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Abstract 

Abnormal involuntary movements (AIMs) or dyskinesias are probably the most debilitating side-

effect elicited by levodopa pharmacotherapy of Parkinson’s disease. Development of levodopa-

induced dyskinesias (LID) reflects a processes of sensitization to levodopa taking place primarily 

in striatum, and leading to the abnormal response to dopaminomimetics. Despite the growing 

knowledge about the intracellular pathways involved in the development of LID, little is known 

about the impact of antidyskinetic treatments on the basal ganglia circuitry. In the present 

thesis, we used microdialysis to investigate the neurochemical and behavioural changes exerted 

by different antidyskinetic treatments or approaches in basal ganglia. We first found that 

levodopa evoked AIMs, and simultaneously elevated GABA levels in the substantia nigra 

reticulata but not globus pallidus of dyskinetic mice and rats, suggesting the involvement of the 

striato-nigral “direct” GABAergic pathway in both species (Bido et al., J Neurochem 118, 1043-

1055, 2011). Amantadine (the only antidyskinetic drug marketed for treating LID) attenuated 

AIMs expression and prevented the nigral GABA rise (Bido et al., J Neurochem 118:1043-55, 

2011), suggesting nigral GABA as a neurochemical correlate of LID. To further investigate which 

pathway is involved in LID and in the antidyskinetic effect of amantadine, we took advantage 

from recent studies showing the specificity of Ras-guanine nucleotide-releasing factor 1 and 2 to 

selectively couple NR2B and NR2A NMDA receptor subunits, respectively. We showed that 

blockade of striatal expression of Ras-GRF1 using a lentiviral vector carrying a short hairpin RNA 

(LV Ras-GRF1) caused an attenuation of LID development and expression, which was 

accompanied by the lack of the increase in nigral GABA. However, in LV Ras-GRF1 mice the 

antidyskinetic effect of amantadine and its neurochemical correlates were lost, suggesting LV 

Ras-GRF1 might interfere with the antidyskinetic effect of amantadine by acting on the same 

target (possibly the NR2B receptor). Conversely, injection of a viral construct expressing a small 

hairpin directed against RasGRF2 caused only a not significant reduction of LID, and did not 

prevent the increase of nigral GABA following L-DOPA. In these mice, also the antidyskinetic 

effect of amantadine remained unaltered (Bido et al., in preparation). 

To confirm the involvement of the direct pathway in LID, and dissect out the role of striatal and 

nigral dopamine D1 and D2 receptors we performed regional perfusion (striatum and substantia 

nigra pars reticulata) of selective D1 and D2 antagonists simultaneously with systemic L-DOPA 
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administration. Intrastriatal blockade of D1 receptor attenuated LID and prevented the 

accompanying rise of nigral GABA levels whereas blockade of D2 receptor was ineffective (Mela 

et al., Neurobiol Dis 45, 574-583, 2012). When perfused in the substantia nigra, both the D1 and 

D2 antagonists attenuated LID expression, although only the D1 antagonist prevented the GABA 

rise.  

Overall, the data provide neurochemical evidence that LID is accompanied by activation of D1-

receptor expressing striato-nigral GABAergic neurons, and that the antidyskinetic effect of 

amantadine partly relies on the modulation of this pathway, possibly through NR2B-subunit 

expressing NMDA receptors. Nonetheless, by using different antidyskinetic approaches we were 

able to cause only ~50% reduction of LID in face of a complete inhibition of the GABA rise in 

substantia nigra. This points to the existence of other important neurochemical modulators of 

LID, possibly also in brain structures outside the basal ganglia.  
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Introduction 

 

Parkinson’s disease and L-DOPA-induced dyskinesia 

Parkinson’s disease (PD) is characterized by prominent loss of dopaminergic neurons in the 

substantia nigra (SN) and formation of intraneuronal protein inclusions termed Lewy bodies, 

composed mainly of α-synuclein (Jellinger, 1987). This progressive neurodegenerative process 

underlies the development of motor and non-motor symptoms. The non-motor manifestations 

range from dementia (~30% of PD patients) to depression and disturbance to visuo-spatial 

function as hallucinations, that are frequently owing to the effect of dopaminergic drugs 

(Fenelon et al., 2000). Depression is a characteristic hallmark of PD can occur at any stages of 

the disease, and can be use as a diagnostic tool (Noyce et al., 2012). The cardinal features of PD 

are the motor disturbance, resulting from the dopamine (DA) loss in the midbrain. Tremor is 

typically at rest and disappears when voluntary movement is performed (Elble, 2000); rigidity is 

an increase in passive muscle tone in flexor and extensor muscle groups, and is expressed as a 

defect to obtain a complete muscular relaxation (Delwaide et al., 1986); akinesia is referred as 

slowness in movement execution (bradykinesia) and the poverty of voluntary movements 

(hypokinesia; Marsden et al., 1981). Postural instability appears on the late stage of the disease 

and is associated with the loss of equilibrium and falling (Marsden et al., 1981). In the late 1690s 

a novel strategy to counteract the motor symptoms of PD has been developed, which is based 

on the replacement of the DA with the precursor 3,4-dihydroxy-L-phenylalanine (L-DOPA). It 

was became the gold standard in the therapy of PD. As quickly as the enthusiasm for the new 

therapy grew, it became evident that were major limitations to L-DOPA treatment. In the early 

stage of the disease, the response to L-DOPA is excellent (for this reason it is also called the 

