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1. ABSTRACT 

 

The main goal of the study is to test different methodologies helpful for the definition of natural 

and present subsidence along coastal area. Specifically, tests were carried out on the Kazakh 

coastal area (northeastern part of the Caspian Sea coast). 

Specific objectives include: 

• the reconstruction of the geological assets of the projects area; 

• the definition of processes that influence the subsidence under specific geological 

conditions;  

• the calculation, through numerical models application (both 1D – NATUB  and 2D - 

BASIN), of natural subsidence; 

• the detection of present ground vertical movements through Synthetic Aperture Radar 

Interferometry (InSAR), from 2003 to 2009. 

Collected data was derived from international literature (especially for the basin-scale) and 

from O&G companies reports and surveys, and considering several geological disciplines 

(stratigraphy, geodynamics, hydrogeology etc.). 

Integration of data and the reconstruction of the geological framework of the area have been 

developed at different scales: 

 basin-scale: regional geology and geodynamic evolution of the Precaspian Basin and the 

North Ustyurt Basin; 

 local scale: four subareas of the northern part of the Caspian Sea have been identified. For 

each subarea, when data is available the study focuses on the complexity and variability of 

the area; the stratigraphic complexity is determined by several kilometres of clastic and 

carbonatic sediments interrupted by 4 km salt layer, a distribution of soil features (with 

geotechnical properties) linked to the interaction of fluvial and marine dynamics, 

prevalence of saline waters in a multistage aquifer system, and the presence of oil and gas 

reservoirs. 

The realization of a datasets (stratigraphy, geochronology, compressibility of different 

sedimentary layers, etc.) required by activities foreseen during the analysis of natural 

subsidence has been exhaustively fulfil.  
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This data has been used as input during the mono- and bi- dimensional numerical simulation 

of natural subsidence on 5 different locations.  

Collected data provided also information required for the interpretation of the present 

subsidence detected by InSAR analysis; the application of two different InSAR techniques 

((Small BAseline Substet and Interferometric Poin Target Analysis), never tested in coastal 

environments similar to this one, allowed to measure vertical land movements at local scale; 

sometimes lack of data on top on that linked to salt dome characteristics does not permit a 

detailed correlation between vertical movements detected and their geological causes. 

NATSUB and BASIN models outputs underline the stable behaviour of the area and the 

absence of clear subsidential phenomena.  

In the southern margin of the Precaspian basin, the limited depth of elder drilled strata 

(carbonates of Devonian period) reveals that the basin was filled with very low rates of 

sedimentation and NATSUB shows that consolidational processes were coeval with 

sedimentational ones. Therefore, subsidential processes do not affect the deep and ancient 

rocks, and BASIN application shows that the consolidation involves only shallow sedimentary 

layers.  

DInSAR analysis, applied on three 100x100 km frames and based on ENVISAT images 

acquired between 2003 and 2009, confirms the calculated trend. Recorded movements for the 

most of the area investigated are negligible, with values comprise between ±1 mm/y.  

This technique identified areas of particular interest (with values up to -6 and +5), in which 

movements are probably linked to salt diapirs (uplifts in correspondence to the top of the salt 

domes, and lowerings more marked within intra-domes areas) or coastal processes.  

Results coming from two different methodologies are compared and confirm that the study 

area considered in present study is a stable one, with very low values of subsidence caused 

by sediments’ compaction. 

It is important to underline that InSAR technique is suitable for detecting both wide and 

localised displacement linked to human activities, and during natural-present subsidence 

analysis some signals which would deserve further interest have been revealed also in in-land 

areas, even if not fully presented for confidentiality agreement. 

In order to fully understand the behaviour of the sedimentary column involved in anthropic 

processes, deeper analysis in these area through the acquisition of newest and updated radar 

images could be of interest for other operators . Moreover, both achieved and new results 

must be linked and interpreted with information related to ongoing processes. 

A monitoring plan is given, considering both applied methodologies and new solutions for 

results improvement.  
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To take advantage of applied methodologies under different point of view, a set of possible 

future studies linked to reservoirs development are provided. 
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L’obiettivo principale del presente studio è la sperimentazione di differenti metodologie utili alla 

definizione della subsidenza naturale e presente in zone costiere. Nello specifico, viene presa 

in esame la costa Kazaka (porzione nordorientale del Mar Caspio). 

Obiettivi specifici dello studio includono: 

• la ricostruzione degli assetti geologici locali; 

• la definizione dei processi che inducono la subsidenza in condizioni specifiche; 

• il calcolo, attraverso l’applicazione di modelli numerici (sia 1D – NATSUB che 2D – 

BASIN) della subsidenza naturale; 

• la misura dei movimenti verticali del terreno tramite la tecnologia del Radar ad Apertura 

Sintetica (InSAR) per il periodo temporale 2003-2009. 

I dati raccolti, provenienti sia da letteratura scientifica internazionale (specialmente quelli 

interessanti l’intero bacino sedimentario) che da rapporti ed indagini di differenti compagnie 

petrolifere operanti nell’area, riguardano diverse discipline specifiche della geologia 

(stratigrafia, geodinamica, idrogeologia ecc). 

L’integrazione dei dati raccolti e la ricostruzione del contesto geologico dell’area sono stati 

sviluppati a scale di indagine differenti: 

 a scala di bacino: è stata considerata la geologia regionale e l’evoluzione geodinamica dei 

bacini sedimentari coinvolti nello studio (Precaspian e North Ustyurt); 

 a scala locale: sono state dettagliate, nel tratto costiero a nordest del Mar Caspio, quattro 

sotto aree. Per ciascuna di esse, lo studio approfondisce le complessità e variabilità 

dell’area; complessità determinata dalla presenza di sequenze kilometriche di sedimenti 

clastici e carbonatici interrotte da uno strato evaporitico dello spessore di circa quattro 

kilometri, dalla distribuzione di suoli (e conseguenti proprietà geotecniche) infuenzati 

dall’interazione delle dinamiche sia fluviali che costiere, dalla prevalenza di acquiferi 

multistrato contenenti acque con elevato tenore salino e dalla presenza di importanti 

giacimenti di petrolio e gas. 

La realizzazione del set di dati richiesti dalle attività previste durante l’analisi della subsidenza 

(stratigrafia, geocronologia, compressibilità dei differenti strati) è stato completato in maniera 

esaustiva. Questi hanno rappresentato i dati di input durante il calcolo, tramite simulazone 

numerica monodimensionale e bidimensionale, della subsidenza naturale in 5 differenti 

posizioni. I dati raccolti hanno consentito inoltre di interpretare i valori di subsidenza presente, 

misurati tramite l’analisi interferometrica; l’applicazione di due differenti tecniche InSAR (Small 

BAseline Substet and Interferometric Poin Target Analysis), fino ad ora mai testate in ambienti 

costieri con caratteristiche paragonabili alla presente area di studio, hanno consentito di 

registrare movimenti verticali del terreno ad un livello locale, ma in alcuni casi la mancanza di 
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alcune informazioni (legate soprattutto al diapirismo) non ha premesso una precisa 

correlazione tra i tassi di spostamento misurati dall’interferometria e le relative cause 

geologiche. 

I risultati della modellistica numerica hanno sottolineato il comportamento stabile dell’area e 

l’assenza di chiari fenomeni subsidenziali. Nel margine sud del bacino Precaspico, la limitata 

profondità degli strati più antichi perforati (carbonati del periodo Devoniano) rivela che il bacino 

sedimentario venne interessato da bassissimi tassi di sedimentazione e il modello 

monodimensionale NATSUB evidenzia che i processi di consolidazione avvennero in 

concomitanza con la sedimentazione. Inoltre i processi subsidenziali non coinvolgono gli strati 

più antichi e profondi; l’applicazione del modello bidimensionale BASIN dimostra infatti che i 

processi di consolidazione interessano solamente gli strati più superficiali. 

L’interferometria differenziale DInSAR, applicata in tre aree della dimensione di 100x100 km 

sulla base di immagini ENVISAT acquisite tra il 2003 ed il 2009, conferma gli abbassamenti 

calcolati. I movimenti verticali del terreno misurati sono infatti per la maggior parte delle aree 

investigate di entità trascurabile, con valori compresi tra ±1 mm/anno. L’applicazione di questa 

tecnica identifica tuttavia aree di particolare interesse (con valori compresi tra i -6 ed i +5 

mm/anno), nelle quali i movimenti sono probabilmente legati a fenomeni di diapirismo 

(innalzamenti in corrispondenza del culmine del domi salini ed abbassamenti più marcati nelle 

aree infra-domi) o dinamiche costiere.  

I risultati provenienti dalle due differenti metodologie sono stati comparati e confermano che 

l’area studio considerata nella presente tesi è sostanzialmente stabile, con bassissimi valori di 

subsidenza causati dalla compattazione sedimentaria. 

E’ importante sottolineare che la tecnica InSAR è adeguata per l’individuazione sia di 

abbassamenti estesi che di movimenti verticali localizzati e collegati ad attività antropiche, e 

durante l’analisi alcune situazioni locali di particolare interesse sono state individuate, anche 

se non presentate nella loro forma integrale per accordi di confidenzialità. Al fine di 

comprendere a pieno il comportamento della colonna sedimentaria in presenza di attività 

antropiche, si suggerisce l’approfondimento mirato delle analisi in queste aree attraverso 

l’acquisizione di nuove immagini radar. Inoltre, i risultati ottenuti dovrebbero essere collegati 

ed interpretati con informazioni inerenti i processi antropici in corso. 

In funzione dei risultati è stato impostato un piano di monitoraggio, considerando sia le 

metodologie già applicate che nuove soluzioni tecniche potenzialmente idonee all’area di 

indagine. 

Vengono fornite infine una serie di possibili studi in relazione anche allo sfruttamento dei 

giacimenti petroliferi presenti. 
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2. GOAL, OBJECTIVES, METHODOLOGY AND 
LIMITATIONS 

Land subsidence is one of the major environmental problem affecting flat coastal areas. The 

cumulative land displacements affecting a certain portion of a costal territory where urban 

areas are located and anthropogenic actions take place is usually the superposition of short-

term local-scale and long-term basin-scale components. The former are caused by human 

activities (e.g., mining, fluid withdrawals from the subsurface, land reclamation, excavation, 

conversion of rural in urban areas, etc), the latter by the geo-dynamic processes such as 

tectonics and compaction of sedimentary basin. 

This study aims to assess natural and present subsidence characterizing the area, both 

focusing on natural development of the territory through the application of numerical models 

and trying to understand present displacements recorded through radar images, sometimes 

potentially linked to human activities. It is an important aspect of coastal zone management, as 

subsidence can cause inundation and other problems in urban and sensitive environmental 

areas. Establishing a baseline of natural and current subsidence is important in establishing 

the baseline of environmental conditions. 

Rock compressibility is the key parameter in land subsidence problem; it is used in 

geomechanics, to quantify the ability of a soil or rock to reduce in volume due to a pressure 

variation. The void space can be full of liquid or gas. Geologic materials reduce in volume 

primarily when the void spaces are reduced, yielding that the liquid or gas must be expelled 

from the voids. This process occurs over a certain period of time, resulting in a settlement of 

the ground surface. In wide uninhabited areas, as the study area, it is fundamental to 

understand the natural volume reduction of a sedimentary column. 

The study is carried out following two different methodologies.  

• The natural component of subsidence is investigated through numerical models, by 

using information from geodynamic studies and researches available in the 

documentation provided by O&G companies and in the international literature. 

Specifically, key documents are related to deep wells located in the northern Caspian 

Sea. 

In addition to detailed stratigraphies and chronostratigraphies of the southern part of the 

Precaspian basin (coming from end of well reports), wireline logs are available. These 



8 

ones, processed as shown in detail in the following paragraphs, allow to estimate the soil 

compressibility for the investigated sedimentary columns. This kind of information, 

combined with sedimentological characteristics and shallow geotechnical data, permits 

the characterisation of the long-term evolution of the Precaspian basin in terms of 

tectonics, sedimentation rates and consolidation and the application of 1D and 2D 

numerical models.  

The first applied model is NATSUB. It is a one-dimensional finite element model that 

simulates the natural compaction driven by unsteady groundwater flow in an accreting 

isothermal sedimentary basin. The model assumes a process of time-varying 

sedimentation and makes use of a 1-D model of flow where water flow obeys the relative 

Darcy's law in a porous medium, which undergoes a progressive compaction under the 

effect of an increasing load of the overburden. Soil porosity, permeability, and 

compressibility may vary with the effective intergranular stress according to empirically 

based constitutive relationship. The model correctly assumes the geometric nonlinearity 

that arises from the consideration of large solid grain movements.  

The equations are solved using both the Eulerian and the Lagrangian approaches. With 

this latter approach, the model uses a dynamic mesh made of fine elements, which 

deforms in time and increases in number as deposition occurs and the soil column 

compacts (Gambolati et al., 1998; Gambolati and Teatini, 1998). 

The outcome of the model consists in the behaviour of time and of the length of the 

column and the velocity of its top and bottom, with the evolution over time of the pore 

pressure in excess of the hydrostatic value along the length of the column (Gambolati et 

al., 1999). Considering the availability of data, the model has been applied only in 

offshore location. 

Starting from data used in 1-D medullisation, the BASIN 2-D model has been applied. 

BASIN is a finite-element program that simulates the filling of a sedimentary basin and 

includes transport, erosion and consolidation of sediment, tectonic processes such as 

isostatic compensation, consolidational fluid flow, topography driven fluid flow, and heat 

flow including advection and solute transport. BASIN incorporates a physically consistent 

compaction model based on the equation of the state of porosity.  

The bidimensional model is applied in the southern part of the Precaspian basin, from 

offshore area (quantitative data available) to the centre of the sedimentary basin (where 

data is exclusively qualitative). The different level of detail of the input data allows a 

simplified application of the BASIN. 
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It has to be highlighted that both these approaches (in particular 2-D numerical models 

application), even if chosen as adequate to the study’s aims, have some limitations 

linked to the geological complexity of the area, the approximations required for the 

techniques’ application and the data availability, and their implications must be 

considered during the results’ analysis. Models’ application always implies a 

simplification of the real asset, and is not realistic try to simulate numerically the real 

behaviour of sediment especially in a complex and ancient geological environment; so 

results’ interpretation has to be performed with care. Main advantages and 

disadvantages for both the applied model are listed in Table 1. 

• Present vertical displacement at the local scale (three frames 100x100 km) is 

investigated by using Synthetic Aperture Radar (SAR)-based techniques on satellite 

acquisitions.  

Accurate assessment of present land subsidence occurred in the area of interest over 

the last decade has been carried out using a SAR-based investigation. Due to the lack of 

traditional geodetic surveys and the paucity of GPS measurements, SAR-based 

interferometry represents the unique methodology that can be used to investigate the 

recent/present ground displacements.  

Due to scope of the research, that is to provide a general understanding of the 

subsidence occurring along the coastland of the northern Caspian Sea, we have elected 

to use the DInSAR (Differential Interferometric Synthetic Aperture Radar) methodology 

to process the SAR images (Strozzi et al., 2001).  

In DInSAR, a pair of SAR images (or more) acquired from slightly different orbit 

configurations and at different times is combined to exploit the phase difference of the 

signals (Bamler and Hartl, 1998). Measurement of the radar phase change is made on a 

pixel-resolution basis. The interferometric phase is sensitive to both surface topography 

and coherent displacement along the look vector occurring between the acquisitions of 

the interferometric image pair, with inhomogeneous propagation delay, socalled 

atmospheric artifacts, and phase noise introducing the main error sources. 

With respect to PSI (Persistent Scatterer Interferometry)-type investigation, DInSAR is 

particularly suitable for detecting average ground movements over large areas (Teatini et 

al., 2005). Conversely, PSI is more useful when the time-behaviour of the displacements 

are needed for some specific areas. However, a partial PSI application has been carried 

out with the main aim at evaluating its capability in this type of landscape. 
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Considering the general aim of the study, it has been carried out the InSAR analysis on 

three 100 km × 100 km frames, one for each of the inland zone identified within the 

geological characterization (Zone B, Zone C, and Zone D)(Figure 134).  

The evaluation of existing land subsidence have been performed firstly focusing on the 

effects along the coast excluding internal in-land areas which in some cases could be  

interested by different  oil and gas extraction activities.  

Anyway, for formal correctness and scientific soundness of the approaches followed, the 

processing described above has been applied on three frames, covering the whole 

surface investigated.  

In some cases (and for limited areas), strong atmospheric disturbs or vegetational cycles 

causes a loss of data coherence, and results are not available.  

The DInSAR technique in wide uninhabited areas, even if already tested in environment 

similar to the Kazakh coast of the Caspian Sea, did not ensure high data coherence and 

a complete coverage of the area.The “experimental” application established that the 

terrain response to radar technique is suitable in this coastal zone, also in 

geomorphologically different areas (Frame Z3 has different characteristics if compared to 

Frames Z1 and Z2, as shown in Figure 1 and Figure 2). 

Hence, the frames cover the all three "sides" of the coastland of the north-eastern 

Caspian and suffice to map the possible evolution of the present land subsidence acting 

in the study area. 

 

 

Figure 1: Landscapes within Frame Z1, along the Ural river vegetated belt and Eskene 
area. 
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Figure 2: Landscapes within Frame Z3, Buzachi peninsula. 
 

Looking within the available SAR archives, the most useful satellites to be used were 

ENVISAT-ASAR of the European Space Agency (ESA) and RADARSAT-1 of the 

Canadian Space Agency. Their acquisitions span the period from 2003-2004 to 2009. 

Unfortunately, ERS-1/2 satellites did not acquired over the north Caspian and therefore 

any analysis can be carried out during the 1990s. Since significantly more cheaper than 

RADARSAT-1 scenes, the ENVISAT-ASAR images have been used.  

 

 

Figure 3: Study area subdivision 
 

Applied methodologies are described in detail in following paragraphs. Models’ results have 

been compared with data recorded through DInSAR technique, considering especially 

 

 

 

 

Zone A 

Zone B 

Zone C 

Zone D 
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uninhabited areas in which vertical displacements recorded are referred exclusively to natural 

sediments’ compaction. A brief discussion of the topic is given in 5.  

The conceptual diagram below (Figure 4) shows the relevance of the geo-hydrogeological 

reconstruction during the development of this scientific research. It is a key step both for the 

interpretation of DInSAR interferometry results and for the implementation (choice - data input 

– results’ interpretation) of the models. 

It has been outlined at different scales: 

 Basin-scale:  

At the basin-scale, three main geological provinces of the study area include: 

1) Precaspian Basin  

2) North Ustyurt Basin 

 Local scale: 
Four subareas of the northern part of the Caspian Sea have been identified.The 

subdivision has been identified according to the geologic asset of the area and the spatial 

distribution of InSAR interferometry analysis, which foresees the technical application in 

three 100x100 km frames (one for each onshore zone). The 4 selected zones include:  

Zone (A) Transitional and offshore northern area; 

Zone (B) Northern onshore area, from the Atyrau region to the Emba River valley; 

Zone (C) Eastern portion, from the Emba River valley to Mertviy Kultuk Bay; 

Zone (D) Central portion of the Mangystau region, included in the North Ustyurt 

Basin. 
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Figure 4: Links between the geo-hydrogeological reconstruction and activities carried 
out during the analysis of present subsidence. 

 

Main advantages and disadvantages, for every applied methodology, are listed below. 

 

Table 1: Advantages and disadvantages of applied methodologies. 
Methodology of 

investigation 
Advantages Disadvantages 

Investigation of 

natural subsidence 

through 1D 

numerical model 

(NATSUB) 

• High manageability of the 

code; 

• Previous successfully 

applications in similar 

contexts (e.g., Northern 

Adriatic Sea); 

• Since the model considers 

only one dimension, no lateral 

approximations are required; 

• Very accurate stratigraphical 

information of the whole 

sedimentary column is 

available as input data; 

• The model cannot consider 

dynamics related to salt 

diapirs; 

• Assessment of 

compressibility calculated 

from logs is not as reliable as 

laboratory tests, so the 

model’s results are “semi-

quantitative”. 

• As highlighted during Gap 

Analysis, required 

information is localised in 

offshore area, and model’s 
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Methodology of 
investigation 

Advantages Disadvantages 

• Availability of wireline logs, 

needed for compressibility 

calculation; 

• Model’s application at 5 

different locations, with 3 

different compressibility 

trends; 

• High local variability of 

shallow sediments’ 

geotechnical properties (up to 

30 m) doesn’t cause strong 

variations in final results. 

applications in onshore area 

of study are not allowed. 

 

Investigation of 

natural subsidence 

through 2D 

numerical model 

(BASIN) 

• The model provides a wide 

range of different results; 

• The model considers different 

sedimentation rates from the 

southern border to the centre 

of the Precaspian basin. 

• Heavy later approximations 

and simplifications are 

required during the 

implementation; 

• Stratigraphic and 

chronostratigraphic 

information required is not 

detailed outstanding the 

offshore area. 

Present vertical 

displacement 

investigation through 

DInSAR 

methodology 

• It is the only way to perform 

analysis over past time 

interval (from 2003); 

• Results confirm that it is ideal 

for subsidence assessment in 

wide and inaccessible 

onshore areas; 

• Do not require field surveys; 

• Best rate between cost and 

surface monitored; 

• Its vertical movement 

resolution is  about 2 

• Vertical resolution (about 2 

mm/y) is comparable to 

value of natural subsidence 

of the study area; 

• Lack of permanent GPS 

stations that are required for 

the calibration of 

measurements; 

• Adequate presence of point 

targets only within frame Z1; 

• Insufficient information about 

salt diapirs location and 



 

15 

Methodology of 
investigation 

Advantages Disadvantages 

mm/year;  

• Planar resolution is 40X40 

meters; 

• Its area of analysis (frame) is 

up to 100X100 km; 

• Some areas present natural 

point targets. 

dynamic; 

• Insufficient information about 

ongoing human activities in 

the study area that can 

cause the lowering (or the 

uplift) of the terrain recorded 

by DInSAR application. 

 

Obtained results allow to foresee possible vertical movements in the next future (trends 

projected till 2013) and to plan possible monitoring activities, with techniques already applied 

during this phase of study (e.g. acquisition of new SAR images) coupled with new ones (best 

potential solution for installation of fix GPS and best potential improvement of IPTA application 

through the installation of artificial Point Target). 

The versatility of some of the techniques applied in this work allows us to hypothesize other 

activities that could be applied in the area of study in the future, as the study and monitoring of 

wider areas (at the moment not covered by the analysis), the use of other satellites in order to 

improve the SAR results in areas of particular interest, the creation of a Digital Elevation Model 

(DEM) from SAR images and an experimental application of InSAR analysis on the production 

islands to investigate possible differential displacements, potentially caused by the weight of 

the island and the expected anthopogenic land subsidence due to oil production. 

 

 

 

 

 

 

 

 

 

 

 



16 

  



 

17 

3. GEO-HYDROGEOLOGICAL 
RECONSTRUCTION 

3.1 GEOLOGY, TECTONIC AND SEISMICITY 

3.1.1 Brief description of main geological features in the Caspian area 

3.1.1.1 North and Middle area 

According to Afanasenkov et. al. (2008), the following structures are identified within the study 

region (Figure 5): 

1. North Caspian Basin with a Central Depression and a Southern System of relative 

elevations of the Astrakhan–Aktyubinsk Zone; 

2. Karakul–Smushkovskii Foredeep; 

3. South Emba Foredeep; 

4. Karpinsky Range Fold Zone; 

5. Mangyshlak–Central Ustyurt Fold Zone; 

6. South Emba Suture; 

7. North Ustyurt Massif; 

8. Prikumsk (Kuma) Block of Cis-Caucasus; 

9. Agrakhan Zone; 

10. Central Caspian Massif; 

11. Alpine Orogen of the Greater Caucasus. 

 

THE NORTH CASPIAN BASIN 

The North Caspian Basin is filled with several sedimentary successions that was extensively 

examined from seismic data. The lower region fills a rift basin with strongly thinned continental 

or oceanic crust, and can be interpreted as a sinrifting basin. This succession has not been 

penetrated by bore holes and its age is, therefore, disputable: (1) Ordovician and (2) Middle 

Devonian. The former option is based on discoveries of Ordovician faunal complexes at the 

northern margin of the North Caspian Basin, where sediments that need to be studied fill 

graben-like troughs of Ordovician age at the opening of the Paleo-Ural Ocean, which could 

have a branch-like extension into the North Caspian Region. The second option is based on 

the wide distribution of Devonian rifting in the East European Platform with the presence of 
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Devonian normal faults on the western slope of the North Caspian Basin e.g., within the Don–

Medveditsa Basin. A deepwater basin similar to that of the Red Sea could have originated 

during accumulation of the lower succession. 

The second succession consists of sediments overlying the rifting complex (a post-rifting 

succession). The age of its base is debatable (either Silurian or Middle Devonian). Its upper 

boundary is conventional, traced to the beginning of the formation of a foreland basin at the 

Ural and Karpinsky Range orogens. A deepwater basin existed in the middle of this basin, 

bordered by passive continental margins and shelf basins. Conditions for originating carbonate 

edifices were favourable at the margins of the shelves. 

The third succession was an orogenic complex filling the deepwater basin with clastic material 

from erosion of mountain ranges in the Uralian and Scythian orogens. The lower limit of the 

complex was Middle or Upper Carboniferous and the upper boundary was Triassic. The rise of 

the Ural Orogen commenced in the Middle Carboniferous, becoming the principal event by the 

beginning of the Permian. Under these conditions, supply of great amounts of clastic material 

began into the previously formed deepwater basins from the orogens associated with the 

Caspian Basin. The residual basin was filled with clastic material due to this avalanche-like 

sedimentation. A thick evaporite succession accumulated in the basin due to its nearly 

complete isolation from the World Ocean during the Kungurian Age. 

The fourth succession is the Triassic post-rifting complex, which accumulated owing to thermal 

subsidence of the zone of the Paleozoic rift. The fifth succession is the Jurassic–Cenozoic 

platform cover overlying a considerable portion of the East-European Platform. The 

Astrakhan–Aktyubinsk uplift zone crowned with numerous Late Paleozoic carbonate edifices is 

traceable along the southern margin of the basin. According to gravity and magnetic data, the 

carbonate edifices may be underlain by Lower Paleozoic or Early – Middle Triassic volcanics 

(Segalovich et al., 2007). 
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Figure 5: Tectonic scheme of the North Caspian Region, after “A. P. Afanasenkov et. 
al., 2008” 

1, North Caspian Basin; 2, Late Paleozoic Foredeep; 3, Precambrian terrane; 4, Paleozoic and Precambrian 
terranes; 5, Paleozoic zones with Triassic rift and pre-Jurassic inversion; 6, Paleozoic zones with Triassic 

sediments of various facies and pre-Jurassic inversion; 7, , Karpinsky Range Zone of Early Permian 
Orogeny and pre-Jurassic inversion; 8, Triassic volcanic belts; 9, zone of Manych River troughs with pre-
Jurassic inversion; 10, South Emba Late Paleozoic Suture with pre-Jurassic transpression; 11, strike-slip 

faults of unclear kinematics. 

 

KARAKUL–SMUSHKOVSKII FOREDEEP 

The Karakul-Smushkovskii Foredeep is traceable along the northern margin of the Karpinsky 

Range. This zone was a shelf margin during the Late Devonian and Early–Middle 

Carboniferous, where carbonate edifices originated. Beginning in the Moscovian Age, the 

basin was filled with clastic material supplied from the Karpinsky Range and Scythian Orogen, 

that is, the shelf basin began transforming into a foredeep. The maximum fill-up of the basin 

with clastic material of a flysch–molasse succession was during the Asselian Age. The 

foredeep was transformed into a fold-nappe zone prior to the Kungurian Age (possibly during 

the Sakmarian Age). 
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SOUTH EMBA FOREDEEP (INCLUDING THE MYNSUALMAZ FOLD ZONE)  

South Emba Foredeep is formally a continuation of the Karakul–Smushkovskii Zone. The 

principal difference between the two lies in the fact that the subsidence of this basin as a 

foredeep took place during the Devonian and Visean ages. Its clastic material included 

fragments of mafic and intermediate volcanics, jasper, limestone, serpentinite, and tuffs; this 

implies that these sediments originated due to erosion of the orogenic rock complex with 

fragments of ophiolites and island-arc rock associations. The South Emba is interpreted as a 

suture that collided with the North Caspian Basin and North Ustyurt terrain, subsequently 

transformed into a pre-Sinemurian strike-slip zone. 

KARPINSKY RANGE FOLD ZONE 

The Karpinsky Range Fold Zone mostly consists of Carboniferous schists and interlayered 

siltstones more than 10 km thick. This succession is strongly deformed, with overthrusts and 

duplexes playing an important role in its structure. The rock complex of the Karpinsky Range 

was thrust northward over the Karakul–Smushkovskii Zone in Early Permian (most likely 

during the Sakmarian Age). The Karpinsky Range lies on a continuation of the Devonian Rift in 

the Donets Basin, and there is the possibility that the basin within the Karpinsky Range was a 

rift trough (possibly, a backarc basin) during the Devonian. During the Early–Middle Triassic, 

rift basins formed within the Karpinsky Range region. These were strongly deformed, and 

inversion took place at approximately the Triassic–Jurassic boundary; therefore, Triassic 

basins within secondary (after deformations and erosion) contours can be traced. Since the 

Jurassic, the Karpinsky Range became a portion of the sedimentary basin of the East 

European Platform. 

MANGYSHLAK–CENTRAL USTYURT FOLD ZONE 

The Mangyshlak-Central Ustyurt Fold Zone shows a complex structure vaguely understood 

due to its overlain basement virtually everywhere by thick cover. The following tectono-

stratigraphic units have been recognized within its folded complex: Lower Paleozoic; 

Devonian–Middle Carboniferous; Upper Carboniferous–Lower Permian; and Upper Permian–

Triassic. The Lower Paleozoic unit is hypothetical and may represent metamorphic complexes. 

The Middle Devonian–Carboniferous succession encloses ophiolites and deep-water 

sediments (Tuarkyr Rise) definitely originated under conditions of an oceanic basin and its 

closing. The Upper Carboniferous–Lower Permian succession includes carbonates of different 

facies, clastic rocks, and subduction-related volcanics. All these rocks originated during the 

collision stage of the orogen evolution. A complex orogen formed in the Mangyshlak–Central 

Ustyurt Zone by the Middle Permian time (in the Early Permian), though its structure is not 

known in detail. The orogen extended southward from the South Emba Suture and completely 

embraced the southern part of the contemporary Turan Platform. The Hercynian orogen 
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collapsed during the Kungurian Age and the Late Permian Epoch (that is, a system of fault-

bounded orogenic extension troughs formed in its place), and molasse-filled basins were 

widespread in this region. 

Rifting was very common throughout the whole region during the Early Triassic, which was 

accompanied by formation of deep (up to 3–5 km) rifting basins. One such rift is currently 

under the Kulaly Swell. The Triassic rifts are located north of the Early–Middle Triassic 

volcanic belt and, hence, backarc extension is the most probable cause of the rifting. 

Strong compression of the region took place at approximately the Triassic–Jurassic boundary. 

Most rift basins experienced inversion there accompanied by folding and overthrusting 

deformations. Strike-slip displacements of individual blocks considerably complicated the 

deformations. The presence of strike-slip faults is noted, but there is zero possibility of 

reconstructing the motion kinematics along the zone where displacements could reach 

hundreds of kilometres. Since the Jurassic, the Mangyshlak–Central Ustyurt Zone became a 

portion of a vast platform-type sedimentary basin. 

NORTH USTYURT MASSIF 

This massif with Precambrian metamorphic basement is viewed as a terrain of continental 

crust that collided in the Late Devonian–Visean with a margin of the North Caspian Basin, 

which was probably a part of the Late Paleozoic Turanian Orogen. 

PRIKUMSK (KUMA) BLOCK 

This block within the Cis-Caucasian region is a terrain in the Late Paleozoic Orogen with 

Mesozoic–Cenozoic sedimentary cover. 

AGRAKHAN BLOCK 

Afanasenkov, et. al. (2007) recognized the Agrakhan Block conditionally as a fragment of the 

Hercynian Orogen overlain both by sediments and volcanics. The block is poorly studied thus 

far. 

CENTRAL CASPIAN MASSIF 

This is a massif resultant from the Hercynian Ustyurt Orogen. 

 

3.1.1.2 Southern area 

The South Caspian is located over a high-velocity (Vp = 7 km/s) thin (10–18 km) basement 

has often interpreted as an oceanic basin filled with ∼20 km of sediments (e.g., Allen et al., 

2002). However, the sedimentary thickness is about twice that needed to fill a basin upon 

oceanic crust as thick as that in the South Caspian. Maintaining consolidated crust at a depth 

of 20 km requires 20–25 km of eclogites, denser than mantle peridotites, to occur under the 
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Moho. According to its chemistry, eclogites belong to the crust but have typical mantle seismic 

velocities, and are thus placed beneath the Moho in many seismic models. 

The Moho in the South Caspian basin is overlain by high-grade felsic and intermediate rocks 

with P velocities up to 7 km/s. Its high density is due to metamorphism with the formation of 

garnet at T ≥ 400 °C. With eclogites lying under the Moho, the basin basement totals a 

thickness of 40–50 km, which corresponds to a continental crust. 

Crustal subsidence in the South Caspian was induced by a phase change of gabbro into 

denser eclogites. Subsidence occurred at rapidly increased rates at least twice, at the 

Eocene/Oligocene boundary and during the Pliocene-Pleistocene time. 

The first episode of rapid subsidence produced (or deepened) a marine basin and a 

subsequent episode was associated with a deposition of a 10 km thick sedimentary 

succession in 5 Myr. The increased subsidence rates may have been due to the effect of 

active fluids that catalyzed the gabbro-eclogite transition. Rapid subsidence as occurs in the 

South Caspian is impossible upon oceanic crust. Rapid and major crustal subsidence was 

found typical of hydrocarbon basins (Artyushkov and Yegorkin, 2005). The reliability of this 

criterion as a diagnostic for the discovery of hydrocarbon reservoirs elsewhere was confirmed 

by the evidence of rapid subsidence in the large petroleum province of South Caspian. 

The rapid Pliocene-Pleistocene subsidence in the South Caspian with a deposition of 10 km-

thick sediments was explained in terms of a flexural basin developing in front of a subduction 

zone in the south or in the north (Allen et al., 2002; Axen et al., 2001; Knapp et al., 2004). 

However, even though it existed, the flexure could be located within a wide zone of a few 

kilometres along the Apsheron-Balkhan sill that caused no influence on subsidence outside 

that strip. Judging by the presence of steep basement flexures up to 10–12 km deep,the 

lithosphere of the South Caspian apparently experienced strong softening as a result of fluid 

infiltration during the recent rapid subsidence. 

Relatively large historic earthquakes (M = 5–6) located at depths of ≥ 30 km beneath the 

Apsheron-Balkhan sill and north within a ∼ 100 km wide zone were interpreted as an 

indication of northward subduction. The consolidated lithosphere as in the South Caspian 

basin, with its density higher than the asthenosphere due to phase change, could in principle 

be involved in subduction with delamination of the overlying lighter sediments on condition of 

strong lateral compression and softening. Had subduction occurred in the South Caspian, the 

subduction plate would have been ∼ 100 km long, and the delaminated sediments would have 

experienced shortening of the same magnitude. Yet, judging by very shallow fold dips in the 

area, shortening was no more than 5–10 km. Therefore, hardly any subduction occurred. 
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Furthermore, slopes of oceanic trenches on active margins are normally dominated by 

compression but most earthquakes in the northern South Caspian show extension 

mechanisms. The earthquakes originate mostly in the crust (at 30 to 50 km) and show no 

alignment like a Benioff zone. Therefore, the basin with its thick sedimentary fill lies over 

continental crust, and the extension focal mechanisms may record normal faulting associated 

with ongoing consolidation of mafic rocks by eclogitization (Artyushkov, 2007). 

 

3.1.2 The North Caspian Basin Structure 

The North Caspian Basin province occupies the northern part of the Caspian Sea and a large 

plain to the north (Figure 6) and covers some 500,000 km2. 

 

Figure 6: Petroleum system and assessment units of North Caspian Basin. After G. F. 
Ulmishek, 2003”. 
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The basin is bounded to the east by the Ural foldbelt and the Mugodzhary zone, the latter a 

southern continuation of the Urals that is partially buried beneath a thin section of Mesozoic 

rocks. Hercynian deformation in the foldbelt began in Late Carboniferous time after collision of 

the Russian (East European) craton with the Kazakhstan continent. The Paleozoic South 

Emba high (Figure 6) borders the basin to the southeast. This high is covered by flat lying 

Mesozoic sediments, its geology poorly understood. The crest of the high is marked by large 

gravity and magnetic anomalies and is probably composed of Lower and Middle Devonian 

volcanics (Kan and Tropp, 1996). Younger Paleozoic sedimentary rocks form the northwestern 

flank. The high is structurally expressed as an uplift of upper Paleozoic strata but is underlain 

by a deep trough in the basement surface. Possibly, the Devonian volcanics formed an 

oceanic volcanic arc that was accreted on the craton margin in pre-Late Devonian time. The 

South Emba high plunges southwestward, and the gravity and magnetic anomalies gradually 

diminish and disappear east of the Caspian Sea. 

The southwestern basin boundary is the Karpinsky foldbelt, known in Russian literature as the 

Karpinsky Ridge (Figure 7). The foldbelt is composed of deformed Carboniferous fine clastics, 

which reach a thickness of 15 km as interpreted from seismic data. The rocks were deposited 

in postrift sag above the Devonian rift that extended northwest into the Donets coal basin of 

Ukraine (Ulmishek et al., 1994). In middle Early Permian (Artinskian) time, the Devonian rift 

basin was structurally inverted, folded, and thrust onto the North Caspian basin margin. The 

foldbelt extends into the Caspian Sea where it becomes poorly defined. The 1,500 km long 

north and west margins of the basin separate the North Caspian basin from the Volga-Ural 

petroleum province. The boundary is defined by a sedimentary escarpment in subsalt 

Paleozoic rocks. Across the escarpment, thick shallow-water carbonate rocks of the Volga-

Ural province pass into much thinner deep-water black-shale facies of the North Caspian 

basin. The top of the escarpment is formed by a Lower Permian barrier reef. 

More than three-quarters of the North Caspian basin lies in Kazakhstan with the remaining 

portion in Russia. The area has a semi-arid continental climate with hot summers and cold 

windy winters. The northern Caspian Sea is characterized by shallow water; the water depth 

does not exceed 200m and is less than 5m in about 70 percent of the offshore area. 

 

3.1.2.1 Tectono-Stratigraphic Development 

The North Caspian basin is one of the deepest basins in the world, containing sedimentary 

strata more than 20 km thick (Figure 7). Deep seismic sounding data indicate that oceanic or 

thinned continental crust underlies the central basin areas (Kleshchev et al., 1995). Most 

geologists believe that the basin originated as a rift, but the time of rifting is disputable. Three 
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models have been proposed with rifting time in the Riphean (Middle–Late Proterozoic, 1,650 to 

650 million years old), in the Middle Devonian (Malushin, 1985; Zonenshain and others, 1990; 

Volchegursky and others, 1995), or alternatively in Early Ordovician time contemporaneously 

with rifting in the Urals that resulted in opening of the Uralian ocean (Ulmishek G.F., 2003). A 

partially inverted Ordovician graben filled with a 5 km thick sequence of coarse to fine clastics 

is present north of the northeast basin margin where it underlies the supergiant Orenburg gas 

field (Figure 7; Yakhimovich, 1996). 

Probably, original rifting and formation of grabens occurred in both areas at the same time, but 

subsequent spreading that started in the North Caspian graben resulted in cessation of rifting 

and following compression and structural inversion in the Orenburg graben. As a result of 

spreading in the North Caspian basin, cratonic blocks that presently form a series of arches 

along the south and east basin margins (Astrakhan- Aktyubinsk system of highs in Figure 7) 

moved away from the Russian craton and opened the oceanic crust. Tectonic development 

during Devonian, Carboniferous, and much of Early Permian time (rocks older than Middle 

Devonian have not been reached by drill) was characterized by continuous subsidence of the 

basin and deposition of carbonate and clastic formations on its margins. Basinward, these 

strata grade into deep-water black shales and turbidites that presently occur at great depths 

and are only locally penetrated by wells in areas close to the basin margins. Hercynian 

deformation started in the Late Carboniferous in the Ural foldbelt and in the Early Permian 

(Sakmarian-Artinskian) in the Karpinsky foldbelt and South Emba high. Thick Upper 

Carboniferous–Lower Permian orogenic molasse clastics are present on the east and south 

basin margins. Continental collisions along the basin margins separated the North Caspian 

small deep-water oceanic basin from the Tethys Ocean. Consequently, the basin was filled by 

a Kungurian (latest Early Permian) evaporite sequence, which is dominantly composed of salt 

and has an estimated original depositional thickness of 4–5 km (Volchegursky et al., 1995). 

Orogeny in the Urals, rapid subsidence of the basin, and deposition of thick sedimentary 

sequences continued during Late Permian and Triassic time. Sediments of this age were 

mostly continental orogenic clastics, but some Upper Permian (Kazanian Stage) carbonates 

and evaporites and Lower and Middle Triassic marine shales and marls are present in the 

western areas. Active deformation of Kungurian salt began soon after its deposition, and 

Upper Permian–Lower Triassic sediments are several kilometres thick in depressions between 

salt domes. Intense tectonic subsidence of the basin floor terminated by Jurassic time. Various 

narrow (commonly one stage) stratigraphic intervals of the Jurassic through Tertiary section 

attain large (to 3km) thickness only locally, in depressions near domes that experienced active 

growth during corresponding time. Deformation of salt continues at present and some salt 

domes are exposed on the surface. 
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Figure 7: Structural map of the North Caspian Basin, after “G. F. Ulmishek, 2003”. 
Contours are on top of basement. Hydrocarbon fields shown by red numbers; 1, Oremburg; 2, 

Karachaganak; 3, Zhanazhol; 4, Tengiz; 5, Astrakhan; 6, Kenkiyak. 

 

3.1.2.2 Historical evolution of the basin 

The sedimentary cover of the Central Precaspian depression exceeding 20 km (Figure 8and 

Figure 9) contains:  

• Riphean terrigenous–carbonate (4 km),  

• Lower Palaeozoic (Vendian to Middle Ordovician) terrigenous (2 km), 

•  Upper Ordovician to Silurian carbonate (2 km),  

• Devonian to Lower Permian terrigenous (4 km),  

• Kungurian to Kazanian salt (4 km),  

• Upper Permian to Triassic red bed (2 km), and  

• Jurassic, Cretaceous, and Cainozoic carbonate–terrigenous deposits (2.5 km) 

(Volozh et al., 2003). 



 

27 

The Central Precaspian depression experienced the highest subsidence rate in the basin, as 

indicated by the sedimentary infill of distal and deep-marine deposits that can be observed on 

the following sections through the basin. 
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Figure 8: Isobathic maps of Precaspian Basin at the level of main reflectors, isolines in km, after “Yu.A. Volozh et al., 2003”. 
(a) basement (grey lines with points: isolines at depth base of Palaeozoic); (b) base of Devonian; (c) base of Cretaceous; (d) base of Cainozoic. 1: Faults; 2: contour of the 

area where Cretaceous sediments lay on pre-Jurassic rock complex; 3– 4: outcrops of pre-Cretaceous (c) or pre-Palaeogene (d) rock complexes, 3: basement, 4: 
sedimentary cover. 
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Figure 9: Geological –geophysical crustal section Volgograd –Chelkar, after “Volozh 
et al., 2003”. 

(1) Salt domes; (2) reflectors: P1—top of subsalt sediments, P3—base of Devonian; dba—boundary 
upper/lower crust, dgm—surface of abnormal gravity maximum, dc—bottom of crust; (3) refraction events 
with velocity km/s: d4OS—first subsalt, d5OS —second subsalt, d0k—surface of upper crust, d1k—top of 

lower crust, d0M—Moho; (4) base of crust; (5) top of abnormal layer; (6) top of lower crust; crustal 
complexes: (7) sediments, (8) upper crust, (9) lower crust, (10) abnormal gravity maximum (eclogites), (11) 

upper mantle; (12) tectonic faults; (13) upper part of magnetic bodies; (14) deep boreholes; (15) point of 
sections crossing. 

 

A deep-water intercontinental basin existed within the Central Precaspian depression from 

Carboniferous to Permian. Its creation and evolution is illustrated along a selection of 

palinspastic reconstructions transecting the basin and showing the evolution of its margins 

(Figure 10, Figure 11and Figure 12). 

Figure 10 demonstrates the relations between the northeastern part of the Precaspian Basin 

and the southern pre-Uralian foredeep. The latter was mainly affected by an Early Permian 

phase of thrusting representing a stage of E–W Uralian compression (Giese et al., 1999). 

Figure 11is a general cross-section of the basin perpendicularly to its main W–E direction, and 

Figure 12 presents some carbonate build-ups on the southeastern margin. 
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Figure 10: Palinspastic reconstruction along a profile on the east Precaspian margin, line Ural River –Izembet (Urals), after “Volozh et al., 
2003”. 

Some levels are grouped during the evolution but detailed with different colours on the real section. First section is the Present real section; the following are 
reconstituted without movements of salt. Index circled, reflectors: P1—top of subsalt sediments, P2, P2’, P3—base of Devonian, P4, d5os Stratigraphic levels: N– Q, 

Neogene– Quaternary; P, Palaeogene; K, Cretaceous; J, Jurassic; T, Triassic; P, Permian; P2k, Kungurian; C, Carboniferous, C3k, Kasimovian; C2m, Moscovian; C2b, 
Bashkirian; C1v, Visean; D, Devonian; S, Silurian; O, Ordovician; Ca, Cambrian; Pz, Palaeozoic; R, Riphean; AR– PR, Archaean–Proterozoic; SKR; Sakmaro– Kokpektyn 

Fault; GUR, Main Urals Fault. 
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Figure 11: Reconstruction of evolution of the Precaspian Basin along a N–S line after “Brunet et al., 1999”. Layers are reconstituted 

without the movements of salt. 
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Figure 12: Palaeogeological reconstruction across profile Karaton–Tengiz–Yuzhnaya, southeast Precaspian margin, after “Volozh et al., 
2003”. 

Upper section is the present real section, the following are reconstituted without movements of salt. (1) Sea water; (2– 16 stratigraphical units: 2, Palaeogene; 3, Upper 
Cretaceous; 4, Lower Cretaceous; 5, Middle Upper Jurassic; 6, Upper Permian to Triassic –Lower Jurassic undivided; 7, Triassic –Lower Jurassic; 8, Upper Permian; 9, 

Kungurian salt; 10, Gzhelian–Artinskian; 11, Middle Visean–Moscovian, 12, Lower Carboniferous–Lower Visean, 13, Middle Devonian; 14, Lower Devonian, 15, Upper 
Ordovician–Silurian; 16, Cambrian –Lower Mid Ordovician; (17– 23) lithological complexes: 17, reefs; 18, carbonate; 19, clayey carbonate; 20, dolomite; 21, terrigenous 

(sand and clay); 22, clay; 23, sandstones; 24, faults; in the reconstitution, some levels are grouped in average color, K1–K2, P2–T1– 3. 
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Before and during Devonian, the area of the Precaspian Basin was in a shallow water 

environment. 

Then the palaeo waterdepth considerably increased (more than 1.5 km) during the 

Carboniferous. Palaeodepths were determined, mainly during Carboniferous, by the heights of 

the sediment scarps of the carbonate platform, located to the north of the basin (Figure 11), 

and also by the heights of intercontinental carbonate build-ups (Karaton, Tengiz, Yuzhnaya) 

on the southern slope of the North Caspian– Aktyubinsk uplift zone (Figure 12). The basin was 

filled during the Permian. From Triassic to Present, several additional kilometres of sediments 

were deposited in shallow marine or continental conditions. 

The post-salt sedimentary cover is mainly affected by salt-flow creating numerous salt diapirs. 

Rim-syncline infill is predominantly composed of Mesozoic sediments. 

The palinspastic profiles (Figure 10, Figure 11and Figure 12), have been tentatively restored 

to show initial thicknesses of uniform layers of salt and post-salt sediments deposited on the 

whole basin surface. These thicknesses were derived by integrating the salt volumes in all the 

salt domes and sediments volumes in the rim-synclines through all the seismic profiles. A 

numerical approach has also been attempted on this type of reconstruction (Ismail-Zadeh et 

al., 2001). 

 

PROPOSED EARLY HISTORY OF THE BASIN 

The Precaspian salt basin became an individual basin only at the end of Permian, when the 

orogenic Urals belt arose along its eastern margins and inversion uplift occurred in the 

Donbass–Tuarkyr rift system (Volozh et al., 1997, 1999). Before these events, parts of the 

depression were incorporated in various sedimentary basins and the Precaspian Basin did not 

yet exist in its present configuration. 

The regional geodynamical evolution before the Precaspian Basin Permian origin is exposed 

in the following paragraph. It should be noted that very different other reconstructions exist in 

the literature. They vary according to timing of terranes collision in the south and east and also 

on the history of oceans opening and closing between these terranes and the East European 

platform. 

In the Middle Proterozoic, the Central Precaspian depression was included into the structure of 

the Baltica continental passive margin (Figure 13). At this period, a shelf basin opened 

towards a deep-water oceanic basin in the east. At Late Riphean–Early Vendian, a foredeep 

basin was created in front of the Proto-Urals, within the domain of the Central Precaspian 

depression limited to the south and southeast by an orogenic structure (currently 

corresponding to the North Caspian– Aktyubinsk block as remnant of a larger structure). 
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Figure 13: Geodynamic reconstructions of Riphean–Vendian history, after “Volozh et 
al., 2003”. 

(a) Reconstruction of continents in Riphean–Vendian (after Mossakovsky et al., 1998, modified for the 
vergence of the subduction in area of (b)).1—Vendian rift, 2—suture, 3—transform fault, 4—direction of 
rotation, 5—block shown on (b). A: Avalonian, ES: East Sajans, Kb: Karatau– Bajkonur, Kh: Khantajshir, 

Nm: Nej-Mongolian, O: Omolon, Tm: Tajmyr, WI: West Iapetus. (b) Detail for Proto-Urals ocean 1 –2—
different blocks: 1—Baltica (number within square: (1) Baltic dome, (2) Sarmatian dome, (3) Volga– Urals 

dome, (4) Uraltau block); 2UProto-Urals Ocean: (number within circle: (1) Moesian, (2) Scythian [pre-
Caucasus and Karabogaz domes], (3) Turan [North Ustyurt, Karakum, Central Turkmenia, Zeravshan], (4) 

East Precaspian block, (5) Turgaj– Syrdarya, (6) Pechora–Barentz Sea); 3—Eclogites; 4–6—East European 
lithosphere plate boundaries: 4—divergent, 5—convergent, 6—transform, 7—main overthrust Urals folded 
belt; 8—rifts; 9 – 11—boundaries: 9—continents, 10—recent continent (shoreline), 11—Precaspian Basin 

PB; 12—line of profile 11. 
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At the end of Proterozoic, collision of Baltica and Gondwana continents led to the formation of 

the supercontinent Rodinia. The Proto-Urals Ocean closed after subduction dipping towards 

the west. It formed the accretionary Proto-Urals folded belt in the Late Vendian (Figure 14).  

 

 

 

 

Figure 14: Riphean– Early Palaeozoic geodynamic reconstruction along an East–West 
section demonstrating eclogites emplacement, after “Volozh et al., 2003”. 

1—Asthenosphere, 2—upper mantle, 3—oceanic crust, 4—lower continental crust, 5—upper continental 
crust, 6—accretioncollided and subduction–accretion fold belts, 7—sedimentary cover, 8—lenses of 

eclogites and mantle, 9– 10: main faults: 9—suture, 10— front of dislocation, 11—tectonic stress direction, 
12—faults with moving direction, 13—Moho boundary. 
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At the end of Vendian–Early Cambrian, the Proto-Urals orogen was dismantled in connection 

with break-up of Rodinia (Volozh et al.,2003). Rift basins were created here by the collapse of 

the orogen. Later, they evolved into the Urals Ocean in the east and into the South Emba 

intercontinental rift in the south. At the end of Ordovician, the North Caspian– Aktyubinsk uplift 

zone was involved in the subsiding area, as a result of the Urals Ocean opening (Burtman et 

al., 2000). It lasted till Middle Devonian and rifting occurred within the South Emba trough. This 

resulted in an expansion of the epicontinental basin and its connection with the oceans 

surrounding the East European platform (Urals and Palaeo-Tethys). The whole Precaspian 

territory was included in sea shelf basin at Late Ordovician–Silurian. In the south, it was part of 

the back-arc basin system of the Palaeo-Tethys Ocean. At the end of Silurian, collision 

processes started on the northern periphery of the Palaeo-Tethys. These processes have 

resulted in the formation of a collided belt in the southern framework of the Precaspian Basin. 

In the Early Devonian, the border between the Precaspian Basin and the Caledonian orogenic 

belt foredeep basin was created within the South Emba trough. This basin accumulated 

terrigenous material, transported from the orogenic belt. It predetermined the formation of a 

basin, not compensated by sedimentation, within the Central Precaspian shelf depression. In 

the Middle Devonian, an important stage in the evolution of the Precaspian region, major 

structural changes occurred as well within the basin as on its periphery. The onset of the 

Uralian deformation is dated from the Mid-Late Devonian. It is based on the radiometric ages 

of HP metamorphism and beginning of the Zilair flysch sedimentation in southwest Urals. 

During this period, distension was active in the Precaspian Basin. Subduction occurred on the 

Kazakh active margin, then collision between the East European and Kazakhstan plates, as 

the arrival of the Ustyurt micro-continent in the South Emba area (Zonenshain et al., 1990). 

This resulted in the final structural configuration of the Central Precaspian depression as an 

isolated deep-water intercontinental basin. 

Folded belts or uplifts created southern and eastern barriers around the Precaspian Basin. 

They periodically cut the communications with the open ocean leading to the formation of thick 

(several kilometres) Permian salt layers (Snyder et al., 1994). 

Thus, the western half of the depression was incorporated in a sedimentary basin that 

continuously developed since Late Riphean, while the southeastern half belonged to a large 

orogenic area up to the beginning of Devonian. During Devonian through Early Carboniferous, 

sedimentation took place all over the entire region of the depression, which represented the 

shelf of the deep-sea marginal basin (Zholtayev, 1989). The latter was located in front of the 

subduction zone, which separated the East European continent from the Urals Ocean. The 
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Precaspian Basin, in its present shape and size, appeared during Permian when it was 

isolated from the southern and eastern areas. 

 

Table 2:  Geodynamic events linked to sedimentary environment in the PCB, after 
“Volozh et al., 2003”. 

 

 

DEEP STRUCTURE OF THE BASIN 

Geophysical data (gravitational, magnetic, and seismic) can illustrate a distinct expression of 

the Central Precaspian depression in the structure of the mantle, basement, and sedimentary 

cover (Volozh et al., 1975; Brunet et al., 1999). 

A distinct regional negative magnetic anomaly corresponds to the Central Precaspian 

depression on the magnetic field map and the most intense Khobda and Aralsor gravitational 

maximums (about 40 mgal) coincide with the depression on the gravity map (Brunet et al., 

1999). These maximums show a regional level of the gravitational field higher than that of the 

uplifted structures of the Russian plate. The basement of the Central Precaspian depression is 

characterised by abnormally high velocities. 

Boundary velocities vary from 6.7 to 7 km/s (Figure 9); layer velocities (in the upper part of the 

crust) show a stable velocity of more than 6.5 km/s (Volozh et al., 1975), to a maximum of 6.9 

km/s in the Khobda area (Kostyuchenko et al., 1999). Thus, the characteristic lower crust 

velocity of 7–7.2 km/s, observed on the margins, is not present below most of the Central 

Precaspian depression. Besides velocities, other characteristics of crust and mantle are 

anomalous. In contrast to other areas, the crust of the Central Precaspian depression is 12–15 

km thick. 
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Figure 15: Map of the crustal thickness without HVL (a) and thickness of the HVL (b), 
after “Brunet et al., 1999”. 
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Two prominent seismic reflectors at the lower levels of the crust are recognised, at the depths 

of 32 and 42 km. A refracting horizon with Vb = 8.0–8.1 km/s identified as the Moho-surface 

coincides with the upper reflector. A reflecting horizon, about 42 km in depth, corresponds to 

the Moho on the margins (where reflecting and refracting horizons are merged), and then 

extends towards the centre of the basin almost flatly. In the centre of the basin, it is separated 

from the Moho, which is uplifted, by an 8- to 10 km layer. Analysis of the structure, 

gravitational field, analysis of density contrast between the different layers and composition of 

the crust indicates (Volozh et al., 1975; Volozh, 1990) that the layer between the two 

described reflectors (32 and 42 km) may be interpreted as eclogites. The presence of these 

eclogites was a key factor in the development of the very deep and particular Precaspian 

Basin. The lower reflector is situated near the upper boundary of an anomaly layer (8.6–8.7 

km/s) which was identified by other studies between 45- and 60-km depth (Kostyuchenko et 

al., 1999). 

If the HVL is composed of eclogites, the problem is to know how they can exist at the 

observed depth and when they were formed. Artyushkov (2007) proposed that the sole 

mechanism responsible for rapid subsidence of the PCB was the eclogitisation1 of basaltic 

rocks in the lower crust. However, he did not take into account the observed thickness of the 

present crust, which also contributes to the subsidence of the basin, and the likelihood that 

eclogites cannot be formed at this depth where pressures are far too low. One way around the 

latter objection is to suppose that the eclogites were initially formed at greater depths/higher 

pressures in a different tectonic setting, such as a plate convergent one and, subsequently, 

were transported to their present depth. This kind of mechanism could occur as a result of 

rapid uplift and denudation related to post-orogenic extensional collapse events or by transport 

of the high-pressure metamorphic rocks to shallower levels by buoyancy forces combined with 

retro-thrusting. 

If the eclogites inferred to lie beneath the PCB were formed as a result of collisional tectonics 

followed by exhumation, then there are two possible times at which the eclogitisation may 

have occurred. There are two main collisional phases during the history of the PCB. 

The first is at the end of Riphean–Vendian collision with exhumation taking place during the 

subsequent rifting phase. Although the timing of this phase of rifting is not well known because 

                                                

1 Eclogites are plagioclase-free metamorphic rocks composed of ≥ 75 vol.% of garnet and omphacite (IUGS 

Subcommission on the Systematics of Metamorphic Rocks). They generally have basaltic bulk compositions and 

recrystallized at high to ultrahigh pressures during subduction. Trace element and isotopic data of eclogites can be 

used to identify the geologic settings in which the eclogite precursors formed. In addition, trace element data of 

eclogites and eclogite minerals are important for assessing recycling processes in subduction zones. 
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of the scarcity of data, most of the consequent subsidence would have occurred in Cambrian–

Ordovician times and not later as observed. Nevertheless, the geometrical arguments used to 

support this possibility are as follows. The inferred eclogitic lenses are roughly limited to the 

southeast by a deeply penetrating fault bordering the CPD (Elton–Inder fault; Figure 9). This 

structure dips to the southeast and is sealed by lower Palaeozoic sediments and is thought to 

be the base of the NCAZ overthrust onto the CPD, possibly representing an end of Riphean–

early Vendian ‘suture’ marking the closure of the Pre-Ural Ocean. The area of the present 

PCB would have been situated at this time on the continental margin of the Pre-Ural Ocean, 

adjacent to the oceanic crust subducted during the collision. The model supposes that 

subducted oceanic crust transformed into eclogites at depths of more than 60 km but was 

subsequently transported to a position beneath the present CPD and, in so doing, inducing an 

important component of its subsidence (Garagash et al., 1997). The mechanism transporting 

the eclogitic lens, involving a displacement of at least 300 km from the inferred suture, is not 

clear. 

The second possibility is that eclogites formed during the Uralian collision; indeed, it could be 

suggested that they are related to Middle Devonian eclogites observed in the Urals (380 Ma). 

