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RIASSUNTO 
 

Tra le sindromi epilettiche, l’epilessia del lobo temporale (TLE) è sicuramente la forma più 

frequente nell’adulto. Si manifesta in seguito ad un danno cerebrale (infezione virale, ictus, trauma, 

neoplasie…), capace di innescare una cascata di eventi che culminano nella comparsa di crisi 

epilettiche spontanee, in molti casi difficilmente controllabili con la normale farmacoterapia. Il 

periodo che intercorre fra l’insulto iniziale e lo sviluppo di crisi spontanee viene definito 

“epilettogenesi”. Le alterazioni cellulari e tissutali che avvengono durante questa fase interessano 

principalmente la regione ippocampale e includono: neurodegenerazione, neurogenesi, 

neuroinfiammazione e gliosi reattiva, angiogenesi e riorganizzazione dei circuiti cerebrali.  

 

Recentemente è stato dimostrato che la supplementazione di fattori neurotrofici (NTFs), quali FGF-

2 (fibroblast growth factor-2) e BDNF (brain derived neurotrophic factor), produce effetti anti-

epilettogenici riducendo la morte neuronale, favorendo una neurogenesi non aberrante e ristabilendo 

un corretto equilibrio tra circuiti inibitori ed eccitatori.  

 

Nel principale lavoro riportato in questa tesi, abbiamo voluto osservare se tale trattamento è in 

grado di influire anche sui processi neuroinfiammatori. Per lo studio è stato utilizzato il modello 

sperimentale della pilocarpina, la cui somministrazione è in grado di indurre nell’animale uno stato 

epilettico (SE) e quindi una lesione epilettogena. Dopo tre giorni dallo SE, vettori virali erpetici 

esprimenti FGF-2 e BDNF sono stati inoculati nell’ippocampo. 

 

Dopo 4, 11 e 25 giorni dal trattamento (DAI), gli animali sono stati sacrificati e i loro cervelli 

prelevati per analizzare l’espressione di tre marcatori dell’infiammazione: IL-1β, GFAP (marker di 

astrocitosi), Ox42 (marker di microgliosi). I risultati ottenuti dimostrano una riduzione 

particolarmente marcata di IL-1β, evidente già dopo 4 giorni dall’inoculazione del vettore virale, e 

un’attenuazione più ritardata, ma pur sempre significativa, degli altri due markers studiati.  

 

Lo sprouting delle mossy fibers è un’altra caratteristica aberrante del tessuto ippocampale epilettico: 

gli assoni delle cellule dei granuli formano sinapsi eccitatorie con cellule normalmente non 

innervate, formando un circuito che potrebbe contribuire all’ipereccitabilità tissutale. I risultati 

ottenuti dimostrano che il trattamento con i fattori neurotrofici è in grado di ridurre lo sprouting 

aberrante delle fibre nervose, in un modo che correla con l’attenuazione del danno cellulare.  
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Studi comportamentali paralleli hanno inoltre evidenziato la capacità del trattamento di ridurre la 

frequenza e la gravità delle crisi spontanee che, in questo modello, insorgono dopo circa 21 giorni 

dallo stato epilettico.  

 

Nonostante i promettenti risultati, l’applicabilità clinica dei fattori neurotrofici è limitata dalla scelta 

di una corretta via di somministrazione. Negli esperimenti riportati in questa tesi sono stati 

impiegati vettori virali erpetici, defettivi nella replicazione ed esprimenti i due NTFs. Tuttavia, la 

loro tossicità residua li rende inadeguati a essere applicati all’uomo. Cellule staminali modificate 

per esprimere i geni di interesse, tra cui i mesangioblasti (MABs), hanno dimostrato in vitro la 

capacità di promuovere la differenziazione, la sopravvivenza e la funzionalità neuronale. Non 

ultima, la capacità di localizzarsi nella sede cerebrale danneggiata, quando somministrati per via 

sistemica, rende queste cellule delle valide alternative a trattamenti più invasivi. 

 

Sebbene siano richiesti ulteriori studi, i risultati raccolti in questa tesi rappresentano un importante 

contributo alla comprensione delle molteplici proprietà dei NTFs. Inoltre, la caratterizzazione di una 

via di somministrazione alternativa e maggiormente applicabile può avvicinare la terapia genica con 

fattori neurotrofici all’utilizzo clinico in numerose patologie neurodegenerative.  



 3 

ABSTRACT 
 

Among the epileptic syndromes, temporal lobe epilepsy (TLE) is the most common form in adults. 

It is the consequence of a brain damage (viral infection, stroke, trauma, cancer ...), capable of 

triggering a cascade of events culminating in the appearance of spontaneous seizures that are, in 

many cases, difficult to control with the usual drug therapy. The period that elapses between the 

initial insult and the development of spontaneous recurrent seizures (SRSs) is defined 

"epileptogenesis”. The cellular and tissue changes that occur during this phase mainly interest the 

hippocampal region and include: neurodegeneration, neurogenesis, neuroinflammation and reactive 

gliosis, angiogenesis, and reorganization of brain circuits.  

 

Recently, it was shown that supplementation of neurotrophic factors (NTFs), such as FGF-2 

(fibroblast growth factor-2) and BDNF (brain derived neurotrophic factor), has anti-epileptogenic 

effects by reducing neuronal death, favoring a correct neurogenesis and restoring a proper balance 

between excitatory and inhibitory circuits.  

 

In the main study reported in this thesis, we examined if this treatment can also affect 

neuroinflammatory processes. We used the pilocarpine model, in which an episode of status 

epilepticus (SE) is followed by an epileptogenic lesion. After three days, herpes viral vectors 

expressing FGF-2 and BDNF were injected in the hippocampus.  

 

Four, 11 and 25 days after treatment (DAI), animals were sacrificed and their brains removed to 

analyze the expression of three markers of inflammation: IL-1β, GFAP (a marker of astrocytosis), 

Ox42 (marker of microglia). The results show a very marked reduction of IL-1β expression, evident 

as early as 4 days after inoculation of the viral vector, and delayed, but significant, attenuation of 

the other two markers.  

 

The sprouting of mossy fibers is another characteristic of the epileptic hippocampal tissue, in which 

the axons of granule cells form excitatory synapses with cells not usually innervated, forming a 

circuit that may favour hyperexcitability. The results show that treatment with neurotrophic factors  

reduce aberrant sprouting of nerve fibers, in a way that correlates with the attenuation of cellular 

damage.  
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Parallel behavioral studies have also highlighted the ability of the treatment to reduce the frequency 

and severity of SRSs that, in this model, begin to occur about 21 days after status epilepticus.  

 

Despite the promising results, clinical applicability of neurotrophic factors is limited by the choice 

of an appropriate route of administration. In the experiments reported in this thesis, herpes viral 

vectors have been used. These vectors were replication defective and engineered to express the two 

NTFs. However, their residual toxicity makes them unsuitable for human application. Stem cells 

modified to express genes of interest, including mesangioblasts (MABs), have demonstrated, in 

vitro, the ability to promote differentiation, survival and neuronal function. Last but not least, the 

ability to localize in the damaged site when systemically administered makes these cells viable 

alternatives to more invasive treatments.  

 

Although further investigations are required, the results collected in this thesis are an important 

contribution to the understanding of the multiple effects of NTFs. In addition, the characterization 

of an alternative and more applicable route of administration renders gene therapy with 

neurotrophic factor more applicable for the treatment of several neurodegenerative diseases.  
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GENERAL STRUCTURE OF THE THESIS 
 

Several histological features characterize an epileptic brain tissue. They include loss of neuronal 

cells, neurogenesis and reorganization of hippocampal neuronal circuits, like sprouting of mossy 

fibers (MFS). Epileptic tissue also presents strong neuroinflammation with an important reactive 

astrogliosis and microgliosis and expression of several pro-inflammatory cytokines.  

 

Recently, it has been demonstrated that the local over expression of neurotrophic factors (NTFs), 

such as FGF-2 (fibroblast growth factor-2) and BDNF (brain derived neurotrophic factor), has 

antiepileptogenic effects (Paradiso et al. 2009).  

 

This thesis is organized in two chapters. Works described in the first chapter, investigate the 

possibility that these anti-epileptogenic effects of NTFs might involve anti-inflammatory 

mechanisms and affect sprouting of mossy fibers. 

 

The second chapter is a brief excursus on the routes of administration suitable for driving a 

localized, safe and non-invasive supplementation of NTFs. In particular, it focuses on a new 

promising approach based on stem-cells gene therapy that employs mesoangioblasts.  

 

Finally, an “addendum” collects two other works. The first is a study, conducted in collaboration 

with an Italian pharmaceutical company, on the evaluation of the central side effects of new 

generation phosphodiesterase 4 inhibitors. The second deals with the analysis of in vitro 

compatibility of materials used in lab on a chip (LOAC) production. Biocompatibility was analyzed 

on cells growing in suspension and on hippocampal primary cultures, the latter obtained following a 

protocol optimized in our laboratory.  
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The history of epilepsy can be summarized as 

 4.000 years of ignorance, superstition and stigma, 

followed by 100 years of knowledge, superstition and stigma. 

 

 

(Kale R.) 
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1. Epilepsy 
 

1.1 History and definition.  

About epilepsy has been spoken and written for over 4.000 years. Characteristics of the illness such 

as the forced cry, the loss of consciousness, the fall, the twitching and the foaming at the mouth, 

have suggested, for several centuries, an association with possession of the spirits or prophetic 

experiences.  

Symptoms are mentioned in the Bible in the Gospel of Mark, wherein Christ expels demon from a 

young person suffering from seizures: “Teacher, I brought you my son, who is possessed by a spirit 

that has robbed him of speech. Whenever it seizes him, it throws him to the ground. He foams at the 

mouth, gnashes his teeth, and becomes rigid. I asked your disciples to drive the spirit out, but they 

could not.” (Mark 9:14-29). 

 

Through the centuries, many misconceptions about this condition have been conveyed based mainly 

on the particular era or in particular part of the world.  

Disagreeing with the idea that epilepsy is a curse or a visionary power, in the 4th century B.C., 

Hippocrates, in his “On Sacred Disease”, stated “ …it appears to me to be nowise more divine nor 

more sacred than other diseases, but has a natural cause from the originates like other affections. 

… And this notion of its divinity is kept up by their inability to comprehend it and the simplicity of 

the mode by which it is cured, for men are freed from it by purifications and incantations.”  

Although the Greek physician recognized that epilepsy was a brain disorder, false ideas continued 

to exist. In 1494, two Dominican friars, under papal authority, wrote a handbook on witch-hunting, 

the “Malleus Maleficarum”, in which they said that one of the ways of identifying a witch was by 

the presence of seizures. This book guided a wave of persecution and torture, which caused the 

deaths of more than 200.000 women.  

And misinterpretation continued for many years: in the early 19th century, people who had critical 

epilepsy and people with psychiatric disorders were cared for in asylums, but the two groups were 

kept separated because seizures were thought to be contagious.  

 

For the first, clinically correct, definition of epilepsy is necessary to wait for the 1870, when the 

neurologist John Hughlings Jackson defined a seizure as “an occasional, excessive and disorderly 



Chapter I 

 

 9 

discharge of nerve tissue on muscles”. He also recognized that seizures can alter consciousness, 

sensation, and behaviour.  

 

Even if several headways have been made to define epilepsy, some prejudices remain still now. 

Recently, in nineties, some U.S. states had laws forbidding people with epilepsy to marry or 

become parents, and some states permitted sterilization. 

 

Today is well known that epilepsy is not one condition, but a diverse family of disorders, having in 

common an abnormally increased predisposition to seizures. For the International League Against 

Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE), to define the illness is necessary 

to satisfy three elements: “Epilepsy is a disorder of the brain characterized by (1) an enduring 

predisposition to generate epileptic seizures and by (2) neurobiological, cognitive, psychological 

and social consequences. The definition of epilepsy requires also the occurrence (3) of at least one 

epileptic seizure” defined, the latter, as “a transient occurrence of signs and symptoms due to 

abnormal, excessive or synchronous neuronal activity in brain” (Fisher et al., 2005).  

 

Unfortunately, the stigma associated to epilepsy has still a great influence on the education and 

social life of patients and quite often leads to isolation, restrictions and/or overprotection. For these 

and other reasons (i.e. economic, legislative…) epilepsy remains a central point in the scientific 

community.  

 

1.2  Epidemiology. 

Epilepsy is one of the most common chronic neurological conditions. About 1% of the world’s 

population is affected by epilepsy and up to 5% may have a single seizure at some time in their 

lives. Incidence and prevalence studies are critical to provide measures of frequency and therefore 

the burden of disease, and allow for proper planning of services. 

 

Prevalence is an estimate of the number of people with epilepsy in a given population at a specified 

time (point prevalence), or during a defined time interval (period prevalence). In most countries 

worldwide, the prevalence of active epilepsy ranges from 4 to 10/1000. 

 

The incidence, instead, is the number of new cases per year. The incidence of epilepsy ranges from 

40 to 70/100.000 in most developed countries and is nearly double in developing countries. These 
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discrepancies are due to the higher risk of experiencing a condition which can lead to permanent 

brain damage like meningitis, malaria, pre and perinatal complications and malnutrition (from 

Epilepsy in the WHO European Region: Fostering Epilepsy Care in Europe, 2011). 