“honey moon” period) and therapeutic benefit is prolonged. However, with the progression of 

the disease, the therapeutic effect of L-DOPA starts to wear off, both in terms of extent and 

duration, and the patient start to fluctuate between the “on” and “off” period in which 

symptoms re-appeared. In order to fully restore the beneficial effect of L-DOPA, the dose has to 

be increased, and in turn, this induce the development of involuntary movements, the so called 

dyskinesia, during the “on” period. Thus after ten years of L-DOPA therapy, ~70-80% of patients 
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develop dyskinesia and almost 100% of patients with early onset of disease is affected by this 

severe side-effect (Fahn, 1982; Quinn et al., 1987). Dyskinesia is mainly choreiform in nature but 

dystonia and myoclonus are also present. They are classified according to their onset in relation 

to L-DOPA intake in: i) “peak-dose” dyskinesia that occurs with high plasma levels of L-DOPA; ii) 

diphasic dyskinesia that appears during the rise and fall of L-DOPA levels and disappears during 

the “on” period; iii) several patients con also experience the “off period dystonia” with 

prolonged muscle spasm affecting feet, arm and face (Luquin et al., 1992).  

Main targets of L-DOPA are the medium-sized spiny neurons (MSNs) of the dorsal striatum, 

which receive a massive innervation from the dopaminergic neurons placed in SN pars 

compacta (SNc). Studies performed in animal models of L-DOPA-induced dyskinesia (LID) 

demonstrated that striatum is the scenario of many adaptive changes following DA depletion 

and chronic administration of L-DOPA. In 1998 Cenci and collaborators (Cenci et al., 1998) 

showed that chronic L-DOPA treatment affects the striatal neuronal plasticity, inducing long 

lasting changes in striatal gene expression that highly correlate with the severity of LID. In 

particular they found an up-regulation of striatal prodynorfin and glutamic acid decarboxylase 

mRNA and no changes in striatal level of preproenkefalin mRNA in dyskinetic animals with 

respect to DA-depleted rats (Cenci et al., 1998). Since dynorfin is the neuropeptide released by 

MSNs (together with γ-aminobutyric acid; GABA) expressing the D1 DA receptor (D1R), these 

data dragged the researchers attention to the modifications in this particular neuronal pathway. 

Indeed, studies performed in parkinsonian patients (Tong et al., 2004), and rats (Corvol et al., 

2004), revealed an increase of D1R-mediated adenylyl cyclase activity in the DA-depleted 

striatum. These findings are most likely due to a compensatory process consequent to the loss 

of striatal DA rather than to changes in D1R affinity as demonstrated by a number of studies 

(Joyce, 1991; Pifl et al., 1992; Savasta et al., 1988). The enhancement of adenylyl cyclase activity 

in response to D1R agonists is linked to a clear increase in the levels of Gαolf, a G protein that 

couples D1R to adenilyl cyclase that which promotes the synthesis of cAMP (Corvol et al., 2004). 

However, the increase of Gαolf expression cannot be directly responsible for triggering 

dyskinesia, because if this were the case, LID would appear at the first L-DOPA injection, since 

D1R hypersensitivity is caused by DA depletion. Conversely, the development of LID takes place 

after repeated administration for a long period of time. Chronic usage of particular substances 
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can lead to the onset of plastic modifications through the potentiation of the translational 

machinery, including the transcription of new genes and the synthesis of new proteins. Long-

lasting change in proteins profile needs the expression of stable transcription factors. Indeed, 

the appearance of LID strongly correlates with the increase of ΔFosB, which is induced in a 

region specific manner in the brain as a response to varius chronic perturbations (Hope et al., 

1994). The increase of ΔFosB immunoreactivity in the brain of parkinsonian animals provides a 

cellular marker to map the neuronal systems that become activated by chronic dyskinetiogenic 

treatments with L-DOPA (Andersson et al., 1999). The remarkable stability of ΔFosB and the 

ΔFosB-related proteins after the discontinuation of chronic dopaminomimetic treatment can 

account in part for the long-lasting effects on synaptic plasticity produced by L-DOPA 

(Andersson et al., 2003). An important question requires an explanation: is there any links 

between the over-expression of Gαolf mediate by the DA depletion and the sustained increase 

of ΔfosB and ΔfosB-like proteins resulting from chronic L-DOPA treatment? An increase in Gαolf 

only, i.e., without any changes in the number of D1R is not sufficient to explain the boost effect 

of L-DOPA on gene expression seen in LID animals. Indeed it is well known that the activity of 

D1R, as many other receptors, is regulated through the desensitization mediated by G-proteins 

coupled receptor kinases (GRK; for a review see Beaulieu et al., 2011). Interestingly, Berthet and 

collaborators found that, D1R is more abundant in the plasma membrane of dyskinetic 

compared with non-dyskinetic animal (Berthet et al., 2009), which is in line with previous 

observations that LID is associated with deficiencies in D1R desensitization and trafficking 

(Bezard et al., 2005; Guigoni et al., 2007). Noteworthy, a very recent study indicates a 

pathological overexpression of synapses-associated scaffolding protein PSD-95 in the striatum 

of dyskinetic monkeys that anchoring the D1R to the membrane, reduces the D1R trafficking at 

the synapses (Porras et al., 2012). However, when the link between the compensatory elevation 

of Gαolf and the impairment of D1R desensitization is established we observe an enhancement 

in all the transduction steps ranging from the increased activity of the adenylyl cyclase to the 

over-activation of protein kinase A (PKA). One of the major targets of PKA in MSNs is the DA and 

cAMP-regulated phosphoprotein of 32 kDa (DARPP-32; Walaas and Greengard, 1984). PKA 

catalyzes the phosphorylation of DARPP-32 at Thr 34. This, in turn, converts DARPP-32 into an 

inhibitor of protein phosphatase-1 (PP-1; Hemmings et al., 1984) thereby suppressing 
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dephosphorylation of other downstream effector proteins and amplifying PKA-mediated 