In this case, an excessively thick Devonian crust should have been subsequently affected by 

an important crustal thinning. But the presence of thick older sediments, not extended, seems 

to contradict this hypothesis, unless the formation of eclogites can be explained by other 

mechanisms. 

Other explanations for eclogitisation, not involving collisional tectonics, have also been 

suggested. Lobkovsky et al. (1996) and Ismail-Zadeh (1998), for example, proposed that 

eclogites can form in the uppermost mantle as a result of mantle flow and explained the middle 

Frasnian–Famennian and post- Devonian subsidence phase of the PCB in such a manner. 

There may also be models whereby the HVL is not composed of eclogites; for example, it 

could comprise ultramafic mantle rocks emplaced near or at the bottom of the crust. However, 

the same question as discussed in the previous paragraphs about eclogitisation arises about 

the timing of the emplacement of the HVL. 

The lack of a confident identification of the true base of the crust and its relationship with the 

HVL is a significant problem hampering a better understanding of basin forming mechanisms. 

Estimations of crustal thickness in the basin vary; they depend greatly on the chosen 

interpretations of the HVL. If the HVL is considered to be part of the upper mantle or if eclogitic 

lenses have been brought to the base of the crust (but are not part of it), then the Moho depth, 

in the central PCB, is a depth of 32– 36 km. With a reference crustal thickness of 40 km (and 

taking into account the sedimentary layer), the crustal thinning factor in such a case is 3.3. 

However, if the HVL is interpreted to be an eclogitic part of the lower crust transformed in situ 
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by a process to be defined, the depth of the Moho below the central basin would be 40–44 km 

and the thinning factor would not exceed 2. 

These values of the thinning factor will be used in the subsequent modelling analysis. Another 

possibility that is considered is that the PCB crust is either oceanic beneath the whole CPD or 

that it comprises two separate oceanic sub-basins in the areas of the Aralsor and Khobda 

anomalies. 

 

3.1.2.3 Tectonic subsidence evolution in the Precaspian basin 

The characteristics of the Central Precaspian depression predetermine the special features of 

the entire Precaspian Basin. These are: (1) the sedimentary cover (important thickness, 

significant stratigraphic volume, and completeness of the section), (2) the crust (small 

thickness and absence of low-velocity layer), (3) the mantle (low depth of the Moho surface, 

presence of another seismic boundary beneath the Moho surface), (4) geophysical fields (high 

gravitational and very low magnetic fields). That is why all geodynamic hypotheses and 

formation mechanisms of the Precaspian Basin primarily have to explain the structure and 

evolution of the Central Precaspian depression. 

Numerous models have been proposed to explain the nature of this depression. The first 

group includes models that focus on both the small thickness and high-velocity composition of 

the crust of the Central Precaspian depression, considering it as an oceanic crust. According 

to these models, the thin crust of the depression represents the remnant of a marginal oceanic 

crust which was formed in either pre-Urals or Urals Ocean. In the first case, the crust is 

Riphean in age (Nevolin, 1978), and in the second, the crust is Riphean to Early Palaeozoic in 

age, or even Middle Devonian. 

The models of the second group suppose that rifting is the leading mechanism with a thinning 

of the continental crust during several rifting phases from Riphean to Devonian (Volozh et al., 

2003). 

To explain the subsidence of the Precaspian depression, models of the third group examine 

the processes and phenomena related to a metamorphic alteration of the crust. 

It is notable that none of the depicted models has been supported by numerical calculations 

based on real geological–geophysical data.  

This led to more realistic models of the Central Precaspian depression (Brunet, 1995). The 

existing geological data on structure and composition of the sedimentary cover and crust give 

constraints that must be taken into account. For example, an oceanic crust of Riphean age is 

too old to explain the Palaeozoic Devonian to Permian subsidence of the basin. 
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Figure 16: Subsidence curves in the centre of the Precaspian Basin, after “Brunet et al., 
1999”. 

1: Tectonic air-loaded subsidence curve, 2: total subsidence of the basement with sediments, 3: paleo-
water depth, 4: tectonic subsidence rate. Location: centre of the depression. 

 

AGE OF THE OLDEST SEDIMENTS 

The large age discrepancy for the basin origin results from the uncertainty on the age of the 

first sediments deposited in the central part of the Precaspian Basin. It should be noted that 

the base of the sedimentary cover within the areas surrounding the Central Precaspian 

depression consists of Devonian terrigenous–carbonate. It is the same lithology as that found 

in the base of the sedimentary pile of the central part of the basin. This similarity of lithology 

has led to different hypotheses on the age of origin of the basin: either an older Riphean age is 

proposed or the same Devonian age is attributed to the sediments in the centre of the basin 

and on its periphery. 

But some stratigraphic data exist on the deep horizon (P3) in the subsalt section. These data 

seem to exclude all groups of models that explain the formation of the Central Precaspian 

Basin as a result of Devonian rifting and consequent spreading of oceanic crust. The authors 

of these models proceeded from the assumption that the deepest main horizon P3 is restricted 

to the top of Devonian deposits. They consider also that the thick sedimentary complex (more 

than 8 km), comprised between this horizon and the basement, is not older than Devonian in 

age. 
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The drilling data obtained from some areas in the east and southeast of the Precaspian 

depression (east Akjar, Kumsai, Baktygaryn, etc.) (Akhmetshina et al., 1993), strongly support 

the stratigraphic position of the main reflector P3 as close to the base of Lower Devonian. This 

reflector was penetrated by hole G-5 (east Akjar), at a significant distance from the slope of 

the depression, in the zone of the Aktyubinsk uplift. Within this area, two holes G-1 

(Baktygaryn) and G-4 (Kumsai) penetrated thick Devonian carbonate deposits. Logging 

(Geophysical interpretation of wells) data determine the stratigraphic position of boundaries. 

The drilling was stopped at 300 (G1)– 500 (G4) m above horizon P3. Devonian deposits, 

which are evenly cored in G4, are known in the depth interval of 4830–6007 m. The drilled 

section contains numerous organic remnants that permit to definitely determine the age of 

hosting carbonate rocks. The presence of Conodonts species Ozarkodina remscheidenis 

remscheidenis Ziegler in carbonates from hole G-5 (intervals 5738–5745 and 5745–5751 m) is 

indicative of the lowermost portion of the Lower Devonian Lochkovian stage. The presence of 

Foraminifers Tubeporina tenue Sabirov in Hole G-1 (interval 6204–6212 m) determines the 

time interval as the Lower Devonian Pragian stage. The fragment of the time-scale seismic 

section in the vicinity of hole G-5 (Figure 17) shows that the main reflector P3 is restricted to 

the base of the Lower Devonian (Lower Lochkovian) carbonate deposits.  
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Figure 17: Stratigraphical site of seismic reflector P3, by Akhmetshina et al., 1993 
modified by Volozh et al. 2003. 

Comparison of levels reached by wells on the north and east margins of the Precaspian Basin; location of 
wells on a map of seismic horizon P3 depth; fragment of seismic line on the east margin, through the wells 

G5– G3. 1: limestone, 2: dolomite, 3: argillite, 4: aleurolite, 5: sandstone, 6: metamorphic (basement), 7: 
samples with fauna, 8: reflectors and their index, 9: seismic reflectors offside borehole. Horizons: af–

Afonian, bs –Biiskian, vs – vn Viazov–Vaniashkian, cv–lv Evlano– Livennian. 
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As shown in the available substantial volume of seismic data, main horizon P3 is well 

expressed in the whole region. It is traced from margin towards centre of basin along almost 

all seismic profiles. For example, Figure 18 shows the correlation of P3 horizon between the 

southwest Astrakhan margin and the basin. 

 

 

 

Figure 18: North– south section on the southwest Astrakhan margin of the Precaspian 
Basin, after “Volozh et al. 2003”. 

(a) Seismic profile; (b) depth converted section of a part of the profile (a). 

 

Seismo–stratigraphic and structural constraints along P3 horizon within the Precaspian Basin, 

permit to depict gentle and rounded structures of secondary order (Aktyubinsk uplift, Central 

Precaspian depression, etc.). In the most subsided part of the Central Precaspian depression, 

the base of the Lower Devonian deposits is situated at a depth of almost 14 km (Figure 8) 

shown by the deepening of the seismic horizon P3. Hence, a thick (more than 6–8 km) unit of 

pre-Devonian carbonate and terrigenous rocks is present between the top of the basement 

and the base of Devonian (seismic horizon P3) to Lower Permian series. 

Data constraining precisely the initial age of the sedimentary unit existing below the P3 Lower 

Devonian horizon are not available. Below P3, there exist other seismic horizons (Figure 9 and 

Figure 10) P4, P5 or D5OS that were never drilled, and the basement. 
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Sediment deposition began during Riphean, by comparison, for example, with Pachelma rift 

and Pre-Uralian foredeep where thick Riphean deposits are known. Velocity data and wave 

images of Riphean deposits were correlated with information from Bashkirian region where 

seismic records have been carried out and have been published (Scripij et al., 1990). Some 

data on Lower Palaeozoic sediments provided by boreholes on the margins of the basin are 

available (Jatskevich, 1996). Some boreholes in the northwest Precaspian (3—Ershov; 11, 

14—Krasnokut; 1, 2— Vostochno– Kudinov; 300—Zhirnov; 10—Petroval’sk) penetrated: 

Ordovician–Silurian terrigenous and carbonate sediments (about 100 m) containing 

Brachiopods, Trilobites, Corals and Crinoids. In the northeast Precaspian, boreholes (85—

Berdiansk; 110—Predurals) drilled Cambrian–Ordovician terrigenous and carbonate 

sediments (about 200–300 m) with Graptolites, Algae and Ostracods. Jatskevich (1996) wrote 

that Upper Proterozoic sediments were covered by thick (1000–2000 m) post-Vendian 

deposits (Cambrian, Silurian and Ordovician) in Riasano–Saratov basin (in the former situation 

of the Pachelma Riphean Basin and in prolongation of the Precaspian Basin). These Lower 

Palaeozoic sediments were eroded during pre-Devonian time. Thus, the thickness of Lower 

Palaeozoic terrigenous sediments is 100–300 m and carbonate sediments 100–200 m as well 

in northwest as in northeast. 

Paleo-reconstructions show that Lower Palaeozoic sediment thickness increased towards the 

basin up to 3.5–4 km and that older layers appear below these deposits. 

Even if the age of first sediments is still partly undefined, the existing data do not support a 

Middle Devonian spreading, since older sediments cannot cover a Devonian oceanic crust. 

 

3.1.2.4 Details about regional geology 

The basement of the southeastern Caspian basin and Scythian plate is thought to have 

consolidated in the pre-Paleozoic Baikalian (Cadomian). Blocks of the Cadomides formed a 

single Scythian–Turanian terrain which joined to the Archean–Late Proterozoic continent Baltia 

in Late Precambrian time to form the vast European continent. Through all of Paleozoic and 

Early Mesozoic (Triassic) time the southeastern part of the European continent with the 

Cadomian-consolidated crust was an active continental margin where thick terrigenous and 

volcanic sequences accumulated (Figure 19). 

The boundary between the Scythian and Turanian young (Mesozoic–Cenozoic) plates was 

defined. The proposed boundary between these plates was drawn along the northeastern 

margin of the Donbass–Tuarkyr folded area, following the line demarcating differences in 

stratigraphic age between “preplate” and “folded” complexes of the sedimentary cover (Figure 

19). The “folded” complex of sedimentary cover in the Turanian plate is no younger than the 
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Artinskian of Early Permian, whereas in the Scythian plate it extends into the Upper Permian. 

Thus, the “preplate” complex of the Turanian and Scythian plates begins with Kungurian and 

Triassic deposits, respectively. Within these outlines, each plate has a specific structure typical 

of “folded” or “preplate” complex of the sedimentary cover, distinct structural constraints as 

well as specific seismic properties of the petroleum potential. 

Transregional post-collision strike-slip faults were first recognized as large structural 

displacements in the lithosphere developed at the end of a collision stage of the formation of 

large volumes of continental crust, and thought to have been the main structure-forming 

elements during the preplate evolution of the region (Volozh et al., 2005). Large inversion and 

fold-andthrust intraplate structures are associated with these strike-slip faults. Motion along 

them continued at the plate stage as well; and most of these faults are still active today. There 

have been five strike-slip faults revealed (with different degree of certainty) within the Caspian 

region: Ural–Gerirud, South Emba, Aksu–Kenderli, Donbass–Zeravshan and Caucasus–Kopet 

Dag (Figure 19). These faults are subparallel to the Tethyan or Uralian margins of the East 

European continent. Major strike-slip motions along faults occurred during late Triassic– early 

Jurassic (Ural–Gerirud, South Emba, Aksu–Kenderli), Paleogene (Donbass–Zeravshan), 

Pliocene–Quaternary (Caucasus– Kopet Dag). The amplitude of the faults is a few hundred 

kilometres. This resulted in the formation of the Aral–Kyzylkum arch along the Ural–Gerirud N–

S strike-slip fault, South Emba uplift along the South Emba fault. The Mangyshlak–Central 

Ustyurt uplift system and Karpinsky Range are associated with the Donbass–Zeravshan fault. 

For the Tien Shan structures of the South Aral region a northward displacement on the Ural–

Gerirud dextral strike-slip fault reaches 400–500 km, where they extend into E–W trending 

Hercynides of the Northwestern Aral region. The above faults remained active after the main 

phase of their lifetime, which is reflected in their structure as well as in facies and thickness 

variability within the sedimentary cover. Structural traps are expected to exist along faults, 

most of which may contain large amount of hydrocarbon reserves (Zhetybai–Uzen’ step and 

others). 

New conceptual understanding of the nature of the South Emba uplift as a southeastern 

marginal structure of the North Caspian salt dome region is given in Volozh et al. (1999), and 

Segalovich et al. (2007). The South Emba uplift is located in the eastern part of the 

Tugarakchan rift, a large buried structure. However, they are not genetically related to each 

other. The Tugarakchan rift extends from the Urals in the east across the North Caspian 

offshore to the Astrakhan uplift in the west, where it is truncated by the Sarmat–Tuarkyr rift 

structures formed in the Devonian. The Tugarakchan rift initiated during the Late Cambrian–

Early Ordovician and ceased development in the late Silurian. It appears as the third branch of 

landward divergent extensional structures, which developed above the hot spots (two other 
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branches initiated the Ural and Turkistan Ocean spreading axes) (Figure 20). The South Emba 

uplift probably resulted from strike-slip movements along a large transcontinental postcollision 

fault (South Emba) associated with a Hercynian orogeny event, which took place on eastern 

collision margin of the Paleozoic European continent (Figure 21). 

 

 

Figure 19: Structural and tectonic map showing consolidated crust in the Caspian 
region, after “Volozh et al., 2009”. 

1–4. Basement segments and blocks of the East European Paleozoic continent: 1, basement blocks of pre-
Riphean consolidation; 2, blocks of pre-Paleozoic (Cadomian) consolidation; 3, blocks of pre-Paleozoic 

(Cadomian) consolidation reworked in the Early Paleozoic (Cambrian–Silurian), basement of the western 
Turanian plate; 4, blocks of pre-Paleozoic (Cadomian) consolidation reworked in the Late Paleozoic (Late 

Devonian–Early Carboniferous), basement of the Scythian plate. 5. Basement of passive continental 
margins with thinned Riphean crust. 6, 7. Basement of intracontinental rifts: 6, Riphean; 7, Early Paleozoic. 

8. Basement. 9–11. Basement of Paleozoic consolidation of the Ural–Tien Shan collision belt: 9, Western 
Uralids; 10, Tien Shanides; 11, Eastern Uralids. 12–16. Basement blocks of the Paleozoic continent active 
margin (northern margin of the Paleo-Tethys Ocean) and Alpine collision belt: 12, undifferentiated crust of 

the Late Paleozoic consolidation; 13, pre-Paleozoic reworked in the Late Paleozoic; 14, of the Early 
Mesozoic consolidation; 15, of the Early Mesozoic consolidation reworked in the Alpine time; 16, 

undifferentiated crust of the Late Alpine consolidation. 17–19. Areas with the thinned consolidated crust of: 
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17, central North Caspian block; 18, Donbass–Tuarkyr folded system; 19, South Caspian and East Black 
Sea blocks. 20–24. Suture structures: 20, ophiolitic sutures (age is designated as indices); 21, boundary of 
the back crust deformations within the collision-related Cadomides foldbelt; 22, boundary of the back crust 

deformations within the subduction-related Cadomides foldbelt; 23, transform faults; 24, crown of crust 
folds (age is designated as indices). 25. Transcontinental post-collision strike-slip faults (numbers in circle: 
1, Caucasus–Kopet Dag; 2, Donbass–Zeravshan; 3, Ural–Gerirud; 4, Aksu–Kenderli. 5. South Emba (age of 
motion is designated as indices). 26. Other regional tectonic dislocations. 27, 28. Basement outcrops: 27, 

pre-Riphean; 28, Paleozoic. 

 

 

Figure 20: Geologic-geophysical section across the South Emba uplift (b) and a 
fragment of time section (a) showing the morphology of tectonic dislocations within the 

South Emba regional fault, after “Volozh et 
al., 1999”. 

1, Lower Paleozoic volcano-sedimentary strata. 2, 3. 
Middle Devonian–Lower Carboniferous deposits: 2, 
Carbonate-terrigenous; 3. Terrigenous. 4. Middle 
Carboniferous carbonates. 5, 6. Middle 
Carboniferous–Lower Permian deposits: 5, 
carbonate; 6, terrigenous. 7. Lower Permian 
terrigenous deposits. 8. Upper Permian–Triassic 
terrigenous deposits. 9. Kungurian salts. 10. Key 
reflectors and their indices. 11. Basement surface. 
12. Pre-Jurassic unconformity surface. III, VI, VII, S1, 
S2, S’2, S3. Key reflectors. B. Basement. 
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Figure 21: Gross depositional environment map of the Ordovician,  after “Volozh and 
Parasyna, 2008”. 

1. High and mid-sized mountains. 2. Peneplains and gentle hilly plain plateaus. 3. Fluviolacustrine plains. 4. 
Inner shelves, shallow marine areas. 5. Outer deep shelves. 6. Bathyal zone of deep inland and marginal 
seas. 7. Shallow shelf with terrigenous sedimentation setting. 8. Fluviolacustrine plains with terrigenous 
sedimentation setting and clinoform structure. 9. Fluviolacustrine plains with terrigenous sedimentation 
setting and clinoform structure. 10. Continental slopes and rises. 11. Ocean and inland-sea basins. 12. 

Active accretionary margin break. 13. Passive margin shelf break. 14. Thrusts. 15. Actual and inferred faults 
of unknown nature. 

 

Structural history of the Karpinsky Range has been studied in Volozh et al. (1999). It has been 

shown that the range is part of the Donbass–Tuarkyr intra-continental folded zone, which was 

formed during the development of a more extensive Paleozoic Sarmat–Tuarkyr rift system. In 

addition to the above folded zone, the latter comprises the Devonian– Carboniferous Dnieper–

Donets and Pripyat’ aulacogens (Figure 22 and Figure 23). As shown by Volozh et al. (1997), 

the Sarmat–Tuarkyr rift system initiated in the mid Devonian and ceased development in Late 

Triassic–Early Jurassic time. The South Emba or Central Ustyurt uplifts by many researchers 

are thought to be extensions of the Karpinsky Range. 
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Figure 22: Geologic section through the Tsimlyansk line across the Karpinskiy Range, after “Volozh et al., 1999”. 
1–6. Seismic sequences and litho-structural complexes: 1, terrigenous (undifferentiated); 2, intra-shelf carbonate platforms (seismic facies composed of intra-basin build-
ups); 3, thin condensed nappes. Siliceous-argillaceous-bituminous (of deep water basin); 4, seismic facies of shelf and coastal plains (parallel-bedded bodies bounded by 

straight clinoforms) and outer shelf. Carbonate slopes (accumulative forms): 5, undifferentiated carbonate (seismic facies of depressions and intra-slope basins); 6. 
Kungurian salts. 7. Riphean complexes of the Cadomides accretionary fold belt. 8. Boundaries of lithostratigraphic complexes. 9. Faults and overthrusts. 10. Key 

refractor, consolidated crust top. 11. Wells. 

 



52 

 

 

 

Figure 23: Paleotectonic reconstructions across the Tsimlyansk line illustrating the major tectonic events that result in the development of 
the Sarmat–Turkyr rift system, after “Volozh et al., 2009”. 

1. Upper mantle. 2. Lower crust. 3. Upper crust. 4. Lower Paleozoic volcano-sedimentary strata. 5. Devonian carbonates. 6. Devonian terrigenous deposits. 7. 
Carboniferous terrigenous deposits. 8. Permian terrigenous deposits. 9. Kungurian salt-bearing deposits. 10. Paleozoic fold complexes. 11. Triassic deposits. 12. 

Mesozoic–Cenozoic strata. 13. Fractures. 14. Sea. 15. Direction of tectonic movements.
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Palinspastic reconstructions were first made for the southeastern margin of the Paleozoic 

European continent to estimate offsets on transcontinental post-collision strike-slip faults and 

define the palinspastic position of the Permian salt basin in the North Caspian region relative 

to tectonic units of the basement and sedimentary cover and their relationship with different 

paleomorphic elements of Caspian region structure.  

 

Figure 24: Palinspastic reconstruction of consolidated crust of the Paleozoic East 
European continent at the beginning of the Kungurian, after “Volozh and Parasyna, 

2008”. 
1–4. Blocks of consolidated crust: 1, pre-Riphean; 2, Precambrian (Cadomian); 3, Early Paleozoic; 4, Late 

Paleozoic. 5. Paleo-Tethys ocean. 6, 7. Erosion zones: 6, orogens; 7, denudation plains and uplands. 8–10. 
Sedimentation areas: 8, coastal accumulation plains and shallow shelves; 9, submerged shelf and slope; 
10, deep-water basins. 11. Ophiolitic sutures. 12. Deformation fronts: a, Riphean; b, Early Paleozoic. 13. 

Transcontinental strike-slip faults, lines of palinspastic reconstructions. 14. Boundaries of the main 
continental structural elements. 15. Boundary of the Caspian salt-bearing basin. 16. Eurasia active margin. 

17. Faults. 18. Orientation of present-day geographic coordinates. 

 

The tectono-depositional framework of the North Caspian intra-continental (Kungurian) basin 

was determined (Volozh et al., 1999). Hypsometry for salt deposition shows a disharmony with 

overlying and underlying beds owing to a specific combination of tectonic movements and a 

rate of deposition, which persisted during a large time span (Late Devonian–Early Permian) in 

areas including five large tectonic structures with different geodynamic regimes: (a) Volga– 
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Ural anteclise; (b) Central–North Caspian exogonal depression; (c) North Caspian– Ustyurt 

syneclise; (d) Karpinsky Range; (e) Belaya–Aktyubinsk depression (basin) of the Ural 

foredeep. Each of these structures correlates with a specific type of sedimentary basins: 

Volga–Ural anteclise—shelf epicontinental basin; (b) Central–North Caspian exogonal 

depression—Riphean– Paleozoic pericratonic basin; (c) North Caspian–Ustyurt syneclise—

Early Paleozoic intracontinental rift and Late Paleozoic epicontinental basin; (d) Karpinsky 

Range—Late Devonian rift and Upper Paleozoic back-arc basin; (e) Belaya- Aktyubinsk 

depression of the Ural foredeep—Late Paleozoic foredeep basin. This conclusion is supported 

by a set of structural maps based on key seismic reflectors and 2D and 3D backstripping 

reconstructions. Comparison between present day and restored (flattened) seismic profiles 

(with stripped off salt tectonics) confined to the base of pre-Jurassic, pre-Cretaceous and pre-

Paleogene complexes shows that they are conformal and follow (when flattened) structural 

configuration of the basement surface and pre-Devonian complex, whereas the internal 

horizons (pre-Kungurian and pre-Moscovian) are disharmonious with overlying and underlying 

boundaries (Figure 25). 
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Figure 25: Relationship between structural geometry of different sequences of the 
sedimentary cover, North Caspian salt dome region,after “Volozh et al., 2009”. 

a. Basement surface. b. Pre-Devonian unconformity surface (reflector S3). c. Pre-Moscovian surface 
(reflector S2). d. Pre-Kungurian surface (reflector S1). e. Flat surface of the Kungurian salt-bearing 

sequence. f. Pre-Jurassic unconformity surface (reflector V). g. Pre-Cretaceous surface (reflector III). h. Pre-
Paleogene surface (reflector I). e–h. Present-day geometry of the marker beds with stripped off salt 

tectonic. 1. Contour lines, km. 2. North Caspian basin boundary. 

 

Revised seismo-stratigraphic subdivision was suggested for the lower (pre-Frasnian) part of 

the sedimentary cover in the northern Belaya–Aktyubinsk syneclise of the Ural depression 

(Yuryuzan–Sylvinsk depression). A Lower Riphean carbonate stratum (Kaltasin Series) 

identified there was recognized to be Lower Paleozoic. The key question is how accurate is 
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traditional assignment of pre-Frasnian section of the sedimentary cover to Lower Riphean 

within the part of profile that enters outlines of the Ural depression (Figure 26). 

 

Figure 26: Cross-section across the Ural foredeep, after “Volozh et al., 2009”. 
1, 2. Top of consolidated Archean–Proterozoic (1) and Riphean (Cadomian) (2) crust. 3. Faults. 4. 

Reflectors. 5. Seismic sequence indices. 

 

 

Figure 27: Fragment of time section through a regional line across junction zone 
between the Ural foredeep and East Orenburg arch, after “Volozh et al., 2009”. 

 

In the work carried out by Belokon’ et al., 2001 Lower Riphean age of the stratum overlain by 

Frasnian deposits was confirmed from boreholes (Bukharovskaya 10 and Manchazh 5 

boreholes) drilled to the north of a seismic line. At the same time, the age of this stratum was 

determined from indirect evidence (no direct paleontological data) on the basis of correlation 

with sections in the Arlan and Oryebash wells drilled in the Kama–Belaya trough, East 
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European platform. Such correlation seems to be unacceptable because of boreholes located 

within areas with different geo-seismic characteristics. In this case, the seismo-stratigraphic 

approach should be used preferably for age determination. It is plainly seen on the 

Mikhailovsky seismic profile that reflection patterns of the pre-Frasnian section vary 

considerably on different sides of the Suksun fault which separates the Riphean Kama–Belaya 

trough of East European platform from the Paleozoic Ural foredeep. The angular unconformity 

between the Riphean and Upper Vendian successions is locally evident in the eastern part of 

the profile and disappears east of the Suksun fault. Thus, the pre-Frasnian succession of 

considerable thickness appears to be conformable with the overlying Devonian–Carboniferous 

deposits to make up a single seismic sequence. These structural relationships testify to a 

Paleozoic age of deposits from pre-Frasnian succession within the study interval. It is likely 

identical in its age and composition to Lower Paleozoic deposits of the Belaya shelf zone, 

which are widely developed on the western slope of the Urals and to the south, in the 

Orenburg Region. After data given by Puchkov (2000) it’s assumed the presence of Lower 

Paleozoic–Lower Devonian sediments in this area. In addition, there are some indications for 

the presence of Upper Ordovician deposits in the Uralian foredeep. According to A.V. 

Yaroshenko, a borehole drilled westward of the Baskirian anticlinorium has penetrated Upper 

Ordovician section of limestones with trilobite finds. Lower Devonian facies on the eastern 

margin of the East European platform within the Uralian foredeep are found in the Central 

Urals (Us’va River), Southern Urals (Kaga River—sandstones and limestones) (Volozh et al., 

2009). 

In the seismic profile 370505 located further south a similar in its structural position, thick, 

unfossiliferous sequence has been identified. Several carbonate build-ups have been 

recognized on seismic records within its uppermost part (Figure 27) referred to as Upper 

Ordovician–Lower Devonian based on borehole data. If the study carbonate rock sequence is 

known to be of Lower Paleozoic (Upper Cambrian–Lower Devonian) rather than Riphean age, 

it has, by analogy with the Timan– Pechora basin, higher prospectively as compared to the 

Riphean sequences.  

Hydrocarbon geological zoning was made for the Caspian region on the basis of the ranked 

fluid-bearing geo-systems. These are age subdivisions of the sedimentary cover (structural-

tectonic or lithostratigraphic units etc.) separated by seals of a respective rank: transregional, 

regional or zonal. The extent of first-rank seals is defined by the limits of petroleum provinces 

(petroleum basins, petroleum regions for the second-rank seals, and petroleum zone for the 

third-rank seals. A petroleum region within the Mesozoic–Cenozoic sequence formed at the 

last stage of Alpine tectonics corresponds to a sedimentary basin or adequately ranked 
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platform type tectonic structure. A petroleum province encompasses several adjacent tectonic 

structures or sedimentary basins that are related in terms of common transregional seal. 

Understanding of geodynamic, tectonic and depositional processes in the Caspian region 

allowed the recognition of four first-ranked fluid-bearing (petroleum) geo-systems within the 

sedimentary cover: pre-Kungurian, Upper Permian–Triassic, Jurassic–Miocene, and Pliocene–

Quaternary. Accordingly, there have been distinguished four transregional seals and four 

petroleum provinces: Volga–Ural, North Caspian, Caucasian– South Mangyshlak, South 

Caspian, and North Ustyurt (as part of West Turanian province). The recognized transregional 

seals include the Kungurian salt for the North Caspian province, Maikopian shale for the 

Caucasian-South Mangyshlak province, Akchagyl–Apsheronian sand and shale for the South 

Caspian, and Upper Jurassic carbonate and shale for the West Turanian province. 

This approach has significantly altered the traditionally recognized boundary between the 

North Caspian and Volga– Ural petroleum provinces and, to a less extent, the boundary 

between the North Caspian and Caucasian–South Mangyshlak provinces. The North Caspian 

province thus encompasses the Belaya–Aktyubinsk depression of the Uralian foredeep, Sol’- 

Iletsk salient, Volgograd and Saratov areas of Trans-Volga region, Buzachinsk dome and 

northwestern part of the Karpinsky Range (Figure 28). 
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Figure 28: Paleozoic (presalt) petroleum potential, after “Volozh et al., 2009”. 
1–9. Major petroleum systems: 1, Riphean–Lower Paleozoic; 2, Lower Paleozoic; 3, Lower–Middle 

Devonian; 4. Devonian–Carboniferous; 5, Middle Devonian–Middle Carboniferous; 6, Upper Devonian–
Carboniferous; 7, Devonian–Permian; 8, Lower–Middle Carboniferous; 9, Carboniferous undifferentiated. 

10–14. Minor petroleum systems: 10, Riphean; 11, Lower–Middle Devonian; 12, Upper Devonian; 13, Lower–
Upper Carboniferous; 14, Lower Permian. 15. Low prospect areas. 16. No prospect areas within the 
Urals,Turanian and Scythian plates. 17. Basement outcrops. 18–23. Marginal escarpments of shelf 

carbonate platforms: 18, Lower Permian (Sakmarian–Artinskian); 19, Upper Carboniferous (Vereiskian); 20, 
Visean–Bashkirian; 21, Famennian–Tournaisian; 22, Frasnian; 23, Middle Devonian. 24, 25. Scarps of 

intrabasin carbonate platforms: 24, Middle Devonian; 25, Lower–Middle Devonian. 26, 27. Detached shelf 
carbonate buildups: 26, Middle Devonian (Givetian); 27, Upper Devonian (Frasnian). 28–30. Basin floor fan 

facies: 28, Lower Permian (Sakmarian–Artinskian); 29, Upper Carboniferous–Lower Permian channel 
facies; 30, Upper Carboniferous (Vereiskian). 31–33. Faults: 31, overthrusts and front of deformations; 32, 
transcontinental post-collision strike-slip faults (age indicated in colors and indices); 33, other faults. 34–
36. Boundaries of: 34, petroleum provinces; 35, petroleum regions; 36, Kungurian salt. 37, 38. Fields: 37, 

oil; 38, gas and gas condensate. 39. Petroleum regions within the Volga–Ural petroleum province (1, 
Ryazan–Saratov; 2, Pugachev; 3, Buzuluk; 4, South Tatarian; 5, Priuralsk; 6, Volgograd–Orenburg; 7, North 
Caspian edging). 40. Petroleum regions within the North Caspian petroleum province (1, Central Caspian; 2, 

Sarpinsk; 3, Astrakhan–Gur’ev–Aktyubinsk; 4, Astrakhan–Tengiz; 5, Mugodzhary–South Emba). 
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3.1.2.5 Present-Day Structure 

The basement surface of the North Caspian basin occurs at depths reaching more than 20km 

in the Central depression. The depression is about 450 km long from west to east. Two narrow 

troughs extend from the depression to the southwest and northeast; these troughs were 

probably deep straits that connected the North Caspian oceanic basin with the Tethys and 

Uralian oceans. The north and west basin margins are narrow and steep. In contrast, the 

south margin is wide, being formed by a series of structural arches in which the basement lies 

at depths of 7–8km. From the crests of the arches, the basement dips both toward the Central 

depression and toward the marginal troughs in front of the Hercynian foldbelts. At the top of 

subsalt rocks the Central depression is a gentle structure with a maximum depth of about 10 

km. The marginal troughs are absent and the top of subsalt rocks dips away from the margins 

toward the basin centre. Carbonate platforms and organic build-ups are expressed as 

structural highs. The regional structural pattern of Upper Permian and younger strata is 

dominated by salt tectonics. More than 1,000 salt domes have been identified in the basin. In 

marginal areas, the domes are arranged in salt ridges that are generally parallel to the basin 

margins (Ulmishek, 2003). 

 

RECENT TECTONIC MOVEMENT 

As shown by an analysis of data on recent tectonic movements, they differ in direction and 

intensity in different regions of the study area (Figure 29). 

The most intense uplifts during the Middle Miocene - Quaternary period are noted in the 

Central - Mangyshlak-Ustyurt dislocation zone, where the base of the Middle Miocene 

formations, or its corresponding erosion-denudation level, is raised to a height of 556m (at 

Besshoky). Considering that in the adjoining South-Buzachi depression to the north this level 

lies at an elevation of minus 50-100m, the amplitude of displacement across the Central-

Mangyshlak-Ustyurt fault reaches 600-700m. It is precisely in this area where rock types 

associated with the consolidated foundation emerge at the daylight surface. In the south-east 

direction, the intensity of the uplift lessens but this zone is nonetheless reflected in 

submeridional rampart-like uplifts and gentle depressions in the relief, generally reflecting new 

deformations. 

The North-Ustyurt Plateau, formed as a result of moderate uplift of the area (50-100 m) is to 

be found to the north of the Central-Mangyshlak-Ustyurt intense uplift zone. On the whole, the 

Ustyurt Plateau appears to have an emphasised tectonic character. As a result of exposure to 

exogenic processes, all elements of the tectonics (anticlinal and synclinal zones, local uplifts) 
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are directly expressed in the relief, with a certain exaggeration of amplitudes compared with 

the amplitudes of the structural forms (Aristarkhova et al., 1970). 

In neo-tectonic terms, the North-Caspian plain is associated with a region of intense modern 

settling events, reaching 300-700 m in amplitude. In the modern relief, this region is 

characterised by significant levels below world ocean level. The recent structural forms are 

associated with salt-dome tectonics, which is indirectly reflected in the lineaments (Azgirsky, 

Zholdybai) traced by different investigators. 

Thus, the direction of recent tectonic movements is reflected in the morphological structure of 

the region, in that it is to a large extent determined by the stages of its development. This is 

particularly true of the regional features of the modern structure of the area under 

investigation. At the same time, a similarly clear direct and indirect relationship is found 

between the basic morphological structures of the region and its deep tectonic plan, which has 

influenced the nature of the deformations in regions with a different regime of recent 

movements. 

Insofar as deformations of the sedimentary strata are the reflection of the dynamics and 

kinematics of tectonic movements, they are the structural diagnostic criteria of mobile zones in 

the Earth's crust. As shown by analysis of the available data, several unequal regions or zones 

can be identified in relation to the way in which folding deformations are manifested in the 

platform mantle. 

The most extensive region – the Pre-Caspian Trough – is characterised by extensive 

development of salt tectonics and related deformations of the over salt complex of sediments, 

including the most recent. As a result of the growth of salt massifs, gently sloping dome-

shaped uplifts are formed with a 2-5°dip of the rock on the limbs, accompanied by pinching out 

of individual interlayer towards the crown of the domes, in some cases omitting entire Pliocene 

and Quaternary series from the profile. 
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Figure 29: Diagram of amplitudes of recent tectonic movements in the Caspian and 
Turanskaya Platform regions, after “KDCP, 2002”. 

1 - Isolines of amplitudes of vertical neotectonic movements (at the base of the Middle Miocene); 2 - 
montane uplifts; 3 - low montane intra-platform massifs; 4 - areas of occurrence of Cenozoic dislocations (1 

- North-Tyubkaragansky, 2 - Sai- Utessky, 3 - Fort-Shevchenko, 4 - Tumgachinsky, 5 - Uzunbassky, 6 - 
Tarlinsky, 7 - Ushkonursky); 5 - structural zones (1 - Pre-Caspian, 2 - Uralskaya, 3 - North-Ustyurt, 4 - 

Central-Mangyshlak-Ustyurt, 5 - South-Mangyshlak-Ustyurt, 6 - Uralskaya, 7 - Kopetdagskaya, 8 - 
Kavkazskaya). 

 

In the Holocene, the growth of domes is also fairly clearly identifiable in the relief, and the most 

active domes correspond to large topographic highs (Inder). The morphological types of the 

salt domes are highly varied - arch, brachyanticlinal, monoclinal, double-limb, triple-limb. 

Careful geomorphological analysis has shown that all of these dislocations are not linked to 

major tectonic disturbances in the consolidated foundation, but are attributable to the 

dynamics of post-sedimentational re-forming of the salt bearing strata. 
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With the North-Ustyurt zone, the character of deformations of the platform mantle differs from 

that in the Pre-Caspian Trough. Here, in the upper structural stages of the sedimentary 

mantle, there is a development of small-amplitude brachyanticlinal folds replaced at greater 

depth by more complex overthrust type structures. An important feature of these structures is 

their overlapping stepwise conformation whereby the crest of each successive anticlinal fold is 

up thrown with horizontal displacement amplitude up to 300m, and the dip angles of the 

displacers in the frontal zone are 45-70°, sloping more gently with increasing depth with a 

transition to sub horizontal breaks. 

In this connection it is noteworthy that the articulation zone of the Pre-Caspian Trough and 

Turanskaya Platform has an overthrust character, confirmed by the structure of the Kalamkas 

anticline in the northern part of the Buzachi Peninsula. Overall, the spatial position of folding 

overthrust dislocations in the North-Ustyurt zone suggests that they were formed under the 

effects of submeridional horizontal compressive forces (KDPC, 2002). 

 

RECENT ACTIVE FAULTS 

One of the most important structural features of the area under investigation is the continuous 

cover of very thick platform mantle formations, which calls for a specific approach to the 

investigation of fault dislocations. In these conditions, geophysical and geomorphological 

methods of identifying and tracing faults are of particular value. Based on the experience of 

various investigators (Aristarkhova, 1971, 1981), the following diagnostic signs of faults have 

been established: 1 – magnetometric signs - local maxima of ΔTa in the form of chains and 

extended zones, bunching of ΔTa isolines, abrupt change of sign and character of anomalous 

magnetic field, abrupt change in course of magnetic anomalies; 2 - gravimetric sings - 

sequences of intense gravity peaks, abrupt change in course of anomalous zones, abrupt 

changes in character of the gravity field, shifts in the line of gravity peaks; 3 - 

geomorphological signs - linear segments of modern and ancient river valleys and drainage 

hollows, regional benches, steep slopes and bends at levels of similar age, linearly oriented 

chains of certain topographical forms (relict uplands, solonchak sinks), clear rectilinear 

boundaries between relief types (of different genesis, morphology and age). Dislocations 

showing activity during the most recent stage can normally be readily traced on the satellite 

imagery. Based on these criteria, a number of dislocations activated during the Neogene-

Quaternary stage and traced by various techniques have been identified in the region under 

investigation (Figure 30). The Precaspian Trough is described below; information about faults 

in the North Ustyurt Basin is described in relative chapter. 

To the southeast of the Pre-Caspian Trough, the edge fault formed by the South-Emba 

lineament is a well known feature. It divides the Precambrian Russian platform and the epi-
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Paleozoic Turanskaya Platform, and is part of a disjunctive zone bounding the East-European 

Platform to the east and south-east. The fault is clearly evident in the foundation and displaces 

layers of the earth's crust vertically for several kilometres. It is linked to the formation of the 

South-Emba aulacogen, and in the early and middle Paleozoic it already delineated the 

carbonaceous and greywacke formations of the Devonian - Early Carboniferous. In the 

magnetic field, the fault is marked by an abrupt change in course of magnetic anomalies, and 

in the gravimetric field - by linear zones of intense gravity peaks. On the satellite images, it is 

traced by intermittent lineaments dividing the region of moderate uplifts of the Poduralsky 

denudation plateau from the North-Ustyurt plains composed of a Middle Miocene - Quaternary 

sediment complex. 

Among the diagonal southeast lineaments, the Azgirsky and Zholdybai linear morpho-

structures are evident, running across the Pre-Caspian Trough within the area under 

investigation. 

The Azgirsky linear morpho-structure corresponds to the fault of the same name identified by 

V.S. Zhuravlev and Yu.Ya. Kuzmin (1960). This fault is probably deep and ancient, as it 

coincides with the division between dissimilar magnetic fields (slightly anomalous to the north 

and fairly intense banded anomalies to the south of the fault). It is traced less reliably with 

reference to geomorphological criteria. The Azgirsky lineament zone has a concentration of 

active salt domes, which may indicate an extremely intense redistribution of salt strata at the 

present time. The modern rate of growth of the domes has been measured and observations 

of special reference marks have shown that the surface of mount B.Bogdo is rising by 1mm a 

year, and the bottom of lake Baskunchak is settling by the same amount (KDCP, 2002). 
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Figure 30: Diagram of recent (active) faults in the Caspian and Turanskaya Platform 
regions, after KDCP, 2002. 

1 - Deep fault zones without division into kinematic types; 2 - up throw and up throw-overthrust faults; 3 - 
displacements; 4 - flexures; 5 - other faults; 6 - montane uplifts; 7 - structural zones (1 - Pre-Caspian, 2 - 

Uralskaya, 3 - North-Ustyurt, 4 - Central-Mangyshlak-Ustyurt, 5 - South-Mangyshlak-Ustyurt, 6 - Kopetdag, 7 
- Kavkazskaya) Names of principal faults (numbers next to lines): 1 - Azgirsky, 2 - Uralsky, 3 - Zholdybai, 4 - 
South-Emben, 5 - North- Ustyurt, 6 - Central-Mangyshlak-Ustyurt, 7 - South-Karatau, 8 - Karatau-Tumgach, 9 

- South-Bekebashkuduk- Shakhnakhtinsky, 10 - North-Karabogaz. 

 

The Zholdybai linear morpho-structure is also traced by its association with local troughs, 

depressions in the relief and salt domes, the occurrence of which is attributed to the active 

redistribution of salt strata in recent times. The Zholdybai lineament is not reliably confirmed 

on the geophysical traces. Its south-east flank is marked by the boundary between the 

moderate uplift region of the Poduralsky Plateau and the Prikaspiisky Plains which subsided in 

the Quaternary period. 

The Uralsky lineament is traced along the Ural River valley from Atyrau to Uralsk (Eventov and 

Pronichev, 1967). Over its full extent, it is characterised by a high density of linear relief and 
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hydrological features, forming a unified zone. In addition, the elevation difference of the 

Khvalynsky terrace on the left and right hand banks of the Ural River is clearly evident over the 

full extent of the valley within Kazakhstan. The surface of the Khvalynsky terrace is 2-3m 

higher on the left bank than the surface of the same terrace on the right bank. It follows from 

this that the Ural River valley is associated with a fault zone, where the land to the east of the 

valley is a raised block, with a lowered block to the west. An example of the modern activity of 

this zone is the horizontal displacement of the dry bed of the Ural River 10m to the southeast 

in the vicinity of Topoli village. 

At the same time, the southeast edge underwent a rising movement, producing head pressure 

and leading to the formation of a new bed following the line of the fault to the south-west. 

Modern displacements of this kind can also occur in areas of active salt tectonics. 

 

3.1.2.6 Seismicity 

The Northeast Caspian is a stable zone in terms of seismic activity. Earthquake activity of the 

Caspian region is concentrated around the perimeter of the southern Caspian Sea and along a 

northwest-southeast trend across the central Caspian Sea extending from Azerbaijan to 

Turkmenistan. The seismic trend across the Caspian Sea (Figure 31) is actually comprised of 

two parallel belts based on mapped structural trends and deep crustal faults that have been 

mapped or inferred across the Caspian Sea. 

The southernmost belt has relatively fewer earthquakes and coincides with the Apsheron Sill, 

which is a broad thrust-faulted fold. Higher seismicity is apparent in the northern belt that 

includes the possible sub-sea extension of the Greater Caucasus geologic structures, 

(Granherne, 2006). 
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Figure 31: Earthquakes of the North Caspian Region, after “Granherne, 2006”. 
 

The 1895 Krasnovodsk earthquake (Magnitude 7.5 - 8.0) occurred in the northern trans-

Caspian seismic belt on the Krasnovodsk Peninsula in western Turkmenistan. This earthquake 

is the largest reported in the area of the eastern Caspian Sea and occurred on July 8, 1895. 

Strong shaking occurred on the Krasnovodsk Peninsula in Turkmenistan. The MSK intensity of 

this earthquake has been estimated to be 10 by Bune and Gorshkor (1970). This earthquake 

was located more than 650-km south of the Kashagan development in a distinct seismo-

tectonic province. Therefore it is likely that the earthquake exhibited very low seismic effects at 

the development site. Earthquakes that have occurred north of the trans-Caspian seismic 

trends are very sparsely distributed (Figure 31). 

The northern Caspian Sea is part of a tectonically stable region comprised of the East 

European and Turan platforms (Zoneshain et al., 1990). This region is characterised by a lack 

of significant tectonism and, consequently, a very low frequency of earthquake occurrence. 

These stable platform regions, as the name implies, are some of the Earth’s least active areas 
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with regard to earthquake activity. These areas constitute the oldest areas of continental crust 

where the most active geologic processes are erosion and deposition. 

 

3.1.3 The North Ustyurt Basin Structure 

The triangular-shaped North Ustyurt basin occupies the northern part of the Ustyurt Plateau in 

Kazakhstan and Uzbekistan and adjacent lowland areas. The basin area is approximately 

250,000 km2, most of which is onshore. Only small parts of the basin are in the Caspian Sea 

and Aral Lake (Figure 32).  

The northwestern basin boundary is concealed by thin Mesozoic and Tertiary sediments; it is 

drawn along the southern flank of the Paleozoic South Emba high (Figure 33). The high is 

marked by large positive gravity and magnetic anomalies that probably are related to the 

presence of Middle Devonian and previous volcanics (Kan and Tropp, 1996). Thick Upper 

Devonian–Visean deformed greywacke clastics occur between the volcanics and thin (500–

600 m) Mesozoic sediments in the central zone of the high. The South Emba high plunges 

southwestward and the geophysical anomalies disappear in near shore and offshore areas of 

the Caspian Sea, where the boundary between the North Ustyurt and North Caspian basins is 

poorly defined. This boundary is drawn conditionally along the pinch-out zone of Kungurian 

(Lower Permian) salt. The exact location of the pinch-out zone is difficult to determine from 

seismic sections; some geologists have suggested that the salt extends into the marginal 

areas of the North Ustyurt basin. The southern basin boundary extends along the Central 

Mangyshlak and Central Ustyurt uplifts (Figure 33). The central Mangyshlak uplift is a 

structurally inverted and deformed Late Permian–Triassic rift. In the present-day structure, it is 

a foldbelt composed of a series of thrust anticlines. Sinrifting clastics are exposed in cores of 

the structurally highest anticlines. The Central Ustyurt uplift is a Hercynian suture that is 

covered by thin Jurassic-Cretaceous sediments. Below these sediments, several wells 

penetrated middle Paleozoic partially metamorphosed clastic, carbonate, and volcanic rocks 

(Letavin, 1980). The western continuation of the suture is unknown; probably it is buried 

beneath the younger Central Mangyshlak rift. 
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Figure 32: Petroleum system and assessment units of the North Ustyurt basin, after 
“Ulmishek, 2003”. 

 

The eastern basin boundary has not been drilled; most of it is offshore in the Aral Lake. On the 

basis of seismic data, the basin is bounded by the north-trending Aral-Kizylkum uplift (Figure 

33). Across this uplift, upper Paleozoic platform formations of the North Ustyurt basin are in 

contact with contemporaneous deformed and metamorphosed basement rocks of the East 

Aral basin, whereas Jurassic and younger formations are continuous between the basins. 
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Figure 33: Principal structural unit of the North Ustyurt basin, after “Ulmishek, 2003”. 
 

3.1.3.1 Tectono-Stratigraphic Development 

The North Ustyurt basin is a simple, deep, Jurassic-Tertiary sag that unconformably overlies 

more complex and poorly known pre-Jurassic structures. The age of the basement is not 

known; age estimates include Early Proterozoic, similar to the age of basement of the Russian 

craton (Khain, 1977), Late Proterozoic (Milanovsky, 1987), or late Paleozoic Hercynian 

(Letavin, 1980). Seismic and limited drilling data indicate that the basement of the basin 

probably is not a homogeneous block. The southern zone of relative uplifts, where the 

basement is at depths of 5.5–8 km (Sholtau and Yarkinbay highs, Arstan step, and 

Barsakelmes depression in Figure 33), forms a stable block of granite crust of possible 

Precambrian age. The northern zone of deep (9–11 km) basement (Beyneu, Sam, and 

Kosbulak depressions in Figure 33) possibly has oceanic or thinned transitional crust. 

Limited drilling and seismic data indicate that the basement of the Sudochi depression is 

Caledonian in age. It is composed of thick, lower Paleozoic, slightly metamorphosed, deep-

water shales and small blocks of Precambrian crust. These rocks were deformed in the Early 

Devonian; they were overlain by Early– Middle Devonian orogenic molasse clastics and were 

intruded by granites. This basement composition is similar to that of the Central Kazakhstan 
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high (Paleozoic Kazakhstan continent), indicating a possible genetic affinity of this high with 

the North Ustyurt block. 

During Late Devonian through Early Permian time, the North Ustyurt basin developed as a 

cratonic block. Rocks of that age are platform-type carbonates and clastics that unconformably 

overlie various older deposits. Seismic data show development of a relatively deep water 

Carboniferous basin in the Sudochi depression and offshore in the southern Aral Lake 

(Pilipenko, 1990). The collision time of the North Ustyurt block with the Russian craton margin 

along the South Emba suture is poorly defined. Judging from the geology of the northwest 

slope of the South Emba high in the North Caspian basin, the time of collision probably was 

pre-late Visean; alternatively it may have been Early Permian (Artinskian). Collision along the 

southern basin suture occurred in Early Permian time. The eastern boundary suture also is 

Hercynian (Late Carboniferous– Early Permian); it was formed by collision of the Kazakhstan 

continent and the Russian craton. Hercynian deformations in the North Ustyurt basin are 

deeply buried and poorly known. Significant uplifts may be deduced from the presence of thick 

Artinskian clastic clinoforms north of the South Emba high (Sapozhnikov et al., 1986). The 

clastic material was derived from the North Ustyurt block. 

Late Permian–Triassic rifting in the area of the present Central Mangyshlak uplift along the 

southern border of the North Ustyurt block indicates post-collisional relaxation and north-south 

extension. However, thick continental clastic sediments of the same age were derived from the 

Hercynian terrane on the east, where orogeny apparently continued. The next and most 

important stage of deformation in the basin took place in latest Triassic or earliest Jurassic 

time; it was related to closing of paleo-Tethys in the south and collision of the Iran and other 

continental blocks with the Eurasian Tethyan margin. The Central Mangyshlak rift was 

compressed, inverted, and deformed, and thrusting occurred in some areas of the North 

Ustyurt block. Especially intense thrusting took place on the Buzachi Peninsula and offshore 

(Figure 34); however, reverse faults and thrusts in Triassic rocks also are known from seismic 

surveys in more eastern basin areas. Since Jurassic time, the North Ustyurt basin developed 

as a gentle sag, in which sediments as thick as 5 km were deposited. Only mild deformations, 

some of which were rejuvenated movements along Triassic thrusts, are known. 

Uplift and formation of the present-day Ustyurt Plateau took place in post-Sarmatian time. 

Dense Sarmatian (upper Miocene) limestones and sandstones armour the surface of the 

plateau and prevent it from erosion. 
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Figure 34: Generalized structure of Buzachi arch and adjacent areas, after “G.F. 
Ulmishek, 2003”. 

 

3.1.3.2 Present-Day Structure 

The main features of regional structure of the Jurassic-Tertiary sedimentary cover are shown 

in Figure 33. The southern and central zones of the basin are relatively uplifted. In these 

zones, the surface of Jurassic rocks gently dips northward from depths of 2–2.5 km in the 

south to 3–3.5 km in the north. Farther north, the uplifted zones are bordered by a system of 

depressions, in which the Jurassic surface lies at depths of 4–4.5 km and the base of the 

Jurassic is at 5 km and deeper. The system includes the Beyneu, Sam, and Kosbulak 

depressions (Figure 33). Still farther to the north, the depressions grade to the gentle southern 

slope of the South Emba high. 

Post-Triassic structure of the Buzachi Peninsula has been mapped in detail because this area 

contains most of the discovered petroleum reserves of the North Ustyurt basin. The core of the 

structure is the Buzachi arch (Figure 34), with closure of about 3 km. On the crest of the arch, 

the base of Jurassic rocks is at a depth of less than 1 km, and Cretaceous rocks crop out. The 

arch dips northward abruptly into the Beyneu depression and its offshore continuation and dips 

gently southward into the South Buzachi depression. Both the arch and the South Buzachi 

depression contain several zones of linear asymmetric anticlines that are expressed in 

Jurassic and younger strata (Figure 34). The anticlinal zones are underlain by blind thrusts in 
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Triassic rocks and extend offshore. The structural framework of older parts of the sedimentary 

cover is virtually unknown because the thickness of Upper Permian–Triassic red beds is great 

(2.5–3 km) and older rocks have been penetrated by only a few wells (Ulmishek, 2003). 

 

3.1.3.3 Recent active faults 

For the region as a whole, the predominant direction of strike is north-west (290-300°) and 

north north east (20-40°), although the pattern of the fault network within the Precambrian and 

epi-Paleozoic parts of the platform is somewhat different. The former is characterised by sub 

latitudinal and north-north-east orientation of faults, and northwest orientation at the boundary 

with the Pre-Caspian Trough. For the Mangyshlak-Ustyurt region, the predominant direction of 

strike is west north west (290-310°) and north northeast (20-40°). The faults of northwest 

orientation coincide with the strike of the principal structural zones of the Mangyshlak 

foundation, were formed in the concluding period of the geo-synclinal development stage, and 

by their nature are compression structures. The most important faults are briefly described, in 

terms of structural significance, with reference to marginal sutures or inter-block sutures. 

The marginal sutures dividing the ancient East-European and young Turanskaya platforms 

include the North-Ustyurt fault located to the south of the South-Emba fault and forming a 

marginal boundary zone in conjunction with the latter. The boundary between these platforms 

of differing ages has a overthrust character, and the young platform structures are thrust over 

to the north. The overthrust character of the articulation is confirmed by seismic survey data on 

the Buzachi Peninsula and North Caspian (Ismagilov, Popkov et al., 1990). In addition, deep 

drilling and seismic profiling have demonstrated overthrusting of the Paleozoic folded 

structures with an amplitude of horizontal overlap of 40-50km. The North-Ustyurt fault is traced 

at the surface by a series of lineaments with different orientations visible on the satellite 

imagery. 

An important role in forming the modern structure of the Mangyshlak-Ustyurt system of 

dislocations is played by the Central-Mangyshlak-Ustyurt fault that marks the boundary 

between the North-Ustyurt and Mangyshlak-South-Ustyurt blocks of the Turanskaya Platform. 

This fault forms part of a planetary-scale band of deep faults along the southern edge of 

platform plains extending over 4000 km from the Belorussian massif to the Tien-Shan. The 

Central-Mangyshlak-Ustyurt fault consists of several imbricated dislocations of northwest strike 

accompanied by numerous marginal ruptures of sub latitudinal orientation branching off the 

main displacer at acute angles. The fault is clearly traced in the foundation by the 18 abrupt 

changes in sign of the geomagnetic field, and divides regions of dissimilar crustal types. To the 

north of the fault, the crust is characterised by reduced thickness (2-7 km) of the upper sialic 
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complex and increased thickness (up to 15 km) of the lower basitic complex, and to the south 

– by increased thickness (20 km) of the upper sialic complex and reduced thickness (<15 km) 

of the lower basitic complex. It should be noted that the Central-Mangyshlak-Ustyurt fault 

divides regions of different Hercynic development – eu-geo-synclinal in the south and mio-geo-

synclinal in the north. In the late Paleozoic and early Mesozoic, grabens (Mangyshlak 

aulacogen) and horsts (Central-Ustyurt) formed in the fault zone. In the late Mesozoic and 

Cenozoic, folding-overthrust dislocations occurred extensively in the fault zone under 

conditions of submeridional horizontal compression. Finally, significant gradients of recent 

movements are observed in the area of this fault, attributable both to their differing intensity on 

either side of the suture, and to the differing directionality of these movements. 
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3.2 STRATIGRAPHY 

In the sedimentary cover sequence, a subsalt, salt and suprasalt complexes are distinguished. 

Almost the entire section (over 90%) is composed of marine deposits, about one quarter of 

which is carbonate rocks. 

Subsalt complex is subdivided into two parts: lower, pre-Eifelian sandy-shale sequence with 

participation of effusive sedimentary rocks and upper, Eifelian-Artinskian with terrigenous, 

carbonate terrigenous and carbonate sulphate types of sequences. In the younger, upper part 

of the complex, on the basis of major unconformities and other characteristic features, the 

certain structural stages are recorded: Devonian-Tournaisian, Visean-Gzhelian, subsalt Lower 

Permian (Artinskian). In subsalt deposits of the Caspian Depression, 38 oil, oil-gas condensate 

and gas fields were discovered (mostly, of massive type with abnormally high formational 

pressures). 

Salt-bearing complex is composed of rock salt with interbeds of anhydrites, dolomites, potash 

magnesium salts as well as terrigenous rocks. Initially, salts occurred as sheets; however, with 

accumulation of suprasalt sequences, large local accumulations of salt rocks started forming; 

between them, the thickness of salts decreases abruptly to complete omission from the 

section. Generally, salts form a common mass, within which diapirs of different height are 

separated by local depressions. Height of salt domes within the Tengiz-Karaton uplifts reaches 

4 km; then the occurrence depth of dome arches decreases to 1-2 km. 

Suprasalt complex is composed of shallow and lagoonal-continental deposits from the Upper 

Permian to the Quaternary inclusive. Thickness of deposits varies markedly through area and 

is directly related to the arrangement and configuration of salt structures. In certain intradome 

zones vertical thickness of the suprasalt complex reaches 5 km. Above the dome arches, 

thickness is reduced. Contacts of suprasalt deposits with salt are commonly unconformable 

and transgressive. Discontinuous contacts are frequent, particularly pronounced on broken 

domes. In the study area, four openly broken-through salt domes are known within the modern 

Ural River delta. A synthetic description of the whole stratigraphic column is given. 

 

Deposits of the subsalt complex in the study area are represented with Upper Devonian-Lower 

Carboniferous terrigenous carbonate rocks, Middle Carboniferous limestones and dolomites 

as well as clayey and carbonate-sulphate sandy Lower Permian rocks. 