 

The age distribution of the incidence of epileptic seizures is bimodal, with two peaks of frequency 

in childhood (in 50-60% of patients, epilepsy begins before the age of 16) and seniority. In Western 

countries there is evidence of a decreasing incidence in children, with a simultaneous increase in 

elderly, related to improved life expectancy associated with an increased risk for causes of epilepsy 

common in old age (Hauser, 1992; Stephen and Brodie, 2002). 

 

Differences in incidence rates in males and females are not statistically significant. There is no 

evidence of racial predilection, even if the incidence is significantly higher in the lower 

socioeconomic classes. (Sridharan, 2002). 

 

1.3  Classification of epileptic seizures. 

In 1981 ILAE divided seizures into three typologies, with subtypes of each: partial, with seizures 

involving only part of the brain; generalized, with seizures involving both hemispheres, and 

unclassifiable seizures. 

This relatively easy classification appeared soon inadequate to respond to the vast heterogeneity of 

seizure types. For this reason a supplement to the previous classification was proposed in 1989 in 

which appears, for the first time, the new term of “epileptic syndrome”: “An epileptic syndrome is 

defined as a disorder characterized by a cluster of signs and symptoms occurring together”.  

According to this system, epileptic syndromes are divided into four broad groups: localization-

related that involves one or more distinct parts of the brain, generalized that involves both 

hemispheres at the same time, undetermined whether localized or generalized and, finally, special 

syndromes. 

 

Within the localized and generalized groups, there are further subdivisions into idiopathic, 

symptomatic or cryptogenic. In idiopathic epilepsies, causes are unknown but genetic factors 

provoking, for example, channelopathies, are presumed to have a major causative role in the 

development of seizures. In symptomatic epilepsies there is an identifiable lesion in the brain that 

triggers seizures. The term “cryptogenic” has been recently substituted with “presumed 
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symptomatic epilepsy” in which some brain pathology causing epilepsy is presumed to exist, but 

has not been identified using current techniques (Engel, 2006).  

 

1.4  Treatment.  

The most common therapeutic approach of epilepsy is with antiepileptic drugs (AEDs). During the 

last 20 years there has been a dramatic increase in the therapeutic options available (Table 1). 

 
Antiepileptic medicines Year of introduction 

Phenobarbital 1912 

Phenytoin  1939 

Ethosuximide 1955 

Primidone 1960 

Carbamazepine 1965 

Valproate 1970 

Vigabatrin 1989 serious side effects, use restricted 

Oxcarbazepine 1990 

Lamotrigin 1991 

Gabapentin 1994 

Felbamate 1994 serious side effects, use restricted 

Topiramate 1995 

Tiagabine 1996 marketed at a very low scale 

Levetiracetam 2000 

Pregabaline 2005 

Zonisamide 2007 

Lacosamide (Vimpat) 2008 

Eslicarbazepine acetate  2009 

 

Table 1: principal antiepileptic drugs currently available. 

 

 

The success rate of both the older and newer drugs is similar and leads to seizures freedom for up to 

70% of patients, even if, the newer drugs, may have less side effects and lead to a better quality of 

life. Moreover, new promising compounds are actually in clinical trials, they include Brivaracetam 

(UCB; phase III), Carisbamide (Johnson and Johnson; phase III), Retigabine (Valeant 

Pharmaceutical and GSK; phase III) and Valrocemide (Tera/Acorda; phase III). 
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Unfortunately all these drugs are only anticonvulsivant: they act on symptoms reducing recurrent 

seizures, but their mechanisms of action do not influence the causes of epilepsy. In some cases, 

monotherapy is sufficient to contain seizures but, more often, a cocktail of different drugs is 

necessary. The choice among different AEDs available depends on causes, history, evolution of 

pathology and crisis and, especially for polytherapy, possible pharmacological interactions. Despite 

the accessibility to a wide range of molecules, between 30 and 40 % of patients with epilepsy 

continue to have seizures that are not adequately controlled by pharmacotherapy (Kwan and Brodie, 

2000).  

A solution, in these cases, might come from surgery, with the resection of epileptic area. To be 

applied, it requires not only a history of intractable epilepsy, but also a focal and circumscribed 

lesion and a very low risk to develop neurosurgical or cognitive damages. When applied, surgery 

reaches 90% of success. In a study of surgical versus pharmacological treatment in poorly 

controlled temporal lobe epilepsy, has been report that, after one year, 64% of the patients operated, 

but only 8% of those medically-treated, are seizures free (Wiebe et al.; 2001). 

 

In patients refractory to drug therapy and/or in which surgery could not be applied or results 

ineffective, a valid alternative may be the Vagus Nerve Stimulation (VNS). It consists of regular, 

mild pulses of electrical energy to the brain via the vagus nerve. These pulses are supplied by a 

device placed under the skin on the chest wall, connected with a wire to the vagus nerve in the neck. 

Little is known about the mechanism of action, but a significant reduction in frequency, intensity 

and duration of seizures, especially when associated to normal pharmacological treatment, has been 

demonstrated.  

 

Based on dietary approach, ketogenic diet is indicated as an additional treatment in children with 

drug-resistant epilepsy. It consists of a diet high in fat and low in carbohydrates and proteins. Under 

these conditions, the liver converts fat into fatty acids and ketone bodies that, passing into the brain, 

replace glucose as an energy source. Elevated levels of ketone bodies in the blood, a state known as 

ketosis, lead to a reduction in the frequency of epileptic seizures. Even if side effects are less 

important than those of several drugs, patients treated for a long time with ketogenic diet may 

experience kidney stones, high cholesterol levels in blood, dehydration, bone fractures, slowed 

growth or weight gain and hypovitaminosis that require a careful control by physician. Although the 

mechanisms underlying anti epileptic effects are unknown, ketogenic diet has reported peaks of 

90% of reduction in seizures frequency (Neal et al.; 2008).  
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Over the years, great progresses have been made in the treatment of epilepsy. With continued 

cooperation among clinicians, geneticists and basic scientists, will be possible to achieve the goal of 

curing epilepsy, or preferably, preventing the process that lead to the acclaimed illness. 

Among epileptic syndromes, temporal lobe epilepsy (TLE) is the most common serious 

neurological condition in adulthood, probably affecting at least 20% of all patients with epilepsy. 

 

1.5  Temporal Lobe Epilepsy.  

TLE was defined in 1985 by the ILAE as a condition characterized by recurrent seizures originating 

from the medial or lateral temporal lobe. Medial temporal lobe epilepsy (MTLE) arises in the 

hippocampus, parahippocampal gyrus and amygdale, lateral temporal lobe epilepsy (LTLE) arises 

in the neocortex on the outer surface of the temporal lobe of the brain. 

 

Seizures may involve only one or both lobes, giving rise to simple (without loss of consciousness) 

partial, complex (associated with loss of consciousness) partial or secondarily generalized seizures. 

About 40% to 80% of people with TLE also perform repetitive, automatic movements (called 

automatisms), such as lip smacking and rubbing the hands together. As seizures usually involve 

areas of the limbic system which control emotions and memory, some individuals may have 

problems with memory, especially if seizures have occurred for more than 5 years. However these 

memory problems are almost never severe. Seizures occur after an initial insult like an infection, 

stroke or trauma, vascular malformation or prolonged febrile seizures; a genetic cause is less 

frequent. Between the initial insult and the onset of the crisis, a so called latent period characterized 

by the absence of seizures, occurs. During this period, changes in structure and physiology of the 

brain tissue (“epileptogenesis”) happen. 

 

The most common lesional abnormality identified in patients with TLE is the Hippocampal 

Sclerosis (HS) (Babb and Brown; 1987). It is characterized by severe loss of the principal neurones 

associated with widening of the granule cell layer of the dentate gyrus, termed granule cell 

dispersion (GCD), which is observed in about 40-50% of surgical temporal lobe specimens (Houser 

et al., 1990 b; Lurton et al., 1998; El Bahh et al., 1999; Thom et al., 2002; Blümke et al. 2002). 

The other molecular, cellular and plastic alterations in hardened and sclerotic hippocampus will be 

described in detail further on. 
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In spite of the large diffusion, the study of epilepsy can not be performed on humans due to several 

reasons: ethical issues, unavailability of controls and high costs of human research. Besides, TLE is 

the most common form of drug-refractory epilepsy. Studies on human specimens are affected by 

several bias because of patients go toward surgery when pharmacotherapy fails. In these conditions 

is, thus, difficult to discriminate between the effects of the illness and those of a prolonged therapy. 

This is the reason for whom, to study epilepsy, animal models are of central importance.  

 

1.6 Experimental models of TLE.  

An animal model for a pathology could be isomorphic, if duplicates the disorder but not the 

underlying aetiology, or predictive, if it does not resemble the human disorder but allows prediction 

about it or its response. In the case of epilepsy, several models (i.e. electrical, chemical, genetics…) 

are available; they are resumed in table 2. 

 
cell culture models 

single nerve cells 
acutely 

dissociated from 
animal and 

human brain 

In
 v

itr
o 

m
od

el
s 

in vitro isolated 
guinea pig 

brain 

 

 

GABA 

• Pentylenetetrazole 
• Bicuculline 
• Picrotoxin 
• Glutamic Acid 

Decarboxylase (GAD) 
• inhibitors 
• Beta carbolines and 

convulsant 
• benzodiazepine Ro 5-3663 
• GHB (gamma-hydroxy-

butyrate) 

Excitatory Amino-Acid 

• Kainic acid 
• Quisqualic acid/alfa-amino-

3-Hydroxy-5- 
• Methyl-4-Isoxasole Propionic 

acid 
• N-Methyl-D-Aspartic acid 

(NMDA) 
• Homocysteine, homocysteic 

acid 

In
 v

iv
o 

m
od

el
s 

chemical models 
of epilepsy 

 

Acetylcholine related substances 

• Pilocarpine, and litium-
pilocarpine 

• Organophosphorus 
compounds 

  

Other drugs 

• Strycnine 
• Aminophylline 
• Insulin induced 

hypoglycemia 
• Ay-9944 
• THIP (4,5,6,7 

tetrahydroxyisoxazolo 
• (4,5,c) pyridine 3-ol) 
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Table 2: in vitro, in vivo and genetic experimental models of epilepsy. 

Inhalants 

• Fluorothyl 
 

Topical application 

• Metals (cobalt, zinc, 
antimony, alumina 

• cream, iron 
• Antibiotic (penicillins and 

cephalosporins) 
• Tetanus toxin 

Electrical models  

 

• electroshock seizures 
• local electrical stimulation 
• electrical kindling 
• self sustaining status epilepticus by Perforant Path 

stimulation 
• self sustaining status epilepticus by Amygdala 

stimulation 
• focal status epilepticus by perforant path 

stimulation in anesthetized rats 
• continuous hippocampal stimulation 

Lesion models of 
epilepsy 

 

• cortical freeze lesion model 
• antiproliferative agents (5-azacytidine, methyl-

mercury, nitrosureas and carmustine) 
• Methylazoxymethanol acetate (MAM) model 
• In-Utero irradiation as a model of cortical 

dysplasia 
• Hypoxia-induced seizures and hypoxic 

encephalopathy in neonatal period 
• Lateral fluid percussion brain injury 
• Chronic Partial Cortical Isolation model 
• Head Trauma: haemorrhage-Iron Deposit 
• Stroke 

 

Others 

• Complex febrile seizures – 
• experimental model in immature 
• rodents 
• Infection induced seizures 
• Rasmussen’s encephalitis model 

 

Absence model • GAERS rats 
• WAG/Rij rats 

Spike wave 

• Tottering 
• lethargic 
• ducky 
• stargazer 
• SWE 
• Mocha2j 
• coloboma 

Convulsion 

• Dilute lethal 
• jimpy 
• jittery 
• megencephaly 
• quaking 
• staggerer 
• torpid 
• veritint waddler 
• wabbler-lethal 
• weaver 
• writher 

 

Genetic models  

Convulsions evoked by sensory stimuli • frings 
• lurcher 
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For TLE, the pilocarpine model is a highly isomorphic model, described for the first time in 1983 

by Turski and colleagues.  

 

In this model, administration of pilocarpine in rats induces a status epilepticus (SE) characterized by 

tonic-clonic generalized seizures, followed by a latent period of seizures free behavior and by a 

chronic period, with the occurrence of spontaneous recurrent seizures (SRSs).  

 

In detail: within 5 minutes from the injection, animals begin to be motionless, display oro-facial 

movements, salivation, eye blinking, twitching of vibrissae and yawning. Discontinuous seizures 

are observed at 30 minutes and they last up to 90-150 minutes, until limbic motor seizures with 

intense salivation, rearing, upper extremity clonus and falling, begin (Turski et al., 1983). Around 

60% of the animals treated, successfully develop SE (Cavalheiro et al., 1991). All these behavioral 

changes are correlated to an high voltage, fast electroencephalographic (EEG) activity that appear to 

originate in the hippocampus and to propagate to the amygdala and neocortex (Turski et al., 1983). 

SE spontaneously remits within 12 hours after pilocarpine administration (Cavalheiro, 1995), then 

the animals enter post-ictal coma, lasting 1-2 days (Turski et al., 1983). The dose of alkaloid that 

reproduces the syndrome in rats is 300-400 mg/Kg. With these concentrations the mortality rate, at 

the time of the injection, has been reported to be around 30-40% (Turski et al., 1983; Cavalheiro et 

al., 1991; Liu et al., 1994), even if it can be reduced by stopping SE with anticonvulsant drugs such 

as diazepam. Our observations demonstrate that, after a three hours SE, animals experience some 

occasional, self-limiting generalized seizures of less than 1 min duration for 1-3 days (Mazzuferi et 

al., 2010).  

