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Chapter 1

Introduction

Predicting air quality is of growing importance to society. The chemical

composition of the atmosphere has been (and is being) significantly perturbed by

emissions of trace gases and aerosols associated with a variety of anthropogenic

activities. This changing of the chemical composition of the atmosphere has

important implications for urban, regional and global air quality, and for climate

change (Carmichael et al., 2008). Moreover, current health studies demonstrate

that atmospheric pollutants are responsible for increasing breathing troubles in

the population, with a non negligible impact on the morbidity and loss of life

expectancy statistics. Studies carried out by the World Health Organization

(WHO, 2006) clearly show that significant improvements are still needed to manage

and control the impacts of air pollution on health. A comprehensive review of the

state of the art of air quality research can be found in Monks (2000) showing

that in the last three decades, atmospheric chemistry and air quality sciences

have undergone increasing progress with the development of sophisticated Chemical

Transport Models (CTMs) or more generally named Air Quality Models (AQMs)

and with the growing extent of operational network. AQMs have become an
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2 1. Introduction

essential tool for providing science-based input into best alternatives for reducing

urban pollution levels, for designing cost-effective emission control strategies, for

the interpretation of observational data, and for assessments into how we have

altered the chemistry of the global environment. The use of CTMs to produce

air quality forecasts has become a new application area, providing important

information to the public, decision makers and researchers.

There are different European initiatives aimed at (i) providing a fundamental

understanding of the processes that control the distributions of chemical species in

the atmosphere and their impact on global change and air quality, (ii) generating

and publishing daily air quality forecasts and maps resulting from numerical

simulations on different spatial scales, (iii) comparing daily different air quality

models in order to better assess their capability in predicting chemical species

using satellite and in-situ data; a non exhaustive list includes the “International

Global Atmospheric Chemistry” (IGAC, http://igac.jisao.washington.edu/),

“PREV’AIR system” (http://www.prevair.org/en/index.php, Honoré et al.,

2008), “Global and regional Earth-system (Atmosphere) Monitoring” (GEMS,

http://gems.ecmwf.int/about.jsp) .

Whereas significant advances in CTMs have taken place, predicting air quality

remains a challenging problem due to the complex processes occurring at widely

different scales and by their strong coupling across scales. A parallel increase

of observations (i.e ground measurements, satellite data, lidar profiles) offers the

possibility to both validate more extensively CTMs and to use observations to

“correct” possible errors of CTMs to represent chemical species. Data assimilation

(DA) techniques aimed at merging the informations brought by observations into

models taking into account errors of both observation and modelled variables. DA

has been used successfully in Numerical Weather Prediction (NPW) models and,

since some decades, it has been implemented into several CTMs allowing a more
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efficient use of measurements, thus possibly reducing model uncertainties (see for

details section 2.3).

The research activity presented in this manuscript is belong to this research

framework, implementing a methodology to merge in an optimal way atmospheric

modelling and available observations at different spatial scales. In particular,

we approach the problem of assimilation of ground measurements and satellite

columnar data and how DA can improve CTMs and correct biases and errors in

the chemical species forecast. The work focuses on tropospheric ozone and the

species linked to its formation, since they play a crucial role in chemical processes

during photochemical pollution events. Moreover, as they have a direct impact

on human health, improvement of forecast accuracy and the quality of chemistry

description in 3D models has a straightforward impact.

In the first part of the study we evaluate the improvement in the capability of

regional models to reproduce the distribution of tropospheric pollutants, using

the assimilation of surface chemical observations. Among the many causes

of uncertainties of chemistry models simulations, a particular focus is given

by uncertainties in emissions, that are known to be high, despite continuous

improvement in compilation of emissions inventories. The scientific purpose is

to analyse the efficacy of DA in correcting the biases due to perturbed emission.

The work is performed using an Observing System Simulation Experiment (OSSE),

which allowed the quantification of assimilation impact, through comparison with

a reference state. Different sensitivity tests are carried out in order to identify how

assimilation can correct perturbations on O3, induced by NOx emissions biased in

flux intensity and time. Tests are performed assimilating different species, varying

assimilation time window length and starting hour of assimilation. Emissions are

biased quantitatively up to ± 50% and shifted temporally up to ± 2 hours.

The second part of PhD research activity deals with the evaluation of the
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4 1. Introduction

impact of assimilation of satellite NO2 tropospheric columns on the distribution

of pollutants at the ground level during photochemical pollution events at

continental scale. In particular, we focus on the assimilation of observations

from SCIAMACHY, on-board ENVISAT ESA satellite, and from OMI, on-board

EOS Aura satellite, and its effect on ozone in the lowermost troposphere in

Europe. For an effective improvement in assimilated fields it is particularly

important the consistency between satellite and model resolution (Blond et al.,

2007). SCIAMACHY and OMI have a considerable difference in spatial and

temporal resolution, allowing to test the role of data resolution on the effectiveness

of assimilation.

The study is carried out implementing and applying an Optimal Interpolation

DA technique in the air quality model BOLCHEM and the chemical transport

model CHIMERE. The OI routine is chosen because it has given satisfactory results

in air quality modelling and because it is relatively simple and computationally

inexpensive.

The thesis is organized as follow: Chapter 2 delineates the principal

features of DA and the status of the art of the air quality models and their

uncertainties. Chapter 3 presents the tool implemented in this work (AQMs and

the Optimal Interpolation routine) together with observations used for validation

and assimilation. Chapter 4 illustrates assimilation of ground measurements to

evaluate to which extent DA can correct errors in pollutants simulations caused

by biases in emissions. In Chapter 5 we focus on assimilation of tropospheric

satellite data and the estimate of the impact on tropospheric ozone concentration.

Conclusion will focus on the summary and discussion of the principal results and

gives a short overview of research perspectives.
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Chapter 2

Air quality models and data

assimilation techniques

2.1 Analysis and predictability of air quality

models and pollutants

Tropospheric chemical composition and hence the air quality is determined by an

interplay of processes at different spatial and temporal scales. The concentration

of pollutants in a peculiar region is a result of local (i.e. point emissions,

turbolent mixing), regional (i.e. photochemistry, local scale circulation) and

continental (long-range transboundary pollution) physics and chemistry, with an

impact towards the global scale.

Figure 2.1 shows the NO2 columns distribution measured by OMI. It can be

taken as representative of photochemical pollution occurring in summer. The major

European areas involved are, for instance, Po Valley, Ruhr region, Belgium, South

England, Paris, Madrid, Athens and the other principal cities in Europe.

Within this frame, air quality models (AQMs) are key instrument for
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6 2. Air quality models and data assimilation techniques

Figure 2.1: OMI mean tropospheric NO2 in august 2008 (www.knmi.nl/research/

climate chemistry).
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2.1 Analysis and predictability of air quality models and pollutants 7

understanding and forecasting chemical pollution (see, for instance, Lawrence

et al., 2003; Sportisse, 2007; Zhang, 2008), since they can be used in many

applications ranging from the study of short-range dispersion of species (typically

accidental release in the case of an industrial hazard) to atmospheric chemistry and

upscaling to climate, as now widely recognised in the scientific community. Many

chemical species are of interest for instance: ozone and volatile organic compounds

(photochemistry), trace metals, mercury, methane, carbon monoxide, particulate

matter (aerosols), radionuclides, biological species, etc.

In brief, AQMs simulate the time evolution of spatial fields for a set of

chemical species (by extent of radionuclides and biological species). We refer

to Figure 2.2 for the ensemble of processes generally described by AQM state of

the art. Some primary species (for instance, nitrogen oxide or volatile organic

compounds) are emitted either by anthropogenic or biogenic sources (surface

emission or point emission). The species are then vertically diffused in the

atmospheric boundary layer by turbulent eddies related to both mechanical

forces (wind shear) and thermal forces (buoyancy), while the horizontal motion

is due to wind advection. Gas-phase chemical reactions, mainly related to

the oxidizing power of the atmosphere and to the radiative fluxes (through

photolysis), lead to the production of secondary species (typically ozone, O3).

Mass transfer between gas phase, aqueous phase (cloud droplets) and particulate

matter (solid or liquid particles in suspension) may also happen. Moreover, the

evolution of aerosols is governed by microphysical processes such as nucleation

(the formation of small clusters of gaseous molecules), coagulation (collision

between particles), condensation/evaporation (mass transfer between the semi-

volatile species and particles) or activation (the growth of aerosols to cloud droplets

through condensation of water vapor). The loss processes from the atmosphere are

dry deposition (when gases or particles impinges upon and stick to the surface)

7



8 2. Air quality models and data assimilation techniques

Figure 2.2: Scheme of processes described in a chemistry transport model

(Sportisse, 2007).

and wet scavenging (washout by rains).

2.1.1 Air quality models uncertainties

Despite of the many developments, air quality modelling and simulations still suffer

from many uncertainties (see for instance, Tilmes et al., 2002; Russell and Dennis,

2000) due to the large range of scale and high number of physical and chemical

processes to be represented:� Many input data are poorly known (for instance, ozone, NOx and VOC initial

conditions, initial conditions, NOx /VOC emissions, biogenic emissions,

rainfall amount, cloud liquid water content). Moreover, some forcing fields,

such as meteorological fields, are computed with numerical models that may

be uncertain.
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2.1 Analysis and predictability of air quality models and pollutants 9� Physical and chemical parametrizations induce a high sensitivity to the way

to represent process and to the values of parameter used to represent sub-grid

processes.� The numerical algorithms and the discretization also induce uncertainties,

especially when resolution is coarse because of the computational burden,

especially for aerosols.

Even if the models are “validated” (it is more rigorous to say that model-to-

data comparisons are performed, when possible), one must keep in mind that there

are a large amount of degrees of freedom (especially in parameterizations) and

only a small number of model outputs can be measured. For instance, most of

the existing CTMs have been extensively tuned to meet acceptable model-to-data

error statistics for ozone peaks at ground. It does not ensure that the results are

satisfactory for 3D fields and many other trace species. There is therefore a danger

of using “overtuned” models, especially for impact studies or long-term scenario

studies (Sportisse, 2007).

A particular remark has to be done to uncertainties in emissions (Sawyer et al.,

2000; Simpson et al., 1999; Mendoza-Dominguez and Russell, 2001; Hanna et al.,

2001, 1998). They in fact represent one of the major source of uncertainties in

air quality models, since they continue to be high, despite many efforts made to

provide a more accurate emissions inventory.

Emissions are supplied by annual total inventories, for instance EMEP Centre

on Emission Inventories and Projections (CEIP) provide the main pollutants (NOx,

SOx, CO, NH3 and NMVOCs), heavy metals, POP and PM, divided by production

sectors and countries. For modelling purposes they are temporal and by-species

disaggregated from annual total to hourly values profiles and to each activity

(traffic, industry, energy extraction/production, residential, agriculture) and next

9



10 2. Air quality models and data assimilation techniques

they are aggregated into model species. This whole procedure is based on a priori

assumptions and can be greatly affected by errors (Tao et al., 2004; Placet et al.,

2000; Tilmes et al., 2002; Menut et al., 2000). Hanna et al. (1998) and Mallet and

Sportisse (2005) considered that NOx emissions could be affected by an uncertainty

of 30%-50%, while Beekmann and Derognat (2003) confirmed this assumption,

considering an uncertainty of 40%; Hanna et al. (2001) considered NOx biogenic

emission uncertainties up to a factor of two.

Moreover, the impact of the temporal allocation of emissions on pollutant

distribution is still under debate: Mallet and Sportisse (2005) found that ozone

concentration can be sensitive to different temporal allocation of emissions, while

Tao et al. (2004) found that daytime O3 concentrations are slightly dependent on

changes in the temporal allocation of NOx emissions.

Some possible strategy for assessing the impact of uncertainties is to evaluate

the sensitivity of some model outputs, with respect to uncertain input parameters.

We refer for instance to for Carmichael et al. (1997); Sandu et al. (2003, 2005); He

et al. (2000); Seigneur et al. (1982) a general presentation, Mallet and Sportisse

(2005) for the sensitivity of ozone with respect to emissions, Zhang et al. (2005)

for the sensitivity of ozone.

2.2 Data assimilation techniques

2.2.1 Historical notes and definition

In the late sixties, the development of satellite observing system, and the

perspective that asynoptic observations, performed more or less continuously in

time, would become more and more numerous in future, led to the notion that

the dynamical evolution of the flow should be explicitly taken into account in the

10



2.2 Data assimilation techniques 11

very definition of the initial conditions of the forecast. The word assimilation was

coined at that time denoting a process in which observations distributed in time

are merged together with a dynamical numerical model of the flow in order to

determine as accurately as possible the state of the atmosphere.

Since then, continuous in theory, in efficiency of numerical algorithms, as

well as in available computing power, has led to a slow but steady progress in

the method for assimilation. This progress, together with improvements to the

quality of Numerical Weather Prediction (NPW) models and to a lesser extent,

with the improvements in the observing system, has significantly contributed to

the continuous increase observed in the last decades in the quality of numerical

weather forecast. It is worth mentioning that the proportion of resources allocated

to assimilation in the whole process of NWP has steady increase over time. This

evolution has not resulted from a clearly stated voluntary choice, but it would be

more appropriately described as a progressive “natural selection” process, during

which increase of the proportion of resource allocated to assimilation repeatedly

and consistently proved to be beneficial (Talagrand, 1997)

If assimilation of observations originated from the need of NWP, assimilations

has already proven to be useful for other purpose than weather prediction see

for example (Salstein and Rosen, 1986; Oort, 1989) and other fields of atmospheric

modelling (climate modelling, air quality modelling, dynamical oceanography), (see

Section 2.3).

An operational definition of data assimilation is “an analysis technique in which

the observed information is accumulated into the model state by taking advantage

of consistency constraints with laws of time evolution and physical properties”.

There are two basic approaches to data assimilation: sequential assimilation, that

only considers observation made in the past until the time of analysis, which is

the case of real-time assimilation systems, and non-sequential, or retrospective

11



12 2. Air quality models and data assimilation techniques

assimilation, where observation from the future can be used, for instance in a

reanalysis exercise. Another distinction can made between methods that are

intermittent or continuous in time. In an intermittent method, observations can be

processed in small batches, which is usually technically convenient. In a continuous

method, observation batches over longer periods are considered, and the correction

to the analysed state is smooth in time, which is physically more realistic. The four

basic types of assimilation are depicted schematically in Figure 2.3. Compromises

between these approaches are possible.

Both models and observations are not perfect and it is crucial in data

assimilation formulation to refer to their uncertainties. This lead to a mathematical

representation of errors through a statistical approach.

Many assimilation techniques have been developed for meteorology and

oceanography (Figure 2.4). They differ in their numerical cost, their optimality,

and in their suitability for real-time data assimilation. Some of them are explained

in the sections hereafter.

Some basic references on assimilations techniques are (Daley, 1991; Lorenc,

1986; Ghil and Malanotte-Rizzoli, 1991; D’Isidoro, 2005).