Salt-bearing complex belongs to the lower series of Permian system, more precisely – to the 

Kungurian stage. Under it, boreholes penetrate the Artinskian deposits characterized by fauna; 

resting directly on salt are gypsified clays, marls and sandstones of the Ufimian stage (upper 
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series of the Permian), which complete the salt accumulation stage in the Caspian 

Depression. Section of the suprasalt complex starts with thick Upper Permian clayey-sandy 

sequence. Triassic is composed of sand-pebble and sand-clayey sequences. Lower Jurassic 

deposits are mainly coarsegrained, terrigenous with pebble interbeds. Thickness is 80-140 m. 

Characteristic Middle Jurassic deposits are composed of sandy-clayey rocks. Thickness is up 

to 360 m. Upper Jurassic sequence is composed in the lower part of clayey rocks with 

sandstone interbeds; in the upper part, limestones, clayey limestones and marls prevail. 

Thickness is 550-630 m. 

Cretaceous deposits are represented by all stages of the stratigraphic chart starting with 

Valanginian and ending with Danian. Lower series is composed of clays, siltstones, sands and 

sandstones with total thickness of about 1,000 m. Upper series, except for the terrigenous 

Cenomanian, is made up of marls, chalk, limestone to 500 m thick. 

Paleogene formations make up a uniform clayey-marly sequence with opoka-like clays and 

calcareous siltstones in the lower part and carbonate clays above. Deposits of the Neogene 

system are mainly composed of clay-marly and sandy rocks of the Apsheronian and 

Akchagylian stages (Pliocene). Total thickness of Paleogene and Neogene ranges within 130-

320 m (Abdulin A.A., 1981). 

Quaternary section typical of the study area is 30-35 m thick and is stratified as follows on the 

basis of drilling evidence: 

 Lower Quaternary Baku Horizon is penetrated at a depth of 15-28 m. Thickness is 5-10 

m. It is composed of dense grey and fat brown calcareous clays; in places, sandy and 

ferruginated. 

 Khazarian (Middle Quaternary) Horizon has a continuous occurrence at a depth of 10-

18 m. Brown gypsified clays, interbeds and lenses of fine-grained sands and siltstones. 

Above, coquina interbeds of 0.5-1.0 m are recorded. 

 Khvalynian (Upper Quaternary) Horizon. Thickness 5-7 m. Dense structureless brown 

clays and loams with interbeds of light calcareous sandy loams and fine-grained sands. 

Upper Khvalynian deposits are exposed at absolute elevations above 22 m. 

 Novocaspian (Holocene) Horizon. Fine-grained and dust-like sands, sandy loams, 

loams, sandy silts and clays, coquina. Thickness to 7 m. Deposits are associated with 

the last Caspian Sea transgression, its maximum reaching minus 22 m. 

Modern Caspian deposits are distinguished (Upper Novocaspian); on the coast, they are 

recorded to elevations of –26 m. The latter, besides the listed forms, also contain Mytilaster 

lineatus Gmel (Stratigraphic Glossary of the USSR, 1982), which penetrated to the Caspian 

Sea at the beginning of the ХХ century. 
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Continental Quaternary deposits comprise alluvial loams, sandy loams and sands of the 

modern Ural and Emba river deltas to 10 m thick, alluvial deposits of their floodplains and 

riverbeds as well as inequi-granular sands and sandy loams in narrow valleys of modern 

streams. Deposits of sors are composed of brown-grey salinized sandy loams, sands, loams 

and clays 1-2 m thick. Aeolian sands 2-4m thick occur now and then. 

 

The oldest rocks that have been drilled in the North Caspian basin are of Early and Middle 

Devonian age. Lower Eifelian shallow-shelf carbonates overlain by upper Eifelian– Givetian 

deep-water organic-rich calcareous black shales were penetrated in the Karachaganak field on 

the north basin margin (Konyukhova, 1998). Undivided Lower Devonian–Eifelian and Givetian 

shallow-shelf carbonate rocks were also encountered in several wells on the east basin margin 

at depths of 5–6 km (Akhmetshina et al., 1993). Distribution of pre-Upper Devonian rocks and 

paleo-geographic conditions of their deposition in the North Caspian basin are virtually 

unknown. The stratigraphy of younger, upper Paleozoic (Upper Devonian– Lower Permian) 

subsalt rocks is known much better; this stratigraphy is complex and varies significantly on 

different basin margins. 

 

3.2.1 North and West Basin Margin 

The narrow north and west margin is characterized by the presence of three thick carbonate 

formations in the Upper Devonian– Lower Permian interval. These formations are separated 

by lower-middle Visean and lower Moscovian (Verey Horizon) clastic sections. Each carbonate 

formation forms a barrier reef trend and grades basinward into thin deep-water black-shale 

facies (Grachevsky et al., 1976). The clastic formations form clinoforms (clastic wedges) on 

the paleo-slope. Both basinward progradation of the formations and back-stepping of younger 

barrier reefs toward the outer shelves are known in different parts of the margin. Only a few 

local carbonate build-ups (atolls, pinnacles) have been discovered basinward from the barrier 

reefs, one of which contains the giant Karachaganak field (Figure 35). Several carbonate 

banks with possible pinnacle development are inferred at depths of 6–7 km along the margin, 

but only two such banks have been penetrated by several wells. Therefore, the extent as well 

as the presence of some of the banks remains speculative (Solovyev et al., 1992). 
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.    

 

Figure 35: Cross-section through north basin margin. Located in the westernmost portion of the northern margin. After “Ulmishek, 2003” 
and Cross section through Karachaganak carbonate build-up, after “Ulmishek, 2003”. 

D3, Upper Devonian; C1, C2, and C3, Lower, Middle, and Upper Carboniferous; P1, Lower Permian (Asselian-Artinskian); C1t, Tournaisian; C1v–s, Visean–Serpukhovian 
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3.2.2 East-Southeast Basin Margin 

The main carbonate section of the east-southeast basin margin is of late Visean–Late 

Carboniferous (in places as young as Early Permian) age. The section is separated into two 

parts, informally called KT-I (upper) and KT-II (lower) in Russian literature (KT stands for 

carbonate formation in Russian), by a shale interval in the middle Moscovian (Podol Horizon). 

Basinward, both carbonate formations grade into organic-rich black shales (radioactive shale 

beds of local nomenclature). The lower formation extends farther west and north compared to 

the upper one. Barrier reefs are present along basinal edges of both formations, but they are 

not as well developed as on the north and west margin (Figure 36). 

The carbonate section of the east-southeast margin is underlain by the greywacke clastic 

Izembet (Zilair) Formation of Late Devonian–Early Carboniferous (Famennian-Visean) age 

(Bakirov et al., 1991). Seismic data indicate that from the crests of basement arches of the 

Astrakhan-Aktyubinsk system toward the Urals and toward the South Emba high, the 

formation thickens from about 500 m to as much as 7,500 m. Clastic material was derived 

from the Mugodzhary microcontinent and Silurian volcanic arc (both presently incorporated 

into the Ural foldbelt), which were accreted to the craton in Middle Devonian–Frasnian time 

(Arabadzhi et al., 1993). Fine clastic material dominates the lower part of the Izembet 

Formation, which also contains some detrital carbonates; these rocks were probably deposited 

in a deep-water basin. Upward in the section, clastic material coarsens, and beds of 

conglomerates and thin coal seams appear. Apparently, clastic sediments from the 

Mugodzhary provenance did not reach the north half of the east basin margin. There, rocks 

correlative to the Izembet Formation are thin deep-water black shales overlying Frasnian 

limestones. Several wells have reached the bottom of the greywacke formation; they 

penetrated Lower Devonian and Frasnian carbonates (Akhmetshina et al., 1993). However, 

because of the great burial depths, the distribution of Devonian carbonate rocks remains 

poorly known. 

The Middle–Upper Carboniferous carbonate formation is overlain by a thick section of Lower 

Permian orogenic clastics that form fans descending from the Urals and the South Emba high. 

Along the Urals, the clastic rocks are deformed into several lines of long, narrow anticlines 

probably associated with thrusts. 
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Figure 36: Cross section through east basin margin, after “Ulmishek, 2003”. 
Suprasalt oil fields are not shown. Subscripts 1, 2, and 3 denote lower, middle, and upper subunits. D, Devonian; C, Carboniferous; P, Permian; t, Tournaisian; v, Visean; 

m, Moscovian; pd, Podol Horizon; P1k, Kungurian; Tr, Triassic; J, Jurassic; K, Cretaceous.



 

81 

3.2.3 South Basin Margin 

Pre-Permian clastic rocks have not been encountered in wells on the carbonate platforms of 

the south basin margin; however, indirect evidence suggests that they may be present in the 

Middle Devonian of the Astrakhan arch. A few meters of clastic rocks recently penetrated at 

the bottom of a deep well at a depth of almost 6 km may lie at the top of the Middle Devonian 

(Orlov and Voronin, 1999). The Karaton-Tengiz zone in the eastern part of the south basin 

margin is composed of Upper Devonian through Bashkirian (Middle Carboniferous) carbonates 

that form large atolls many hundreds of meters high (Figure 37 and Figure 38).  

 

 

Figure 37: Carbonate build-ups of northern Caspian Sea. Scale approximate. After 
“Ulmishek, 2003”. 

 

Outside the atolls, the carbonate rocks grade into a deep-water basinal facies. The tops of 

atolls are unconformably overlain by thin Lower Permian (mainly Artinskian) anoxic black shale 

that was deposited on submerged uplifts below the depth of organic carbonate sedimentation. 

The shale thickens rapidly on slopes of the atolls. The zone extends into the Caspian Sea, 

where several carbonate build-ups have been mapped by seismic surveys (Murzagaliev, 

1995).  

The Astrakhan platform west of the Caspian Sea is also composed of Upper Devonian to 

Bashkirian carbonate rocks. However, unlike in the Karaton-Tengiz zone, the platform is 

actually a flat carbonate bank slightly deformed into a gentle regional arch above the 

basement high (Figure 39). The giant Astrakhan gas field is located on the crest of the arch. 

Barrier reefs are developed along edges of the carbonate platform. The top of the platform is 

unconformably overlain by thin Lower Permian deep-water shales. Seismic data suggest the 

presence of a similar platform in the western area of the Caspian shelf (Figure 37). 
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South and west of the Astrakhan carbonate platform, the south basin margin is formed by a 

thrust belt north of the Hercynian Karpinsky foldbelt. In this thrust belt, known as the Karakul-

Smushkov zone of deformation, Lower Carboniferous to Bashkirian carbonates are the oldest 

rocks penetrated by drilling. The carbonates underlie the Middle Carboniferous– Lower 

Permian clastic section that thickens to the north and is truncated by a pre-Jurassic 

unconformity to the south. The upper part of the section is composed of Artinskian orogenic 

clastic rocks as much as 1,000 m thick. 

Throughout most of the basin, the Devonian–Lower Permian sequence is overlain by the 

Kungurian (uppermost Lower Permian) evaporite sequence, which is primarily composed of 

salt but includes some clastic and anhydrite beds. The evaporites are absent only in an 

extreme marginal zone adjacent to the Urals and along the south basin boundary where they 

are truncated by pre-Late Permian or pre-Jurassic unconformities (Figure 38). 
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Figure 38: Cross section of Karaton-Tengiz zone, after “Ulmishek, 2003”. 
D2 and D3, Middle and Upper Devonian; C2, Middle Carboniferous; P1 and P2, Lower and Upper Permian; Tr, Triassic; K, Cretaceous; Cz, Cenozoic. 
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Figure 39: Cross section of Astrakhan arch, after “Ulmishek, 2003”. 
The arch constitutes westernmost segment of Astrakhan-Aktyubinsk system of highs. Scale is not available. Total length of section is about 60 km. AR, Archean; PR, 

Proterozoic; PZ, Paleozoic; D, Devonian; C, Carboniferous; P, Permian. Subscripts 1, 2, and 3 denote lower, middle, and upper subunits. Symbols B, I P, II P, II P’ and F 
are referred to seismic reflector 
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3.2.4  Details on Zones B and C 

The structure of the post-salt sequence consists of the Upper Permian to Neogene deposits 

inclusive, overlapped by Quaternary depositary cover. Upper Permian deposits occurring in 

the intradome zones and found in some places are the most ancient lithologic and 

stratigraphic divisions in this series. The overlying Triassic deposits are universally developed 

and involved in the structure of practically all intradome zones except young Jurassic-

Cretaceous and Neogene compensatory intradome zones. Stratigraphic description is given 

on the basis of the sections penetrated by the wells drilled at the studied territory.Post salt 

section down to Kungurian deposits is penetrated by drilled wells in the crests of the domes 

(GAS, 2007; Figure 40). 

 

 

Figure 40: Well section stratigraphic correlation in Caspian Sea and coastal zones, after 
“GAS, 2007”. 

а – location of well and correlation line, b – well section correlation on lines 1 (Astrakhan – Dossor), Well: 1 
– Astrakhan -4 and composite section of Paleozoic deposits of Astrakhan anticline; 2 – Zhambay-22; 3 – 

Zhambay G-1; 4 – Oktyabrskaya G-2; 5 – Zhanatalap G-5; 6 – Martyshi G-3; 7 – Dossor G-518. 
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Figure 41: Synthetic column in the centre of the Precaspian basin, showing the 
thickness of sediments, paleo water depths, ages and main seismic horizons, with 

velocities and density. 
 

Zone C is well studied because of the presence of Tengiz reservoir. In particular, works carried 

out by Harris P.M. clearly define the stratigraphical asset of the zone. However, these studies 

are focalized on the carbonatic body and the description of the post-salt sequence is not 

discussed in detail. 

For better understand the stratigraphical asset of the area, some cross-sections are 

observable in the following pages (  

Figure 42, and Figure 43). 
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Figure 42: Schematic cross-section NW-SE across Tengiz-Karaton Platform, after “Max 
Petroleum, 2010”. 

 

 

Figure 43: Summary of the typical stratigraphy in Zone C. 
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3.3 DETAILS ABOUT SALT DOME STRUCTURES 

Considering the relevance of the Kungurian salt layer in the area (about 1800 structures in the 

Precaspian basin are attributed to movements of Permian salt (Ismail-Zadeh et al., 2004), a 

dedicated chapter has been written. The complexity of this topic is discussed above. It has 

been to note that salt in this area was matter of study from the beginning of the XX century. Oil 

in the Emba area has been produced from salt diapir structures since 1908, when a test at 

Karatchungul flowed at rate of 135 barrel of oil per day, and different others reservoirs started 

their production between the 1920 and 1930. A study of Sanders (1939) discusses in great 

detail (obviously, in relation with surveys techniques and knowledge available at that time); 

some examples elaborated in the ‘30s (map of salt domes in Southern Precaspian Basin and a 

dome section) are visible in Figure 44 and Figure 45. 

 

 

Figure 44: Historical map of salt domes in Southern Precaspian Basin, after “Sanders, 
1939”. 
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Figure 45: Historical dome cross-section, after “Sanders, 1939”. 
 

Evaporitic caprocks in halogenic basins have regional significance. They play a crucial role in 

the formation of hydrocarbon fields. The base of evaporitic sections generally includes 

sulphate–carbonate rocks overlain by rock salt. In the process of lithogenesis, the residual 

brine is squeezed out into the underlying sulphate– carbonate sediments. Thus, their 

screening properties are upgraded and dense (virtually massive) evaporitic rocks are formed. 

The role of sulphate–carbonate rocks as caprocks is particularly important, because highly 

plastic halogenic rocks are squeezed out into salt domes. They are absent in intradome 

depressions, where the suprasalt rocks overlie basal layers of the evaporitic sequence. In 

such cases, the role of evaporitic caprock is played exclusively by sulphate–carbonate rocks, 

which are not as plastic as halogenic rocks and actually do not participate in the structure of 

salt domes. Isolating properties of evaporitic rocks are upgraded with increase in their grain 

size and depth of occurrence. 

At shallow depths, they generally do not serve as caprocks (Kalinko, 1970). Evaporitic 

caprocks with a thickness of up to 20 m provide the reliable conservation of hydrocarbon 

pools. They are characterized by the following petrophysical parameters (density and velocity 

of longitudinal waves, respectively): gypsum 2.10 to 2.50 g/cm3, 1.5–4.6 km/s; anhydrite 2.40–

2.90 g/cm3, 1.5–6.0 km/s; and rock salt 2.15–2.30 g/cm3, 4.5–5.5 km/s. 

Carbonate and, particularly, evaporitic rocks can include the so-called “false” caprocks. In 

general, they are composed of anhydrites with primary or secondary fracturing and weak 

permeability. Hydrocarbon gases (and oil as well in some places) squeeze out into the false 

caprocks to the real caprocks. Based on seismic data, structural traps are frequently recorded 

at the base of the false caprock. Therefore, the filling of such traps turns out to be incomplete. 
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The value of underfilling of the trap is defined by the thickness of the false caprock 

(Ovkharenko et al.,2007). 

 

3.3.1 Permian Deposition, Salt Formation, and Movements 

During the late Artinskian to early Kungurian (≈268– 265 Ma, Early Permian), thick deepwater 

clastic fans were deposited, the sediment being derived from erosion of a continent to the 

southeast. In Kungurian time (263–258 Ma), the supply of clastic sediments ceased, the 

climate became arid, and a sequence of thick beds of clean, uniform, marine halite 

interbedded with thin black shales rapidly buried the fans. This sequence accumulated to a 

thickness of 2–2.5 km throughout a basin bounded by clastic shore facies to the south and 

east and 0.5–1-km-thick beds of carbonate and sulfate sediments on shelves to the north and 

west. 

In Kazanian time (258–253 Ma, Late Permian), a cyclic succession of thin halite beds 

interbedded with shales accumulated until the total evaporite succession reached a thickness 

of about 4.5 km in the center of the basin. Because the basin still had a marine connection to 

the southwest, the interbeds are black marine shales in the west, whereas time-equivalent 

strata in the east are red as a result of terrigenous input from the Urals. 

Erosion of the north south–trending Ural Mountains to the east profoundly influenced Permian 

to Triassic sedimentation and consequent salt tectonics in the east of the Precaspian basin. 

Thus, while Kazanian salt was still accumulating in the centre and western part of the basin, 

clastic sediments sourced from the Ural Mountains were prograding westward into the basin. 

Loading of the salt by these prograding sediments had down-built several rows of inclined 

walls of Kungurian salt basinward fromthe easternmargin of the basin by the end of the 

Permian. Meanwhile, a series of salt rollers having steeply dipping basinward flanks developed 

beneath the footwalls of down-to-basin, normal, syn-depositional faults. The faults define the 

half graben along the southeastern margin of the Precaspian basin as their overburden glided 

down-slope (zone D1, Figure 46). At the same time, more symmetrical salt walls hundreds of 

kilometres long developed in thicker salt beneath the slope along the northern and western 

flanks of the basin (in zone D2, Figure 46). The reliefs of these salt walls increase 

progressively from 3 to 5 km basinward, reflecting both basinward thickening of the salt and 

thin-skinned lateral compression near the toe of the slope. Most of the salt sequence on the 

northern and western shelves remained essentially passive, but some underwent Late 

Permian through Triassic down-to-the basin faulting and block rotation, where the slope 

instability propagated backward (zone D2, Figure 46). 
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Figure 46: Salt structures in the Precaspian basin from the Triassic to the 
EarlyJurassic, after “Volozh et al., 2003”. 

Upper panel: Sketch map of zones (A–E) having different styles of salt structures. Transpression was 
transmitted into zone A from the Ural Mountains across a strike-slip shear having about 700 km of dextral 
displacement. Panels A, B, D1, D2, and E present seismic profiles showing structures in salt across zones 
indicated. Seismic profiles illustrating structures in salt across zone C are shown in Figures 7, 12, and 13. 
P1 = Lower Permian; P1kg = Kungurian; P1kg1 = lower Kungurian; P1kg2 = upper Kungurian; P2 = Upper 

Permian; P2kz = Kazanian; P2t = Tatarian; T = Triassic; T12 = Lower to Middle Triassic; J = Jurassic; J–K = 
Jurassic to Cretaceous; K1 = Lower Cretaceous; K2 = Upper Cretaceous; Pl = Paleogene. 

 

3.3.2 Triassic Deposition and Salt Movements 

By the end of the Permian, transpression in the Ural Mountains had localized to the Urals-

Kopet Dagh strike-slip shear zone (Figure 46 key map) that had accumulated about 700 km of 

dextral displacement along the mutual border between the Urals and the Precaspian basin 

(Khramov, 1991). During the Triassic, the South Emba shear zone trended west-southwest– 

east-northeast along the southeastern margin of the Precaspian basin and now sinistrally 

offsets by about 60 km both a pre-Jurassic deformation front in the west and folds along the 

western margin of the Urals in the east (Figure 46, Volozh et al., 1999). 

The source of terrigenous sediments prograding an arcuate depositional shelf into the basin 

migrated from the east to the southeast from Late Permian through the Triassic (Volozh et al., 
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1996). Existing salt structures increased in relief as slope progradation rapidly down-built 

zones of successively younger salt structures basinward, first across zones A to C and then 

across zone D1 to C (Figure 46). The zones in Figure 46 emphasize how the structures 

propagated basinward, whereas those in Figure 47 emphasize their present shape. Many of 

the oldest Late Permian structures in zone A reached high reliefs before they became starved 

and inactive as the Kungurian salt supplying them closed to primary welds after the Early 

Triassic. Some deep turtleback structures survive where the primary welds around adjoining 

salt structures did not meet. Platform sediments showing no sign of salt movement began to 

bury the crests of starved diapirs in a zone that widened basinward, first from the eastern, and 

then from the southeastern margins. Reverse faults associated with thick-skinned Ural 

transpression propagated upward from beneath salt walls that were already inactive and 

alongside asymmetric salt walls that were still growing during sedimentation along the western 

side of zone A (Figure 46). 

 

Figure 47: Map of Precaspian basin showing current shapes of salt structures, after 
“Volozh et al., 2003”. 

Zones having various shapes of salt structure: a1 and a2 = equi-dimensional and wall-like pillows of 
Kungurian salt; a3 = rollers, anticlines, and turtlebacks of Kungurian salt; b = walls and domes where b1 = 
halokinesis involved both Kungurian and Kazanian salt; b2–b5 = halokinesis involved only Kungurian salt; 
b2 = diapiric bythe end of the Permian; b3 = diapiric bythe end of the Triassic; b4 = diapiric bythe end of the 

Jurassic; b5 = not yet diapiric, but some have surfaced and extruded or been recycled.  



 

93 

 

 

In zone B (Figure 46), the crests of some of the salt stocks and short salt walls developed 

Triassic sag basins that were elongated north–south (Figure 48).Crestal sag basins between 

salt cusps suggest lateral extension. Although sedimentation in some of the sag basins in 

zone B appears to be contemporaneous with the last of the transpressional reverse growth 

faults beneath the shelf in zone A (see Figure 46), crestal sag basin formation is interpreted as 

contemporaneous with down-to-the-basin normal growth faulting further basinward in zone C 

(Figure 46). As in zone B, continued basinward migration of the depotrough through zone C 

down-built a succession of huge asymmetric salt stocks. 

In contrast to the vigorous sediment progradation from the eastern and southeastern margins 

of the Precaspian basin, the northern and western margins remained comparatively starved of 

clastic sediment and were bordered by carbonate and/or sulphate shelves until Kazanian time 

(zone D2). Salt and overlying strata are characteristically flat lying and undeformed shelfward 

of a marginal zone of (mainly) down-to-the basin faults (zone D1). 

In the basin centre beyond the slowly encroaching shelf (zone E), slow, essentially continuous 

sedimentation that kept pace with basin subsidence from the Early Triassic through the 

Cretaceous down-built huge salt massifs. These have reliefs ranging from 3 to 8 km and 

horizontal dimensions of about 100 km without any significant overhangs having been 

recognized (zone E in Figure 46, zone b1 in Figure 48). The earliest and largest of these salt 

massifs developed above the early Kungurian clastic fans beneath the salt. Slightly smaller 

and younger structures commonly surrounded larger massifs. 
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Figure 48: Seismic profile (located in Emba River Valley) and restoration to stated 
times. Dotted line along right-hand end of restored profiles indicates changing profile 

length by area balancing. 
 

3.3.3 Jurassic Deposition and Salt Movements (Mainly Extrusion and Overhangs) 

During the Early Jurassic (Hettangian and Sinemurian, ≈208–198 Ma), another wave of salt 

diapirism migrated into the basin, now from the southern boundary (zones D2 to C in Figure 46 

key map, from a2 to b4 in Figure 47). Initiation of this wave is attributed to down-building by 

clastic sediments prograding fromthe active Donbass-Tuarkyr fold belt beyond the southern 
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boundary of the basin, but it continued to propagate northward during the Middle Jurassic in 

response to lateral shortening. 

This folding and the more general Early Jurassic (Cimmerian) uplift attributed to the closure of 

paleo - Tethys and the resulting Cimmerian convergence (Alexander et al., 2000) led to an 

approximately 35-my hiatus (Figure 49). This hiatus is generally represented as an Upper 

Triassic–Middle Jurassic disconformity but is expressed as an angular unconformity in the 

vicinities of still-active salt structures. Some Late Permian to Early Triassic pillows of 

Kungurian salt deflated to drive diapirs that surfaced in association with Jurassic growth faults. 

Many of the diapirs in Zone C (Figure 46 key map) have significant overhangs interpreted as 

sheets of allochthonous (Kungurian) salt that extruded over the surface, likely accompanied by 

some recycling by dissolution and recrystallization. 

Backstripping of profiles of salt structures indicates that many were not only at the surface in 

and after the Late Permian but extruding above it, particularly during the Late Triassic–Middle 

Jurassic depositional hiatus, and that some were still extruding until the Late Jurassic. One of 

the youngest sheets of allochthonous salt so far recognized in the Precaspian basin was also 

the longest, that at Kum (Figure 50). This salt formed a pillow from Middle Permian through 

Triassic times after the salt structure immediately to the west had already surfaced. The crest 

of the Kum salt diapir appears to have been at, or close to, the surface from the Late Permian 

to the Late Jurassic (Figure 50). The column of Permian to Upper Jurassic strata (density = 

2600 kg m-3) loading the salt source (density = 2200 kg m-3) was only 1.6 km high. Balancing 

forces (density of salt x gravitational acceleration x height of salt column = density of 

overburden x gravitational acceleration x height of column of overburden) implies that gravity 

alone could have supported a salt column with a level of neutral buoyancy only 0.3 km above 

the surface. Studies of salt extrusions at different stages of development in Iran indicate that 

where salt extrudes faster than it dissolves and where deposition of overburden is slow (or 

negative), extruding salt rises to its level of neutral buoyancy in an extrusive dome that then 

spreads into a sheet of allochthonous salt (Talbot, 1998). By the Late Jurassic, progressive 

squeezing of autochthonous salt from depth (Figure 50) had extruded a sheet of allochthonous 

salt at Kum that reached a thickness approaching 1 km and an east–west length of 14 km; it is 

not clear whether this extrusion was submarine or sub-aerial, and there is no known 

associated oil (Volozh et al., 1994). Rapid deposition of Upper Jurassic to Lower Cretaceous 

non-kinematic strata buried the extruded salt sheet at Kum, but subsequent deposition 

reactivated and upbuilt the diapir feeding it and also led to the allochthonous salt sheet 

upbuilding a salt pillow (Figure 50). 

As extrusion starved increasing numbers of diapirs, the zone of starved salt structures in 

zones B and C (Figure 46) widened behind a basinward-migrating zone of salt structures that 
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were still active. Many of these active structures in zone C (Figure 46) extruded from deeper 

levels than Kum (e.g., Figure 48). Consequently, these could have risen much higher than 0.3 

km and rivaled the currently active salt fountains of Iran, which rise to as much as 1 km above 

their bedrock orifices (Talbot, 1998). Numerical models tuned to the dimensions and measured 

velocities of extrusion of one of the largest Zagros salt fountains suggest that the salt of this 

fountain has been extruding from its bedrock orifice at rates near 1 m/yr for approximately 

56,000 yr, the time estimated to exhaust its local source layer. The Iranian salt fountains are 

considered to be modern analogs of many salt structures in the Precaspian basin from the 

Late Permian to Middle Jurassic. 

None of the salt overhangs in the Precaspian basin approach the dimensions of the large salt 

nappes in the Gulf of Mexico (e.g., Worrall and Snelson, 1989). It’s attributed this to basin 

configuration. In the Gulf of Mexico, rapid sedimentary progradation results in salt nappes that 

spread downslope by gravity toward an open ocean basin. By contrast, the Precaspian basin 

was always closed, and salt extrusions there had no open continental slope toward which they 

could gravitate. 

The current geometry of the approximately 1800 salt structures known in the Precaspian basin 

is summarized in map form in Figure 47 and in table form in Figure 49. Salt structures form an 

unusually high proportion of the area of the Precaspian basin, particularly at the Jurassic 

subcrop, which is generally less than 2 km deep. 
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Figure 49: Summary of sedimentation and halokinesis in the Precaspian basin. Regions 
a1–b5 are identified in Figure 47. 
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Figure 50: The sheet of allochthonous Kungurian salt at Kum (Kazakh area of the Volga 
mouth) was extruded in the Late Jurassic and began to upbuild during the Paleogene, 

after “Volozh et al., 2003”. 
Upper panel: seismic profile showing the Kum overhang. Bottom panel: evolution sketches of the Kum 

overhang (a–g). P = pre-Kungurian substrate; P2–T = Middle Permian to Triassic; J1–2 = Lower to Middle 
Jurassic; J3 = Upper Jurassic; K1 = Lower Cretaceous; K2 = Upper Cretaceous; N–Q = Neogene to 

Quaternary. 

 

3.3.4 Jurassic–Paleogene Deposition and Polygonal Faults 

A pattern of polygonal grabens and half grabens connects pre-existing salt structures 

throughout most of the basin (Figure 53) and is interpreted here as having initiated during the 

Early Jurassic (Cimmerian) uplift and the extrusion of large volumes of salt withdrawn from 

depth during the consequent hiatus. When subsidence resumed, deposition throughout the 

basin was of shallow-water Jurassic to Paleogene argillites, sandstones, and thin carbonate 

beds. A minor discontinuity near the Jurassic- Cretaceous boundary (Figure 49) might be 

associated with localized uplift because of collisional events along the southern margin of 

Eurasia (Alexander et al., 2000). 

Jurassic to Paleogene sediments that buried starved salt structures are post-kinematic and flat 

lying with a uniform thickness between 2.1 and 2.5 km. Contemporaneous sediments 
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deposited over potent diapirs are syn-kinematic and deformed by narrow asymmetric salt walls 

or stocks, most in the hanging walls of normal growth faults. It’s inferred that the faults 

weakened and thinned any overburden that had onlapped exposed stillpotent Permian–

Triassic salt structures. These structures reacted by actively up-building back to the 

depositional surface and resuming down-building. Diapiric salt walls and stocks that were 

down-built throughout the Jurassic to Paleogene are symmetric in profile and surrounded by 

overburdens with uniform thickness. 

The faults in the laterally isotropic polygonal network display a wide range of orientations and 

degrees of connectivity (Figure 53). Complex polyhedral defined by faults are typically 5–20 

km across and involve strata having regional dips of less than 1° and thicknesses between 2.1 

and 2.5 km. Line balancing along profiles having a wide range of orientations indicates that 

lateral extension across the faults averages approximately 5% in all horizontal directions. The 

faults are curved in plan (Figure 53) and more or less listric in section. Fault pairs defining a 

graben are seldom symmetric. Some converge downward to intersect near the base of the 

Jurassic (which can be thrown by as much as 0.6 km). 

More converge at the crests of potent Permian–Triassic structures of Permian salt that 

reactivated and grew from Jurassic to at least Paleocene; some are still active. As in other 

documented polygonal fault systems (e.g. Walsh et al., 2000), most fault traces in the 

Precaspian basin follow the axes of polygonal anticlines (Figure 53), are confined to a few 

stratigraphic intervals of post-‘‘rift’’ basin infills, and include growth faults that reach the 

depositional surface. Polygonal systems of normal faults point to isotropic lateral extension. No 

independent evidence for either lateral extension of the Precaspian region or uplift of the 

magnitude that could account for the calculated 5% isotropic extension exists. Even an uplift of 

2 km would result in only 0.0314% lateral extension. 

Most polygonal fault patterns have been attributed to a gravity-driven mechanism instead of 

lateral tectonic forces (e.g., Ismail-Zadeh et al., 2002). Most of the above references invoke 

density inversions at the base of the faulted system, but Cartwright and Lonegran (1996) cited 

volumetric contraction during compactional dewatering of mud-dominated intervals. 

Compactional dewatering is not likely to have been particularly significant in the Precaspian 

basin, where the polygonal fault system developed in sediments that were not dominated by 

argillites. Instead, most faults rooting to the crests of reactivating structures of low-density salt 

implicate gravitational forces. The only part of the Precaspian basin missing polygonal faults is 

along the eastern margin (Figure 53), where salt structures had been starved by the end of the 

Triassic, and fluids beneath the deep Kungurian salt layer lost their usual overpressures along 

Ural-related thrusts (Figure 46, zone A). 
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It’s attributed the polygonal fault system in the Precaspian basin to gravity having reactivated 

large salt structures that still had the potential for growth in smaller structures when they were 

buried further. Although it involves apparently brittle faults, the polygonal pattern is like the 

shallow levels of spoke patterns of gravity overturn modelled in ductile materials by Ismail-

Zadeh et al. (2000). This comparison implies that the estimated 5% lateral extension might be 

confined to above polygonal salt uplifts and compensated on a basin scale by equivalent 

isotropic shortening across the intervening salt-withdrawal basins. Despite involving brittle 

faults in the top 2.5 km, the pattern involved withdrawal of salt from an autochthonous source 

layer about 5–10 km deep. The brittle deformation pattern at shallow levels in the Precaspian 

basin is therefore attributed to ductile flow of salt and overburden deeper in the unstable 

section. 

In every other documented example of the polygonal fault system, polygonal normal faults 

near the top boundary directly overlie polygonal uplifts near the bottom boundary. This implies 

simple prismatic polygonal movement cells, very different from the complex spokes movement 

patterns modelled in very unstable sections by Talbot et al. (1991), in which polygons near the 

top boundary are offset half a wavelength from those near the bottom boundary. By analogy 

with thermal convection (Talbot et al., 1991), gravity drives stronger density instabilities in 

movement patterns that are more complex than the simpler movement patterns driven by 

weaker density instabilities. The generally simpler Jurassic to Paleogene movement cells 

obvious in the Precaspian basin were smaller in scale and complicated by inheriting aspects of 

the more complex and larger scale Permian–Triassic gravity structures. 
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Figure 51: The Kotyrtas North oil field (located on North Emba River Valley) is trapped 
above a sheet of allochthonous Kungurian salt extruded in the Middle Triassic, after 

“Volozh et al., 2003”. 
Upper panel: seismic profile showing the Kotyrtas North overhang. Bottom panel: evolution sketches of the 
Kotyrtas North overhang (a– f ). P = pre-Kungurian substratum; P1kg = Lower Permian (Kungurian); P2–T1 
= Middle Permian to Lower Triassic; T2 = Middle Triassic; T3 = Upper Triassic; J2–K2 =Middle Jurassic to 

Upper Cretaceous; N–Q = Neogene to Quaternary. 
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Figure 52: A sheet of allochthonous Kungurian (±Kazanian salt) extruded in the Middle 
to Late Triassic trapped the Novobogatinsk oil field (located near Atyrau), after “Volozh 

et al., 2003”. 
Upper panel: seismic profile showing the Novobogatinsk overhang. Bottom panel: evolution sketches of 

the Novobogatinsk overhang (a–d). T3–J1 = Upper Triassic to Lower Jurassic; J2–3 = Middle to Upper 
Jurassic; K1–2 = Lower to Upper Cretaceous. 
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Figure 53: Maps of part of the southern Precaspian basin showing normal faults off-
setting base Cretaceous, after “Volozh et al., 2003”. 

 

3.3.5 Cenozoic Deposition 

Sedimentation was slow in the intra-continental Precaspian basin during the Late Cretaceous 

but increased during renewed Paleogene subsidence. Many of both the potent Permian–

Triassic salt structures and their narrower Jurassic to Paleogene upward extensions 

reactivated in Neogene times so that they up-built and lifted local overburden (Figure 48 and 

Figure 50). 

During the Neogene, decreasing numbers of salt withdrawal basins localized to the margins of 

still-potent salt structures. Most such basins tend to be deep and aligned (e.g., 20 x 5 km) 

along northeast–southwest faults in the basement that reactivated beneath the margins of salt 

massifs in a central region now characterized by low relief and saline lakes. Some of the 

sheets of allochthonous salt emplaced in the Triassic and Jurassic in zone C (Figure 46 key 



104 

map and Figure 47, zones b3 and b4) upbuilt short-wavelength pillows in the Late Cretaceous 

and/or Neogene (e.g., Figure 50). 

The geography of the Precaspian basin changed dramatically during the Pliocene, as a deep 

basin developed in the area of the South Caspian Sea (Figure 54) (Devlin et al., 1999). 

Subsidence kept pace with the rapid accumulation of 5–8 km of Pliocene sediments (which 

serve now as the main hydrocarbon reservoir rocks in the basin), so that the South Caspian 

Sea remained shallow. Sediments in the eastern half of the basin were red-brown terrigenous 

clastics supplied fromthe paleo- Amu-Darya river in the east (Figure 54). Those in the western 

South Caspian basin were gray organic-rich clastic rocks supplied from the paleo-Volga river 

(Figure 54). Early Pliocene sedimentation bypassed the former Precaspian basin through 

southward-trending canyons incised to depths of 0.7 km in Cretaceous platform strata. The 

paleo-Volga river draining to the base level provided by the South Caspian lake having a 

surface about 1 km below ocean level eroded these structures (Antipov et al., 1996). The 

bases of these early Pliocene canyons truncated the tops of the shallowest salt diapirs. 

Coarse clastic sediments filled the canyons as the lake level rose and transgressed north of 

the former Caspian basin by the end of the Messinian, about 3.8 Ma (Antipov et al., 1996). 
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Figure 54: Structural map of the Precaspian basin in Pliocene times illustrating 
incisions and canyons eroded through Cretaceous platform sediments bythe paleo-

Volga and paleo-Amu-Dariya rivers draining into the South Caspian lake having a 
surface about 1 km below ocean level, after “Volozh et al., 2003”. 

 

Ismail-Zadeh, et al. (2004) proposed a 3D numerical approach to investigate the evolution of 

salt structures in the Precaspian Basin. This approach is used to restore the evolution of salt 

structures through successive earlier stages. The numerical methodology is applied to study 

several model examples: (i) salt diapirs evolved from an initially random perturbation of the 

interface between salt and its overburden and a restoration of the salt diapirs to its initial 

stages; (ii) a salt wall; (iii) a salt extrusion with a gravity current over the depositional surface; 

(iv) secondary diapirism; and (v) a salt diapir subject to horizontal forces. The applicability of 
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the results of the models to the evolution of Late Permian salt structures in the Pricaspian 

basin is discussed. Given the complexity and specificity of the work, for further information see 

the publication (Ismail-Zadeh et al., 2001 and Ismail-Zadeh et al., 2004). 
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3.4 SOILS DISTRIBUTION AND CHARACTERISATION 

Soils in the coastal zone are in close relation to the oscillations of the current sea level. With 

decreasing water level in the sea, the evolution of soil from primary bottom sediments through 

a solonchak stage to desert takyr-like soils occurs. With increasing level, the processes 

change towards increased hydromorphism, soil desalination in a narrow coastal band and 

salinization in the zone of capillar impact of groundwater. Serious corrections to the soil 

formation process are introduced by the wind surges of seawater determining flooding of 

significant coastal areas. The role of surges is especially pronounced at low coasts by 

absolute marks. The positive relief features are often washed and desalinize while stagnation 

of water and its subsequent evaporation in the negative components leads to a significant 

surface enrichment with salts. That is the reason why soil formations have a very high degree 

of salinization. 

Another feature of soil genesis on maritime plains is their formation on marine deposits. 

Marine deposits including young current ones contain a large number of residual salts of sea 

origin. These salts as a result of geochemical transformations and migration constantly 

supplement the salt supply of soils. 

In addition, the Caspian waters supply salts to soils, especially in the coastal band and in the 

shallow water bays and kultuks. The groundwater level at the seashore is usually below the 

water level in it due to intense evaporation under the hot desert climate conditions. That is 

why, the ground flow in many places is directed onshore. 

During the various transgressive and regressive phases marine and continental deposit 

alternated. A summary of Quaternary strata described in the North Caspian region is listed in 

Table 3. 

 

Table 3: Regional quaternary stratigraphy. 
Age Marine deposit Continental deposit 

Novocaspian Coastal deposits of calcareous sands, 

shelly sands, shell beds and calcareous 

silts, grey to greenish gray. Black oolites. 

General increase of fine-grained deposits 

toward the base. Increase in finer-grained 

material also in Ural furrow, with intense 

chemogenic carbonate precipitation. 

 

Mangyshlakian  Alluvial, proluvial, eolian deposits of 

grayish-brownish slightly calcareous 
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Age Marine deposit Continental deposit 

aleurite clayey silts 

Late Khvalynian Clay and sand deposits, shells; Brown 

clayey silts, grayish/brownish aleurite clayey 

silts; Compared to Novocaspian: brownish 

colours, coarser grained, reduced amount of 

carbonate and organic carbon. Dagestan 

horizon: fine-grained, slightly calcareous 

grayish-brown and brownish clays. Locally 

carbonate gravel. 

 

Early Khvalynian Light brown to chocolate brown clay and 

sand deposits, shells 

 

Atelian  Loess-like loams, alluvial sands and 

proluvial deposits 

Late Khazarian Clay and sand deposits, shells  

Inter Khazarian  Red-brown loams (Astrakhanian) 

Early Khazarian Sand and clay, plant remains (singilian); 

coarse gravel, sands and clayey sands, 

shells; grey silts, sands, coarse gravel and 

conglomerates 

 

Late Bakuvian Sand and coarse gravel, shells; thin, coarse 

coastal facies, shell assemblages; sand and 

coarse gravel. 

 

Early Bakuvian Clay, clayeysands, shells; stratified brown 

clays and silts with very thin interlayers of 

ocherous sands 

 

 

The soil cover over the entire study area is heterogeneous. Its formation and structure are 

closely related to the succession of the territory becoming free of seawater and the age of 

continental regime of drained surface as well as the specific relief conditions, character of 

moistening of the territory and composition of soil-forming rocks. A regularly alternating 

change of soil belts from a primary sea beach in the coastal zone of the current marine plain to 

zonal soils that have undergone a long automorphic development stage is observed in the soil 

cover structure. 
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3.4.1 Spatial distribution of soil features in Zone B (Northern Area, from Atyrau City to 
the Emba River valley) 

The territory within the Zone B is confined to the southern part of the Precaspian lowland that 

is a low gently dipping to the Caspian Sea plain with the absolute marks from minus 8.3 m to 

minus 27.2 m. The absolute mark minus 27.2 m (Baltic Height System) determines the 

location of the coastline of the Caspian Sea (sea line) at status for January 2001. This 

accurate description is provided by Mo Energy and Mineral resources et al. (2001). 

The modern geomorphologic appearance of the territory is closely related with the history of its 

geological development and is defined by repeated transgressions and regressions of the 

Caspian Sea in the Quaternary (Pleistocene) time: Bakinian and Kazanian in Early and Middle 

Pleistocene (Q1bk and Q2hz), Khvalynian in the Upper Pleistocene (Q3hv), and Novocaspian 

ingression in Holocene (Q4nk) (Figure 55). As a result of the influence of complexes of 

geological and natural exogenous factors the modern geomorphologic appearance of the 

Precaspian lowland has formed. The main feature of the lowland relief is the clearly identified 

gradation conditioned by the presence of the accumulative marine terraces of the Pleistocene-

Holocene age. 

Thus, the geomorphologic appearance of the territory under study is closely related to the 

history of its geological development and is defined by the surfaces of accumulative terraces 

of marine and continental genesis: 

 Modern Accumulative Marine Terrace; 

 Novocaspian Accumulative Marine Terrace; 

 Khvalynian Accumulative Marine Terrace; 

 Alluvial-marine Erosion-accumulative Terrace (spread area of the Baer knolls, a 

morphological structure in the Zone B); 

 Alluvial Accumulative Terrace (valley of the Ural River and valley of the Emba River). 

The description of the mentioned terraces is listed below (top-down): 

THE MODERN ACCUMULATIVE MARINE TERRACE 

The Modern Accumulative Marine Terrace is confined to the coastal part of the territory under 

study and extends in all directions. The northern border of the terrace corresponds to the level 

of the Caspian Sea for 1929 – 1930 and hypsometrically identified by the absolute mark minus 

26.0m and is fixed by the clearly identified relics of the beach ridges with the height up to 1.0 - 

1.2 m. In a number of cases the relics of beach ridges having a form of bars and tombolos with 

the height 1 - 2 m built up with the whole and fragment shells Cardium Edule with sand and 

sand – clay filler. 
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The southern border of the terrace is determined by the position of the Caspian Sea level and 

is changeable. At the present time it is at the hypsometrical level minus 27.2 m. The relief of 

the region is slightly slopping, sometimes almost flat, and is complicated with the shallow dry 

beds and sinks. 

At the coastal part a waterlogged strip is identified which is practically impassable for any 

transport. The width of the waterlogged strip is not the same in different places and in some 

cases in the lower regions it penetrates deeper into the territory (to the north). 

The surface of the terrace is permanently located in the zone of surge phenomenon influence 

from the Caspian Sea and in the period of the rise observed during the last years it has been 

considerably flooded with the seawater. The terrace surface is indented with the net of 

irrigation channels of the both main and distributive character. 

NOVOCASPIAN ACCUMULATIVE MARINE TERRACE 

Novocaspian Accumulative Marine Terrace is tracked within the whole territory under study 

and corresponds to the time when the Novocaspian ingression of the Caspian Sea occurred. 

The northern border of the terrace is quite clearly tracked as the slightly slopping beach ridge 

or as the slope crown with the height up to 1.8 m. The northern border of the terrace is 

hypsometrically identified with the absolute mark minus 22.0 m. The southern border of the 

terrace hypsometrically corresponds to the absolute mark minus 26.0 m. 

The relicts of the Novobogatinskaya phase of the Ural River delta development in the 

Novocaspian time are confined to the terrace surface and presented by the buried and semi-

buried channels, branches, eriks etc. The hollow and rarely ridging forms of the relief are 

characteristic for the terrace surface. They are mainly developed in the northern regions within 

the intensive show of deflation accumulative processes forming narrow sandy ridges usually 

sub meridian oriented. The sandy ridges rise over the surrounding area to the height of 0.7 – 

1.2 m. Within the terrace surface a network of main and distributive irrigation systems is 

developed. Their accurate description is provided by (Mo Energy and Mineral resources et al., 

2001) 

KHVALYNIAN ACCUMULATIVE TERRACE 

Khvalynian Accumulative Terrace is traced in the central and southeastern part of the Zone B. 

The northern border of the terrace in some cases exceeding the borders of the territory under 

study is identified with a quite clear though denuded coastline of the upper Khvalynian marine 

basin and on the region it is identified with a well-traced slightly slopping bench of 2.6 m 

height. The northern border of the terrace is hypsometrically fixed by the zero isohypse. The 

southern border of the terrace is determined with the absolute mark minus 22.0 m that 

respectively defines the northern border of the Novocaspian Marine Terrace. 
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The more divided relief is typical for the surface of the Khvalynian accumulative marine 

terrace: where the undulating ridgy forms of relief mainly predominate, with its subordinated 

development of the hollow and ridging forms. The vast hills and ridges with the absolute marks 

of top from minus 12.6 m – minus 16.6 m on the north up to minus 17.7 m – 18.8 m on the 

south alternate with quite big elongated hollows of oval form that are sub meridian oriented 

with the absolute marks of thalwegs from minus 20.8 m to minus 21.4 m reaching in some 

cases the absolute marks minus 23.3 m – minus 24.8 m. The more lowered regions are 

occupied with the wet sors and bitter-salt lakes with lake-salt (Tenizbay, Otaralytuz, Akkyz and 

others). 

Within the terrace the semi-opened and buried delta channels end their existence that are tied 

to the Kushumsk phase of the development of the ancient delta of the Ural River. The terrace 

surface is influenced with deflation accumulative processes. 

THE ALLUVIAL-MARINE EROSION-ACCUMULATIVE TERRACE 

The Alluvial-marine Erosion-accumulative Terrace is developed in the northeastern part of the 

territory and is known in the special literature under the name of Baer knolls named after K. 

Baer, Academician, one of the first researchers interested in these formations. The terrace 

surface is presented as the worked out wavy ridgyhollow plain where the imbricate-linear 

ridges (knolls) with different length are located and the hollows that divide them are definitely 

sub-latitudinal oriented. The Baer knolls are gently slopping contours of ridge, rarely – the 

elongated knolls with the relative height from several meters to 10 and more meters. The 

length of these ridges varies from hundred meters to several kilometres. The intervals between 

the tops of neighbouring ridges are measured from 100-200 m to 1 km with declination to one 

or the other side. The ridges extend as parallel rows in the latitudinal direction. The hollows 

located between the ridges are usually closed. The position of the hollows in the plan indicates 

regular alteration of ridges and falls dividing them, which provides a corrugated picture. The 

ridges in socle are piled up with dense brown loams, rarely with clays of Khvalynian age. The 

hollows between the knolls are built with Novocaspian alluvial-marine sediments; these are the 

regions for floodwaters from the Sagiz River that make the system of wet sors, sometimes 

estuaries, rarely takyrs (dry lakes with clay bed) with the general name Tenteksor tract. In 

some falls between the knolls and also on the knolls themselves blowing-out depressions can 

be observed. 

The absolute marks of the region in the limits of the terrace are from 24.5 m (in hollows) to 

minus 16.3 m (the top of knolls). 
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ALLUVIAL ACCUMULATIVE TERRACE 

The western portion of the territory from north to south is divided by the thick erosion cut-in of 

the lower (estuarine) current of the Ural River with its numerous active right and left deltoid 

channels. The depth of the erosion cut-in of the main bed of the Ural River counting from the 

low water level of the river reaches 4 to 6 m with the depth of the river at some parts from 4 to 

9 m. 

The absolute absence of the estuaries and super-flood land terraces is the characteristic 

feature of the Ural River valley: the valley of the river consists of the riverbed of the left and 

right flood-lands, the surface of which as moving away from the bed is imperceptibly joined 

with the surface of the accumulative marine terraces of Upper Pleistocene and Holocene age. 

The area in the limits of the Ural River flood-lands filled with floodwaters for 1% of provision 

determines the contour of the alluvial accumulative terrace. The fragments of the alluvial 

accumulative terrace are evident in the southeastern portion of the territory under study within 

the Emba River valley (Mo Energy and Mineral resources et al., 2001). 

 

 

Figure 55: Map of soils distribution between Atyrau City and Emba River Valley, after 
“Mo Energy and Mineral resources et al., 2001”. 

 

Taking into account the peculiarities of genesis and expansion, the conditions of deposits and 

content of non-lithified Quaternary sediments within the surveyed area include two main 

engineering geological complexes of rocks: marine sediments of Early and Middle Pliocene 

and sediments of Upper Pliocene and Holocene. Their distribution is shown in Figure 55. 

 Non–lithified Marine Sediments of Early and Middle Pliocene 

Non – lithified marine sediments of Early and Middle Pliocene are presented with marine 

sediments of Bakinian (mQ1b) and Khazarian (mQ2hz) stages of Quaternary system. 

They are laid in thin-layer clay, sometimes loam with sand streaks. The thickness of 
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sediments is 50-200 m. Within the area under the survey their roof is bedded at least 50 

m deep from the surface. Since these sediments are embedded at a relatively significant 

depth and not impacted by the engineering facilities, the description is brief. 

 Non–lithified Marine Sediments of Upper Pliocene and Holocene 

Upper Pliocene (Q3) and Holocene (Q4) non-lithified sediments within surveyed area 

include marine, alluvial-marine, and continental sediments that form the surface of the 

Precaspian lowland area and serve as the foundation for all constructed engineering 

facilities. These sediments are divided into 5 stratigraphicgenetic complexes. The 

description of these complexes from top to bottom is given below . 

• Complex 1: Halogen sediments (chQ4) are the bottom of major sor subsidence and 

bitter-salt lakes within Khvalynian accumulative marine terrace and represented by 

the layer of native salt with thickness 0.2 m-0.6 m. The layer of native salt underlies a 

horizon of liquid mass (mud) that consists of a mixture of black silt, organic 

substances, and a complex of halogen salts. The mud has valuable medical 

properties; the thickness of the horizon is 1m. 

• Complex 2: Non-lithified alluvial sediments of Holocene age (aQ4) are spread within 

the alluvial terrace of the Ural River and the Emba River. These are represented by 

sandy loam and dusty sand, with low thickness formations of clay on the top ranging 

in colour from dark-grey to black with an admixture of silt and organic substances, 

and fine sand with gravel and pebbles in the valley of the Emba River. The ground is 

poorly salted. The thickness is 3-5 m. 

• Complex 3: Non-lithified sediments of Novocaspian age of marine genesis (mQ4nk1-

2) are spread across the Novocaspian accumulative marine terrace. This is 

represented by a light sandy clay brown, brown-grey color with thin streaks and galls 

of sandy loam, and an admixture at the top of silt and organic substances; with 

additives of shell and spots of ferrugination; the clay is salted and has swelling 

properties. The sandy loam is underlying with colours from brown-grey to green-grey 

and with clay streaks and additives of shells. Sandy loam is salted. There are islands 

in the near shore area. These are relics of onshore banks, bars and bay bars madeof 

marine shells consisting of intact shells and shell fragments of Cardium Edule with 

sand inside; in the upper layer shells are mixed with clay loam and sandy loam; the 

ground is poorly salted. The thickness of the clay and sandy loams range from 3-12 

m, and the thickness of shells up to 5 m. 

• Complex 4: Non-lithified sediments of upper Pliocene – Holocene age of 

alluvialmarine and marine genesis (mQ3hv-amQ4). Spread within alluvial-marine 

erosion accumulative terrace. Spread out with marine sediments of upper Khvalynian 
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stage (mQ3hv) and upper quaternary alluvial-marine sediments (amQ4). Marine 

sediments create Baer knoll and are represented by the heavy dusty loam of a brown, 

red-brown colour, ferruginated with streaks of clay of a brown colour with the original 

texture of clay material consisting of tiny grains and smaller pellets and clay dust; 

during the wet seasons clay grains are fixed and create clay crusts. The ground is 

salted and has an ability of lowering a class; the thickness is 7-12 m. The erosion 

down cutting between Baer knolls is filled in with the sediments of alluvial-marine 

genesis, represented by interbanded layers of loam and sandy loam (dusty sand 

loam) with an insignificant inclusion of gravel-pebble material; the colour of this layer 

is brown, yellow-brown; the ground is salted; the thickness is 3-6 m. 

• Complex 5: non-lithified sediments of upper Pliocene (Khvalynian) age of marine 

genesis (mQ3hv) are spread out from the development of the Khvalynian 

accumulative marine terrace. This is represented by an interbanded layer of light 

dusty brown clay, heavy dusty parti-coloured loam, brown sand loam with fauna 

Didacna proetogonoides. The grounds are salted. The loam has lowing facilities and 

clay swelling properties. Thickness of the layer 5- 10 m. 

 

3.4.2 Spatial distribution of soil features in Zone C (North – Eastern Area, from the 
basin of the Emba River to the Mertvyy Kultuk Bay) 

The territory under consideration is located in the south-eastern part of the Precaspian basin 

and represents an accumulative marine plain with relative heights of 3-5 m, flat sloping from 

north to south. Absolute surface points (in regional aspect) respectively decrease from 50-80 

m till minus 28 m. Rare isolated hilly range uplifts – salt domes rise over the plain. Their 

accurate description is given in the study carried out by Mo Energy and Mineral resources et 

al., (2001). 

A substantial portion of the territory to the south of the zero contour line is occupied by a semi-

stable range, and rarely winnowed sands with a hilly and sloping relief of 5-10 m height. 

Numerous transgressions of the Caspian in the Quaternary period determined the modern 

geomorphological view of the studied territory: Bakinskaya and Khazarskaya in Early and 

Middle Pleistocene, Khvalynian and Novocaspian in Upper Pleistocene and Holocene. The 

geomorphology of the Precaspian basin was formed under the impact of geological and 

natural factors in serial form of accumulative marine terraces: Bakinian, Khazarian, Khvalynian 

and Novocaspian, where a modern accumulative marine terrace is distinguished. 
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The geomorphology of the territory under consideration is closely related with the history of its 

geological development and is determined by the surfaces of Khvalynian, Novocaspian and 

modern accumulative marine terraces.  

KHVALYNIAN ACCUMULATIVE MARINE TERRACE 

Khvalynian Accumulative Marine Terrace is traced in the northeastern and southeastern 

portions of the territory. The lower hypsometric terrace line is traced at point minus 22 m. 

raising above the Novocaspian terrace as a flat bench with a height of 1.5-3 m. Beach ridge is 

graded by denudation processes and is merely traced. At the bottom ridgy plain relief, 

absolute points of location are within the range of minus 22 m - minus 18 m (within the territory 

shown on the map of engineering and geological zoning). In the eastern portion, the ridgy plain 

terrace relief becomes more complicated due to the presence of sloping relief forms, with a 

height of 5-10 m, represented by stable and semi-stable sandland formed as a result of 

aeolian processes of sand and sandy-argillaceous Khvalynian sediments processing.  

NOVOCASPIAN ACCUMULATIVE MARINE TERRACE 

Novocaspian Accumulative Marine Terrace occupies the central portion of the territory under 

consideration. The lower hypsometric terrace line is traced at point minus 26 m that 

corresponds to the Caspian level of 1929-1930. The lower edge of the terrace is fixed by a 

relatively clear beach ridge with relics presented in a kind of a range of fixed sandland, raising 

above the area from 2 to 5 m and stretched out in a meridian direction. As a rule, sandland is 

edged by sor; narrow lowerings with a shape resembling canals and dry beds stretched in a 

latitudinal direction, an origin of mainly tectonic character is observed. 

The plain with sloping forms is peculiar for the surface of Novocaspian terrace. Absolute points 

of the area range from minus 26 m to minus 22 m. The central portion of the terrace surface is 

slightly lowered and is within the points of minus 23.9 m to minus 25.4 m and is characterized 

by the presence of sor lowering (Mo Energy and Mineral resources et al., 2001). 

MODERN ACCUMULATIVE MARINE TERRACE 

Modern Accumulative Marine Terrace includes the territory released from the water basin of 

the Caspian Sea during the 30s and lying within the absolute points from minus 26 m to minus 

27.2 m, which corresponds with the absolute point of the Caspian Sea level as of January 

2001. 

The islands located in the coastal portion of the Caspian water basin belong to this terrace as 

well. The surface of the terrace is a flat plain slightly sloped to sea direction. As a rule, the 

coastal portion and islands are swamped and practically impassable for all types of transport. 

The width of the swamped area differs and sometimes in low lying areas goes deep into the 

territory (eastward) creating an advanced hazard for area flooding by surge (e.g., Terenozek 
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Oilfield). The presence of a great quantity of whole and shell fragments of marine shellfish 

(Cardium Edule) from the surface is typical for the modern terrace territory. The surface of the 

modern accumulative marine terrace is a zone of constant surges affected by the Caspian 

Sea. 

 

 

Figure 56: Map of soils distribution between Emba River basin and Mertvyy Kultuk Bay, 
after “Mo Energy and Mineral resources et al., 2001”. 

 

Taking into account the spreading features, bedding conditions, and composition of non-

lithified deposits of the Quartenaries, the main engineering geological rock complexes 

distinguished among them include marine sediments of Early and Middle Pleistocene and 

Holocene (Figure 56). 
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 Non-lithified Marine Sediments of Early and Middle Pleistocene 

Represented by marine sediments of Bakinian (mQ1b) and Khazarian (mQ2hz) layers of 

Quaternary System, these consist of thin clay layers, sandy clay, and a rare loam with 

sand alterations. The thickness of sediments is 50-200 m with an embedded roof at a 

depth of at least 50 m from the ground surface. As these sediments lie relatively deep 

and are not involved in the area of engineering facilities, the description is brief. 