The latent period starts after status epilepticus recover. Its duration varies in function of the dose of 

pilocarpine (Liu et al., 1994), lenght of SE (Lemos and Cavalheiro, 1995; Fujikawa, 1996, Biagini 

et al., 2006, Goffin et al., 2007), strain and age of the animal (Biagini et al., 2006; Goffin et al., 

2007). Cavalheiro and collaborators (1991) defined a mean time interval of 14.8 days. During the 

latent phase, tissue rearrangements related to epileptogenesis occur (Dalby and Mody, 2001; 

Pitkänen and Sutula, 2002). 

Chronic period follows epileptogenesis and, as previously mentioned, is characterized by the 

appearance of spontaneous recurrent seizures. Gravity of seizures can be established by a score 

system developed in 1972 by Racine and recently revised (Veliskova, 2006). It is reported in Table 

3. As schematized, it uses numbers from 1 to 6 to define seizure classes: the firsts three are 

representative of partial seizures, from 4 to 6 of generalized ones. SRSs begin as partial seizures and 

become secondary generalized. The recurrence of seizures is almost regular throughout the lifetime 
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of the animal appearing in a clustered way, in a cycle peaking every 5-8 days or more (Goffin et al., 

2007; Arida et al., 1999). Seizures frequency is higher during the diurnal period (Arida et al., 1999), 

with an incidence of 67% (Arida et al., 1999; Goffin et al., 2007). In 90% of the cases, EEG trace is 

characterized by a cerebral activity that starts from the hippocampus and spreads to the neocortex, 

usually lasts less than 60 seconds (Cavalheiro et al., 1991). 

 

 
Classes Features  

1 Staring and mouth clonus 

2 Automatisms 

3 Monolateral forelimb clonus 

Partial 

4 Bilateral forelimb clonus  

5 Bilateral forelimb clonus with rearing and falling 

6 Tonic-clonic seizures 

G
eneralized 

 

Table 3: modify Racine’s scale. Scores from 1 to 3 are representative of partial seizures, the last three of generalized ones.  

 

 

Pilocarpine exerts its effects by binding M1 muscarinic subtype receptors, resulting in alteration in 

Ca2+ and K+ currents (Segal, 1988). The high concentration of intracellular Ca2+ promotes the 

release of glutamate from presynaptic termini that, in turn, provokes the SE. Once activated, 

seizures are subsequently maintained by activation of NMDA receptors. Glutamate, acting on 

AMPA/KA receptors, allows the entrance of Na+ and Ca2+ into the cells and, as consequence, the 

Mg2+, which blockades the NMDA receptor, is removed. In this way it can be activated by 

glutamate, allowing the entrance of more Ca2+ into the postsynaptic cells and inducing excitotoxic 

effects and cell death. 

Recent observations have shown that activation of cholinergic neurons may not be the only factor 

triggering pilocarpine SE. Marchi and collaborators (2007 a, b) suggested that pilocarpine induces 

an early focal damage to blood-brain barrier (BBB) in regions highly sensitized to cholinergic 

agonists, that may contribute to the development of seizures, facilitating the entrance into the brain 

of blood-borne factors (e.g. K+). Moreover, peripheral activation of the immune system has been 

hypothesized, since high levels of serum IL-1β have been found after injection of pilocarpine. High 

concentration of the pro-inflammatory citokine is known to cause sudden rapid changes in 

excitability of both inhibitory and excitatory neurons (Plata-Salamán and Ffrench-Mullen, 1992; 

Sawada et al., 1992; Yang et al., 2005). 
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As reviewed by Curia et al. (2008), age, strain, gender, dose, association with other drugs to reduce 

mortality or collateral effects, are variables that have to be carefully controlled to obtain a reliable 

model of the pathology. The lack of a standardized protocol has led some investigators to criticize 

this model. However it continues to be used in many laboratories, including our, because very easy, 

rapid and shows a high homology with human disease, involving the same mechanisms and brain 

areas and showing the same pattern of responsiveness to AEDs seen in TLE patients. 
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2. Epileptogenesis 
 

2.1 Definition and peculiarities.  

The term epileptogenesis refers to the phenomenon in which various kinds of brain insults (e.g. 

traumatic brain injury, stroke, infection, febrile seizure…) trigger a cascade of events that 

eventually culminate in the occurrence of spontaneous seizures. The period required for this long-

lasting transformation of the brain, may vary from weeks to years. Epileptogenesis can occur in 

various ways, generally divided into genetic and acquired mechanisms. Genetic influence is 

supposed to be strongest in idiopathic epilepsies, whereas mechanisms of circuitry reorganization, 

after a brain insult, are most extensive in the acquired symptomatic ones. It should be noted that 

these mechanisms are not separate realities but, in some cases, functional consequences of brain 

injury can depend on genetic background (Fig. 1) (Pitkänen and Lukasiuk, 2009).  

 

 

 

 
 

Figure 1: cellular alterations occurring during the epileptogenic process. From Pitkänen and Lukasiuk, 2009. 

 

 



Chapter I 

 

 20 

2.2 Genetic and epigenetic mechanisms of epileptogenesis.  

Over 13 genes associated with human epilepsy have been identified so far and at least 33 single 

gene mutations in mice have been linked to an epileptic phenotype. 

 

Benign familial neonatal convulsion (BFNC), generalized epilepsy with febrile seizures plus 

(GEFS+) and autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) are three idiopathic 

diseases in which gene mutations codify for mutated voltage-gated or ligand-gated channels. 

 

In particular, in BFNC, mutations were identified in genes for potassium (K) channels (Singh et al., 

1998; Biervert et al., 1998) named KCNQ2 and KCNQ3. These mutations are responsible of a loss 

of function that leads to a decrease in the size of the potassium current. It has been suggested that, 

even a moderate reduction (20-25%) of function, may be associated with epilepsy (Schroeder et al., 

1998). 

GEFS+ is associated with a point mutation in the gene coding for the b-subunit of a voltage-gated 

sodium channel (SCN1B) and, as found more recently, in the a1-sodium channel subunit 

(SCNA1A) (Wallace et al., 1998; Escayg et al., 2000). In vitro studies suggest that the mutation 

results in defective inactivation of the sodium channel, which could lead to failure to limit the 

sustained repetitive firing of a depolarized neuron (McNamara, 1999). 

ADNFLE begins clinically in childhood and patients have brief, nocturnal seizures with motor 

features. Mutations affect genes codifying for nicotinic cholinergic receptors (Steinlein et al., 1997; 

Phillips et al. 1998) and result in decreased Ca2+ flux through the receptor, which may lead to a 

reduction in the amount of GABA released from presynaptic terminals, and trigger a seizure by 

synaptic disinhibition (Kuryatov et al., 1997). 

Pathologies described up to here, are characterized by complex inheritance patterns, in which 

several loci have been identified, but the underlying genetic defects remain to be determined.  

 

PME (progressive myoclonus epilepsy) is a group of rare single-gene epilepsies characterized by 

myoclonus, generalized tonic-clonic seizures and progressive neurological dysfunction mainly in 

the form of dementia and ataxia (Berkovic et al., 1986). Among these, Unverricht-Lundborg 

Disease (ULD) and Lafora Disease (LD) are the most well characterized. Specific genetic mutations 

are associated with a deficit of two proteins, cystatinB and laforin respectively, that result in 

epilepsy (Acharya, 2002). 
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Some other changes in genes occur without directly affecting DNA sequence but by chemical 

modification of DNA or chromatin, such as DNA methylation and alterations in methylation or 

acetylation status of histones. These mechanisms are termed epigenetic. Seizure or SE-induced 

histone modifications have been reported for promoters of a number of genes, including those 

involved in neuronal plasticity such as c-fos, c-jun and CREB (Tsankova et al., 2004; Sng et al., 

2005; Sng et al., 2006). Deacetylation of histones at the GluR2 promoter leads to its decreased 

expression, resulting in enhanced epileptogenesis (Sanchez et al., 2001). Involvement of epigenetic 

mechanisms have been sustained by the discovery that some AEDs can influence gene expression 

and, consequently, cellular metabolism (Pitkänen and Lukasiuk, 2009).  

 

As reported by Pitkänen and Lukasiuk, apart from lead to cellular and/or circuitry alterations and 

brain pathologies associated with epilepsy, these mutations can significantly modify the severity, 

influence the development or maintain changes associated with postinjury epileptogenic process 

(Fig. 1). 

 

2.3 Acquired postinjury mechanisms.  

In addition to SE, various other types of brain insults such as traumatic brain injury (TBI), stroke 

and tumors can trigger the epileptogenic progression. Although cellular alterations may be different 

in different patients, certain features are common and include neurodegeneration, neurogenesis, 

gliosis, invasion of inflammatory cells and neuoroinflammation, axonal sprouting, dendritic 

plasticity, angiogenesis and changes in extracellular matrix. These alterations are accompanied by a 

variety of molecular changes that lead, in addition to epilepsy, to a variety of functional 

impairments such as developmental delay, memory, emotional and behavioural impairment and 

somatomotor decline (Pitkänen and Lukasiuk, 2009) (Fig. 1).  

 

Neurodegeneration. This is probably the best described change occurring in epileptogenesis. Areas 

with neuronal damage typically include hippocampus, but the damage also extends to 

extrahippocampal regions, such as the entorhinal and pyriform cortices or the amygdale. The extend 

of neuronal damage is directly influenced by the severity of seizures (Ben-Ari and Dudek, 2010).  

The normal hippocampus consists of subfields, from CA1 to CA4 and the dentate gyrus. The 

primary neurons of the Cornu Ammonis are the pyramidal cells while those of the dentate gyrus are 

granule cells. The axons of granule cells are called mossy fibers and these are normally not seen in 

the inner molecular (IML, supragranular) layer where the dendrites of granule cells are present. The 
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hippocampal circuitry consists of a trisynaptic excitatory pathway from the entorhinal cortex to the 

dentate granule cells, which project to the CA3 pyramidal neurons via mossy fibers, and from there 

to the CA1 region through Schaffer collaterals. There are local circuits in each region with 

excitatory and inhibitory interneurones (Fig. 2).  

 

 

 

 
 

Figure 2: schematic representation of hippocampal circuitry. MFs: mossy fibers. 

 

 

In an epileptic hippocampus, several degenerating cells are identified in CA1 and CA3 pyramidal 

cell layer and hilus, with milder damage in CA2 pyramidal layer and granule cells. This pattern is 

also reproduced in several animal model, including pilocarpine model: pronounced cell loss in these 

regions, accompanied by oedema, is seen 3 days after the injection of the alkaloid (Paradiso et al., 

2009). Several lines of evidence suggest that neuronal death affects specific GABAergic 

interneuron and glutamatergic neurons. These result, respectively, into permanent reduction (but not 

complete failure) of inhibitory drive to principal neurons and formation of new excitatory 

glutamatergic circuits by many of the remaining neurons. Synergistically, these two events increase 

the propensity for further seizures (Ben-Ari and Dudek, 2010). 

 

The reduced inhibition has been also explained by the “dormant basket cell (DBC) hypothesis” 

(Sloviter, 1991). In contrast to the loss of GABAergic interneurons, the author found that certain 

inhibitory cells (basket cells) are more resistant to seizure-induced death. Normally, they receive 
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excitatory input by mossy cells and provide inhibition to granule cells. According to this hypothesis, 

seizures cause death of mossy cells, resulting in lack of the normal excitatory input to the basket 

cells which, although preserved, cannot provide feedback inhibition to granule cells and remain in a 

dormant state. Other authors have attempted to test the DBC hypothesis but, in general, the results 

were not supportive. However, the complexity of the hippocampal circuitry makes it difficult to 

fully test or reject this theory.  

 

Whatever the cellular phenotype involved, cell death is a substantial histological feature of epileptic 

tissue and its alleviation reduced behavioural consequences after SE (Brandt et al., 2003; Paradiso 

et al., 2009). Nevertheless, it was not sufficient to prevent epileptogenesis and appearance of SRS, 

probably due to limits of the therapeutical approaches used. However, these results underlie that 

neuroprotective treatments have an important role in enhancement of recovery. 

 

Neurogenesis (for details see Kuruba R et al., 2009). Neurogenesis is a process of generation of 

new neurons in the central nervous system through division of neural stem cells (NSCs) and 

neuronal differentiation of newly born cells. Although most neurogenesis occurs during initial 

development, certain regions of the brain maintain neurogenesis throughout life. These include the 

subgranular zone (SGZ) of dentate gyrus (DG) (Fig. 2) and the subventricular zone lining the lateral 

ventricles. A great fraction of these new cells differentiate into granule cells of the DG and 

incorporate into the functional hippocampal circuitry through establishment of granule cell-specific 

afferent and efferent synaptic contacts. Physical exercise, exposure to an enriched environment or 

pathological stimuli positively enhance neurogenesis. Studies in animal models clearly reveal that, 

at early time points after an initial precipitating injury such as acute seizures or SE, increased 

hippocampal neurogenesis occurs. This is consistent with studies on tissues from pediatric patients 

in the early phase of TLE (Blümcke et al., 2001). It is believed that the release of mitogenic factors 

from dying neurons and reactive glia, or that augmented levels of Neuropeptide Y (NPY) found 

after acute seizures, probably increase the proliferation of NSCs. It is also likely that amplified 

neuronal activity during and after seizures can directly influence the production of new neurons 

(Deisseroth al., 2004).  

