each sample is an inde-

pendent probabilistic KB with the full classical part of the BRCA ontology and a subset of the

PTBox constraints. The number of conditional constraints varies from 9 to 15 and, for each

number, ontologies are repeatedly sampled and tested for consistency; we stop sampling when

we obtain 100 consistent ontologies for each number of constraints.

In order to generate a query, an individual a is added to the ontology. a is randomly

assigned to each class that appears in the sampled conditional constraints with probability 0.6.

If the class is composite, as for example PostmenopausalWomanTakingTestosterone, a is
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assigned to the component classes rather than to the composite one. In the example above, a

will be added to PostmenopausalWoman and WomanTakingTestosterone classes.

The ontologies are then translated into the DISPONTE semantics by replacing the con-

straint (D|C)[l, u] with the axiom u ::x C ⊑ D. For instance, the statement that an average

woman has up to 12.3% chance of developing breast cancer in her lifetime, expressed by

(WomanUnderAbsoluteBRCRisk|Woman)[0, 0.123]

is translated into

0.123 ::x WomanUnderAbsoluteBRCRisk ⊑Woman

For each ontology the query a : C is asked, where the class C is randomly selected among

those that represent women under increased risk and lifetime risk, such as

WomanUnderLifetimeBRCRisk and WomanUnderStronglyIncreasedBRCRisk.

Results

We compared BUNDLE and PRONTO with regard to:

• the execution time in performing inference: Figure 17.6a shows the execution times

averaged over the 100 knowledge bases as a function of the number of axioms;

• the amount of memory used, shown in Figure 17.6b, as a function of the number of

axioms.

Execution times are similar for small knowledge bases, but the difference between the two

reasoners rapidly increases for larger knowledge bases.

The memory usage for BUNDLE is always less than 53% with respect to PRONTO.

The results show that, despite the high worst case complexity, BUNDLE can be applied

effectively to real world domains and is competitive with PRONTO.
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Figure 17.6: Comparison between BUNDLE and PRONTO.
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Chapter 18

Thesis Summary

Learning probabilistic logic programming languages has received an increased attention and

various systems have been made available for learning the parameters or both the structure and

the parameters of these languages.

The first aim of this thesis was to improve the learning algorithms for parameters and

structure of directed probabilistic logic models, by employing logic programming techniques.

The efficiency of these algorithms rely on inference techniques recently developed, based on

Binary Decision Diagrams.

Logic Programs with Annotated Disjunctions (LPADs) have been used as a representa-

tive of the probabilistic logic programming paradigm, although this formalism can easily be

translated into other languages; in fact we related this formalism to a variety of other known

languages in the field of probabilistic logical learning and compared the corresponding param-

eter/structure learning systems. LPADs’ main characteristic is to be intuitive and compact from

a knowledge representation point of view. The syntax and semantics are as simple as possi-

ble to make it easy to learn the language, and provide a natural representation of relational

probabilistic knowledge.

• We have presented the EMBLEM system, that learns probabilities in LPAD clauses us-

ing the Expectation Maximization (EM) algorithm, where the values of expectations

are computed directly on BDDs. Experimental results over many real world datasets

showed equal or superior performances both in terms of speed and memory usage with

respect to other state-of-the-art learning systems. It is able to perform learning on larger

datasets, where other systems are not able to terminate. The main issues raised by these

experiments are related to datasets’ size and programs’ cyclicity: for large datasets it is

252



impossible to store all BDDs in memory, and we had to set a depth bound on the query

derivations and to use a “simplified” distribution semantics;

• We have presented the SLIPCASE and SLIPCOVER algorithms that learn both the

structure and the parameters of LPADs, by exploiting EMBLEM. The first performs a

beam search in the space of probabilistic theories using the log likelihood of the data as

the guiding heuristics; the second is an evolution in the sense that uses a more complex

search strategy, which first searches the space of clauses storing all the promising ones,

and then performs greedy search in the space of theories. Like EMBLEM, they can be

applied to all languages that are based on the distribution semantics. The experimen-

tal results show that SLIPCOVER’s double search for clauses and theories separately is

quite effective in achieving higher performances in most datasets tested.

The second purpose of the thesis was to propose a fresh research line in probabilistic De-

scription Logics, by embedding (1) the distribution semantics for probabilistic logic languages

in SHOIN(D) and (2) inference techniques based on Binary Decision Diagrams.

1. The proposed semantics, called DISPONTE, differs from previous proposals because

it minimally extends the description language and provides a unified framework for

representing different types of probabilistic knowledge, “epistemic” and “statistical”.

Moreover, it allows to seamlessly represent probabilistic assertional and terminological

knowledge.

The distribution semantics allows us to define a “possible worlds” semantics over a prob-

abilistic knowledge base, which in turn leads to reduce the inference problem of comput-

ing the probability of a query to that of finding a covering set of mutually incompatible

explanations, as for the case of LPADs.

2. The inference system (BUNDLE) takes advantage of the proposed semantics for comput-

ing the probability of queries against a probabilistic ontology which follows DISPONTE

semantics. Its complexity in the worst case is large since the explanations may grow

exponentially and the computation of the probability through Binary Decision Diagrams

has a #P-complexity in the number of explanations. Nevertheless, experiments applied

on a real world dataset on breast cancer risk assessment, proved that it is able to handle

domains of significant size, in less time and with less memory consumption than the

inference system PRONTO for P− SHIQ(D).
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In the future, we plan to consider the case of countably infinite covering sets of explanations

and to investigate the application of BUNDLE to other real life ontologies, with particular

reference to health science. Moreover, we intend to experiment with various BDD packages, in

particular those employing sophisticated techniques for choosing the variable order (Grumberg

et al., 2003).
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Chapter 19

Future Work

In the SRL field, learning the structure of probabilistic logical models is a hard problem.

Further steps in our work would be:

• the test of the SLIPCOVER system on other real world domains;

• the analysis of the effects of refining the clause heads and of background knowledge on

the performance;

• the development of other search strategies (such as local search in the space of refine-

ments).

The rising popularity of description logics and their use, and the need to deal with uncertainty,

especially in the Semantic Web, is increasingly attracting the attention of many researchers and

practitioners towards description logics able to cope with uncertainty by means of probability

theory. As regards the current results, we would like to:

• test the probabilistic reasoner on other real life ontologies, with particular reference to

health science;

• improve the efficiency of its inference step by experimenting with various BDD pack-

ages, in particular those employing sophisticated techniques for choosing the variable

order (Grumberg et al., 2003);

• consider the case of countably infinite covering sets of explanations.

A new important path concerns the development of parameter/structure learning systems for

probabilistic OWL DL ontologies under the distribution semantics.
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