 Non-lithified Sediments of Upper Pleistocene and Holocene 

Upper Pleistocene (Khvalynian layer Q3hv) and Holocene (Novocaspian layer Q4nk) 

non-lithified sediments, where marine sediments were primarily developed within the 

studied territory, and constitute the whole territory of the Precaspian basin from the 

surface, these serve as the foundation for all erected facilities in this area. Therefore, the 

description is given in more detail. 

The sediments of Khvalynian and Novocaspian layers are divided into seven 

stratigraphical-genetic complexes, where the third, fifth and seventh complexes are of 

marine origin; the fourth and sixth complexes are of defletionary-accumulative (Aeolian) 

origin; the second complex is of alluvial origin; and, the first complex is of chemoginic 

origin. A description of each stratigraphical-genetic complex (from top to bottom) follows.  

• Complex 1: Halogenic sediments (chQ4) form the bottom of the immense sor 

lowering and salt lakes within the Khvalynian accumulative marine terrace. This is 

presented by the thickness of lake-salt from 0.2 - 0.6 m. The lake-salt is followed by a 

formation of liquid soil (mud), consisting of black sludge, organic substances, and a 

complex of Halogenic salt, which has healing properties; the layer thickness is up to 

1m. 

• Complex 2: Non-lithified alluvial sediments of Holocene (aQ4) are spread within the 

alluvial terrace of the Emba River and are represented by a sandy loam and fine 

sand. The roof has a thin clay formation varying from taupe to black with sludge and 

organic substance inclusions; the sand contains gravel and pebbles. Poorly-salted 

soil. The thickness is from 3-5 m. 

• Complex 3: Non-lithified Holocene sediments of marine origin (Novocaspian layer, 

upper section (mQ4nk2) are spread within a modern accumulative marine terrace. 

Represented by a sludge sandy loam of a gray, taupe colour with seams and lenses 

of loam, clay and sludge with whole and shell fragments Cardium Edule, the soil is 

salted with a thickness from 2-6 m. 

• Complex 4: Non-lithified sediments of Novocaspian accumulative marine terrace 

(Novocaspian layer, Aeolian origin (vQ4nk) is deposited by deflation processes. 
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Constitute relics of beach ridge determine the lower border of the Novocaspian 

Terrace. Represented by fine and dusty sand of brownish-gray color with whole and 

shell fragments of marine shellfish; salted soil has subsidence; thickness 2-5 m. 

• Complex 5: Non-lithified Holocene sediments of marine origin (Novocaspian layer, 

lower section mQ4nk1) are mainly presented by a sandy loam of brownish gray 

colour with dependent formations and lenses of loam, sludge, and thin sand seams, 

with salted soil at a thickness from 5-12 m. 

• Complex 6: Non-lithified sediments are formed by the deflation processes at the 

Khvalynian accumulative marine terrace (Khvalynian layer, upper section vQ3hv). 

These are observed in the extreme northwestern corner of the territory under 

consideration in the form of a small tongue and is represented by dusty sand with 

alterations and lenses of brownish-yellow fine sand; salted soil has subsidence; 

thickness 3-12 m. 

• Complex 7: Non-lithified sediments of marine origin lie at the Upper Pleistocene 

(Khvalynian layer, – mQ3hv). This is spread across the Khvalynian accumulative 

marine terrace. Represented by mainly brownish-yellow sandy loam with dependent 

formations and lenses of loam and clay; salted soil has subsidence; thickness is 2.5 –

7.0 m. Lithified mining rocks of Paleozoic- Mesozoic age are distinguished as a 

separate complex (relics of salt-dome formations), represented by chemogenic 

marine formation – gray gypsum; terrigenous marine formation - sandstone on 

calcareous-argillaceous cement, ventilated, fractured (Mo Energy and Mineral 

resources et al., 2001). 

 

3.4.3 Spatial distribution of soil features in Zone D (Southern Area, Northern Shoreline 
of Buzachi Peninsula) 

The studied territory at the border of two geological structures of the 1st order: the Russian 

Platform and the Turanskaya Platform are the southern extremity of the geological structure of 

the 2nd order – Precaspian Syneclise, the major portion occupied by the Precaspian Basin. 

The geomorphologic view of the region is closely connected with the history of the geological 

development and is determined by a series of accumulative marine terraces formed as a result 

of transgressive and ingressive activities of the Caspian Sea in the Pleistocene-Holocene age 

(Quaternary period). Deflation and accumulative (Aeolian) processes have caused a 

considerable effect on the formation of the modern relief of the territory. Geomorphologic 

typical feature is an extreme gradation, which determines the hypsometric position of the 

accumulative marine terraces and deflation and accumulative forms of the relief. An accurate 

description is given in the study carried out by Mo Energy and Mineral resources et al., 2001. 
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A more detailed description of the main geomorphologic elements that determine the modern 

geomorphology of the territory is given below.  

MODERN ACCUMULATIVE MARINE TERRACE 

This terrace is located in the western, northwestern and northern parts of the region and 

includes the territory released from the Caspian Sea during the 30s of the twentieth century 

due to its unexpected level drop. The upper border of the terrace is hypsometrically 

determined by an absolute mark of minus 26.0m; the lower margin is the modern shoreline of 

the Caspian Sea currently equivalent to the absolute mark of minus 27.2 m. 

The surface of the terrace is a flat valley with a slight slope towards the sea (the slope of the 

location is 0.00035), which does not have any vegetation and is marshed in the shoreline 

zone. Under the influence of the surges from the Caspian Sea and due to recent sea water 

level rise, the surface was flooded with sea water levels up to the absolute mark of minus 

26.47 m (transgressive peak of the sea). 

NOVOCASPIAN ACCUMULATIVE MARINE TERRACE 

This terrace occupies the western, northern and northeastern portion of the studied territory 

and some sections have also been observed in the southern and western regions. The upper 

hypsometric border of the terrace is equivalent to the absolute mark of 22.0 m and the lowest 

border of the terrace to an absolute mark of minus 26.0 m. The lower portion of the terrace in 

the west and northwest is separated from the modern terrace by a sharply observed shoreline 

embankment in the form of a narrow ridge with the height from 1.5 to 3.0 m and the width from 

50 m to 200 m, which determine the status of the shoreline of the Caspian Sea at different 

stages of the development of the Novocaspian transgression. On the remaining part of the 

territory the Novocaspian terrace is separated from the modern terrace with a sharply 

conspicuous ledge with the height from 0.5 m to 1.5 m. 

The characteristic forms of the relief are range from hilly and ridgy to slopping and ridgy and 

ridgy, with relative overfall heights from 0.5 to 2.0 m. The lowest sections of the location are, 

as a rule, occupied with sors. In the northern and northeastern sections of the Novocaspian 

terrace’s presence of relicts is a characteristic feature of the upper Khvalynian accumulative 

sea terrace rising above in the form of original relict islands (e.g., Baltic scerries) over the 

Novocaspian valley. The absolute marks of the tops of the separate Khvalynian hillocks and 

hills reach minus 11.32 m to minus 12.01 m. 

The slopes of the island elevations, as a rule, are rather steep, sometimes abrupt, sodded with 

vegetation. The described forms of relief in some cases are framed with narrow shallow gally 

lowerings, which determine the relief zone of the fresh and saltish water accumulated in the 

thickness of the ridges and hills of the sandy loam deposits under the appropriate 
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paleoenvironmental regime. The surface of the elevations is exposed to deflation and 

accumulative processes. 

A big valley named the Bolshoy Soris situated in the western section of the explored territory ,  

which is a dried lagoon recently covered with sea water. It is a flat valley with absolute marks 

from 26.7m to minus 27.9m. The lowest sections of the lagoon are occupied with lakes with 

lake-salt. In the northeast and east of the lagoon there are tectonic ostantsy (remainders) of 

half-rocks of the upper cretaceous age, which rise steeply over the location to heights from 3 

m to 5 m. On the eastern shoreline of the lagoon there are embankments constituted of sand, 

pebble and shell Cardium Edule. The surface of the lagoon is hardly accessible for all types of 

vehicles and is inaccessible in some sections. 

UPPER KHVALYNIAN ACCUMULATIVE MARINE TERRACE 

This terrace is well spread throughout the central and southeastern sections of the explored 

territory and in the the northern and northeastern sections of the Novocaspian terrace is in the 

form of relict islands . The upper hypsometric border of the terrace is determined by a zero 

isohypse. The lower hypsometric border is equivalent to an absolute mark of minus 22.0 m, 

separated from the Novocaspian accumulative sea terrace with abrupt hillocks and separate 

cases with abrasion heights from 1.8 to 3.0 m. Typical features include flat-sloping and hilly–

sloping relief forms  with fluctuations of absolute marks from minus 14.0 m to minus 5.5 m on 

the hilltops and slopes, and from minus 17.0 to minus 18.0 m in the thalwegs of the big flat 

basins. The total elevation of the area is observed from the north to southern direction (Mo 

Energy and Mineral resources et al.,2001). 

To a certain degree, the surface of the terrace has been exposed to an impact of deflation-

accumulative processes, which caused the formation of weathering pits in the form of 

stretched cells oriented mainly in the sub meridian direction; the deepest of which are 

occupied with closed sors. 

Within the southeastern section of the upper Khvalynian accumulative marine terrace are 

plentiful sand massifs of the Aeolian genesis (sands of Zhelimshik) forming of Khvalynian sea 

deposits. The Zhelimshik sands are divided into two separate massifs: northern and southern. 

 The Northern Massif is developed within the upper Khvalynian accumulative marine 

terrace; negative absolute marks are typical; hillock forms of the relief are the most well-

spread forms : semi-fixed sands form sloping hillocks with relative heights from 3-5 m to 

10-12 m; the tops are oval, the slopes are even with angles not more than 15°; absolute 

marks of the location range from minus 8.1 to minus 14.6 m in the blowing basins and 

from minus 4.4 m to minus 0.3 m on the tops of the hillocks.  
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 The Southern Massif is developed within the lower Khvalynian accumulative terrace with 

a characteristic feature of positive absolute marks; mostly, there are hillock and ridge 

forms of relief with alterations of the ridges and hillocks divided by weathering pits; the 

length of the ridges is from 80 to 100 m to 1 km, and the width is 200 m; the slopes of 

the ridges are relatively flat (12°-15°) and sometimes steep (to 25°-30°); the absolute 

marks of the location range from plus 8.3 m to plus 11.8 m on the bottom of the blowing 

basins, and from plus 16.8 m to plus 28.0 m on the tops of the ridges and hillocks (Mo 

Energy and Mineral resources et al., 2001). 

LOWER KHVALYNIAN ACCUMULATIVE MARINE TERRACE 

The spread in the southeastern section of the area under the study at the lower border of the 

terrace is traced according to the zero isohypse, its whole surface determined by plus marks. 

From the upper Khvalynian terrace is divided with a relatively sharp ledge, which is 

approximately a height from 3 to 7 m. The steepest (western) sections of the ledge have a 

relatively massive net of small gullies with the depth of the erosion from 1 to 2 m. For the 

surface of the terrace a characteristic feature is the flat-ridgy and hilly-ridgy forms of the relief 

with relative heights of elevated areas over the lower from 3 to 5 m. 

The absolute marks of the location contain values from plus 0.8 m to plus 9.6 m. To a certain 

degree, deflation and accumulative processes have affected the surface of the terrace. 

 

 

Figure 57: Map of soils distribution in the Northern shoreline of the Buzachi Peninsula, 
after “Mo Energy and Mineral resources et al., 2001”. 

 

Taking into account peculiarities of the genesis and distribution, bedding conditions, and 

composition of non-lithified quaternary sediments within the boundary of the surveyed area, six 

original stratigraphic complexes with marine and continental genesis have been identified 

(Figure 57). 
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Lithified hard rocks of the Upper Mesozoic (Cretaceous period, Maastricht stage – K2) that are 

distributed locally have a separate stratigraphic complex. See below for a description of each 

of the identified stratigraphic complexes (from top to bottom): 

• Complex 1: Marine halide sediments of the Upper Quaternary (Holocene) age: ch-

mQ4. These are found within the boundaries of the Bolshoy Sor, at the lowest section 

occupied with a lake of bay salt. This section of the bay salt has a thickness up to 1.0 

m and an underlying horizon of a liquid mass (mud) consisting of a mixture of black 

silt, organic substances, and halide salt suite with valuable medicinal properties; 

thickness of the horizon measures from 0.7 to 1.1 m. 

• Complex 2: Non-lithified sediments of the Upper Quaternary age and marine genesis, 

mostly affected by the Eolithic processes mvQ4 form the bars, which are spread over 

the western and northwestern coast. Represented by gravelly sand with numerous 

whole and crushed shells Cardium Edule, with thin streaks (from to 2 to 3 mm) of 

black silt with inclusions of gravel and pebble material. Section thickness is up to 3.5 

m. 

• Complex 3: Non-lithified sediments of the Novocaspian (Holocene) age and marine 

genesis - mQ4 nk. Local name: Mangyshlak stage, are found within the development 

area of modern and Novocaspian accumulation marine terraces. Mainly represented 

by muddy, loamy sand (argillaceous sand with an admixture of silt and organic 

substances), with downstream lenses and single aleurite horizons. Soils of this 

complex consist of characteristic grey, ash grey and dark grey to black hues, 

hydrogen sulfide odor (which implies ongoing microbiological processes in the 

section), strong and excessive salinization, and high carbonate and gypsum content; 

in some cases, semi-decomposed and intact remains of algae are found in the 

aleurite section. Soils contain a distinguished weak compaction, low durability, high 

compressibility degree, and thyrotrophic properties. Section thickness ranges from 

0.9 to 4.3 m. 

• Complex 4: Non-lithified sediments of the Pleistocene and Holocene age and Eolithic 

genesis. Spread over Zhilimshik sand massif development area, this complex is 

represented by dusty, brownish grey sand, appropriately sorted, homogenous, with 

crushed shells of Didacna Proetogonoides at the base, and occasional inclusions of 

gravel and pebble material. Soil has weak to medium salinity and has subsidence. 

Penetrated section thickness is 15 m. 

• Complex 5: Non-lithified sediments of the Upper Khvalynian age and marine genesis - 

mQ3hv2. Spread over the development area of the Upper Khvalynian accumulation 

marine terrace, Complex 5 is represented by muddy, yellowish brownish loamy sand 
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with whole and crushed shells of Didacna Proetogonoides, Dresensea Polymorpha, 

lenses and low thickness clay horizons at the base. Having been for a long geological 

period in the continental regime, the sand has undergone a loessification and 

acquired subsidence properties of the first category. Soil has weak to medium salinity, 

contains carbonates and an insignificant quantity of gypsum. Section thickness is 8 to 

12 m. 

• Complex 6: Non-lithified sediments of the Upper Khvalynian age and marine genesis - 

mQ3hv1. Spread over the development area of the Lower Khvalynian accumulation 

terrace and represented (from top down) by the muddy, yellowish brownish loamy 

sand with occasional inclusions of small pebbles; fine and dusty, brownish yellowish 

sand with thin streaks of clay, inclusions of small pebbles, whole and crushed shells 

of Didacna Protrasta, occasionally Didacna Protogonoides; gravel and pebble 

sediments with sand fill; Dreissensia Polymorpha fauna, large shells of Didacna 

Protogonoides. Soils consist of weak to medium salinity and contain carbonates and 

small amounts of gypsum. Having been for a long geological period in the continental 

regime, the sand has undergone a loessification and has acquired subsidence 

properties of the first category. Section thickness is from 14 to 17 m. 

• Complex 7: Lithified Upper Cretaceous rocks (Maastricht stage - K2) are spread in 

the form of single tectonic residual hills in the northeastern section of Bolshoi Sor, and 

is represented by limestone and calcareous sand sections that consist of medium 

density. 
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3.5 HYDROGEOLOGICAL SETTING 

From the hydrogeological point of view the Precaspian basin is a huge Artesian basin made up 

of thick Cainozoic, Mesozoic and Paleozoic sediments. Hydrogeological conditions of the area 

are complex and variable, determined by geology and climatic factors. Specific features of the 

basin structure are its multistage system, complex salt dome tectonics (salt plugs close to the 

day surface), prevailing argillaceous and marl rock. Totally flat and poorly defined relief, a lack 

of permanent watercourses, severe continental climate with small amount of precipitations and 

their high evaporating capacity lead to prevalence of saline waters in the upper part of the 

sediments. The lower section contains underground chloride sodium brine type water (GAS, 

2007). 

Falling atmospheric precipitation ensures groundwater recharge over the entire territory at the 

expense of infiltration through permeable sandy deposits. Besides, in the zone affected by 

wind-induced surges and near river systems, favourable conditions for groundwater recharge 

are set in. This is also promoted by geomorphological environment.  

Hydrogeological section in the studied area was penetrated at depths from 1700 to 3000 m, 

but only the upper 300 to 500 m has been properly studied. 

Deep horizons were mainly tested in the near-anticline and anticline parts of the salt domes. 

From the hydrogeological point of view, vast intradome zones, the most favorable for the 

subsurface disposal of the wastewater, have been poorly studied to date. Postsalt sequence 

with the reservoir bedding depth less than 2.5 km has practical value for the industrial 

wastewater disposal. Geological framework of the postsalt sequence includes the rocks of the 

Upper Permian, Triassic, Jurassic, Cretaceous, Paleogene and Neogene-Quaternary 

sediments. Upper Permian, Lower Triassic, as well as Upper Cretaceous (except 

Cenomanian) and Paleogene consist of prevailing clastic carbonate, occasionally carbonate 

and hemogenic sediments. Clastic rocks represent the remainder of the section, including 

Permian Kazansky stage, Triassic, Jurassic, Lower Cretaceous, Cenomanian stage of 

Cretaceous, and Quaternary-Neogene sediments. Increased shale volume and thickness of 

the sediments from the periphery sections towards its centre is a peculiar feature of the 

postsalt sequence sedimentation. 

Underground waters of the postsalt sequence form artesian porous, sometimes porous and 

fractured aquifer systems. Main aquifer systems are predominantly confined to sand and 

siltstone sediments of the Cretaceous Cenomanian and Albian, Middle and Lower Jurassic, 

Triassic Vetluzhsky stage and Permian Tatarsky stage. Water-impermeable rocks mainly 
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characterize the remainer of the section . Shale rocks, except for the marginal parts of the 

depression, account for 60 to 80 % of the section. 

Regional recharge areas of the aquifer systems comprise the edge parts of the depression, 

especially the northern and northeastern margin. Main movement of the underground water in 

the postsalt sediments is directed from the edges of the depression to its inner areas. Salt 

plugs penetrating the postsalt formation create natural barriers, which hamper the movement 

of underground water in the intradome areas. Discharge is carried out via the faults in the 

near-anticline parts of the salt domes, as well as in the Volga, Ural, and Emba river valleys. 

The above peculiarities assist in the development of the hydrodynamic zoning in the artesian 

basis, both vertically and areally, from periphery parts of the depression to the centre. Postsalt 

sequences are located in the hydrodynamic zones of the aggressive and retardant water 

exchange. In the deepest intradome areas the waters of the Upper Permian, and, possibly, 

Jurassic sediments have static drive. Aggressive water exchange zones include the aquifers 

and systems lying down to 300 m. 300 to 500 m depths characterize the retardant drive zone, 

deeper layers by static drive. As a rule, the waters in these zones have high salinity, chloride 

and sodium composition, with salinity from 30 to 387 g/dm3. 

The important role in the retardant and static drive water exchange zones play the thick 

regional continuous confining beds, which isolate the aquifers and systems from the 

interaction with the over and underlying horizons. Four confining horizons have been identified 

in the Precaspian basin. Some areas have them dropped out from the section or bedding at 

significantly lower levels, than the ones recommended for wastewater disposal. Argillaceous 

carbonate salt-bearing sediments represent confining beds. The role of the beds significantly 

reduces in the faulting areas due to the impairment of their isolating functions (GAS, 2007). 

 

3.5.1 Spatial distribution of hydrogeological features in Zone B (from Atyrau City to 
the Emba River valley) 

Hydrogeological conditions of the Precaspian lowland is complicated and conditioned not only 

with its structural-tectonic peculiarities, lithologic-facial mutability of rocks, but climatic 

conditions. Two water-bearing complexes are identified in the structural-hydrogeological cross 

section. The first water-bearing complex is related to lithified differences of rocks of Mezo-

cenozoic and represented by pressure water of high mineralization. The second water-bearing 

complex is related to non-lithified Pliocene-Holocene sediments. Two stages of pressure free 

water and low pressure water are high mineralized and low mineralized ground waters with 

insignificant water abundance formed within the second water-bearing complex: the first stage 

is confined to Early and Middle Pliocene sediments; the second stage is confined to Upper 

Pliocene and Holocene sediments (Mo Energy and Mineral resources et al., 2001). 
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Between the first and second stages is a very thick aquiclude in the form of a thick layer of 

clay of Khvalynian age. The major depth occurs at the second stage of the water-bearing 

complex. The ground waters of the second stage are subdivided into two water-bearing 

formations: the formation of highly mineralized ground waters and the formation of low 

mineralized ground waters. 

 

3.5.1.1 Formation of High-mineralized Ground Waters 

This formation is tied to marine and alluvial-marine sediments of the third, fourth and fifth 

stratigraphic-genetic complexes. Water containing rocks are sandy loam and sand of different 

rocks. The depth of deposition of groundwaters differs; therefore, the map of engineering-

geological zoning has hatched sections with different depth of ground waters. 

The horizontal blue shading is the area where groundwaters are at the depth of 1-3 m. The 

blue shading at the angle of 45° from left to the right is the area where the groundwaters are at 

the depth of 3-5 m. The blue shading at the angle of 45° from right to the left is the area where 

the ground waters are on the depth of 1-3 m (narrows between knolls) up to >5 m (knolls and 

ridges).  

 

Figure 58: Groundwater depths in Zone B 
 

The main feeder of groundwaters is atmospheric precipitation; during arid climatic conditions 

and high evaporation levels the feeding occurs during winter-spring periods. If the feeding 

process is natural the seasonal fluctuation of groundwater levels will not exceed 0.5 m. 

In coastal areas subject to surge effects, an additional groundwater feeder would be the surge 

within the flooded area. Some desalination occurs due to the replenishment of low mineralized 

seawater. Taking into account that the surge occurrence is irregular, it is difficult to determine 
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the conditions of groundwaters. In the areas of towns, settlements, industrial zones and oil 

fields there is an additional feeder of ground waters, such as unregulated discharge of 

industrial and domestic effluents and leakage from damaged utilities. Here an artificial 

underflooding of the area is observed that causes the local raising of ground after levels 

compared to the level of groundwater around the area. In some locations the level of 

groundwater raises up to the day surface point causing swamping of the area. A similar 

situation is in locations of estuary irrigation and close to irrigation systems. Decrease of 

groundwater mineralization is observed in areas of artificial underflooding, which has an 

adverse affect on the environment and geology. 

The groundwater of described formation, formed as a result of natural-historic process of area 

development is highly mineralized. The dry residual is 62-83 g/l, corresponding to brine group. 

The concentration of hydrogen ion (pH) 7.5-7.7 specifies the conditions as alkaline. Total 

alkalinity is 0.3-1.3 g/l (4.8-21.2 MEKV); concentration of chlorine ions 27-43 g/l (764-1218 

MEKV); concentration of sulphate ions 10.1-13.6 g/l (210-277 MEKV); concentration of 

calcium ions 0.86-1.2 g/l (43-60 MEKV); concentration of magnesium ions 2.4-4.9 g/l (204-406 

MEKV); and concentration of sodium + potassium (due to the difference) 16.7-26.3 g/l (969- 

1145 MEKV). The type of salinization is sulphate-magnesium-sodium-chlorine. 

The parameters of filtration water properties containing complexes are as follows: filtration 

coefficient 0.7-1.1 m/day, impact radius 15-23 m. 

 

3.5.1.2 Formation of Low Mineralized Ground Waters 

Water containing formation is confined to alluvial sediments of the second stratigraphic-genetic 

complex. Water containing rocks include fine sand and sandy loam with insignificant yield of 

water. Water resistance and low mineralized waters come from the clays of low Khvalynian 

agewith a feed from atmospheric precipitation, steam condensation from the air and the rivers 

Ural and Emba during the freshet period (Mo Energy and Mineral resources et al., 2001). 

These waters are deposited as lenses on more salty waters at a depth of 1.5-6.0 m. The 

lenses are either isolated from below waters by waterproof loam and clays or bedded straight 

on more salty waters. According to the chemical content, the water is chlorine-magnesium-

sodium type with saline content 2-7.5 g/l. The salinity content and salt containment depend on 

the conditions of feeding from below salt waters. 
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3.5.2 Spatial distribution of hydrogeological features in Zone C (from the basin of the 
Emba River to the Mertvyy Kultuk Bay) 

Hydro-geological conditions of the Precaspian basin are complicated and specified not only by 

tectonic formation features or lithological facies change of rocks, but by climatic conditions. 

Two water-bearing complexes are distinguished in a hydrogeological formation cross-section. 

The first water-bearing complex is connected with lithified rock mass of Mezokainozoi and 

represented by water pressure of high mineralization. The second water-bearing complex is 

connected with non-lithified Pleistocene-Holocene sediments. Two layers of unconfined or 

poorly-confined highly mineralized groundwater with relatively small water abundance are 

formed within the second water-bearing complex: the first layer is tied to the sediments of 

Early and Middle Pleistocene, the second layer is tied to the sediments of Upper Pleistocene 

and Holocene. 

There is a strong aquifuge in the form of a Khvalynian clay layer between the first and second 

layers. 

Underground water from the first water-bearing complex and first layer underground water of 

the second water-bearing complex lie considerably deep. 

The water-bearing formation for underground water of the second layer consists of sandy loam 

and sandy variations of upper Pleistocene and Holocene soil. The depth of underground water 

bedding within the studied territory differs; therefore, the locations of underground water level 

at certain depths are correspondingly shaded on the figure below. 

The territory with underground water depositing at the depth of 0-3.0 m is horizontally shaded 

with blue color. The territory where underground water lies at 3.0-5.0 m depth is shown with 

blue shading at the angle of 45º, with the incline from the left to the right. The territory where 

underground water lies in more than 5.0 m depth is shown with vertical blue shading (Mo 

Energy and Mineral resources et al., 2001).  
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Figure 59: Groundwater depths in Zone C 
 

The main source of underground water feeding is atmosphere precipitation. In conditions of 

extremely dry climate and high evaporation level this process occurs in winter-spring time. In 

the regime of natural feeding the seasonal change of underground water level will not be 

higher than 0.5 m. 

In the coastal zone, which is under surge influence, the additional source of feeding is surge 

within the flooding zone. Desalination of underground water due to fresh seawater feeding was 

noted. Taking into account the irregularity of surge phenomena it is difficult to speak about 

underground water conditions. 

An additional source of feeding in existing oil fields is domestic effluent discharge with no flood 

control and water leakage from various defaulted utilities. 
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Artificial flooding of the territory and related to that considerable rise of underground water 

level in comparison with surrounding area is observed here. In some places the level of 

underground water rises up till the points of day surface, therefore swamping of the location 

occurs. In the areas subject to artificial flooding decrease of underground water mineralization 

level was noticed. Artificial flooding of territory has an unfavorable impact on environment and 

geologic conditions. 

Underground water of the second layer, which was formed as a result of the natural-historical 

process of territory formation, is characterized by a high mineralization level. Dry residue is 

77.3-107.9 g/l, corresponding to a brine group. Concentration of hydrogen ion (pH) 7.4-7.6 

characterizes alkaline medium. General alkalinity is 0.58- 0.76 g/l (9.6-12.4МЭКВ); chlorine 

content is 34.2-46.9 g/l (965-1323 MECV); sulphates content is 15-24 g/l (349-498 MECV); 

calcium content is 0.68-0.86 g/l (34- 43 MECV); magnesium content is 5-6 g/l (410-502MECV); 

natrium-calcium content (per difference) is 20-29 g/l (871-1298MECV). 

Parameters of filtration features of water-bearing soil complexes are the following: The 

filtration factor is 0.8-1.3 m/day, with an impact radius of 18-25 m (Mo Energy and Mineral 

resources et al., 2001). 

 

3.5.3 Spatial distribution of hydrogeological features in Zone D (Northern Shoreline of 
Buzachi Peninsula) 

The surveyed area has complicated hydrogeological conditions, which are defined not only by 

its structural and tectonic features, lithofacies variability of the rocks, but by climatic conditions 

as well. One should also bear in mind that the mainland zone of the surveyed area and shelf 

area of the Caspian Sea are the source of relief for the regional water-bearing horizons formed 

within Mountainous Mangyshlak. Structural hydrogeological section consists of two 

distinguished water-bearing complexes (from top to bottom). 

First water-bearing complex is associated with the lithified differentiations of the Mesozoic-

Cainozoic rocks and represented by the pressure waters with high mineralization. In the 

eastern part of the Kalamkas field and northeastern part of Bolshoi Sor, where the Mesozoic 

and Cainozoic rocks outcrop at the dayside, griffons with high water column level at the day 

surface at 0.5-1.0 m were observed. Underground waters of the first water-bearing complex 

are bedding at the relatively big depths and are not involved in the engineering facility impact 

area, hence their description is very brief. 

Second water-bearing complex is associated with the non-lithified sediments of the Upper 

Pleistocene – Holocene age and marine and continental genesis. It is itself subdivided in two 

water-bearing horizons: fresh and saltish water and highly mineralized ground water horizon. 
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Fresh and saltish water horizon is associated with the sand massifs of Zhilimshik and 

Kyzylkum: ground water bedding depth there varies in the deflation hollows from 1 to 5 m and, 

under the mounds, from 10 to 15 m. Waters are fresh and saltish, with dry residue from 0.9 g/l 

to 4 g/l, occasionally up to 10-18 g/l. The highly mineralized ground water horizon is found 

everywhere within the surveyed area, except for sand massifs. Water yielding rocks include 

loamy sand and sandy differentiations of the Upper Pleistocene and Holocene soils of the 

marine genesis, highly mineralized water of brine type having dry residue from 117 g/l to 150 

g/l. 

Both water-bearing horizons are replenished by the atmospheric precipitation, water vapor 

condensation of the ambient atmosphere, as well as by the regional inflow from the south, 

from the Mountainous Mangyshlak side. With the natural replenishment regime, seasonal 

fluctuations of the ground waters will be within 0.5-0.7 m range (Mo Energy and Mineral 

resources et al., 2001). 

Man-made sub-flooding of the areas affected by the intensive engineering and business 

activities associated with the industrial construction at the Kalamkas and Karazhanbas fields 

and the extensive infrastructure is an additional water-bearing horizon replenishment source. 

There are significant volumes of water leaking from the broken engineering networks of 

various designation with uncontrolled discharge of industrial and domestic sewage. Within the 

surveyed area, groundwater bedding depth varies and depends on the hypsometric position of 

the dayside sections of the area.  

Horizontal blue strokes show the areas of the groundwater bedding from 1 to 3 m depth. Blue 

strokes having an angle of 45° with left to right inclination show the areas of the groundwater 

bedding from 3 to 5 m. Blue strokes having an angle of 45° with right to left inclination show 

the areas of the groundwater bedding at the depth of more than 5 m (Figure 60).  
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Figure 60: Groundwater depths in Zone D 
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3.5.4 Hydrogeology of the Tyub-Karagan Peninsula 

Three aquifers are evident between the coast and the Ustyurt Plateau: 

A shallow aquifer, primarily limestone (Sarmathian and Pontian strata). Groundwater depth 

ranges from 3 to 5 m and from 40 to 50 m. Aquifer storage and well yields are low (0.1 - 0.4 

l/s), and rarely exceed 1 to 3 l/s. 

At an 8 to 10 m depth, the hydraulic characteristics of the limestones vary and fracture and 

fissure flow increase rock permeability. Tranmissivities range from 1.5 to 70 m/day, and are up 

to 1 - 7 m/day in marl formations. The mineral content of the water ranges from 0.5 to 15.2 g/l. 

Ground waters are slightly mineralised (sodium/calcium sulphate–hydrocarbonate and salty–

chloride–sulphate types). The aquifer is recharged by seasonal rainfall, and discharges as 

springs, where the aquifer outcrops along the sea cliffs. 

Deeper ground water of the Neogene–Paleogene and Cretaceous strata is associated with 

fracture and fissure zones, and springs occur sporadically on the north slope of the Tyub-

Karagan Peninsula. 

The water is often fresh, but flow rates are low, up to 1 l/s. Well drawdowns are high, about 3-

10m, but occasionally the aquifer may be artesian. This water is used for local domestic or 

agricultural supply. 

On the Tyub-Karagan spit ground water occurs sporadically but is poorly protected (Mo 

Energy and Mineral resources et al., 2001). The local groundwater is recharged from rainfall. A 

first aquifer at 1-3 m depth, fluctuates with sea level. Well yields are in the order of 0.1 - 0.5 l/s. 

Ground waters range from fresh to saline. No water wells exist in the Northern part of the spit 

but a number of wells that abstract groundwater to the south of Fort Shevchenko(near 

Bautino) exploit the aquifer. 

 

3.5.5 Future Use of the Underground Waters 

There are no explored fields with approved reserves of the underground waters within the area 

in question and adjoining areas. The underground waters are totally saline, and, therefore, 

cannot be used for water supply and irrigation. Thermal, mineral and industrial waters are 

widely spread in the area. These water resources are significant. 

 

3.5.5.1 Thermal and mineral waters 

In some cases, thermal waters consist of mineral content. At the total depth (3000 m) within 

the area the underground water temperature ranges from 75 to 80°С (Eskene field, at 2500 m 
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the temperature is 78°С), on the surface of the presalt sediments it is 130 to 140° С. 

Distribution of temperature in the aquifer systems: Upper Cretaceous horizons have the 

temperature 20-50°С, Lower Cretaceous 30-50°С, Permo-Triassic 68-150°С. Therefore, the 

following geothermal formations have been identified in the area: Cainozoic, Upper 

Cretaceous, Lower Cretaceous, Jurassic, Triassic-Permian, Kungurian and presalt. 

Cainozoic (Quaternary-Paleogene) geothermal zone is characterized by variable geothermal 

stages from 22 to 55m/°С. Underground water temperature varies from 25 to 50°С depending 

on their bedding depth. 

Upper Cretaceous geothermal formation is mainly made up of carbonate sediments (chalk, 

marl, limestone) having low water saturation. The formation has generally high thermal 

conductivity, consequently the value of a geothermal stage varies from 48 to 60 m/°С. 

Lower Cretaceous geothermal formation is represented by clastic sand and clay sediments. 

Thickness of the Lower Cretaceous sediments decreases within the salt domes. Lower 

Cretaceous formations contain high salinity waters in the central part of the intradome spaces 

and significantly fresh waters in marginal areas. Water abundance of the sediments is high. 

Significant diversity of the rock geothermal properties is observed. The value of a geothermal 

stage varies from 37 to 83 m/°С. Such big fluctuation is determined by variable lithologic and 

petrographic composition of the rocks and recession of the waters with variable temperature 

from the adjoining aquifers to the sand reservoirs. Underground temperature in these 

sediments varies from 15- 25°С to 65°С. 

Upper Jurassic geothermal formation is mainly represented by carbonate sediments (Mo 

Energy and Mineral resources et al., 2001). 

Thermal conductivity of the rocks varies, sometimes it is high, geothermal stage varies from 26 

to 60 m/°С. Underground water temperature varies from 25 to 75°С depending on its bedding 

depth. 

Northern Precaspian relates top the province of the nitrogen, nitrogen and methanol and 

methanol mineral waters, with their major mineral components being iodine and bromine. 

Minimum concentration of iodine and bromine in the underground waters to be recognized as 

the mineral ones should be as follows, mg/dm3: iodine 5, bromine 25. Concentrations of 

bromine 250 mg/dm3; iodine 18 mg/dm3 are prospective for the search for industrial iodine-

bromine waters (Distribution of mineral underground water in Figure 61). 
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Figure 61: Mineral and iodine-bromine underground waters in the study area (green 
circles) 

 

3.5.5.2 Potential wastewater disposal 

For the assessment of the condition of the area, regional (tectonic framework of the region and 

water exchange features, hydrogeological structure compartmentalization) and local (porosity 

and permeability properties of aquifers and compartmentalization of the area) factors are 

considered. With the low properties of permeability of an aquifer, the injectivity of certain 

volumes of disposed wastewater may be achieved by the increase of the number of injector 

wells. 

Resulting from the basic environmental requirements of any aquifer, the suitability of an area 

for disposal first depends on compartmentalization of the hydrogeological structure and 

underground water exchange rate. 
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Robust compartmentalization of the aquifer is required not only in the area of the disposal site, 

but also within the area, in which a natural hydrodynamic regime is going to change due to 

injection ofwastewater. 

Three hydrodynamic zones identified in the study include the change of the hydrodynamic 

conditions, chemical composition, and salinity of the aquifers in the structure section: 

• upper – intensive (active) water exchange and recovery, 

• middle – retardant (hampered) water exchange, 

• lower – strongly hampered (static) drive. 

Middle and lower hydrodynamic zones may be variably suitable for wastewater disposal. In the 

hampered water exchange zone disposal conditions may be favourable in some areas with 

continuous regional confining beds. The most favourable for wastewater disposal is the static 

drive zone, with isolated aquifers from the impact of the surface factors and contained saline 

waters, which in most cases do not have any practical value. 

As a consequence, aquifers potentially suitable for the disposal within the area in question are 

related to Neocomian, Lower and Middle Jurassic strata, found in several troughs. Boundary 

conditions of the aquifers are primarily determined by the presence of salt dome tectonics and 

hydrogeological role of the faults. 

 

3.5.5.3 Use of low-mineralized ground water for the water supply of oil and gas 
industry facilities 

Within the northeastern Caspian Sea region (Atyrau oblast) low mineralized underground 

waters with mineralization up to 3-4 g/dm3 may be of benefit to use not only for technical and 

agricultural water supply but also for domestic water supply (Kadyrgaliyeva et al., 2008). 

The region has meagre surface waters. The river network is developed in the southwest and 

northeast, but most of the territory does not have any permanent watercourses. Therefore, 

river waters cannot always be considered as reliable sources of domestic water supply. 

The longest water pipe routed in the region is Khigach (Volga)-Mangistau, which transports 

fresh water to Mangistau, supplying many population centres and oil-fields with water . 

However, due to the rise of water levels in the Caspian Sea, rundown-surge processes 

constantly incur this extensive water pipe with surge heights from 1.5 to 2.6m, resulting in 

instability of territory water supply and complications for technical operation and maintenance. 

Prior to 1982 (Bali, Tugarakchan) the hydrogeological section was thoroughly examined only 

up to the depth of 500-520m due to little requirement and absence of required machinery 
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equipment. With exposed thickness of Alb-Cenomanian formations (100-220m) the effective 

thickness of productive strata was at 60-132 m. Underground waters were flowing, hydraulic 

head was at 356 m including above the ground surface  from 27.0 to 29.0. Flow rates of wells 

measured up to 30dm/s, with level lowering - 22.2 m. Sulphate chloride sodium waters with 

mineralization on the Bali field area (3g/dm3), and the Tugarakchan area (3,6g/dm3). 

Calculated hydrogeological parameters: water transmissibility - 310 and 338 m2/day, 

piezoconductivity 3.5 and 1,4x105 m2/day, and an effective thickness of 132 and 60 m 

(Kadyrgaliyeva et al., 2008). 

From 1982 through 1984 the hydrogeological investigations were carried out in the South-

Emba artesian basin at Zhanasu field. Water requirements exceeded the earlier approved 

water reserves twice throughout the basin and registered 119,000 m3/day, which caused the 

necessity to study the hydrogeological section in detail for fullthickness. In addition, testing of 

upper and lower sections was separately performed at one point using two tiered wells with a 

depth of 550 and 820 m. Such methodology confirmed the accuracy of the select decision. 

Calculated load as achieved for each water intake point represented by two wells was taken at 

92 dm/s. 

The new approach to the hydrogeological model of the South-Emba basin has changed the 

concept of calculated hydrogeological parameters of the aquifer system and Zhanasu field. 

The parameters are shown as follows: filtration coefficient 3,25 m/day, effective thickness 292 

m, water transmissibility – 994 m2/day, piezoconductivity 1,65x106 m2/day. Obtained data 

prove big potentialities of South-Emba artesian basin. 
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3.6 OIL&GAS RESOURCES 

3.6.1 Description of thePrecaspian basin petroleum system 

3.6.1.1 Source rocks 

Paleo-geographic conditions of sedimentation and facies architecture indicate that the 

principal petroleum source rocks in the North Caspian basin are basinal black-shale facies 

contemporaneous with upper Paleozoic carbonate platform deposits on the basin margins 

(Figure 62). Because of great depths, the small number of wells drilled into basinal facies, and 

the paucity of cores, the geochemical characteristics of the source rocks are poorly 

documented. Only limited analytical data are available from published sources. Lower Permian 

basinal facies of the west basin margin are characterized by total organic carbon (TOC) 

content ranging from 1.3 to 3.2 percent and hydrogen index (HI) of about 300 to 400 mg HC/g 

TOC (Punanova et al., 1996). Lower Permian black shale on flanks of the Karachaganak reef 

has TOC measurements as high as 10 percent. In Middle Carboniferous basinal black shales 

on the east basin margin, TOC reaches 7.8 percent (Dalyan, 1996). In the Biikzhal deep well 

located basinward from the southeast margin, Middle Carboniferous black shale at a depth of 

more than 5.5 km has TOC of 6.1 percent (Arabadzhi et al., 1993). Although data are few, high 

TOC and silica contents in basinal shales of all margins and characteristically high X-ray 

readings on gamma logs are typical of the deep-water anoxic black-shale facies. This facies 

contains type II kerogen and is the principal oil source rock in Paleozoic (and many Mesozoic) 

basins of the world (Ulmishek and Klemme, 1990). 

Russian geologists believe that the Upper Devonian–Lower Carboniferous Izembet (Zilair) 

Formation of the east and southeast margins of the North Caspian basin contains significant 

petroleum source rocks (Arabadzhi et al., 1993; Tverdova et al., 1992). This coarsening-

upward clastic section, especially its lower part, was partially deposited under relatively deep 

water conditions. Measured TOC content varies from 0.1 to 7.8 percent and averages 0.75 

percent (Tverdova et al., 1992). Organic matter is of mixed terrestrial and marine sapropelic 

origin. On the Van Krevelen diagram, most samples are located near the boundary between 

kerogen types II and III. Measured HI varies from less than 100 to 450 mg HC/g rock. These 

data indicate that organic-rich units of the Izembet Formation could have generated gas and 

probably some oil. Thick Lower Permian orogenic clastics of the east and south basin margins 

contain only terrestrial organic matter and could have generated some gas (Arabadzhi et al., 

1993). 

The presence of source rocks in the suprasalt sequence has long been disputed, and some 

investigators believe that oil pools in salt dome-related traps were generated from these strata 
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(Botneva, 1987). Although some source rocks of inferior quality may be present among 

Triassic strata (see Figure 62), these rocks could have reached maturity only in some deepest 

depressions between salt domes and thus are of only local significance. Recent geologic and 

geochemical data show that suprasalt oils were generated from subsalt source rocks and 

migrated upward from depressions between domes where the salt has been completely or 

almost completely withdrawn. 

Vitrinite reflectance and geochemical data indicate that in most fields and prospects drilled 

along margins of the North Caspian basin, the top of subsalt rocks occurs in the oil window or 

in the upper part of the gas window (Volkova, 1992). The geothermal gradient in the basin is 

relatively low apparently because of the cooling effect of the thick Kungurian salt sequence. 

The south basin margin is hotter; at the top of subsalt rocks at depths of 4–4.2 km the 

temperature is 100°–120°C compared to about 80°C at comparable depths on the north 

margin. Standard maturation modelling is difficult to apply because of differences in thermal 

conductivity of evaporite and clastic/carbonate rocks. Geothermal gradients in salt domes and 

adjacent depressions are different, and the modeling is further complicated by uncertainties in 

timing of salt dome formation. The difference in measured temperature at similar depths at the 

top of subsalt rocks under a salt dome 3.5 km thick and in an adjacent depression (in Karatobe 

field of the east basin margin) was 18°C (Navrotsky et al., 1982). This difference may reach 

60°C under the largest salt domes of the basin. Qualitatively, it can be stated that maturation 

in deep parts of the basin started before deposition of the salt. Most oil generated at this stage 

probably was lost because of the absence of a regional seal (local seals among mostly 

carbonate rocks are uncommon and easily breached). This loss of early-generated 

hydrocarbons is demonstrated by heavy, paleo-biodegraded oils found in a number of fields at 

depths reaching 5.5 km (Botneva et al., 1990). 

The principal stage of hydrocarbon generation and formation of fields, especially in marginal, 

shallower areas of the basin, probably was in Late Permian–Triassic time when the Kungurian 

salt seal was in place and thick orogenic molasse clastics were deposited (Borovikov, 1996; 

Figure 62). Significant hydrocarbon generation in later times could have occurred only locally 

in depressions adjacent to growing salt domes. Deposition of thick Mesozoic and Tertiary 

sediments in these depressions resulted in additional heating of subsalt source rocks. Triassic 

source rocks considered as speculative could also have reached maturity in the deepest 

depressions and generated some hydrocarbons. 
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Figure 62: Events chart of North Caspian Total Petroleum System, after “Ulmishek, 
2003”. 

Queries indicate uncertainties in extent or identification. 

 



 

141 

3.6.1.2 Reservoir rocks 

In the subsalt sequence, carbonate reservoirs are of better quality than clastic reservoirs. 

Reservoir properties of carbonate rocks strongly depend on diagenetic changes, primarily on 

leaching. Vuggy porosity related to leaching is better developed in reef reservoirs, especially in 

reef-core carbonates. For example, porosities averaging 10–14 percent are characteristic of 

reefal vuggy, porous limestones and dolomites in the Karachaganak field, whereas porosity of 

adjacent inner lagoonal facies is lower, commonly 6–10 percent or less (Shershukov, 1986).  

Porosity of Upper Devonian–Middle Carboniferous carbonate reservoir rocks in the Tengiz 

field (Figure 35) varies from a few percent to 20 percent and averages 6 percent over this 

extensive atoll. Most of the porosity in this field is related to vugs, whereas the primary pore 

space does not exceed 2–3 percent. 

Porosity exceeding 10 percent is characteristic of a ring-shape zone of the atoll’s reef core 

(Pavlov, 1993). Porosity of carbonates deposited on slopes and in the central lagoon is 

significantly lower. Permeability of carbonates of the Tengiz atoll and other reefs is mainly 

controlled by fracturing and, in laboratory measurements, was observed to vary widely from a 

few to hundreds of millidarcies. In the Astrakhan field, Bashkirian detrital and oolitic limestones 

were deposited on a shallow bank. Porosity of the limestones averages 6 percent and is about 

equally divided between primary and diagenetic porosity.  

Measured permeability in samples is low, commonly only 1–2 mD. However, fracturing is 

intensive, and most wells yield 5–10 million cubic feet of gas per day. Several small oil 

discoveries have been made in sandstones of the upper part of the Upper Devonian–Lower 

Carboniferous Izembet Formation on the east and southeast basin margins. Daily oil flows 

from most tested wells were low considering great depths and overpressures, and did not 

exceed several tens of barrels with the exception of one well that tested nearly 2,000 barrels 

per day. Porosity of most sandstone and gravelstone samples ranges from 10 to 20 percent; 

permeability is variable, in some samples reaching hundreds of millidarcies (Dalyan and 

Akhmetshina, 1998). The sandstones are poorly sorted, have variable but locally high content 

of carbonate cement, and are commonly laterally discontinuous; consequently, reservoir beds 

of the Izembet Formation, though locally exhibiting high porosity and permeability, are largely 

of moderate to poor quality. Preservation of porosity in “dirty” greywacke sandstones at great 

depths is probably related to high overpressure that may be twice that of hydrostatic pressure 

at the same depth (Dalyan and Akhmetshina, 1998).  

Lower Permian (and also in places of Upper Carboniferous) orogenic molasse clastics of the 

east and south margins of the North Caspian basin are characterized by variable, but 

generally poor, reservoir properties. Exploration of this clastic play, conducted in the 1950s 

and 1960s, was in compressional anticlines located within the Aktyubinsk trough on the east 
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basin margin and farther south in the Ostansuk trough. In both troughs, the orogenic molasse 

sequence is as much as 5 km thick. Sandstones in the more eastern anticlinal trends that were 

drilled are tight, probably because of deep burial and subsequent tectonic stress and 

unloading. The same causes resulted in poor reservoir properties of orogenic sandstones in 

compressional thrust-related anticlines of the Karakul-Smushkov zone in the western part of 

the south margin. Reservoir properties of Lower Permian sandstones outside the zones of 

compressional anticlines are somewhat more favourable. Several oil accumulations have been 

discovered in these rocks; in the largest accumulation (Kenkiyak field), at depths of 4–4.5 km, 

porosity varies from 5 to 11 percent and permeability does not exceed 50 mD. The main 

reservoir problem is the discontinuous character of sandstone beds, which probably resulted 

from the rapid progradational deposition of the orogenic clastic sequence. Highly variable 

original yields of wells that range from less than 40 to greater than 2,000 barrels/day resulted 

from these geologic conditions (Solovyev, 1992). Reservoir properties of Jurassic and 

Cretaceous sandstones that occur at shallow depths above salt domes are excellent; porosity 

ranges from 25 to 35 percent, and permeability is high, commonly several hundred 

millidarcies. Reservoir properties deteriorate somewhat in the more deeply buried Triassic and 

Upper Permian strata, but in a few fields where these rocks are productive, porosity remains 

higher than 20 percent and permeability varies from 30 to 500 mD (for example, Kenkiyak 

field; Figure 38).  

 

3.6.1.3 Seal Rocks 

The Lower Permian Kungurian evaporite sequence is the principal regional seal for subsalt 

reservoirs of the North Caspian basin (Figure 62, seal rock) and covers the entire basin area 

except for a narrow zone along the east and south margins where salt either was not 

deposited or was truncated by pre-Jurassic erosion. Kungurian salt is deformed into numerous 

domes alternating with depressions, in which the deposits are thin or absent due to lateral 

flowage (for example, see Figure 38). Where the otherwise impermeable seal is absent, 

hydrocarbons were afforded avenues to migrate from subsalt source rocks vertically into 

suprasalt reservoirs. Some high-amplitude carbonate build-ups are likely water bearing due to 

hydrocarbons leaking into suprasalt rocks (for example, Karaton build-up on the Primorsk 

carbonate platform, Figure 36 and Figure 38).  

Nevertheless, the salt formation divides the sedimentary succession into two welldefined 

hydrodynamic systems. Ubiquitous overpressure and significantly higher salinity of formation 

waters characterize the subsalt system, whereas pressure is hydrostatic and salt content in 

formational water is lower in the suprasalt system. Various local and semiregional shale seals 
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that directly overlie hydrocarbon pools in subsalt reservoirs probably would not be effective 

without the Kungurian salt. Upper Jurassic and Cretaceous marine shale beds seal 

hydrocarbon pools in suprasalt rocks. Both subsalt and suprasalt hydrodynamic systems 

constitute a single total petroleum system (TPS) because they were charged by hydrocarbons 

from the same subsalt source rocks; however, the upper system was designated as a 

separate assessment unit within the TPS (Ulmishek, 2003). 

 

3.6.1.4 Traps 

As discussed previously, carbonate reefs are the most important traps in subsalt rocks. 

Various morphological types of reefs are present, but atolls and pinnacle reefs contain the 

largest hydrocarbon accumulations. Pools in barrier reefs are much smaller because the 

maximum height of the oil/gas column is defined by the back-reef slope and does not exceed 

150–200 m. Several subsalt fields on the east basin margin are in structural anticlinal traps 

(Zhanazhol and adjacent fields). These traps are related to Hercynian compression from the 

Urals and were formed during Permian-Triassic time approximately contemporaneous with 

peak hydrocarbon generation (Figure 62). Only the giant Astrakhan gas field is apparently 

controlled by basement-related uplift in the crestal portion of a regional arch (Figure 39). 

All hydrocarbon pools in subsalt clastic rocks (most of them non-commercial) have been 

discovered on anticlinal prospects. However, the discontinuous character of clastic reservoir 

rocks in both Lower Carboniferous and Lower Permian sections and large variability in flows 

from adjacent wells suggest that hydrodynamic connection between the wells is poor or absent 

and that many of these pools are actually in stratigraphic traps. In the suprasalt section, all 

productive traps are related to salt tectonics and are morphologically variable. Among them, 

anticlinal uplifts with a salt core and traps sealed updip by faults and by walls of salt domes are 

the most common types. In recent years more modern seismic equipment has improved the 

ability to map the structure of suprasalt rocks in depressions between salt domes, resulting in 

new types of structures being mapped in Upper Permian rocks (Dalyan, 1998) such as arches 

in depressions and semi-arches against slopes of salt domes. These structures are expressed 

only in Upper Permian rocks but are absent in both younger and older strata. Formation of the 

traps is related to non-uniform withdrawal of salt into adjacent domes. 

 

3.6.2 Oil&Gas Resources of the North Ustyurt Basin 

Source rocks have not been identified in the drilled sedimentary sequence of the Buzachi Arch 

and Surrounding Areas Composite TPS. Productive Jurassic rocks, although enriched in coaly 

organic material (the content of total organic carbon (TOC) is as high as 2.8 percent), were not 
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buried to the oil generation window. Some geologists proposed that oil accumulations in 

Jurassic and Cretaceous strata were formed by vertical migration of hydrocarbons from pre-

Upper Permian marine rocks (Kozmodemyansky et al., 1995); however, geochemical data for 

these rocks are not available. Slight gas shows were recorded in pre-Upper Permian rocks 

during drilling, but testing was unsuccessful. Those rocks are separated from producing 

Jurassic strata by about 3,000 m of Upper Permian–Triassic red beds that are intensely 

compacted (especially the Upper Permian) and devoid of shows. Vertical migration through 

the red beds is unlikely. In addition, significant compaction of pre- Upper Permian rocks and 

the presence of numerous dibasic dikes indicate that the rocks passed through the oil window 

long before Jurassic time. 

A more probable scenario of formation of the oil and gas fields implies migration of 

hydrocarbons laterally from the North Caspian basin. Source rocks for hydrocarbons in the 

North Caspian basin are in the deep-water basinal facies of the subsalt Paleozoic sequence. 

From there, oil possibly migrated vertically into post-salt rocks and then updip through 

continuous Mesozoic strata onto the Buzachi arch. The presence of oil and gas fields on the 

northern slope of the arch and their absence on the southern slope support this model. If the 

model is correct, the Buzachi Arch and Surrounding Areas Composite TPS is actually a part of 

the North Caspian Paleozoic TPS, although the Paleozoic stratigraphy and tectonic history of 

the area relate it to the North Ustyurt basin. 

No inferences about the present state of maturity and time of maturation of source rocks can 

be made because the exact location of the source rocks is unknown. However, the timing of 

trap formation, the very shallow occurrence of pools, and partial biodegradation of oil indicate 

that migration of hydrocarbons and the formation of fields were recent—probably not earlier 

than Miocene. 

All reservoir rocks of the Buzachi Arch and Surrounding Areas Composite TPS are in Middle 

Jurassic (principally Bathonian) and Neocomian sandstones. The fields contain a maximum of 

12 pays (Kalamkas field), varying in thickness from a few to 40 m and separated by shale 

beds. Reservoir properties of the sandstones at shallow depths are good. Porosity ranges 

from 22 to 29 percent, and permeability ranges from tens to many hundreds of millidarcies. 

The potential for the presence of reservoir rocks in the Triassic section is limited. On most 

drilled structures, Triassic rocks compose the leading edges of thrust plates (Popkov, 1991). 

The rocks are significantly deformed and compacted; and porosity does not exceed 4 percent. 

Somewhat better reservoir potential has been reported for Middle Triassic rocks on the 

northern slope of the Buzachi arch (Lipatova et al., 1985). In some sandstone samples from 

the Kalamkas field, measured porosities were as high as 22 percent. No potential reservoirs 

have been identified in older rocks. 
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All discovered fields of the Buzachi Arch and Surrounding Areas Composite TPS are in 

structural traps. The traps in Jurassic and Cretaceous rocks are elongated east-to-west 

anticlinal structures with steep northern flanks that commonly are cut by reverse faults. The 

southern flanks of the anticlines are much more gentle. Oblique normal faults also are present. 

The anticlines are arranged in several linear zones that extend offshore (Figure 33). The 

Jurassic-Cretaceous anticlinal zones are underlain by the leading edges of thrust sheets 

composed of Triassic rocks. The detachment surface probably is near the base of Upper 

Permian– Triassic clastics (Popkov, 1991). The Jurassic-Cretaceous anticlines were formed 

by mild compression and rejuvenation of movements along pre-Jurassic thrust planes. Three 

major compressional events took place in pre-Neocomian, pre-Tertiary, and pre-middle 

Miocene time. 

Exploration for stratigraphic traps has not been conducted in the TPS. Many stratigraphic traps 

are predicted to be present in pinch-out zones of Middle Jurassic rocks that unconformably 

onlap the Triassic sequence on the southern slope of the Buzachi arch. Stratigraphic pinch-out 

traps around local Triassic uplifts were mapped in Jurassic rocks of the eastern Buzachi 

Peninsula (Rakhmetova et al., 1986). On the northern slope of the arch, Middle Jurassic rocks 

possibly contain traps that are sealed by west-trending reverse faults on the northern limbs of 

anticlinal folds. 
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4. EVALUATION OF NATURAL AND PRESENT 
SUBSIDENCE 

4.1 ROCK COMPRESSIBILITY  

4.1.1 Definitions 

Compressibility is used in the Earth sciences, and particularly in geomechanics, to quantify the 

ability of a soil or rock to reduce in volume due to a pressure variation. The void space can be 

full of liquid or gas. Geologic materials reduce in volume primarily when the void spaces are 

reduced, yielding that the liquid or gas must be expelled from the voids. This process occurs 

over a certain period of time, resulting in a settlement of the ground surface. 

Generally speaking, the application of a mechanical stress to a continuous medium causes 

deformation. The relationships between stresses and deformations in a homogeneous solid 

medium (e.g. steel or wood) differ substantially from those in a reservoir rock, since the latter 

consists of a matrix of solid grains forming a three-dimensional porous and permeable 

network. Reservoir rocks are subject to internal stresses, of a volumetric type, exerted by the 

fluids contained within the pores, and to external stresses caused by the weight of overlying 

rocks, and potentially by lateral stresses of tectonic nature. Karl Terzaghi formulated a 

principle stating that in a porous medium, the total vertical stresses induced by the weight of 

overlying sediments are partly supported by the pressure of the fluids saturating the pores, 

and in part by the stresses spread over the points of contact between grain and grain (effective 

stresses; Terzaghi, 1945). This principle, named after Terzaghi, can be written as follows: 

 

σz = σze + P 

Eq. 1 
 

where σz is the total vertical stress, σze is the effective vertical stress, P is the pressure of the 

fluids inside the pores. If the production of fluids from a porous medium takes place at 

constant temperature (a good approximation in most of the reservoirs), exploiting only the 

energy drive of the reservoir, it follows that the variation in the distribution of stresses inside 

the porous medium is due exclusively to the variation of pore pressure as a consequence of 

the production of formation fluids. Generally speaking, each element of the subsurface, before 
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the extraction of the fluids saturating it, is in static and dynamic equilibrium with the stresses 

transmitted to it by the surrounding elements (due to tectonic forces, the movement of fluids, 

the confinement preventing its free expansion, etc.), in addition to its own weight. The 

underground fluid withdrawal causes a decrease of pore pressure at the production point that 

spreads over the surrounding medium according to a relation, which is a function of the 

permeability of the porous medium and the viscosity of the produced fluid. Following the fluid 

withdrawal, a decrease in volume occurs in all elements of the porous medium; regardless of 

the compressibility of the solid phase with respect to the decrease in pore volume, this 

depends on the variation in effective stresses alone. Clearly, the deformation of the 

depressurized elements is transmitted to all the surrounding rocks. In this context, it has been 

shown that there is a fundamental difference between the stresses induced in layers subject to 

depressurization, and those present in surrounding rocks: the former are subject mainly to 

vertical compression, whereas the latter may also be subject to tension and shear stresses, 

which may lead to horizontal movements, and sometimes fractures or creep along any faults 

present.  