 

As indicated in the previous paragraph, increased DG neurogenesis, after acute seizures, is 

associated with anomalous migration of a fraction of newly born granule cells into the dentate hilus 

and/or the dentate molecular layer (Houser, 1990b; Parent et al., 1997; Parent et al., 2006; 

Scharfman et al., 2007a; Scharfman et al., 2007b). Displaced new neurons establish atypical 
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connectivity with excitatory terminals (e.g. mossy fibres) (Pierce et al., 2005) and exhibit 

spontaneous bursts of action potential (Scharfman et al., 2000), promoting aberrant circuitry 

development which contribute to the evolution of an initial-seizure-induced hippocampal injury into 

chronic epilepsy (see ahead). The precise reasons for anomalous migration of newly born granule 

cells are still being examined. A recent study supports the involvement of reelin, a migration 

guidance cue, supposed to promote appropriate migration of newly born neurons into the GCL. It is 

expressed by interneurons that are typically lost in TLE. Reelin deficiency, after acute seizures, is 

then thought to contribute to ectopic chain migration and aberrant integration of newborn cells into 

the dentate hilus (Gong et al., 2007). A contribute may derive also from an aberrant glial scaffold 

(probably due to gliosis), that may guide new neurons into the hilus and not toward the molecular 

layer, as happen in naïve animals (Shapiro et al., 2005). 

 

Generally, production of new neurons occurs, both in animals and in humans, during the first few 

weeks after the seizures episode (Parent et al., 1997) and returns to baseline levels by about two 

months after the initial episode (Jessberger et al., 2007). Decreased hippocampal neurogenesis is 

likely to be linked, at least partially, to learning and memory deficit and depressive behaviour 

observed in TLE and to persistence of seizures.  

 

Actually, decreased neurogenesis is a consequence of dramatic lowering in the neuronal 

differentiation of newly born cells rather than decreased production of new cells or substantial 

diminution in numbers of NSCs. (Kralic et al., 2005; Hattiangady et al., 2006). This is probably 

related to the presence of an unfavorable hippocampal microenvironment, typified by depletion of 

the concentration of several factors (e.g. FGF-2, IGF-1 and BDNF) that promote neurogenesis. In 

accordance with this hypothesis, implementation of these factors may ease neuronal differentiation 

of NSCs and other various impairments associated to chronic TLE. This is exactly the goal reached 

by our laboratory, by viral-vector mediated implementation of FGF-2 and BDNF (Paradiso et al., 

2009).  

 

Dendritic plasticity and changes in extracellular matrix. Postinjury tissue remodelling is also 

characterized by the loss of dendritic spines, changes in their morphology and reduction of 

branches. These alterations could affect the availability of various receptor types as well as their 

stochiometry and, thus, compromise the information flow from afferent input. Another important 

change in dendritic plasticity is correlated with neurogenesis. In epileptic conditions, newly 

generated granule cells, present hilar basal dendrites (HBDs) that persist in the mature cells 
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integrating into synaptic circuits and, being furnished with spines, probably contributing to 

additional recurrent excitatory circuits (Spigelman et al., 1998; Ribak et al., 2000). Moreover, in 

epileptic rats, HBDs are significantly longer and form a dense plexus in the hilus as compared to 

control animals in which the majority of dendritic processes from new-born cells are orientated 

along the SGZ-GL border (Shapiro et al., 2005). Alterations in postinjury remodelling of neuronal 

circuits are accompanied by changes in the extracellular matrix (ECM). A large number of enzymes 

contribute to ECM degradation and rearrangement, in particular the tissue-type and the urokinase 

plasminogen activator (tPA and uPA), their inhibitors TIMP-1 and -2, metalloproteinases appear to 

be involved (Lukasiuk and Pitkänen 2004; Lukasiuk et al., 2006; Lukasiuk et al., 2003).  

 

Up to here, only a little part of the changes that occur during epileptogenesis. Neuroinflammation 

and gliosis, angiogenesis and damage to the BBB, mossy fibres sprouting represent other important 

features. This modifications will be described in detail further on, in separate paragraphs, referring 

to the works conduct during these years. 

 

Each cellular alteration that occurs during epileptogenesis, involves alterations in synthesis and 

release of numerous substances including neurotransmitters, chemical mediators and proteins. 

Among the latter, of particular interest are the neurotrophic factors (NTFs). 

 



Chapter I 

 

 26 

3. Neurotrophic factors 
 

Involvement of NTFs in epilepsy have earned particular interest in scientific community because of 

their dual aspect: a pro- (“bad”) and/or an anti- (“good”) epileptic effect. In fact, some NTFs seem 

to favor epileptogenesis, other, due to their trophic effects, oppose these processes, still other can 

exert both positive and negative effects or are devoid of any consequence. Among them, two 

proteins have demonstrated an important role in the pathology of epilepsy: the neurotrophin BDNF 

(brain derived neurotrophic factor) and FGF-2 (fibroblast growth factor-2).  

 

3.1  Family of neurotrophins.  

Some proteins secreted in the brain play a crucial role in the control of neuronal numbers and of 

dendritic growth. The best studied group is a family of structurally related molecules termed 

neurotrophins. The first neurotrophin was identified by the Nobel-prize Rita Levi-Montalcini in 

1966 and named “the” nerve growth factor (NGF). To date, five member of the family have been 

identified: BDNF, NGF and neurotrophins (NT) 3, 4/5 and 6, the latter found only in fishes (Götz et 

al., 1994). Initially produced as proneurotrophins (MW∼30 kDa), they are cleaved into the mature 

protein by prohormone convertases, such as furin (Barde, 1990; Ibáñez, 1998). Mature molecules 

are noncovalently-linked homodimers, with molecular weight of about 28 kDa. In common, they 

have very basic isoelectric points, a somewhat unusual property for secreted proteins, which may 

serve the purpose of limiting their range of action. With the exception of NT4/5, neurotrophin 

sequences are highly conserved in mammals. 

 

Baesed on their three dimensional structure (Fig. 3), neurotrophins are classified as part of the 

Cysteine Knot Superfamily due to a distinct structure, formed by cystein residues, involved in a 

double loop formed by two disulphide bonds penetrated by a third disulphide bond, known as the 

cysteine knot (McDonald et al., 1991). The N- and C-termini are highly variable in both sequence 

and structure. In particular, the high variability in the N-terminus region is thought to be involved in 

receptor binding specificity (Kullander et al., 1997).  
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Figure 3: the neurotrophin molecule. Dashed lines represent the three disulfide bonds of the cysteine knot. The N terminus is 

disordered in the unbound structures and is shown by a dashed line. From Butte et al.,2001. 

 

 

Neurotrophins bind to two different classes of transmembrane receptor proteins, the tropomyosin 

receptor kinase (Trk) and the neurotrophin receptor p75NTR (Fig. 4). A selective binding to these 

different receptors permits the transduction of very different signals. It is not excluded a direct 

interaction that allows fine tuning and cross talk.  

 

Trk. The tropomyosin kinase receptors are transmembrane glycoproteins of ∼140 kDa. In 

mammals, three trk genes, codifying for the three different proteins TrkA, TrkB and TrkC, have 

been identified. A high, but not absolute, binding specificity has been seen among neurotrophins: 

NGF is the preferred ligand for TrkA, BDNF and NT4/5 for TrkB, NT3 for TrkC, even if the latter 

is also a ligand for TrkA and TrkB (Barbacid, 1994). As schematized in figure 4, five distinct 

motifs are recognized in the structure of these receptors (Schneider and Schweiger, 1991), but the 

most important for the interaction with ligands is an Ig-like domain of the extracellular portion, 

called Ig2 domain (Urfer et al., 1995; Urfer et al., 1998). 
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Figure 4: schematic representation of the p75 and Trk receptors. From Bibel and Barde, 2000. 

 

 

Interaction with ligands induces dimerization of the receptor (Jing et al., 1992) that results in the 

phosphorylation of specific tyrosine residues, located in the juxtamembrane region and in the C 

terminus. This leads to an open conformation of the receptor and to the access of substrates to the 

kinase (Fig. 5). 

 

Two complexes of adapter molecules bind to the tyrosine residue located in the juxtamembrane 

region: the Shc/Grb2/SOS and the FRS2/SHP-2/Grb2/SOS complex. The recent finding of Shc 

analogs (N-Shc, Sck; Nakamura et al., 1998) raises the question of recruitment of different Shcs that 

may be specific for TrkA, TrkB, or TrkC. Three main signalling cascades are activated by the Trk 

receptors and their substrates. The Ras/Raf/MEK/MAPK pathway induces the differentiation of 

neurons and neurite growth while the PKB/AKT pathway mediates the survival functions of the 

neurotrophins. Finally, the phosphorylated tyrosine in the C terminus recruits phospholipase C-γ 

(PLCγ) which, in turn, catalyses the cleavage of the substrate PIP2 to DAG and IP3, with DAG 

inducing activation of PKC and IP3 leading to release of Ca2+ from internal stores. The latter 

pathway seems to play an important role in neurotrophin-mediated neurotrophin release (Canossa et 

al., 1997) and in synaptic plasticity. It has also been reported that the PLC-γ track regulates the 

neuron-specific intermediate filament protein, peripherin (Loeb et al., 1994). 

The first two pathways are interconnected with each other since activation of the MAPK pathway is 

mediated by FRS2, through the recruitment of the tyrosine phosphatase SHP-2/Grb2/SOS complex, 
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and also by phospho-Shc, via the Grb2-SOS complex. Other adapter molecules seem to form 

complexes with Grb2/SOS, for example rAPS, SH2-B (Qian et al., 1998) and SNT (Stephens et al., 

1994), making possible to amplify and diversify receptor-mediated signals. 

 

 

 

 
 

Figure 5: signalling through the Trk receptors; the main pathways. From Dawbarn and Allen, 2003. 

 

 

Splice variants have been described for all three Trk receptors and include deletions in the 

extracellular domain and intracellular truncations or inserts. Some of these modifications were 

found to influence ligand specificity, as demonstrated by the fact that a TrkB splice variant, lacking 

exon9 in the extracellular domain, shows decreased interaction with NT4/5 and NT3 (Strohmaier, 

1996), and a TrkA variant, with an increased specificity for NGF and a decreased specificity for 

NT3, has been described (Clary and Reichardt, 1994). Too little is known about the localization and 

the role of these variants, however they are often discussed as dominant negative modulators of Trk 

signalling (Eide et al., 1996; Ninkina et al., 1996).  

 

p75NTR. Codified by a gene on the human chromosome 17 (17q21-22) (Huebner et al., 1986), it is 

a transmembrane glycoprotein receptor of ∼75 kDa. It is characterized by four cysteine (CR1-CR4) 

repeats (Fig. 4) in the extracellular domain, and a palmitoylated conserved cysteine residue in the 

intracellular juxtamembrane region (Barker et al., 1994). Related to proteins of the tumor necrosis 

factor (TNFR) superfamily, binding to this receptor has been shown to affect cell survival (Barret 

and Bartlett, 1994), axonal outgrowth (Dechant and Barde, 2002) and to result in activation of NF-

κB (Carter et al., 1996). It does not exhibit any intrinsic catalytic activity, so the signal is a 
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consequence of an association with, or dissociation from, cytoplasmic interactors. As represented in 

figure 6, they include NADE (p75NTR associated cell death executor), NRIF (neurotrophin receptor-

interacting factor) and NRAGE (neurotrophin receptor-interacting MAGE homolog -MAGE is a 

protein family expressed in cancer tissues-) that mediate NGF-dependent apoptosis in sympathetic 

neuron precursor cells (Salehi et al., 2000). NRIF and NRAGE also lead to cell cycle arrest, as well 

as SC-1 (Schwann cell factor–1), whereas the GTPase RhoA modulates neurite growth.  

 

Several variants of the p75NTR receptor have been found, such as soluble forms and truncated 

proteins lacking in the ability to bind neurotrophins (Dechant and Barde, 1997). The precise role is 

unknown, but their presence may be functionally relevant.  

 

 

Neurotrophin receptor expression is highly regulated. In the central nervous system (CNS), few 

neurons express TrkA (mostly the basal forebrain cholinergic neurons) whereas TrkB is widely 

expressed, explaining the multitude of actions of BDNF. TrkC is typically expressed in the early 

phases of development (Tessarollo et al., 1993).  

Also the expression profile of P75NTR is highly regulated, showing a down-regulation during 

postnatal development (Bothwell, 1995) and a rapid induction after injury, such as nerve lesion or 

seizures (Roux et al., 1999). This confirms the clear link between p75 receptor and cell death in 

pathological situations.  
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Figure 6: P75NTR interactors involved in transducing cell death. From Dawbarn and Allen; 2003. 