responses (Greengard, 2001). The participation of the cAMP/PKA/DARPP-32 pathways in the 

generation of LID has been clearly demonstrated in mice. After DA denervation L-DOPA 

produces large increases in both phospho-Thr34-DARPP-32 and phospho-Ser845-GluR1 (Santini 

et al., 2007). These changes in responsiveness are most likely attributable to an enhanced 

sensitivity of D1R, triggered by DA depletion, as previously described. Moreover, it has been 

shown that striatal DA depletion confers to a D1R agonist the ability to stimulate ERK 

phosphorylation (Gerfen et al., 2002). Consistently, the administration of L-DOPA is able to 

promote the increase of ERK1/2 phosphorilation in lesioned mice but not in naïve mice (Santini 

et al., 2010) specifically in striatal D1R-expressing MSNs (Darmopil et al., 2009). It is noteworthy 

that in monkeys (Macaca Mulata), the dysregulation of cAMP signaling is maintained during the 

course of chronic L-DOPA treatment, while the ability of the drug to promote ERK signaling is 

maximal at the first drug administration and declines during chronic treatment, almost 

normalizing within three months (Santini et al., 2010). The contribution of phospho-ERK seems 

to be associated with the priming to L-DOPA, rather than to the maintenance of dyskinesia.  

The persistent hyper-phosphorylation of DARPP-32associated with LID has a profound impact 

on the excitability of MSNs. High frequency stimulation of cortical afferents to striatal MSNs can 

induce long-term potentiation (LTP), an electrophysiological correlate of synaptic efficiency 

enhancement (Calabresi et al., 1992). This phenomenon requires DA innervation and is 

abolished by lesioning dopaminergic neurons (Centonze et al., 1999). LTP can be reversed by 

low frequency stimulation, which re-establishes normal level of excitability at cortico-striatal 

synapses and is called depotentiation (Picconi et al., 2003). From a behavioral point of view, the 

depotentiation is essential to restore the normal synaptic activity, because it acts to erase 

previous motor program, thus allowing the integration of new motor tasks. Indeed in the rat 

model of LID, the dyskinetic motor response to L-DOPA is associated with an altered form of 

synaptic plasticity. After DA denervation, L-DOPA is able to restore LTP in lesioned L-DOPA-

injected but not dyskinetic animals, that are unable to depotentiate (Picconi et al., 2003). 

Blockade of PP-1, a protein phosphatase inhibited by DARPP-32, mimics the lack of 

depotentiation associated with LID (Picconi et al., 2003), making the involvement of 

cAMP/PKA/DARPP-32/ERK cascade in the development of LID even more clear. The activation of 
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ERK, in turn, leads to the sustained phosphorylation of the mitogen and stress-activated kinase 

1 (MSK1),a nuclear target of ERK (Santini et al., 2007; Westin et al., 2007). Activated MSK1 

phosphorylates the transcription factor cAMP response elements binding protein (CREB; 

Sgambato et al., 1998) and the increased levels of phosphorilated CREB has been found to 

correlate with dyskinesia (Oh et al., 2003). 

Other important events regulated by the ERK/MSK1 signaling cascade during LID are the 

phosphorylation of histone H3 (Santini et al., 2009) and the deacetylation of histone H4 

(Nicholas et al., 2008). Since chromatine remodeling such as via histone deacetylation and/or 

phorsphorylation, plays a critical role in gene expression and nuclear reprogramming, it is likely 

that the abnormal and sustained ERK activation caused by D1R sensitization and DARPP-32 

overactivity could modify the protein patterns in MSNs. A study on the regulation of mTORC 

cascade supports this hypothesis. In mouse model of LID, L-DOPA increases the activity of 

several effectors of the translational complex, including the initiation factor 4E-binding protein, 

the p70 ribosomal S6 kinase, and the ribosomal protein S6 (Santini et al., 2009). The role of 

these proteins, that are known to promote the initiation of process, in the mechanisms 

underlying LID is confirmed by the antidyskinetic effect of rapamycin, an allosteric inhibitor of 

mTORC1, when administered in combination with L-DOPA (Santini et al., 2009). These events 

take place mainly in striatal MSNs. However the plastic changes occurring in the striatum 

reverberate in many brain structures. For this reason, an overall view on the dynamic 

interelations between the different nuclei involved in the motor processing is mandatory to 

better understand the phenomenology of LID. Here below, a brief description of the basal 

ganglia, the subcortical structures probably most affected in LID. 

 

 

 

Scheme 1. Signaling cascades underlying LID in MSNs. In particular, 

cAMP/PKA/DARPP-32 pathway modulates the activity of MAPK-dependent 

signaling pathways downstream of glutamate receptors and it is influenced by 

the activity of D1R transduction pathway (Cenci and Konradi, 2010). 
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The basal ganglia 

The basal ganglia are a group of interconnected subcortical nuclei which play an important role 

in the control of voluntary movements. These structures receive major inputs from wide areas 

of the neocortex, and send efferents, through the thalamus to prefrontal, premotor and motor 

cortex. The basal ganglia are able to elaborate a broad range of complex signals, and then 

convey them to areas of the cortex involved in motor control. Through this information 

processing , these nuclei are able to regulate the ascending and descending components of the 

motor system. Basal ganglia are also involved in cognitive functions. In fact, the pathological 

processes affecting basal ganglia leads to the appearance of neuropsychiatric, behavioral and 

cognitive disorders. The nuclei that make up the basal ganglia are the SN, the globus pallidus 

(GP), the subthalamic nucleus (STN) and the striatum (Alexander et al., 1986; Albin et al., 1989; 

DeLong, 1990; Obeso et al., 2000). 