2.2.2 Mathematical formalisation

The first step in the mathematical formalisation of the analysis problem is the

definition of the work space. As in a forecast model, the collection of numbers

needed to represent the atmospheric state of the model is collected as a column

matrix called the state vector x. How the vector components relate to the real

state depend on the choice of discretization, which is mathematically equivalent to

a choice of basis.

One must distinguish between reality itself (which is more complex than what

12



2.2 Data assimilation techniques 13

Figure 2.3: Representation of four basic strategies for data assimilation, as a

function of time. The way the time distribution of observations (“obs”) is processed

to produce a time sequence of assimilated states (the lower curve in each panel)

can be sequential and/or continuous (Bouttier and Courtier, 1999).

13



14 2. Air quality models and data assimilation techniques

Figure 2.4: A summarized history of the main data assimilation algorithms used in

meteorology and oceanography, roughly classified according to their complexity

(and cost) of implementation, and their applicability to real-time problems.

Currently, the most commonly used for operational applications are OI, 3D-Var

and 4D-Var (Bouttier and Courtier, 1999).

14



2.2 Data assimilation techniques 15

can be represented as a state vector) and the best possible representation of reality

as a state vector, which it shall be denoted xt, the true state at the time of

the analysis. Another important value of the state vector is xb, the a priori or

background estimate of the true state before the analysis is carried out, valid at

the same time. Finally, the analysis is denoted xa, which is what we are looking

for.

The analysis problem is to find a correction δx (or analysis increment) such

that

xa = xb + δx (2.1)

is as close as possible to xt.

For a given analysis a number of observed values are used. They are gathered

into an observation vector y. To use them in the analysis procedure it is necessary

to be able to compare them with the state vector. In general there are fewer

observations than variables in the model and they are irregularly disposed, so that

the only correct way to compare observations with the state vector is through the

use of a function from model state space to observation space called an observation

operator that we will denote by H . H is a collection of interpolation operators from

the model discretization to the observation points, and conversions from model

variables to the observed parameters.

The key to data analysis is the use of the discrepancies between observations

and state vector. This is given by the vector of departures at the observation

points:

y −H(x) (2.2)

When calculated with the background xb it is called innovations, and with the

analysis xa, analysis residuals. Their study provides important information about

the quality of the assimilation procedure.

15



16 2. Air quality models and data assimilation techniques

2.2.3 Sources of errors and their estimation

To represent the fact that there is some uncertainty in the background, in the

observations and in the analysis we will assume some model of the errors between

these vectors and their true counterparts. The correct way to do this is to assume

some probability density function (pdf) of error.

Given a background field xb just before doing an analysis, there is one and only

one vector of errors that separates it from the true state:

ǫb = xb − xt (2.3)

If each analysis experiment can be repeated a large number of times, under

exactly the same conditions, but with different realizations of errors generated

by unknown causes, ǫb would be different each time. Statistics such as averages,

variances and histograms of frequencies of ǫb can be calculated. In the limit of

a very large number of realizations, it is expected that the statistics to converge

to values which depend only on the physical processes responsible for the errors,

not on any particular realization of these errors. When we do another analysis

under the same conditions, we do not expect to know what will be the error ǫb,

but at least we will know its statistics. The probability density function of ǫb is

the best information about the distribution of ǫb and from this function one can

derive all statistics, including the average (or expectation) 〈ǫb〉 and the variances.

A popular model of scalar pdf is the Gaussian function, which can be generalized

to a multivariate pdf.

The errors in the background and in the observations are modelled as follows:� background errors: ǫb = xb - xt , of average 〈ǫb〉 and covariances B =

〈(ǫb − 〈ǫb〉)(ǫb − 〈ǫb〉)
T〉. They are the estimation errors of the background

16



2.2 Data assimilation techniques 17

state, i.e. the difference between the background state vector and its true

value.� observation errors: ǫo = y − H(xt), of average 〈ǫo〉 and covariances R

= 〈(ǫo − 〈ǫo〉)(ǫo − 〈ǫo〉)
T〉. They contain errors in the observation process

(instrumental errors, because the reported value is not a perfect image of

reality), errors in the design of the operator H , and representativeness errors

i.e. discretization errors which prevent xt from being a perfect image of the

true state.� analysis errors: ǫa = xa - xt, of average 〈ǫa〉. A measure of these

errors is given by the trace of the analysis error covariance matrix A =

〈(ǫa − 〈ǫa〉)(ǫa − 〈ǫa〉)
T〉.

They are the estimation errors of the analysis state, which is what we want

to minimize.

Error covariances are more subtle and we will illustrate this with the background

errors (all remarks apply to observation errors too). In a scalar system, the

background error covariance is simply the variance, i.e. the root-mean-square (or

r.m.s., or quadratic) average of departures from the mean:

B = var(ǫb) = var(〈(ǫb − ǫt)
2〉) (2.4)

In a multidimensional system, the covariances are a square symmetric matrix.

If the model state vector has dimension n, then the covariances are an n×n matrix.

The diagonal of the matrix contain variances, for each variable of the model; the

off-diagonal terms are cross-covariances between each pair of variables of the model.

The matrix is positive. Unless some variances are zero, which happens only in the

rather special case where one believes some features are perfect in the background,

17



18 2. Air quality models and data assimilation techniques

the error covariance matrix is positive definite. For instance if the model state is

tridimensional, and the background errors (minus their average) are denoted (e1,e2,

e3), then

B =











var(e1) cov(e1, e2) cov(e1, e3)

cov(e2, e1) var(e2) cov(e2, e3)

cov(e3, e1) cov(e3, e2) var(e3)











(2.5)

The off-diagonal terms can be transformed into error correlations (if the

corresponding variances are non zero):

ρ(ei, ej) =
cov(ei, ej)

√

var(ei)var(ej)
(2.6)

It is worth to underline that the error statistics are functions of the physical

processes governing the meteorological situation and the observing network. They

also depend on our a priori knowledge of the errors. Error variances in particular

reflect our uncertainty in features of the background or the observations. In general,

the only way to estimate statistics is to assume that they are stationary over a

period of time and uniform over a domain so that one can take a number of error

realizations and make empirical statistics. This is in a sense a climatology of errors.

Another empirical way to specify error statistics is to take them to be a fraction of

the climatological statistics of the fields themselves.

2.2.4 Statistical interpolation with least squares estimation

In this section it is present the fundamental equation for linear analysis in a general

algebraic form: the least squares estimation, also called Best Linear Unbiased

Estimator (BLUE) (see for instance Bouttier and Courtier, 1999). This theorem is

the basis of the most utilized data assimilation techniques as Optimal Interpolation,

3D-Var, Kalman Filtering, 4D-Var.

18



2.2 Data assimilation techniques 19

Given the dimension of the model state n and the dimension of the observation

vector p, it is denoted:� xt true model state (dimension n)� xb background model state (dimension n)� xa analysis model state (dimension n)� y vector of observations (dimension p)� H observation operator (from dimension n to p)� B covariance matrix of the background errors (xb - xt) (dimension n× n)� R covariance matrix of observation errors (y - H [xt]) (dimension p× p)� A covariance matrix of the analysis errors (xa - xt) (dimension n× n)

The following hypotheses are assumed:� Linearized observation operator: the variations of the observation

operator in the vicinity of the background state are linear: for any x close

enough to xb, H(x) - H (xb) = H(x - xb) where H is a linear operator.� Non-trivial errors: B and R are positive definite matrices.� Unbiased errors: the expectation of the background and observation errors

is zero i.e. 〈xb − xt〉 = 〈y−H(xt)〉 = 0� Uncorrelated errors: observation and background errors are mutually

uncorrelated i.e. 〈(xb − xt)(y−H(xt))
T〉= 0� Linear analysis: we look for an analysis defined by corrections to the

background which depend linearly on background observation departures.

19



20 2. Air quality models and data assimilation techniques� Optimal analysis: we look for an analysis state which is as close as possible

to the true state in an r.m.s. sense (i.e. it is a minimum variance estimate).

Under these hypothesis it can be demonstrated that:

(a) the optimal least-squares estimator, or BLUE analysis, is defined by the

following interpolation equations:

xa = xb +K(y−H [xb]) (2.7)

K = BHT(HBHT +R)−1 (2.8)

where the linear operator K is called the gain, or weight matrix, of the analysis.

(b) The analysis error covariance matrix is, for any K:

A = (I−KH)B(I−KH)T +KRKT (2.9)

If K is the optimal least-squares gain, the expression becomes

A = (I−KH)B (2.10)

(c) The BLUE analysis is equivalently obtained as a solution to the variational

optimization problem:

xa = Arg(minJ) (2.11)

J(x) = (x− xb)
TB−1(x− xb) + (y −H [x])TR−1(y −H [x]) (2.12)

= Jb(x) + Jo(x)

where is called the cost function of the analysis (or misfit, or penalty function),

Jb is the background term, Jo is the observation term.
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(d) The analysis xa is optimal : it is closest in an r.m.s. sense to the true state xt.

(e) If the background and observation error pdfs are Gaussian, then xa is also the

maximum likelihood estimator of xt.

In Figure 2.5 the dimensions of the matrix operators involved in computing the

analysis is delineated.

2.2.5 Optimal Interpolation

The OI is an algebraic simplification of the computation of the weight K in the

analysis equations (2.7) and (2.8). The equation (2.7) can be regarded as a list of

scalar analysis equations, one per model variable in the vector x.

For each model variable the analysis increment is given by the corresponding

line of K times the vector of background departures (y−H [xb]). The fundamental

hypothesis in OI is: For each model variable, only a few observations are important

in determining the analysis increment. It is implemented as follows:� For each model variable x(i), select a small number of observations using

empirical selection criteria.� Form the corresponding list of background departures (y − H [xb]), the

background error covariances between the model variable x(i) and the model

state interpolated at the pi observation points (i.e. the relevant pi coefficients

of the i-th line of BHT), and the pi × pi background and observation error

covariance submatrices formed by the restrictions of HBHT and R to the

selected observations.� Invert the pi×pi positive definite matrix formed by the restriction of (HBHT

+ R) to the selected observations
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22 2. Air quality models and data assimilation techniques

Figure 2.5: Sketches of the shapes of the matrices and vector dimensions involved

in an usual analysis problem where there are many fewer observations than degrees

of freedom in the model: from top to bottom, in the equations of the linear analysis,

the computation ofK, of theHBHT term, and the computation of the cost function

J (Bouttier and Courtier, 1999).
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2.2 Data assimilation techniques 23� Multiply it by the i-th line of BHT to get the necessary line of K.

In the OI algorithm it is necessary to have the background error covariances B as

a model which can easily be applied to pairs of model and observed variables, and

to pairs of observed variables. This can be difficult to implement if the observation

operators are complex. On the other hand, the B matrix needs not be specified

globally, it can be specified in an “ad hoc” way for each model variable, as long

as it remains locally positive definite. The specification of B usually relies on the

design of empirical autocorrelation functions (e.g. Gaussian or Bessel functions and

their derivatives), and on assumed amounts of balance constraints like hydrostatic

balance or geostrophy (Bouttier and Courtier, 1999; Kalnay, 2003; D’Isidoro, 2005).

2.2.6 3D-Var

The principle of 3D-Var is to avoid the computation of the gain K completely by

looking for the analysis as an approximate solution to the equivalent minimization

problem defined by the cost function in 2.12. The solution is sought iteratively by

performing several evaluations of the cost function

J(x) = (x− xb)
TB−1(x− xb) + (y −H [x])TR−1(y −H [x])

and of its gradient

∇J(x) = 2B−1(x− xb)− 2HTR−1(y −H [x])

in order to approach the minimum using a suitable descent algorithm. The

approximation lies in the fact that only a small number of iterations are performed.

The minimization can be stopped by limiting artificially the number of iterations,

or by requiring that the norm of the gradient ‖∇J(x)‖ decreases by a predefined
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amount during the minimization, which is an intrinsic measure of how much the

analysis is closer to the optimum than the initial point of the minimization.

A significant difficulty with 3D-Var is the need to design a model for B that

properly defines background error covariances for all pairs of model variables. The

popularity of 3D-Var stems from its conceptual simplicity and from the ease with

which complex observation operators can be used, since only the operators and

the adjoints of their tangent linear need to be provided, whereas OI requires a

background error covariance model between each observed variable and each model

variable. Weakly non-linear observation operators can be used, with a small loss

in the optimality of the result. As long as is strictly convex, there is still one and

only one analysis (Bouttier and Courtier, 1999; Kalnay, 2003; Talagrand, 1997).

2.2.7 Extended Kalman Filter

Kalman filter (KF) is formally very similar to OI, but with one major difference:

the forecast or background error covariance Pf(ti) is advanced using the model

itself, rather than estimating it as a constant covariance matrix B. Following the

notation of (Ide, 1997), let xf(ti) = Mi−1[x
a(ti−1)] represent the (nonlinear) model

forecast that advances from the previous analysis time i− 1 to the current i. The

model is imperfect. Therefore, it is assumed that for the true atmosphere

xt(ti) = Mi−1[x
t(ti−1)] + η(ti−1) (2.13)

where η is a noise process with zero mean and covariance matrix Qi−1 =

〈(ηi−1)(η
T
i−1)〉 that represent the model error.

In the extended Kalman Filer, the forecast error covariance is obtained

linearizing the model about the non-linear trajectory of the model between i−1 e i,

so that if we introduce a perturbation in the initial condition, the final perturbation
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is given by

x(ti) + δx(ti) = Mi−1[x(ti−1) + δx(ti−1)] = (2.14)

Mi−1[x(ti−1)] +Mi−1δx(ti−1) +O(|δx|2) (2.15)

The linear tangent model Mi−1 is a matrix that transforms an initial

perturbation at time ti−1 to the final perturbation at time ti. The transpose of

the linear tangent model or adjoint model makes the inverse i.e. transforms the

perturbation from time ti to time ti−1.

If there are several steps in a time interval t0 - ti, the linear tangent model that

advances a perturbation from t0 to ti is given by the product of the linear tangent

model matrices that advance it over each step:

M(t0, ti) =
0
∏

j=i−1

M(tj , tj+1) =
0
∏

j=i−1

Mj = Mi−1Mi−2...M0 (2.16)

Therefore, the adjoint model is given by:

M(ti, t0)
T =

j=i−1
∏

0

M(tj+1, tj)
T =

j=i−1
∏

0

MT
j (2.17)

Equation 2.17 shows that the adjoint model “advances” a perturbation

backwards in time, from the final to the initial time. As done in OI and 3D-

Var, observations are assumed to have a random errors with zero mean and an

observational error covariance matrix Ri = 〈(ǫoi ǫ
oT

i )〉 and yo
i = H(xt(ti)) + ǫoi with

observation operator H .

Note that the forecast error depends on the initial (analysis) error and on the

error introduced by the forecast model during that period:
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ǫoi = Mi−1 + ηi −Mi−1(x
a
i−1) = (2.18)

Mi−1(x
a
i−1 + xt

i−1 − xa
i−1) + ηi −Mi−1(x

a
i−1) ≈ Mi−1ǫ

a
i−1 + ηi

The analysis and the forecast error covariance are defined from their

corresponding errors at the appropriate time:

Pi = 〈(ǫiǫ
T
i )〉

From these equations we can define extended Kalman filtering which consists

of a “forecast step” that advances the forecast and the forecast error covariance,

followed by an “analysis” or update step, a sequence analogous to OI. After the

forecast step, an optimal weight matrix or Kalman gain matrix is calculated as in

OI, and this matrix is used in the analysis step.