 

Generally speaking, compaction causes a variation in the pore volume, grain volume and total 

volume of the porous medium. 

 

 The percentage variation in the total volume of the porous medium following a unit 

variation in stress is described as the bulk compressibility (Cb) of the porous medium.  

 

 The percentage variation in the grain volume following a unit variation in stress is 

known as matrix compressibility (Cm). 

 

 The percentage variation in pore volume following a unit variation in stress is described 

as pore compressibility (Cp).  

 

Regarding bulk compressibility and pore compressibility, two types of variation in stress 

conditions can be defined: the one relative to the bulk volume of the rock, and that relative to 

the pore volume. The first is related to the variation of stresses on the outer surface of the 

sample (confinement pressure), while the pore pressure is kept constant. The second, on the 

other hand, refers to a change in pore pressure, while the pressure on the outer surface 

remains constant. Generally speaking, it is possible to define four different types of 

compressibility, keeping in mind the bulk volume (Vb) and the pore volume (Vp), as well as the 
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pore pressure (Pp) and the confinement pressure (Pc) of the sample, which may vary 

independently. Under isothermal conditions, using a notation for compressibility where the first 

subscript indicates the reference volume, and the second subscript the reference pressure, 

which can be varied, one can thus define: 

 

𝐶𝑏𝑐 = − 1
𝑉𝑏
�𝜕𝑉𝑏
𝜕𝑃𝑐
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Eq. 2 
 

These definitions are valid only if it is possible to assume that both the pore pressure (Pp) and 

the confinement pressure (Pc) are independent variables (a hypothesis that makes physical 

sense only for drained tests carried out in the laboratory, during which a variation in the 

confinement pressure does not cause a variation in pore pressure). Under undrained 

conditions, this hypothesis does not hold true, and therefore lacks physical meaning. In the 

latter case, the undrained compressibility (Cu) may be correlated with porosity (f), matrix 

compressibility (Cm), static bulk compressibility (Cbc) and the compressibility of the saturating 

fluid (Cf), using the following equation: 

 

𝐶𝑢 =
𝜑𝐶𝑏𝑐 �𝐶𝑓 − 𝐶𝑚� + 𝐶𝑚(𝐶𝑏𝑐 − 𝐶𝑚)

𝜑�𝐶𝑓 − 𝐶𝑚�+ (𝐶𝑏𝑐 − 𝐶𝑚)
 

Eq. 3 
 

In the elasticity theory, the following equations are also valid: 

 

𝐶𝑚 = 𝐶𝑏𝑐 − 𝐶𝑏𝑝  (a) 
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𝐶𝑚 = 𝐶𝑝𝑐 − 𝐶𝑝𝑝  (b) 

 

𝐶𝑏𝑝 = 𝜑𝐶𝑝𝑐  (c) 

Eq. 4 
 

Due to the underground fluid withdrawal, the volume of porous medium subject to a pressure 

decrease tends to compact. The entity of compaction is mostly governed by the 

compressibility of the porous medium, and occurs mainly in the vertical direction. Under these 

conditions, one usually refers to the definition of the uniaxial compressibility or compressibility 

in oedometric conditions (Cm), also measured at constant temperature (Chierici, 1994): 

 

𝐶𝑚 = −
1
ℎ
�
𝑑ℎ
𝑑𝜎𝑏𝑐

� 

Eq. 5 
 

where h is the vertical dimension of the sample (or the thickness of a productive formation 

interval), and sze is the effective vertical stress. The laboratory measurement of the coefficient 

Cm is a difficult and laborious procedure; in practice, it is preferable to measure compressibility 

under hydrostatic conditions (indicated above as Cbp), which do not correspond, however, to 

those to which reservoir rocks are subject during production. From a theoretical point of view, 

the variation in volume of a porous medium depends only on the average variation in stresses. 

Therefore, by using an appropriate correlation coefficient, one can verify that the 

measurements carried out under hydrostatic conditions are equivalent to those carried out 

under oedometric conditions. In elasticity, the most commonly used correction factor is the 

following: 

 

Y = 𝛼
1
3
�

1 + 𝑣
1 − 𝑣

� 

Eq. 6 
 

where v is the Poisson coefficient, and a is the Biot coefficient equal to:  

 

𝛼 = 1 − �
𝐶𝑚
𝐶𝑏
� 
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Eq. 7 
 

The uniaxial compressibility from hydrostatic measurements can thus be obtained using the 

conversion factor Y defined above: 

 

𝐶𝑚 = 𝑌𝐶𝑏𝑝 

Eq. 8 
 

The bulk compressibility of the porous medium is extremely important for the study of both 

reservoir compaction and land subsidence, which may occur above areas subjected to the 

production of subsurface fluids (water, oil and gas). In particular, the mathematical models 

currently applied to study and predict subsidence use uniaxial compressibility as the identifying 

parameter for the deformability of the medium during the depressurization phase. 

 

4.1.2 Measurements of rock compressibility 

The compressibility of rocks can be determined by laboratory instruments, or through in situ 

investigations. In the laboratory, the mechanical properties of samples taken through drillings 

are studied, allowing one to measure deformations vs. the applied stresses. In situ 

investigations, on the other hand, aim to measure variations in the thickness of layers subject 

to depressurization. Laboratory measurements may be affected by significant errors, due to 

the disturbances caused by coring, the preparation of samples, the uncertainty regarding 

stress conditions in the subsurface, and the difficulties in determining the viscous component 

of deformation over the short time-frame of laboratory tests. Furthermore, laboratory tests are 

carried out on small samples, and therefore cannot provide information on the effects of the 

macro-heterogeneities often present in the subsurface. When the behaviour of samples in the 

laboratory reproduces the in situ conditions with sufficient accuracy, laboratory tests become 

precious because they provide precise information on the behaviour of the subsurface before 

underground fluid production. The accuracy of in situ measurements depends largely on the 

technique used, the presence of a casing, the presence and type of cementation, and the 

possible pre-compaction of the materials in the immediate vicinity of the borehole, provided 

that it had been previously used as a production well (Mancini et al., 2005). 

 

4.1.2.1 Laboratory measurement 
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Laboratory measurements are carried out at constant temperature (room temperature or 

preferably formation temperature) on cylindrical samples whose size ranges from 2 to 10 cm in 

diameter, and 2 to 3 cm in length. The apparatus generally used and the stress systems 

applied are: a cell at uniform pressure (i.e. hydrostatic chamber), in which the sample is 

subjected to stresses equal in all directions (sx_sy_sz), using a pressurized liquid; an 

oedometric chamber where the sample is subjected to an axial stress sz (applied by a piston), 

while radial deformation is prevented by a cylindrical container, whose walls, for practical 

purposes, can be considered undeformable; a triaxial cell, which subjects the sample to an 

axial stress sz (applied by a piston) and a radial stress sr (applied by a pressurized liquid). The 

hydrostatic and triaxial cells may be used for all materials. To carry out the test one must 

sheath the sample in a neoprene, elastomer or copper membrane, which also generally 

contains a valve allowing one to vary the pore pressure. By contrast, the oedometric chamber, 

faster and easier to use, is suitable only for poorly cemented shales and sands, and is not 

recommended for cemented rocks, due to the difficulties presented in eliminating the friction 

between the sample and the cylindrical container, which may cause alterations in the structure 

of the rock matrix during the test. The hydrostatic cell enables the measurement of both the 

stress applied, as well as the interstitial pressure (using pressure gauges, or electrical 

pressure or load sensors); variations in the pore volume can also be estimated by measuring 

the volume of liquid expelled, and the sample volume using extensometers applied to the 

sample, or measuring the volume of liquid injected into the cell (obviously by adopting the 

appropriate corrections that take into account the compressibility of the fluid and the expansion 

of the cell). The oedometric cell allows one to measure both vertical stress and axial 

movements. Some modern oedometers also enable the calculation of the radial stress 

required to maintain the radial expansion at zero. With the triaxial cell, alongside interstitial 

pressure and variations in the sample bulk volume and pore volume, one can measure the 

stresses applied and the variations in the length and diameter of the sample: these parameters 

are calculated by measuring the movements of the piston and the variation in the diameter of 

rings fixed onto the sample, or by using extensometers applied to the sample itself. In the most 

up-to-date apparatus, the loads and the interstitial pressure are varied continuously, or in 

stepped load cycles. Clearly, it is possible to select the speed of stress variation or 

deformation. In the triaxial cell, one can keep constant the relationships between axial and 

radial stress, or impose predetermined deformations (e.g., one can ensure that radial 

deformation remains nil as the axial load varies). The loads may also be kept constant over 

time, so as to measure time-dependent deformation phenomena (creep). Although today a fair 

degree of accuracy has been reached, it is important to emphasize that all measurements are 

characterized by differences between the system of stresses actually applied and the 

theoretical system. These differences may be attributed to the use of samples with faces that 
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are not perfectly parallel, and to the radial expansion partially inhibited by the friction between 

the load plate and the piston (in the triaxial cell). Furthermore, in the oedometrical cell, if the 

diameter/height ratio of the sample is not small enough, the effective load applied may be 

reduced by the friction between sample and container. 

 

 

Figure 63: Sketch of an extensometric apparatus using a string of solid pipes. 
 

4.1.2.2 In situ measurements 

In situ measurements of subsoil compaction are essentially divided into two types. The first, 

better known in geotechnical engineering, measures the variations in distance between the 

surface and one or more bases anchored to the ground inside a borehole, using fixed 

equipment (extensometric apparatus or extensometer). The second determines the variations 

in relative distance between a series of subsurface points identified by suitable markers: the 

measurement is taken by running a tool into the well. This tool measures the distances 

between points marked using techniques deriving from geophysics, commonly applied in the 

oil industry, and now also widespread in civil engineering. The first type of measurement may 

be used up to a depth of a few hundred metres, whereas the second can be employed in wells 

that are several thousand metres deep. 

 

Extensometers. According to Joseph F. Poland, the first measurements of this type were 

practiced almost by chance in Japan during the 1930s. It was noted that, after exploiting a 

superficial aquifer (at a depth of circa 60 m, and formed of gravels covered by shale beds), the 

casing column of some wells protruded above the ground. The compaction of the aquifer 

coincided with the protrusion of the casing column, which was fixed to the bottom of the 
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production levels (Poland, 1984). Later, it was noted that as depth increased, so did the action 

of the earth on the casing; therefore, the protruding length of the column no longer coincided 

with the compaction of the levels. To eliminate the friction between the measuring device and 

the subsoil, wells up to 200 m deep were drilled and cased with two concentric casing 

columns: the internal tube was still anchored to the bottomhole, while the outer casing, which 

also functioned as a true casing, was uncoupled from the bottom by means of a slip joint. In 

1955, the United States Geological Service (USGS) introduced a cable extensometer, 

anchored in an open hole about 10 m beneath the casing shoe and counterweighted to 

maintain tension, used for the monitoring of subsidence to depths of around 600 m. This 

instrument was perfected and became widely used. In 1966, the USGS developed an 

extensometer in which the cable was replaced by a string of solid pipes balanced by a 

counterweight (Figure 63). 

 

 

Figure 64: Radioactive marker technique for measuring the compaction of deep 
formations. 

 

Radioactive markers. These methods are based on the measurement of variations in 

distance between markers placed along the sidewalls of the well in geologic formations subject 

to compaction. Among these, it is worth mentioning the casing collar locator log (CCL log), and 
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the radioactive bullet log. The radioactive bullet log is currently the most frequently used 

technique. This involves placing markers a few cm from the sidewall of the well, at depth 

intervals of circa 10.5 m, whose position inside the well can be located by means of a 

dedicated logging tool. These markers consist of a small radioactive source of 137Cs (or 

60Co), contained within a steel tube in the form of a bullet. To avoid contaminating the 

formation, the radioactive matter is contained inside a hermetically sealed steel capsule, 

which, in turn, is sealed inside the body of hardened steel forming the actual bullet. These 

markers are shot into the formation by normal perforating guns with firing small explosive 

charges. Selecting the right amount of explosives is critical, since the marker must not 

penetrate too deeply into the formation (where it may not be easily detected by the measuring 

instrument, given the low intensity of the radiation). On the other hand, it must sufficiently 

penetrate the formation in order to avoid being removed by the centralizers during well casing. 

After placing the markers, the problem lies in monitoring their position, and, if a compaction 

occurs, in calculating the variation in relative distance between adjacent pairs of markers. The 

monitoring system is based on γ ray logging tools that use sodium iodide crystal sensors 

activated with thallium, coupled to a photomultiplier. To reduce errors linked both to the 

(absolute) precision of the measurement of the length of cable in the well, and the imperfect 

coincidence of the movements of the cable at the surface with respect to the movements of 

the tool within the hole, the current technique employed uses four sensors placed on a suitably 

calibrated measurement bar, whose length is approximately equal to the distance between the 

markers. The main causes of error associated with this measurement technique include: the 

stretching of the cable used to run the logging tool; the friction between the tool and the casing 

column; and, most of all, the difficulty of determining the exact position of the marker from the 

recorded γ ray profile. Another important cause of error could be the influence of a casing’s 

presence, which could alter the deformations of the formation in the vicinity of the borehole, 

keeping in mind that, in order to have a reliable measurement, the marker must be fixed no 

deeper than, or at most equal to, the radius of the well. 
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4.1.3 Pore compressibility calculated by traveltime log 

Different methodologies for pore compressibility calculation have been evaluated. The best 

approach is given in Khatchakian (1995); available data do not allow their application, so we 

decide to implement the methods defined by Overton and Norman (1969). Criteria explained 

below are referred to reservoir exploitation, but the same principles are applicable to any 

investigated sedimentary column.  

Illustrated methodologies have been applied in collaboration with G.E.Plan consulting, private 

company with skills in Carbonate Sedimentology and generally in Oil&Gas sector. 

Reservoirs without a water drive and without a significant change in gas-oil-ratio produced 

mainly by oil expansion. These are the undersaturated oil reservoirs or the heavy-oil 

reservoirs, where energy from gas and water is almost nil. As oil is produced the pressure 

drops, causing expansion of both oil and rock matrix. 

Hence the overall expulsion of oil is related to volume increase of fluid and volume decrease of 

pore space. The pore volume shrinkage is very difficult to measure. Several investigators have 

tried to relate pore volume compressibility to bulk compressibility of rock, making assumptions 

such as constant porosity and constant stress-fluid pressure relationships. However, the 

reservoir porosity is generally a variable with pressure, as is rock stress; and the changes are 

not necessarily the same in all directions. It is expected that the maximum strains are in the 

vertical direction, since the restraint is less vertically. The solutions to elasticity equations 

yielding compressibility depend mainly upon boundary conditions. Three general types of 

reservoir boundary conditions can be easily recognized: 

 

 All reservoir boundaries remain fixed, so that grain expansion intrudes pore space. 

 

 Lateral boundaries remain fixed, with all strain occurring vertically. 

 

 All reservoir boundaries move by varying amounts as pore pressure drops. 

 

Case one is unrealistic, but it yields the minimum shrinkage in pore volume. Case two may 

occur when aquifer pressure drops simultaneously with reservoir pressure. Case three is the 

most general case. The theory of elasticity may be used to solve compressibility equations, 

whenever rock is consolidated (i.e., an elastic solid). For unconsolidated rock, expansion or 

contraction is not recoverable. The extreme case is that of an overpressured zone where the 

fluid supports most of the overburden. Reduction of pressure allows settling of grains into 
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more compact positions. Elasticity equations cannot be used for these cases. In the following 

we will deal with consolidated rocks only. 

 

4.1.3.1 Solution to reservoir pore volume changes 

FIXED BOUNDARIES 

An oil reservoir may be considered to have four distinguishable stresses operating on it; 

namely: 

 

a. p - Hydraulic pressure 

b. sz - Vertical rock stress, at point contacts 

c. sx and sy - Lateral rock stresses 

 

The average stress on a macroscopic section of rock may be considered to be 

 

𝜎 =
𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧

3
 

Eq. 9 
 

so that two variables, p and s, are the important parameters causing volume changes in 

reservoirs.  

Now if the boundaries of a reservoir are such that they cannot move as pressure drops, the 

grains will expand into the pore space. The bulk volume does not change, only the pore and 

matrix volume are rearranged; hence 

 

𝑑𝑉𝐵 = 𝑑(𝑉𝑃 + 𝑉𝑅) = 𝑑𝑉𝑃 + 𝑑𝑉𝑅 = 0 

Eq. 10 
 

Usually matrix compressibility is defined as: 

 

𝐶𝑅 = −
1
𝑉𝑅
𝑑𝑉𝑅
𝑑𝑝

     ;       𝐶𝑃 = −
1
𝑉𝑃
𝑑𝑉𝑃
𝑑𝑝

 

Eq. 11 
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so 

 

𝑑𝑉𝑃
𝑉𝑃

= �
1 − 𝜑
𝜑

�𝐶𝑅𝑑𝑃 

Eq. 12 
 

Note that for f= 1/3, Cp= - 2Cr; and for f = 1/10, Cp = - 9Cr(upper and lower limits for 

sandstones). For quartz Cr is 1.865 x 10-7/psi, so that Cp would not be expected to exceed 

1.678 x 10-6/psi for consolidated sands. This maximum is considerably below that calculated 

by Fatt using bulk compressibility data. When considering unconsolidated sands where fluid is 

supporting overburden, greater changes can occur as fluid pressure is reduced. 

 

FIXED LATERAL BOUNDARIES, VERTICAL STRAINS 

Whenever a reservoir is constrained laterally, movement can occur vertically. This case exists 

whenever impermeable shales above and below a sand prevent pressure drop outside a sand 

vertically, and whenever aquifer pressure outside of an oil reservoir drops by similar amounts 

to that in the oil zone.  

 

𝑑𝑉𝑃
𝑉𝑃

= 𝑑𝑉𝐵
𝑉𝑃

− 𝑑𝑉𝑅
𝑉𝑃

= 1
𝜑
𝑑𝑉𝐵
𝑉𝐵

− 1−𝜑
𝜑

𝑑𝑉𝑅
𝑉𝑅

  (a) 

𝑑𝑉𝑃
𝑉𝑃

= �1−𝜑
𝜑
�𝐶𝑅𝑑𝑃 + 1

𝜑
𝑑𝑉𝐵
𝑉𝐵

  (b) 

Eq. 13 
 

The change in Vb, is a result of DL in the z direction, with reservoir area constant 

 

𝑑𝑉𝐵
𝑉𝐵

=
𝑑𝐿
𝐿

= 𝜖𝑧 

Eq. 14 
 

Vertical movement occurs at contact of grains, where, for isotropic rocks (using Lame's 

constant and shear modulus G) 
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𝜎𝑧 = 𝜆�𝜖𝑥 + 𝜖𝑦 + 𝜖𝑧� + 2𝐺𝜖𝑧 = (𝜆 + 2𝐺)𝜖𝑧 

Eq. 15 
 

And since the change of stress is +dp vertically, (assuming that expansion stresses cause 

shape distortion only.) 

 

𝑑𝑉𝑃
𝑉𝑃

= �
1 − 𝜑
𝜑

�𝐶𝑅𝑑𝑃 +
1
𝜑

𝑑𝑝
𝜆 + 2𝐺

 

Eq. 16 
 

From dilatational wave study in solids, it is known that compressional velocity Vd 

 

𝑉𝑑 = �
𝜆 + 2𝐺
𝜌

 

Eq. 17 
 

When the bulk density r, is known 

 

𝑑𝑉𝑃
𝑉𝑃

= �
1 − 𝜑
𝜑

�𝐶𝑅𝑑𝑃 +
1
𝜑

𝑑𝑝
𝜌𝐵𝑉𝑑2

 

Eq. 18 
 

Note that the two terms in equation have opposite effects; i.e. as pressure drops, the grains 

expand (decreasing pore volume,) while bulk changes shrink grains. 

 

Practically, 

 

𝑑𝑉𝑃
𝑉𝑃

= �
1 − 𝜑
𝜑

𝐶𝑅 +
74.4𝑥10−12∆𝑇2

𝜑𝑆.𝐺. �𝑑𝑝  

Eq. 19 
 

where S.G. is specific gravity of the rock bulk, ,f is fractional, and DT is in microseconds/ft. 
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Although the previous equation is theoretically derived from elasticity considerations, it may be 

subject to considerable errors. It is based on the assumption that the strain vertically is directly 

related to pressure drop  

For a complicated porous rock geometry, this is difficult to prove. 

 

ALL RESERVOIR BOUNDARIES MOVE 

An oil reservoir is subject to declining pressure in a tectonically stressed zone, while the 

surrounding aquifer maintains its original hydraulic pressure. 

 

 

Assumptions: 

1. Isotropy, 

2. 𝜎 = 𝜎𝑥+𝜎𝑦+𝜎𝑧
3

 

3. Overburden stress is constant, 

4. Areal porosity is numerically equal to volumetric Porosity, fA = fA ,  

5. The rock has spherical grains of variable size. 

It is not intuitive that changes in rock stress are constantly related to changes in hydraulic 

pressure. Rather it is more realistic that forces are radially uniform in a spherical grain as 

pressure changes.  

Then,  

d(Force)/Area of grain contact = d(Force) /Area of fluid contact 

 

−𝑑𝜎
𝑑𝑝

=
𝐴𝑝
𝐴𝑔

 

Eq. 20 
 

It is obvious that both contact areas involved are variables. For one spherical grain, it is clear 

that Ag< 4pr2: and that Ap+ Ag is exactly 4pr2. Of course pores are never spherical, but a 

spherical configuration establishes the minimum surface area that a pore volume can realize. 

Also, for the spherical case, 
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𝐫𝐚𝐭𝐢𝐨𝐨𝐟𝐜𝐫𝐨𝐬𝐬 − 𝐬𝐞𝐜𝐭𝐢𝐨𝐧𝐚𝐥𝐚𝐫𝐞𝐚𝐬 =
𝛗𝐚

𝟏 − 𝟐𝛗𝐚
 

 

Eq. 21 
 

whenever one grain and one pore are identically one unit volume (this is not true for some 

packings). 

Practically, sandstone has a lower limit of porosity of 10% hence 

 

−𝑑𝜎
𝑑𝑝

>
1
8
 

 

And from physical considerations, 

 

−𝑑𝜎
𝑑𝑝

≤ 1 

 

That is to say, no greater stress can be transmitted than the original hydraulic pressure drop. 

Note that for the maximum porosity observed in the field, f = 1/3, ds/dp has the maximum 

value.  

 

Assumption 6:         
𝑑𝜎
𝑑𝑝

=
𝜑

1 − 2𝜑
 

Eq. 22 
 

The bulk tends to expand coincidental with a reduction in the original pore volume. This effect 

will tend to be propagated through the whole oil reservoir wherever dp occurs. 

 

From the outside of the reservoir, in the aquifer, the pressure remains the same as originally. 

Hence a pressure fdp acts across the reservoir boundary, resisting the tendency to expand. 

The net change of stress causing reservoir x,y boundaries to move is: 
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−𝑑𝜎
𝑑𝑝

=
2𝜑2

1 − 2𝜑
 

Eq. 23 
 

whenever there is a discontinuity in pressure between oil reservoir and water aquifer. Note that 

at 36.6% porosity the derivative is unity. 

Assuming the previous equation is a general relation and that shear stresses are insignificant, 

then, from definitions of the elastic constants, approximately: 

 

𝜖𝑧 ≅
𝑑𝑃

𝜆 + 2𝐺
=

𝑑𝑃
𝜌𝐵 + 𝑉𝐷2

≅
𝑑𝑉𝐵
𝑉𝐵

 

Eq. 24 
 

or 

 

𝑑𝑉𝑃
𝑉𝑃

= �
1 −𝜑
𝜑

𝐶𝑅 +
∆𝑇2

𝜑𝜌𝐵
�1 −

𝜑2

1 − 2𝜑�
�𝑑𝑝  

Eq. 25 
 

RESUME 

The minimum shrinkage of reservoir pore space due to hydraulic pressure change in an oil 

reservoir is calculated to be  1−𝜑
𝜑
𝐶𝑟𝑑𝑝  where Cr is a rock constant. Rock compressibility is 

noted to be .94 x 10-7/psi for limestone and 1.865 x 10-7/psi for sandstone, from literature data. 

Hence, if the lower limits of porosity are 2% for limestone and 10% for sandstones, the 

minimum pore shrinkage is 1.68 x 10-6/psi for sandstones and 4.61 x 10-6/psi for limestones. 

Literature data calculated from bulk compressibility should not be used for reservoir pore 

shrinkage, since oil reservoirs do not generally expand upon reduction of pressure as do 

isolated core samples. 

For oil reservoirs which experience a reduction of pressure, the aquifer surrounding the 

reservoir maintains a high pressure. This tends to keep reservoir expansion minimized. An 

approximate relation which shows the stress which tends to expand the reservoir is: 
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𝑑𝜎 = −�
2𝜑2

1 − 2𝜑�
𝑑𝑝 

Eq. 26 
 

At 36.6% porosity the expansion stress is -d, while the lower limit is zero at low porosity. An 

approximate solution of pore volume change for this reservoir configuration is: 

 

𝑑𝑉𝑃
𝑉𝑃

= �
1 − 𝜑
𝜑

𝐶𝑅 +
0.893∆𝑇2

1010𝑆.𝐺:
�

1
𝜑
−

𝜑
1 − 2𝜑

��𝑑𝑝  

Eq. 27 
 

When it can be shown that reservoir boundaries do not move, except vertically, upon reduction 

of reservoir pressure; then: 

 

𝑑𝑉𝑃
𝑉𝑃

= �
1 − 𝜑
𝜑

𝐶𝑅 +
74.4𝑥10−12∆𝑇2

𝜑𝑆.𝐺. �𝑑𝑝  

Eq. 28 
 

The pore volume changes calculated from these equations require that rock be consolidated 

such that it acts elastically. Whenever there is unconsolidation or a significant amount of shale 

in a reservoir sand, change of reservoir pore volume will exceed (for a non-sealed reservoir) 

 

𝑑𝑉𝑃
𝑉𝑃

≤
1 − 𝜑
𝜑

𝑐𝑟𝑑𝑃 

Eq. 29 
 

These theoretical results indicate that bulk compressibility measurements should not be used 

to calculate pore volume changes, since some stress and porosity configurations may exist 

where pore volume remains constant as pressure changes. 

 

EMPIRICAL RELATIONSHIPS FOR CARBONATES 

In general, a strength–physical property relationship for a specific rock formation is developed 

based on calibration through laboratory tests on rock cores from the given field. If there are no 
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core samples available for calibration, the next best thing would be to use empirical strength 

relations based on measurable physical properties. Because there are multiple choices of 

strength models for various rock types in different geological settings, it is necessary to 

understand the characteristics of the models and their range of applicability prior to utilizing 

them.  

It is more difficult to generalize about limestones and dolomites. These relations may provide a 

good first approximation of the lower strength bound when no other information on rock 

strength is available. It is somewhat obvious, however, that calibration of empirical relations 

between strength and physical properties is generally required for any correlation to be used 

with some degree of confidence. 

Thus, empirical equations relating the strength of carbonate rocks to geophysical parameters 

do a fairly poor job whether considering velocity, modulus or porosity data, which emphasizes 

the importance of being able to calibrate strength in any given case. 
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4.2 NATURAL SUSIDENCE CALCULATION THROUGH NUMERICAL MODELING 

4.2.1 Preliminary Analysis Of Natural Subsidence Numerical Models 

Some numerical models for the assessment of long-term basin-scale subsidence have been 

preliminarily evaluated according to the following selection-criteria: 

i. Linkage to whole required input data encompassing the geological complexity of the 

area (e.g., salt diapirism, geo-dynamism), with required code for available, achievable 

or derivable data. 

ii. In similar contexts, ampleapplications for relevant projects ofinternational value. 

iii. Availability. 

Several 1D or 2D finite element models have been evaluated. Models need to reproduce 

present day sedimentary thickness, excess fluid pressure with respect to the hydrostatic 

distribution, and description of the expected geodynamics of the basin in the near future. 

In general, required input data by models include: 

• Thickness of stratigraphic layers;  

• Age of stratigraphic boundaries;  

• Lithology, with percentages attributed to different lithologies; 

• Sedimentation (palaeowater) depth; 

• Decompaction parameters (porosity for t0 = initial % porosity, decompaction 

coefficient c, final % porosity);  

• Physical properties (grain density, crustal density); 

• Depth/Temperature profile; 

• Paleotectonic and present-day tectonic. 

Availability of required information has been checked within the Phase II, Task 2 and related 

GDB to identify gaps and improve data searches and gathering, and to test the applicability of 

the model according to existing information. 

According to selection-criteria and availability of required input data, main 

advantages/disadvantages of first selected models are summarized in Table 4.  
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Table 4: Preliminary evaluation of Numerical models. 

 

After the preliminary analysis, numerical models chosen were NATSUB and BASIN.  

A brief description of the preliminary set of models evaluated follows.  

 

4.2.2 Synthetic overview of existing models 

NATSUB BY THE UNIVERSITY OF PADUA (ITALY) 

NATSUB is a one-dimensional finite element model that simulates the natural compaction 

driven by unsteady groundwater flow in an accreting isothermal sedimentary basin. The model 

assumes a process of time-varying sedimentation and makes use of a 1-D model of flow 

where water flow obeys the relative Darcy's law in a porous medium, which undergoes a 

progressive compaction under the effect of an increasing load of the overburden. Soil porosity, 

permeability, and compressibility may vary with the effective intergranular stress according to 

empirically based constitutive relationship. The model correctly assumes the geometric 

nonlinearity that arises from the consideration of large solid grain movements.  

The equations are solved using both the Eulerian and the Lagrangian approaches. With this 

latter approach, the model uses a dynamic mesh made of fine elements, which deforms in 

Code Advantage Disadvantage  

BASIN  

(CSIC, Spain) 

Complete input dataset 

2D 

Code availability 

Relevant applications 

Its application requires a 

large amount of quantitative 

data 

GALO 

(Makhous and Galushkin, 
Moscow State University) 

Code developed for areas similar to 

the southern Precaspian basin 

Complete input dataset 

Code not available 

DeCompactionTool  

(University of Wien)  

Code availability 

Montecarlo simulation implemented 

1-D finite element 

Few applications 

NatSub  

(Padua University) 

Code developed by experts involved 

in this project (Teatini and Gambolati) 

1-D 

Montecarlo simulation not 

implemented 

TerraMod (Terramod Ltd, UK)  Complete input dataset  Code not available  
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time and increases in number as deposition occurs and the soil column compacts (Gambolati 

et al., 1998; Gambolati and Teatini, 1998). 

The outcome of the model consists in the behaviour of time and of the length of the column 

and the velocity of its top and bottom, with the evolution over time of the pore pressure in 

excess of the hydrostatic value along the length of the column (Gambolati et al., 1999). 

 

 

Figure 65: Evaluation of bottom velocity and land subsidence over the last three 
centuries, projected until 2100 in the Emilia-Romagna coast, using NATSUB, after 

“Gambolati et al., 1999.” 
 

BASIN (CSIC, SPAIN) 

BASIN is a 2D finite-element program that simulates the filling of a sedimentary basin and 

includes transport, erosion and consolidation of sediment, tectonic processes such as isostatic 

compensation, consolidational fluid flow, topography driven fluid flow, and heat flow including 

advection and solute transport. BASIN incorporates a physically consistent compaction model 

based on the equation of the state of porosity. A description of some underlying principles can 

be found in Bitzer (1996). BASINVIEW is a visualisation tool for fast analysis of simulation 

results. Results from experiments with BASIN may be quite numerous (in some cases 

exceeding 600 files) and BASINVIEW is a fast visualisation tool designed to work with 

GhostScript. 

So far, only distensive basin configurations have been analysed by other authors. BASIN, 

however, is also capable of modelling compressive situations. Such situations are much more 

difficult to handle because of the extreme changes of basin geometry due to compression. 

BASIN does not provide a structural simulation. Instead, the presumed structural evolution is 
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used as input data in order to simulate subsidence, fluid flow, heat flow and evolution of 

petrophysical data like porosity, compressibility, etc. A simple molasses-like experiment 

showing a compressive basin with thrust sheets arriving from the right can be viewed as 

computer animation. The file has about 1 MB that requires Sparkle to visualize. The 

experiment demonstrated in the film applies only a few elements, but also contains some of 

the basic features of a molasse basin.  

Graphics created with BASINVIEW can be printed on any printer. Another version (AIBASIN) 

creates Adobe Illustrator files that allow further graphic operations. 

 

GALO MODEL (MONZER MAKHOUS, YURII GALUSHKIN, MOSCOW STATE UNIVERSITY) 

The GALO program consists of three main blocks: input datafor basin structure and evolution, 

initial parameters for basin modelling, and numerical simulation. 

The first data block contains geological, geophysical and geochemical data describing basin 

structure and evolution, including information about the present-day sedimentary section, 

measured value of porosity, temperature, and vitrinite reflectance (Makhous et al, 1997). 

The second block deals with preparing initial parameters for a numerical simulation of thermal 

history of the basin, calculating the volumes of uncompacted sediments on the surface of the 

basin, estimating the time and amplitude of tectonic and thermal events in the basement 

(thermal activation, stretching of basement, etc.), calculating the initial temperature profile, and 

determining temperatures at the base of the computed domain. 

The third data block uses prepared parameters to carry out a one-dimensional numerical 

simulation of burial, thermal and geochemical evolution of the basin. The comparison of rock 

porosities, temperatures and vitrinite reflectance computed in this block with corresponding 

present-day values from the first block, as well as the calculated curves of tectonic 

subsidence, are used to correct the initial parameters for our basin modeling. 

The third block includes the chemical-kinetic modeling package. Data of open and closed 

pyrolysis experiments are used here for restoring the kinetic spectrum of maturation reaction in 

source-rocks. This spectrum is applied to achieve a numerical estimate of hydrocarbon yield 

and the expulsion threshold.  
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Figure 66: Three main conceptual blocks of the Galo model, after (Makhous et al, 1997). 
 

DECOMPACTIONTOOL (UNIVERSITY OF WIEN, AUSTRIA) 

This software implements error quantification on subsidence analysis, based on Monte Carlo 

Simulation, such that a range of possible values is assigned to each used parameter. A 

random function chooses input parameter values within the defined ranges and these are used 

to calculate the subsidence. From a number of input parameter value combinations, the 

average subsidence is determined. The program also incorporates for the first time the 

parameter “age,” as the controlling factor for the x-axis (Holzel et al., 2008). 

Inputting the correct sedimentary age of backstripped layers is particularly crucial for 

subsidence rate calculations and thus for identifying discrete phases of subsidence. The 

approach used reduced errors due to ongoing uncertainties in the chronostratigraphy of the 

Precaspian basin. 
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Present day section Porosity
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Thermal profile
Vitrinite reflectance

Initial parameters for basin modelling
Lithology, sedimentation, erosion and hiatus, tectonic and 

thermal events, heat flow, boundary condition

Numerical simulation

Calculation of rock porosity Restoration of burial history
Calculation of heat conductivity, 

capacity and generation  

Solution of heat transfer equation

Time-temp and burial history of source rocks

Open/close pyrolysis data 
of source sample

Kinematic parameters 
estimation

HC yield history and expulsion 
thresholds determination

Density

Tectonic 
subsidence

Temp/Depth 
profile

Vitrinite refl. 
calculation



170 

 

Figure 67: DeCompactionTool work flow, after “Holzel et al., 2008”. 
 

TERRAMOD (TERRAMOD LTD) 

TerraMod is a state-of-the-art basin modelling program essential for the effective evaluation of 

exploration of acreage and containing unique features (http://www.terramod.com). Providing 

an analysis of the history of sedimentary basins and, in particular, the evolution of its source 

rocks and expelled hydrocarbons, it incorporates rigorous calculation routines and automated 

calibration checks. A unique optimised model is created that closely fits the specific geology of 

an exploration area, including thrusted regions. 

TerraMod simulates the compaction process in iterative loops, modelling the movement of 

heat and fluids within the basin through geological time, taking into full account the pressure 

and temperature model, incorporating heating rate dependent kinetics, critical for the correct 

determination of generation volumes in both rapidly and slowly subsiding basins. 

The program precisely simulates deposition, fluid dynamics and heat flow including the 

processes operating during subsidence, uplift, erosion and thrusting. It can be applied to any 

geological terrain and quantifies compaction through the history of a basin without relying on 

broad unconstrained assumptions and alerts to any elements of the model that may not be 

geologically correct. 

The program calculates: 

 geohistory and back-stripped subsidence history; 
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 hydrocarbon generation and expulsion through time for each of your identified kerogen 

types and for custom kerogen mixes using any number of independently defined 

source rocks; 

 oil and gas volumetrics for defined source rock thicknesses and for entire kitchen 

areas; 

 fully coupled temperature and pressure profiles indicating where under- or over-

pressured layers may occur; 

 oil gravity expulsion data for oils produced at any time; 

 timing of active maturation and generation; 

 sealing efficiency of reservoir cap rocks. 

The program contains a project and well database system with files that can be configured to 

user preferences and retrieved as required. The models can be automatically optimised and 

checked against calibration data ensuring the best output solution, allowing batch simulations 

and batch plotting that can be run overnight saving time. 

 

 

Figure 68: Print-screen of TerraMod software. 
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4.2.3 The Natsub code 

4.2.3.1 Introduction 

Quantitative analysis of groundwater flow due to sediment compaction in isothermal 

sedimentary basins can provide a useful tool to predict natural land subsidence of accreting 

systems in recent geological times. The first attempt to develop a mathematical model 

describing the evolution of pore pressure, and specifically of excess pore-pressure with 

respect to the hydrostatic one, was perhaps contributed in 1968 by Bredehoeft and Hanshaw 

who derived a linear model of flow in an accreting medium subject to a constant rate of 

sedimentation. The model of Bredehoeft and Hanshaw assumes constant and uniform 

permeability and elastic storage and does not address the natural compaction of the porous 

medium during the sedimentation process. It can, however, account for the development and 

maintenance of anomalous fluid pressure, in particular pressure in excess of the hydrostatic 

one, depending on the selected hydraulic conductivity (which the authors set at the order of 

magnitude of 10-10 m/s or lower) and, subordinately, the specific storage of clayey layers within 

the accreting system. 

When describing the evolution of sedimentary basins undergoing pronounced soil compaction 

the vertical solid grain displacements should be taken into account and Darcy’s law should be 

cast in terms of relative velocity. In addition soil porosity, permeability and compressibility 

cannot be assumed to be constant as they display a marked variation during the consolidation 

process. Finally, accretion and simultaneous compaction should be both accounted for in the 

mathematical model to obtain the correct value of the actual surface displacement. 

The need for deriving the equation of groundwater flow in a deforming medium was 

recognized by a number of authors (Biot, 1941; Biot, 1955; Copper, 1966; Gambolati and 

Freeze, 1973; Smith, 1971). The contribution by Cooper (1966) is particularly important as he 

correctly developed the partial time derivative in the relationship linking the volume strain to 

the incremental effective intergranular stress. A few years later Gambolati (1973a) derived the 

equation of flow in a 1-D deforming porous medium by giving the appropriate consideration to 

soil displacement. He also elucidated and discussed the relation between the oedometer soil 

compressibility cb and the classic compressibility Cb. The resulting equation is a new non 

linear equation defined over a time variable flow domain where both α and Cb play a primary 

role. The dimension of the flow domain increases with time due to accretion. However, the 

increase is partially offset by the concurrent medium compaction which was correctly 

assessed by Gambolati’s model (1973) for large deformations as well. The non-linearity is 

further enhanced by the assumed constitutive relationship for porosity, hydraulic conductivity 
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and soil compressibilities which are in general highly non linear with the stress condition. The 

effect of non-linearity in the controlling parameters was recently included in one dimensional 

numerical solutions to the traditional groundwater flow equation by Bethke and Corbet (1998) 

while the consideration of a deforming porous medium is taken into account in the models by 

Bethke(1985), Keith and Rimstidt (1985), Harrison and Summa (1991) and Corbet and Bethke 

(1992). 

In the present work we used a numerical model knwon as NATSUB based on the 1-D equation 

contributed by Gambolati (1973a). The equation correctly considers Darcy’s relative velocity, 

the medium compaction and the dependence of the essential parameters on the effective 

intergranular stress. In addition, the accretion rate introduced by Bredehoeft and Hanshaw is 

incorporated into the model. This is solved numerically by an iterative finite element technique 

intended to overcome the various sources of non-linearity. 

The model developed herein is intended to be used in the sedimentation and compaction 

analysis of the basin underlying the northeastern part of the Caspian Sea, a normally or almost 

normally consolidated basin where a large database of geological, hydrological and 

geomechanical data is at present available. 

 

4.2.3.2 Governing Equations 

Following Gambolati (1973a) the equation of groundwater flow in a 1-D compacting porous 

medium can be written as:  

 

 

Eq. 30 
 

where:  

  - k is the hydraulic conductivity;  

  - γw is the specific weight of water;  

  - α is the classical vertical soil compressibility defined as d(Δz)/( ΔzΔσz) where σz is the 

effective intergranular stress;  

  - n is the medium porosity;  

  - β is the volumetric water compressibility;  

  - D is the total (or Eulerian) derivative:  
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Eq. 31 
 

and ug is the grain velocity;  

  - p is the incremental pore pressure with reference to an initial steady state condition of flow;  

  - z is the vertical coordinate positive upward;  

  - t is the time.  

 

Eq. 30 holds under a variety of assumptions including:  

(a) k=k* γw /μ where k* and μ are the intrinsic permeability of medium and viscosity of water 

assumed to be constant;  

(b) γw = γw0exp[β(p0+p)] where γw0 and p0 are initial reference values for γw and p, respectively;  

(c) ℎ = 𝑧 + ∫ 𝑑𝑝
γ𝑤

𝑝
0  is the hydraulic potential;  

(d) 𝑛�ʋw − ʋg� = −𝑘 𝜗ℎ
𝜗𝑧

 is relative Darcy’s law where ʋw and ʋg are the (absolute) velocity of 

water and solid grains, respectively;  

(e) constant total stress σt, i.e. σt =p0+p+σz0+σz= const, where σz0 and σz are the initial and 

incremental effective stresses, respectively;  

(f) incompressible solid grains.  

The medium compaction u(z,t) and the grain velocity ug (z, t) are expressed as Gambolati, 

1973a.  

 

 

Eq. 32 
 

 

Eq. 33 
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where the incremental effective stress σz is taken to be positive when increasing. Note that Eq. 

32 applies for large displacements u(z,t) as well and represents a significant difference from 

Cooper’s(1966) development. For a discussion, see also Cooper(1974) and Gambolati (1975).  

Expanding the total derivative in  

Eq. 30 and using Eq. 33 leads to an alternative expression for  

Eq. 30:  

 

 

Eq. 34 
 

In NATSUB some of the assumptions underlying Gambolati’s development are removed and 

the governing equations take on a different form. 

 

 

Figure 69: The sediment column has height l(t) at time t after inception of the accretion 
process and rests on an impermeable basement at z=0. Seawater elevation is L. 

 

First, the last two terms on the right-hand side of  

Eq. 30 have been discarded as their contribution is negligible (Gambolati, 1973b) if the length 

of the sediment column is less than 104 m and the boundary pressure variation is less than 

500 kg/cm2. Moreover, we assume a non zero depositional rateω = 𝑑𝑙
𝑑𝑡

where dl is the 

elementary height of sediment column deposited during the time interval dt. As a major 
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consequence the total stress σt is no longer constant within the compacting column. Similarly, 

the porosity n and the void ratio e are dependent on σz, and hence on z. If we assume that the 

height l of the sediment column is zero at time t=0 (inception of the sedimentation process) 

and denote by L the (constant) seawater elevation (see Figure 69), and take into account the 

variability of both n and α with σz neglecting the dependance of γw on pore pressure,  

Eq. 30 turns into Eq. 35:  

   a 

  b 

  c 

  d 

Eq. 35 
 

where γs is the specific weight of the solid grains. 

In Eq. 35γw, γs and β are constant parameters while k, α and n are to be thought of as given 

functions of σz, and p is the pore pressure in excess of the hydrostatic value related to an 

arbitrarily varying sea level L(t). In Eq. 35b and Eq. 35c σtis the total stress in excess of the 

hydrostatic stress (equal to (L-z)γw). Its time derivative has a quite complex expression. 

Intuitively most of the variation of the total stress in a moving soil particle is due to the weight 

of the sediments which are continuously accumulated on top of the column. Hence on a first 

approximation we can write:  

 

Eq. 36 
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and Eq. 35a becomes:  

 

Eq. 37 
 

where n0 is the initial porosity corresponding to σz=0. The source term in Eq. 37 is the same as 

the one of Bredehoeft and Hanshaw (1968) equation. Eq. 37 forms the basis for the 

description of the excess pore pressure of compacting sedimentary basins subject to a burial 

rate ω= ω (t). Eq. 37 is to be solved in a 1-D domain with a moving boundary l = l(t) which is a 

priori unknown and is a part of the solution. 

Note that Eq. 37 can be viewed as an extension of Bredehoeft and Hanshaw (1968) linear 

equation:  

 

 

Eq. 38 
 

when medium compaction is correctly accounted for. In Eq. 38h' is the head in excess of the 

sea level L (Figure 69), Ss is the classical specific elastic storage and k is the hydraulic 

conductivity. An equation similar to Eq. 38 was originally developed by Gibson (1958) for the 

analysis of consolidation of clay layers with thickness increasing with time. 

Setting:  

 

  (a) 

  (b) 

  (c) 

  (d) 
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Eq. 39 
 

leads to the following solution to Eq. 38:  

 

 

Eq. 40 
 

Solution Eq. 40 holds under the following restrictive assumptions:  

1. the porous medium increases in length due to the continuous deposition on top of the layer. 

However, it does not compact;  

2. porosity n, elastic storage Ss and permeability k are constant;  

3. the accretion rate ω is constant.  

All the previous assumptions are removed in model given by Eq. 37 which will be solved 

numerically in the next sections. Eq. 40 will be used to test the numerical solution to Eq. 37, 

although only in the special case of the linear formulation, and to compare the simplified linear 

results with the more realistic non linear ones. 

A few words must be spent on the vertical compressibility α(σz) which appears in eq. (8). In 

soil compaction analyses based on oedometer tests the compressibility cb is usually defined 

as:  

 

 

Eq. 41 
 

where e=n/(1-n) is the void ratio. Eq. 41 is readily computed from the consolidation profile of 

appropriate soil samples. 

In Gambolati’s (1973a) analysis σz denotes the effective stress in excess of the in situ stress. 

Since we are dealing in the present analysis with a sedimentation process from the very 

beginning (l=0  for :t=0) in Eq. 37 σz stands for both incremental and absolute effective stress. 
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It has been shown by Gambolati (1973) that the oedometer compressibility cb is related to the 

classical compressibility α by Eq. 42:  

 

 

Eq. 42 
 

where here σz is the full effective stress. For a given soil cb is computed as a function of σz 

using Eq. 41 and then Eq. 42 is solved for α=α(σz, σz0). The integration constant is determined 

by the requirement that α(σz0)=cb(σz0) (Gambolati, 1973). Finally integration of Eq. 41 provides 

e=e(σz, σz0) and the constitutive relationship for n=n (σz, σz0) is easily obtained as n=e/(1+e). 

Both constitutive relationships α=α(σz, σz0) and n=n(σz, σz0) are then used in the numerical 

solution of Eq. 37.  

 

Let us make an example of application of the procedure just described. Assume that the 

oedometer profiles point out a constant cb value. Then integration of Eq. 41 and Eq. 42 yields:  

 

 

Eq. 43 
 

 

Eq. 44 
 

where e0 is the initial void ratio corresponding to the in situ stress σz0. The constitutive 

relationship for n is in this example:  

 

 

Eq. 45 
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Figure 70: Typical compression profile of a cohesive soil vs. the effective intergranular 
stress: a) arithmetic plot and b) semilogarithmic plot. 

 

Eq. 45 is similar to the constitutive relation derived by Sharp, Jr. (1983) and critically discussed 

by Bethke and Corbet (1988). It can be used for σz values in the neighbourhood of the in situ 

stress σz0 only since for large σz deviations from σz0Eq. 45 provides unrealistic n values which 

can also become negative. This implies that the underlying assumption cannot be true if the 

range of variation of σz is large, i.e. cb as defined in Eq. 41 cannot be constant for stresses 

which largely exceed the in situ stress. 

However, several authors (Bethke, 1985; Bethke, 1988; Keith and Rimstidt, 1985; Westlake, 

1968) have accounted for soil compaction using Athy’s (1930) equation. Following Rubey and 

Hubbert (1959), Athy’s constitutive relationship can be written as:  
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Eq. 46 
 

where b is a constant which has the same unit as a compressibility. Common values of b, as 

may be derived from the definition of Bethke and Corbet (1988), are in the range of 10-7 to 10-6 

m2/kg. By using Eq. 46 we can easily derive the constitutive equation for the compressibility cb 

from Eq. 41. Replacing n by e/(1+e), we get:  

 

 

Eq. 47 
 

From Eq. 47 it appears that b is the initial in situ compressibility cb0 divided by the initial 

porosity n0, i.e. b=cb0/n0. 

Bethke and Corbet (1988) point out that Eq. 45 provides porosity profiles which are convex 

upward, indicating that the rate of porosity loss with σz increases as the effective stress 

increase. This result is not consistent with observations in sedimentary basins (Athy, 1930, 

Archie, 1950, Perrer and Quiblier, 1974) which indicate that the greatest compaction rates 

occur at shallow depths and small stresses. Porosity curves calculated from Eq. 46 are convex 

downward and asymptotically approach n=0 as σz becomes large. According to Bethke and 

Corbet (1988), p. 462, “these curves are more reasonable geologically because compaction is 

most rapid at small stresses and only positive values of porosity are predicted”. 

In NATSUB it is assumed that cb is provided by a constitutive relationship which can be either 

Eq. 47 or another equation based on experimental results from the area under investigation. 

Using this equation for cb we solve Eq. 42 for α(σz) and calculate the medium compaction at 

time t by Eq. 32 (Gambolati, 1973b)]. Eq. 32 will be used in the numerical solution of the 

consolidation equation to update the thickness of the compacting sediments while deposition 

occurs. By use of Eq. 42, Eq. 37 can now be written as:  

 

 

Eq. 48 
 

Eq. 48 together with Eq. 35 (b and c) and the initial and boundary conditions Eq. 39a through 

Eq. 39c represents the basis for the numerical simulation of the isothermal compaction of the 

sedimentary basin underlying the North Caspian Sea. 
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4.2.3.3 Numerical solution: Lagrangian approach 

Using a Lagrangian solution approach, Eq. 49 is solved on a grid where the nodes follow the 

grains in their compaction movement Eq. 32. This is obtained with a dynamic mesh made of 

finite elements which deform in time and increase in number as deposition occurs and the soil 

column compacts. 

Over a moving node the total derivative D can be approximated by a standard difference 

equation as if it were a partial time derivative. 

For solution by the finite element method, Eq. 48 is written in the form:  

 

 

Eq. 49 
 

where  

 

 

Eq. 50 
 

Eq. 50 is regarded as an (unknown) source term and Dp is discretized by a time finite 

difference scheme with values of p taken over moving nodes. The Galerkin discretization in 

space with linear basis functions yields the system of non linear ordinary differential equations:  

 

Eq. 51 
 

where the vector f includes the effect of f(σz, t) and the boundary condition. When an 

impermeable bottom is assumed, f incorporates only the forcing function. 

A λ-weighted scheme is used for the time discretization (Crank-Nicolson at λ =0.5; backward 

Euler at λ =1). Denoting the time step with superscript K, Eq. 51 becomes:  
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Eq. 52 
 

where  

 

 

with 0≤ λ ≤1. In the schemes and simulations described in the sequel we use the 2nd order 

accurate Crank-Nicolson scheme (λ =1/2). 

Eq. 52 is non linear and the iterative Picard scheme (Culham and Varga, 1971) is used to 

overcome the non-linearity. Letting superscript (m) be an iteration counter, the Picard scheme 

with λ =1/2 reads:  

 

 

Eq. 53 
 

where the terms of the ith row have the expression:  

 

Eq. 54 
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with Δzi the ith element length. 

Application of the iterative scheme Eq. 53 yields the symmetric tridiagonal system of 

equations:  

 

 

Eq. 55 
 

where, from Eq. 53 and Eq. 54, the terms of the ith row are given by:  

 

 

Eq. 56 
 

Eq. 55 is solved by the direct Thomas algorithm (Westlake, 1968). It is to be emphasized that 

the dimension of Eq. 55 is not constant but increases in time as the deposition progresses 

from an initial value of 2 (we start the simulation with 1 element) to a maximum of N, with N 

depending on the time interval spanned by the simulation, the depositional rate ω and the 

required accuracy of the spatial discretization.  

The iterative scheme is implemented with the following procedure. Once has been 

computed, the approximate  is calculated by Eq. 35c, where σt is constant within each 

time step as we have assumed that the variation of the total stress is due only to the weight of 

the sediments that accumulate on top of the column. Using the constitutive relationships for 

the porous medium of the area under investigation, the hydrogeological parameters n, k, cb 

and α are updated to iteration (m). The next step in the procedure involves the updating of the 
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elements’ length. The compaction ,i of the ith element (defined by nodes i and i+1), is 

computed using eq. 3 in the form:  

 

 

 

the integration being performed by the trapezia formula. Consequently, the updated length 

 is given by:  

 

 

where  is the initial element length. Matrix G and vector b can now be recalculated and 

the new solution to Eq. 55 obtained. The iterations are stopped when the difference between 

the two last solution vectors is smaller than a prescribed tolerance; during the first iteration of 

each time step, the values at time t are assumed for all the non linear parameters.  

At this point we are ready to start with the new time step, but first we have to bring up to date 

the total stress σtand to check if a new element is to be added as a result of the sedimentation 

process. As the new elements’ length and the new elemental porosities are computed, the 

actual total stress at the ith node is calculated from Eq. 35b, where z is replaced by zi, and 

from Eq. 36, which gives the weight of the sediment deposited during  as:  

 

 

 

The sedimentation lengthωk+1Δtk+1is cumulated with the length deposited during the time 

elapsed from the addition of the last new finite element. When this length exceeds the initial 

prescribed nodal spacing, a new element is added and the dimension of Eq. 55 grows by 1 

unit. As the sedimenting material is assumed to be homogeneous, the initial hydrogeological 

properties of the added element are constant and coincide with the parameter values at the 

inception of the process. 
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When a new element is introduced, we have to update the dimension of p and f at the previous 

time step and to provide an estimate of their values in the upper new node in order to get all 

the components of 26 with the same size, and to calculate the known term bEq. 56. These 

values can be extrapolated from those of the underlying nodes. In the present analysis, we 

simply use the value of p and f in the node below.  

 

4.2.3.4 Numerical solution: Eulerian approach 

When the Eulerian approach is used to solve Eq. 48, a mesh with fixed nodal positions and 

increasing number of elements is used for the soil column discretization. 

Use of Eq. 31 for the total derivative and Eq. 33 for the grain velocity leads to the following 

expanded form for eq. 19:  

 

 

Eq. 57 
 

For solution by the finite element method, Eq. 57 is written in the form:  

 

 

Eq. 58 
 

where  

 

Eq. 59 
 

is again treated as an (unknown) source term.  

Eq. 58 is solved by finite elements with a procedure which is formally similar to the one used in 

the Lagrangian approach. Consequently, Eq. 53 still holds with Eq. 54 replaced by:  
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Eq. 60 
 

As in the Lagrangian approach, the algebraic system arising from the Eulerian procedure is 

tridiagonal and is solved by the Thomas algorithm. The terms of the ith row are still given by 

Eq. 56. 

The iterative procedure is implemented in a form similar to the Lagrangian formulation. Once 

 is computed, and hence  (σtis constant within a time step), we update the 

hydrogeological parameters and recalculate the matrix G and the known vector b in a 

straightforward manner as the elements length is fixed. The computation of b requires the 

calculation of two partial derivatives (Eq. 59), and this is accomplished by the formulas:  

 

 

Eq. 61 
 

 

Eq. 62 
 

When the iterative procedure is completed and the solution PK+1 obtained, we have to take 

account of both the compaction and sedimentation that occurred in the current time step. 
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Since with this solution scheme the elements are fixed, only the compaction of the entire 

column  needs to be calculated. Accordingly, Eq. 32 yields:  

 

 

To assess the displacement of the top of the soil column during the current Δt, the actual 

deposition length ωK+1ΔtK+1 must be added to the settlement of the column top that occurred 

during the same time interval:  

 

Eq. 63 
 

With a technique similar to that implemented in the Lagrangian approach, the length Eq. 63 is 

used to update the height of the soil column, and, after multiplication by (1-n0)(γs-γw), to 

update the total stress obtained from Eq. 35b. A new element is introduced when Eq. 63 

reaches or exceeds the prescribed nodal spacing. The assignment of the initial hydrogeologic 

parameters to the new element and the updating of vector size b are performed with the 

procedure described in the previous section. 
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4.2.4 The Basin code 

BASIN is inspired by an early approach to basin modelling by Harbaugh and Bonham-Carter 

(1970), who simulated the filling of a sedimentary basin with clastic sediments. Though simple, 

their conceptual model was very powerful in creating surprisingly realistic geologic system 

responses with fairly complex basin geometries and facies distributions. The DEPOSIM model 

by Bitzer and Harbaugh (1987) applied a similar algorithm for clastic sedimentation and 

included a simple algorithm for compaction and isostatic response. While both models were 

capable of creating more or less realistic basin geometries, their predictive potential was low, 

as both models were limited to two-dimensions and heuristic in their representation of clastic 

sediment transport and deposition. Other sedimentary processes were not included, most 

important, carbonate sedimentation was not considered. A three-dimensional model simulating 

clastic sedimentation proposed by Tetzlaff and Harbaugh (1989) incorporates a physically rigid 

approach, however, its applicability in predicting the geometry and facies distribution is 

constrained by the uncertainty or lack of knowledge of initial and boundary conditions during 

the generation of a sedimentary deposit.  

In many cases, the basin geometry and facies distribution are used as the a-priori information 

for a basin simulation to represent the heterogeneity of the deposit. Using this representation 

of heterogeneity, the hydraulic and thermal evolution is calculated for a given set of initial and 

boundary conditions, and parameters such as fluid pressure, temperature, hydrocarbon 

saturation and petrophysical parameters are predicted. In such a situation, it is not necessary 

to apply a sedimentation simulation model, as the best outcome would be a basin geometry 

and facies distribution which is already assumed to be known. Thus, geometry and facies 

distribution will be derived from seismic sections and well data, and not be calculated with a 

sedimentation simulation. BASIN is basically designed for this type of situation, however, it 

also includes a sedimentation simulation module capable of simulating clastic and carbonate 

sedimentation. This module is useful to analyse the sequence stratigraphy of a basin fill in 

response to defined sea-level changes and subsidence. The basin fill history can either be 

simulated or it can be pre-defined in order to match a specific basin.  

The evolving basin geometries are transformed into finite-element meshes with triangular 

elements as described by Bitzer (1996). Compaction or topography-driven fluid flow is 

calculated using these meshes. Solute transport calculation allows to trace a conservative 

solute in the evolving basin taking into account advection, dispersion and diffusion. Heat flow, 

including advective components and hydrocarbon generation employing the Lopatin method 

(Lopatin, 1971, Waples, 1980) are calculated as well. 