 

Scheme 2. Schematic representation of basal ganglia connections in the physiological state. DA projections (yellow arrows) exert 

a modulation of glutamatergic (red arrows) synapses coming from cortex ad thalamus. GABAergic (green arrows) efferents rising 

from striatum modulate the activity of GPe and GPi/SNr that in turn modify the firing pattern of STN and thalamus, respectively. 
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Substantia Nigra 

SN is divided in two functionally distinct nuclei: the SN pars reticulata, (SNr) and SNc. The SNr 

receives GABAergic inputs rising from the striatum and GP, glutamatergic afferents from the 

STN, the cerebral cortex and the peduncolo-pontine nucleus (PPN), and serotonergic 

innervation from raphe nucleus. The SNr sends GABAergic efferents mainly to the thalamus 

(ventral anterior, ventral lateral and dorsomedial nucleus), the PPN and the superior colliculus. 

The SNc is innervated by GABAergic fibers from striatum and GP, and receives glutamatergic 

projections from STN. SNc provides the striatum, STN and GP with a vast dopaminergic 

projection. (Parent and Hazrati, 1995b). 

 

Globus pallidus 

In humans and primates GP is placed medial to the putamen and lateral to the internal capsule 

and is divided into an external (GPe) and an internal (GPi) segment. It also includes a portion 

called the ventral pallidum (GPv). However, in rodents, the nucleus has no subdivisions, and is 

functionally similar to the GPe of primates and humans. In rodents, the functions of GPi 

functions are exerted by the entopeduncolar nucleus (EPN). The GP receives its major afferents 

from the striatum: striatal association areas project preferentially to the dorsal part of the GPe 

while striatal sensorimotor areas reach the ventral area of the GPi. In addition, GP receives 

afferent fibers from the STN and to a lesser extent from other structures including the dorsal 

raphe nucleus, the SNc, the thalamus and PPN. GPe sends its projections mainly to the STN and 

to a lesser extent the striatum and SN. The GPi projects massively to the ventral and medial 

nucleus of the thalamus, the centromedian nucleus, and the PPN. GP neurons use GABA as a 

neurotransmitter (Parent and Hazrati, 1995b). 

 

Subthalamic nucleus 

Anatomically STN is placed immediately below the thalamus and above the SN. This nucleus 

receives inputs from the cerebral cortex, thalamus, SNc and GPe, and projects to striatum, SN 

and GP. The STN contains a large number of medium-sized neurons that use glutamate as a 

neurotransmitter, and a limited number of interneurons. Despite its small size the STN exerts a 



17 
 

strong excitatory influence on target structures. Glutamatergic innervations rising from STN are 

the only excitatory projections of basal ganglia. The dopaminergic fibers innervating the STN 

control the activity of the nucleus, and the loss of nigral afferents is the root cause of the typical 

subthalamic hyperactivity that is observed in parkinsonian conditions. 

 

Striatum 

The striatum is the principal integrator in the basal ganglia, as well as the site where the 

phenomena of neuronal plasticity take place. Anatomically, the striatum is divided into three 

different areas: caudate nucleus, putamen and ventral striatum which includes the nucleus 

accumbens (NAc). This distribution reflects a different functional organization. In fact, the 

caudate receives the most part of afferents from associative cortical areas (prefrontal cortex, 

temporal, parietal, and cingulate), while the putamen is innervated by projections rising from 

sensorimotor cortex. This fibers use glutamate as a major neurotransmitter. The limbic and 

paralimbic cortical areas, the amygdala and the hippocampus project to the ventral striatum 

through cholinergic and glutamatergic pathways. The striatum also receives important 

dopaminergic projections from SNc, GABAergic, glutamatergic and serotonergic from GP, PPN 

and dorsal raphe nucleus respectively. The striatal neuronal population is mostly represented 

(90-95%) by the projecting neurons MSNs, sharing the property to GABA as neurotransmitter. 

These neurons are characterized by high density of dendritic spines, negative resting membrane 

potential, and low-frequency discharge in vivo. Although these cells have similar morphological 

feature, it is possible to classify them into two subtypes, based on their innervation territories, 

types of DA-expressed receptors and the peptides released as co-transmitters (Parent and 

Hazrati, 1995a). The remaining 5-10% of neurons consist of striatal interneurons, the so called 

“fast spiking”, and the “low threshold” spiking neurons. The cholinergic interneurons (which 

constitute 1-2% of striatal cells) are large aspiny neurons. All these interneurons, although 

representing a small fraction of the total number of striatal neuronal cells, play a key role in the 

regulation of MSNs excitability (Kreitzer and Malenka, 2008).  
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The direct and indirect pathway model 

Basal ganglia constitute a highly organized network, involved in motor control, as well as 

associative learning, planning, working memory, and emotion (Alexander et al., 1986). The 

classical model of basal ganglia functioning explain the parkinsonian akinesia and LID, as due to 

an unbalance between two functionally opposing pathways (Albin et al., 1989; Alexander et al., 

1986). The striatonigral MSNs that monosynaptically project to the GPi and SNr (direct pathway) 

preferentially express D1R and produce the neuropeptides dynorphin and substance P whereas 

the striatopallial MSNs that project to GPe (indirect pathway) express the DA D2 receptor (D2R) 

and produce enkephalin (Gerfen et al., 1990). More recent studies, revealed a significant 

number of D1R and D2R-coexpressing MSNs (~5-10%) in rats and monkeys (Le Moine and Bloch, 

1995; Aubert et al., 2000). Moreover, anatomical studies show that a single striatofugal axon 

can arborize in both GPi and GPe (Castle et al., 2005; Nadjar et al., 2006). The dopaminergic 

terminals rising from SNc exert a modulation of glutamatergic corticostriatal synapses, excite 