The forecast step is

xf (ti) = Mi−1[x
a(ti−1)] (2.19)

Pf(ti) = Mi−1P
a(ti−1)M

T
i−1 +Q(ti−1) (2.20)

The analysis step is written as in OI, with

xa(ti) = xf(ti) +Kidi (2.21)

Pa(ti) = (I−KiHi)P
f(ti) (2.22)

where

di = yo
i −H [xf(ti)] (2.23)

is the observational increment or innovation
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The formula for the Kalman gain, computed after completing the forecast step,

is obtained by minimizing the analysis error covariance Pa
i . It is given by the same

formula derived from OI, but with the constant background error covariance B

replaced by the evolved forecast error covariance Pf(ti):

Ki = Pf(ti)H
T
i [HiP

f(ti)H
T
t +Ri]

−1 (2.24)

The updating of the forecast error covariance matrix ensures that the analysis

takes into account the forecast error. Unfortunately the extended Kalman filter is

exceedingly expensive, since the linear model matrix Mi−1 as size n, the number of

degree of freedom of a modern model(n ≈ 106) and updating the error covariance

is equivalent to performing O(n) model integration. This method is simplified

through some assumptions.

One promising simplification of Kalman filtering is ensemble Kalman filtering.

In this approach, an ensemble of K data assimilation cycles is carried out

simultaneously (Houtekamer and Mitchell, 2001; Houtekamer et al., 1996; Hamill

et al., 2001). All the cycles assimilate the same real observations, but in order

to maintain them realistically independent, different sets of random perturbations

are added to the observations assimilated in each member of the ensemble data

assimilations. This ensemble of data assimilation system can be used to estimate

the forecast error covariance. After completing the ensemble of analysis at time

ti−1, and the K forecast xf
k(ti) = Mk

i−1[x
a
k(ti−1)], one can obtain an estimate of

the forecast error covariance from the K forecast xf
k(ti). For example one could

assume:

Pf ≈
1

K − 1

K
∑

k=1

(

xf
k − xf

)(

xf
k − xf

)T

where xf represents the ensemble average.
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28 2. Air quality models and data assimilation techniques

The ensemble Kalman filtering approach has several advantages: (a) K is of the

order of 10-100, so that the computational cost (comapred with OI and 3D-Var) is

increased by a factor 10-100. Although this increase cost may seem large, it is small

compared to extended Kalman filtering, which requires a cost increase of order of

number of degree of freedom of the model. (b) Ensemble Kalman filtering does not

require the development of a linear and adjoint model. (c) It does not require the

linearization of the evolution of the forecast error covariance. (d) It may provide

useful initial perturbations for ensemble forecasting (Kalnay, 2003).

2.2.8 4D-Var

4D-Var is a simple generalization of 3D-Var for observations that are distributed

in time. The equations are the same, provided the observation operators are

generalized to include a forecast model that will allow a comparison between the

model state and the observations at the appropriate time.

Over a given time interval, the analysis being at the initial time, and the

observations being distributed among n times in the interval, we denote by the

subscript i the quantities at any given observation time i. Hence, yi, xi e xt
i are

the observations, the model and the true states at time i, and Ri is the error

covariance matrix for the observation errors yi −Hi(x
t
i). The observation operator

Hi at time i is linearized as Hi. The background error covariance matrix B is only

defined at initial time, the time of the background xb and of the analysis xa.

In its general form, 4D-Var analysis is defined as the minimization of the

following cost function:

J(x) = (x− xb)
TB−1(x− xb) +

n
∑

i=0

(yi −Hi[xi])
TR−1

i (yi −Hi[xi]) (2.25)

28



2.2 Data assimilation techniques 29

which can be proven, like in the three-dimensional case detailed previously, to

be equivalent to finding the maximum likelihood estimate of the analysis subject to

the hypothesis of Gaussian errors. The 4D-Var analysis problem is by convention

defined as the minimization problem of the (2.25) subject to the strong constraint

that the sequence of model states xi must be a solution of the model equations:

∀i,xi = M0→i(x)

where M0→i(x) is a predefined model forecast operator from the initial time

to i. 4D-Var is thus a nonlinear constrained optimization problem which is very

difficult to solve in the general case. Fortunately it can be greatly simplified with

two hypotheses:� Causality. The forecast model can be expressed as the product of

intermediate forecast steps, which reflects the causality of nature. Usually

it is the integration of a numerical prediction model starting with x as the

initial condition, then by denoting Mi the forecast step from i to i− 1, xi is

given by:

xi = MiMi−1...Mix� Tangent linear hypothesis. The cost function can be made quadratic by

assuming, on top of Hi the linearization of M , that the operator can be

linearized, i.e.

yi −HiM0→i(x) ≈ yi −HiM0→i(xb)−HiM0→i(x− xb)

where M is the tangent linear model as discussed in (2.2.7) i.e. the

differential of M .
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The two hypotheses above simplify the general minimization problem to an

unconstrained quadratic one which is numerically much easier to solve. The first

term Jb of the cost function is no more complicated than in 3D-Var, while the

evaluation of the second term Jo would seem to require integrations of the forecast

model from the analysis time to each of the observation times n, and even more

for the computation of the gradient ∇Jo (Kalnay, 2003). It is given by

∇Jo =

[

∂Jo

∂x(t0)

]

=

N
∑

i=0

MT
i→0H

T
i R

−1
i [H(xi − yo

i )] (2.26)

where xi = M(i−1)→i(xi−1). The equation 2.26 shows that every iteration of the

4D-Var minimization of the gradient, i.e. computing the increments [H(xi−yo
i )] at

the observations times ti during a forward integration, multiplying them by HT
i R

−1
i

and integrated these weighted increments back to the initial time using the adjoint

model MT (Bouttier and Courtier, 1999; Kalnay, 2003).

For a more detailed description of the different data assimilation methods, it is

suggested to refer to the mentioned bibliography in this Section.

2.3 Data Assimilation in Air quality models

Over the last decade, the great number of observations and advances in spatio-

temporal data assimilation (DA) methods in atmospheric chemistry have allowed a

more efficient use of measurements, thus possibly reducing model uncertainties.

Nevertheless, the issue of determining an efficient technique for chemical DA

remains challenging.

The Ensemble Kalman Filter is a promising method for chemical DA.

Constantinescu et al. (2007b) assesses the performance of EnKF in an idealizing

setting. In Constantinescu et al. (2007a) a new background error as a autoregressive
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process is introduced as a key ingredient of data assimilation, obtaining a realistic

estimation of background error distribution. In Constantinescu et al. (2007c) the

performance of the EnKF method is compared with a state-of-the-art 4D-Var

approach. Two Kalman filter algorithms, the reduced rank square root (RRSQRT)

and the EnKF are implemented in Hanea et al. (2004, 2007). However, it is

important to remark that, since air quality models are highly non-linear, EnKF

implementation could be computationally expensive, as the number of ensemble

members necessary to compensate the effects of non-linearity could be high (from

20 to 50 according to Hanea et al., 2007).

Four-dimensional variational techniques are often employed to study the

sensitivity of chemical species in emissions and to improve their estimation at

regional and continental scale, through the use of adjoint model (Mallet and

Sportisse, 2005; Quélo et al., 2005). Menut et al. (2000) utilised the adjoint

model of a simplified urban photochemical model to examine the sensitivity of

ozone and nitrogen dioxide concentration to various parameter and in Menut

(2003) a more comprehensive study, utilising adjoint modelling approach, to

investigate sensitivity of O3, Ox and NOx concerning to reactions rates, emissions,

boundary conditions, dry deposition, temperature and turbolent vertical diffusivity

is presented. Whereas in Elbern and Schmidt (2001) a chemical 4D-Var system

has been developed and applied for the study of an enhanced summery ozone level

episode. Elbern et al. (2000) shows skill and limits of the 4D-Var technique applying

to improving emissions rates of non-observed ozone precursors, when only ozone

observations are are available. Further elaborations of this technique can be found

in Elbern et al. (2007) and Chai et al. (2009). Despite the satisfactory results

obtained, four-dimensional variational techniques require the formulation of the

tangent linear model and its inverse, that are complex to build, given the intrinsic

complexity of air quality models and require high computational costs and this
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puts a limit to its comprehensive diffusion.

The optimal interpolation data assimilation technique is used by Jeuken et al.

(1999) to combine total ozone columns with the three-dimensional tracer transport

model TM3. Starting from a separable form of the forecast covariance matrix,

the optimal interpolation equation could be rewritten into a horizontal and

vertical analysis step. Ozone profiles from the assimilation appeared realistic and

close to the ones observed. They were capable to describe dynamical features

in the lower stratosphere. In Clerbaux et al. (2001) a sequential assimilation

approach based on optimal interpolation is used to incorporate CO columnar

dataset into a global three-dimensional chemistry-transport (MOZART). Surface

CO mixing ratios computed after assimilation of total columns were compared

with in situ measurements and a good agreement was found between the two

data set. In Lamarque et al. (1999) observations of carbon monoxide columns

were assimilated into a global three-dimensional chemistry transport model using

the optimal interpolation technique. On the global scale the adjustment of the

CO field resulting from the assimilation procedure was large at the beginning the

assimilation suggesting discrepancies in the model initial conditions. Moreover

the assimilation of CO significantly influenced the distribution of other chemical

species, even over the limited time periods they analysed. Also in Riishojgaard

et al. (2000) the optimal interpolation routine was chosen to an operative ozone

observation assimilation, producing realistic total ozone fields, while a substantial

bias with respect to observed profiles remains in the upper stratosphere.

Khattatov et al. (2000) presents a sequential data assimilation system that

is based on suboptimal Kalman filter, that has the same formulation of the

optimal interpolation, but with a parametrization of the temporal evolution of

the B matrix. This sequential assimilation approach was developed in a general

global chemistry transport model for assimilation of ozone observation, achieving

32



2.3 Data Assimilation in Air quality models 33

satisfactory results on global stratospheric ozone distribution. This technique was

firstly presented and tested by Ménard and Chang (2000) for assimilating limb-

sounding CH4 observations of stratospheric chemical constituents into a tracer

transport model. Same approach is successfully applied by Fierli et al. (2002)

assimilating sequentially tracer measurements in isentropic chemistry-transport

models (CTMs) of the stratosphere.

Wu et al. (2008) compared different algorithms for ozone forecasts (optimal

interpolation, reduced-rank square root Kalman filter, ensemble Kalman filter, and

4D-variational assimilation), finding that the optimal interpolation algorithm (OI)

and ensemble Kalman filter algorithm (EnKF) have the best performance, the

former during assimilation periods, the latter during forecast.

So in this thesis work it was decided to implement an Optimal Interpolation

routine, that has the advantage to be relatively easy to realize and to not imply

high computational cost. Moreover, following the cited literature, in the contest of

air quality modelling it is quite well performing with respect to more sophisticated

data assimilation approach.
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Chapter 3

BOLCHEM and CHIMERE and

Optimal Interpolation

The first part of experimental work focused on implementing and testing an

Optimal Interpolation routine in the air quality model BOLCHEM and the

chemistry transport model CHIMERE. BOLCHEM is a model that consists of

a mesoscale meterological model (BOLAM) coupled an on-line one way with

a gas-phase chemistry processor. Whereas, CHIMERE does not explicitly

calculates the meteorological part that is provided by the meteorological model

BOLAM. Different assimilation experiments have been performed assimilating

ground measurements and satellite tropospheric columns. In this chapter a

brief description of the employed models, observations used for validation and

assimilation and implemented Optimal Interpolation routine will be given.
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3.1 BOLAM model

BOLAM (BOlogna Limited Area Model) is a meteorological model based on

primitive equations in the hydrostatic approximation. It solves the prognostic

equations for wind components u and v, potential temperature, specific humidity

and surface pressure. Variables are defined on hybrid coordinates and are

distributed on a non-uniformly spaced Lorenz grid. The horizontal discretization

employs geographical coordinates, with latitudinal rotation on an Arakawa C-

grid. The model implements a weighted average flux scheme for three-dimensional

advection. The lateral boundary conditions are imposed by means of a relaxation

scheme that minimizes wave energy reflection. The microphysical scheme has five

prognostic variables (cloud water, cloud ice, rain, snow and graupel), as derived

from the one proposed by Schultz (1995). Deep convection is parameterized

with the scheme of Kain-Fritsch (Kain and Fritsch, 1990; Kain, 2004). The

boundary layer scheme is based on the mixing length assumption and the explicit

prediction of turbulent kinetic energy (Zampieri et al., 2005), while the surface

turbulent fluxes are computed according to the Monin-Obukhov similarity theory.

The parameterization of the effects of vegetation and soil processes (Pressman,

1994) is based on the water and energy balance in a four-layer soil model, and

includes the diagnostic computation of skin temperature and humidity, seasonally

dependent vegetation effects, evapo-transpiration and interception of precipitation.

The radiation is computed with a combined application of the scheme from (Ritter

and Geleyn, 1992) and the operational one from the ECMWF (Morcrette et al.,

1998). Further details of the model are provided in Malguzzi et al. (2006) and

Buzzi et al. (1994, 2003).
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Figure 3.1: BOLCHEM flow chart (http://bolchem.isac.cnr.it/projects:

bolchem.do).
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3.2 BOLCHEM model

The air quality modelling system BOLCHEM is an on-line one-way coupling of

the mesoscale meteorological model BOLAM with different types of gas-phase

chemistry processor (see Figure 3.1). A detailed description of the model is

presented in (Mircea et al., 2008). The model can be configured to run with

two different gas-phase chemical mechanisms: SAPRC-90 (131 reactions with

35 chemical species (Carter, 1990)) and CB-IV (85 reactions and 30 chemical

species (Gery et al., 1989)). BOLCHEM uses the same grid for meteorology and

chemistry. The vertical coordinate system is terrain-following (σ), with variables

distributed on a non-uniformly spaced staggered Lorenz grid, while the horizontal

discretization uses geographical coordinates on an Arakawa C-grid. For each

time step, the meteorological fields are computed and then used in the chemistry

module in order to update the pollutant concentrations. The meteorological part is

driven by BOLAM, which is based on hydrostatic primitive equations, with wind

components u and v, potential temperature θ, specific humidity q and surface

pressure Ps as dependent variables. The same 3-D WAF (Weighted Average

Flux, Hubbard and Nikiforakis, 2003) mass conservative advection scheme is used

both for meteorological quantities and pollutants. The dry deposition of gases

is parametrized following a resistance analogy approach (Wesely, 1989), using the

description of soil consistent with that of meteorology. The vertical diffusion scheme

uses a parametrization dependent on turbulent kinetic energy.