 

 

Remarkably, Trk receptors and p75NTR are often co-expressed by the same cell and form a complex 

that can be immunoprecipitated after solubilization (Bibel et al., 1999). Both the intra- and the 

extracellular domains participate in this interaction, which is also dependent on the state of 

phosphorylation of the Trk receptors (Bibel et al., 1999). Receptor association leads to high-affinity 

neurotrophin binding, which is crucial in view of the limiting amounts of neurotrophins in vivo 

(Hempstead et al., 1991; Benedetti et al., 1993; Davies et al., 1993; Barker and Shooter, 1994; Lee 

et al., 1994; Mahadeo et al., 1994; Horton et al., 1997). This association may also increase ligand 

discrimination by the Trk receptors, important in the case of TrkA and TrkB that bind more than 

one neurotrophin (Benedetti et al., 1993; Bibel et al., 1999). Finally, the proximity of p75NTR and 

Trk receptors in the membrane allows the signalling pathways, triggered by both receptors, to 

interact. 

An interesting and neuron-specific aspect of neurotrophin is the retrograde transport of signals from 

axon terminals back to the cell body of neurons, with a process that seems to involve the 

internalization of the ligand-receptor complex (Bhattacharyya et al., 1997; Riccio et al., 1997) 

probably via signalling endosomes (Grimes et al., 1996).  

 

BDNF. Among neurotrophins, BDNF is the most abundantly expressed in the CNS. The gene for 

human BDNF has been mapped to chromosome 11p. It contains eight exons encoding for the 5’ 
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UTR region and a 3’ exon which contains the coding sequence and the 3’UTR region. Alternative 

splicing gives rise to at least 20 different transcripts, all expressed in brain at different levels and in 

restricted neuronal population. Only the transcript containing exon IV has been found in heart and 

lung (Binder et al., 2001). Like many other growth factors and hormones, BDNF is generated from 

a precursor protein (pro-BDNF) cleaved by a protease in the mature form. In addition to the mature 

form, pro-BDNF is also biologically active. 

 

BDNF mRNA has a widespread distribution in the central nervous system, including limbic 

forebrain, neocortex and, more than all, hippocampus (Lindvall et al., 1994). In this region it is 

expressed prevalently in granule cells, pyramidal cells and some hilar GABAergic neurons. BDNF 

protein immunoreactivity also appears preferentially in cell bodies and axons, compared to 

dendrites. Both physiologic, such as light and osmotic stimuli, physical exercise and the estrus 

cycle, and pathologic stimuli, enhance BDNF mRNA. Several evidences support a critical role of 

this neurotrophin in the pathogenesis of different diseases including epilepsy. After seizures, an 

increased BDNF synthesis and TrkB receptor activation is seen in granule cells of the hippocampus, 

both in humans (Mathern et al., 1997) and rodents (Binder et al., 2001). Many studies correlate 

these phenomena with proepileptogenic effects. Kokaia and collaborators (1995) reported a greater 

than twofold reduction in the rate of kindling development in BDNF heterozygous (+/-) mice, 

whereas kindling is completely abolish in absence of TrkB receptors (He et al., 2002). Moreover, 

application of NTFs, including BDNF, has been shown to potentiate synaptic transmission in vitro 

(Lohof et al., 1993) and in vivo (Messaoudi et al., 1998); BDNF also enhances glutamatergic 

transmission (Lohof et al., 1993) and seems to reduce inhibitory synaptic transmission (Tanaka et 

al., 1997). The mechanism underlying synaptic potentiation remains unclear but may involve the 

facilitation of transmitter release or effects on ion channels and/or conductances. Also pro-BDNF, 

acting via p75NTR, could lead to seizure-induced apoptosis. As summarized by Binder et al. (2001), 

these alterations are responsible for a state of hyperexcitability that, in turn, could create a positive 

feedback loop in which increased activity results in upregulated levels of BDNF and of activation of 

TrkB.  

 

However, other experimental evidence suggests an opposite, anti-epileptogenic, effect. For instance, 

BDNF is known to modulate the expression of neurotransmitters and neuropeptides, including 

neuropeptide Y. NPY is thought to inhibit seizure generation and is interesting to note that both 

kindling and kainate-induced seizures increase NPY immunoreactivity with a distribution that is 

strikingly similar to phospho-Trk immunoreactivity. This suggests that BDNF-induced Trk 
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activation could lead to NPY upregulation, which might subsequently limit excitability (Larmet et 

al., 1995). Contrary to the results published by Tanaka in 1997, a work of Palma and collaborators 

(2005) demonstrates that BDNF amplifies GABA currents and prevents their run-down in Xenopus 

oocytes expressing GABAA receptors transplanted from surgically removed specimens of human 

epileptic brains. Moreover, mature BDNF favours survival or regeneration of hippocampal neurons 

damaged by SE (Simonato et al., 2006).  

Several mechanisms have been proposed to explain the contrasting effects of BDNF. The same 

neurotrophin may induce different effects depending on splice variants, cellular site of action 

(dendritic localization is associated with the potentiation of active synaptic contacts and somatic 

distribution with cell survival and differentiation of neuronal precursors), local synthesis of the pro- 

and mature forms, and opposing effects resulting from the binding to TrkB or p75NTR (Simonato et 

al.,2006). Finally, different effects of neurotrophins may also depend on the duration of exposure, 

as demonstrated by the fact that chronic intrahippocampal infusion of BDNF inhibits the 

development of hippocampal kindling and reduces the duration of electrographic seizures (Larmet 

et al., 1995). Hence, acute BDNF could enhance synaptic transmission and neuronal excitability, 

whereas chronic treatment could promote survival and induce growth and morphological changes of 

synapses (Lu, 2004). Acute responses are mediated by cAMP activation (Li et al., 1999), whereas 

the reduced responsiveness, seen after long-term exposition, is probably due to TrkB receptors 

downregulation (Frank et al., 1996). 

 

3.2  FGF-2.  

Basic fibroblast growth factor, or fibroblast growth factor-2 (bFGF-2 or FGF-2), is a neurotrophic 

factor belonging to a family of 22 structurally related proteins (Itoh and Ornitz, 2004). It is a single-

chain polypeptide composed of 146 amino acids, with a core region consisting of 120-130 aa, 

ordered into 12 antiparallel β-strands flanked by divergent amino and carboxyl termini. In common 

with other members of the family, FGF-2 owns a positively charged heparin-binding region that 

allows a high affinity binding to heparansulfate proteoglycans (HSPGs) sited in the extracellular 

matrix (ECM) and on the cell surface in the vicinity of the FGF receptors (FGFRs). The latter is 

required for high-affinity interactions with receptors, the former favours local storage of FGFs. 

Distinct isoforms of FGF-2 are described: the high molecular weight (HMW) forms, ranging from 

20 to 24kDa, are predominantly localized in the nucleus, whereas the low molecular weight form 

(LMW, 18kDa) resides in the cytoplasm (Florkiewicz et al., 1991; Quarto et al., 1991; Sørensen et 

al., 2006). 
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FGF-2 can interact with four high-affinity tyrosine-kinase receptors (FGFR 1-4) and one low-

affinity cell surface receptor (Klint and Claesson-Welsh, 1999; Reuss and von Bohlen und Halbach, 

2003). FGFRs present, in the extracellular portion, three immunoglobulin-like domains (D1-D3) 

and an acidic, serine-rich sequence in the linker between D1 and D2, called “the acid box”. The D2-

D3 fragment is the ligand binding domain, whereas the D1 domain and the acid box have a role in 

receptor autoinhibition. Activation of these receptors leads to a phosphorylation cascade resulting in 

the activation of MAPK, IP3, and PKC pathways. 

FGFRs isoforms are generated by exon skipping eliminating the D1 domain and/or acid box, others 

originate as a result of alternative splicing in the second half of the D3 domain of FGFR1-3, that 

yields to 'b' (FGFR1b, -2b and -3b) and 'c' (FGFR1c, -2c and -3c) isoforms, rendering distinct FGF 

binding specificities for the various FGFs.  

 

With regard to biological properties, several in vitro studies confirm that FGF-2 regulates 

proliferation, survival and differentiation of neural stem cells (NSC). In particular, NSC can self-

renew in response to it (Temple, 2001) and, through a mechanism depending on its concentration, 

differentiate into neurons (Palmer et al., 1999) or oligodendrocytes (Qian et al., 1997). 

In situ hybridization and immunohistochemistry studies conduced in normal rats (Emoto et al., 

1989; Bugra et al., 1994; Gall et al., 1994; Gómez-Pinilla et al., 1995; Simonato et al., 1998) and 

mice (Zucchini et al., 2008) show a widespread distribution of FGF-2 in glial cells of cortex and 

thalamus and a dense (in CA2 pyramidal layer) to moderate (in CA1, CA3 piramydal layer and DG 

granular layer) expression in hippocampal neurons. FGFR1 is the most expressed receptor subtype 

in the hippocampus (Ohkubo et al., 2004) and its distribution reflects the pattern of the ligand 

(Zucchini et al., 2008). 

Several lines of evidence suggest a link between FGF-2 and epilepsy. As for BDNF, seizures 

increase mRNA and protein levels (Jankowsky and Patterson, 2001) and upregulate FGFR1 

receptors (Gómez-Pinilla et al., 1995). Moreover, transgenic mice overexpressing FGF-2 display an 

increased susceptibility (in terms of augmented severity, lethality and reduced latency) to kainate-

induced seizures (Zucchini et al., 2008). This is probably correlated with the morphogenetic 

properties of FGF-2, responsible of a latent hyperexcitability. In vitro studies confirm an 

involvement of FGF-2 in axonal branching of hippocampal and cortical neurons (Aoyagi et al., 

1994; Patel and McNamara, 1995; Szebenyi et al., 2001) and in the production of excitatory 

synapses (Li et al., 2002). The latter property was confirmed in vivo by Zucchini and collaborators 

(2008): the overexpression of FGF-2 increases the density of glutamatergic synapses and the 

excitatory input in the hippocampal CA1 area.  
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In the same study, however, mice overexpressing FGF-2 display, especially in the areas of 

overexpression, a significant reduction of seizure-induced necrosis and apoptosis. In agreement 

with these results, chronic i.c.v. infusion of low dose FGF-2 does not affect kainate seizures, but 

improves behavioral recovery and reduces hippocampal damage (Liu et al., 1993; Liu and Holmes, 

1997) and, when coinjected with kainate in the hippocampus, FGF-2 prevents neuronal loss (Tretter 

et al., 2000). Several mechanisms have been proposed to explain these neuroprotective actions, for 

example Ca2+-dependent inactivation of NMDA receptors (Boxer et al., 1999) and/or induction of 

ActivinA (ActA) (Mattson, 2000; Tretter et al., 2000 Zucchini et al., 2008).  

 

Based on these and other evidences, as for BDNF, FGF-2 can also exert multiple, contrasting 

biological effects. Mechanisms proposed to explain these contrasting effects may include the 

specific activation of FGF receptors or distinct properties of the HMW and LMW isoforms 

(Zucchini et al., 2008).  

 

3.3 Therapeutical application of NTFs. 

The positive effects described above render NTFs very attractive candidates for therapeutic use in 

neurological disorders. A greater understanding of the mechanisms underlying contrasting effects of 

NTFs is crucial for this aim, even though other important difficulties must be overcome to allow 

their clinical application. They have been summarized by Simonato and colleagues (2006) and are 

reported in the table below (Table 4).  

 
Challenges for the use of NTFs for the treatment of epilepsy 

Definition of timing of the treatment (with reference to the natural history of the disease) 

Therapeutic goals (prevention of epileptogenesis vs treatment of diagnosed epilepsy) 

Use of single NTF or of combination of NTFs (with reference to the existence of synergies between NTFs that might be 

used to reach specific therapeutic goals) 

Route of administration and delivery strategy 

Purity of the NTF (pro- vs mature form) 

NTF concentration at the site of action (with reference to the existence of high- and low- affinity receptors) 

Representation of receptors at the site of action 

Duration of treatment (with reference to acute and chronic effects, to possible receptor internalization with loss of effect 

and to possible detrimental effects for long-term treatments) 

 
Table 4: crucial points that should to be addressed for the application of NTFs to the treatment of epilepsy. Adapted from 

Simonato et al., 2006. 
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Among these, the choice of the appropriate route of administration and delivery strategy deserves 

special attention (see also chapter II). Several attempts have been made by peripheral, intrathecal 

or intracerebroventricular administration of NTFs, but all of them failed. Despite failures, these 

studies focused the attention to the importance of a prolonged and targeted release of NTFs to the 

damaged area: an excessive availability in the healthy brain tissue could, in fact, produce undesired 

or even detrimental effects. 

 

Another important point concerns the possibility of achieving therapeutic goals by exploiting the 

synergy between different NTFs, as demonstrated in vitro and in vivo for FGF-2 and CNTF (Song 

and Ghosh 2004; Marconi et al. 2005) and for FGF-2 and BDNF (Paradiso et al., 2009).  

In particular, in the latter study, only the supplementation of the two NTFs together potently 

favored survival, proliferation and neuronal differentiation of neural progenitors in vitro.  

 

However, the most relevant results reported in this paper were obtained in vivo, by administering 

NTFs in rat hippocampus damaged by pilocarpine-induced SE. 