D1R-expressing neurons of direct pathway and inhibit D2R-expressing neurons of the indirect 

pathway. In this context, the activity of the direct pathway has been proposed to facilitate and 

select the appropriate movements, whereas the activation of the indirect pathway is associated 

with the inhibition of unwanted or inappropriate movements (Albin et al., 1989, Alexander et 

al., 1990). A clear demonstration of the different role of the two pathways has been recently 

provided using optogenic approaches (Kravitz et al., 2010). The GPe and the STN are classically 

viewed as part of the indirect pathway. GPe sends GABAergic projections to the STN. As cortex 

and striatum, the STN is well organized into different territories, and the large dorsoalteral 

portion corresponds to the motor part of the nucleus (Bevan et al., 2006). Most STN neurons 

are glutamatergic in nature and provide GPe with an excitatory input (Parent et al., 2000; Castle 

et al., 2005). GPi and SNr share many histological characteristics as well as afferent and efferent 

connections. Both nuclei project to the ventral motor thalamus, caudal intralaminar nuclei 

(Sidibe et al., 2002) and PPN (Grofova and Zhou, 1998). The thalamic nuclei send glutamatergic 

projections to the motor cortex, thus closing the circuit. According to the model described 

above, parkinsonism results from an excessive inhibition of components of the motor circuit in 

the thalamus, cortex and brainstem. These aspects are generally supported by lesioning and 

inactivation studies, which have shown that inactivation of the sensorimotor portion of the STN 
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or GPi increases the metabolic activity in cortical motor areas and improves bradykinesia and 

tremor in patients with PD. Conversely, metabolic imaging and electrophysiological studies in 

MPTP models have demonstrated that neuronal discharge is increased in STN and GPi, but 

decreased in GPe (Mink and Thach, 1991; McIntyre et al., 2004; Grafton et al., 2006). These 

findings prompted  the development of a model in which DA depletion leads to the increased 

activity of the indirect pathway, resulting in increased inhibition of GPe, disinhibition of STN and 

subsequent increased excitation of GPi/SNr. The net effect of DA loss is an increase of the 

inhibitory output from GPi and SNr, and the decreased activity in thalamo-cortical neurons 

(DeLong, 1990; Alexander et al., 1986). In contrast to the situation in PD, the direct pathway 

appears to be overactive in dyskinesia, resulting in a net reduction in GPi/SNr activity, as clearly 

demonstrated by in vivo microdialysis studies showing an increase of GABA release in SNr (Mela 

et al., 2007) and a reduction of GABA levels in thalamus (Marti et al., 2012) after L-DOPA 

injection in dyskinetic animals. Thus, the model predicts that LID is driven by the hyperactivity of 

the direct pathway leading to a reduced inhibition of thalamo-cortical neurons and 

overactivation of cortical motor areas.  

 

Scheme 3. Representative schemes of basal ganglia functionality in DA-depleted striatum in absence of (A) and in presence of L-

DOPA (B). The situation in panel A, describes the situation of the activity of basal ganglia in the parkinsonian state, in which the 

unbalancing among the direct and indirect pathways in favor of the indirect pathway (green bold line) inhibits the motor 

activity. In panel B the repetitive administration of L-DOPA triggers the expression of LID through the overactivation of the direct 

pathway that provoke the disinhibition of thalamic neurons and a excessive prokinetic signal to brainstem. 
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Pharmacological strategies to reduce L-DOPA induced dyskinesia 

LID is caused, at least in part, by the repetitive, intermittent nature of oral L-DOPA 

administration (Chase, 1998). Continuous intravenous perfusion of the DA precursor is indeed 

less dyskinetogenic (Colzi et al., 1998). However this approach is limited to patients refractory to 

other treatments. The use of orally administered controlled-release formulation of carbidopa/L-

DOPA or benserazide/L-DOPA (Madopar©), designed to provide minimal fluctuation in L-DOPA 

levels and thus expected to produce less dyskinesia, was initiated several years ago. The clinical 

trials have not demonstrated significant reductions of LID in PD patients treated with this 

formulations (Koller et al., 1999). Agonists selective for either D1R and D2R have been proposed 

as treatment for PD with lower propensity to elicit dyskinesia than L-DOPA (Rascol, 1999). The 

main limitation of this approach is that it does not influence preexisting LID. Moreover, despite 

the entry of several new DA agonists into the clinical practice, the ideal agonist with long 

duration of action and efficacy equal to L-DOPA is still lacking. For this reason, the most 

common approach to alleviate LID, is to act in patients with already established LID, using 

pharmacological tools aimed at reducing the overactivity of the direct pathway. This can be 

accomplished by targeting one of the neurotransmitter systems which appear to be 

dysregulated in LID. Here below a brief summary of the most successful drugs tested for 

reducing LID. 