Initial and lateral boundary conditions for meteorology were supplied by the

European Centre for Medium-range Weather Forecasts (ECMWF) and interpolated

over the BOLCHEM grid. Gas fields, as well as anthropogenic and biogenic

emissions, can be provided by different databases (including climatology for 3-D

fields).
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3.3 CHIMERE model

CHIMERE is a three-dimensional (3-D) Eulerian chemistry-transport model. The

CHIMERE multi-scale model is primarily designed to produce daily forecasts of

ozone, aerosols and other pollutants and make long-term simulations for emission

control scenarios. CHIMERE runs over a range of spatial scale from the regional

scale (several thousand kilometers) (Schmidt and Martin, 2003; Schmidt et al.,

2001) to the urban scale (100-200 Km) (Vautard et al., 2001; Beekmann and

Derognat, 2003) with resolutions from 1-2 Km to 100 Km. CHIMERE offers

the option to include different gas phase chemical mechanisms. The original,

complete scheme called MELCHIOR1, describes more than 300 reactions of 80

gaseous species. The hydrocarbon degradation is fairly similar to the EMEP

gas phase mechanism (Simpson, 1992). Adaptations are made in particular for

low NOx conditions and NOx-nitrate chemistry. All rate constants are updated

according to Atkinson et al. (1997) and DeMore et al. (1997). Heterogeneous

formation of HONO from deposition of NO2 on wet surfaces is now considered,

using the formulation of Aumont et al. (2003). In order to reduce the computing

time a reduced mechanism with less species and about 120 reactions is derived from

MELCHIOR (Derognat et al., 2003), following the concept of “chemical operators”

(Carter, 1990). This reduced mechanism is called MELCHIOR2.

The model formulation is based on the mass continuity equation for several

species in every grid cell. The numerical method for the temporal solution of

the stiff system of partial differential equation is adapted from the second-order

TWOSTEP algorithm originally proposed by Verwer (1994). CHIMERE can run

with several vertical resolutions, and with a wide range of complexity. It can run

with several chemical mechanism configurations, simplified or more complete, with

or without aerosols.
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Vertical transport is assumed to balance horizontal mass divergence/

convergence. Horizontal turbulent fluxes are not considered. Vertical turbulent

mixing takes place only in the boundary-layer and follows the parametrization

of Troen and Mahrt (1986). Advection is performed either by a first upwind

scheme, the Van Leer scheme or by the PPM (Piecewise Parabolic Method) 3d

order scheme for slow species. Aerosol thermodynamic equilibrium is achieved

using the ISORROPIA model.

In this work CHIMERE version V20050G1 over Europe is used. The

meteorological fields are provided by the hydrostatic mesoscale model BOLAM

(Bologna Limited Area Model) paragraph 3.1. The anthropogenic emissions

are derived from the EMEP annual totals for 2002 (Vestreng et al., 2004) for

NOx, SO2, CO, and non-methane volatile organic compounds. The boundaries

concentrations for the continental set up are provided by MOZART CTM version

2 (Horowitz et al., 2003) with an horizontal resolution of about 0.5 × 0.5 and

spatially interpolated from the EMEP grid onto the CHIMERE grid.

More details about CHIMERE model are given by (Schmidt et al., 2001;

Vautard et al., 2003) and by the Laboratoire de Météorologie Dynamique on the

web site http://euler.lmd.polytechnique.fr/chimere.

3.4 Ground based measurements

The first application (for details and results see chapter 4) of the implemented

optimal interpolation routine consists in the assimilation of synthetic observations.

To generate a realistic observations spatial distribution, we referred to a real

observation network: the European Air quality dataBase (AirBase). Whereas in the

second application (for details and results see chapter 5), pollutant concentrations

of this database were utilised as independent observations, comparing them with the
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Figure 3.2: Air Base measurements network.

assimilated chemical species. AirBase is the public air quality database system of

the European Environment Agency (EEA). It contains air quality monitoring data

and information submitted by the participating countries throughout Europe. The

air quality database consists of multi-annual time series of air quality measurement

data and their statistics for a representative selection of stations and for a number of

pollutants. It also contains meta-information on the involved monitoring networks,

their stations and their measurements as type of station (traffic, industrial,

background), type of area (urban, sub-urban, rural), characteristics of zone

(residential, industrial, commercial, natural). The database covers geographically

all countries from the European Union. In Figure 3.2 is depicted the measurement

station that compose the Air Base network.
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3.5 Satellite columns measurements

The trace gas sensor SCIAMACHY onboard European Space Agencys ENVISAT-1

satellite in sun-synchronous orbit provides a smooth continuation of measurements

performed by its predecessor instrument, GOME, onboard the ERS-2 satellite.

The enhanced capabilities of SCIAMACHY in measuring NO2 include increased

horizontal resolution (60 km across-track direction, 30 km along track direction)

and a limb-nadir matching scan for obtaining the vertical structure of NO2 as well as

the NO2 column amount. The satellite overpass time is about 10:00 local standard

time (LST) and global coverage is achieved in 6 days at the equator (Boersma

et al., 2004).

OMI is an instrument onboard NASAs Earth Observing System Aura satellite

launched in July 2004. It is a nadir-viewing imaging spectrograph measuring direct

and atmosphere-backscattered sunlight in the ultraviolet-visible (UV-VIS) range

from 270 nm to 500 nm. Satellite has local overpass time at 13:30. The wide

field of view of the nadir-pointing telescope (114°) gives OMI a swath width of

2600 km and provides daily global coverage with a high horizontal resolution. For

the channel in which NO2 is observed in global observation mode, the pixel size

in the swath direction increases from 13 km x 24 km (along across track) at the

exact nadir position to about 13 km × 150 km at the outermost swath angle (57°)
(Boersma et al., 2006).

The NO2 tropospheric column data sets utilized in this work are available on the

TEMIS project web site (http://www.temis.nl). SCIAMACHY NO2 tropospheric

column is the result of a collaboration between the Belgian Institute for Space

Aeronomy (BIRA-IASB) and the Royal Netherlands Meteorological Institute

(KNMI) and the OMI NO2 tropospheric column is a result of a collaboration

between KNMI and NASA, in the framework of the ESA Data User Program
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Figure 3.3: Total (upper left panel) and tropospheric (upper right panel) NO2

colunm from SCHIAMACHY and total (lower left panel) and tropospheric

(lower right panel) NO2 colunm from OMI related to 24th August 2007 (Ref.:

http://www.temis.nl). NO2 colunm are expressed in 1015molecol/cm2.
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44 3. BOLCHEM and CHIMERE and Optimal Interpolation

Tropospheric Emission Monitoring Internet Service (TEMIS) project. Description

of the retrieval to obtain tropospheric columns method can be found in (Boersma

et al., 2004) for SCIAMACHY and in (Boersma et al., 2006) for OMI.

In Figure 3.3 shows the total and tropospheric columns of NO2 in 24th August,

it is evident the higher daily coverage of OMI with respect to SCIAMACHY. In the

case taking into account, different polluted areas are detected by both satellites,

as a vast area around Beijing, North-Central Europe, East and West cost of USA.

Anyway finer resolution and better coverage of OMI makes it more suitable with

respect to SCIAMACHY to provide daily picture of polluted area and to catch

hot-spot area.

In the present work only the NO2 tropospheric columns made with a scan

angle below 55° and with a cloud fraction not exceeding 30% are utilised in the

assimilation algorithm. First restriction was adopted in other to avoid pixel with

a too large horizontal length with respect to other pixels and second restriction

in order to avoid assimilation of columns with a too high overall error in vertical

(Duncan et al., 2010; Boersma et al., 2006).

3.6 Optimal Interpolation algorithm

In the presented work, a sub-optimal Intepolation (OI) algorithm is implemented

in both the BOLCHEM and CHIMERE models to assimilate surface observations

and tropospheric columnar of gas constituents. The OI routine was chosen because

it is relatively simple and computationally inexpensive. We refer to sections 2.2.5

and 2.2.4 and to (Talagrand, 1997; Kalnay, 2003) for a general formulation of

assimilation problem.

The basic formulation of OI, with the hypothesis of unbiased errors for the

background fields and uncorrelated observational errors, can be written:
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xa = xb +BHT
(

HBHT +R
)

−1
(yo − yb) (3.1)

where: xa and xb are the analysis and background (or first guess) vectors,

respectively, dimensioned as the number of grid points I; yo and yb vectors,

dimensioned as the number of observations K, are the observations and the

background field interpolated over the observation sites, respectively; B is the

covariance matrix of the background error dimensioned as I × I and H is the

observation operator (I×K) and R is the K×K covariance matrix of observation

errors. On the hypothesis of uncorrelated observation errors, R is diagonal. In the

adopted procedure H and B matrices are not explicity calculated, but G (BHT )

and S (HBHT ) matrices are computed. G is the I × K covariance matrix of

background error between model grid points and observations locations; S is the

K ×K covariance matrix of the background error between observations points. A

simplified implementation of covariance parametrization is adopted (Buzzi et al.,

2003; Fierli et al., 2002; Khattatov et al., 2000) , choosing Gaussian shape functions

factorised in horizontal and vertical components as follows:

f(i, j) = σ2
b · e

−
1
2

(

dh(i,j)

Lh

)2

· e
−

1
2

(

zi−zj

Lv

)2

(3.2)

where dh (i, j) and zi − zj are the horizontal and vertical distances between points

i and j and Lh and Lv are scale parameters defining the observation influence in

the horizontal and vertical direction, respectively.

In the case of columnar observations S matrix does not depend on the vertical

dimension while G matrix is divided in a part that weighs horizontally the

covariance error with a correlation value of 30 km and that convolves vertically

the analysis increments on the model grid proportionally to the model ozone

profile. No temporal background error evolution is adopted because the NO2 has
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46 3. BOLCHEM and CHIMERE and Optimal Interpolation

an high temporal variation, this approximation is particularly valid for assimilation

of satellite data, as it is performed as a maximum once a day at the same location.

In the case of satellite observations, to obtain columnar values from model

profile is often applied the Averaging Kernel (AK) (Eskes and Boersma, 2003;

Boersma et al., 2004). Anyway, as underlined Blond et al. (2007) for SCIAMACHY

data and Huijnen et al. (2010) for OMI data, the correction for NO2 is in general

very low, as NO2 is trapped in low tropospheric layers and AK is not so varying in

these layers. It was so decided to not apply AK in this work.

A further simplification is introduced by defining ǫ as the ratio between the

observation error covariance and the background error covariance (σ2
o/σ

2
b ), assumed

constant for every model assimilated variable. Thus, dividing all the covariance

matrices by σ2
b , the K diagonal elements of R are equal to ǫ, which becomes

the single tuning parameter used to give more or less weight to the observations

(Kalnay, 2003). Here, the values of Lv, Lh and ǫ are those chosen by (Buzzi

et al., 2003) (for DA application in CTMs), to assimilate spatially non-uniform

observations in the BOLAM model, with a horizontal resolution comparable to the

one used here.
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Chapter 4

Assimilated observations for

improving tropospheric ozone

In this chapter is presented a first application of the data assimilation system

aiming at evaluating the improvement in the capability of regional models to

reproduce the distribution of tropospheric pollutants; for this we used surface

chemical observations. Among the many causes of uncertainties of chemistry

models simulations, a particular focus is given by uncertainties in emissions, that

are known to be high, despite continuous improvement in compilation of emissions

inventories. Thus we focused on evaluation of the efficacy of DA in correcting

the error in ozone due to biases in emission scenarios. The study presented in

this Chapter was carried out using the sequential Optimal Interpolation (OI)

routine implemented in the air quality model BOLCHEM to perform ozone and

nitrogen dioxide assimilation. This part of the work was performed using the

Observing System Simulation Experiment (OSSE), which allows the quantification

of assimilation impact, through comparison with a reference state. OSSE is

typically designed to use data assimilation ideas to investigate the potential
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48 4. Assimilated observations for improving tropospheric ozone

impacts of prospective observing systems. In an OSSE, simulated rather than

real observations are the input to a data assimilation system. This method was,

for instance, successfully employed for satellite data assimilation to evaluate the

expected performance of proposed observing strategies on improving CO in the

lowermost troposphere (Edwards et al., 2009). Different sensitivity tests were

carried out in order to identify how assimilation can correct perturbations on O3,

induced by NOx emissions biased in both flux intensity and time. Tests were

performed assimilating different species (only O3, only NO2 and both O3 and NO2),

and varying assimilation window length (12 hours or 24 hours) and starting hour

of assimilation (12 AM, 12 PM, 06 AM). Emissions were biased quantitatively up

to ± 50% and shifted temporally up to ± 2hours. This part of the work dealt

with assimilation of ground based observations with a realistic distribution derived

from AirBase database network and was focused on Po Valley. However it can

be easily extended in other polluted areas, characterized by a reasonable number

of observational sites (order of 20-30 on 40000km area) as for instance European

MEGACities and hot-spot areas.

4.1 Numerical experiments

4.1.1 Experimental set-up and case study description

Simulations were performed in a domain ranging between 38°N-48°N and 7°E-
18°E, with an horizontal resolution of 0.2° × 0.2° and with 33 sigma-hybrid levels,

the first level being about 40 meters above the ground. The chemical processes

were calculated in the 16 lowermost model levels up to the mid-troposphere. The

initial and boundary conditions for the meteorological variables were supplied by

ECMWF, and updated every 6 hours with an horizontal resolution of 0.5° × 0.5°
48
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and 60 sigma-hybrid levels. The emission fields for Italy were obtained from the

national emission inventory of ARIA-NET S.r.l. in the frame of the MINNI project

(National Integrated Modelling system for International Negotiation, Zanini et al.,

2004), while for the non-Italian domain portions, they came from the EMEP

inventory. They are both estimated from 1999 year inventories and they were

regridded into BOLCHEM grid. The 3-hourly chemical boundary and initial

conditions were also provided by EMEP model. The chemical scheme here used

was SAPRC-90 (Mircea et al., 2008).

Simulations were performed in the Po Valley. The study focused on this region

because is a highly urbanized and intensely industrialized area, which is one of the

most polluted regions in Europe, and is often subjected to strong photochemical

pollution episodes (Gabusi and Volta, 2005 and references herein), favored by

frequent stagnant meteorological conditions associated with high insolation during

summer (Dosio et al., 2002). The Po Valley can be primarily considered a NOx

sensitive region. Beekmann and Vautard (2009) found a mainly NOx sensitive

regime over the Mediterranean basin and Eastern Europe, with the exception of

several large agglomerations (e.g. Barcelona, Milan). Moreover, the VOC sensitive

chemical regime for European agglomerations is more pronounced in models with

an urban scale resolution (Thunis et al., 2007).