The program proceeds in discrete time steps. Each module proceeds in its own time step size, 

imposed by the stability criteria required for the numerical solution. Space is represented 



190 

through individual layers of changing thickness defined at discrete points along the simulated 

cross section. The z-location (depth) and the parameters at these nodal points change during 

the simulation progress. However, all nodal values can be forced at any time step of the 

simulation to match a specific pre-defined basin situation. As the basin evolves through time, 

the upper boundary is moving, which requires a new mesh at each time step to be calculated 

and an automatic definition of boundary conditions. BASIN continuously changes the basin 

geometry, the finite-element meshes and the nodal and element parameters through time due 

to sedimentation or erosion, compaction and tectonic processes. The meshing algorithm used 

for BASIN is simple and may, under unfavorable situations, create meshes with extremely 

elongated triangles, where the numerical methods fail. Such situations may especially happen 

in case of several successive unconformities. Though simple, the meshing algorithm has 

successfully been applied to complicated basin configurations such as foreland basins with 

advancing nappes. 

 

4.2.4.1 Sedimentation Modelling 

The basin fill may either be predefined, or the sedimentation module may be invoked to 

provide a sedimentation simulation at specified time steps. The simulation of deposition is 

mainly of interest if the stratigraphic response to sea-level change and subsidence is the main 

focus of the numerical experiment. BASIN considers four types of sediments, of which the first 

three usually are different clastic sediments and type four is carbonate sediment by default. If 

the sedimentation module is not invoked, all four sediment types may correspond to any 

sediment type, as defined in the input data set through their corresponding material properties 

like initial porosities, hydraulic conductivities, compressibilities, thermal capacities, thermal 

conductivities, densities, tortuosities, thermal and hydraulic dispersivities.  

Clastic sedimentation is treated as a diffusive process similar to the model developed by 

Harbaugh and Bonham-Carter (1970). Sediment diffusion in BASIN is grain size dependent. In 

the conceptual model, a coarse sediment type diffuses more slowly into the basin than a fine 

grained sediment. The diffusion parameters together with the source strength of each 

sediment type at the model boundaries control the geometric and facial evolution of the 

deposit. Sediment supply can be defined at both sides of the cross section. Source strengths 

and maximum subaereal sedimentation rates for each sediment type are defined. Carbonate 

sedimentation is defined through a maximum carbonate production rate, the type of function 

between water-depth and carbonate production rate, and poisoning factors for each clastic 

sediment type. In case of high clastic sedimention rates, carbonate production may be slowed 

down or completely inhibited due to the poisoning effect. On the other hand, clastic 
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sedimentation may reduce water-depth, providing favorable conditions for subsequent 

carbonate production. The interaction and feedback between the processes is represented 

through a system of ordinary differential equations which is solved numerically.  

Sedimentation depends on available accomodation space and sediment supply. 

Accomodation space for subaqueous sedimentation is defined through the water-depth. In 

BASIN, the change of water-depth is calculated from sea-level change and change of 

sediment surface Eq. 64: 

 

∂W/∂t = (∂S - ∂L)/ ∂t 

Eq. 64 
 

with W=water-depth, S= sea-level and L= position of the sediment during a time interval ∂t. For 

rising sea-level or subsiding sediment surface, water-depth and accomodation space increase. 

Sea-level changes are pre-defined whereas position of sediment surface and sedimentation 

rate along the simulation sedimentary basin are calculated as a function of sedimentation rate 

and subsidence. 

Clastic sedimentation is calculated for each sediment type k in an iterative scheme applying 

different equations for subaereal and subaqueous deposition. For subaqueous deposition 

(W>0), Eq. 65 and Eq. 66 are solved: 

 

∂Gk/∂t = (1/ak) Hk  

Eq. 65 
 

∂Hk/∂t = - ∂Gk/∂t 

Eq. 66 
 

with Hk= amount of clastic sediment in the water column available for sedimentation, ∂Gk/∂t= 

sedimentation rate and factor ak= magnitude of sediment diffusion, subscript k indicating the 

sediment type. For low sediment diffusion, the sedimentation rate is high. Subaereal 

sedimentation (W<0) is calculated using Eq. 67 

 

∂Gk/∂t = rk/(c (s+s0) + 1) 
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Eq. 67 
 

with r= maximum subaereal sedimentation rate at distance s0 from the boundary, s= distance 

from the model boundary and c= scaling factor. s0 can be considered as the distance of the 

source area from the model boundary. The larger this distance, the lower the sedimentation 

rate in the subaereal parts of the basin becomes. 

Carbonate sedimentation is calculated for those parts of the basin, where actual water-depth is 

less than the critical water-depth for carbonate deposition and more than zero Eq. 68: 

 

 

∂C/∂t = b (Wmax -W) n - Σ f (k) H 

Eq. 68 
 

with ∂C/∂t = carbonate production rate, Wmax = maximum carbonate production depth, W = 

current water-depth (or accommodation space), b = scaling factor for carbonate production 

rate, n = factor that determines the relation between water-depth/carbonate production rate, 

and f(k) =the clastic sediment poisoning factor for each sediment type k. ∂C/∂t is zero under 

subaereal conditions or if water-depth is larger than the maximum water-depth for carbonate 

deposition. The equation is similar to those applied in predator-prey models in population 

dynamics. The first term in Eq. 68 expresses water-depth dependent carbonate production 

rate with scaling factor b controlling the carbonate production rate. For n=1, a linear relation 

between carbonate production and water-depth is defined. More realistic, however, are 

nonlinear functions with n>1, which give accelerated growth rates at decreasing water-depths 

(e.g. Scoffin, 1986). The second term in Eq. 68 describes the poisoning effect of clastic 

sediment types and may become large, if poisoning factors f(k) are large or the amount of 

clastic sediment in the water column is large. Factor b can be expressed using Eq. 69 as a 

function of maximum water-depth and maximum carbonate production rate: 

 

b = (∂C/∂t)max/(Wmax
n) 

Eq. 69 
with (∂C/∂t)max = maximum carbonate production rate. Although this conceptual model is 

strongly simplified, the geologic system feedback is surprisingly realistic, and complex 
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geometries and facies patterns can be calculated by this approach. The model can be 

extended to include different types of carbonate producing processes and specified interaction 

between them with minor changes in the code.  

The position of the sediment surface changes as a result of clastic and carbonate 

sedimentation rate and subsidence rate ∂R/∂t: 

 

∂L/∂t = (∂(G+C) - ∂R)/ ∂t 

Eq. 70 
 

The sediment diffusion parameters for clastic sedimentation are heuristic. However, they can 

be interpreted in terms of settling velocity and energy conditions in the water column (Bitzer 

and Harbaugh, 1987). 

 

4.2.4.2 Tectonic processes 

The basin geometry controls to a great extent the sedimentary evolution and the stratigraphic 

pattern (and vice versa) and may be altered by tectonic processes. The hydraulic evolution of 

the basin also strongly depends on the geometry. If portions of the basin are elevated above 

sea-level, topography driven flow regimes may evolve in parts of the basin, perturbating solute 

transport and heat flow. BASIN permits to calculate tectonic processes by considering defined 

fault block movements and isostatic response to sedimentation or erosion using the Airy 

model. Several fault blocks can be defined, which may act during specified time steps with 

individual throw rates and hydraulic conditions. Using this option, fault zones with specified 

hydraulic properties can be incorporated in the basin model. Faults are considered to be 

vertical in the model. However, as node coordinates can be altered manually, more complex 

fault geometries can be considered as well (Bitzer, 1997a). Additionally, a pre-defined 

bathymetry can be specified at individual time steps as part of the input data, if such data are 

available. In such cases, tectonic subsidence satisfying the assumed paleo-bathymetry is 

calculated.  

Isostatic response is calculated applying Eq. 71 (e.g. Turcotte and Schubert, 1982): 

 

 

∂L/∂t = ((ρs - ρw) / (ρm - ρs) )  ∂(G + C)/ ∂t 

Eq. 71 
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with ∂L/∂t= basin subsidence rate, ∂(G+C)/ ∂t = sedimentation rate of clastic and carbonate 

sediment, ρs = sediment density (taken as weighted average of all sediment types and the 

corresponding porosities in the sedimentary column), ρw = density of water and ρm = mantle 

density. In case of pre-defined bathymetry, the tectonic subsidence along the simulated cross 

section is calculated, whereas the bathymetry is calculated if the tectonic subsidence is pre-

defined. Bathymetry and/or tectonic subsidence can be displayed using the postprocessing 

program BASELINE. An interesting application of this module is to test the impact of isostatic 

response on resulting basin geometries and facies distribution. Generally, accommodation 

space is strongly increased if isostatic response is considered, and facies progradation is 

slowed down. 

 

4.2.4.3 Hydraulic Evolution 

The principal component of the program is the hydraulic simulation, which couples fluid flow 

and sediment consolidation. In difference to an earlier version of the code (Bitzer, 1996) 

BASIN includes a direct solution approach which considerably speeds up calculation and 

improves the quality of the numerical solution. Additionally, the current version takes 

advantage of the structural similarity between the equations for fluid flow, solute transport and 

heat flow. 

The basic feature of the fluid flow calculation is the coupling of sediment consolidation and 

fluid expulsion incorporating the sediment compressibility as one of the controlling material 

properties. Hydraulic conductivity, sediment compressibility and porosity are treated as 

variables and are calculated in response to progressing fluid expulsion. Boundary conditions 

are assigned automatically. A fully implicit procedure is used, however a Crank-Nicholson 

solution scheme can be selected as well. In case of subaereal emersion of parts of the basin 

the position of the phreatic surface has to be defined as a function of topography. Topography 

driven flow and consolidational flow can be treated synchronously. 

The consolidation equation incorporating porosity dependent sediment compressibility and 

hydraulic conductivity is solved (eq. 9): 

 

(∂/∂x) (kx(φ)
 ∂p/∂x) + (∂/∂z) (kz(φ)

∂p/∂z) = (1-φ) ρ g α
(φ)

∂p/∂t 

Eq. 72 
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with kx(φ)
= porosity dependent hydraulic conductivity in x-direction using Eq. 73, α

(φ)
= 

porosity dependent sediment compressibility, p= fluid pressure and φ=porosity. Hydraulic 

conductivity is calculated from porosity assuming the Kozeny-Carman relation (eq. 10), 

 

k = (ρw g / 5  S0
2 µ) (φ3 /  (1-φ)2) 

Eq. 73 
 

with S0= specific surface, µ = viscosity, ρw= density of pore fluid. Sediment compressibility is 

calculated using a similar function which is derived from the assumption of a constant 

hydraulic diffusivity (Bredehoeft and Hanshaw, 1968): 

 

α = c (φ3/(1-φ)2)) 

Eq. 74 
 

with c=constant. Further details of this approach are given in Bitzer (1996). Sediment 

compressibilities calculated with this approach fit very well with experimental and measured 

data (Bitzer, 1997b). Other functions determining porosity-hydraulic conductivity relations may 

be used as well. 

4.2.4.4 Compaction 

Fluid expulsion and mechanical compaction are coupled processes. In contrast to most other 

models, the nonlinear form of the equation of state of porosity is used instead of porosity/depth 

or porosity/effective pressure functions like Athy's law (Athy, 1930). The advantage of this 

approach is a physical consistent coupling of sediment consolidation and fluid flow. In BASIN, 

it is assumed that during sediment loading the total stress is transformed to effective stress 

acting between the sediment grains, and fluid pressure Eq. 75: 

 

σ load = σ effective + p fluid 

Eq. 75 
 

During consolidation, the ratio between effective stress and fluid pressure changes. Upon 

loading, the total load is initially supported by the fluid pressure. As fluids are drained, the 

effective stress increases and fluid pressure is released at the same rate (Eq. 76): 
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∂σeffective + ∂p fluid = 0 

Eq. 76 
 

Deriving the equation of state for porosity (e.g. deMarsily 1986: p. 96), changes of porosity can 

be expressed as a function of the solid portion of the sediment, the fluid pressure change and 

porosity dependent sediment compressibility α
(φ)

: 

 

∂φ/∂t =  (1-φ) α
(φ)

∂p fluid /∂t 

Eq. 77 
 

Rearranging Eq. 77 gives 

 

∂φ/∂p fluid = (1-φ) α
(φ)

 

Eq. 78 
 

The equivalent form of Athy´s equation to Eq. 78 can be expressed as 

 

∂φ/∂p fluid = (b / (ρ g) ) φ 

Eq. 79 
 

(Bethke and Corbet, 1988) with b=constant, expressing the change of porosity as a function of 

the porous portion of the sediment. Constant b in Athy's equation (Eq. 79) has occasionally 

been interpreted as the sediment compressibility (e.g. Pedersen and Bjorlykke, 1994), which is 

physically not justified. Moreover, it would signify that sediment compressibility remains 

constant during consolidation, which is clearly not the case. 

In BASIN, compaction can also be calculated independently from fluid flow, assuming that a 

compaction equilibrium is reached. In this case it is assumed that total stress is completely 

transformed to effective stress acting on a microscopic scale between sediment grains. Fluid 

pressures are hydrostatic in this case. The advantage of this procedure is to get a first guess 

on basin geometry and porosity distribution without having to solve for the whole finite-element 
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calculation. In cases with low or moderate sedimentation rates, overpressures are usually low, 

and calculated porosities are close to compaction equilibrium. Another advantage of 

decoupling fluid flow and compaction is, that, in case the hydraulic calculation fails because of 

bad elements in the finite-element mesh, equilibrium compaction can be calculated though. 

 

4.2.4.5 Solute Transport 

Solute transport calculation has many useful applications in basin analysis and is a pre-

requisite to incorporate quantitative modelling of fluid-rock interaction. For example, the 

compaction model used in BASIN is limited to the mechanical process of porosity reduction. 

More realistic, however, would be to include chemical processes as well, which may increase 

or decrease porosity through dissolution or cementation (and alter the fluid flow system). Thus, 

a more realistic approach to mechanical compaction modelling would be to include reactive 

transport. A comprehensive introduction to diagenetic modelling is given by Boudreau (1997). 

BASIN in its current state does not include such a module, however, it incorporates a module 

which solves the transient transport equation (Eq. 80) for a conservative tracer, accounting for 

diffusive, dispersive, and advective transport and adsorption: 

 

D/(Rfω) ((∂
2
C/∂x

2
) + (∂

2
C/∂z

2
))+(Dx (∂

2
C/∂x

2
) + Dz (∂

2
C/∂z

2
))/Rf-(vx(∂C/∂x) + vz (∂C/∂z))/Rf = ∂C/∂t 

Eq. 80 
 

with D= coefficient of molecular diffusion, Rf= retardation factor, ω= tortuosity, C= solute 

concentration, Dx, Dz = coefficient of hydrodynamic dispersion in x- and z-direction, vx, vz= 

flow velocities in x- and z-direction. Tortuosities and longitudinal and transversal dispersivities 

are arithmetically averaged from the sediment mixtures in each element. The physical 

principles and the derivation of the equation are given in many hydrogeology textbooks (e.g. 

Domenico and Schwartz, 1990). Numerical solutions of the equation require several stability 

conditions to be satisfied. One of these conditions is imposed by the grid-Peclet number Pe, 

which defines the ratio between advective and dispersive/diffusive flux (Eq. 81):  

 

Pex = vx dx/D  

Eq. 81 
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with vx= flow velocity in x-direction and dx =grid point distance. For Pe>1 advective transport 

dominates. In this case, discretisation of the model requires nodal distances to be lower than 

dispersivities to avoid numerical dispersion (Kinzelbach, 1986). Definition of dispersivities is a 

crucial point as it sets limits in the spatial discretisation of the model. Dispersivity is a scale 

dependent quantity. Dispersive transport in a large scale problem such as a sedimentary basin 

involves large scale inhomogeneities (e.g. channels, reefs) which cannot be observed in a 

small scale. Thus, dispersivities should be chosen in function of the scale of the problem 

domain. If discretisation involves grid-Peclet numbers >1 the numerical solution may exhibit 

numerical dispersion and dispersivities in the order of maximum nodal distances should be 

chosen. Calculating solute transport with BASIN, the finite-element discretisation is usually not 

known in advance. Therefore, calculated solute concentrations should be carefully checked for 

oscillations or other artefacts, indicating discretisation problems. 

Discretisation of time is restricted by the Courant-criterion. The length of a time step must be 

chosen such that the maximum distance a virtual particle may travel during a time step is less 

than the distance between adjacent nodes. BASIN applies an automatic time stepping scheme 

that checks velocities and nodal distances in the model and calculates maximum time step 

sizes that satisfy the Courant-criterion. In case of high flow velocities as for example during 

topography driven fluid flow, transport modeling over geologic time may involve a large 

number of time steps, requiring extensive computing time. In such cases, a maximum of time 

steps can be defined, overriding the Courant-criterion. The numerical result, however, may 

then exhibit numerical errors. 

 

4.2.4.6 Heat Flow And Hydrocarbon Generation 

BASIN calculates conductive, dispersive and advective heat transport. Heat flow is controlled 

by the thermal conductivity κ and specific heat c. As heat is transported through the rock 

matrix and water, thermal conductivities and specific heat of both are involved. The heat flow 

equation has a similar structure as the transport equation (Domenico and Schwartz, 1990): 

 

λ (∂
2
T/∂x

2
 + ∂

2
T/∂y

2
) - r (vx∂T/∂x + vy∂T/∂y) = ∂T/∂t 

Eq. 82 
 

with 
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r = ( φρwcw) / (ρrcr) 

Eq. 83 
 

λ = κr/ρrcr + r  α |v| 

Eq. 84 
 

with κr= thermal conductivity of rocks, cr= specific heat of rocks, ρr=averaged rock density, 

T=temperature, ρw=density of water, cw=specific heat of water, φ = porosity and v=flow 

velocity. λ is the thermal dispersion coefficient, which is in the absence of advective transport 

equal to the thermal diffusion coefficient. α is the thermal dispersivity. Thermal conductivities 

and heat capacity of rocks are averaged according to Horai (1971) and Domenico and 

Schwartz (1990): 

 

κ
r
= κ

m
(1-φ ) κ

w
φ 

Eq. 85 
 

ρ
r
c

r
=φρ

w
c

w
 + (1-φ )ρ

m
c

m
 

Eq. 86 
 

with index m indicating properties of the rock matrix, which is averaged from all sediment 

types. Thermal conductivity is a function of temperature. In BASIN, the following functions are 

used: 

 

κ
m,T

 = κ
m, 20

 (293 / (273 + T)) 

Eq. 87 
 

with κm, 20=thermal conductivity of the rock matrix at 20°C, 

 

κ
w,T

 = 0.56 + 0.003 T
0.0827

(Temperatures between 0 and 50° C) 

Eq. 88 
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κ
w,T

 = 0.442 + 0.0519 ln T (Temperatures greater 50° C) 

Eq. 89 
 

4.2.5 Models application and results 

4.2.5.1 Calculation of rock compressibility from wireline logs 

DATASET 

The dataset utilized to make compressibility calculations was provided by O&G companies 

and it is referred to five wells drilled in the offshore zone of the study area. 

Only few of these data were complete and in digital LAS (Log Ascii Standard) format. For the 

other wells, the wireline logs data were digitized from original masterlogs in pdf format by 

Neuralog software.  

The data provided is shown in the table below. There are the type of wireline logs used, the 

abbreviation of channel with measurement units and a brief description. In the table is not 

shown the bit size, used to check the quality of sonic log data. 

 

Table 5: Main logs used for this study. 
TYPE OF LOG CHANNEL ABB. DESCRIPTION 

CALIPER CAL Borehole Diameter 

DENSITY RHOB (g/cm3) Bulk Density 

POROSITY NPHI Neutron Porosity 

SONIC DT (µs/ft) Compressional Slowness 

 

APPROACH 

The approach used for all wells was as first step the data quality check to be sure all data are 

reliable and useable. For some wells we digitized the wireline log curves starting from the pdf 

files using Neuralog software. The second step was to calculate bulk rock compressibility for 

all the wells.  

We tested also the possibility to calculate the pore compressibility for two wells, but the 

uncertainties in estimating the matrix compressibility using the Overton and Norman (1969) 

method made these calculations useless. The third step was to evaluate for some wells the 
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overburden pressure and then lithostatic pressure versus depth. The fourth and last step was 

the propagation in three dimensions of the compressibility values across the entire area. 

 

DATA CLEANING AND QUALITY CHECK 

The caliper log data was used to evaluate the data quality during the acquisition of the logs 

and especially of the sonic log. These data were compared with bit size data to see where the 

hole is engaged or caved. In rough hole in fact it is not possible to ensure that the sonic probe 

is always centred in the borehole. The result is the severe attenuation of the acoustic signal. 

Energy is also lost by diffraction at angles in the rough hole. The transmitter receiver distance 

is effectively much longer in rough hole than in smooth hole. Since hole rough is often a result 

of alteration of the formation by drilling mud. This approach was used only for two wells, 

because for the other wells the caliper data was not available.  

All the logs data was then checked to filter negative and null data. Density logs were 

compared with the lithological column and other wireline logs provided to be sure the density 

data were realistic. All density data below 1.95 g/cm3 was considered as non valid due to 

incorrect measurements/readings or malfunction of the sonic tool. The wireline log data 

coverage is different from well to well and usually they cover the range from seabed to bottom 

hole. In this interval the data was not always complete because of tool problems or other 

technical issues. 

 

BULK ROCK COMPRESSIBILITY CALCULATION 

The calculation of rock and pore compressibility are fundamental to understanding the 

behaviour of the reservoir, especially for evaluating the reservoir performance and 

compaction. The theory of rock compressibility is given in 4. However, main definitions of 

properties involved in the calculation of compressibility are given. 

Three kinds of compressibility can be distinguished in rocks: rock matrix compressibility, rock 

bulk compressibility and pore compressibility. Bulk rock compressibility is the fractional change 

in volume of the bulk rock volume with unit change in pressure. In the other hand rock matrix 

compressibility is the fractional change in volume of the solid rock material (grains) with unit 

change in pressure. Pore compressibility is the fractional change in pore volume of the rock 

with a unit change in pressure.  

Compressional velocity is related to the rock density and the bulk modulus of the rock. The 

bulk compressibility is calculated as the inverse of bulk modulus. So the bulk rock 

compressibility can be written as below (Eq. 90): 
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Compressibility =  

Eq. 90 
 

where ρ is the rock density (kg/m3) and Vp the velocity of P wave (compressional slowness 

logged by sonic log) measured in m/sec. The compressibility is measured in pascal (Pa). 

We tried also to evaluate the pore compressibility was calculated by using Overton and 

Norman method (1969). This method take into account formation porosity (obtained from data 

of neutron log), travel time (from data of sonic log) and density (from data of density log). The 

formula by authors is the following (Eq. 91): 

 

Compressibility =  

Eq. 91 
 

where Ø is the porosity, ΔT is the travel time (µs/ft), ρ is the density of the rock (g/cm3), 0.744 

is a constant derived from empirical calculations to obtain the formula. The compressibility unit 

measurement is psi-1. In the formula there is a constant Cr called compressibility of matrix and 

it is an adimensional number (Eq. 92). This compressibility is calculated using a shale factor 

for carbonate or clastic units. For evaporites this value is constant. In fact in evaporites 

porosity is equal zero or very low so the lower term of the formula is only constant divided by 

one. 

 

Cr =  

Eq. 92 
 

In our calculations we used Cr for calcite. vi, Cri, vsh, Csh are shale factors for carbonates or 

clastic units. The authors to obtain the formula Eq. 91 assumed that all reservoir boundaries 

move by varying amounts as pore pressure drops. This formula is valid only for consolidated 

rock and it is not applicable for unconsolidated rocks according to the authors.  

We tried to calculate the pore compressibility for two wells, but the strong uncertainties in 

evaluating Cr led to unrealistic results. The compressibility of rock frame can be calculated 

also using logs using the approach of Khatchikian (1995), but only in case of the availability of 

the shear sonic logs. It is important to highlight both methods, also that we used for our 
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calculations, are applied according to the authors, originally for laboratory conditions and not 

for wellbore conditions.  

 

LITHOSTATIC PRESSURE CALCULATION 

Lithostatic (or overburden) pressure is a term to denote the pressure imposed on a 

stratigraphic layer by the weight of overlying layers of material. This pressure is exerted in all 

direction like a hydrostatic pressure. In fact it doesn’t produce deformations, but only 

compaction and rock volume reductions. The normal value in the earth crust is 2.7*106 Pa/km.  

Lithostatic pressure induces a stress in rocks. Rocks can respond to that stress in two ways: 

with the lithostatic stress causes a reduction of the volume of the rock, thus an increase in its 

density or with a non lithostatic (or directed stress) causes a change in the rock change (or 

strain). When the elastic limit of the rock is reached, it will change shape in non reversible way. 

At depth, the pressure will be so high that no more pore spaces exist in rocks, preventing 

water to flow. Sediment porosity decreases under the effect of burial (compaction) and it is 

proportional to the increase in overburden pressure. In the case of clays, this reduction is 

essentially dependent on the weight of the sediments. If clay porosity and depth are 

represented in arithmetical scales, the relationship between these two parameters is an 

exponential function. In sandstones and carbonates, this relationship is a function of many 

parameters other than compaction, such as diagenetic effects, sorting, original composition 

and so on. A decrease in porosity is necessarily accompanied by an increase in density. This 

pressure can be seen also as sum of fluid pressure in the pore space and the stress between 

the rock grains of the matrix. At the given depth the overburden pressure remains constant so 

that with production of the reservoir fluid, the fluid pressure decreases, creating an increase in 

the grain to grain stress. This may result in the grains of rock crushing closer together, 

providing a small amount of drive energy (compaction drive) to production. In extreme cases of 

pressure depletion in poorly compacted rocks this can give rise to reduction in the thickness of 

reservoir, leading ultimately to surface subsidence. For lithostatic pressure calculations we 

used the following formula from literature (Hantschel and Kauerauf 2009) (Eq. 93): 

 

Pl =  

Eq. 93 
 

The lithostatic pressure Pl in the formula (Eq. 93) is measured in Pa, 9.81 m/s2 is the gravity 

acceleration constant, ρ is the rock density (kg/m3), p0 is the datum pressure and dz is the 
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depth interval. In other mathematical form the formula (Eq. 93) can be written considering the 

interval from surface (z) to n-depth (zn) so we can calculate the lithostatic pressure: 

 

Pl =  

Eq. 94 
 

The integral for each depth interval from surface to n-depth, zn represents the depth increment 

with assumed constant density ρ (kg/m3), 9.81 m/s2 is gravitation acceleration constant. The 

lithostatic pressure is measured in Pascal. For the density values in the intervals of all wells 

where there aren’t availability of the data for some reasons (tool problems or other issues) we 

used an average of the rock density of the previous interval checking the lithology to be sure to 

assign a correct value to missing density interval. For our purposes we used always a column 

with raw density data and the other with filtered (or interpreted) density data.  

 

RESULTS 

Compressibility results are briefly discussed for each well.  

A graphic with depth in horizontal axis and bulk rock compressibility values in vertical axis is 

provided. It was used a logarithmic scale instead of linear scale for vertical axis to visualize 

better the bulk rock compressibility variations (beside background noise) also at small details. 

The depth scale was adjusted according the availability of log data (in most cases the range is 

between 0 and 4,500 – 5,000 meters. The vertical logarithmic scale was kept always the same 

from 1 to 10-8 psi-1 (except for one well where the scale is from 0.1 to 10-8 psi-1). 

 

• Well “Test 1” 

For the Test 1the bulk rock compressibility was calculated as explained above.  

 

 

Calculations showed that at 806.2 meters there is an area where the bulk rock compressibility 

decreases due to change in lithology; from 1,708.7 to 3,592.7 meters interval bulk rock 

compressibility is pretty stable due to evaporites sequence. The values are between 10-6 and 

10-7 psi-1. The bulk rock compressibility decreases with depth as expected because on the top 
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there are more unconsolidated formation than deeper where the rocks are more compacted for 

the overlying sediments. 

 

• Well “Test 2” 

At 241.9 meters there is a decrease in the bulk rock compressibility due to presence of 

claystone intercalations in limestones. Bulk rock compressibility decreases with an increasing 

of density of claystone. We can observe also at 1,226.8 meters there is an another area of 

decreasing of bulk rock compressibility due to massive limestone (Upper Jurassic Carbonate 

sequence) with an increasing of density the bulk rock compressibility decreases obviously. 

The bulk rock compressibility values are included between 10-6 and 10-7 psi-1 and they are 

decreasing with depth. 

 

• Well “Test 3” 

At 449.9, 513.8 and 581.6 meters there is a decrease in the bulk rock compressibility due to 

presence of argillaceous limestone moderately consolidated (Upper Cretaceous Carbonate 

sequence). We can observe also that at, 1,352.7 meters, there is an another zone of 

decreasing of bulk rock compressibility; it’s due to presence of argillaceous limestone in first 

half of Upper Jurassic limestone sequence and also after 2,258.9 meters till the end of data 

due to presence of shale silicified in part and massive limestone. The bulk rock compressibility 

values are included between 10-6 and 10-7 psi-1 and the general trend is decreasing with depth. 

 

• Well “Test 4” 

It was possible to notice that at 1,422.9 meters there is depletion in the bulk rock 

compressibility due to presence of dolomite/dolomitic limestone facies inside limestone (Upper 

Jurassic Carbonate sequence). We can observe also at 2,667.4 and 2,900.2 – 2,940.7 meters 

interval there is an another zone of suddenly decreasing of bulk rock compressibility due to 

presence of claystone and transition to anhydrite (Permian Kungurian Evaporite sequence). 

Also from 2,985.7 meters till the end of data we can watch a flat area due to halite and 

anhydrite (Kungurian Halite and Basal Anhydrite). Bulk rock compressibility values are 

included between 10-6 and 10-7 psi-1 and the general trend is decreasing with depth. 

We tried also to evaluate the pore compressibility using Norman and Overton method (1969). 

In fact in the interval 1,326.3 – 1,434.7 meters there is a suddenly increase in the pore 

compressibility due to Upper Jurassic Carbonate sequence (massive limestone). At 2,843 m 

the pore compressibility values are out of scale due to evaporites sequence and its very low 
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porosity. So the compressibility is very high value (about 1 psi-1) for elastic behaviour of them. 

The pore compressibility is higher than bulk compressibility values as expected and they 

increase with depth. The values are included between 10-6 and 10-5 psi-1. In this case we used 

a matrix compressibility of a quartzitic rock: this is the cause of the abnormal values of pore 

compressibility in the evaporites. 

 

• Well “Test 5” 

We can notice that at 1,695.9 meters there is a decrease in the bulk rock compressibility 

followed by an increase due to lithology change; from 2,649.3 to 4,001.6 meters there is a flat 

area due to evaporites sequence. After 4,001.6 meters there is a suddenly decreasing to the 

end of data due to presence of shale. The bulk rock compressibility values are included 

between 10-6 and 10-7 psi-1 and the general trend is decreasing with depth. 

 

Also for this well, we tried to evaluate the pore compressibility. At 1,191.5 meters, there is a 

decreasing of pore compressibility due to presence of claystone interbeds in the limestone. At 

1,331.7 meters, there is an increasing of pore compressibility due to argillaceous limestone. In 

the interval 1,647 – 1,749 meters there is an increasing followed by decreasing in the pore 

compressibility due to Upper Jurassic carbonate sequence (massive limestone). The pore 

compressibility trend is increasing with depth and the pore compressibility values are included 

between 10-6 and 10-5 psi-1. After 3,955 meters, there is not availability of porosity log data so 

we cannot calculate further the pore compressibility. 

 

4.2.5.2 Natsub 

The mechanical properties of the sedimentary sequence in the Precaspian basin are of 

primary importance for the simulation and prediction of soil compaction during the basin 

formation. Available relevant data are: 

1. Sonic logs, referred to wells drilled in the Northeastern Caspian Sea. These data, 

processed as described in 4.2.5.1, provide information about rock compressibility (only 

for two wells) and bulk compressibility (every well).  

2. Geotechnical report, carried out both onshore and offshore.  

It has to be underlined that the definition of these compressibilities is not given in these 

documents. Terms as “Modulus of deformation” or “Compaction factor” are used without a 

detailed description. They are representative of the bulk compressibility but cannot allow the 

distinction among different types of compressibility (volumetric, oedometric, etc). Anyway, 
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these data have been assumed comparable to the other available information (i.e., they are 

assumed as oedometric values) and plotted versus depth to provide the order of magnitude of 

the soil compressibility at shallow depths. 

Due to the large uncertainty on the values of this fundamental parameter, we have preferred to 

perform the numerical simulations described below by using three basin-scale Cb vs z 

constitutive relationships obtained by regressing the data with straight-lines in the double log-

log plot. The regression passing through the barycentre of the data provides the expected law, 

i.e., the relationship characterized by the highest probability to occur, the other two the upper 

and the lower limit of the range of variability of the parameter.  

 

 

Figure 71: Log-log graphic of the whole compressibility dataset. 
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Eq. 95 - Eq. 97 provide the explicit form of the three equations obtained through data 

integrations described above. 

 

Cb=0.0911z-0.96  Highest Cb/depth trend  

Eq. 95 
 

Cb=0.0341z-1.041  Mean/expected Cb/depth trend 

Eq. 96 
 

Cb=0.0089z-1.073  Lowest Cb/depth trend 

Eq. 97 
 

To apply the theory developed by Gambolati et al. (1997) we need, however, the relation 

between Cb and the effective intergranular stress σz. The basin can be preliminary assumed 

normally consolidated and normally pressured at least down to the depth of interest for the 

present study.  

 

 

Therefore the pore pressure p is assumed to vary hydrostatically with z:  

 

p=γw * z 

Eq. 98 
 

where γw is the specific weight of water. The oedometer compressibility Cb is defined as: 

 

 

Eq. 99 
 

where e=n/(1-n) is the void radio and n is the medium porosity. The total stress st in a column 

with length z is given by the integral: 
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Eq. 100 
 

where γs is the specific weight of grains which are assumed to be individually incompressible in 

the present analysis. Differentiating Eq. 98 and using Terzaghi’s principle of effective 

intergranular stress: 

 

σt=σz+p  

Eq. 101 
 

leads to: 

 

 

Eq. 102 
 

where d stands for infinitesimal increment. Differentiation of Eq. 100 yields:  

 

 

Eq. 103 
 

Combining Eq. 102 and Eq. 103 provides:  

 

 

Eq. 104 
 

Replacing Eq. 104 into Eq. 99 gives the relationship between Cb and the soil depth z: 

 

Eq. 105 
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Equating Eq. 95, Eq. 96 and Eq. 97, written in the general form as Cb=a zb, with Eq. 105 leads 

to: 

 

 

Eq. 106 
 

Integration of Eq. 106 between z0 and z (with z>z0) provides the constitutive equation of e (and 

hence n) vs.z: 

 

 

Eq. 107 
 

The values of the parameters a and b are provided by Eq. 95, Eq. 96 and Eq. 97 for high, 

medium and low trends, respectively. 

To activate Eq. 107 an initial e0-value corresponding to an arbitrary depth z0 is needed. 

Typically z0 should be related to a shallow sample in the range 10-50 m (for a smaller z0 the 

sediments are very young, were deposited during historical or pre-historical times and might 

have been remoulded recently). From the extensive analysis of shallow soils analysed in O&G 

companies reports listed above, we take as representative data those presented in Table 6. 

 

Table 6: Mean values of e0 vs. z0 founded in geotechnical reports and values assumed 
during the model application for z0=20 m. 

z0 e0 n0 

10 0.399429 0.665081 

15 0.373143 0.59526 

20 0.349714 0.537786 

25 0.339429 0.513841 

29 0.336143 0.506348 
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According to the e0 selection of Table 6, Eq. 107 provides the porosity-depth profiles, and 

considering three compressional trends results are given for each well (Figure 72, Figure 73, 

Figure 74, Figure 75 and Figure 76). For the ensuing calculations we take the average curve 

which correspond to n0=0.538 at z0=20 m (Table 6). 

 

 

Figure 72: Porosity n vs. depth z at Test 1 well, for different compressional trends. 
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Figure 73: Porosity n vs. depth z at Test 2 well, for different compressional trends. 
 

 

Figure 74: Porosity n vs. depth z at Test 3 well, for different compressional trends. 
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Figure 75: Porosity n vs. depth z at Test 4 well, for different compressional trends. 
 

 

Figure 76: Porosity n vs. depth z at Test 5 well, for different compressional trends. 
 

As is shown by Gambolati et al. (1997) the shortening u (z*, t) of a soil column, whose height 

is z* (measured from the column bottom) at time t, is calculated by the integral: 
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Eq. 108 
 

where α is the classical soil compressibility and is related to Cb by Eq. 109: 

 

 

Eq. 109 
 

with σz0 the initial effective stress, i.e. the effective stress at the initial conditions prior to the 

inception of the deformation. If we consider the deformation of an accreting column whose 

initial length is zero, we set σz0=0. 

Eq. 109 can be rewritten as: 

 

 

Eq. 110 
From the known relationships of Cb, σt and σz vs z we can compute Cb vs σz, and consequently 

Eq. 110 can be numerically integrated to yield α=α(σz) for any initial σz0-value subject to the 

condition α(σz0)=b(σz0) (see Gambolati, 1973b).  

The above soil constitutive model is also useful to assess the sedimentary rate occurred 

during the time interval T if we know the present thickness of the sediments laid down during 

the time T. Denote by Δz0 the initial (unconsolidated) height of a soil column whose present 

length is Δz. Let e0and e be the corresponding void ratios. Since the grains are assumed to be 

incompressible, we can write the equation: 

 

 

Eq. 111 
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namely: 

 

 

Eq. 112 
 

Replacing δ(Δz0)=Δz-Δz0 into Eq. 112 yields: 

 

 

Eq. 113 
 

Eq. 113 is the initial thickness of an elementary soil layer which has the present length Δz. If 

the layer exhibits a finite thickness from the depth z1 down to z2, Eq. 113 must be replaced by 

the integral: 

 

 

Eq. 114 
 

where bi is the layer initial thickness and e is supplied by Eq. 107. Eq. 107 and Eq. 114 are the 

basis for the estimate of the uncompacted thickness of the various layers composing the 

Precaspian basin and deposited during recognized time intervals. Each uncompacted 

thickness allows for the calculation of the related average depositional rate. 

 

After defining the constitutive models for the stratigraphic column, we estimate the average 

sedimentation rates ω for the whole sedimentary column at five defined locations. 

Detailed information about stratigraphy and chronostratigraphy comes from sonic logs and 

related end of well reports of wells drilled in the study area. The depth of investigation changes 

from one well to another: Table 7 shows the investigation depth for each well. 
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Table 7: Depth of available sonic logs. 
Well Depth (top, m) Depth (bottom, m) 

Test 1 71 4.267 

Test 2 70 3.850 

Test 3 100 2.300.9 

Test 4 1014 5137.3 

Test 5 852 4.580 

 

The average sedimentation rates ω have been assessed by dividing the unconsolidated 

sediment thickness by the respective depositional time. The unconsolidated thickness bi of the 

sedimentary layer located from depth z1 down to z2 is computed by Eq. 114 with e given by 

Eq. 107. Table 7, Table 8, table 9, Table 10 and Table 11 show the results of such a 

calculation for the layering sequence of the available wells.  

Information is extrapolated from detailed strip logs; every layer’s thickness is calculated by 

using TDVss values, rectified with values of rotary table elevation and depth of sea bed. 

Values are rounded off for model’s requirement. 

Note the low variation between consolidated and unconsolidated thickness indicating the low 

compressibility of the Precaspian basin’s sediments, as highlighted during the calculation or 

rock compressibility (Table 13). 
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Table 8: Present thickness of the layering sequence at Test 1 as compared to the uncompacted thickness bi. 

Age 
(m.y.) 

From 

(formation) 

To 

(formation) 

Dt 

(m.y.) 

Present Bottom 
Depth (m, 

TVDss) 

Present 
Thickness (m, 

round off) 

Uncompacted 
thickness (low 

compressibility) 

Sedimentation 
rate (low 

compressibility) 

Uncompacted 
thickness (mean 
compressibility) 

Sedimentation 
rate (mean 

compressibility 
(m/y)) 

Uncompacted 
thickness (high 
compressibility) 

Sedimentation 
rate (high 

compressibility) 

1.5 Sea Bottom Top Tertiary 1.5 -70 40 40.00851 2.67E-05 40.03626 2.67E-05 40.12704 2.68E-05 

66.4 Top Tertiary Top Upper 
Cretaceous 42.7 -169.7 100 100.1128 1.54E-06 100.4893 1.55E-06 101.8006 1.57E-06 

97.5 Top Upper 
Cretaceous 

Top Lower 
Cretaceous 31.1 -521.7 350 350.6824 1.13E-05 353.0242 1.14E-05 361.8079 1.16E-05 

119 Top Lower 
Cretaceous Top Neocomian 6 -1079.3 560 561.4162 2.61E-05 566.3739 2.63E-05 586.0357 2.73E-05 

144 Top Neocomian Top Upper 
Jurassic 25 -1473 400 401.1317 1.6E-05 405.1364 1.62E-05 421.5167 1.69E-05 

163 Top Upper 
Jurassic 

Top Middle 
Jurassic 19 -1646.5 170 170.5017 8.97E-06 172.2849 9.07E-06 179.6746 9.46E-06 

183 Top Middle 
Jurassic Top Aaelenian 20 -2069.7 430 431.3125 2.16E-05 435.9959 2.18E-05 455.6219 2.28E-05 

187 Top Aaelenian Top Lower 
Jurassic 4 -2381.4 310 310.9788 7.77E-05 314.4852 7.86E-05 329.351 8.23E-05 

208 Top Lower 
Jurassic 

Top Upper 
Triassic 21 -2705.8 320 320.9038 1.53E-05 324.1504 1.54E-05 338.0245 1.61E-05 

258 Top Upper 
Triassic 

Top Of Kungurian 
Evaporite 13 -2779.2 70 70.32689 1.41E-06 71.50298 1.43E-06 76.55233 1.53E-06 

263 Top Of Kungurian Top Artinskian 5 -3716.5 950 953.1986 0.000191 964.7502 0.000193 1014.912 0.000203 

308 Top Artinskian Top Lower 
Bashkirian 45 -3772.9 60 60.2069 1.34E-06 60.95648 1.35E-06 64.24199 1.43E-06 

320 Top Lower 
Bashkirian Top Serpukhovian 12 -3875.8 100 100.346 8.36E-06 101.6 8.47E-06 107.104 8.93E-06 

333 Top Serpukhovian Top Upper Visean 13 -3927.5 50 50.17352 3.86E-06 50.80271 3.91E-06 53.56765 4.12E-06 

340 Top Upper Visean Top Middle 
Visean 7 -4227.6 300 301.0482 4.3E-05 304.8526 4.36E-05 321.6176 4.59E-05 

346 Top Middle 
Visean Top Lower Visean 6 -4248.8 20 20.0703 3.35E-06 20.32566 3.39E-06 21.45372 3.58E-06 

352 Top Lower Visean Top Upper 
Tournaisan 6 -4267 20 20.07033 3.35E-06 20.32579 3.39E-06 21.45448 3.58E-06 
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Table 9: Present thickness of the layering sequence at Test 2 as compared to the uncompacted thickness bi. 

Age 
(m.y.) 

From 
(formation) 

To 
(formation) 

Dt 
(m.y.) 

Present Bottom 
Depth (m, TVDss) 

Present Thickness 
(m, round off) 

Uncompacted 
thickness (low 

compressibility) 

Sedimentation 
rate (low 

compressibility) 

Uncompacted 
thickness (mean 
compressibility) 

Sedimentation 
rate (mean 

compressibility 
(m/y)) 

Uncompacted 
thickness (high 
compressibility) 

Sedimentation 
rate (high 

compressibility) 

23.7 Sea Bottom Top Paleogene 23.7 5 10 10 4.22E-07 10 4.22E-07 10 4.22E-07 

66.4 Top Paleogene Top Upper 
Cretaceous 42.7 -95.2 60 70.03334 1.64E-06 70.14314 1.64E-06 70.51124 1.65E-06 

97.5 Top Upper 
Cretaceous 

Top Lower 
Cretaceous 31.1 -388.2 290 290.4875 9.34E-06 292.1467 9.39E-06 298.2283 9.59E-06 

119 Top Lower 
Cretaceous Top Neocomian 21.5 -890 500 501.1913 2.33E-05 505.3401 2.35E-05 521.5548 2.43E-05 

144 Top Neocomian Top Upper 
Jurassic 25 -1235.3 350 350.9512 1.4E-05 354.3034 1.42E-05 367.8528 1.47E-05 

163 Top Upper 
Jurassic 

Top Middle 
Jurassic 19 -1410.3 180 180.5138 9.5E-06 182.3336 9.6E-06 189.7959 9.99E-06 

183 Top Middle 
Jurassic Top Aaelenian 20 -1767.7 360 361.0667 1.81E-05 364.8601 1.82E-05 380.6011 1.9E-05 

187 Top Aaelenian Top Lower 
Jurassic 4 -1918.2 150 150.4576 3.76E-05 152.0902 3.8E-05 158.9297 3.97E-05 

208 Top Lower 
Jurassic 

Top Upper 
Triassic 21 -2138.3 220 220.6825 1.05E-05 223.1225 1.06E-05 233.4038 1.11E-05 

258 Top Upper 
Triassic 

Top Of 
Kungurian 
Evaporite 

50 -2423.1 280 280.888 5.62E-06 284.0707 5.68E-06 297.5856 5.95E-06 

263 Top Of 
Kungurian Top Artinskian 5 -3721.8 1290 1294.3 0.000259 1309.808 0.000262 1376.897 0.000275 

308 Top Artinskian Top Lower 
Bashkirian 45 -3783.4 60 60.20682 1.34E-06 60.95604 1.35E-06 64.23941 1.43E-06 

320 Top Lower 
Bashkirian 

Top 
Serpukhovian 12 -3850 70 70.24194 5.85E-06 71.11874 5.93E-06 74.96541 6.25E-06 
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Table 10: Present thickness of the layering sequence at Test 3 as compared to the uncompacted thickness bi. 

Age 
(m.y.) 

From 
(formation) 

To 
(formation) 

Dt 
(m.y.) 

Present Bottom 
Depth (m, TVDss) 

Present Thickness 
(m, round off) 

Uncompacted 
thickness (low 

compressibility) 

Sedimentation 
rate (low 

compressibility) 

Uncompacted 
thickness (mean 
compressibility) 

Sedimentation 
rate (mean 

compressibility 
(m/y)) 

Uncompacted 
thickness (high 
compressibility) 

Sedimentation 
rate (high 

compressibility) 

23.7 Sea Bottom Top Paleogene 23.7 -100 100 100.067067 4.22E-06 100.289315 4.23E-06 101.047175 4.26E-06 

36.6 Top Paleogene Top Late 
Eocene 12.9 -155.5 60 60.0843007 4.66E-06 60.3680532 4.68E-06 61.3768379 4.76E-06 

43.6 Top Late 
Eocene 

Top Middle 
Eocene 7 -221.5 70 70.1172252 1E-05 70.5153774 1.01E-05 71.9661582 1.03E-05 

66.4 Top Middle 
Eocene 

Top Upper 
Cretaceous 22.8 -283.5 60 60.1118152 2.64E-06 60.4940413 2.65E-06 61.9116565 2.72E-06 

97.5 Top Upper 
Cretaceous 

Top Lower 
Cretaceous 31.1 -688.5 400 400.89888 1.29E-05 404.014362 1.3E-05 416.026077 1.34E-05 

113 Top Lower 
Cretaceous Top Aptian 15.5 -1035.9 350 350.913274 2.26E-05 354.119122 2.28E-05 366.931249 2.37E-05 

119 Top Aptian Top Neocomian 6 -1149.9 110 110.302923 1.84E-05 111.371841 1.86E-05 115.708193 1.93E-05 

144 Top Neocomian Top Upper 
Jurassic 25 -1343.9 190 190.53751 7.62E-06 192.439498 7.7E-06 200.217823 8.01E-06 

163 Top Upper 
Jurassic 

Top Middle 
Jurassic 19 -1554.5 210 210.612327 1.11E-05 212.786074 1.12E-05 221.759535 1.17E-05 

169 Top Middle 
Jurassic Top Bathonian 6 -1610.4 60 60.1780777 1E-05 60.811479 1.01E-05 63.4410466 1.06E-05 

187 Top Aaelenian Top Lower 
Jurassic 18 -2140.9 530 531.623919 2.95E-05 537.421111 2.99E-05 561.746766 3.12E-05 

208 Top Lower 
Jurassic 

Top Upper 
Triassic 21 -2202.9 60 60.1889274 2.87E-06 60.8655263 2.9E-06 63.7312258 3.03E-06 

274 Top Upper 
Triassic Top Asselian 66 -2241.9 40 40.1264652 6.08E-07 40.5795919 6.15E-07 42.5015509 6.44E-07 

305 Top Asselian Top Bashkirian 31 -2300.9 60 60.1904487 1.94E-06 60.8731546 1.96E-06 63.7729611 2.06E-06 
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Table 11: Present thickness of the layering sequence at Test 4 as compared to the uncompacted thickness bi. 

Age 
(m.y.) 

From 
(formation) 

To 
(formation) 

Dt 
(m.y.) 

Present Bottom 
Depth (m, TVDss) 

Present Thickness 
(m, round off) 

Uncompacted 
thickness (low 

compressibility) 

Sedimentation 
rate (low 

compressibility) 

Uncompacted 
thickness (mean 
compressibility) 

Sedimentation 
rate (mean 

compressibility 
(m/y)) 

Uncompacted 
thickness (high 
compressibility) 

Sedimentation 
rate (high 

compressibility) 

23.7 Sea Bottom Top Paleogene 23.7 -18.2 20.0 20 8.43882E-07 20 8.43882E-07 20 8.43882E-07 

66.4 Top Paleogene Top Upper 
Cretaceous 42.7 -78 60.0 60.04378 1.40618E-06 60.18826 1.40956E-06 60.67571444 1.42098E-06 

97.5 Top Upper 
Cretaceous 

Top Lower 
Cretaceous 31.1 -484 410.0 410.7599 1.32077E-05 413.3615 1.32914E-05 423.0598703 1.36032E-05 

113 Top Lower 
Cretaceous Top Aptian 15.5 -838 350.0 350.8565 2.26359E-05 353.8454 2.28287E-05 365.5945432 2.35867E-05 

119 Top Aptian Top Neocomian 6 -1015 180.0 180.4781 3.00797E-05 182.1592 3.03599E-05 188.9089866 3.14848E-05 

144 Top Neocomian Top Upper 
Jurassic 25 -1385 370.0 371.039 1.48416E-05 374.7126 1.49885E-05 389.7039672 1.55882E-05 

163 Top Upper 
Jurassic 

Top Middle 
Jurassic 19 -1620 240.0 240.7059 1.26687E-05 243.2142 1.28007E-05 253.597242 1.33472E-05 

183 Top Middle 
Jurassic Top Aaelenian 20 -2033 410.0 411.2515 2.05626E-05 415.7173 2.07859E-05 434.4313968 2.17216E-05 

187 Top Aaelenian Top Lower 
Jurassic 4 -2322 290.0 290.9142 7.27285E-05 294.1884 7.35471E-05 308.0621378 7.70155E-05 

208 Top Lower 
Jurassic 

Top Upper 
Triassic 21 -2480 160.0 160.5132 7.64349E-06 162.3553 7.73121E-06 170.2092584 8.1052E-06 

245 Top Upper 
Triassic 

Permian-
Triassic 37 -2560 80.0 80.25879 2.16916E-06 81.18862 2.19429E-06 85.16526667 2.30176E-06 

258 Permian-
Triassic 

Top Of 
Kungurian 
Evaporite 

13 -2900 340.0 341.1148 2.62396E-05 345.1271 2.65482E-05 362.3730897 2.78749E-05 

263 Top Of 
Kungurian Top Artinskian 5 -3953.3 1050.0 1053.571 0.000210714 1066.486 0.000213297 1122.792306 0.000224558 

308 Top Artinskian Top Lower 
Bashkirian 45 -4029 80.0 80.2789 1.78398E-06 81.29079 1.80646E-06 85.7457686 1.90546E-06 

320 Top Lower 
Bashkirian 

Top 
Serpukhovian 12 -4134.4 110.0 110.3849 9.19874E-06 111.782 9.31516E-06 117.9420133 9.8285E-06 

333 Top 
Serpukhovian 

Top Upper 
Visean 13 -4167.3 30.0 30.10524 2.31579E-06 30.4874 2.34518E-06 32.1742213 2.47494E-06 

340 Top Upper 
Visean 

Top Middle 
Visean 7 -4450.8 280.0 280.9877 4.01411E-05 284.5772 4.06539E-05 300.4574099 4.29225E-05 

346 Top Middle 
Visean 

Top Lower 
Visean 6 -4549.3 100.0 100.3551 1.67258E-05 101.6466 1.69411E-05 107.3762342 1.7896E-05 

352 Top Lower 
Visean 

Top Upper 
Tournaisan 6 -4609.8 60.0 60.21361 1.00356E-05 60.99088 1.01651E-05 64.44289399 1.07405E-05 

360 Top Upper 
Tournaisan Top Devonian 8 -4832.3 220.0 220.7868 2.75983E-05 223.6514 2.79564E-05 236.3979169 2.95497E-05 

374 Top Devonian Middle/Late 
Devonian 14 -5137.3 300.0 311.1176 2.22227E-05 315.1915 2.25137E-05 333.3817 2.3813E-05 





 

225 

 
Table 12: Present thickness of the layering sequence at Test 5 as compared to the uncompacted thickness bi. 

Age 
(m.y.) 

From 
(formation) 

To 
(formation) 

Dt 
(m.y.) 

Present Bottom 
Depth (m, TVDss) 

Present Thickness 
(m, round off) 

Uncompacted 
thickness (low 

compressibility) 

Sedimentation 
rate (low 

compressibility) 

Uncompacted 
thickness (mean 
compressibility) 

Sedimentation 
rate (mean 

compressibility 
(m/y)) 

Uncompacted 
thickness (high 
compressibility) 

Sedimentation 
rate (high 

compressibility) 

66.4 Sea Bottom Top Upper 
Cretaceous 66.4 -104 100 100.0671 2.3435E-06 100.2893 2.3487E-06 101.0472 2.3664E-06 

97.5 Top Upper 
Cretaceous 

Top Lower 
Cretaceous 31.1 -550 450 450.8748 1.4498E-05 453.8784 1.4594E-05 465.1637 1.4957E-05 

113 Top Lower 
Cretaceous Top Aptian 15.5 -920 370 370.9282 2.3931E-05 374.1746 2.414E-05 387.0162 2.4969E-05 

119 Top Aptian Top Neocomian 6 -1116 200 200.5422 3.3424E-05 202.4525 3.3742E-05 210.1676 3.5028E-05 

144 Top Neocomian Top Upper 
Jurassic 25 -1525.9 410 411.174 1.6447E-05 415.3338 1.6613E-05 432.4108 1.7296E-05 

163 Top Upper 
Jurassic 

Top Middle 
Jurassic 19 -1774.9 250 250.7485 1.3197E-05 253.4136 1.3338E-05 264.5096 1.3922E-05 

183 Top Middle 
Jurassic Top Aaelenian 20 -2071.8 300 300.9246 1.5046E-05 304.2273 1.5211E-05 318.1122 1.5906E-05 

187 Top Aaelenian Top Lower 
Jurassic 4 -2442.9 370 371.1737 9.2793E-05 375.381 9.3845E-05 393.2482 9.8312E-05 

258 Top Lower 
Jurassic 

Top Of 
Kungurian 
Evaporite 

71 -2514.8 70 70.22574 9.8909E-07 71.03651 1.0005E-06 74.50005 1.0493E-06 

263 Top Of 
Kungurian Top Artinskian 5 -3943.9 1430 1434.813 0.00028696 1452.196 0.00029044 1527.682 0.00030554 

308 Top Artinskian Top Lower 
Bashkirian 45 -4010.7 60 60.20901 1.338E-06 60.96726 1.3548E-06 64.30449 1.429E-06 

320 Top Lower 
Bashkirian 

Top 
Serpukhovian 12 -4088.5 80 80.27943 6.69E-06 81.29354 6.7745E-06 85.76178 7.1468E-06 

333 Top 
Serpukhovian 

Top Upper 
Visean 13 -4138.3 50 50.17508 3.8596E-06 50.81067 3.9085E-06 53.61395 4.1242E-06 

340 Top Upper 
Visean 

Top Middle 
Visean 7 -4426.5 290 291.0217 4.1575E-05 294.7341 4.2105E-05 311.1498 4.445E-05 

346 Top Middle 
Visean 

Top Lower 
Visean 6 -4435.5 10 10.03542 1.6726E-06 10.1642 1.694E-06 10.73491 1.7892E-06 

352 Top Lower 
Visean 

Top Upper 
Tournaisan 6 -4580.8 140 140.4971 2.3416E-05 142.3053 2.3718E-05 150.3267 2.5054E-05 
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Table 13: Comparison between present total thicknesses and uncompactedones. 

Well 
Present 

thickness 
(m) 

Uncompacted thickness 
(low compressibility) (m) 

and variation (%) 

Uncompacted 
thickness (mean 

compressibility) (m) 
and variation (%) 

Uncompacted 
thickness (high 

compressibility) (m) 
and variation (%) 

Test 1 4250 4262.489 +0.3 4307.093 1.4 4494.863 +5.7 

Test 2 3820 3841.02 +0.6 3880.293 +1.6 4044.565 +5.9 

Test 3 2300 2305.95316 +0.3 2326.94855 +1.2 2412.13826 +4.9 

Test 4 5140.0 5165.737 +0.5 5222.162 +1,6 5462.492 +6.3 

Test 5 4580 4593.69 +0.3 4642.658 +1.4 4849.749 +5.9 

 

Using the finite element model developed by Gambolati et al. (1997) and the data shown 

above, the evolution of a representative sedimentary column has been predicted at the five 

selected locations in the offshore portion of the study area. The first step of simulations 

depends on the elder strata drilled and the last is completed in 3000 AD. Model application 

foresees no sedimentation during future projection. In following graphics, time zero is referred 

to the first step of simulation and the last the future projection.  

Time value assigned for future projection follows the concept of the “geologic time scale” and 

not the “life cycle time scale”; notwithstanding, simulated geomechanical characteristics permit 

to highlight that any significant rock/sediment compaction will happen in the future. 

As illustrated, the model has been applied in correspondence to wells considered. Consistent 

with the available information, the model has been run so as to reproduce along the 

compacting column negligible pore pressure in excess of the hydrostatic value. This has 

allowed for the estimate of representative hydraulic conductivities kz which have turned out to 

be quite similar in the four locations.  

In order to test the influence of hydraulic conductivity within the numerical simulation, a 

sensitivity analysis has been done for well Test 1 (higher compressibility trend). Simulations 

shown that for obtain by means of the model the measured thickness of the sedimentary 

column the appropriate value of K is 10-10 m/s. However, sensitivity analysis showed that 

numerical simulations’ results are not strongly affected by variation of hydraulic conductivity. 

Output results are shown through specific sheet, structured as illustrated below (Table 14). 
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Table 14:  Results sheet description. 
Field 1: NAME WELL 

Field 2: Sedimentation rate 

(Sed.rate) and settling 

velocity (Bott.vel.) vs. 

geological time (High trend) 

Field 3: Sedimentation rate 

(Sed.rate) and settling velocity 

(Bott.vel.) vs. geological time 

(Mean trend) 

Field 4: Sedimentation rate 

(Sed.rate) and settling 

velocity (Bott.vel.) vs. 

geological time (Low trend) 

Field 5: Sedimentary column depths 

comparison, at selected time steps 

(high, mean and low trends) 

Field 6: Sedimentary column compaction vs. time 

(high, mean and low trends) 

Field 7: Pore pressure 

vs. depth (high, mean 

and low trends) 

Field 8: Pore pressure 

vs. time (high, mean 

and low trends) 
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NATSUB RESULTS FOR WELL TEST 1 

 

Figure 77: Sedimentation rate (Sed.rate) and settling velocity 
(Bott.vel.) vs. geological time (high trend). 

 

Figure 78: Sedimentation rate (Sed.rate) and settling velocity 
(Bott.vel.) vs. geological time (mean trend). 

 

Figure 79: Sedimentation rate (Sed.rate) and settling velocity 
(Bott.vel.) vs. geological time (low trend) 

 

Figure 80: AK1 Sedimentary column depths comparison, at selected time steps (high, 
mean and low trends. 