Dopaminergic drugs 

The antidyskinetic effect of D1 and D2 receptor antagonists observed in rats concomitantly 

decrease the antiparkinsonian effect of L-DOPA and are thus not suitable for treating PD 

patients. Interestingly the modulation of D3 receptor reduces LID in MPTP-lesioned monkeys 

without worsening akinesia (Hadj Tahar et al., 2001). Indeed the D3R mRNA levels are increased 

during repeated L-DOPA treatment in the rat model of LID. In this latter study, nafadotride a 

preferential D3 receptor antagonist, reduced the enhanced locomotor response to repeated L-

DOPA treatment (Bordet et al., 1997). Recently, a novel D3 antagonists (S33084) failed in 

reducing LID when chronically administered together with L-DOPA but revealed a possible 

antiparkinsonian synergistic effect when combined with L-DOPA (Mela et al., 2010). 
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Serotoninergic drugs 

An imbalance in serotoninergic transmission has been proposed to play a role in LID (Carta et 

al., 2007; Rylander et al., 2010). The agonists of 5HT1A receptor (5HT1AR) reduce LID in MPTP-

lesioned monkeys and in PD patients without worsening parkinsonian symptoms (Bonifati et al., 

1994; Bibbiani et al., 2001). It is currently unclear whether the antidyskinetic effects of 5HT1AR 

agonists result from an action within the basal ganglia, as the expression of such receptors in 

this region is low. A putative site of action of 5HT1A agonists might be the raphe nucleus, where 

the receptor is densely expressed (Burnet et al., 1995). Moreover in a pivotal 2007 study using 

rat model of LID, Carta and collaborators (Carta et al., 2007) demonstrated that administration 

of 5HT1A and 5HT1bR agonists abolished established dyskinesia through the inhibition of ectopic 

DA release from serotoninergic fiber in striatum.  

 

Opioidergic drugs 

In the 6-OHDA-lesioned rat, µ receptors were increased in the premotor and motor cortex of 

dyskinetic animals when compared with L-DOPA-treated non-dyskinetic animals whereas their 

levels in the basal ganglia were reduced in the parkinsonian state but unaltered by L-DOPA, 

whether AIMs were present or not (Johansson et al., 2001). In PD patients treated chronically 

with L-DOPA, µ-receptor binding levels were reduced in both the caudate and putamen 

compared with non-parkinsonian individuals (Fernandez et al., 1994). Thus, there appears to be 

variability in µ-receptor levels depending on the area of the brain studied and the time of death, 

and it is difficult to correlate µ-receptor levels with the dyskinetic phenotype. Pharmacological 

studies have provided supportive evidence of increased µ-mediated opioid transmission in the 

dyskinetic state. Thus, the µ-receptor antagonists cyprodine and ADL5510 both alleviated LID in 

the MPTP-lesioned non-human primates (NHPs) without affecting L-DOPA antiparkinsonian 

efficacy (Henry et al., 2001; Koprich et al., 2011). In the dyskinetic rats ƙ-receptor levels were 

decreased in the striatum and SN, but unaltered in the GP, compared with non-dyskinetic 

animals. Despite the decreased levels, binding studies suggest an hyperactive ƙ-mediated 

signaling in the caudate nucleus and motor cortex of dyskinetic MPTP-lesioned NHPs (Johansson 

et al., 2001). Paradoxically, despite overactive ƙ-mediated signaling in LID, antagonizing ƙ-

receptors with norbinaltorphimine did not reduce LID in the MPTP-lesioned NHPs (Henry et al., 
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2001), whereas stimulation of ƙ-receptors with U50-488 reduced established AIMs in the 6-

OHDA-lesioned rat and dyskinesia in the MPTP lesioned squirrel monkey, although at the 

expense of impairing L-DOPA antiparkinsonian action (Cox et al., 2007). Perhaps highlighting the 

importance of ƙ-mediated neurotransmission over µ and δ transmissions, in the acute 

expression of LID, non-subtype selective stimulation of opioid receptors with morphine 

alleviated established LID. Only one study examined blockade of the nociceptin/orphanin FQ 

receptor to alleviate LID. In that study, J-113397 worsened LID in the MPTP-lesioned NHP 

(Visanji et al., 2008). 

 

Glutamatergic drugs 

mGluRs 

The unbalanced situation within the basal ganglia in LID, leading to the excitation of striato-

nigral neurons, represents a potential target for antidyskinetic drugs. This observation suggests 

that antagonists of glutamate, might be potential candidate drugs for the treatment of LID. 

Indeed, the most promising anti-dyskinetic drugs are represented by glutamatergic antagonists. 

Metabotropic glutamate receptors have a modulatory action on neuronal activity and 

excitability. The inhibition of metatabotropic glutamate receptors, and in particular of the 

mGlu5R type has been shown to be effective in attenuating both the priming to L-DOPA and the 

acute expression of LID (Mela et al., 2007; Dekundy et al., 2011). Recent studies have focused 

on group III metabotropic glutamate receptors (mGluRIII), including subtypes 4, 7 and 8, that are 

largely expressed in basal ganglia (Conn et al., 2005). mGlu4R depresses glutamatergic 

transmission, thus it has been suggested that mGlu4R agonists might represent a valid target for 

the treatment of LID. Different from mGlu5R antagonist, however, mGlu4R agonists do not 

reduce LID once it has been established (Beurrier et al., 2009). 

 

AMPARs 

The non-competitive AMPA receptor (AMPARs) antagonists reduce LID in the MPTP-lesioned 

NHPs model of PD (Konitsiotis et al., 2000), suggesting a role for overactive AMPARs 

transmission in LID. This hypothesis is supported by findings of an increased AMPARs binding in 

the lateral striatum of dyskinetic MPTP lesioned NHPs (Calon et al., 2002) and parkinsonian 
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patients (Calon et al., 2003). Enhanced phosphorylation and trafficking of AMPARs subunits in 

striatal synapses is also described in animal models of LID (Santini et al., 2007). 