It was chosen a four-day photochemical pollution event, lasting from July 20 to

24, 2004. This period, in fact, was characterized by high values of O3 concentration

at the ground throughout the Po Valley area. The synoptic situation was favorable

to high photo-oxidant production, since high irradiance and temperature conditions

were governed by a stationary high-pressure ridge at 500 hPa extending from North

Africa to Southern Scandinavia (not reported here). The two upper panels in

Figure 4.1 depict the ground level temperature (upper panel) and O3 concentrations

(middle panel), as simulated by the BOLCHEM model for July 22 at 15 UTC.
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50 4. Assimilated observations for improving tropospheric ozone

Simulated temperatures in the Po Valley between 12-18 UTC exceeded 30� on

July 20 and 21, reaching 34� on July 22 and 23, and high temperatures were

also estimated in large cities in Northern Italy. In Figure 4.1, middle panel,

the ozone plume produced by photochemical pollution in the Po Valley is clearly

visible. The ozone value significantly exceeds the information threshold (180 µg

m−3) and reaches the alert threshold (240 µg m−3) in a few localized areas as

Genoa, La Spezia, Trieste, Venice (European Commission directive 2002/3/EC).

Figure 4.1, lower panel shows the daily cumulated NOx emissions. The highest

NOx emissions are produced in the Milan and Genoa areas, this pattern remaining

stable throughout the simulation.

4.1.2 Scenarios of biased NOx emissions

In order to investigate the ability of DA to reduce the effect of an NOx emissions bias

on O3 concentration, a set of Observing System Simulation Experiments (OSSE)

(Arnold Jr and Dey, 1986 and Edwards et al., 2009, Constantinescu et al., 2007a

for an application to tropospheric chemistry) were performed in a perfect model

approach, assuming a simulation with unperturbed emissions as the reference

atmosphere. Synthetic perfect observations of NO2 and O3 were extracted from

the lowermost model level of the reference run in 28 spatial locations of AirBase

observations (http://air-climate.eionet.europa.eu/databases/airbase/ airbasexml/)

in the Po Valley. The selection was performed choosing the closest model grid point

to each observational point and additional observations lying in the same grid cell

were eliminated. The resulting spatial distribution of the synthetic observations is

a not uniform distribution with a smaller number of observations (28) with respect

to those available in AirBase database (48). The synthetic observational coverage

is reported in the lower panel of Figure 4.1 (black crosses). The assimilation was
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Figure 4.1: Upper and middle panels depict the ground level temperature (°C) and
O3 concentration (µg m−3) simulated by the model, for July 22, 2004 at 15 UTC,

respectively. The lower panel depicts the daily cumulative NOx emissions (mol

m−2); the black crosses represent the locations of assimilated synthetic observations,

while the thin “x” represent the real observation network used for setting up the

spatial distribution of synthetic observations.
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52 4. Assimilated observations for improving tropospheric ozone

performed on the second day of the simulation (21 July), and was carried out every

hour.

The OSSE approach has been chosen in order to separate and better identify the

emissions bias effects and the role of assimilation in correction of the induced bias

in O3 field. Assimilation of actual observations instead of synthetic observations,

should imply to assimilate also the reference simulation, as it could not be

considered perfect any more. But this operation would shift chemical balance

in reference case and it could be more difficult to distinguish the specific effect

of assimilation in correcting biases in emissions and to study this issue at a

methodological point of view. This increases the complexity of the problem, as

it introduces the issue of the possible bias between the model chemical mechanism

description and the “real” chemical mechanism description.

The characteristics of the assimilation experiments are summarized in Table

4.1. The first ensemble of experiments were defined (i) to assimilate O3, NO2

and both NO2 and O3, and (ii) to use 4 temporal assimilation windows: an

entire day (DA 0024 O3, DA 0024 NO2 and DA 0024 NO2 O3 for assimilation

of both species), the first 12 hours of the day (DA 0012 O3, DA 0012 NO2

and DA 0012 NO2 O3), the last 12 hours (DA 1224 O3, DA 1224 NO2 and

DA 1224 NO2 O3), and during exposure to sunlight from 6 to 18 UTC

(DA 0618 O3, DA 0618 NO2 and DA 0618 NO2 O3). Each assimilation

experiment was composed of a set of 4 simulations with NOx emissions biased

by 25%, 50%, -25%, -50%, following the uncertainty estimates given in the

introduction. The second ensemble of experiments was performed to evaluate the

DA impact on the correction of the error caused by the temporal disaggregation

of emissions. For this purpose, temporal shifts of ±1 hour and ±2 hour

were applied to the emissions scenarios, performing 20 additional simulations

based on DA 0024 NO2, DA 0024 NO2 O3, DA 0618 NO2 and DA 0618 NO2 O3
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Figure 4.2: NOx emissions expressed in mol m−2 hour −1 and averaged in the area

selected for analysis: the left panel shows the flux biased NOx emissions scenarios,

and the right panel shows the temporally biased ones.

configurations.

The evaluations of DA impact were performed over the Po Valley area, shown

in Figure 4.1, identified as a 3-D box, of latitude 44.0°N-46.5°N, longitude 7.0°E-
13.5°E, altitude below 600 m asl and model cells with less than 50% covered by

sea. The chemical species selected for estimations were averaged over the model

grid points where assimilation was not performed.

The different NOx emission scenarios are shown in Figure 4.2, NOx shows two

maxima corresponding to traffic emissions in the morning and afternoon, the fluxes

being equal for all days of the simulation.
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54 4. Assimilated observations for improving tropospheric ozone

Experiment DA Species Perc. biases Temp. biases

name window assimilated NOx emiss. NOx emiss.

Reference None None No No

DA NOASSIM None None Yes Yes

DA 0024 O3 00 - 24 UTC O3 Yes No

DA 0024 NO2 00 - 24 UTC NO2 Yes Yes

DA 0024 NO2 O3 00 - 24 UTC O3 NO2 Yes Yes

DA 0012 O3 00 - 12 UTC O3 Yes No

DA 0012 NO2 00 - 12 UTC NO2 Yes No

DA 0012 NO2 O3 00 - 12 UTC O3 NO2 Yes No

DA 1224 O3 12 - 24 UTC O3 Yes No

DA 1224 NO2 12 - 24 UTC NO2 Yes No

DA 1224 NO2 O3 12 - 24 UTC O3 NO2 Yes No

DA 0618 O3 06 - 18 UTC O3 Yes No

DA 0618 NO2 06 - 18 UTC NO2 Yes Yes

DA 0618 NO2 O3 06 - 18 UTC O3 NO2 Yes Yes

Table 4.1: Experiment reference names used in text, time window when DA

is carried out, species assimilated, and indication of presence of percentage or

temporal biases in NOx emissions. Each experiment is composed of a set of 4 runs

with ±50%, ±25% biased and/or ±1hour and ±2hours biased NOx emissions.
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4.2 Assimilation with variable NOx emissions intensity 55

4.2 Assimilation with variable NOx emissions

intensity

4.2.1 Sensitivity of model

The NO2 concentration modeled at ground level was chosen as an indicator of the

model’s response to the NOx emission perturbation. The model has a characteristic

time to adjust the concentration of the species perturbed by the biased emissions.

Figure 4.3 (panel a) depicts the relative difference of NO2 between perturbed

simulations and the reference, clearly showing that the model has a spin-up time

of about 8 hours to adjust NO2 concentrations to a stable perturbation. Therefore,

the first 24 hours of the simulations were not taken in account, performing DA when

emission perturbations led to a stable dependence with respect to the reference run.

Figure 4.3 (panel a) also shows that NO2 concentrations have almost the same

entity as the emission biases, whereas, in +50% NOx emission biases, perturbation

on NO2 can reach 80%. This discrepancy can be explained by the fact that

in the high NOx state (when the NOx emission rate is high Kleinman, 1994)

insufficient concentrations of free radicals are produced to remove NOx, which

therefore accumulates more efficiently. The different emissions scenarios led to

NOx concentrations occurring in a range comparable with the transition between

low NOx and high NOx state (Sillman, 1995; Kleinman, 1991; Kleinman et al.,

1997; Lu and Chang, 1998).

Figure 4.3 (panel b) reports O3 ground concentrations, showing that during the

photochemically active period, NOx emission biases significantly perturb ground-

level O3 concentrations with respect to the reference by up to 25 µg m−3. The

perturbation is smaller for simulations with positive biases in emissions. Such

behaviour is attributed to the non-monotonic dependence of O3 in a high NOx
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56 4. Assimilated observations for improving tropospheric ozone

Figure 4.3: Panel (a) represents the relative difference of NO2 at the model ground

level, with respect to the reference for +50%, +25%, -25%, -50% NOx emission

biased simulations. Panel (b) shows the ground O3 for the un-biased and biased

simulations. Variables are averaged over the Po Valley area defined in Section 4.1.2.

concentration environment, with reduced O3 production related to an increase in

NOx emissions (Logan et al., 1981; Sillman et al., 1990, 2003; Sillman and West,

2009; Poppe et al., 1993; Lin et al., 1988). In the case of low NOx concentration

environments, O3 growth or decrease is directly proportional to NOx emission

variations (Wayne, 2000).

In the night-time regime the O3 concentration is controlled by NO titration,

(NO + O3 → NO2 + O2), leading to a reduction in O3 with increasing NO (panel

b, Figure 4.3) (Mircea et al., 2008; Hobbs, 2000; Wayne, 2000).

4.2.2 Model response to NO2 and O3 assimilation

Figure 4.4 reports the time series of ground O3 concentrations and the relative

differences for assimilated and non-assimilated simulations with respect to the

reference for the DA 0024 NO2 and DA 0024 O3 NO2 experiments (description in
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Table 4.1).

The left column in Figure 4.4 shows that during the day positive biases in

emissions induce differences in O3 maxima with respect to reference between 4%

and 5%, while negative biases induce differences between -15% and -5% (dashed

lines). The NO2 assimilation has a positive impact, bringing O3 maxima close to

the reference (within a maximum of 4%) (solid lines). This effect persists 36-40

hour after the assimilation ends on July 22.

During the night the effect of NO2 assimilation is reversed, increasing the

perturbation up to 10%-25%, bearing in mind that nocturnal O3 corrections

are around 20 µg m−3. In the case of positive NOx emission biases, during

the photochemically active period, NO2 assimilation acts to reduce the O3

concentration. Therefore, with the activation of nocturnal chemistry, the ozone

concentration is lower than in the DA NOASSIM case. At night, the O3

concentration further decreases with respect to the DA NOASSIM case due to

the effect of NO titration.

The same considerations hold in the case of the simulations relating to negative

NOx emission perturbations.

The right column in Figure 4.4 shows that, during daylight, the assimilation

of both O3 and NO2 leads to similar results to those of the NO2 assimilation.

Regarding the DA 0024 O3 NO2 experiment (4.2, right column), significant

differences with respect to the DA 0024 NO2 one are only visible during night-

time assimilation, when ozone concentrations are corrected close to the reference.

However, a few hours after the end of assimilation, the ozone behaviour becomes

similar to the case of NO2 assimilation. This result is also supported by an

experiment performed assimilating only O3 Figure 4.5, highlighting the short

persistence of the positive effects of O3 assimilation (around 2-3 hours).

The persistence of the positive impact of NO2 assimilation also beyond the
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Figure 4.4: Time-series from second day of simulation of ground O3 concentration

for unbiased (black line) and biased (colored lines) NOx emission simulations.

Dashed lines represent the non-assimilated simulations. Solid lines in (a) and

(b) represent the O3 concentration obtained with NO2 and with NO2 and O3

assimilations, respectively. Panels (c) and (e) represent the O3 relative difference

between DA 0024 NO2 and reference for positive and negative NOx emission

perturbations, respectively. Panels (d) and (f) are the same as (c) and (e) but

for DA 0024 NO2 O3. 58
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Figure 4.5: The same of Figure 4.4, but relative to DA 0024 O3 experiment.
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day of assimilation can be ascribed to the modification of the N2O5 and NO3

night-time reservoirs. Figure 4.6 shows N2O5 and NO3 concentrations at the

model ground level for the DA 0024 NO2 experiment. The NO2 assimilation has a

considerable impact on N2O5 and on NO3 during the night of 21-22 July, increasing

(or decreasing) them in the case of negative (or positive) NOx emission biases. This

impact on N2O5 and NO3 persists to a lesser extent during the night of July 22-

23. An increase (decrease) in N2O5 and NO3 radicals, rapidly photolysed at the

activation of photochemistry, can induce a larger (lesser) increase in NO2 and NO

concentrations. Consequently, assimilation can significantly modify NO2 and ozone

up to the photochemically active period of the following day.

Nevertheless, it should be remarked that the correction induced by NO2

assimilation in N2O5 and NO3 concentrations seems to be too large with respect

to the reference run concentration. This behaviour is linked to a general problem

of air quality models and assimilation procedure itself. At the state of the art,

the chemistry mechanisms used in air quality models are designed and tested

to represent correctly some major species, but they are not always guaranteed

for the other ones, as they necessarily neglect some secondary species and some

chemical reactions. Data assimilation technique that has been used, do not change

the equations that compose the chemical mechanism, but it introduces a forcing

that corrects concentrations of few species, shifting the related chemical balances.

Therefore, it is expected that, for the principal species the model deals with, the

chemical balance shifts have the same direction and similar entity of those in the

real world, whereas it is not straightforward that “right” behaviour of minor species

is guaranteed. If assimilation could be done for all species that interact each other

probably a more a coherent correction could be assured, but in general this is

not possible as the number of the species that are measured systematically and

extensively are limited. This places restrictions to assimilation procedure.
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Figure 4.6: Time series of ground N2O5 (a) and NO3 (b) concentrations for unbiased

(black line) and biased (colored lines) NOx emission simulations. Dashed lines

represent the non-assimilated simulations and solid lines represent the simulations

with NO2 assimilation.

In order to enforce this consideration, in Figures 4.7 and 4.8 the all nitrogen

species involved in the gas-photochemistry production of NO2 and O3 (expect N2O5

and NO3 already presented in Figure 4.6) and calculated in the model chemical

mechanism (Carter, 1990) are depicted. NOy is obtained following the definition

of given by Miyazaki et al. (2005) and computing it using the species explicitly

calculated in the model chemistry mechanism (NO2, NO, N2O5, NO3, HO2NO2,

HONO, RNO3 and HNO3). The principal species like NO, NO2 and PAN showed

a “right” behaviour, like so NOy since its behaviour is dominated by NO2, while

like HO2NO2 and HNO3 seems to have a response to biases in emissions and to

assimilation more similar to those detected for N2O5 and NO3. Whereas some other

minor species, like HONO and RNO3, does not seem to be strongly perturbed.

A second result of the analysis is that it is more effective to assimilate O3

precursors (like NO2) than O3 itself in order to improve O3 concentrations.
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Figure 4.7: The same of Figure 4.6, but related to NO (uppper left panel), NO2

(uppper right panel), HO2NO2 (lower left panel), HONO (lower right panel),

respectively .
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Figure 4.8: The same of Figure 4.6, but related to PAN (uppper left panel), RNO3

(uppper right panel), HNO3 (lower left panel), NOy (lower right panel), respectively

.
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4.2.3 Model response to different assimilation windows

The assimilation impact and timing may depend on the length of the assimilation

window, in particular for quantities that can be highly variable in time, such as

photolysis-driven chemical species. The analysis was restricted to NO2 assimilation

in view of the discussion in the previous section, and the assimilation window was

varied in the four different ways described in Table 4.1. Figure 4.9 reports the

absolute difference of ozone with respect to the reference for the DA 0024 NO2,

DA 1224 NO2, DA 0012 NO2 and DA 0618 NO2 simulations.