Seizures are known to stimulate neurogenesis but newborn cells tend to aggregate into clusters 

assuming an ectopic localization in the dentate gyrus of the hippocampus. These cells aberrantly 

integrate into the local circuitry, receive excess excitatory input, exhibit abnormal bursting and are 

recruited during spontaneous seizures (Sharfmann et al., 2002). Supplementation of FGF-2 and 

BDNF greatly increases proliferation of hippocampal progenitors and favours their neuronal 

differentiation reducing aberrant features. In addition, it improves the number of putatively 

excitatory and inhibitory neurons, both dramatically decreased in the hippocampus of rats that 

experienced SE. Thus, treatment with FGF-2 and BDNF partially heals the damage induced by SE 

and maintains a good ratio between excitation and inhibition in the circuit (Paradiso et al., 2009). 

The effectiveness of BDNF and FGF-2 was also reported by Rao and collaborators in 2006. They 

demonstrated that grafts of fetal CA3 cells, enriched with the two neurotrophic factors, exhibit 

robust integration, prolonged survival and that most of the cells implanted differentiate into CA3 

pyramidal neurons, restoring, at least in part, the damaged circuitry of the epileptic brain and 

preventing epileptogensesis.  

 

The delivery strategy is of considerable importance for the application of NTFs to the treatment of 

pathological disorders. Interesting is the approach used by Marconi (2005) and then by Paradiso 

(2009) to achieve a localized and prolonged delivery of the two NTFs in the brain of animals. They 

employed herpes simplex virus-based (HSV) vectors engineered to express multiple NTFs (Fig. 7). 
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Several reasons drove the authors to choose this approach such as the ability to infect neuronal cells 

with no mutagenesis risks, and to produce a transient gene expression (see chapter II). 

 

The importance of the study of Paradiso and colleagues (2009), is the demonstration that the 

addition of specific NTFs in injured areas represents a new approach to the therapy of neuronal 

damage and of its consequences.  

 

The good results obtained from this research have strongly encouraged us to continue the studies on 

this topic, analyzing the influence of the two NTFs on different other specific aspects of 

epileptogenesis: neuroinflammation and sprouting of mossy fibers.  

 

 
 

Figure 7: schematic representation of control (left) and double mutant (right) vectors. 
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4. Influence of NTFs on neuroinflammation and gliosis.  
 

(see the published work: Hippocampal FGF-2 and BDNF overexpression attenuates 
epileptogenesis-associated neuroinflammation and reduces spontaneous recurrent seizures. 
Roberta Bovolenta, Silvia Zucchini, Beatrice Paradiso, Donata Rodi, Flavia Merigo, Graciela 
Navarro Mora, Francesco Osculati, Elena Berto, Peggy Marconi, Andrea Marzola, Paolo F 
Fabene, Michele Simonato. J Neuroinfl 2010, 7:81) 
 

Historically, the brain has been considered an “immunoprivileged site” because of the presence of 

the blood-brain barrier, the lack of a conventional lymphatic drainage and an apparently low traffic 

of monocites and lymphocytes. However, is becoming clear that immune and inflammatory 

reactions do occur in the CNS, either intrinsically from the brain itself or acquired from systemic 

circulation through a damaged BBB.  

 

Several lines of evidence demonstrate a link between the activation of inflammatory pathways and 

neurodegenerative diseases, including epilepsy. Interesting, inflammatory reactions occur not only 

in epilepsy disorders characterized by an inflammatory pathophysiology, but also in TLE or in 

tuberous sclerosis, raising the possibility that inflammation may be a common factor contributing or 

predisposing to the occurrence of seizures and cell death, in various forms of epilepsy with different 

etiologies. Increased markers of inflammation have been found in plasma and cerebrospinal fluid 

after recent tonic-clonic seizures and in brain tissue obtained from patients surgically treated for 

drug-resistant epilepsies (Crespel et al., 2002; Peltola et al., 2000; Peltola et al., 2002).  

Experimental studies confirm the human pattern. Significant upregulation of members of toll-like 

receptors (TLRs) family and of proinflammatory cytokines were seen in animal models after SE 

(Turrin et al., 2004; De Simoni et al., 2000). Specifically, IL-6, TNF-α and IL-1β mRNA and 

protein levels increase early and decline to control values by one week after SE, with the exception 

of IL-1β that is detected for several weeks in cells with glial morphology (De Simoni et al., 2000, 

Ravizza et al., 2008). The fact that monocytes/macrophages, but scarce granulocytes, B- and T- 

lymphocytes and NK cells, persist during the latent and the chronic period in the pilocarpine model, 

suggests that specific inflammatory pathways are chronically activated and may contribute to the 

etiopathogenesis of TLE (Ravizza et al., 2008). To support the link between inflammation and 

epilepsy, administration of anti-inflammatory drugs, steroids or immunoglobulins has 

anticonvulsive effects in humans and experimental models of epilepsy.  

 

However, the role of neuroinflammation is controversial. Some authors consider immune reactions 

in CNS a protective, adaptive and beneficial endogenous response similar to the classic response to 
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infection. This is supported by the evidence that released cytokines can induce the synthesis of 

growth factors that can promote repair of the CNS (e.g. NGF, CNTF and insulin-like growth factor) 

(Elkabes et al., 1996) or stimulate antioxidant pathways (Wilde et al., 2000). Moreover, activated 

glial cells can operate as scavengers, removing potentially harmful debris. 

 

Despite the different opinions, it is increasingly clear that the final outcome of inflammation on cell 

function and survival is highly dependent on the extent to which cytokines are produced, the length 

of time the tissue is exposed to inflammation and the balance between the neurotrophic and 

inflammatory factors produced by the competent cells. About the duration of inflammatory process, 

it is plausible that beneficial effects derive from acute exposition, while detrimental outcomes are 

due to chronic persistence of an inflammatory milieu in the brain.  

 

As previously mentioned, audiogenic or chemically- and electrically- induced seizures increase 

levels of proiflammatory cytokines in the rodent brain. Among these, the long-lasting persistence of 

IL-1β after the first insult suggests a critical role in the development of epilepsy. To support this, 

multiple intracerebroventricular injections of IL-1 receptor antagonist (IL-1Ra) significantly 

decrease the severity of behavioural convulsions and reduce TNF-α content in the hippocampus 

after electrically-induced SE (De Simoni et al., 2000). Synthesized as an inactive precursor of 

31kDa, it becomes activated after cleavage by the intracellular interleukin-1β converting enzyme 

(ICE) and acts by binding to IL-1 type-I receptors (IL-1RI) located on the plasma membrane of 

astrocytes (Pinteaux et al., 2002, Ravizza et al., 2008) and pyramidal neurons (Ravizza et al., 2008). 

Activation of receptors results in association with an accessory protein (IL-1RAcP) and recruitment 

of the adaptor protein MyD88 by the intracellular domain and leads to the activation of a signalling 

pathway including MAP kinases and nuclear factor kappa B (NFkB) (O’Neill and Greene, 1998). 

IL-1RI receptors are supposed to mediate the proictogenic properties of the cytokine. It has been 

found that, on hippocampal pyramidal neurons, IL-1RI colocalize with NMDA receptor and its 

activation increases NMDA receptor-mediated Ca2+ influx, promoting excitotoxicity (Viviani et al., 

2003).  

 

Moreover, IL-1β increases astrocytic release of glutamate via TNF-α (Bezzi et al., 2001) or nitric 

oxide (NO) (Hewett et al., 1994; Casamenti et al., 1999) production, inhibits GABA-mediated 

neurotransmission (Zeise et al., 1997; Wang et al., 2000) and can decrease the threshold for seizure 

induction (Dubè et al., 2005; Heida and Pittman, 2005). Taken together, all these data suggest that 

IL-1β contributes to neuronal hyperexcitability and, thus, to seizure generation.  
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Production of cytokine(s) is mediated by glial cells after their activation. With particular reference 

to TLE, double-labelled immunohistochemical analysis showed, during the acute phases of SE, a 

strong IL-1β immunoreactivity in both microglia and astrocytes whereas, in the epileptogenic and 

chronic phase of pathology, only astrocytes were reported to release the cytokine (Ravizza et al., 

2008). Activation of glial cells, known as “reactive gliosis”, is triggered by the initial brain injury 

and, apart from leading to the synthesis of inflammatory molecules, is responsible for important 

changes in morphology and functional features of the cells involved.  

 

Microglia cells derive from circulating monocytes or precursor cells in the monocyte-macrophage 

lineage, that originate in the bone marrow and invade the developing brain during the embryonic, 

fetal or perinatal stages. In the adult, healthy brain, these cells are found as “resting microglia”, 

characterized by a small cell body with fine, ramified processes and low expression of surface 

antigens. After acute injury they react within few hours, assuming a rod-like morphology devoid of 

branching processes and expressing MHC class II antigens and other numerous surface molecules 

necessary for antigen presentation. Once activated, they proliferate and accumulate at the site of 

injury where they phagocyte damaged cells and debris, release soluble factors and provide 

recruitment of immune peripheral cells (Nguyen et al., 2002). Accumulation of microglia is seen in 

brain areas associated with loss of neuronal cells. It has been found that media from microglia 

exposed to dying neurons induces subsequent neuronal death (Pais et al., 2008). The exact 

mechanism is not fully understood but seems involve the release of reactive oxygen species (ROS) 

via activation of NADPH oxidase. This may lead to increased internal zinc and potassium 

concentration, resulting in neuronal apoptosis (Knoch et al., 2008). 

 

Signals for microglial activation may derive from cytosol or membrane of dying neurons, high 

levels of ATP or extracellular [K+] exceeding normal ranges. The released cytokines can drive 

neurotoxic cascades that in turn recruit more microglia. It has been demonstrated that all purinergic 

receptors (P2X and P2Y) are upregulated in the hippocampus at least until 48h after SE. Among 

these, P2X7 support the release of IL-1β from microglia and, indirectly, the expression and release 

of other inflammatory factors. The observation that both receptors and cytokines are up regulated 

after SE suggests the occurrence of a positive feedback mechanisms exacerbating the activation 

process (Avignone et al., 2008). Other inflammatory molecules secreted by activated microglia 

include chemokines, NO, arachidonic acid, prostaglandins D2, E2 and F2α, tromboxane B2 and 

leukotriene B4 (Minghetti and Levi, 1998). It should be noted that microglia can also produce a 
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number of neuroprotective substances in response to injury, such as anti-inflammatory citokynes 

and neurotrophic factors, including IL-10 and IL-Ra, NGF and transforming growth factor β (TGF-

β), that promote tissue repair, wound healing and extracellular matrix remodelling (Colton, 2009).  

 

Gliosis associated to epileptogenesis involves also astrocytes. As for microglia activation, 

unbalanced neurotransmitters such as glutamate and noradrenalin, high levels of ATP, ROS species, 

molecules associated with neurodegeneration or with metabolic toxicity (e.g. NH4+), can trigger 

reactive astrogliosis and, eventually, glial scar formation. Also, the same cytokines initially secreted 

by microglia can initiate or modulate activation and proliferation of such cells. This is suggested by 

the fact that astrocytes express receptors for cytokines, especially IL-1β, and each appears to fulfil a 

different functional role inducing a specific pattern of gene expression (John et al., 2001). The main 

feature of astrogliosis is cell hypertrophy, with enhanced expression of cyll-type-specific glial 

fibrillary acidic protein (GFAP).  

 

In the normal activity of the brain (see the reviews: Sofroniew and Vinters, 2010 and de Lanerolle 

et al., 2010), astrocytes exert essential functions in maintaining the fluid, ion, pH of the synaptic 

interstitial fluid and play direct roles in synaptic transmission trough regulation of availability of 

synaptically active molecules including glutamate, purines (ATP and adenosine), GABA and D-

serine. Astrogliosis is not an all- or none response but it is a finely graded continuum of progressive 

changes in molecular expression, cellular hypertrophy and, in severe cases, proliferation and scar 

formation. Changes have the potential to alter cell activities both trough gain and loss of functions 

that can impact both beneficially and detrimentally on surrounding neural and non-neuronal cells. 

With particular reference to epilepsy, astrocytes in sclerotic hippocampi show down-regulated 

expression of glutamate transporters molecules EAAT1 and 2 (in rodents termed GLAST and GLT-

1) (Proper et al., 2002; Mathern, 1999), probably mediated by IL-1β (Ye et al., 1996), and 

aquaporin 4 (AQP4) on the perivascular membrane. This causes a reduced removal of glutamate 

and altered water homeostasis.  

In normal conditions, once captured by astrocytes, glutamate is converted into glutamine by 

glutamine synthethase then transported to neurons and resynthesised to glutamate. In the epileptic 

tissue, a down-regulation of the enzyme leads to accumulation of the transmitter in astrocytes and in 

the extracellular space (Eid et al., 2004). Moreover, the GABA tranporter GAT3, normally weakly 

expressed, is increased in sclerotic hippocampus, resulting into an excessive removal of the 

neurotransmitter during the ictal state (Lee et al., 2006; During and Spencer, 1993). Ion currents 

also appear altered in reactive astrocytes. In healthy cells, balance between K+ and Na+ channels 
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densities is important to maintain homeostasis in the brain. While enhancement of Na+ current was 

not fully confirmed (Bordey and Sontheimer, 1998; Bordey and Spencer, 2004), a clearly reduced 

expression of functional potassium (Kir) channels is responsible of impaired K+ removal in the 

sclerotic tissue (Kivi et al., 2000; Hinterkeuser et al., 2000; Schroder et al., 2000). Upregulation of 

astrocyte L-type Ca2+ channels was seen both in the kainate model of epilepsy and in specimens of 

TLE patients (Westenbroek et al., 1998; Djamshidian et al., 2002), suggesting enhanced glial uptake 

of the ion in the lesioned CNS; enhanced [Ca2+]i is also associated with the release of glutamate. All 

together, these alterations can provide an excitatory drive underlying seizures disorders, suggesting 

a prominent contribution of astroglyosis to epileptogenesis.  