 

NMDARs 

NMDA receptors (NMDARs) are composed of seven known subunits and in the mature brain 

they are present as heteromers comprised of NR1 and NR2 subunits, with a possible 

coexpression of NR3 subunits. The NR1 subunit contains the glycine binding site and forms the 

receptor channel, while the NR2 (NR2A-D) subunit contains the glutamate binding site and 

govern the functional properties of NMDARs, such as the voltage-dependence of the Mg2+ 

block, the time course of NMDA currents and the intracellular binding partners for synaptic 

localization, clustering and signal transduction (Chen and Roche, 2007). NMDARs are abundantly 

expressed in the basal ganglia (Standaert et al., 1994). While the NR1 subunit is ubiquitously 

expressed, the relative abundance of NR2A and NR2B varies among the different neuronal 

populations in the striatum, STN, SNc and SNr (Standaert et al., 1999; Standaert et al., 1994; 

Clarke and Bolam, 1998; Chatha et al., 2000). For many years, NMDARs have been the most 

popular target for antidyskinetic drugs. Several studies performed in animal models of PD and 

LID have pointed to a possible important role of NR2B subunits, and evaluated NMDR NR2B-

selective antagonists. High striatal levels of tyrosine phosphorilation of the NR2B subunit on the 

residue 1472 (Tyr1472) have been observed in several animal models of LID (Dunah et al., 2000, 

Hurley et al., 2005; Quintana et al., 2010), and it has been demonstrated that the intrastriatal 

administration of a tyrosine kinase inhibitor shortens the rotational response to L-DOPA in rats 

with 6-OHDA lesions, while normalizing the levels of NR2B phosphorylation (Oh et al., 1998). 

The phosphorylation of NR2B on Tyr1472 disrupts the interaction of NR2B with AP-2 clathrin 

endocytic complex and leads to the stabilization of NMDARs on the cell surface, increasing 

synaptic efficiency (Dunah et al., 2004). In animal models of LID and motor fluctuations, 

pharmacological blockade of NR2B has however produced inconsistent results. For example CP-

101.606 reduces LID in macaque (Blanchet et al., 1999) but exacerbated LID in marmosets (Nash 

et al., 2004). Moreover in the same animal models the NR2B antagonists Ro256981 and 

Ro631908 failed to improve LID (Rylander et al., 2009). Dyskinetiogenic L-DOPA treatment was 

found to normalize the synaptic NR1 and NR2B abundance, while markedly increasing the 
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abundance of NR2A (Hallett et al., 2005). The results from both rat and primate models of LID 

have led to the suggestion that a relative enhancement in the NR2A expression plays an 

important role in LID development and that blockade of NR2A subunit may represent a possible 

therapeutic target (Gardoni et al., 2012). 

Amantadine, a weak non competitive NMDARs antagonist is the only clinical prescribed 

antidyskinetic drug (Del Dotto et al., 2001). Accordingly amantadine improves motor fluctuation 

and dyskinesia in MPTP lesioned monkeys and in rats 6-OHDA-lesioned (Bibbiani et al., 2005, 

Dekundy et al., 2007). These effect of amantadine have been taken as indicator of the role of 

NMDARs in both parkinsonian motor symptoms and LID (Chase and Oh, 2000), even if 

amantadine can bind to several other targets beyond NMDARs. Amantadine was developed in 

1960 as antiviral agent as it was found to block or slow the penetration of the influenza virus in 

the host cell (Davies et al., 1964, Cochran et al., 1965). In October 1966, amantadine was 

approved as a prophylactic agent against the Asian influenza and ten years after also for the 

treatment of influenza A. However, in 2006, the usage of amantadine in the influenza 

prophylaxis was discouraged because of the frequent mutation of the virus. Simultaneously with 

the growing popularity of amantadine in flu treatment, an increasing number of PD patients 

reported an improvement of rigidity, tremor and akinesia while taking amantadine for flu 

(Schwab et al., 1969). After several clinical trials, the use of amantadine for alleviating the PD 

symptoms, either as monotherapy or in combination with L-DOPA and anticholinergic drugs was 

approved by the Food and Drug Administration in 1973, despite the reported side-effects 

(jitteriness, insomnia, gastrointestinal dysfunction, confusion, depression, hallucinations) 

probably due to the high dose utilized to reach the antiparkinsonian effect. The mechanisms 

underlying the antiparkinsonian effect of amantadine as well as the antidyskinetic properties of 

the drug are still not clear. The antiparkinsonian effect could be due in part to the stimulating 

effect exerted on the dopaminergic system by enhancing L-DOPA decarboxylase activity and DA 

synthesis (Deep et al., 1999). Moreover the non-competitive inhibition of the NMDA-evoked 

release of acetylcholine in rat striatal tissue could account for its clinical efficacy as 

anticholinergic treatment (Stoof et al., 1992). The affinity of amantadine for NMDARs has been 

demonstrated by the displacement of the non-competitive antagonist MK-801 within 

therapeutic concentration in the human cortex (Kornhuber et al., 1991). Later it has been found 
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that amantadine exerts its inhibitory effect through the stabilization of the closed state of the 

channel coupled to NMDARs (Blanpied et al., 2005). The discovery of amantadine as NMDARs 

inhibitor, prompted to evaluate its antidyskinetic effect in rodent and in NHPs models of LID, 

approaching the clinical efficacy of the drug in humans. In rats, the administration of 

amantadine produces a reduction of the total AIMs score by 50% at the most effective dose 

(Dekundy et al., 2007). A similar effect has been seen also in mice model (Lundblad et al., 2005). 

In NHPs amantadine nearly suppresses choreic dyskinesia and reduced by 35% dystonic 

dyskinesia, but at low doses of L-DOPA this effect is mirrored by a 50% of reduction in motor 

benefit (Blanchet et al., 2003). In humans, amantadine showed the ability to reduce the 

duration and severity of dyskinesia by 50-60%, when administered either for few weeks (Rajput 

et al., 1998) or up to one year (Wolf et al., 2010).  