Through the comparison between DA 0012 NO2 and DA 1224 NO2 simulations

(green and light blue line, respectively), it is observed that it is more effective to

assimilate in the first part of the day. In fact, for the DA 1224 NO2 simulations the

correction of the maximum O3 value is rather poor during the assimilation window.

In the case of -50% biased emissions (Figure 4.9, panel b) the correction is about 5

µg m−3, whereas in the other experiments it is about 20 µg m−3. This discrepancy

can be ascribed to the fact that, in the DA 1224 NO2 experiment, assimilation was

activated when the photochemical processes had already started, so O3 was already

significantly more perturbed than in the other cases, and assimilation was not able

to correct it efficiently.

DA 0618 NO2 (blue lines), which covers the photochemically active period from

06 to 18 UTC, shows improvements in O3 both during (up to 20 µ g m−3) and after

assimilation (up to 15 µg m−3).

All experiments to some extent show a nocturnal perturbation of O3 (a

maximum of about 20 µg m−3 in DA 0024 NO2 ), which could be explained by

a change in titration equilibrium due to NO2 and O3 diurnal modification. It is

observed that during night-time DA 0618 NO2 and DA 1224 NO2 are the closest

to the reference.
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DA 0024 NO2 simulations (red lines) show that ozone maxima are slightly

less well corrected in cases of positive biased NOx emissions, with respect to

the other assimilation windows, while ozone maxima are corrected better in the

case of negative biased NOx emissions. During the night, the increase in ozone

perturbation is higher than in the other cases.

In DA 0024 NO2 and DA 0012 NO2, on the night of 21 - 22 July, O3 exhibits

similar perturbations, while at the activation of photochemistry (7 UTC 22

July), O3 in DA 0012 NO2 is closer to O3 in DA NOASSIM, in the case of both

positive and negative biased emissions. Such behaviour is linked to the different

perturbations of NO2 concentration in these experiments. In fact, during the night

of 21-22 July, in the DA 0024 NO2 experiment, NO2 is closer to reference due to

the effect of assimilation, while in DA 0012 NO2 NO2 is closer to DA NOASSIM,

hence in the latter experiment, at the activation of phochemistry, O3 is forced to

be closer to DA NOASSIM.

With regard to perturbation reduction in the ozone simulations, there are no

marked discrepancies between the impacts of the 24h-assimilation and those of

the 12h-assimilation. The assimilation tends to have a greater impact towards the

start and finish, and is related to the first day after assimilation ends. All different

assimilation windows tend to be quite similar on the last simulation day. In terms

of computational cost reduction, the 12h-assimilation window is to be preferred.

Overall, while no major differences exist among the various assimilation

windows, it can be concluded that DA 0618 NO2 yields better results.
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Figure 4.9: Time-series of the absolute differences with respect to reference

of DA 0024 O3 NO2, DA 0012 O3 NO2, DA 1224 O3 NO2, DA 0618 O3 NO2 and

DA NOASSIM. The runs with 50%, -50% biased NOx emissions are presented

respectively in panels (a) and (b).

Figure 4.10: Daily cumulative NOx emissions (mol m−2); the black crosses represent

the locations of assimilated synthetic observations related to the reduced number

of monitoring stations (19).
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4.2.4 Model response to reduction of assimilated

observations

The actual number of assimilated points are 28 on an area of about 40000 km2 (more

than 100 model grid points). This is a reasonable distribution of measurements

network representative of a number of observations sites in MEGAcities and/or hot-

spot areas (as Po Valley, Ruhr, England). However, in order to further strengthen

the analysis with respect to the number of assimilated observations, a test reducing

the number of monitoring stations to 19 (see Figure 4.10) was performed. To do

so the DA 0618 NO2 experiments was chosen. It was not found a significative

differences with respect to experiment with the not reducing number of monitoring

stations (28), (see Figure 4.11 in comparison to Figure 4.12). The obtained result

implies that the utilised technique, even if it was focused on Po Valley, can be

easily extended in other polluted areas, characterized by a reasonable number of

observational sites (order of 20-30 on 40000 km area), as for instance European

MegaCities and hot-spot areas.

4.3 Assimilation with NOx emission temporal

biases

The temporal distribution of emission may play a role in ozone photochemistry,

since a possible shift in peaks due to road traffic can modify the amount of NOx

during the photochemically active period. To analyse this effect, NOx emissions

are temporally shifted by +2, +1, -1, -2 hours. Assimilation of NO2 is presented

for experimentDA 0618 NO2 only, in view of the discussion in the previous section.

Figure 4.13 reports the time series of ground O3 concentration, showing that

temporally biased emissions have an insignificant impact on ozone maximum values.
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Figure 4.11: The same of Figure 4.4 but related to DA 0618 NO2 experiment and

with the reduced number of monitoring stations (19).
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Figure 4.12: The same of Figure 4.11, but related to simulations with the not-

reduced number of monitoring stations.
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More significant effects are visible during night close to the transition periods

between photochemical and nocturnal regime. It is observed that anticipated

emissions induce a negative perturbation of O3 concentration before the beginning

of photochemistry and a positive perturbation after the beginning of the nocturnal

regime. For postponed emissions (+1, +2 hours) the response of O3 concentration

is reversed. Such behaviour is strictly linked to the NOx emission profile (Figure

4.2, right panel). Emission changes during the day are less than 30%, while a drastic

transition between night and day regime can be observed, with a change of a factor

of ten in a few hours. Consequently, in the central hours of the photochemically

active period, biases in emission times do not significantly perturb O3 maxima

values. By contrast, a shift of ± 2 hours drastically changes NOx emissions during

night-time. A negative shift yields higher emissions at 5 UTC, while a positive

shift provides higher emissions at 18 UTC, thus modifying the nocturnal chemistry.

After the end of the photochemically active regime (18 UTC), the postponed NOx

emissions remain high, inducing negative O3 perturbation (Figure 4.13) due to

NO titration. Conversely, anticipated NOx emissions are lower with respect to the

reference case, leading to an accumulation of O3. Similar considerations apply to

anticipated emissions before the end of the nocturnal regime (5 UTC).

As the perturbations of O3 maxima induced by biased emissions are very

low, NO2 assimilation does not improve them significantly. After the end of the

assimilation window, the impact of assimilation is negligible.
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Figure 4.13: Time-series of ground O3 concentration for unbiased NOx emission

simulation (black line) and biased NOx emission simulations (colored lines); dashed

lines represent the non-assimilated simulations and solid lines represent simulations

with NO2 assimilation in the 06-18 window.

4.4 Results summary

The objective of the study presented in this Chapter was to assess how

perturbations in tropospheric O3 concentrations caused by emission biases can

be corrected by the assimilation of O3 and NO2 by means of an OI procedure.

An OSSE approach is used to evaluate quantitatively the impact of DA, to be

employed in the design of a simple assimilation procedure suitable for tropospheric

ozone forecasts in polluted areas.

It was found that the air quality model BOLCHEM has a high sensitivity

to intensity biases of NOx emissions, which induce a change in the chemical

compounds linked to photochemical processes (NO2, O3, N2O5, NO3). A

perturbation of up to 15% of the diurnal O3 average in the whole domain is found.

NO2 assimilation significantly improves O3 maxima during the assimilation,
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making it almost independent on different emission scenarios. The assimilation

impact lasts up to 36-40 hours after the end of the assimilation window. This is a

considerable result, especially when it is taken into account that DA generally yields

significantly better forecasts in the 6-12 hours range, but improvements vanish

afterwards (Elbern and Schmidt, 2001). The NO2 night-time chemistry has the

role of maintaining the correction of O3 due to assimilation also in the following

day. During the night, NO2 assimilation increases the perturbations of O3 with

respect to the reference, deteriorating the quality of the analysis. This effect can

be reduced by assimilating NO2 and O3 simultaneously, although the benefit lasts

only a few hours after the end of the assimilation window.

Regarding the impact of different temporal assimilation windows, even if

differences among them are not very marked, it was found that the initial and

final assimilation times have a greater impact than the assimilation window

length itself. The best results were achieved assimilating observations during the

photochemically active period (06-18 UTC).

It was also observed that temporally biased NOx emissions, during the strongest

photochemical activity, slightly perturb the O3 concentration, confirming the

findings of Tao et al. (2004), while the perturbation is larger during night-time.

Assimilation has a very low impact during the assimilation window and a negligible

impact after its end.

In brief, even if based on an OSSE approach and focusing on one event only, this

study showed that assimilating NO2 (an O3 precursor) can reduce the perturbations

induced on O3 forecasts by biased emissions. The positive effect remains up to 36-

40 hours after the end of the assimilation, and the best result was obtained for

assimilation during the photochemically active period.
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Chapter 5

Different assimilated satellite

geometry on tropospheric ozone

The aim of this part of the work was to evaluate the impact of assimilation of

satellite NO2 tropospheric columns on the distribution of pollutants at the ground

level during photochemical pollution events. In particular, we focused on the

assimilation of satellite NO2 tropospheric columns from SCIAMACHY, on-board

ENVISAT ESA satellite, and from OMI, on-board EOS Aura satellite, and its

effect on ozone at low troposphere. SCIAMACHY and OMI have a considerable

difference in spatial and temporal resolution and for an effective improvements

in assimilate fields it is particularly important the consistency between satellite

and model resolution. A second purpose was so to determine which was the more

suitable satellite geometry for improving the model simulations of photochemical

ozone. In this case the optimal interpolation routine was implemented in the three-

dimensional Eulerian chemistry-transport model CHIMERE (see Chapter 3). The

meteorological fields came from mesoscale hydrostatic model BOLAM. Two cases

study were taken into account: in 2004 summer and in 2007 summer. Different
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simulations were carried out, changing horizontal resolution (0.50° × 0.50° and 0.25°
× 0.25°), assimilating NO2 tropospheric columns from SCIAMACHY and from

OMI. To evaluate more quantitatively and over time the impact of assimilation

process and its effects on O3 at local scale, sub-areas were selected, comparing the

assimilated field with independent observations.

5.1 Numerical experiments

Two case studies of ozone tropospheric pollution above Europe are considered: (i)

from 29th July 2004 00 UTC till 4th August 2004 00 UTC where NO2 tropospheric

columns from SCIAMACHY are assimilated; (ii) from 24th August 00 UTC 2007

to 1st September 00 UTC 2007 performing assimilation of NO2 tropospheric

columns from SCIAMACHY and from OMI. Five simulations are performed for

these cases: two without assimilation (NOASSIM 2004 L, NOASSIM 2007 L)

and the other ones activating the assimilation procedure (DA 2004 SCI L,

DA 2007 OMI L, DA 2007 SCI L). CHIMERE simulations are performed with an

horizontal resolution of 0.5° × 0.5°, the vertical discretization consists in 8 sigma-

hybrid pressure levels going from the surface up to 500hPa. Meteorological fields

are provided by BOLAM model simulation at an horizontal grid of 0.4° × 0.4°
and 33 sigma-hybrid pressure levels. For case study (ii) it is tested also the effect

of changing horizontal resolution doubling it in CHIMERE (0.25° × 0.25°) and

in BOLAM simulation (0.2° × 0.2°) (NOASSIM 2007 H, DA 2007 OMI H). The

characteristics of the performed simulation are summarized in Table 5.1.
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5.2 SCHIAMACHY assimilation: 2004 event 75

Experiment Case Satellite Chemic. Meteo

name Study data utilized resolution resolution

NOASSIM 2004 L 29-07/04-08 2004 None 0.5°×0.5° 0.4°×0.4°
DA 2004 SCI L 29-07/04-08 2004 SCIAMACHY 0.5°×0.5° 0.4°×0.4°

NOASSIM 2007 L 24-08/01-09 2007 None 0.5°×0.5° 0.4°×0.4°
DA 2007 OMI L 24-08/01-09 2007 OMI 0.5°×0.5° 0.4°×0.4°
DA 2007 SCI L 24-08/01-09 2007 SCIAMACHY 0.5°×0.5° 0.4°×0.4°

NOASSIM 2007 H 24-08/01-09 2007 None 0.25°×0.25° 0.2°×0.2°
DA 2007 OMI H 24-08/01-09 2007 OMI 0.25°×0.25° 0.2°×0.2°

Table 5.1: Experiment reference names used in text, case studies, satellite data

used for assimilation, chemical and meteorological simulation resolutions.

5.2 SCHIAMACHY assimilation: 2004 event

The event occurring in summer 2004 presents favourable conditions to high photo-

oxidant production and accumulation in many European regions, because of high

irradiance and temperature and low wind intensities. Temperatures at the ground

level simulated by BOLAM model (Figure 5.1, upper panel) between 12-18 UTC

are around 30� in Po Valley, in many areas of Spain, in central France and between

25� - 28 � in German and in Netherlands. In whole West-Europe the wind at

the first model level from the ground is above 5 m/s. Figure 5.1, lower panel,

also presents the typical pattern of NO emissions at 15 UTC adopted for the

simulations and interpolated over the CHIMERE grid. Emissions are extracted

from EMEP database. It is shown that high values are present in the principal

European cities and most industrialized areas, in particular in Paris, Belgium and

Ruhr. Combination of high emissions and favourable meteorological conditions

causes to maximum ozone values to reach 150-180 µg m−3 in some areas and cities
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as Po Valley, Paris, Belgium, Barcelona. In Figure 5.2 the observed ozone related

to Belgium is showed. Concentrations come from Air Base database. The ozone

average over this domain is also performed dividing urban, sub-urban and rural

station. No significant differences are detected among the different averages. This

can be ascribed to an uniform distribution of ozone over the whole region.

In Figure 5.3, upper panel, the NO2 tropospheric columns from SCIAMACHY

are reported. Observations show the elevated concentration of NO2 corresponding

to high polluted zones as Paris area, western Belgium, Barcelona area, Frankfurt

region, ranging from 15 to 40 1015molecol/cm2.

Model innovations (Figure 5.3, lower panel) are a good indicator of the

performance of data assimilation procedure and it is noticed that there is a direct

correlation between high polluted areas and high innovations values. This means

that model is not able to represent correctly NO2 columns in these polluted

areas. It is important to notice that the innovations are almost positive. This

is in agreement with (Blond et al., 2007) who made a comprehensive comparison

among SCHIAMACHY NO2 column, CHIMERE simulations (with an horizontal

resolution of 50km × 50km) and surface measurements, finding that CHIMERE

systematically underestimates NO2 concentration in the urban and sub-urban areas

and underestimates SCIAMACHY NO2 columns during spring-summer.

The perturbations to simulated NO2 tropospheric columns, induced by

SCIAMACHY assimilation, cause a direct modification in ozone concentrations

(Figure 5.4). Comparing the left and right panel it is evident that ozone field

at the ground without assimilation is spatially smoothed and in photochemical

polluted areas it is lower with respect to the assimilated field.