 

Changes in astrocyte morphology, physiology and release of cytokines have been demonstrated to 

influence integrity of the BBB. In particular, IL-1β has been reported to affect permeability 

properties (Ferrari et al., 2004) probably via disruption of the tight-junctions (del Maschio et al., 

1996) or production of NO and metalloproteinases in endothelial cells. Cytokines may also increase 

the expression of selectins and adhesion molecules (like E- and P-selectin, ICAM-1, VCAM-1) 

(Vezzani and Granata, 2005) on endothelial and epithelial cells, resulting in leukocyte extravasation 

(Fabene et al., 2008; Fabene et al., 2010). BBB leakage has been implicated in the induction of 

seizures and in the progression to epilepsy, exposing astrocytes and neurons to blood albumin and 

potassium ions, respectively (Seiffert et al., 2004; Ivens et al., 2007; van Vliet et al., 2007; Marchi 

et al. 2007 a). 

 

As for microgliosis, astrogliosis can also exert positive effects deriving from release of anti-

inflammatory molecules, activation of antioxidant mechanisms and scar formation, necessary to 

repair wound and delimit damaged tissue. For these reasons, complete inhibition of inflammation is 

not likely to be a useful therapeutic approach. It should be directed at more specific aspects or 

should prevent a prolonged exposure of brain parenchyma to a harmful environment. Very little is 

known regarding the possible modulation of these phenomena by NTFs. However, several findings 

suggesting an involvement of BDNF after inflammatory challenges led us to test their possible anti-

inflammatory properties. 
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Additional Material 
(Bovolenta et al.: Hippocampal FGF-2 and BDNF Overexpression Attenuates 

Epileptogenesis-Associated Neuroinflammation and Reduces Spontaneous Recurrent 

Seizures) 

 

Methods  

 

Vectors 

Vectors were prepared as previously described [1,2]. A plasmid (pB410-BDNF) was constructed by 

introduction of the rat bdnf cDNA (1127 pb) [3] from pBluscript-BDNF into the HSV flank 

sequences of the previously described pB41 plasmid [4]. The bdnf cDNA was inserted, under the 

transcriptional control of the HSV-1 IE ICP0 promoter, into the XbaI sites of the pB41 plasmid, 

between the two UL41 HSV fragments [HSV genomic positions 90.145–91.631 and 92.230–93.858 

[4]. pB410-BDNF was then recombined within the genome of the T0-LacZ viral vector using the 

previously described Pac-facilitated LacZ substitution method [4]. T0-LacZ is a replication-

defective HSV-1 viral vector with the backbone of TH-LacZ (deletion of the three IE ICP4, ICP27, 

and ICP22; [5]), with the cDNA encoding LacZ inserted in the UL41 locus. The production of 

recombinant viruses was carried out using the standard calcium phosphate transfection procedure 

with 5 µg of viral DNA and 1 µg of linear pB410-BDNF. Transfection and isolation of the 

recombinant virus was performed in 7b cells, as previously described [4]. The recombinant virus 

T0-BDNF, containing the bdnf cDNA in the UL41 locus, was identified by isolation of a clear 

plaque phenotype after X-gal staining. This virus was purified by three rounds of limiting dilution 

and the presence of the transgene was verified by Southern blot analysis. Viral stocks of T0-BDNF 

were prepared and titrated using 7b cells.  

The vector TH-FGF2/0-BDNF, containing FGF-2 in the tk (thymidine kinase) locus and 

BDNF in the UL41 locus, was created by genetically crossing the vectors TH-FGF2 [5] and T0-

BDNF. 7b cells, plated in 60-mm Petri dishes, were infected with TH-FGF2 and T0-BDNF at a 
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MOI of 3.0 and harvested 18 hours postinfection. The mixture of viruses derived from the co-

infection was titrated, and the viral vector containing both genes was isolated by Southern blot 

screening. The TH-FGF2/0-BDNF virus was purified by three rounds of limiting dilution and 

expression of the transgenes confirmed by Western blot analysis. Purity of the vector was tested by 

verifying the absence of contaminating FGF-2 and BDNF proteins in each viral stock. 

 

Animals 

Male Sprague-Dawley rats (240–260 g; Harlan Italy) were used for all experiments. Animals were 

housed under standard conditions: constant temperature (22-24°C) and humidity (55-65%), 12 h 

dark-light cycle, free access to food and water. All efforts were made to minimize animal suffering. 

All procedures were carried out in accordance with guidelines by the European Community and 

national laws and policies (authorization from the Italian Ministry of Health n. 83/2009-B). 

Pilocarpine was administered i.p. (300 mg/kg) 30 min after methyl-scopolamine (1 mg/kg 

s.c.), to minimize peripheral cholinergic effect. The rat’s behavior was observed for several hours 

thereafter. Within the first hour after injection, all animals developed seizures evolving into 

recurrent generalized convulsions (SE). SE was interrupted 2 hours after onset by administration of 

diazepam (10 mg/kg i.p.). 

Three days after pilocarpine SE, under ketamine (87 mg/kg i.p.) and xylazine (13 mg/kg i.p.) 

anesthesia, a borosilicate glass needle connected to a perfusion pump was implanted in the right 

dorsal hippocampus (coordinates: 1.5 mm lateral and 1.7 mm posterior to bregma, 3.0 mm deep 

from dura). A total of 1.6×106 pfu of vector were injected in a volume of 2 µl at a flow rate of 0.1 

µl/min [2]. Trypan blue (at the nontoxic concentration of 0.01%) was added to the vector solution to 

allow precise identification of the injection site [6]. Animals were sacrificed 4, 11, or 25 days after 

vector injection. Controls were control vector-injected or naïve rats. 
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Immunohistochemistry 

Rats were sacrificed by decapitation after an anesthetic overdose. Their brains were rapidly 

removed, immersed in 10% formalin and then paraffin embedded. Successive 6 µm sections were 

cut across the entire dorsal hippocampus (233 sections, corresponding to approximately 1.4 mm; 

plates 39-46 [7]) and mounted onto polarized slides (Superfrost slides, Diapath). One every 58 of 

these sections (5 sections per animal) was stained for the markers below. Sections were dewaxed, 

rehydratated and unmasked using a commercially available kit (Unmasker, Diapath), according to 

the manufacturer’s instructions. For activated microglia and astrocytes, we employed the Dako 

Cytomation EnVision® + Dual Link System-HRP (DAB+) kit. After washing in PBS 1×, sections 

were incubated for 10 min, at room temperature, with Endogenous Enzyme Block to quench 

endogenous peroxydase activity. Subsequently, they were incubated with the primary antibody 

(rabbit polyclonal anti CD11 b/c, clone Ox42, 1:200 dilution, Novus Biologicals; or rabbit 

polyclonal anti-GFAP, 1:200, Sigma) at room temperature. After 30 minutes, slices were rinsed 

twice with PBS 1× and incubated for another 30 min with Labeled Polymer-HRP [Dako 

Cytomation EnVision® + Dual Link System-HRP (DAB+)]. Staining was completed by a 3 min 

incubation with 3,3’-diaminobenzidine (DAB) substrated-chromogen, resulting in a brown staining 

of the antigen-antibody complex. Finally, sections were mounted using a water-based mounting 

medium (Shur Mount™, TBS).  

 For IL1β, sections were unmasked as described above and, after incubation in H2O2 0.3% 

for 15 min at room temperature, rapidly rinsed in distilled water and washed again in PBS. They 

were then incubated for 10 min with Ultra V Block (Ultra Vision Detection System; Lab Vision 

Corporation) at room temperature, to block nonspecific background. After overnight incubation at 

4°C, in humid atmosphere, with the primary antibody (goat polyclonal anti-IL1β, 1:200; Santa Cruz 

Biotechnology, Inc.), sections were rinsed in PBS 1× and incubated at room temperature for 2 h 

with HRPO Swine anti-goat IgG (H+L) human/mouse adsorbed (Cedarlane Laboratories). The 

reaction product was detected using DAB (ImmPACT DAB, Vector Laboratories, Inc). Finally, 
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sections were washed in PBS and mounted using Shur Mount™ (TBS). The specificity of 

immunolabeling was verified in all experiments by controls in which the primary antibody was 

omitted. 

 Image analysis was conducted using a Leica microscope (DMRA2, Leica). The expression 

levels of GFAP, Ox42 and IL1β were measured using a thresholding approach [8] by investigators 

that were blind for the group to which the rats belonged. Images of the hippocampus were captured 

using a Leica DFC300FX camera and transformed into gray levels. Using Photoshop CS2 (version 

9.0.2), the mean ± standard deviation gray level was calculated in visually identified positive cells. 

The hippocampus was then cut out, and positive pixels identified by thresholding at the gray level 

corresponding to the mean plus two standard deviations. Using this approach, only those pixels that 

were significantly above background were selected. Data have been expressed as percent of positive 

pixels over total pixels in the selected area. This method has been validated by comparing data with 

those obtained counting GFAP-positive cells. As stated above, 4 regularly spaced sections have 

been examined for each animal. The mean percent of positive pixels was calculated in these 4 

sections and used for statistical analysis. Statistical analysis was conducted using one-way ANOVA 

and post-hoc the Newman-Keuls test. 

 

Telemetry EEG and behavioral analysis 

Together with vector injection (3 days after SE), animals were implanted i.p. with a TA11CTA-F40 

telemetry transmitter (Data Science International, DSI, USA) with subcutaneous electrodes leading 

to the sub-dura mater above the parietal cortex. Silicon coating of all the leads was peeled back to 

expose approximately 5 mm of the helical steel lead. The tip of negative and positive leads created 

an angle of approximately 90 degrees. These radiotelemetry devices continuously sense, process 

and transmit information from the animal to a data storing system. Seizures were assessed by video-

monitoring of the animals, performed by means of Phenotyper cages (Noldus Information 
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Technology, the Netherlands) and an acquisition system using telemetric technology (Dataquest® 

A.R.T. Data Acquisition 4.3 for telemetry systems, DSI). Behavioral analysis related to homecage 

exploration were automatically detected and calculated by the Ethovision XT system (Noldus), 

whereas behavioral alteration and convulsion scorings were performed by the means of the 

Observer (Noldus), a semi-automatized system for behavioral recording. The MPEG4 Encoder and 

The Observer XT, which connected directly with the cages, were the systems used to acquire video 

data. The telemetric and video system synchronized data were acquired simultaneously by a time 

code signal (corresponding to The Observer PC clock), which was sent continuously during 

acquisition from The Observer PC to the Dataquest ART PC. This time code was then recognized 

by the Observer software, allowing the synchronization of the videos with the physiological 

telemetric data. We recorded 24 h/day for 21 consecutive days, beginning 7 days after SE.  

 Seizures have been defined here as previously described [9,10]. The term “seizure” was used 

to indicate any electrically recorded seizure (EEG seizure), both non-convulsive or convulsive. 

Seizures were categorized as paroxysmal activity of high frequency (>5 Hz) lasting for more than 

20 s and characterized by a 3-fold amplitude increment over baseline. Seizure severity was scored 

using the scale of Racine [11]: 1, chewing or mouth and facial movements; 2, head nodding; 3, 

forelimb clonus; 4, generalized seizure with rearing; 5, generalized seizure with rearing and falling. 

The behaviors during non-convulsive seizures were those of class 1 or 2. Seizure detection was 

performed both visually and by the means of the Observer XT (Noldus), a semi-automatized system 

for behavioral recording. All EEG recordings were examined for artifacts, and all seizures were 

confirmed by visual inspection. Seizure detection and single ictal events (<2 sec) were scored for 

each individual rat for the whole analysis period. Analysis was performed by two independent 

investigators that were blind for the group to which the rats belonged. In case of differential 

evaluation, data were reviewed together to reach a consensus.  
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5. Influence of NTFs on mossy fibres sprouting 
 

(see the published work: Localized overexpression of FGF-2 and BDNF in hippocampus reduces 
mossy fiber sprouting and spontaneous seizures up to four weeks after pilocarpine-induced status 
epilepticus. Beatrice Paradiso, Silvia Zucchini, Tao Su, Roberta Bovolenta, Elena Berto, Peggy 
Marconi, Andrea Marzola, Graciela Navarro Mora, Paolo F. Fabene, and Michele Simonato. 
Epilepsia 2011, ahead of print) 
 

Mossy fibres sprouting is the form of axonal plasticity most widely studied in human and 

experimental epilepsies. It refers to the synaptic reorganization of axons of the glutamatergic 

granule cells, so that they project into the inner molecular layer of the dentate gyrus and make 

contact with granule cell dendrites, resulting in a recurrent excitatory circuit which may lead to 

seizures (Sutula et al., 1989; Represa., 1993).  

Molecular profiling data reveal that MFS may result from seizures triggering a cascade of gene 

expression including immediate early genes (e.g. c-fos and c-jun), genes coding neurotrophic 

factors and proteins involved in rearrangement of extracellular matrix, such as the axonal growth-

associated proteins GAP-43 (Elliott et al., 2003; Bendotti et al., 1993). 