 

Figure 81:  Sedimentary column compaction vs. time. 

 

Figure 82:  Pore pressure vs. depth. 

 

Figure 83:  Pore pressure vs. time. 
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NATSUB RESULTS FOR WELL TEST 2 

 

Figure 84: Sedimentation rate (Sed. rate) and settling velocity 
(Bott.vel.) vs. geological time (high trend). 

 

Figure 85: Sedimentation rate (Sed. rate) and settling velocity 
(Bott.vel.) vs. geological time (mean trend). 

 

Figure 86: Sedimentation rate (Sed. rate) and settling velocity 
(Bott.vel.) vs. geological time (low trend). 

 

Figure 87: Sedimentary column depths comparison, at selected time steps. 

 

Figure 88:  Sedimentary column compaction vs. time. 

 

Figure 89: Pore pressure vs. depth. 

 

Figure 90: Pore pressure vs. time 





 

233 

 

NATSUB RESULTS FOR WELL TEST 3 

 

Figure 91: Sedimentation rate (Sed.rate) and settling velocity 
(Bott.vel.) vs. geological time (high trend). 

 

Figure 92: Sedimentation rate (Sed.rate) and settling velocity 
(Bott.vel.) vs. geological time (mean trend). 

 

Figure 93: Sedimentation rate (Sed.rate) and settling velocity 
(Bott.vel.) vs. geological time (low trend). 

 

Figure 94: Sedimentary column depths comparison, at selected time steps. 

 

Figure 95:   Sedimentary column compaction vs. time 

 

Figure 96: Pore pressure vs. depth. 

 

Figure 97: Pore pressure vs. time. 
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NATSUB RESULTS FOR WELL TEST 4 

 

Figure 98: Sedimentation rate (Sed.rate) and settling velocity 
(Bott.vel.) vs. geological time (high trend). 

 

Figure 99: Sedimentation rate (Sed.rate) and settling velocity 
(Bott.vel.) vs. geological time (mean trend). 

 

Figure 100: Sedimentation rate (Sed.rate) and settling velocity 
(Bott.vel.) vs. geological time (low trend). 

 

Figure 101: Sedimentary column depths comparison, at selected time steps. 

 

Figure 102: Sedimentary column compaction vs. time 

 

Figure 103: Pore pressure vs. depth. 

 

Figure 104: Pore pressure vs. time. 
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NATSUB RESULTS FOR WELL TEST 5  

 

Figure 105: Sedimentation rate (Sed.rate) and settling velocity 
(Bott.vel.) vs. geological time (high trend). 

 

Figure 106: Sedimentation rate (Sed.rate) and settling velocity 
(Bott.vel.) vs. geological time (mean trend). 

 

Figure 107: Sedimentation rate (Sed.rate) and settling velocity 
(Bott.vel.) vs. geological time (low trend). 

 

Figure 108:  Sedimentary column depths comparison, at selected time steps. 

 

Figure 109: Sedimentary column compaction vs. time 

 

Figure 110: Pore pressure vs. depth. 

 

Figure 111: Pore pressure vs. time. 
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4.2.5.3 Basin 

INPUT DATA 

BASIN requires the parameters for an experiment to be defined in several input data files. 

Obligatory input data files include basic definitions of the sedimentary basin to be simulated 

such as number of layers, initial and boundary conditions and physical sediment properties. 

Additional (or optional) data files include data to alter boundaries or physical sediment 

properties at specified nodal points and time steps in order to match a specific basin evolution.  

Two applications of BASIN are provided: the first (Simulation 1) calculates the properties 

variation considering a simplified stratrigraphical asset (that foresees only one sediment’s 

type), the second (Simulation 2) includes three different type of sediments (pre-salt, salt, post-

salt) (respectively type 4, type 3 and type 1 of Figure 113) and related properties are 

approximates in function of their nature and geological history. 

 

File "global" contains the dimensions of an experiment, numerical parameters, tolerance 

values, defines the processes to be simulated, the time steps for which result files are to be 

stored, the wells and elements to be observed, and most of the physical sediment parameters 

like initial porosities, hydraulic conductivities, specific storage, tortuosities, densities, thermal 

conductivities and heat capacities.  

Key input data for the present simulation: 

• Mesh: 40 column x 21 time steps (that correspond to 625 km of distance and 374 my); 

• Initial porosity: for the first simulation, as defined in NATSUB application value for 

porosity at 20 m is 0.538 and decrease with depth, following the trend shown in Figure 

72 - Figure 76; for the latter, minimum porosity value is assigned to salt layers, mean 

value for pre-salt layers (0.2) and 0.538 for the post-salt sequence. 

• Specific storage: 0.0005; similar values have been adopted for the three type of 

sediments, in order to confirm values of compressibility calculated by wireline logs; 

• Density of sediment, water and mantle: respectively 2700, 1150, 3300; 

• Hydraulic conductivity: as defined in NATSUB application, value for shallow hydraulic 

conductivity is 10-10 m/s and decrease with depth; for the second simulation, minimum 

allowed (by the code) value is attributed to salt formation, mean value to pre-salt 

sequence and higher value to post-salt layers. 

• Depth of main stratigraphic horizons (Figure 24). 
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File "geom" contains the initial geometry of the basin with x- and z-coordinates and a definition 

of the faults considered in a simulation experiment, including the duration of fault activity, 

throw rates and hydraulic conditions of the fault zone. The simulation domain extends over a 

625 km long 2D section. Faults are not implemented within the simulation; available cross-

sections confirm that faults involve the basement of the Precaspian basin and the filling 

sediments are not clearly influenced by tectonic movements (Figure 113). 

 

 

Figure 112: Position of numerical simulation 2D section. 
 

File "sedim" contains the definition of the sediment fill in a layer (or time step) and base heat 

flow rates. Within a time step, either a sedimentation simulation or a pre-defined sediment fill 

can be specified. According to the specified option, file "sedim" contains sedimentation 

parameters like maximum carbonate production depth, poisoning factors, maximum subaereal 

clastic sedimentation rates, distance from sediment source and subaqueous clastic 

sedimentation rates, or it contains a defined sediment mixture of the layer. Thus, "sedim" has 

a strongly variable data format depending on what and when it is intended to be simulated. For 

the time, sedimentation rate in the present study is set for simulate 14 m/My in section’s 
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margins (in accord to data extrapolated from well logs description); in the centre of the 

Precaspian basin sedimentation rate is defined on the basis of depth information (Volozh et 

al., 2003; Volozh et al., 2009; Brunet et al, 1999). 

File "hydro" mainly contains information on hydraulic parameters such as anisotropy of 

hydraulic conductivity, longitudinal and transversal dispersivities for solute transport and heat 

flow, and the diffusion coefficient. It also includes free surface boundary definition of phreatic 

aquifers which might occur during emersion of parts of the sedimentary basin. Considering the 

aim of the present simulation some of these options are not activated (e.g., solute transport or 

heat flow).. Most important, it contains a "switch board" to call for specific optional input data 

files at specified time steps. If for example at a certain time step boundary conditions such as 

a pre-defined topography or physical parameters at one or several points of the finite-element-

mesh are to be redefined, file "hydro" contains a mark that forces BASIN to read these data 

from a specified optional input data file.  

File "time" contains data on time step size and the sea-level change at each time step. Time 

intervals follow the criteria considered during the NATSUB implementation, sea level changes 

are set according to Volozh et al. (2003). 

These five files have to be prepared for each experiment. Care must be taken, that input data 

are consistent and the number of defined layers coincides with the sedimentation data in 

"sedim" and the number of time steps in "time". In order to trace inconsistencies in these files, 

an echo file which helps to detect errors is created after reading the input data.  

Optional input data files have a three-digit extension which relates to the time step, when they 

are called for. For example, file "topo023" contains a predefined basin topography at time step 

23. In this case, BASIN will assume a topography as defined in this file, and calculates 

subsidence due to tectonic processes to account for this topography. As a result, to the 

"topo023" file corresponds a "subside023"-output file containing the tectonic subsidence along 

the simulated cross section calculated at that time step. Additionally, if calculation of isostatic 

compensation has been defined, the "iso023" file contains the subsidence due to isostatic 

compensation at the corresponding time step. Changes of mesh coordinates and physical 

parameters at defined time steps for specified nodal points are defined in the "bcmeshXXX" 

file (with XXX identifying the time step). Changes in boundary conditions for the hydraulic 

calculation are defined in file "bchydXXX", for solute transport in file "bctransXXX" and heat 

flow in file "bctempXXX". This feature allows to match specific basin situations and to perform 

experiments incorporating complex and varying boundary conditions. Care must be taken, that 

the files are available during the experiment. A typical error in experiments with BASIN is, that 

in file "hydro" change of boundary conditions is defined, but the corresponding data file has not 
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been supplied. In order to facilitate input data creation, each data block starts with a comment 

line which gives a short indication of the parameters to be defined. 

 

OUTPUT DATA 

Result files from the simulated cross section have a three-digit extension, which defines the 

corresponding time step. Some result files have an element-wise storage scheme, however 

the majority of files store nodal values. Result files related to observation wells or elements 

have a four-digit extension. The data format is designed to work with the post processing 

programs distributed with BASIN. The following cross-sectional result files are created: 

• concXXX concentration of a conservative solute; 

• densityXXX rock density (kg/m3); 

• direcXXX flow direction; 

• faciesXXX sediment mixture ("facies") distribution; 

• headXXX distribution of hydraulic head (or overpressure, if defined in "global.dat" (m)); 

• heatXXX temperature distribution (°C); 

• hydconXXX hydraulic conductivity (in log m/s); 

• isoXXX isostatic compensation along the cross section (m); 

• kumulXXX cumulative fluid flow (m); 

• lambdaXXX distribution of the relation between fluid pressure and total stress (-); 

• settleXXX consolidational settling rate (m/myr); 

• storXXX specific storage (log m-1); 

• stratiXXX stratigraphic data (necessary, as the mesh geometry does not coincide with 

stratigraphy, if erosional events occur) (m); 

• thermcondXXX  thermal conductivity (cal (m sec °C)-1); 

• tmissiXXX transmissivity (m2); 

• ttiXXX time temperature index (TTI) (-) 

• vel3eckXXX flow velocity (log m/kyr); 

• wdepth water-depth at deposition (only stored at the end of experiment) (m). 

Additionally, the distribution of all parameters along a vertical section ("well") is stored in 

"wellXXXX" files with “XXXX” indicating the location of the well. The temporal evolution of all 
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parameters in a specified element of the simulated cross section is stored in "elementXXXX" 

files with “XXXX” indicating the element number. The number of output files varies with the 

processes to be calculated and the definition of time steps, when results are to be stored. A 

maximum of 730 result files are created if all time steps are conserved.  

 

POST-PROCESSING 

The large number of result files requires some post-processing supporting programs. In order 

visualize BASIN results on any computer system, post-processing of result files is based on 

the ghostview software, which is public domain and available for UNIX, Linux, Windows and 

Macintosh computer systems. BASINVIEW creates ghostview-readable files from the output 

files described before. AIBASIN creates Adobe Illustrator-readable files using different layers, 

facilitating subsequent graphic manipulation. BASELINE is used to create plots of well- or 

element data either for ghostview or Adobe Illustrator. The post processing programs are 

written in Fortran77. The visualization options are defined in file "ps-parameter", containing 

scaling parameters, definitions of line widths, figure captions, colour fill definitions and 

parameters and time steps to be visualized. Different graphics can be combined, for example 

arrow plots with hydraulic head, porosity with finite elements mesh, stratigraphy with layers 

etc. Graphic files for visualization with ghostview have a prefix "gst" and an extension "XXX" 

defining the corresponding time step. Graphic files for Adobe Illustrator have a prefix "ai" 

instead of "gst". Well and element files have a prefix "ai" and an extension "XXXX" defining the 

well number or the element number. Due to the large number of parameters, well and element 

plots come in three separated files. Well plots include an automatically generated coloured 

stratigraphic and lithologic column. The present simulation is set for the modelling of some 

selected phenomena : 

• Simulated stratigraphy (main geological horizons are identified); 

• Simulation’s mesh; 

• Porosity; 

• Specific storage (log m-1); 

• Hydraulic conductivity (log m/s); 

• Consolidational settling rate (m/myr). 

Output referred to the simplified simulation are shown in Figure 114 - Figure 118; results given 

by the more realistic simulation are shown in Figure 119 - Figure 123. For both the 

simulations, results are shown for time steps of simulation n° 5, 10, 15, 21. Following image 

(Figure 113) shows the chronostratigraphy simulated through BASIN model and comparison 

with schematic cross-section elaborated by Max Petroleum (2008) covering the same S-N 

alignment of investigation.  



 

244 

 

 

 

 

 

Figure 113: Chronostratigraphy simulated through BASIN model (Simulation 1) and 
comparison with schematic cross-section elaborated by Max Petroleum (2008). 
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SIMULATION 1 

• Mesh 

 

Figure 114: Simulation’s mesh at different time steps (Late Devonian, Serpukhovian-
Bashkirian boundary, Triassic-Jurassic boundary, Early Cretaceous) (Simulation 1). 

 



 

246 

 

• Porosity 

 

Figure 115: Porosity at different time steps (Late Devonian, Serpukhovian-Bashkirian 
boundary, Triassic-Jurassic boundary, Early Cretaceous) (Simulation 1). 
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• Specific storage (log m-1); 

 

 

Figure 116: Specific storage at different time steps (Late Devonian, Serpukhovian-
Bashkirian boundary, Triassic-Jurassic boundary, Early Cretaceous) (Simulation 1). 
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• Hydraulic conductivity (log m/s); 

 

Figure 117:  Hydraulic conductivity at different time steps (Late Devonian, 
Serpukhovian-Bashkirian boundary, Triassic-Jurassic boundary, Early Cretaceous) 

(Simulation 1). 
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• Consolidational settling rate (m/myr) 

 

Figure 118: Consolidational settling rate at different time steps (Late Devonian, 
Serpukhovian-Bashkirian boundary, Triassic-Jurassic boundary, Early Cretaceous) 

(Simulation 1). 
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SIMULATION 2 

• Mesh 

 

Figure 119: Simulation’s mesh at different time steps (Late Devonian, Serpukhovian-
Bashkirian boundary, Triassic-Jurassic boundary, Early Cretaceous) (Simulation 2). 
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• Porosity 

 

Figure 120: Porosity at different time steps (Late Devonian, Serpukhovian-Bashkirian 
boundary, Triassic-Jurassic boundary, Early Cretaceous) (Simulation 2). 
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• Specific storage (log m-1); 

 

Figure 121: Specific storage at different time steps (Late Devonian, Serpukhovian-
Bashkirian boundary, Triassic-Jurassic boundary, Early Cretaceous) (Simulation 2). 
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• Hydraulic conductivity (log m/s); 

 

Figure 122: Hydraulic conductivity at different time steps (Late Devonian, 
Serpukhovian-Bashkirian boundary, Triassic-Jurassic boundary, Early Cretaceous) 

(Simulation 2). 
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• Consolidational settling rate (m/myr) 

 

Figure 123: Consolidational settling rate at different time steps (Late Devonian, 
Serpukhovian-Bashkirian boundary, Triassic-Jurassic boundary, Early Cretaceous) 

(Simulation 2). 
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4.2.6 Discussion of NATSUB and BASIN results 

Applied models provided results with different level of detail. 

NATSUB application has been based on well log data (wireline logs and chronostratigraphies) 

and results are detailed but localised in the offshore part of the study area. On the contrary, 

available data allows a qualitative application of BASIN along a S-N section that cross the 

whole Precaspian basin; lacks of information concerning the central and northern parts of the 

basin affects the precision of results, that can be considered as an indication of parameters 

variation along the S-N cross section. However, some comparison between the two models 

applied have been done. 

One dimensional results show that very low value of calculated compressibilities and 

sedimentation rates affect the whole set of results. 

• Porosity values show clear reduction from the top to the bottom, in particular for 

simulations with high compressibility trend; however variation range is limited in every 

considered well, and in every used compressional trend. Maximum porosity variation 

has been obtained at well Test 5 (top minus bottom values of 0.0849 – High trend) 

while minimum porosity variation has been obtained at well Test 3 (top minus bottom 

values of 0.0066 – Low trend). 

• Sedimentation rates, calculated for each well, are very low. Generally speaking, in this 

portion of the Precaspian basin the elder (and deeper) strata drilled correspond to 

Devonian carbonates and reach a depth of about 4 km. In every well, except for Test 3, 

it is clearly visible the salt layer deposited during Kungurian age and in general it is 

recognisable every depositional event during the whole geological history. 

Low rates of sedimentation influence the velocity of the bottom, that is the mirror image 

of the represented sedimentation rates. To understand the meaning of these results we 

have to recall the assumption we made that subsidence is in equilibrium with 

sedimentation during the time interval with zero variation in sea bathymetry: if sea 

bathymetry remains constant in time, the column basement must subside to fully 

compensate the depositional rate. 

• Thickness of the sedimentary column shows, for different compactional trends, the 

depth of the bottom. Differences among three simulations/wells have limited extent; 

this behaviour is consequence of compaction trends. 

• Pore pressure is small even at largest depths for each well. The phenomena is due to 

the low sedimentation rates, that permit overpressure dispersion. By contrast, the 

behaviour of pore pressure has not always been so small during the basin history and 

has displayed an increase during intensively depositional periods. However, their 
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magnitude does not reach high values (excluding the depositional event occurred in 

Kungurian age, pore pressure maximum values reach 200 bar). 

 

BASIN application confirms the results founded in the offshore area of the Caspian Sea and 

agree with NATSUB results; values of different parameters record their maximum variation in 

the most shallow sedimentary layers, and values decrease with depth.  

BASIN results show that sedimentary column properties are strongly dependant by the 

geometry of the basin and the basement depth. Values magnitude increase toward the 

deepest part of the Precaspian basin; however, these portions of sedimentary basin are not 

included in the study area and values cannot be confirmed.  

Magnitude of subsidence is quite different in the two simulations carried out. In case of 

simulation 1 values reach a maximum value of about 0.05 mm/y in correspondence of the 

deepest part of the basin and value decreases toward the basin’s margins. In the same 

simulation, subsidence values decrease quickly with depth, more quickly at the basin’s 

margins than the centre of Precaspian basin. Calculated values are probably underestimated 

because of the uniformity assumed for the whole sedimentary column. 

Simulation 2, more similar to the real geological asset of the area, confirms decreasing trends 

from the centre to the margins of the basin and from the surface to the bottom. However, 

gradients are lower than simulation 1 and the contrast between the post-salt sequence and the 

evaporitic formation is clear. 

Natural subsidence values, as expected, highlight negligible lowerings and the general stability 

of this ancient and mature sedimentary basin, even if magnitude is higher than the simulation 

1. 
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4.3 EVALUATION OF PRESENT SUBSIDENCE BY SAR INTERFEROMETRY 

4.3.1 Principles of Interferometric SAR technique 

Synthetic Aperture Radar (SAR) is a microwave imaging system. It has cloud-penetrating 

capabilities because it uses microwaves. It has day and night operational capabilities because 

it is an active system. Finally, its ‘interferometric configuration’, Interferometric SAR or InSAR, 

allows accurate measurements of the radiation travel path because it is coherent. In the 

following description of the technique two satellites are considered (Ferretti et al., 2007). 

• ENVISAT 

Launched in 2002, ENVISAT is the largest Earth Observation spacecraft ever built. It 

carries ten sophisticated optical and radar instruments to provide continuous 

observation and monitoring of the Earth’s land, atmosphere, oceans and ice caps. 

ENVISAT data collectively provide a wealth of information on the workings of the Earth 

system, including insights into factors contributing to climate change. 

Furthermore, the data returned by its suite of instruments are also facilitating the 

development of a number of operational and commercial applications. ENVISAT’s 

largest single instrument is the Advanced Synthetic Aperture Radar (ASAR), operating 

at C-band. This ensures continuity of data after ERS-2, despite a small (31 MHz) 

central frequency shift. It features enhanced capability in terms of coverage, range of 

incidence angles, polarisation, and modes of operation. The improvements allow radar 

beam elevation steerage and the selection of different swaths, 100 or 400 km wide. 

ENVISAT is in a 98.54° sun-synchronous circular orbit at 800 km altitude, with a 35-

day repeat and the same ground track as ERS-2. 

Its primary objectives are: 

− To provide continuity of the observations started with the ERS satellites, including 

those obtained from radar-based observations; 

− To enhance the ERS mission, notably the ocean and ice mission; 

− To extend the range of parameters observed, to meet the need for increasing 

knowledge of the factors affecting the environment; 

− To make a significant contribution to environmental studies, notably in the area of 

atmospheric chemistry and ocean studies (including marine biology). 

 

• RADARSAT 

RADARSAT-2 was launched in 2007 by the Canadian Space Agency following the 

launch of RADARSAT-1. It carries a Synthetic Aperture Radar (SAR) sensor, which is 
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a powerful microwave instrument that can transmit and receive signals to obtain 

detailed images of the Earth. 

SAR sensors are a form of active remote sensing where, instead of recording the 

amount of sunlight reflected from a surface or radiation emitted from a surface (e.g., 

thermal imaging), radar pulses are emitted from the sensor and then the reflected 

responses are recorded. Radar sensors operate in the microwave region of the 

electromagnetic spectrum. RADARSAT-1 and RADARSAT-2 operate in the C-band 

frequency range of the electromagnetic spectrum at a wavelength of 5.6 cm 

(MacDonald, Dettwiler and associates Ltd, 2009). 

 

• ERS 

The European Remote Sensing satellite, ERS-1, was ESA’s first Earth Observation 

satellite; it carried a comprehensive payload including an imaging Synthetic Aperture 

Radar (SAR). With its launch in July 1991 and the validation of its interferometric 

capability in September of the same year, an ever-growing set of interferometric data 

became available to many research groups. ERS-2, which was identical to ERS-1 

apart from having an extra instrument, was launched in 1995. Shortly after the launch 

of ERS-2, ESA decided to link the two spacecraft in the first ever ‘tandem’ mission, 

which lasted for nine months, from 16 August 1995 until mid-May 1996. During this 

time the orbits of the two spacecraft were phased to orbit the Earth only 24 hours apart, 

thus providing a 24-hour revisit interval. 

The huge collection of image pairs from the ERS tandem mission remains uniquely 

useful even today, because the brief 24-hour revisit time between acquisitions results 

in much greater interferogram coherence. The increased frequency and level of data 

available to scientists offered a unique opportunity to generate detailed elevation maps 

(DEMs) and to observe changes over a very short space of time. Even after the 

tandem mission ended, the high orbital stability and careful operational control allowed 

acquisition of more SAR pairs for the remainder of the time that both spacecraft were in 

orbit, although without the same stringent mission constraints. 

The near-polar orbit of ERS in combination with the Earth’s rotation (E-W) enables two 

acquisitions of the same area to be made from two different look angles on each 

satellite cycle. If just one acquisition geometry is used, the accuracy of the final DEM in 

geographic coordinates strongly depends on the local terrain slope, and this may not 

be acceptable for the final user. Combining DEMs obtained from ascending (S-N) and 

descending (N-S) orbits can mitigate the problems due to the acquisition geometry and 
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the uneven sampling of the area of interest, especially on areas of hilly terrain. The 

ERS antenna looks to the right, so for example a slope that is mainly oriented to the 

West would be foreshortened on an ascending orbit, hence a descending orbit should 

be used instead. In March 2000 the ERS-1 satellite finally ended its operations. ERS-2 

is expected to continue operating for some time, although with a lower accuracy of 

attitude control since a gyro failure that occurred in January 2001. 

 

4.3.1.1 What is a strip-map SAR imaging system? 

A SAR imaging system (Curlander, 1991) from a satellite (such as ERS, ENVISAT or 

RADARSAT) is sketched in Figure 124. A satellite carries a radar with the antenna pointed to 

the Earth’s surface in the plane perpendicular to the orbit (in practice this is not strictly true, 

because it is necessary to compensate for the Earth’s rotation). The inclination of the antenna 

with respect to the nadir is called the off-nadir angle and in contemporary systems is usually in 

the range between 20° and 50°. Due to the curvature of the Earth’s surface, the incidence 

angle of the radiation on a flat horizontal terrain is larger than the off-nadir. However, for the 

sake of simplicity it is assume here that the Earth is flat, and hence that the incidence angle is 

equal to the off-nadir angle, as shown in the figure. 

 

 

 

Figure 124: SAR system from a satellite (Ferretti et al., 2007). 
 

 

Currently, operational satellite SAR systems work in one of the following microwave bands: 

− C band – 5.3 GHz (ESA’s ERS and ENVISAT, the Canadian RADARSAT, and the 

US shuttle missions); 
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− L band – 1.2 GHz (the Japanese J-ERS and ALOS); 

− X band – 10 GHz (the German-Italian X-SAR on the shuttle missions). 

In the case of ENVISAT, the illuminated area on the ground (the antenna footprint) is about 5 

km in the along-track direction (also called the azimuth direction) and about 100 km in the 

across-track direction (also called the ground range direction). 

The direction along the Line of Sight (LOS) is usually called the slant-range direction. The 

antenna footprint moves at the satellite speed along its orbit. For ENVISAT, the satellite speed 

is about 7430 m/s in a quasi-polar orbit that crosses the equator at an angle of 9° and an 

elevation of about 800 km. The footprint traces a swath 100 km wide in ground range on the 

Earth’s surface, with the capability of imaging a strip 445 km long every minute (strip map 

mode). 

 

A digital SAR image can be seen as a mosaic (i.e. a two-dimensional array formed by columns 

and rows) of small picture elements (pixels). Each pixel is associated with a small area of the 

Earth’s surface (called a resolution cell). Each pixel gives a complex number that carries 

amplitude and phase information about the microwave field backscattered by all the scatterers 

(rocks, vegetation, buildings etc.) within the corresponding resolution cell projected on the 

ground. Different rows of the image are associated with different azimuth locations, whereas 

different columns indicate different slant range locations. The location and dimension of the 

resolution cell in azimuth and slant-range coordinates depend only on the SAR system 

characteristics. In the ENVISAT case, the SAR resolution cell dimension is about 5 metres in 

azimuth and about 9.5 metres in slant-range. The distance between adjacent cells is about 4 

metres in azimuth and about 8 metres in slant range. The SAR resolution cells are thus slightly 

overlapped both in azimuth and in slant-range. 

 

4.3.1.2 The detected SAR image 

The detected SAR image contains a measurement of the amplitude of the radiation 

backscattered toward the radar by the objects (scatterers) contained in each SAR resolution 

cell. This amplitude depends more on the roughness than on the chemical composition of the 

scatterers on the terrain. Typically, exposed rocks and urban areas show strong amplitudes, 

whereas smooth flat surfaces (like quiet water basins) show low amplitudes, since the 

radiation is mainly mirrored away from the radar. 
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The detected SAR image is generally visualised by means of grey scale levels: bright pixels 

correspond to areas of strong backscattered radiation (e.g. urban areas), whereas dark pixels 

correspond to low backscattered radiation (e.g. a quiet water basin). 

 

4.3.1.3 The phase SAR image 

The radiation transmitted from the radar has to reach the scatterers on the ground and then 

come back to the radar in order to form the SAR image (two-way travel).  

Scatterers at different distances from the radar (different slant ranges) introduce different 

delays between transmission and reception of the radiation. 

Due to the almost purely sinusoidal nature of the transmitted signal, this delay t is equivalent to 

a phase change φ between transmitted and received signals.  

The phase change is thus proportional to the two-way travel distance 2R of the radiation 

divided by the transmitted wavelength λ.  

This concept is illustrated in Figure 125. 

 

 

 

Figure 125: Sinusoidal function sin φ is periodic with a 2π radian period. 
In the case of a relative narrow-band SAR (i.e. ENVISAT and ERS), the transmitted signal can be 

assimilated, as first approximation, to a pure sinusoid whose angle or phase φ has the following linear 
dependence on the slant range coordinate r: φ = 2π r /λ (where λ is the SAR wavelength). Thus, assuming 
that the phase of the transmitted signal is zero, the received signal that covers the distance 2R travelling 

from the satellite to the target and back, shows a phase φ = 4πR/λ radians (Ferretti et al., 2007). 

 

 

However, due to the periodic nature of the signal, travel distances that differ by an integer 

multiple of the wavelength introduce exactly the same phase change. In other words the phase 
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of the SAR signal is a measure of just the last fraction of the two-way travel distance that is 

smaller than the transmitted wavelength. 

In practice, due to the huge ratio between the resolution cell dimension (of the order of a few 

metres) and wavelength (~5.6 cm for ENVISAT), the phase change passing from one pixel to 

another within a single SAR image looks random and is of no practical utility. 

 

4.3.1.4 Speckle 

The presence of several scatterers within each SAR resolution cell generates the so-called 

‘speckle’ effect that is common to all coherent imaging systems. Speckle is present in SAR, 

but not in optical images. Homogeneous areas of terrain that extend across many SAR 

resolution cells (imagine, for example, a large agricultural field covered by one type of 

cultivation) are imaged with different amplitudes in different resolution cells. The visual effect is 

a sort of ‘salt and pepper’ screen superimposed on a uniform amplitude image. 

This speckle effect is a direct consequence of the superposition of the signals reflected by 

many small elementary scatterers (those with a dimension comparable to the radar 

wavelength) within the resolution cell. These signals, which have random phase because of 

multiple reflections between scatterers, add to the directly reflected radiation. From an intuitive 

point of view, the resulting amplitude will depend on the imbalance between signals with 

positive and negative sign. 

Speckle has an impact on the quality and usefulness of detected SAR images. Typically, 

image segmentation suffers severely from speckle. However, by taking more images of the 

same area at different times or from slightly different look angles, speckle can be greatly 

reduced: averaging several images tends to cancel out the random amplitude variability and 

leave the uniform amplitude level unchanged (Ferretti et al., 2007). 

 

4.3.2 SAR resolution: cell projection on the ground 

The terrain area imaged in each SAR resolution cell (called the ground resolution cell) 

depends on the local topography. It strongly depends on the terrain slope in the plane 

perpendicular to the orbit (ground range direction), and on the terrain slope in the azimuth 

direction. The dimension of the ground resolution cell in azimuth is related to that of the SAR 

resolution cell by the usual perspective deformation we experience every day looking at 

surfaces from different angles (e.g. a postcard seen at 90 degrees is a line). 

The dimension of the ground resolution cell in range is related to that of the SAR resolution 

cell by an unusual perspective deformation. Figure 126 shows how slant-range is projected 
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onto the ground. Here five identical slant-range resolution cells are shown. The first two cells 

correspond to flat terrain and they contain three triangles each. The third cell contains seven of 

these triangles due to the positive slope of the terrain. Finally the fourth and fifth cells contain 

less than three triangles due to the negative slope of the terrain. 

 

  

Figure 126: Effect of terrain on the SAR image. 
For SAR resolution cells in the plane perpendicular to the orbit, the part of the terrain imaged in each 

resolution cell clearly depends on the topography (Ferretti et al., 2007). 

 

As the terrain slope increases with respect to a flat horizontal surface (i.e. as the normal to the 

terrain moves toward the line of sight (LOS)), the ground resolution cell dimension in range 

increases. This effect is called foreshortening. When the terrain slope is close to the radar off-

nadir angle, the cell dimension becomes very large and all the details are lost. Moreover, when 

the terrain slope exceeds the radar off-nadir angle the scatterers are imaged in reverse order 

and superimposed on the contribution coming from other areas. This effect is called layover, 

and is sketched in Figure 127. 
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Figure 127: Layover and shadow effects. 
 Depending on the terrain slope, scatterers that are located at increasing ground range positions can be 
imaged in reverse order by the SAR system (points D, E, F and G). Moreover they are imaged in the same 

SAR resolution cells as scatterers B and C, which belong to a different area on the ground (layover). On the 
other side of the elevation profile, scatterers located between points G and H cannot be illuminated by the 

radar since they are in shadow. As a consequence, SAR resolution cells from 5 to 8 do not contain any 
signal from the ground and they generate a dark gap on the detected image (Ferretti et al., 2007). 

 

On the other hand, when the terrain slope decreases with respect to the flat horizontal 

reference surface the resolution cell dimension decreases. The minimum resolution cell 

dimension (i.e. equal to the slant range resolution) is reached when the terrain is parallel to the 

LOS. This is also the lower slope limit that can be imaged at all by a SAR system, since 

beyond this angle the terrain is in shadow. As an example, in the case of ENVISAT systems, 

the resolution cell dimension as a function of the terrain slope is shown in Figure 128. 
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Figure 128: ENVISAT resolution cell dimension in ground range as a function of the 
terrain slope. The vertical dotted line indicates the incidence angle relative to a flat 

horizontal terrain (23°) (Ferretti et al., 2007). 
 

It should be pointed out that foreshortening has a strong impact on the amplitude of the 

detected SAR image. Foreshortened areas are brighter on the image because the resolution 

cell is larger (hence more power is backscattered towards the satellite) and the incidence 

angle is steeper. 

 

4.3.3 Applications and limits 

A satellite SAR can observe the same area from slightly different look angles. This can be 

done either simultaneously (with two radars mounted on the same platform) or at different 

times by exploiting repeated orbits of the same satellite. The latter is the case for ERS-1, ERS-

2 and ENVISAT. For these satellites, time intervals between observations of 1, 35, or a 

multiple of 35 days are available. 

The distance between the two satellites (or orbits) in the plane perpendicular to the orbit is 

called the interferometer baseline (see Figure 129) and its projection perpendicular to the slant 

range is the perpendicular baseline. 
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Figure 129: Geometry of a satellite interferometric SAR system. 
The orbit separation is called the interferometer baseline, and its projection perpendicular to the slant 

range direction is one of the key parameters of SAR interferometry (Ferretti et al., 2007). 

 

The SAR interferogram is generated by cross-multiplying, pixel by pixel, the first SAR image 

with the complex conjugate of the second (Bamler et al., 1998, Massonnet et al.,1998, 

Franceschetti et al., 1999, Rosen et al., 2000).  

Thus, the interferogram amplitude is the amplitude of the first image multiplied by that of the 

second one, whereas its phase (the interferometric phase) is the phase difference between the 

images. 

 

4.3.3.1 Terrain altitude measurement through the interferometric phase 

Let us suppose we have only one dominant point scatterer in each ground resolution cell that 

does not change over time.  

These point scatterers are observed by two SARs from slightly different look angles as shown 

in Figure 129. In this case the interferometric phase of each SAR image pixel would depend 

only on the difference in the travel paths from each of the two SARs to the considered 

resolution cell. Any possible phase contribution introduced by the point scatterers does not 

affect the interferometric phase since it is cancelled out by the difference. 

Once a ground reference point has been identified, the variation of the travel path difference 

Δr that results in passing from the reference resolution cell to another can be given by a simple 

expression (an approximation that holds for small baselines and resolution cells that are not 

too far apart) that depends on a few geometric parameters shown in Figure 130. 
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Figure 130: Geometric parameters of a satellite interferometric SAR system (Ferretti et 
al., 2007). 

 

The parameters are: 

1. The perpendicular baseline Bn; 

2. The radar-target distance R; 

3. The displacement between the resolution cells along the perpendicular to the slant 

range, qs. 

The following approximated expression of Δr holds: 

 

 

The interferometric phase variation Δφ is then proportional to Δr divided by the transmitted 

wavelength λ: 
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INTERFEROGRAM FLATTENING 

The interferometric phase variation can be split into two contributions: 

1. A phase variation proportional to the altitude difference q between the point targets, 

referred to a horizontal reference plane; 

2. A phase variation proportional to the slant range displacement s of the point targets. 

 

where θ is the radiation incidence angle with respect to the reference. 

It should be noted that the perpendicular baseline is known from precise orbital data, and the 

second phase term can be computed and subtracted from the interferometric phase. This 

operation is called interferogram flattening and, as a result, it generates a phase map 

proportional to the relative terrain altitude (Ferretti et al., 2007). 

 

ALTITUDE OF AMBIGUITY 

The altitude of ambiguity ha is defined as the altitude difference that generates an 

interferometric phase change of 2π after interferogram flattening. The altitude of ambiguity is 

inversely proportional to the perpendicular baseline: 

 

In the ENVISAT case with λ = 5.6 cm, θ = 23º, and R = 850 km, the following expression holds 

(in metres): 

 

As an example, if a 100 metre perpendicular baseline is used, a 2π change of the 

interferometric phase corresponds to an altitude difference of about 93 metres. In principle, the 

higher the baseline the more accurate the altitude measurement, since the phase noise (see 

next section) is equivalent to a smaller altitude noise. However, there is an upper limit to the 

perpendicular baseline, over which the interferometric signals decorrelate and no fringes can 

be generated. In conclusion there is an optimum perpendicular baseline that maximises the 

signal to noise power ratio (where the signal is terrain altitude). 
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PHASE UNWRAPPING 

The flattened interferogram provides an ambiguous measurement of the relative terrain 

altitude due to the 2π cyclic nature of the interferometric phase. The phase variation between 

two points on the flattened interferogram provides a measurement of the actual altitude 

variation, after deleting any integer number of altitudes of ambiguity (equivalent to an integer 

number of 2π phase cycles). The process of adding the correct integer multiple of 2π to the 

interferometric fringes is called phase unwrapping. 

There are several well-known phase unwrapping techniques; however it should be noted that 

usually phase unwrapping does not have a unique solution, and a priori information should be 

exploited to get the right solution (Ferretti et al., 2007). 

 

4.3.3.2 Terrain motion measurement: Differential Interferometry 

Suppose that some of the point scatterers on the ground slightly change their relative position 

in the time interval between two SAR observations (as, for example, in the event of 

subsidence, landslide, earthquake, etc.). In such cases the following additive phase term, 

independent of the baseline, appears in the interferometric phase: 

 

where d is the relative scatterer displacement projected on the slant range direction. 

This means that after interferogram flattening, the interferometric phase contains both altitude 

and motion contributions: 

 

 

 

Moreover, if a digital elevation model (DEM) is available, the altitude contribution can be 

subtracted from the interferometric phase (generating the so-called differential interferogram) 

and the terrain motion component can be measured (Ferretti et al., 2007). 

 

4.3.3.3 The atmospheric contribution to the interferometric phase 

When two interferometric SAR images are not simultaneous, the radiation travel path for each 

can be affected differently by the atmosphere. In particular, different atmospheric humidity, 
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temperature and pressure between the two takes will have a visible consequence on the 

interferometric phase. 

This effect is usually confined within a 2π peak-to-peak interferometric phase change along 

the image with a smooth spatial variability (from a few hundred metres to a few kilometres). 

The effect of such a contribution impacts on both altitude (especially in the case of small 

baselines) and terrain deformation measurements. 

 

4.3.3.4 Other phase noise sources 

In the previous sections it has been hypothesised that only one dominant stable scatterer is 

present in each resolution cell. This is seldom the case in reality. We should analyse the 

situation where many elementary scatterers are present in each resolution cell (distributed 

scatterers), each of which may change in the time interval between two SAR acquisitions. The 

main effect of the presence of many scatterers per resolution cell and their changes in time is 

the introduction of phase noise (Ferretti et al., 2007). 

Three main contributions to the phase noise should be taken into consideration: 

1. Phase noise due to temporal change of the scatterers In the case of a water basin or 

densely vegetated areas, the scatterers change totally after a few milliseconds, 

whereas exposed rocks or urban areas remain stable even after years. The coastland 

of the northern Caspian sea appears in an intermediated situation: it is mainly a rural 

territory with reduced vegetation. Therefore the SAR applicability is a challenge 

2. Phase noise due to different look angle Speckle will change due to the different 

combination of elementary echoes even if the scatterers do not change in time. The 

most important consequence of this effect is that there exists a critical baseline over 

which the interferometric phase is pure noise. The critical baseline depends on the 

dimension of the ground range resolution cell (and thus also on the terrain slope), on 

the radar frequency, and on the sensor-target distance.  This phase noise term, 

however, can be removed from the interferogram by means of a pre-processing step of 

the two SAR images known as spectral shift or common band filtering.  

3. Phase noise due to volume scattering The critical baseline reduces in the case of 

volume scattering when the elementary scatterers are not disposed on a plane surface 

but occupy a volume (e.g. the branches of a tree). In this case the speckle change 

depends also on the depth of the volume occupied by the elementary scatterers. 
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4.3.3.5 Coherence maps 

The phase noise can be estimated from the interferometric SAR pair by means of the local 

coherence γ. The local coherence is the cross-correlation coefficient of the SAR image pair 

estimated over a small window (a few pixels in range and azimuth), once all the deterministic 

phase components (mainly due to the terrain elevation) are compensated for. 

The deterministic phase components in such a small window are, as a first approximation, 

linear both in azimuth and slant-range. Thus, they can be estimated from the interferogram 

itself by means of well-known methods of frequency detection of complex sinusoids in noise 

(e.g. 2-D Fast Fourier Transform (FFT)). 

The coherence map of the scene is then formed by computing the absolute value of γ on a 

moving window that covers the whole SAR image. The coherence value ranges from 0 (the 

interferometric phase is just noise) to 1 (complete absence of phase noise). The exact relation 

between the interferometric phase dispersion and coherence can be found through 

complicated mathematical computation (Lee et al., 1994). However, if the number of looks 

(NL) is greater than four, then independent pixels with the same coherence are averaged after 

topography compensation (multi-look interferogram) and the following simple approximation 

holds (Rosen et al., 2000): 

 

From a mathematical point of view, this formula is a good approximation of the exact phase 

dispersion shown in Figure 131 when σΦ< 12° That is, when NL is large and γ close to one. 

However, for most practical applications of SAR interferometry, the approximated formula can 

be suitably exploited for coherence values higher than 0.2 and NL> 4. A comparison between 

the exact and approximated curves is shown in Figure 132. 
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Figure 131: Interferometric phase dispersion (degrees) as a function of the coherence 
for varying numbers of looks (NL) (Ferretti et al., 2007). 

 

  

Figure 132: Interferometric phase dispersion exact values (blue curves) and 
approximated ones (red curves) (Ferretti et al., 2007). 
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4.3.3.6 Multiple Short Baseline Analysis (SBAS) 

The Small BAseline Subset technique is a DInSAR approach that relies on the use of a large 

number of SAR acquisitions and implements an easy combination of a properly chosen set of 

multilook DInSAR interferograms computed from these data, finally leading to the generation 

of mean deformation velocity maps and displacement time series. 

A detailed discussion on the basic SBAS approach is clearly outside the scope of this work; 

accordingly, we highlight in this section what are the key issues of the algorithm and refer to 

Berardino et al. (2002) for a more detailed analysis. 

Let us start our discussion by considering a set of N+1 SAR images relative to the same area, 

acquired at the ordered times (t0, …, tN); it is also assumed that they are co-registered with 

respect to an image referred to as master. This allows us to identify a common (reference) 

spatial grid. The starting point of the SBAS technique is represented by the generation of a 

number, say M, of multilook DInSAR interferograms that involve the previously mentioned set 

of N+1 SAR acquisitions. Note also that each of these interferograms is calibrated with respect 

to a single pixel located in an area that can be assumed stable or, at least, with a known 

deformation behaviour; this point is often referred to as reference SAR pixel (Casu et al., 

2006). 

Consider a generic pixel of azimuth and range coordinates (x, r); the expression of the generic 

j-th interferogram computed from the SAR acquisitions at times tB and tA, according to 

Berardino et al. (2002), will be the following: 

 

 

 

wherein j  ranges between 1 and M, λ is the transmitted signal central wavelength, Φ(tB, x, r) 

and Φ(tA, x, r) represent the phases of the two images involved in the interferogram generation 

and d(tB, x, r) and d(tA, x, r) are the radar line of sight (LOS) projections of the cumulative 

deformations at times tB and tA, with respect to the instant t0 assumed as a reference and 

implying Φ(t0, x, r)=0 for each (x, r). Moreover, for what concerns the right hand side of the last 

identity in equation, the second term ΔΦj
topo (x, r) accounts for possible topographic artifacts 

that can be present in the Digital Elevation Model (DEM) used for the interferogram 

generation. Finally, the term ΔΦj
atm(tB, tA, x, r) accomplishes for possible inhomogeneities 
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between the two acquisitions, usually referred to as atmospheric phase artifacts (Goldstein, 

1995), while the last factor Δnj (x, r) accounts for the noise effects referred to as decorrelation 

phenomena (Zebker et al., 1992). 

The main tasks of the SBAS procedure can be synthesized as follows: first of all, the coherent 

pixels of the interferograms, i.e., those pixels characterized by small values of the factor Δnj (x, 

r), j=1, …, M must be identified. Subsequently, the algorithm must provide an estimate of the 

deformation time series d(ti, x, r), forti ranging between t0 and tN, and for each coherent pixel. 

In order to achieve this task, the information relevant to all the interferograms have to properly 

combine to detect and cancel out the topographic and atmospheric signal components 

highlighted in the previous equation. 

Therefore, the key steps involved in the displacement time series retrieval, implemented via 

the SBAS algorithm, are the following: 

− The data pairs used to generate the multilook DInSAR interferograms are properly chosen 

with the key objective to mitigate the decorrelation phenomena (Zebker et al., 1992). In 

particular, this data pairs selection involves the introduction of constraints on the allowed 

maximum spatial and temporal separation (baseline) between the orbits relevant to the 

interferometric SAR image couples and has a main goal of maximizing the number of 

coherent pixels in the multilook interferograms; 

− A retrieval step (usually referred to as phase unwrapping operation) of the original 

(unwrapped) phase δΦj(x, r) from the modulus-2π restricted (wrapped) signal directly 

computed from the generated multilook interferograms, is carried out. This operation is 

implemented via the procedure described by Costantini et al. (1999). It allows one to 

process data available on a sparse grid that in this case is relevant to the pixels remaining 

coherent in the investigated interferograms. The basic algorithm of Costantini et al. (1999) 

is also integrated with a region growing procedure allowing one to improve the algorithm 

performances in areas with relatively low coherence; 

− The Singular Value Decomposition (SVD) method is applied to “combine” the unwrapped 

DInSAR interferograms. In particular, the SBAS approach implies the solution, on a 

(coherent) pixel by pixel basis, of the linear system of equations in order to get an estimate 

of the deformation time series. However, the previously mentioned baseline constraints in 

the data pair selection may have as a consequence that the SAR data involved in the 

interferograms generation belong to “independent subset”, thus causing the system of 

equations to have infinite solutions. Accordingly, the application of the SVD method within 

the SBAS technique allows one to regularize the problem and to generate the minimum 

norm Least Square (LS) solution of the system of equations that, as shown by Lanari et al. 
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(2004), generally guarantees a physically sound solution; in any case, the tendency is to 

minimize the number of data subsets; 

− As a final step of the SBAS procedure, a space–time filtering operation is carried out in 

order to estimate and subsequently remove possible artifacts due to atmospheric 

inhomogeneities between the acquisition pairs. This operation is based on the observation 

that the atmospheric signal phase component is highly correlated in space but poorly in 

time, see Ferretti et al. (2000). Accordingly, the undesired atmospheric phase signal is 

estimated from the time series computed via the SVD technique through the cascade of a 

lowpass filtering step in the two-dimensional spatial domain followed by a temporal 

highpass filtering operation. Moreover, this operation also allows one to detect possible 

orbital fringes caused by inaccuracies in the SAR sensors orbit information (Lanari et al., 

2004). Indeed, such errors are also typically not correlated in time but strongly correlated 

in space and they are often well approximated by spatial ramps usually referred to as 

orbital ramps. Based on these considerations, an estimate of these orbital patterns is 

performed in the approch by searching for the best-fit ramp to the temporal high-pass / 

spatially low-pass time series signal component; following this step, the detected ramps 

are removed from each differential interferograms. Accordingly, we do not use additional 

information obtained from a set of ground control points to get rid of these orbital errors. 

The removal of the estimated atmospheric artifacts and orbital ramps finally leads to the 

generation of the required deformation time series. 

In summary the SBAS technique, whose block diagram is sketched in Figure 133, allows one 

to satisfy two key requirements: to follow the temporal evolution of the detected displacements 

by using nearly all the available SAR acquisitions and to preserve the capabilities of the 

system to provide spatially dense deformation maps, which is a key issue of conventional 

DInSAR interferometry. 

 

  

Figure 133: SBAS algorithm block diagram (Casu et al., 2006). 
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4.3.3.7 Interferometric Point Target Analysis (IPTA) 

Interferometric Point Target Analysis, or Persistent (also known as permanent) Scatterer 

Interferometry, (PSI) uses a different approach than SBAS for processing SAR imagery. PSI 

(Ferretti et al. 2000, 2001) involves the processing of numerous, typically more than 30, 

interferograms to identify a network of persistent, temporally stable, highly reflective ground 

features-permanent scatterers. These scatterers typically are cultural features of the 

developed landscape such as buildings, utility poles, roadways, etc. or natural stable reflectors 

as exposed rocks. 

The phase history of each scatterer is extracted by estimating a predefined displacement 

model (typically a linear, constant-rate model) to provide interpolated maps of average annual 

displacements, or the displacement history, up to the length of a SAR data archive, of each 

individual scatterer, thus providing a “virtual” GPS network with “instant” history. By focusing 

on temporally stable targets in the image, temporal decorrelation is avoided or strongly 

reduced. Furthermore, most of the strong and stable reflectors identified represent small 

individual scattering elements. For this type of scatterer though, a larger fraction of the 

reflected energy remains coherent for larger interferometric baselines, allowing a larger set of 

SAR scenes to be used in the analysis (Galloway et al., 2007). 

Finally, the large number of observations available in a typical SAR data set used in a PSI 

analysis supports a statistical analysis of the observed phase histories in space and time, and 

depending on the characteristics of the displacements, it is often possible to separate the 

phase differences caused by atmospheric variations and uncompensated topography from 

those due to surface displacements. 

IPTA has been applied primarily in urban environments, where the density of stable scatterers 

(e.g. buildings, roadways, poles, etc.) typically is quite high (as many as a few hundred per 

square kilometre). Over natural terrain, the paucity of stable targets severely limits PSI’s 

successful application. A small number of investigations have demonstrated a successful 

application of PSI in “rural” terrain (Usai 2001; Kircher 2004, Teatini et al., 2007). However, the 

investigations in the Netherlands and western Germany, used stable targets such as houses 

and other man-made features that were present in sufficient numbers. Hooper et al. (2004) 

have proposed a modified algorithm for natural terrain, but this has been demonstrated for 

relatively dry conditions and it is questionable whether their approach will work over 

agricultural areas prone to temporal decorrelation owing to variable moisture and crop 

conditions. 

The PSI technique is a relatively recent development that can reduce the principal errors 

inherent in InSAR processing methods, errors caused by temporal and geometrical 

decorrelation and atmospheric artifacts. A potentially severe limitation of PSI, particularly 
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where scatterer density is small and displacement magnitudes are large, is the necessity to 

determine a motion model a priori, which is used in resolving phase ambiguities. 

Another limitation of PSI is the difficulty of identifying stable targets in rural and agricultural 

areas. The majority of PSI applications have focused on urban areas, e.g. Paris, France 

(Fruneau et al., 2000); San Francisco Bay Area, USA (Ferretti et al. 2004); Bangkok, Thailand 

(Worawattanamateekul et al. 2004); Phoenix, USA (Beaver et al. 2005); Arno River Basin-

Florence, Italy; (Canuti et al. 2005); Berlin, Germany and Las Vegas, USA (Kampes, 2005); 

London (NPA, 2006). Some applications in rural (Teatini et al., 2007) as well as desert areas 

(Vasco et al., 2010) have been recently performed. 

 

4.3.4 Innovative aspects of InSAR application to the study area 

On the north-east Caspian sea relatively large series of satellite SAR data exist for the 

archives of the ENVISAT ASAR and RADARSAT-1 sensors. Considering the experimental 

application of the technique in this area we decided to perform our study with ENVISAT ASAR 

data; the cost of ENVISAT ASAR data is one order of magnitude lower than that of 

RADARSAT-1 while temporal sampling of acquisitions, ground spatial resolution and 

frequency of the SAR sensors are in our case similar. Because the area of interest is 

predominantly desert, there are not many urban areas, the topography is flat, and subsidence 

maps are required at regional scale, we decided to follow a processing approach based on 

multiple short baseline interferometry (SBAS). The process has been carried out in 

collaboration with GAMMA Remote Sensing; they have extensive experience in active and 

passive microwave remote sensing techniques, theoretical and empirical modelling, and 

applications. This experience has been gained during their work at universities and 

laboratories in Switzerland, UK, Sweden, Germany and USA, and in the frame of GAMMA's 

research projects.  

 

The interferometric processing can be divided in several logical steps (for each step 

engineering tests are applied):  

1) Data acquisition; 

2) SAR pre-processing; 

3) SAR processing; 

4) Preparation of topographic reference; 

5) Image registration; 

6) Differential INSAR processing; 

7) Phase unwrapping;  
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8) Multi-baseline interferometry; 

9) Phase to deformation rate transformation; 

10) Geocoding and consistency testing; 

11) Finalization of the product.  

 

Several aspects of the interferometric application make this case study scientifically 

innovative: first of all, this work represent the first successfull DInSAR application in the 

Kazakh coastal zone. 

In addition, the characteristics of the study area do not allow a standard application. Among 

the factors of uncertainty it has to be underlined the following ones: 

• The area presents a low degree of urbanisation and the absence of man-made 

structures for the majority of the investigated areas did not ensure the signal 

coherence; 

• The land-sea transitional area is widely affected by storm surges, introducing errors in 

signal coherence; 

• The type of soils in the frames of study did not guarantee a coherent response to radar 

signal; 

• The presence of snow in several radar images made them useless. 

These characteristics led to an innovative DInSAR application, characterised by several 

specific solutions described in detail the chapters below. 

The evaluation of existing land subsidence have been performed excluding areas covered by 

on-shore extraction activities of Oil&Gas companies.  

 

4.3.4.1 Data acquisition 

Data acquisition was performed from the SARCOM consortium. Three frames, labelled, from 

north to south, as Z1, Z2 and Z3 were considered.  

− Number 1 is from ENVISAT ASAR Track 464, Frame 2653, Swath I2 in descending 

orbit.  

− Number 2 is from ENVISAT ASAR Track 421, Frame 2673, Swath I2 in descending 

orbit.  

− Number 3 is from ENVISAT ASAR Track 464, Frame 2697, Swath I2 in descending 

orbit.   



 

279 

In Table 15 dates and orbits of the ordered ENVISAT ASAR data are listed. Quick-looks are 

shown in Figure 134. 

 

 

Figure 134: Frames of SBAS application in the area of interest. 
 

 

Table 15: Dates and orbits of acquisition. 
Frame Z1 Frame Z2 Frame Z3 

Date Orbit Date Orbit Date Orbit 

8/9/2003 7532 7/21/2004 12499 8/9/2003 7532 

11/22/2003 9035 1/12/2005 15004 11/22/2003 9035 
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Frame Z1 Frame Z2 Frame Z3 

Date Orbit Date Orbit Date Orbit 

4/10/2004 11039 2/16/2005 15505 4/10/2004 11039 

6/19/2004 12041 3/23/2005 16006 6/19/2004 12041 

7/24/2004 12542 4/27/2005 16507 7/24/2004 12542 

1/15/2005 15047 6/1/2005 17008 1/15/2005 15047 

2/19/2005 15548 7/6/2005 17509 2/19/2005 15548 

3/26/2005 16049 8/10/2005 18010 3/26/2005 16049 

4/30/2005 16550 9/14/2005 18511 4/30/2005 16550 

6/4/2005 17051 10/19/2005 19012 6/4/2005 17051 

7/9/2005 17552 11/23/2005 19513 7/9/2005 17552 

8/13/2005 18053 4/12/2006 21517 8/13/2005 18053 

9/17/2005 18554 5/17/2006 22018 9/17/2005 18554 

10/22/2005 19055 6/21/2006 22519 10/22/2005 19055 

11/26/2005 19556 7/26/2006 23020 11/26/2005 19556 

4/15/2006 21560 8/30/2006 23521 4/15/2006 21560 

5/20/2006 22061 10/4/2006 24022 5/20/2006 22061 

6/24/2006 22562 11/8/2006 24523 6/24/2006 22562 

7/29/2006 23063 1/17/2007 25525 7/29/2006 23063 

9/2/2006 23564 2/21/2007 26026 9/2/2006 23564 

10/7/2006 24065 3/28/2007 26527 10/7/2006 24065 

11/11/2006 24566 5/2/2007 27028 11/11/2006 24566 

12/16/2006 25067 6/6/2007 27529 12/16/2006 25067 

1/20/2007 25568 7/11/2007 28030 1/20/2007 25568 

3/31/2007 26570 8/15/2007 28531 3/31/2007 26570 

5/5/2007 27071 9/19/2007 29032 5/5/2007 27071 

6/9/2007 27572 10/24/2007 29533 6/9/2007 27572 
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Frame Z1 Frame Z2 Frame Z3 

Date Orbit Date Orbit Date Orbit 

7/14/2007 28073 11/28/2007 30034 7/14/2007 28073 

8/18/2007 28574 10/8/2008 34543 8/18/2007 28574 

9/22/2007 29075 11/12/2008 35044 9/22/2007 29075 

10/27/2007 29576 12/17/2008 35545 10/27/2007 29576 

12/1/2007 30077 1/21/2009 36046 12/1/2007 30077 

10/11/2008 34586 2/25/2009 36547 10/11/2008 34586 

12/20/2008 35588   12/20/2008 35588 

1/24/2009 36089   1/24/2009 36089 

2/28/2009 36590   2/28/2009 36590 

 

4.3.4.2 Pre-processing 

The pre-processing steps include data download, check of ENVISAT raw data for missing 

lines, and the addition of the precision orbits from DELFT state vectors. The raw data quality 

control has been done using the GAMMA MSP software. For frames 1 and 3 one acquisition, 

i.e. those of 2004.07.24 and 2006.04.15, respectively, had not be further analysed because of 

a large number of missing lines. 

 

4.3.4.3 SAR processing 

The SAR processing has been done using the GAMMA MSP software. This SAR processing 

step includes: 

• Doppler centroid estimation and optimization, checked by the first two components of 

the Doppler polynomial,  

• Autofocus, assured by the SNR (signal to noise ratio) and the Doppler ambiguity error 

estimate,  

• Radiometric calibration by the average backscattering coefficient..  

The radiometric calibration is checked for frames Z1, Z2 and Z3. A total of 35, 33 and 35 

images have been well focused (Figure 135, Figure 136 and Figure 137). 
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Figure 135: Images focused on Frame Z1. 
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Figure 136: Images focused on Frame Z2. 
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Figure 137: Images focused on Frame Z3. 
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4.3.4.4 Preparation of topographic reference 

The topographic reference is used for SAR image co-registration, topographic phase removal 

in differential SAR interferometry, and terrain corrected geocoding. The topographic reference 

is based on the SRTM Digital Elevation Model version 4 (Figure 138). Standard deviation 

values from a “real” SAR intensity image and one simulated from the DEM are used to test the 

success of the topographic reference preparation.  

 

 

Figure 138: Topographic reference of the study area based on SRTM. 
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4.3.4.5 Co-registration of SAR images 

In preparation of the interferogram generation, the SLC images have been co-registered to a 

common geometry at sub-pixel accuracy with consideration of the topography. The quality of 

the co-registration is determined during the derivation of the range and azimuth offset 

polynomials. As quality measures the standard deviation of the individual offset, estimates 

from the polynomial fits for the range and azimuth offsets were used. These standard 

deviations were in the sub-pixel domain (e.g. < 0.5 pixel). 

As common reference a summer acquisition at a central temporal interval and spatial baseline 

has been selected. For frames 1 and 3 the central common reference was on 2007.08.18, for 

frame 2 this was on 2007.07.11. The following plots (Figure 139, Figure 140 and Figure 141) 

illustrate the temporal and spatial baselines of all the other acquisitions with respect to the 

central one. 

 

 

 

Figure 139: Temporal and spatial baseline of frame Z1. 
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Figure 140: Temporal and spatial baseline of frame Z2. 

 

  
Figure 141: Temporal and spatial baseline of frame Z3. 