For instance, Paris area is characterized by enhanced ozone values from 60-100

µg m−3 to 70-130 µg m−3, in Belgium from 50-80 µg m−3 to 90-130 µg m−3, in

Barcelona area from 70-90 to 80-130, in Frankfurt region from 70-90 µg m−3 to
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Figure 5.1: European temperature and wind (upper panel) modelled by BOLAM

model and NO emissions distribution extracted from EMEP database (lower panel)

at the first model level from the ground on 30th July 2004 and interpolated over

CHIMERE grid.
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Figure 5.2: Observed ozone concentrations from Air Base network for Belgium.

Black line represents the concentration averaged over the whole domain, red, green

and blue line represent the average of the urban, sub-urban and rural stations,

respectively. Black crosses are the values of the 26 stations (9 rural, 4 sub-urban,

13 urban).
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Figure 5.3: Upper panel shows the European distribution of NO2 tropospheric

columns from SCIAMACHY satellite on 30th July 2004; lower panel shows the

model innovations related to the same day. NO2 tropospheric columns and

innovations are expressed in 1015molecol/cm2.
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80-95 µg m−3 and in Marseille from 80-90 µg m−3 to 100-105 µg m−3.

Moreover, as depicted in Figure 5.4 right panel, the assimilation effect is

localized to regions where the NO2 tropospheric columns are high. This is caused

to the choice in the assimilation procedure that has a short horizontal correlation

in the background covariation matrix to be coherent to with the NO2 field itself,

that in general presents a structure that is highly spatially inhomogeneous.

Figure 5.4: Ozone concentration at the ground level of the model (first model level

has an height of about 50 m from the ground) on 30th July 2004 15 UTC (after 5

hours the last assimilation). The left panel depicts NOASSIM 2004 L simulation

and the right panel DA 2004 SCI L one. Black boxes indicate the selected areas

for following investigations.

5.2.1 Focus on specific sub-areas

As the effect of assimilation acts on specific regions, we focus on polluted sub-areas

where the difference between ozone daily maxima of the assimilated simulation and

not assimilated one is larger then 10%. The selected areas are: Paris (lat: 47.75°-
49.25°, lon: 1.75°-3.25°), Belgium (lat: 50.25°-51.25°, lon: 3.75°-6.25°),Barcelona
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(lat: 40.75°-41.75°, lon: 1.75°-2.75°) (reported as black boxes in Figure 5.4).

In Figure 5.5 we show the observations of NO2 on the Belgium and Paris

area, while ozone from NOASSIM 2004 L and DA 2004 SCI L simulations and

the difference between ozone from DA 2004 SCI L and NOASSIM 2004 L are

depicted in Figure 5.6. In Belgium, SCIAMACHY measures high NO2 tropospheric

values over a vast area (up to 40 1015molecol/cm2) and this brings to a high and

broad correction in ozone field with a difference between the DA 2004 SCI L and

NOASSIM 2004 L up to 50 µg m−3. In Paris area the measured columns are

lower (up to 20 1015molecol/cm2) over a smaller area with respect to Belgium and

consequently the correction on ozone field is lower and less extensive (from 10 µg

m−3 to 35 µg m−3).

Figure 5.5: European distribution of NO2 tropospheric columns from

SCIAMACHY satellite on 30th July 2004 focused on Belgium and Paris area.

To evaluate more quantitatively the impact of assimilation process and the

effects over the time, the ozone at ground level of the model is averaged in the

three selected sub-areas for NOASSIM 2004 L and DA 2004 SCI L simulations,
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Figure 5.6: Focus on Belgium and Paris area of ozone concentration at the

ground level of the model on 24th at 15 UTC, related to NOASSIM 2004 L

(upper left panel) and DA 2004 SCI L (upper right panel) simulations and of

the ozone differences between DA 2004 SCI L and NOASSIM 2004 L simulations

(lower panel).

82



5.2 SCHIAMACHY assimilation: 2004 event 83

respectively. The averaged values are compared to independent ground ozone

observations coming from the AirBase Database (more details in Section 3.4).

Firstly the observed ozone is divided in rural, urban, suburban stations and an

average of each different typologies were performed, but not remarkable differences

are found in all three sub-domains (see for instance 5.2 for Belgium area).

Regarding Paris and Barcelona areas the stations are mostly collected in the city or

they are very close to it, so even if some station are target as rural or sub-urban in

case of photochemical pollution events, it is likely that they have a behaviour closer

than the urban one. Regarding Belgium, the stations are quite well distributed over

the whole sub-domain and as already explained in previous section, the reason of

high similarity among urban, sub-urban and rural stations in the different averages

could be ascribed to quasi-uniform distribution of ozone over the whole region. So,

for the present comparison it was chosen to perform a simple average.

The ozone concentration averaged in Belgium area is represented in the upper

panel of Figure 5.7. In that case the assimilation is done once at 10 UTC on 30th

July (shown as dashed red lines) and its effect is noticeable as ozone increase to 120

µg m−3 during the peak of photochemical pollution. Moreover, the perturbation on

ozone simulation persists also at the re-activation of photochemistry in the following

day. The assimilation effect lasts roughly 24-30 hours after the end of assimilation

and this can be considered as a noticeable impact. A possible explanation is

that NO2 and O3 perturbations are high enough to cause perturbations to NOx

nocturnal reservoirs like NO3 and N2O5 as already described in Chapter 4.

Figure 5.7 (middle panel) shows the results for Paris area. The assimilation in

that case takes place around 10 UTC on 29th July and 30th July. It can be noticed

that assimilation improves the ozone field after 10 UTC during the photochemically

active period, but the correction on ozone is drastically less than the difference with

respect to observations. This could be ascribed to the fact that the observations
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network gather in the city or very close to it and so they are characterized by

an urban behaviour. SCIAMACHY measurement, having a resolution of 60 km

× 30 km at nadir, is not able to catch the high variability of pollutants in this

area, consequently assimilation effect on ozone is less marked and less close to

observations. Moreover, it is observed an almost negligible impact of assimilation

during night and at the re-activation of photochemistry in the following day. This

indicates that model bias takes over with respect to assimilation during a time

window of few hours.

In Figure 5.7 (lower panel) the ozone concentration averaged on Barcelona area

is presented. Assimilation is activated at 10 UTC on 30th July. In this case

assimilation correction on O3 shows the same entity of that in Paris area and

there is no effect in the day following the assimilation. The degree of correction

brought by assimilation is comparable to that in Paris area, anyway this is not

an high photochemical pollution event based on ozone maxima and the correction

brings the ozone rather close to ground observations.

5.3 OMI and SCIAMACHY assimilation: 2007

event

During the end of August 2007, the warm temperature and very low wind induce in

the low troposphere the formation and accumulation of ozone, reaching high values

in the principal cities of Europe. This is especially marked in South Europe and in

Mediterranean basin where the temperatures are highest. BOLAM model (Figure

5.8) between 12-18 UTC shows that temperatures at the ground level are warm

in Central-West Europe reaching 25�. Regarding the emission pattern we refer to

Figure 5.1 (lower panel), that is very similar to those used for simulations presented
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Figure 5.7: Averaged ozone in Belgium (upper panel), Paris (middle panel) and

Barcelona (lower panel) area from 29th July (first simulation day) till 1st August

(forth simulation day) for not-assimilated run (green line), assimilated one (red

line) and for measurement stations (black line) respectively. Vertical red dashed

lines indicate when assimilation occurs.
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in the current Section. Ozone maxima concentrations from CHIMERE reach high

values in Mediterranean area and South-East Europe (150-180 µg m−3), while in

Central Europe the values range around 100 µg m−3. So we focus on less strong

photochemical pollution event with respect to previous analysis. For instance, in

Figure 5.9 the observed ozone in the Ruhr region is showed. Concentrations come

from Air Base database. Also in this case, no significant differences are detected

among urban, sub-urban and rural averages. Since the station are well distributed

over this domain, also in this case we can suppose that ozone has a low variability

over the whole region, with an average peak value of 115 µg m−3 on 25th August.

Figure 5.8: European temperature and wind distribution by BOLAM model at the

ground level on 24th August 2007 and interpolated over CHIMERE grid.

Figure 5.10 depicts the NO2 tropospheric column on 24th August 2007 for OMI

and SCIAMACHY respectively. OMI provides daily global coverage with a higher

horizontal resolution (13 km x 24 km) with respect to SCIAMACHY (30km x

60km). Due to the better coverage with respect to SCIAMACHY, OMI assimilation

86



5.3 OMI and SCIAMACHY assimilation: 2007 event 87

Figure 5.9: Observed ozone concentrations from Air Base network. Black line

represents the concentration averaged over the whole domain, red, green and blue

line represent the average of the urban, sub-urban and rural ones, respectively.

Black crosses are the values of all 12 stations (7 rural, 1 sub-urban, 4 urban).
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can be performed ideally once a day. High NO2 concentrations are observed by both

satellite in North-Central Europe. Nevertheless, values are lower with respect to

2004 event.

Instead of assimilating the individual OMI pixel, “super observation” were used.

OMI observations lying in the same model grid were averaged and observations

aggregated with the same resolution of model grid cells. The aim was to perform a

DA experiment more coherent with model and observations resolutions. This choice

was strengthened by the results of preliminary tests that aimed to evaluate the

difference between assimilation using observations and super observation. It was

obtained (not reported) that, except few localized areas, there were no significative

differences in term of correction on ozone fields. This behaviour brings to the

conclusion that it is not significative to assimilate different observations on the

same grid cell. A remarkably lower computational cost can be achieved in the case

of super observation assimilation.

Ozone concentration at the ground from NOASSIM 2007 L and

DA 2007 OMI L simulations on 24th at 15 UTC is shown in Figure 5.11. As in

case presented in section 5.2 by comparing the left and right panel is evident that

assimilation causes an higher spatial variability in the ozone fields with respect to

the case without assimilation and especially increases ozone maxima in polluted

areas.

High value of ozone can be identified on the Ionian sea and South Tyrrhenian

sea. It could be ascribed to the combined effect of high temperature and presumably

to the intense forest fires events happened in that period in Greece (Turquety

et al., 2009 and references therein). Figure 5.11 shows also that NO2 assimilation

increases ozone ground concentration in some polluted areas, especially in Ruhr

region enhancing ozone from 50-70 µg m−3 to 70-100 µg m−3, in Naples area

increasing ozone more than 100 µg m−3 and in Palermo area rising it from 60-
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Figure 5.10: European distribution of NO2 tropospheric columns from OMI (upper

panel) and SCIAMACHY (lower panel) satellite on 24th. Columns are expressed

in 1015molecol/cm2.

89



90 5. Different assimilated satellite geometry on tropospheric ozone

70 µg m−3 to 90-100 µg m−3.

In order to directly compare the performance of OMI and SCIAMACHY

assimilation, a simulation with SCIAMACHY assimilation (DA 2007 SCI L) is

carried out in the period chosen for OMI assimilation experiments. Figure 5.12

shows the assimilated ozone on 24th August. SCIAMACHY assimilation correction

on ozone is less spatially extensive with respect to OMI one due to its lesser

coverage. Anyway, in the areas where it is performed, the correction of ozone

pattern is quite similar to that induced by OMI assimilation i.e. in Ruhr area,

Ionian Sea. Anyway, except few zones, the correction degree is overall quite lower

in areas where SCIAMACHY data are available (see Figure5.10); in Ruhr area O3

goes from 50-70 µg m−3 to 60-80 µg m−3 and in Ionian Sea from 50-85 µg m−3 to

70-90 µg m−3. This can be linked to the lower NO2 columns values measured by

SCIAMACHY with respect to OMI (Figure 5.10). No correction is applied in the

South Tyrrhenian due to the absence of SCIAMACHY data.

Figure 5.11: Ozone concentration at the ground level of the model on 24th at 15

UTC (4 hours after the last assimilation), related to NOASSIM 2007 L (left panel)

and DA 2007 OMI L (right panel) simulations.
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Figure 5.12: Ozone concentration at the ground level of the model on 24th August

2007 at 15 UTC (4 hours after the last assimilation), related to DA 2007 SCI L.

Concentrations are expressed in µg m−3.

5.3.1 Sensitivity to increased resolution

In this section the results obtained from the simulations with a finer resolution

both in chemical model and meteorological one are presented. In this case the

cell dimension is comparable to satellite pixel dimension and the aggregation of

observation in super observations is not significant, anyway also in this case super

observation are used, for a coherence with previous case.

Comparing the ozone in NOASSIM 2007 H simulation (Figure 5.13, left panel)

with that in NOASSIM 2007 L (Figure 5.11, left panel), the ozone field spatial

structure is more detailed and that there are more regions with high values of

ozone, as for example, the principal cities of Balkans area, in South and Central

Italy. These regions cover an area of few model grids, so it can be assumed

that combination of higher resolution emission and meteorological parameter (as

temperature, humidity, wind) plays a key role in changing simulated concentration
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of atmospheric pollutants at local scale.

In Figure 5.13, right panel, ground ozone from DA 2007 OMI H simulation is

reported. We notice again that OMI assimilation enhances the ozone concentration

in some polluted areas and increases its spatial variability. In particular, in

Ruhr region assimilation enhances ozone from 50-70 µg m−3 to 75-100 µg m−3,

in Naples area makes broader the polluted area with ozone higher than 100 µg

m−3, in Palermo area assimilation rises ozone from 60-70 µg m−3 to 90-100 µg

m−3, and in Frankfurt area enhances it from 70-80 µg m−3 to 75-100 µg m−3.

Moreover, comparing these results to those showed in previous paragraph and

related to DA 2007 OMI L simulation, it is observed that in some areas, like

Frankfurt on 24th August and gulf of Venice on 25th August (not reported),

ozone DA 2007 OMI H is significantly changed, while ozone in DA 2007 OMI L

simulation is not modified. The reason of this correction could be ascribed to the

higher resolution of DA 2007 OMI H simulation and the highly spatial variability

of NO2 and O3 fields that is better described by a finer resolution.

5.3.2 Focus on specific sub-areas

In this section an analysis of sub-areas involved by significative correction of ozone

assimilation is done through the comparison of the performance at local scale of the

DA 2007 OMI L, DA 2007 SCI L DA 2007 OMI H simulations. The criterion to

select the sub-domains is the same adopted in Section 5.2.1 adding the condition of

contemporaneous presence of OMI and SCIAMACHY measurements. The selected

zones embraces the Ruhr (lat: 51.25° - 52.25°; lon: 6.75° - 8.75°) and include two

smaller areas centred on Venice (lat: 45.375° - 45.875°;lon: 12.125° - 12.875°) and
Frankfurt (lat: 49.375° - 49.875°; lon: 8.625° - 9.125°).

In Figure 5.14 and 5.15 NO2 satellite super observation (that is what is
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Figure 5.13: Ozone concentration at the ground level of the model on 24th August

2007 15 UTC (4 hours after the last assimilation), related to NOASSIM 2007 H

(left panel) and DA 2007 OMI H (right panel).

effectively assimilated) and ozone from NOASSIM 2007 L and DA 2007 OMI L

simulations on the Ruhr and Frankfurt area are depicted. In Ruhr area OMI

measures high NO2 tropospheric values (up to 25 1015molecol/cm2) and this

brings to a high and broad correction in ozone field with a difference between

the DA 2007 OMI L and NOASSIM 2007 L from 20 to 50 µg m−3. Regarding the

Frankfurt area the correction is almost negligible.