Because MFS is typically seen in sclerotic hippocampi with extensive neuronal loss, it may 

correlate with the death of susceptible neurons normally innervated by the mossy fibres. In this 

way, axons of the surviving neurons fill up the vacated synapses (Houser et al., 1990 a; Jiao et al., 

2007). Sprouting has been found to affect also the axons of pyramidal cells in the CA1 subfield 

(Cavazos et al.; 2004). Experimental studies indicate that MFS occurs before spontaneous seizures 

and is maintained for the lifetime of the epileptic animal (Nissinen et al., 2001). Interestingly, these 

newly generated synapses act, in part, via kainate receptors, unlike naïve synapses that, instead, 

operate via AMPA receptors. Therefore, seizures themselves may kill the susceptible neurons and 

set up a vicious cycle where seizures cause neuronal death, which leads to MFS, which in turn leads 

to more seizures (Epsztein et al., 2005; Ben-Ari et al., 2008).  

 

Several experimental data demonstrate that mossy fibres make contact also with GABAergic 

neurons. Two forms of synaptic reorganization, involving inhibitory neurons, have been proposed. 

First, sprouted collaterals of the granule cells have been hypothesized to reinnervate dormant basket 

cells, restoring normal inhibitory responses, instead of setting up an excitatory circuit (Sloviter, 

1992). The second hypothesis derives from the observation that mossy fibres also form synapses 

with GABAergic interneurons, raising the possibility that MFS may promote inhibition of granule 

cells through a disynaptic pathway (Ribak and Peterson, 1991). For these and other reasons, the 

functional role of mossy fibres sprouting in epileptogenesis and ictogenesis remains controversial. 
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However, sprouting affecting inhibitory cells fails to preserve the brain from hyperexcitability, 

rather, the opposite typically occurs leading to spontaneous recurrent seizures. Still, the theory 

proposed by Sloviter on the reactivation of inhibitory circuits might explain the absence of seizures 

during the initial (latent) phase of epileptogenesis. At later stages, however, progressive 

degeneration in the IML might create contacts with granule cells that, in addition to selective loss of 

specific interneurons, may constitute a substrate for recurrent excitation. In this contest, the 

connections with inhibitory interneurons, that are still observed (Buckmaster and Dudek, 1997; 

Wenzel et al., 2000), may provide compensatory processes counteracting epileptogenic 

mechanisms.  

 

Moreover, as previously mentioned, the persistent hilar basal dendrites of newly born neurons also 

receive synaptic input from mossy fibres (Ribak et al. 2000), thus contributing to the formation of a 

hyperexcitatory network.  

 

Regarding the influence of NTFs on MFS, the interesting work of Rao and collaborators (2006) 

reports that, after SE, attraction of mossy fibres that were directed to the IML back to the CA3 

region, using CA3 fetal cells enriched with BDNF and FGF-2, reduces behavioural seizure 

frequency for several months.  

 

These evidences are in line with our results.  
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1. NTFs routs of administration. 
 

(based on the submitted work: By-stander effect on brain tissue of mesoangioblasts producing 
neurotrophins. Tao Su, Raffaella Scardigli, Luisa Fasulo, Beatrice Paradiso, Mario Barbieri, Anna 
Binaschi, Roberta Bovolenta, Silvia Zucchini, Giulio Cossu, Antonino Cattaneo,and Michele 
Simonato) 

1.1 Generalities. 

As stated above, the choice of the route of administration represents a key factor for the therapeutic 

application of NTFs, since inadequate methods might be responsible for the clinical failure of many 

candidate trophic factors. An appropriate system of supplementation should ensure a correct amount 

of trophic factor to the effected sites, avoiding widespread diffusion to extra-target receptors, 

responsible of unwanted effects. In fact, if the supplied amount is too small, it may not be sufficient 

to produce the required effects; if it is too large, it may interfere with neuronal plasticity and cause 

deleterious side effects. Moreover, high levels of neurotrophic factors may cause downregulation of 

the receptors, thus blocking any possible beneficial response (Frank et al., 1996; Knusel et al., 1997; 

Sommerfeld et al., 2000). The clinical applicability of NTFs is made difficult by their 

pharmacological properties, such as the relative instability with a serum half-life of minutes or less, 

their restricted capability to cross the BBB and their poor oral bioavailability (Poduslo and Curran, 

1996; Pardridge, 2002). It is probably due to these reasons that subcutaneous and intrathecal BDNF 

administrations reported little clinical success (Ochs et al., 2000). 

 

To overcome the problem to bypass the BBB, intracerebroventricular (i.c.v.) or intracranial 

administration of neurotrophins have been tried (Cirulli et al., 2000; Seiger et al., 1993; Eriksdotter 

Jonhagen et al., 1998), but with unsatisfactory outcomes. Other attempts have been made using 

NTFs analogues that penetrate the blood brain barrier, or molecules that activate Trk receptors in 

the absence of neurotrophins, acting via, for example, G-protein coupled receptors (GPCRs) 

(Skaper, 2008) and resulting in neuroprotective pathways. However, systemic application of these 

molecules is not yet applicable and requires further studies to investigate their pharmacological and 

pharmacokinetics properties. 

Several other strategies of local administration have been described in preclinical studies. They 

include implantation of encapsulated NTFs in microspheres (Maysinger et al., 1994) or implantation 

of transfected or encapsulated cells secreting NTFs (Frim et al., 1994; Lindner et al., 1995). These 

methods are currently under study.  

 



 

 87 

1.2 Viral vectors-based administration.  

Works reported in the previous chapter describe an alternative route of administration of exogenous 

NTFs, based on harmless herpes viral-vectors, engineered to carry the genes of interest into the cells 

(Marconi et al., 2005; Paradiso et al., 2009). 

 

This approach offers the advantages of bypassing the BBB, achieving high levels of NTF at the 

therapeutic site, reducing systemic exposure and avoiding unwanted side effects. Several reasons 

directed the choice to herpes viruses. First of all, they efficiently infect nonreplicating cells such as 

neurons, can accommodate large inserts, do not integrate their genome into the host DNA thus 

avoiding mutagenesis risk, can be transported retrogradely in neurons (therefore, transgene 

expression can occur in remote areas through nerve terminals afferent to the injection area); and, 

finally, they produce a transient transgene expression (Paradiso et al., 2009).  

Despite these vectors are replication-defective, lacking the three immediate-early genes ICP4, 

ICP27 and ICP22, some degree of residual toxicity has been found for some cell types (Marconi et 

al., 1996). Although this does not appear to be long-lasting nor to heavily affect neurons (Krisky et 

al., 1998), it renders viral vectors inadequate to be injected in humans.  

1.3 Stem cell-based administration. 

To drive a localized delivery of NTFs in the CNS of patients, a valid alternative to viral vectors is 

represented by stem cells genetically modified to express the genes of interest. 

 

As known, stem cells are unspecialized cells capable of renewing themselves through cell division, 

sometimes after long periods of inactivity and, under certain physiologic or experimental 

conditions, they can be induced to become tissue- or organ-specific cells with special functions.  

In particular, the ability to self-renew renders these cells particularly apt to mediate gene therapy 

because it permits to reduce, if not avoid, repeated administration. Moreover, proliferating 

properties can be exploited to repopulate damaged tissues. Stem cells naturally produce a rich 

variety of bioactive molecules (i.e. growth factors, cytokines) that may facilitate the survival of the 

graft and favour regeneration and neuroprotection, probably even interacting and synergizing with 

the proteins coded by the transgenes. 

 

Gene therapy based on stem cells-driven supplementation of NTFs has been tested in some 

neurodegenerative disorders by using different cell lines including neural (Lu et al., 2003), 

haematopoietic (Rizvanov et al., 2008), osteoblasts (Yudoh and Nishioka, 2004), fibroblasts 
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(Stromberg et al., 1990) and mesenchymal stem cells (Harper et al., 2009), obtaining promising 

results.  

 

However, clinical application is seriously limited by the fact that this approach requires invasive 

procedures: stem cells must be directly implanted in the damaged tissue. Fortunately, some types of 

stem cells, express on their surface, adhesion molecules that confer them migratory capacity and the 

ability to cross the vessel wall, reaching perivascular targets. This is the case of mesoangioblasts 

(MABs). 

 

Mesoangioblasts (MABs). Firstly isolated from explants of dorsal aorta or other embryonic or 

juvenile postnatal vessels (De Angelis et al., 1999; Cossu and Bianco, 2003), MABs involved in the 

development of the vasculature. These stem cells probably derive from a primitive luminal 

angioblast, hence the name “mesoangioblast”. MABs exhibit stem cell features, such as 

pluripotency and self-renewal ability, and can differentiate in vivo and in vitro into different 

mesoderm cell types, such as muscle, bone and adipocytes, in response to specific extracellular cues 

(De Angelis et al., 1999; Cossu and Bianco, 2003). The regenerative properties of MABs have been 

confirmed in different animal models and are expected to be applied in some clinical trials (Tedesco 

et al., 2010). Interestingly, they express different neural genes such as GPRC5B, which is expressed 

in brain and spinal cord, Tm4sf2, which has been implicated in activity-dependent brain plasticity, 

and others. This suggests a role in the development of the nervous system even if they do not 

differentiate into neurons (Tagliafico et al. 2004). 

 

But the more interesting feature of these cells is the ability to cross the vessel wall and reach 

perivascular targets, making possible a peripheral administration. Being this property amplified 

under inflammatory conditions, MABs may selectively cross the BBB and home into lesion brain 

areas. Moreover, mesoangioblasts per se express cytokines, chemokines and their receptors, 

supporting a key role in tissue regeneration and first inflammatory response to damage (Tagliafico 

et al., 2004). If engineered to express NTFs, selective recruitment in neuroinflammed sites may 

reduce adverse effects due to undesired accumulation in areas where they are not required. 

 

The possibility to avoiding invasive surgery procedures certainly renders MABs good candidates 

for cell-based gene therapy. However, other features deserve attention: they are non-tumorigenic 

and stable cell lines capable of unlimited clonal expansion in vitro and with the capacity of 

longterm survival. As revealed by micro-array analysis, they express high levels of neurotrophic 
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factors, like VEGF B, FGF-2, FGF-7, PDGF AA and others (Galli et al., 2005) that may amplify 

functions of exogenous, transfected genes. Not least, they permit autologous transplants: they can 

be isolated from biopsic tissues and then transplanted in the same donor, reducing rejection risks.  

 

These characteristics prompted us to investigate the possible employment of MABs as “more 

ethically correct” vectors for NTFs-based therapy.  
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OVERALL CONCLUSIONS AND FUTURE PERSPECTIVES 
 

Ineffectiveness of common AEDs could be attributed to the inhability to arrest molecular and 

plastic modifications that occur after a brain injury and that lead a healthy cerebral tissue to become 

epileptic. An alternative to the common therapeutic approaches may derive from gene-therapy, 

through the local supplementation of NTFs. Among NTFs, BDNF and FGF-2 have shown anti-

epileptogenic properties, favouring neurogenesis and reducing cell degeneration.  

 

Epileptogenesis, however, is an extraordinarily complex event characterized by neuroinflammation, 

gliosis and reorganization of circuitries. The primary aim of the works presented in this thesis is to 

implement the knowledges on NTFs properties, evaluating their possibility to influence these 

processes.  

 

Neuroinflammation is a well known feature of the epileptic brain, whose chronic persistence is 

considered to be harmful. Supplementation of BDNF and FGF-2 in a lesioned brain causes a long-

lasting attenuation of various parameters of neuroinflammation such as microcytosis, astrocytosis 

and expression of IL-1β. In particular, the effects on the cytokine are particularly prominent, being 

its synthesis almost completely prevented, even at earliest time point after SE. The mechanism(s) of 

this anti-inflammatory action of NTFs is unknown. We can hypothesized an involvement in the 

preservation of BBB integrity or an influence in the synthesis of proinflammatory cytokines, in a 

direct or indirect way (for example through TNF-α synthesis). This may, in turn, reverberate on 

astrocytes and microglia reducing their expression, according to the temporal sequences of the 

observed effects. 

 

Mossy fibers sprouting is also affected by local NTFs treatment, in a way that correlates with the 

preservation from cell damage.  

 

Taken togheter, these data may explain the reduction in frequency and severity of spontaneous 

recurrent seizures that animals experience during the chronic phase of the illness.  

 

We are fully conscious that, in both cases, no answer on the mechanisms of action have been 

provided in this thesis. This was out of the purposes of our studies. However, is in our intent to 

investigate them in the future, through in vitro systems such as microglia or astrocyte cell cultures. 
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We strongly believe that these results will add a significant insight into the characterization and 

comprehension of the wide properties of NTFs. 

 

Finally, an additional step has been provided from the study of routes of administration useful in 

conveying the neurotrophic factors to the brain. Genetically modified viral vectors could be a valid 

approach, if not for their residual toxicity which prevents their application in humans. 

Mesoangioblasts (MABs) are progenitor stem cells that can be modified to express genes of 

interest. In vitro characterization of MABs-NGF and MABs-BDNF has shown a real efficacy in 

promoting differentiation, survival and functionality of neurons and, not secondary, the ability to 

localize in a lesioned brain when peripherally administered in an animal model of Alzheimer’s 

disease.  

 

Obviously, further studies are needed to better characterize MABs and to evaluate their usefulness 

in different pathological contexts. However, we are confident that our results can contribute to 

move NTFs-gene therapy closer to clinical application. 
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