 

4.3.4.6 Interferometric processing 

The interferometric processing, including baseline estimation and interferogram flattening (i.e. 

the removal of the orbital phase trend), has been carried out using the GAMMA ISP software 

with 2 looks in range and 10 looks in azimuth. For the three frames all possible interferograms 
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with baselines shorter than 200 m independently of the acquisition time interval and the 

season have been computed (Figure 142, Figure 143 and Figure 144). Differential 

interferometric processing, i.e. the removal of the topographic related phase, has been done 

using the GAMMA DIFF&GEO software. 

The quality of the interferograms was visually checked. Some of the interferograms, in 

particular for the southern frame, have shown a coherence lower than most of all the others. 

We attribute the loss of coherence in particular to the presence of wet snow cover. The 

interferograms with reduced coherence have been removed from further processing. 

 

Figure 142: Possible interferograms with baselines shorter than 200 m in frame Z1. 
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Figure 143: Possible interferograms with baselines shorter than 200 m in frame Z2. 
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Figure 144: Possible interferograms with baselines shorter than 200 m in frame Z3. 
 

4.3.4.7 Phase unwrapping 

Phase unwrapping is performed after filtering with a minimum-cost flow algorithm for sparse 

data. For frames Z1 and Z2 a coherence mask is computed as average of all the considered 

interferograms. For frame Z3 only 60 interferograms, the most coherent ones, have been 

considered to compute the coherence mask. This means that in some of the remaining 

interferograms phase noise is larger, reducing the accuracy of the measurements. An adaptive 

coherence estimator has been found suitable to identify also small built-up areas.  

Especially for differential interferograms with large areas of low coherence phase unwrapping 

is not an easy and straightforward task. Once unwrapped, the differential interferograms are 

therefore critically investigated for errors and, if necessary, phase unwrapping has been 

repeated with modified parameters regarding flow costs or multi-looking. In some cases, it has 
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been necessary to remove some of the interferograms which could not be successfully 

unwrapped.  

Another critical element of the processing chain is the selection of a reference point. Within 

every frame, the reference point was chosen inpotentially stable area; green triangles in Figure 

145 show their position. 

 

 

Figure 145: Location of the reference point (green triangle) in each frame. 
 

With the availability of the unwrapped interferograms the estimation of the baselines is 

improved with a least-square approach using the SRTM terrain heights. 

The final list of the interferograms considered for further processing excluding thus those with 

reduced coherence and with phase unwrapping errors, is provided in Table 16. 
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Table 16: List of interferograms considered after phase unwrapping. 
Frame 1 Frame 2 Frame 3 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

20030809 20031122 -33.387 105 20040721 20051123 19.3468 490 20030809 20050219 61.2893 560 

20030809 20050219 87.325 560 20040721 20060621 -63.2765 700 20031122 20050219 88.2919 455 

20030809 20061007 -39.6027 1155 20050112 20050216 112.8121 35 20031122 20050326 -126.6686 490 

20030809 20061111 62.68 1190 20050112 20061004 -110.3108 630 20031122 20061007 1.9213 1050 

20031122 20061007 -6.2157 1050 20050323 20061004 82.6894 560 20031122 20061111 68.0094 1085 

20040410 20050709 -167.1165 455 20050427 20070919 6.2305 875 20040619 20050813 -50.5425 420 

20040619 20050813 -13.2524 420 20050601 20050810 -43.4687 70 20040619 20050917 -101.8805 455 

20040619 20050917 -137.5002 455 20050601 20050914 84.2604 105 20040619 20051126 86.1817 525 

20040619 20051126 107.4047 525 20050601 20060517 55.4755 350 20040619 20070714 7.8316 1120 

20040619 20070609 -23.4471 1085 20050601 20070502 60.2911 700 20040619 20070818 90.6421 1155 

20040619 20070714 16.6563 1120 20050601 20070606 194.0689 735 20040619 20071027 -79.2979 1225 

20040619 20070818 111.8635 1155 20050601 20070711 91.7012 770 20040724 20051022 14.6095 455 

20040619 20071027 -67.9991 1225 20050601 20070815 169.7308 805 20040724 20060624 20.781 700 
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Frame 1 Frame 2 Frame 3 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

20040619 20081011 -48.7328 1575 20050601 20071024 -37.7717 875 20040724 20061216 -112.5317 875 

20050115 20050219 -147.8255 35 20050601 20081008 139.7806 1225 20050115 20060520 111.6353 490 

20050115 20050604 109.2973 140 20050601 20081217 -17.5667 1295 20050326 20061111 194.678 595 

20050115 20060415 112.8272 455 20050706 20060726 109.132 385 20050604 20050917 168.606 105 

20050115 20060520 129.6438 490 20050706 20060830 -76.9256 420 20050604 20060520 29.499 350 

20050115 20061111 -172.4705 665 20050706 20070919 -169.3766 805 20050813 20050917 -51.338 35 

20050115 20081220 155.6738 1435 20050810 20050914 127.7291 35 20050813 20051126 136.7242 105 

20050219 20061007 -126.9277 595 20050810 20060517 98.9442 280 20050813 20060520 -190.445 280 

20050219 20061111 -24.645 630 20050810 20070502 103.7598 630 20050813 20070505 8.3705 630 

20050430 20060902 40.5207 490 20050810 20070711 135.1699 700 20050813 20070609 21.6833 665 

20050430 20070331 25.2712 700 20050810 20071024 5.697 805 20050813 20070714 58.3741 700 

20050430 20070922 6.6864 875 20050810 20081008 183.2493 1155 20050813 20070818 141.1846 735 

20050604 20050917 117.9775 105 20050810 20081217 25.902 1225 20050813 20071027 -28.7554 805 

20050604 20060415 3.5299 315 20050914 20060517 -28.7849 245 20050813 20081011 3.9641 1155 
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Frame 1 Frame 2 Frame 3 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

20050604 20060520 20.3465 350 20050914 20070502 -23.9693 595 20050813 20081220 -160.6309 1225 

20050604 20081220 46.3765 1295 20050914 20070606 109.8085 630 20050917 20051126 188.0622 70 

20050709 20060729 87.9249 385 20050914 20070711 7.4408 665 20050917 20060520 -139.107 245 

20050709 20060902 -181.9449 420 20050914 20070815 85.4704 700 20050917 20070505 59.7085 595 

20050709 20070120 -11.0586 560 20050914 20071024 -122.0321 770 20050917 20070609 73.0213 630 

20050709 20070331 -197.1944 630 20050914 20081008 55.5202 1120 20050917 20070714 109.7121 665 

20050813 20050917 -124.2478 35 20050914 20081112 181.4798 1155 20050917 20070818 192.5226 700 

20050813 20051126 120.6571 105 20050914 20081217 -101.8271 1190 20050917 20081011 55.3021 1120 

20050813 20070505 -30.0472 630 20051019 20060621 69.7278 245 20051022 20060624 6.1715 245 

20050813 20070609 -10.1947 665 20051019 20070221 1.7217 490 20051022 20061216 -127.1412 420 

20050813 20070714 29.9087 700 20051019 20070606 -101.64 595 20051022 20070922 197.8067 700 

20050813 20070818 125.1159 735 20051019 20070815 -125.9781 665 20051022 20071201 61.442 770 

20050813 20071027 -54.7467 805 20051019 20071128 143.3924 770 20051022 20090228 -59.1889 1225 

20050813 20081011 -35.4804 1155 20051019 20081008 -155.9283 1085 20051126 20061216 120.8299 385 
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Frame 1 Frame 2 Frame 3 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

20050917 20060415 -114.4476 210 20051019 20081112 -29.9687 1120 20051126 20070505 -128.3537 525 

20050917 20060520 -97.631 245 20051019 20090225 -2.7032 1225 20051126 20070609 -115.0409 560 

20050917 20070505 94.2006 595 20051123 20060621 -82.6233 210 20051126 20070714 -78.3501 595 

20050917 20070609 114.0531 630 20060412 20061108 -90.7519 210 20051126 20070818 4.4604 630 

20050917 20070714 154.1565 665 20060517 20070502 4.8156 350 20051126 20071027 -165.4796 700 

20050917 20071027 69.5011 770 20060517 20070606 138.5934 385 20051126 20081011 -132.7601 1050 

20050917 20081011 88.7674 1120 20060517 20070711 36.2257 420 20051126 20090228 188.7822 1190 

20050917 20081220 -71.601 1190 20060517 20070815 114.2553 455 20060520 20070505 198.8155 350 

20051022 20060624 -2.6142 245 20060517 20071024 -93.2472 525 20060624 20061216 -133.3127 175 

20051022 20061216 -101.288 420 20060517 20081008 84.3051 875 20060624 20071201 55.2705 525 

20051126 20061216 115.7028 385 20060517 20081217 -73.0422 945 20060624 20090228 -65.3604 980 

20051126 20070505 -150.7043 525 20060726 20060830 -186.0576 35 20060902 20070331 -28.9004 210 

20051126 20070609 -130.8518 560 20060830 20070919 -92.451 385 20060902 20070922 -46.8706 385 

20051126 20071027 -175.4038 700 20061004 20061108 145.7334 35 20060902 20071201 -183.2353 455 
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Frame 1 Frame 2 Frame 3 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

20051126 20081011 -156.1375 1050 20070117 20070328 -84.4394 70 20061007 20061111 66.0881 35 

20060415 20060520 16.8166 35 20070221 20070606 -103.3617 105 20061216 20070714 -199.18 210 

20060415 20071027 183.9487 560 20070221 20070815 -127.6998 175 20061216 20070818 -116.3695 245 

20060415 20081220 42.8466 980 20070221 20071128 141.6707 280 20061216 20071201 188.5832 350 

20060520 20070505 191.8316 350 20070221 20081008 -157.65 595 20061216 20090228 67.9523 805 

20060520 20071027 167.1321 525 20070221 20081112 -31.6904 630 20070120 20070331 -179.5032 70 

20060520 20081011 186.3984 875 20070221 20090225 -4.4249 735 20070331 20070922 -17.9702 175 

20060520 20081220 26.03 945 20070502 20070606 133.7778 35 20070331 20071201 -154.3349 245 

20060624 20061216 -98.6738 175 20070502 20070711 31.4101 70 20070505 20070609 13.3128 35 

20060624 20090228 -41.9918 980 20070502 20070815 109.4397 105 20070505 20070818 132.8141 105 

20060729 20070120 -98.9835 175 20070502 20071024 -98.0628 175 20070505 20071027 -37.1259 175 

20060902 20070120 170.8863 140 20070502 20081008 79.4895 525 20070505 20081011 -4.4064 525 

20060902 20070331 -15.2495 210 20070502 20081217 -77.8578 595 20070505 20081220 -169.0014 595 

20060902 20070922 -33.8343 385 20070606 20070711 -102.3677 35 20070609 20070714 36.6908 35 
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Frame 1 Frame 2 Frame 3 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

20061007 20061111 102.2827 35 20070606 20070815 -24.3381 70 20070609 20070818 119.5013 70 

20061216 20070818 -111.244 245 20070606 20081008 -54.2883 490 20070609 20071027 -50.4387 140 

20061216 20090228 56.682 805 20070606 20081112 71.6713 525 20070609 20081011 -17.7192 490 

20070120 20070331 -186.1358 70 20070606 20090225 98.9368 630 20070714 20070818 82.8105 35 

20070331 20070922 -18.5848 175 20070711 20070815 78.0296 35 20070714 20071027 -87.1295 105 

20070505 20070609 19.8525 35 20070711 20071024 -129.4729 105 20070818 20071027 -169.94 70 

20070505 20070818 155.1631 105 20070711 20081008 48.0794 455 20070818 20081011 -137.2205 420 

20070505 20071027 -24.6995 175 20070711 20081112 174.039 490 20070818 20090228 184.3218 560 

20070505 20081011 -5.4332 525 20070711 20081217 -109.2679 525 20070922 20071201 -136.3647 70 

20070505 20081220 -165.8016 595 20070815 20081008 -29.9502 420 20071027 20081011 32.7195 350 

20070609 20070714 40.1034 35 20070815 20081112 96.0094 455 20071027 20081220 -131.8755 420 

20070609 20070818 135.3106 70 20070815 20081217 -187.2975 490 20071201 20090228 -120.6309 455 

20070609 20071027 -44.552 140 20070815 20090225 123.2749 560 20081011 20081220 -164.595 70 

20070609 20081011 -25.2857 490 20071024 20081008 177.5523 350 20060729 20060902 -306.2842 35 
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Frame 1 Frame 2 Frame 3 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

Date 1 

(yyyymmdd) 

Date 2 

(yyyymmdd) 

Baseline 

(m) 

Interval 

(days) 

20070609 20081220 -185.6541 560 20071024 20081217 20.205 420     

20070714 20070818 95.2072 35 20071128 20081112 -173.3611 350     

20070714 20071027 -84.6554 105 20071128 20090225 -146.0956 455     

20070714 20081011 -65.3891 455 20081008 20081112 125.9596 35     

20070818 20071027 -179.8626 70 20081008 20081217 -157.3473 70     

20070818 20081011 -160.5963 420 20081008 20090225 153.2251 140     

20070818 20090228 167.926 560 20081112 20090121 81.1653 70     

20070922 20071201 -140.0655 70 20081112 20090225 27.2655 105     

20071027 20081011 19.2663 350 20090121 20090225 -53.8998 35     

20071027 20081220 -141.1021 420 20060412 20060517 349.7084 35     

20081011 20081220 -160.3684 70 20070221 20070328 389.5526 35     
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For frame Z1 out of a total of 123 interferograms with baselines shorter than 200 m, 94 have 

been considered for further processing. In that way two winter images (2005.03.26 and 

2009.01.24), which were always decorrelated, were discarded from further processing (Figure 

146). 

For frame Z2 out of a total of 131 interferograms with baselines shorter than 200 m 92 have 

been considered for further processing. However, in order to have all acquisition dates 

connected to each other it was necessary to compute also two interferograms with baselines 

larger than 200 m showing good coherence (Figure 147).  

For frame Z3 out of a total of 129 interferograms with baselines shorter than 200 m 82 have 

been used for further processing. In order to have the acquisition of 2006.07.29 connected 

with the others it was necessary to compute also one interferogram with a baseline larger than 

200 m showing good coherence. However, in that way three winter images (2004.04.10, 

2005.04.30 and 2009.01.24), always decorrelated, and one summer image (2005.07.09), 

which could not be connected with the others, have been discarded from further processing 

(Figure 148). 

 

Figure 146: Interferograms considered after phase unwrapping in frame Z1. 
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Figure 147: Interferograms considered after phase unwrapping in frame Z2. 
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Figure 148: Interferograms considered after phase unwrapping in frame Z3. 
 

4.3.4.8 Multi-baseline interferometry 

A phase time series is computed from the set of multi-reference continuous unwrapped 

interferograms using a least-square solution. The resulting 33, 33 and 31 phase images for 

frames Z1, Z2 and Z3, respectively, are shown in Figure 149, Figure 150 and Figure 151. 

Atmospheric artifacts are visible in some of the images, in particular during summer time. In 

winter, on the other hand, phase signals are sometimes visible over glaciated or snow-covered 

surfaces. An error model is used to calculate the expected accuracy for the combined result 

and checks are conducted by the operator to control the consistency of the multiple results. 

We found in particular that for frame 2 the first acquisition of July 2004 was contaminated by 

strong atmospheric artifacts and the reference date of that time series was changed to image 

number 20 (21.02.2007).  
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Figure 149: Interferograms considered after multi-baseline interferometry analysis in 
frame Z1. 

 

Figure 150: Interferograms considered after multi-baseline interferometry analysis in 
frame Z2. 
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Figure 151: Interferograms considered after multi-baseline interferometry analysis in 
frame Z3. 

 

4.3.4.9 Estimation of linear deformation rate and time series of displacement 

From the phase time series a linear deformation rate and time series of displacement have 

been calculated. Movements are computed in the satellite line-of-sight direction. Temporal 

filtering on a 180 days’ time span is applied to the time series. Temporal filtering reduces some 

of the atmospheric disturbances but also creates artefacts at the beginning and at the end of 

the series and when a single acquisition is contaminated by strong atmosphere. Time series of 

displacement are therefore delivered with and without temporal filtering. 

Because the first acquisition of July 2004 of frame Z2 has particularly strong atmospheric 

effects, this layer was not considered in the computation of the mean deformation rate. 

For frame Z1 we noticed by the computation of the mean deformation rate an apparent uplift of 

about 2 mm/yr for large areas. The movement value of the reference point chosen during 

phase unwrapping was therefore lowered by 2 mm/yr. Of course, proper calibration with 

respect to stable points is still required in the interpretation of the results. 
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4.3.4.10 Geocoding and consistency testing; 

SAR terrain corrected geocoding is the geometric transformation from slant range into the 

product geometry. This step has been done using the GAMMA DIFF&GEO software by use of 

topographic reference.  

 

4.3.4.11 Product finalizing 

The mean subsidence values derived from SAR interferometry are delivered as ASCII files 

together with geographical coordinates in order to facilitate the transfer to any GIS software. 

Time series of displacement are delivered with and without temporal filtering. 

4.3.5 Analysis and interpretation of SBAS results 

The spatial coverage with valid information is large, because the coherence mask has been 

calculated from all filtered interferograms. Interferograms with winter image pairs are coherent 

also over water surfaces (frozen in winter) and areas vegetated during summer. Care is thus 

required for the interpretation of signals close to water and vegetated surfaces 

The combination of strong summer atmospheric artefacts, presence of frozen water surfaces 

and snow-cover in winter and absence of large numbers of anthropogenic structures makes 

the accuracy of our measurements lower than that determined with persistent scatterers 

interferometry over European urban areas and quantified by Crosetto et al. (2010) as 1.3-1.8 

mm/yr for ENVISAT. Even if the mm/yr cannot be interpreted, the generally high coherence 

over this semi-desertic landscape ensures a good quality of the results. 

It has also to be highlighted that SAR-based techniques without absolute GPS calibrations do 

not provide absolute displacements; within every frame, the movements are referred to a 

defined point that potentially could be affected by a vertical movement. For this reason, the 

displacements discussed below cannot be considered as absolute values, but must be 

considered as an indication of relative movement compared to another area in the same frame 

of study. It’s obvious that the reference points have been selected in potentially stable areas.  

InSAR results are analysed at different level of detail. Firstly, a general “frame scale” view is 

given; in addition the study focuses on zones of interest, as urban areas or zones where the 

vertical movements detected are marked. Analysis of trends for specific spots was carried out: 

figures showing the movement (mm) versus time (years) were plotted. As highlighted in the 

following paragraphs, these points are distributed both in stable areas and on specific sites of 

interest. 
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For every frame, a brief discussion on the observed displacements is provided.  

 

4.3.5.1 Frame Z1 

Multiple short baseline interferometry (SBAS) analysis in this frame is affected by strong 

disturbs and not fully cover the area. As shown in Figure 152 there is no data along the fluvial 

belt near the Ural River. Missing data are probably linked to vegetational cycles, which cause 

the loss of signal coherence between different couples of acquired signals.  

 

Figure 152: Results of SBAS analysis in frame Z1. 
 

For frame 1 no clear signals, i.e. with magnitudes larger than ±4 mm/y, were detected. 

Excluding movements comprise between ±1 mm/y (light blue), that substantially define stable 

zones, some features with detected movements among ±2 and ±4 mm/y are visible, but 

interpretation has to be performed with care. 
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Within these areas, localised in the western side and N-E corners of the frame, movements 

comprise between +2 and +4 mm/y could be due to atmospheric artefacts (stronger than 

others filtered) or to movements of wide diapirs of salt. This second hypothesis cannot be 

verified because of the lack of a detailed map of salt domes, and in any case appears more 

unrealistic than the atmospheric influence (in the area of study uplifts due to diapirism reach 1 

mm/y according with Volozh et al. (2003). InSAR technique has been proved to provide good 

results by Shimoni et al. (2002) to study the influence of salt diapirs on superficial movements 

in Lisan Peninsula (Dead Sea Rift) were the movements of the ground surface have been 

quantified in more than 50 mm/y. 

Two areas of interest are shown in Figure 153. 

The first one is referred to the urban area of Atyrau; a detail in this area is needed to evaluate 

potential sedimentary compaction caused by the weight of the buildings. The second area 

concerns the coastal zone 20 km E of Atyrau, in which displacements are particularly marked. 

In both of them, the measured lowering of the ground is up to -3 mm/y. 

Multiple short baseline interferometry is a technique suitable for wide areas and their results, 

as visible in Figure 153, cannot detect movements at “building scale” (IPTA technique, applied 

only for frame Z1, for the same area reveals more localised movements). For further details 

see section 4.3.6. 

The coastal area involved in subsidential processes has a surface of about 9 km2; the 

movement can be caused by human activities (e.g. agriculture) or by natural processes of 

focused coastal erosion or deflation. 

The time behaviour of the displacement measured for some sites of interest (pt. 3519033 for 

Atyrau and pt. 3363145 for coastal zone), and in other sites distributed within the whole frame 

Z1 are plotted in Table 17; their location is shown in Figure 152. 

For each of them both the filtered (TPF: Temporal Phase Filtered, brown line) and unfiltered 

signals (ATM: ATMospheric, orange dots) from atmospheric disturb are plotted. The 

regression lines and their low values of coefficient of determination R2 confirm that there isn’t a 

specific trend for the majority of the surface detected; only in areas where relative movements 

recorded exceed values of ±2 mm/y a trend is quite clear, with value of R2 up to 0.8. 

For frame Z1 complete results are shown in drawings Map.II.3.1 (Quick-looks after inversion 

and trend analysis) and Map.II.3.2 (INSAR-SBAS Analysis). 
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Figure 153: Detail of SBAS analysis within frame Z1. 
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Table 17: Displacements versus time for a few sites selected within the Z1 frame. 
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4.3.5.2 Frame Z2 

Multiple short baseline interferometry (SBAS) analysis in this frame is not affected by strong 

disturbs, the area of study is fully covered and results are clear. 

For the most of the investigated area, results of frame Z2 coincide to Z1 ones; light blue areas, 

that represent relative movements comprises between ±1 mm/y (stable zones) cover the 

majority of the frame (Figure 154).  

 

 

Figure 154: Results of SBAS analysis in frame Z2. 
 

Areas with detected movements among ±1 and ±4 mm/y are visible. In the north-eastern 

corner of the frame InSAR technique detects a wide area of around 480 km2 where the relative 

lowering rate reaches values comprises between -1 and -5 mm/y (availability of images since 

2004). Reasons are unknown, probably linked to the geological complexity of the area and the 

interactions of big salt diapirs to the sedimentary cover. 
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An opposite trends are detected along the coastal area: uplift rates comprise between +1 and 

+4 mm/y, as shown in Figure 154 are identified along a thin zone along the whole coastal 

area. It’s possible to identify similar features in the previous frame Z1, but coastal area is not 

fully covered and uplifts are fragmented. Interpretations have to be performed with care, but on 

the whole movements could be related to coastal processes and to the effect of ice-deice 

cycles on sediments. Considering that images used for the analysis were taken exclusively in 

summer-autumn periods, the most reasonable hypothesis supposes that these uplifts are 

caused by the scarcely cemented sediments’ reaction of a decompression due to the melting 

of ice coverage. Other hypothesis could be an accretion due to wind-transported sediments 

trapped by coastal vegetation, the increasing of water table levels within unconsolidated 

sediments during storm surge events combined with a general depositional trend.  

 

  
Figure 155: Uplifts along the coastal area. 
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The time behaviour of the displacement measured for some zones of interest within the whole 

frame Z2 are shown in Table 18; their location is provided in Figure 154. 

The regression lines and their low values of coefficient of determination R2 confirm that there 

isn’t a specific trend for the majority of the stable surface detected; only in areas where 

movements recorded exceed values of ±1 mm/y trends are quite clear, with value of R2 up to 

0.5. 

For frame Z2 complete results are shown in drawings Map.II.3.3 (Quick-looks after inversion 

and trend analysis) and Map.II.3.4 (INSAR-SBAS Analysis). 
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Table 18: Displacements versus time for a few sites selected within the frame Z2. 
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4.3.5.3 Frame Z3 

InSAR analysis in the third frame of the study area (Figure 156) is affected by strong disturbs 

only in central portion, probably because of the physical characteristics of the Buzachi 

Peninsula; low areas, sometimes flooded, cause the loss of signal coherence among the set of 

available images. Despite these areas, the SBAS capability to resolve land movement is 

adequate within this frame. 

 

  
Figure 156: Results of SBAS analysis in frame Z3. 

 

Considering the natural development of the area, Buzachi Peninsula is characterised by stable 

behaviour, with relative displacements comprise between ±1 mm/y for the most of the area. In 

some limited areas movements reach values up to -3 mm/y. 

The time behaviour of the displacement measured for some zones of interest distributed within 

the whole frame Z3 are shown inTable 19; their location is shown in Figure 156. 
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The regression lines and their low values of coefficient of determination R2 confirm that there 

isn’t a specific trend for the majority of the stable surface detected; only in areas where 

movements recorded exceed values of ±2 mm/y trends are quite clear.  

For frame Z3 complete results are shown in drawings Map.II.3.5 (Quick-looks after inversion 

and trend analysis)and Map.II.3.6 (INSAR-SBASAnalysis). 
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Table 19: Displacements versus time for a few sites selected within the frame Z3. 
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4.3.6 Preliminary application of IPTA 

We have tried to investigate the capability of IPTA to detect land displacements in the study 

area. The PSI technique is a relatively recent development that can reduce the principal errors 

inherent in InSAR processing methods, errors caused by temporal and geometrical 

decorrelation and atmospheric artifacts. 

Moreover, this technique is suitable for monitoring activities. Further details 8. 

The IPTA application has been carried out with two steps. First, the distribution of candidate 

point targets has been obtained for the three selected frames. Second, the interferometric 

procedure has been completely developed only for frame Z1, in which the number of PT is 

appropriate. 

In order to test the possibility of applying this methodology to area of investigation using the 

available ENVISAT data set, candidate point targets have been identified for the three frames 

based on the intensity variability of the co-registered single-look complex images and the 

spectral characteristics averaged over the stack of single-look complex images. The quality of 

the candidate point-targets has been further examined on point-target interferograms 

calculated with respect to the central reference used in image co-registration and flattened 

with use precision Delft orbits. The standard deviation of a two-dimensional linear regression 

to solve for both the height corrections with respect to the SRTM height and the deformation 

rate computed for neighbouring points gives a more robust indication of candidate point 

targets. 

As indicated in Figure 157, Figure 158 and Figure 159, the number of candidate point targets 

is sufficiently high only for all the three frames and, in particular, in frame Z1. There are large 

areas where any persistent reflectors have been detected. A possible explanation for this is 

the presence of snow-cover on a large number of acquisitions. Taking also into account that 

the number of available scenes is just sufficient to perform a persistent scatterer investigation, 

the results obtained through this preliminary investigation confirm that traditional multi-baseline 

interferometry is a more robust general approach for the analysis of the subsidence of the 

north-east part of the Caspian Sea with ENVISAT ASAR data. 
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Figure 157: Identification of candidate persistent scatterers in frame Z1. 
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Figure 158: Identification of candidate persistent scatterers in frame Z2. 
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Figure 159: Identification of candidate persistent scatterers in frame Z3. 
 

IPTA has been performed for the frame Z1 with use of GAMMA IPTA software. In order keep 

the number of data used in the regression, all acquisitions were considered. As a 

consequence of snow-cover and frozen surfaces in winter we expect a larger noise over the 

rural, semi-desertic areas than over the urban areas. The IPTA results are shown in Figure 

160. 
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Figure 160: Results of IPTA before outlayers filtering. 

 

It is well known from the scientific literature that SAR analyses on persistent scatterers 

produce displacement rates that are characterized by a certain variability. This is due to the 

fact that, conversely to SBAS, which computes the average movement of each pixel of the 

SAR images, IPTA detects the displacement of single point-wise reflectors. By IPTA we are 

able to measure the movement of single engineered structures that can differ significantly for 

close structures also due to, for instance, the foundation typology, the structure load, the 

subsoil properties, the date of construction of the buildings. An example is shown in Figure 

161, where a detail of the displacements measured at a zone of Atyrau is presented. The 

figure clearly shows that adjacent buildings move with different velocity. 
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Figure 161: Example of local displacements in a zone of Atyrau (light blue dots: rates 
value between ±2 mm/y; yellow dots: rates value between -2 and -8 mm/y). 

 

Because the main interest of the study is to provide the "average" subsidence that 

characterizes the coastland of the northern Caspian, it is preferably to remove some of the 

scatterers with a movement significantly different from those of the nearby points. These 

scatterers can be viewed as outliers  and have to be filter out. An automatic procedure has 

been implemented for this purpose. The area of frame Z1 has been divided in a regular grid of 

dimension 250mx250m and for each cell the mean displacement value and the related 

standard deviation are calculated. Then the scattarer characterized by a movement exceeding 

the average ± twice the standard deviation have been deleted.  

Figure 162 shows the location of the removed PT. Their number amounts to 2134, out of the 

original 186850, i.e. about 1,14%. The final map thus obtained is shown in Figure 163. 
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Figure 162: Location of the persistent scatterers removed from the regional 
investigation. 
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Figure 163: Displacement map for the frame Z1 obtained by IPTA after filtering out the 

measurements affected by a site-specific displacement trend. 
 

Over the city the quality of IPTA is in general similar to that obtained with multi-baseline 

interferometry. The behaviour of certain isolated points not following the general trend is 

typical of persistent scatterer interferometry. This effect is removed in multi-baseline 

interferometry by the spatial phase filtering (Figure 164). 

On the other hand, where anthropogenic structures are not present we observe larger 

disturbances and there is a difference of up to a few mm/year between IPTA and multi-

baseline interferometry (Figure 165).  

Phase signals related to snow-cover and frozen areas in addition to those related to 

atmospheric disturbances are the cause of phase-unwrapping errors in some of the layers. In 

IPTA, this effect is even larger than in multi-baseline interferometry because of the reduced 

number of points and decorrelation over some of the winter acquisitions. In addition, for multi-

baseline interferometry more care was dedicated to phase unwrapping with eventually the 

removal before least-squares inversion of certain image pairs. 
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Even if performed with a rather general approach without care of the specific conditions of the 

area under investigation, IPTA do not indicate the presence of important movements covering 

large zone over frame Z1. 

IPTA preliminary application results are shown in drawing Map.II.3.7_Frame 1_INSAR-

IPTA_Analysis.  

  

      

Figure 164: Comparison between IPTA (left) and SBAS (right) on the whole frame Z1 
and in correspondence to Atyrau. 
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Figure 165: Differences between IPTA and SBAS analysis. 
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4.3.7 Comparison of achieved results with the northern Adriatic coastland case study 

A brief comparison of the result achieved during the study with ones obtained in similar 

projects is given. 

For this purpose, different studies carried out by specialists in the last years (Teatini et al., 

2011; Teatini et al., 2007; Teatini et al., 2005; Strozzi et al., 2009; Tosi et al., 2010; Tosi et al, 

2009) in the northwestern coast of the Adriatic Sea (Venice lagoon and Po river delta) have 

been considered.  

 

Relative sea level rise (RSLR), i.e., the interaction between sea eustatic rise and land 

subsidence, represents one of the geologic hazards threatening the low-lying coastal areas 

worldwide. The coast of the northern Adriatic Sea characterized by the presence of lagoons, 

i.e., Grado, Marano, Venice and those in the Po River delta, from the north to the south, 

marshes and reclaimed farmlands generally lying below the mean sea level, is the Italian area 

at greatest risk (Figure 166). The combined effect of land subsidence and eustasy (Figure 

167) has produced ground settlements ranging from centimeters to meters, and created a 

significant ecological and environmental impact. The entire area has experienced permanent 

changes in coastal morphology and morphodynamics, which in turn have caused temporary, 

sometimes very destructive, effects such as erosion, wave setup, flooding and sea 

encroachment (e.g., Gatto and Carbognin 1981; Gambolati 1998; Gambolati et al. 1999). In 

this wide and complex area, land subsidence is characterized by a highly non-uniform 

distribution with several natural and anthropogenic factors controlling land motion. They act 

individually or together, on different depth-, area- and timescales (from millions to thousands of 

years and hundred to tens of years, respectively), thus reflecting the geological history and the 

human development of the territory. Natural causes (Figure 168) refer to substratum 

deformation due to tectonics and geostatic load, together with natural consolidation of the 

Quaternary poorly consolidated sedimentary sequence, primarily the shallow transgressive 

Holocene deposits. Anthropogenic factors are mainly related to subsurface fluid removal and 

more locally to oxidation of recently reclaimed marshes and consolidation due to surface 

loads. 
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Figure 166: Digital elevation model (DEM) of the northern Adriatic region obtained 
from SRTM data. 

 

 

Figure 167: Relative sea level rise (RSLR) at Venice and Ravenna over the period 
1896–2007. 
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Short-term anthropogenic causes became a key problem for the land stability of the whole 

northern Adriatic coastland during the twentieth century, especially from the World War II to 

the end of the 1960s when the civil, industrial, agricultural and tourist developments required 

huge amounts of water and an increasing energy supply. The only difference was the nature of 

the withdrawn fluids: artesian water in the Venice area (Carbognin et al. 1977), gas-bearing 

water in the Po Delta (Caputo et al. 1970), and both groundwater and gas (inshore and 

offshore) in the Ravenna region (Carbognin et al. 1978). Since the end of the 1970s, 

countermeasures have been taken and subsidence has been greatly reduced all over the 

study area (Carbognin et al. 1977; Carbognin et al. 2000). 

 

 

Figure 168: Recent natural land subsidence in the northern Adriatic coastal area (after 
Gambolati and Teatini 1998). 

 

Nevertheless, RSLR has produced permanent loss in land elevation that has significantly 

increased the flood frequency and the impact of marine storms, causing severe damages to 

urban heritages and lagoon and coastal morphologies, especially in the most susceptible 

areas. In Venice, for example, the 25 cm of relative land elevation loss over the twentieth 

century  has created a major concern despite this small value. 
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Geodetic measurements by high-precision leveling have been periodically carried out in the 

Venice coastal area since the end of the nineteenth century. Monitoring of land subsidence 

has been significantly improved over the last decade by space-borne observation techniques 

based on synthetic aperture radar (SAR) interferometry. Differential interferometric SAR 

(DInSAR) has been initially used to complement the ground-based methods (Tosi et al. 2002; 

Teatini et al. 2005). More recently, interferometric point target analysis (IPTA) has been 

applied (Teatini et al. 2007, 2009; Strozzi et al. 2009) in combination with leveling and GPS 

measurements with the main purpose of calibrating the SAR surveys as detailed in the 

methods section. 

The analysis describes the present ground vertical movements in the Veneto coastland both at 

the ‘‘regional’’ (100 X 100 km2) and ‘‘local’’ (few square kilometers) scales. 

 

4.3.7.1 Ground vertical movements of the Veneto coastland: methods 

Geodetic surveys, though not made on a regular basis, have been periodically carried out in 

the eastern Po Plain since the end of the nineteenth century. The networks of leveling lines 

generally connected to inland ‘‘stable’’ reference benchmarks and running along the coast, 

were gradually improved over the decades. Leveling represented the only monitoring 

technique up to the 1970s. 

Starting from the 1980s, space-based geodetic techniques such as the global positioning 

system (GPS) have been adopted to monitor vertical movements, mostly from the late 1990s. 

Differential and continuous global positioning system (DGPS and CGPS, respectively) surveys 

have been extensively used in the Venice area since then. The analysis of long CGPS time 

series of acquisition over many years allows estimating the velocity of movement with the level 

of accuracy of 1 mm/year. 

Since 2000, SAR-based techniques have also been used to improve the qualitative and 

quantitative analysis of the vertical displacements in the Venice region. The measurements 

were initially carried out by the DInSAR approach, which has been used in geophysical 

sciences since the late 1980s (Gabriel et al. 1989), and more recently by IPTA, a refined 

approach developed about 10 years later and included within the so-called persistent scatterer 

interferometry (PSI) approach (Usai and Klees 1999; Ferretti et al. 2001; Werner et al. 2003).  

Various satellite images have been used for different purposes: 

• A total of 80 ERS-1/2 scenes (35 days repeat cycle) have been processed to map the 

movements occurring from 1992 to 2002, within the 100 X 100 km2 area including the 

whole coastland and the inland of Vicenza, Padova, Treviso, and Venice (Tosi et al. 
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2002, Teatini et al. 2005). The first 59 ERS-1/2 scenes acquired before March 2000 

were processed to a common Doppler centroid value of 250 Hz and were first used to 

estimate the average displacement rate. After March 2000, authors only considered 

ERS-2 scenes with Doppler centroid values between -89 and 1,144 Hz to extend the 

time series of displacement. These scenes, processed to their own Doppler centroid 

value, were in particular useful for continuity with ENVISAT. 

• As much as 40 ENVISAT scenes (35 days repeat cycle) have been analyzed to 

monitor the recent coastland displacements from the northern portion of the Po River 

delta to the Tagliamento Rivers starting from 2003 (Teatini et al. 2007, 2009). 

• A total of 30 TerraSAR-X stripmap images (11 days repeat cycle) acquired from 2008 

have been used to detect the effect of the man-made intervention on the present 

ground movements in areas near the inlets of the Venice Lagoon (Strozzi et al. 2009). 

 

4.3.7.2 Detected Veneto coastland vertical movements of the  

The ground vertical movements in the study area have been mapped over the three periods, 

1992–2002, 2003–2007 and 2008–2009, using images acquired by the ERS-1/2 and 

ENVISAT satellites of the European Space Agency (ESA) and the new TerraSAR-X satellite 

launched by the German Space Agency, respectively. 

The regional analysis performed for the first period has been of particular significance. 

This has been carried out by developing an innovative ‘‘subsidence integrated monitoring 

system’’ (SIMS) that efficiently merges the different displacement measurements obtained by 

spirit leveling, DGPS, CGPS and SAR-based interferometry (Teatini et al. 2005). The SIMS 

has provided a high-resolution map of the land displacement rates from 1992 to 2002 of the 

entire Venice territory, which was never previously obtained at this scale (Figure 169). The 

map has pointed out the significant spatial variability of the ground vertical movements, both at 

the regional and local scales, with velocities ranging from a slight (1–2 mm/year) uplift to a 

significant subsidence of more than 10 mm/year. 

The recent vertical movements of the Venice coastland between the northern portion of the Po 

River delta and the Tagliamento River is detected by ENVISAT (Figure 170) allowing 

continuing characterization of the vertical movements also in small areas scattered along the 

coastland, e.g., the islands located within the Venice Lagoon (Teatini et al. 2009). With respect 

to the previous decade, the main difference of the 2003–2007 displacement rates has been 

detected in the northern sector where a certain increase of the subsidence rates has been 

observed in the San Donà di Piave, Portogruaro and Caorle areas. 
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Figure 171 shows the map of the total displacements 1992–2007 as obtained by integrating 

the IPTA outcome based on ERS 1/2 and ENVISAT acquisitions. The map has been obtained 

by interpolating the two dataset values on the same 250 X 250 m grid using the kriging 

technique. 

The result highlights a stable sector between Treviso and Venice, an uplift zone in the vicinity 

of Piove di Sacco-Lova (i.e., the western margin of the southern lagoon basin) and two major 

subsiding areas, i.e., eastward of the Piave River and between the Adige and the Po Rivers, 

where up to 8 and 10 cm settlements, respectively, have been measured over the 17-year 

period. The validation of the SAR data using high-precision spirit leveling has verified the high 

accuracy of the SAR-based interferometric analysis (Figure 172). The last generation of 

satellite-borne radar, i.e., TerraSAR-X, opens new perspectives in measuring ground 

displacements at very high spatial and temporal resolutions (Strozzi et al. 2009). We have 

applied SAR interferometry on a stack of 30 TerraSAR-X images acquired between 5 March 

2008 and 29 January 2009 covering large parts of the Venice Lagoon. 

 

 

Figure 169: Vertical displacement rates (mm/year) in the Venetian region obtained by 
the SIMS over the decade 1992–2002. 

 



 

341 

 

Figure 170: Vertical displacement rates (mm/year) in the Venetian coastland obtained 
by IPTA of ENVISAT scenes acquired between 2003 and 2007. 
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Figure 171: Map of the cumulative displacements (cm) occurring from 1992 to 2007 in 
the Venetian coastland as obtained by the integration of ERS-1/2 and ENVISAT IPTA 
results. Green dots position of the IGM34 (IRMA54) leveling benchmarks used for the 

validation of the IPTA outcomes. 
 

 

Figure 172: Comparison between leveling and IPTA results along the IGM34 (IRMA54) 
line. 
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4.3.7.3 Summary of Veneto case study results 

The mapping of the recent (1992–2002) and present (2003–2009) vertical movements 

highlights a significant spatial variability with displacement rates ranging from a 1–2 mm/ year 

uplift to more than 10 mm/year subsidence. 

In general, tectonics, differential consolidation of the Pleistocene and Holocene deposits and 

human activities, such as subsurface fluid withdrawals, land reclamation of marshes and 

swamp areas and farmland conversion into urban areas, combine to produce the observed 

displacements. According to Tosi et al. (2009), the displacement components have been 

distinguished on the basis of the depth of their occurrence. Deep causes, acting at a depth 

generally greater than 400–600 m below m.s.l., refer to downward movements of the pre-

Quaternary basement and land uplift (up to 2 mm/year) most likely related to neo-tectonic 

activity connected with the Alpine thrust belts and a NW–SE fault system. 

The displacement factors located in the medium depth interval, i.e., between 50 and 400 m 

below m.s.l., are of both natural and anthropogenic origin. The former refers to the Medium-

Late Pleistocene deposits that exhibit a larger cumulative thickness of clayey compressible 

layers at the lagoon extremities with respect to the central lagoon area where stiffer sandy 

formations prevail. Land subsidence due to aquifer exploitation mainly occurs in the 

northeastern sector of the coastland where thousands of active wells are located. 

In a 10–15 km wide coastal strip, the thickness, texture and depositional environment of the 

Holocene deposits (Tosi et al. 2009; Rizzetto et al. 2009) play a significant role in controlling 

shallow causes of land subsidence. Other factors that contribute to increasing land subsidence 

at a smaller areal extent are the salinization of clay deposits due to saltwater intrusion and the 

biochemical oxidation of outcropping peat soils (Gambolati et al. 2005; Carbognin et al. 2006). 

Even the load of buildings and structures after the conversion of farmland into urbanized areas 

causes local 

shallow compaction. 

 

4.3.7.4 Kazakh and Veneto case studies comparison 

For different aspects, the Kazak coast involved in the present work is quite similar to the Italian 

one. Below are listed some parallelisms between the two considered areas (Figure 173): 

• Similar latitude; 

• Similar habitats and species; 

• Presence of endemic & protected species; 
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• Flyway of migratory species; 

• Face off- shore O&G extractive area; 

• Potential subsidence hazard; 

• Sustain fishery sector; 

• International harbour activities. 

 

   

Figure 173: Parallelisms between two different study areas. 
 

In the Adriatic Sea coast differential InSAR (DInSAR), first, and interferometric point target 

analysis (IPTA), at a later stage, have been applied to measure and map displacements 

occurring since 1992 when SAR data first became available.  

The accuracy of measurements in the two areas is different: the capability of SAR 

interferometry to measure ground vertical movements in Italian areas at millimetric accuracy 

has significantly improved the knowledge of the phenomenon. The integration of DInSAR 

techniques with values coming from direct surveys (both spirit levelling and global positioning 

system methods) allows to reach an accuracy higher than the Kazak study area. In addition, 

the high urbanization of the Adriatic Sea coast (i.e. the high presence of point targets) allows a 

wide application of IPTA technique. Here following (Figure 174) an example of the precision 

reached by the SAR based techniques in city of Venice. 
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Figure 174: Reached detail of SAR based measured at Venice (Teatini et al., 2007). 
 

Comprehensive maps of the vertical displacements have revealed the high spatial variability 

characterizing the ground movements in the Venice region. A general land stability has been 

detected in the central part of the study area, including the major cities of Venice, Padova and 

Treviso, with scattered local bowls of subsidence of up to 2–3 mm/year. Low values fit with 

ones measured in most of the Caspian Sea coastal area. However, some typical 

characteristics founded in the present study differ to the Italian one: the uplifts localized along 

the Kazak coast and local displacement, probably linked to the geological asset of the area 

and salt diapirism, are not identified in the Adriatic coastal zone. 
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5. CALCULATED AND MEASURED RESULTS 
COMPARISON AND CONCLUSION 

Considering both the applied methodologies, results’ comparison is briefly discussed. 

The two approaches, as widely discussed above, are completely different and they investigate 

different aspects of subsidence. Applied numerical models (especially NATSUB model) have 

been implemented to calculate the compaction of a typical sedimentary column and its effects 

on porosity, hydraulic conductivity etc., while SAR-based analysis focuses on present 

lowerings (or uplifts) occurred in the last decade. The latter, due to its remote sensing nature, 

cannot distinguish movements caused by sediments’ compaction from other sources of 

subsidence (e.g., terrain compaction due to the weight of buildings. fluid withdrawal). 

The wireline logs availability allowed a numerical application only in the offshore part of the 

study area, while DInSAR works exclusively in onshore environment; the two methodologies 

seem to be incomparable, however: 

• it’s reasonable to think that the behaviour of the stratigraphic sequence could be similar 

in the whole coastal area investigated (depths of main stratigraphic horizons are quite 

similar); 

• human activities are very localized and, for the most of the investigated areas, results 

are referable to the natural evolution of the sedimentary basin. 

For these reasons, a qualitative comparison has been done.  

NATSUB quantitative results and BASIN outputs underline the stable behaviour of the area 

and the absence of clear subsidential phenomena. In the southern margin of the Precaspian 

basin, the limited depth of elder drilled strata (carbonates of Devonian period) reveals that the 

basin was filled with very low rates of sedimentation and NATSUB shows that consolidational 

processes were coeval with sedimentational ones. Therefore, subsidential processes do not 

affect the deep and ancient rocks, and BASIN application shows that the consolidation 

involves only shallow sedimentary layers.  

DInSAR analysis confirms the calculated trend. Recorded movements for the most of the area 

investigated are negligible, with values comprise between ±1 mm/y. This technique identified 

areas of particular interest (with values up to -6 and +5), in which movements are probably 

linked to salt diapirs (uplifts in correspondence to the top of the salt domes, and lowerings 

more marked within intra-domes areas) or coastal processes. Lack of data (detailed 
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compressibility and chronostratigraphy available only at offshore wells, and not sufficient 

knowledge of salt domes distribution) does not allow the application of the model in areas of 

particular interest highlighted by InSAR. 

In conclusion, results coming from two different methodologies confirm that the study area 

considered in present study is a stable one, with very low values of subsidence caused by 

sediments’ compaction.  
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6. SWOT ANALYSIS 

Table 20: Natural and present SWOT analysis 
 STRENGHTS (S) WEAKNESSES (W) OPPORTUNITIES (O) THREATS (T) 

Natural subsidence 

(Numerical models 
application) 

 Availability of different 

numerical models suitable for 

application in the study area; 

 Very low values of 

compressibility of the whole 

sedimentary column. 

 

 Lack of data related to salt 

domes distribution: it does not 

permit to define areas not 

involved in salt diapirism, or 

intra-domes areas; in these 

areas the thickness (and 

consequently the 

compressibility) of the 

sediments is higher; 

 Non homogenous data 

distribution: information is 

localized in the offshore area; 

no wells are available in the 

onshore portion of the study 

area. 

 

 To profit of more existing 

available different data useful 

for rock compressibility 

calculation and/or to gather 

more wireline logs in onshore 

area, in order to obtain more 

accurate (and better 

distributed) values of 

compressibility. 

 To not quantify properly the 

natural component of 

subsidence, and consequently 

to not compare accurately 

natural subsidence with 

present one. 
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 STRENGHTS (S) WEAKNESSES (W) OPPORTUNITIES (O) THREATS (T) 

Present subsidence 

(Differential Synthetic 
Aperture Radar 
Interferometry 
application - DInSAR) 

 Availability of advanced 

technologies that permit the 

detection of ground movements 

with high accuracy. 

 Low degree of urbanization of 

the study area permits to 

consider, in most of the cases, 

present subsidence as natural 

one, i.e. measured values can 

be referred exclusively to 

sediment compaction. 

 

 Discontinuous analysis could 

not consider the phenomenon 

in its totality: the experimental 

SAR application has not been 

done in the whole coastal area, 

excluding areas involved in 

Oil&Gas activities; 

 Inadequate knowledge of all 

anthropic activities in studied 

areas; 

 Absence of historical and 

recent measures of 

displacements; 

 Absence of GPS 

measurements in the study 

area. 

 To expand the DInSAR 

analysis to the whole study 

area; 

 To correlate DInSAR results 

with human activities; 

 To foresee future 

lowerings/uplifts in function of 

planned Oil&Gas activities. 

 An increase values of present 

subsidence because of 

anthropic activities. 
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7. FUTURE SCENARIO ESTIMATION 

Considerations about subsidence future scenario have been done considering both the calculated 

(through numerical models) and detected (through DInSAR) subsidence values. 

In NATSUB approach, the beginning of simulations depends on the elder strata drilled and they 

have been completed in 3000 AD. The portions of simulations related to future scenarios foresee 

no sedimentation: Figure 175, detail of one simulation, shows in detail that between the present 

time (2000) and the future (3500) in absence of sedimentational processes the thickness of the 

sedimentary does not change (Figure 176). 

Time value assigned for future projection follows the concept of the “geologic time scale” and not 

the “life cycle time scale”; notwithstanding, simulated geomechanical characteristics allow to 

highlight that any significant rock/sediment compaction will happen in the future (Figure 175). 

 

 

Figure 175: Example of sedimentation rate and settling velocity during future scenario, 
well Test 3. 



 

 

 

Figure 176: Example of depth (or thickness) of the sedimentary column during future 
scenario, well Test 3 

 

Results of undertaken DInSAR analysis show that the three frames investigated are characterised 

by stable behaviour, with relative displacements comprise between ±1 mm/y for the most of the 

area covered by the analysis. In some limited areas movements reach negative values up to -6 

mm/y and positive values up to +4 mm/y (northeastern corner and near shore belt of frame Z2).  

In absence of information related to planned human activities, subsidence rates cannot be modified 

and future trends have to be assumed similar to detected ones. 
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8. MONITORING PLAN 

8.1 SPATIAL AND TEMPORAL DISTRIBUTION OF RADAR IMAGES ACQUISITION FOR SBAS 

MONITORING ANALYSIS WITHIN FRAMES Z1, Z2 AND Z3 

The application of DInSAR SBAS technique in the study area has revealed that this methodology is 

adequate to the monitoring of subsidence. For this reason, future monitoring activities through 

SAR-based technique can (and should) be planned. 

Areas of investigation could be the same involved in the study, maybe modified depending on the 

orbit of selected satellites. Monitoring plan could be set for a yearly acquisition and elaboration of 

radar images (acquisition of necessary available images every October). 

ENVISAT products, used for the study of present subsidence, cannot be used for monitoring 

activities; related satellites were dismissed in October 2010. Radar images could be acquired by 

other satellites, as RADARSAT-2, TerraSAR-X or COSMO-SkyMed. Cost of monitoring activities 

depends on selected images (type, number) and varies from 2000 to 3000 €/image. 

 

8.2 INTEGRATION OF MONITORING PLAN WITH ARTIFICIAL PERSISTENT SCATTERS AND FIX GPS 

STATIONS 

Attempt of DInSAR IPTA technique has revealed that only within frame Z1 there are sufficient 

Persistent Scatters; however, the capability of IPTA to detect localised land displacements makes 

the technique suitable for monitoring activities.  

Following figures shows the distribution of natural PTs used for IPTA analysis in frame Z1 (Figure 

177) and natural PTs identified within frames Z2 and Z3 (Figure 178 and Figure 179); as 

discussed, PTs availability in Z2 and Z3 does not permit the IPTA application, but present PTs 

eventually rounded out with artificial PTs, represent a good chance to carry out very detailed 

monitoring activities. 

 



 

 

 

Figure 177: Identified PT in frame Z1 
 

 

Figure 178: Identified PT in frame Z2 
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Figure 179: Identified PT in frame Z3 
 

Installation of artificial PTs should be done in areas not sufficiently covered by natural PT 

reflectors: their distribution must be planned considering that the distance between two PTs should 

be less than 2 km. 

Monitoring activities planned through IPTA technique should be implemented at specific location 

within the frame (a frame scale monitoring is covered by SBAS analysis), in area of specific 

interest (e.g., areas characterized by lowerings or uplifts, near Oil&Gas facilities or in the Ural 

delta). 

Proposed technique, already applied in similar environment, assures very high resolution of 

measurements with limited costs: construction and installation of these metallic structures is quite 

easy and every PT costs 200-300 €, depending on the type and dimensions of the structure. 

Technique’s constrain could be relate to PTs stability in areas where onshore ice movements 

generally occurred. 

An example of integration between natural and artificial PTs is shown in Figure 180. 



 

 

 

Figure 180: Integration between natural and artificial PTs 
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8.3 BEST SOLUTION FOR FIX GPS INSTALLATION 

Similar to levelling, SAR-based data are differential measurements, i.e. the measured 

displacements are relative to the movement of a reference (e.g., Teatini et al., 2010). Therefore, 

the movement of the reference has to be known e.g., form previous levelling or GPS surveys, to 

calibrate the SAR results and obtain ‘‘absolute” displacements. The establishment of a few GPS 

permanent stations is therefore of paramount importance. 

Also looking within international GPS networks (e.g., the network managed by the Scripps Orbit 

and Permanent Array Centre – SOPAC, see Figure 181), no station have been detected in the 

study area. 

If no geodetic data will be available, already gathered and new displacements measured by 

DInSAR will be referred to a point chosen according with the available geologic information and, in 

any case, as far as possible from the coastland. 

Proposed solution’s constrain could be relate to the achievement of required authorizations. 

 

 

Figure 181: Location of the GPS stations in international GPS networks around the 
Caspian Sea (after SOPAC archives, http://sopac.ucsd.edu/sites/) 

 



 

 

 

Figure 182: Possible GPS location (red circle) within frame Z1 
 

 

Figure 183: Possible GPS location (red circle) within frame Z2 
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Figure 184: Possible GPS location (red circle) within frame Z3 
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9. PROPOSED NEXT ACTIVITIES 

9.1 PRESENT SUBSIDENCE MONITORING ALONG THE WHOLE KAZAKH COASTAL AREA 

InSAR application could be a suitable technique to monitor the whole coastland of the northern 

Caspian Sea area. 

A check of ENVISAT (for images till 2010) and RADARSAT availability along the whole coastal 

area (Figure 185) highlight that SAR images are available for the entire Kazakh coastal area. 

Suitable satellites for the proposed activities are the same identified in 8.1. 

 

 

Figure 185:  Snapshot of ESA imagery catalogue 
 

Four RADARSAT tracks in descending mode cover both the study area and other portions of 

Kazakh coastal area (Figure 186). For Tracks 1-3 more than 60 acquisition are available between 

2004 and 2009. Unfortunately, only 4 acquisitions are available on Track 4, i.e. a insufficient 

number for the interferometric. Similar to ENIVSAT-ASAR, three frames could be initially used for 

the DInSAR investigation, one in each inland part detected by the geological zoning. A preliminary 

selection of the 100 km × 100 km frames of interest are shown in Figure 187. 



 

 

 

Figure 186: RADARSAT-1 tracks covering the north-eastern Caspian. The red "squares" 
represent the three frames selected from the ENVISAT-ASAR archive. 

 

 

Figure 187: Preliminary selection of RADARSAT-1 frames (in blue) for the DInSAR 
analysis. 
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9.2 CREATION OF A DIGITAL ELEVATION MODEL 

Space-borne SAR interferometry is one possible method for the generation of digital elevation 

models (DEMs). The sensitivity of this technique depends strongly on system parameters as the 

time interval between the observations used and the spatial baseline. Longer time intervals are 

less suited because of temporal decorrelation of the signal. Longer spatial baselines result in an 

increased height sensitivity. ERS-2 and ENVISAT ASAR operate in identical orbits at slightly 

different sensor frequencies with ASAR preceding ERS-2 by 28 min. This configuration offers a 

unique opportunity to study and apply ERS–ENVISAT interferometry. ERS-2–ENVISAT ASAR IS2 

VV-polarization interferograms are characterized by a short 28 min repeat-pass interval and a long 

1.5–2.5 km baseline. Given the long baseline and short time interval ERS–ENVISAT interferometry 

has a good potential for the generation of precise DEMs in relatively flat areas. The idea to use 

ERS–ENVISAT interferometry for DEM generation is not new, nevertheless, very few adequate 

data sets were identified and analyzed in the past. Now, thanks to a recent dedicated ERS-2–

ENVISAT Tandem mission of ESA many well suited data sets became available.  

From the literature, the accuracy of DEM of InSAR is of the order of 5 - 10 meters depending on 

the frequency, base line, terrain slope, decorrelation of the signal etc.  

At the moment, available Digital Elevation Models (DEM) are  

• SHUTTLE RADAR TOPOGRAPHY MISSION (SRTM), for the whole project area: (SRTM) obtained 

elevation data on a near-global scale to generate the most complete high-resolution digital 

topographic database of the Earth. SRTM consists of a specially modified radar system that 

flew onboard the Space Shuttle Endeavour during an 11-day mission in February of 2000. The 

SRTM absolute and relative errors are listed in Table 21. 

 

Table 21: Summary of SRTM performance. All quantities represent 90% errors in meters. 
 Africa Australia Eurasia N. America 

Absolute Geolocation error 11.9 7.2 8.8 12.6 

Absolute Height error 5.6 6.0 6.2 9.0 

Relative Height error 9.8 4.7 8.7 7.0 

Long wave length error 3.1 6.0 2.6 4.0 

 

• LIGHT DETECTION AND RANGING (LIDAR), only for a strict zone of project area, specifically, 

south to Bolashak facilities. This raster dataset contains LIDAR data acquired in July 2009 from 

an aerial survey performed by KazGeoCosmos (KGC). 

The LIDAR data has the following characteristics: 



 

 

Coordinate system    Gauss Kruger Zone 9 

Spatial resolution    5 m 

Horizontal accuracy   RMSE 0.049 m using 5 control points 

Vertical accuracy    Mean error 0.02 m using 7 control points 

Format       IMG 

 

• DEM GENERATED FROM RUSSIAN TOPOGRAPHIC MAPS (SCALE 1:100.000), covering the whole 

project area. Points have been digitalized considering a buffer of about 50 km landward from 

actual shoreline. 

This proposed activity represents an opportunity considering that the resolution of Digital Elevation 

Models available in the northeastern coast of the Caspian Sea affects different kinds of studies 

(e.g. inundation maps, future scenarios etc.) 

Within the work supported by ESA under contract 19366/05/I-EC–CCN5 and the project “ERS-

ENVISAT Tandem Cross-InSAR Campaigns: Case Studies” an experimental application of DEM 

generation is under elaboration in correspondence to the eastern part of the Volga Delta. Figure 

188 shows a step of elaboration: in the differential interferogram is recognisable loss of coherence 

on offshore ice, topographic variations linked to dunes along coastline and residual atmospheric 

artefacts toward the onshore part of the area investigated. 
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Figure 188: DEM generation in the eastern part of the Volga Delta: step of elaboration. 
 

 

 



 

 

9.3 INSAR ANALYSIS ON PRODUCTION ISLANDS 

DInSAR IPTA technique could be suitable for the detection of movements of a structure, or more 

than one structure, if the distance between them is less that 2 km. The anthropic nature of these 

structures guarantees the presence of PTs and no further installations should be required. 

Considering present structures, the distance between islands sometimes is low enough to allow to 

measure displacements between two (or more) artificial islands. 

InSAR technique has been already applied on artificial islands monitoring (e.g., Palm Jumeirah, 

Dubai). 

 

Figure 189: Distances between artificial islands at Kashagan area 
 

 

Figure 190: InSAR technique applied to the artificial Island of Palm Jumeirah, Dubai 
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