In Figure 5.16 and 5.17 NO2 satellite data assimilated in DA 2007 SCI L

simulation and ozone from DA 2007 SCI L are shown. As in the 2004 event,

SCIAMACHY columns values are lower than OMI ones (up to 20 1015molecol/cm2)

and this brings in Ruhr area a lower correction in ozone field with a difference

between the DA 2007 SCI L and NOASSIM 2007 L from 15 to 40 µg m−3.

Figure 5.18 depicts the NO2 satellite super-observations that has a 25km x

25km resolution and that were used in DA 2007 OMI H experiments. Respect to

those in DA 2007 OMI L experiment (Figure 5.14) they have a finer resolution.
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Thus, the assimilation in the Ruhr makes the correction to ozone more spatially

variable and more localized with a difference between the DA 2007 OMI L and

NOASSIM 2007 H from 10 to 50 µg m−3. Only in DA 2007 OMI H simulation the

assimilation is able to bring a correction in Frankfurt area. This is a direct impact

of assimilation at higher resolution (25km), since the run at 25km without DA

(NOASSIM 2007 H) does not show differences with respect to the low resolution

(NOASSIM 2007 L).

Figure 5.14: European distribution of NO2 tropospheric columns from OMI satellite

super observations at a 50km x 50km resolution on 24th August 2007 focused on

Ruhr and Frankfurt area.

To evaluate more quantitatively the impact of assimilation process and

the effects over the time, the ozone at ground level of the model is

averaged in the three selected sub-areas (Ruhr, Frankfurt, Venice) for

NOASSIM 2007 L, DA 2007 OMI L, DA 2007 SCI L, NOASSIM 2007 H and

DA 2007 OMI H simulations, respectively. Ozone values are compared to the

ground ozone observations coming from the AirBase Database. OMI assimilation
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Figure 5.15: Focus on Ruhr and Frankfurt area of ozone concentration at the

ground level of the model on 24th at 15 UTC, related to NOASSIM 2007 L (left

panel) and DA 2007 OMI L (right panel) simulations.

Figure 5.16: European distribution of NO2 tropospheric columns from

SCIAMACHY satellite on 24th August 2007 focused on Ruhr and Frankfurt area.
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Figure 5.17: Focus on Ruhr and Frankfurt area of ozone concentration at the

ground level of the model on 24th at 15 UTC, related to DA 2007 SCI L. .

Figure 5.18: European distribution of NO2 tropospheric columns from OMI satellite

super observations at a 25km x 25km resolution on 24th August 2007 focused on

Ruhr and Frankfurt area.
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Figure 5.19: Same of Figure 5.15, but related to NOASSIM 2007 H (left panel)

and DA 2007 OMI H (right panel) simulations

takes place almost every day around 11 UTC, while SCIAMACHY at least twice

in each areas.

In all cases, both SCIAMACHY and OMI assimilation take place during the

more photochemical active period (around 10 UTC for SCIAMACHY and around

11 UTC for OMI) bringing to a correction of maximum ozone values.

Regarding the Ruhr area, all assimilation configurations (Figure 5.20) bring

to partial correction of the ozone maxima values and they show significant

improvement on ozone concentration especially in those days when the satellite

coverage is more widespread (first and second day). In case of OMI data,

assimilation seems to be strong enough to last more than 24 hours. Coarser

OMI assimilation perform better respect to finer one. This behaviour is link to

assimilation set up and OMI data distribution. In this case OMI data does not

cover the whole area and super observations in 50km x 50km and in 25km x

25km resolution are quite different in terms of spatial coverage (see Figure 5.14

and 5.18), causing a more spatially extensive correction on ozone field in case
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of lower resolution with respect to finer resolution case. The difference between

SCIAMACHY and OMI assimilation at coarse resolution is ascribed to the lower

SCIAMACHY data with respect to OMI ones.

Both Frankfurt (Figure 5.21) and Venice (Figure 5.22) areas are less extensive

polluted zones then Ruhr one and present a higher spatial variability. Correction

on ozone maxima, in these two cases, shows a different behaviour with respect to

that in Figure 5.20. It is observed that OMI assimilation in the finer resolution

simulation brings the ground ozone more closer to observations with respect to OMI

assimilation in the coarse resolution simulation and SCIAMACHY assimilation.

5.4 Results summary

The experiments carried out in this chapter aimed to assess if the assimilation of

NO2 satellite tropospheric columns improves ozone field at the ground level. We

focused on OMI and SCIAMACHY data assimilation, comparing their performance

in two case studies.

It was that the difference between modelled and observed NO2 tropospheric

columns (innovations) were almost positive. Strongest differences were found in the

most polluted areas in Europe (Ruhr, Belgium, Paris). We derived that the model

has the tendency to underestimate NO2 concentration especially in the polluted

areas.

The perturbation on NO2 field due to assimilation causes a modification on

ozone field that appears more spatially variable and higher in some photochemical

polluted areas. Similar effects are detected both for SCIAMACHY and OMI

assimilation. Significative effects of assimilation on ozone can be appreciate at

local scale.

Focusing on specific sub-domains, the effect of assimilation and its perturbations
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Figure 5.20: Averaged ozone in the Ruhr area, from 24th 00 UTC to 28th August

00 UTC, for DA 2007 OMI L (upper panel), for DA 2007 OMI L (middle panel)

and for DA 2007 SCI L (lower panel). Green line represents the mean from not-

assimilated run, red line the mean from assimilated one and black line the mean

from measurement stations (Airbase database). Vertical red dashed lines indicate

when assimilation occurs.
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Figure 5.21: Same as 5.20, but for Frankfurt area, from 24th 00 UTC to 28th August

00 UTC.
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Figure 5.22: Same as 5.20, but for Venice area, from 24th 00 UTC to 28th August

00 UTC.
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on ozone fields over the time is well visible. It was found that the effect of

assimilation in general lasts 8 hours (till to the end of the active photochemical

period) and in few cases until the reactivation of active photochemical period in the

following day (around 30 hours after the assimilation end). This is a strong impact,

considering that assimilation is performed at most once a day and it is probably

linked to the model underestimation of ozone and its precursors in polluted areas

with respect to those measured by SCIAMACHY and OMI.

In wide and highly polluted areas (as Belgium and Ruhr) assimilation achieves

satisfactory results, comparing simulated ground ozone with independent ground

measurements. In Ruhr region where OMI assimilation in the coarse resolution

simulation, SCIAMACHY assimilation and OMI assimilation in the finer resolution

simulation are confronted, we can conclude that these different assimilation set-

up are almost similar. OMI assimilation in the coarse resolution simulation is

slightly most performing and this results can be ascribe to specific characteristics

of assimilated columns. In particular, with respect to SCIAMACHY assimilation

it is because SCIAMACHY columns are in this case lower than OMI ones and with

respect to OMI assimilation in the finer resolution simulation it is because OMI

data does not cover the whole area and super observations in 50km x 50km has a

larger spatial coverage with respect to 25km x 25km resolution, consequently ozone

field in case of lower resolution has more spatially extensive correction with respect

to finer resolution case.

Whereas, in not extensive polluted areas OMI assimilation in the finer resolution

simulation performs better with respect to OMI assimilation in the coarse resolution

simulation and SCIAMACHY assimilation.

Regarding the temporal distribution, OMI assimilation potentially performs

better, because assimilation can be activated ideally once a day.

The efficacy of assimilation is strictly linked to good representation of pollutants

102



103

distribution of assimilated satellite data. For instance SCIAMACHY measurement,

having a resolution of 60 km × 30 km at nadir, is not able to catch the high

variability of pollutants in some areas, consequently assimilation effect on ozone is

less marked and hence less close to ground observations. Same restrictions arise

from a too coarse model resolution.
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Conclusions

The present Phd thesis dealt with the assimilation of ground measurements and

satellite columnar data and how this could improve and correct biases and errors

in the chemical species forecast. The work focalised on tropospheric ozone and the

species linked to its formation as NO2.

The study was carried on implementing and applying an Optimal Interpolation

DA technique in the air quality model BOLCHEM and the chemical transport

model CHIMERE. The OI routine was chosen because it has given satisfactory

results in air quality modelling and because it is relatively simple and

computationally inexpensive.

Emissions represent one of the major source of uncertainties in air quality

models, since they continue to be high, despite many efforts made to provide a

more accurate emissions inventory. The objective of the first part of the PhD

work was to assess how perturbations in tropospheric O3 concentrations caused

by emission biases could be corrected by the assimilation of O3 and NO2 by

means of DA. An OSSE approach was used to evaluate quantitatively the impact

of DA, to be employed in the design of a simple assimilation procedure suitable

for tropospheric ozone forecasts in polluted areas. We assimilated ground based

synthetic observations with a realistic distribution derived from AirBase database

network. We focused on Po Valley, however the work can be easily extended in
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other polluted areas, characterized by a reasonable number of observational sites

(order of 20-30 on 40000km area) as for instance European MegaCities and hot-spot

areas.

The analysis brought to the conclusions that NO2 assimilation significantly

improves O3 maxima during the assimilation, making it almost independent on

different emission scenarios. The assimilation impact lasts up to 36-40 hours after

the end of the assimilation window. This is a considerable result, especially when

it is taken into account that DA generally yields significantly better forecasts in

the 6-12 hours range, but improvements vanish afterwards (Elbern and Schmidt,

2001). The NO2 night-time chemistry has the role of maintaining the correction of

O3 due to assimilation also in the following day. It was observed that during

night, NO2 assimilation increases the perturbations of O3 with respect to the

reference, deteriorating the quality of the analysis. This effect can be reduced

by assimilating NO2 and O3 simultaneously, although the benefit lasts only a

few hours after the end of the assimilation window. Regarding the impact of

different temporal assimilation windows, the best results are achieved assimilating

observations during the photochemically active period (06-18 UTC). It was also

found that temporally biased NOx emissions only slightly perturb O3 concentration

during the photochemically active regime, confirming the findings of Tao et al.

(2004), while the perturbation is larger during night-time. Assimilation has a very

low impact during the assimilation window and a negligible impact after its end.

The second item was to assess if assimilation of NO2 satellite tropospheric

columns improved ozone field at the ground level. The choice of NO2 satellite

assimilation was enforced by the results obtained in the first part that confirmed

the efficacy of assimilate NO2 for correcting ozone field. We focused on OMI and

SCIAMACHY data assimilation, comparing their performance in two case studies.

The role of data resolution on the effectiveness of assimilation was investigated
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using two different dataset and model resolutions.

It was found the perturbation on NO2 field due to assimilation causes a

modification on ozone field that appears more spatially variable and higher in some

photochemical polluted areas. Similar effects are detected both for SCIAMACHY

and OMI assimilation. Significative effects of assimilation on ozone can be

appreciate in polluted areas at local scale.

Focusing on specific sub-domains, it was found that the effect of assimilation

lasts, in general, 8 hours (till to the end of the active photochemical period) and in

few cases until the reactivation of active photochemical period in the following day

(around 30 hours after the assimilation end). This is a strong impact, considering

that assimilation is performed at most once a day and it is probably linked to the

model underestimate of ozone and its precursors in polluted areas with respect to

those measured by SCIAMACHY and OMI.

In wide and highly polluted areas assimilation achieves satisfactory results,

comparing simulated ground ozone with independent ground measurements. In

that region where OMI assimilation in the coarse and fine resolution simulations and

SCIAMACHY are confronted, we can conclude that these different assimilation set-

up are almost similar. Whereas, in more localised polluted areas (i.e. comparable to

model and satellite resolution), OMI assimilation in the finer resolution simulation

performs better with respect to OMI assimilation in the coarse resolution simulation

and SCIAMACHY assimilation. Regarding the temporal distribution, OMI

assimilation potentially performs better, because assimilation can be activated

ideally once a day.

As a general conclusive statement, assimilation can be an important tool to

make the spatial and temporal distribution of pollutants more realistic and closer

to the specific local differences with the caveat of horizontal resolution of the

assimilated columns and model simulations. We have in fact shown that results are
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sensitive to the resolution when the latter is comparable with the typical extension

of the polluted area under exam.

We consider that this work has three logical extensions:

[ 1 ] The OSSE approach should be implemented in different events and regions

to further analyse the impact of DA and especially its duration in time.

Moreover OSSE approach can be used to evaluate any model bias; so a

straightforward application is the evaluation of the role of meteorological

parametrization that have an impact on modelled local mixing, fluxes and

temperatures.

[ 2 ] The analysis of satellite observations gives initial interesting findings that

deserve further studies. In particular, it would be necessary to both extent the

analysis on larger time periods (i.e. a whole summer season) and to perform

additional experiments to quantitatively evaluate the limits of observations

and model resolution on pollutants concentrations correction. For this it

might be useful to adopt an OSSE approach as demonstrated here for ground

based data.

[ 3 ] A last point, that has not been fully addressed in this manuscript is the

potential of DA in correcting the continental O3 field from unknown or not

suitably represented sources as forest fires. Chapter 5 shows O3 was increased

by DA during the intense biomass burning event in Greece in late August

2007; moreover this event had a large impact on whole southern Europe (see

Cristofanelli et al., 2009). So, it would be important to extend the analysis

presented the in paper above-mentioned, testing to which extent NO2 and

possibly CO (from the Infrared Atmospheric Sounding Interferometer, IASI)

satellite observations improve the description of transport and chemistry

during such continental scale events.
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Appendix A

List of acronyms

AK Averaging Kernel

AQM Air Quality Model

BIRA-IASB Belgian Institute for Space Aeronomy

BLUE Best Linear Unbiased Estimator

BOLAM BOlogna Limited Area Model

BOLCHEM BOlogna Limited area model for meteorology and CHEMistry

CEIP Centre on Emission Inventories and Projections

CTM Chemical Trasport Model

DA Data Assimilation

ECWF European Centre for Medium-range Weather Forecast

EEA European Environment Agency

EMEP European Monitoring and Evaluation Programme

EnKF Ensemble Kalman Filter

ESA European Space Agency

GEMS Global and regional Earth-system Monitoring
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GOME Global Ozone Monitoring Experiment

IASI Infrared Atmospheric Sounding Interferometer

IGAC International Global Atmospheric Chemistry

KNMI Koninklijk Nederlands Meteorologisch Instituut

MINNI Integrated National Model system for International Negotiation

NPW Numerical Weather Prediction

OI Optimal Interpolation

OMI Ozone Monitoring Instrument

OSSE Observing System Simulation Experiment

Prev’Air Prévisions et observations de la qualité de l’air

RRSQRT Reduced Rank SQuare RooT

TEMIS Tropospheric Emission Monitoring Internet Service

SCIAMACHY SCanning Imaging Absorption SpectroMeter for Atmospheric

CartograpHY

VOC Volatile Organic Compound

WHO World Health Organization

3D-Var Three-Dimensional VARiational assimilation

4D-Var Four-Dimensional VARiational assimilation
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