 

RasGRFs 

The proteins of the Ras family regulate a wide range of cellular processes including cell 

proliferation and cell differentiation, and a number of tissue-specific functions. They are the 

main mediators of cellular transduction, capable of altering the activity of a large number of 

proteins, and then the whole cell physiology. The status of Ras is influenced mainly by two types 

of regulatory proteins:  

• GEFs (guanine nucleotide exchange factors) that activate Ras GTPases by binding to GTP. 

There are many families of GEF enabling the activation of Ras. These include proteins Sos (SOS1 

and SOS2) which hook the tyrosine kinase protein Ras.  

• GAPs (GTPase activating protein) that inactivate Ras, promoting the hydrolysis of bounded 

GTP to GDP.  

Of particular interest for neuronal signaling pathways are the 140-kd protein RasGRF1 

(RasGRF1) and 135-kd RasGRF2 (RasGRF2). The RasGRF1 protein is abundantly expressed in 

mature neurons but also in peripheral tissues such as pancreas and lungs, although to a lesser 

extent. This protein contains two catalytic domains and multiple regulatory domains; one of the 

most important is the '"IQ motif", a web calcium/calmodulin dependent protein that activates 

the protein itself. The N-terminal sequence called "plekstrin homologous domain" (PH) is 

involved in protein-lipid and protein-protein interaction. The PH domain is followed by the 
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"coiled coil" (CC) and the Dbl homolog domain (DH), the former involved in the regulation of 

gene expression and the latter in the activation of Rac GTPase. The C-terminal sequence  lodges 

the cell division cycle domain (Cdc25) which, assisted by the Ras exchange motif domain (REM) 

is responsible of the activation of Ras and R-Ras facilitating the exchange of GDP with GTP. The 

neuronal domain (ND), seems to be important for the coupling of RasGRF1 with the NR2B 

subunit of the NMDARs. This characteristic distinguishes the functions of RasGRF1 from those of 

RasGRF2, making the RasGRF1 particularly sensitive to the increase of intracellular calcium 

concentration due to the opening of the NMDA channel (for a review see Feig, 2011).  

In order to shed light on the roles of RasGRF1 in neurons, some laboratories generated 

knockout animals lacking a specific isoform of the protein. To generate the knockout mice, 

Brambilla (GRF1Brambilla), Itier (GRF1Itier), Font de Mora (GRF1Font de Mora) and their collaborators 

decided to delete the domain Cdc25, obtaining the inactivation of isoform 1 and 2 of the 

protein. Yoon and his collegues (GRF1Yoon) have targeted the gene promoter sequence, virtually 

blocking the expression of all the isoforms of Ras-GRF1. With an another strategy Giese 

(GRF1Giese) has eliminated the DH domain leaving untouched both the isoform 2 and 3. 

Later, the phenotypes of the different genetically modified mice have been characterized. 

GRF1Itier, GRF1Giese and GRF1Font de Mora  mice have shown to be significantly smaller than wild 

type animals, likely due to a reduced levels of the growth hormone in the pituitary gland (Itier et 

al., 1998). Even in the amygdala, an important structure for the preservation of memory-

associated with emotional events, some impairments have been recorded . In fact, GRF1Brambilla 

mice has shown difficulties in solving tasks that require the re-consolidation of memory 

associated with emotions (Brambilla et al., 1997). Another type of behavioral experiment was 

carried out with GRF1Giese mice, which has shown that in different context the decision-making 

capacity is instead compromised. At the biochemical level, the functions of RasGRF1 have been 

studied in important regions of the striatum involved in cognitive processes and in movement 

control. Brambilla and colleagues have demonstrated the correlation between D1R and the 

activation of ERK using  GRF1Brambilla mice after cocaine administration. These experiments 

established that the block of RasGRF1 induces a reduction of the  activity of ERK in the striatum 

in response to DA stimulation. Moreover, it has been shown that the activation of ERK pathway 

by NMDAR agonists is also prevented in GRF1Brambilla mice (Fasano et al., 2009). These results 
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implicate that RasGRF1 is involved in the integration of the two main neurotransmitter inputs to 

the striatum involved in the appearance of dyskinesia. Indeed the genetic ablation of RasGRF1 is 

sufficient to determine the reduction of dyskinesia development (Fasano et al., 2010). 

RasGRF2 presents the same sequences of RasGFR1 with the exception of the ND domain, 

virtually providing to the protein a different subcellular distribution (for a review see Feig, 

2011). In contrast to that seen in the RasGRF1 knockout, RasGRF2 knockout mice did not display 

any phenotypic changes compared to wild type littermates (Fernandez-Medarde et al., 2002). 

With respect to the studies on signaling, two different transgenic models of RasGRF2 mice have 

been generated. Fernandez-Medarde and collaborators inactivated the CDC25 domain 

(GRF2Fernandez; Fernandez-Medarde et al., 2002) whilst Tian and colleagues targeted the PH 

sequence (GRF2Tian; Tian et al., 2004). GRF2Tian mice allow to disclose the role of RasGRF2 in the 

regulation of ERK pathway in cortical neurons (Tian et al., 2004). Interestingly, in cortical 

neurons of neonatal animals NMDARs signal through Sos rather than RasGRF exchange factors, 

implying that both RasGRFs endow NMDARs with functions unique to mature neurons (Tian et 

al., 2004). 
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Aims of the study 

The overall purpose of the present thesis is to provide novel insights into the neurochemical 

pathways underlying the expression of LID, and to dissect out roles of the striatal direct and 

indirect pathways.  

In part 1 of the thesis, we used microdialysis to investigate the neurochemical and behavioural 

changes exerted by different antidyskinetic treatments or approaches in basal ganglia. We first 

found that levodopa evoked AIMs, and simultaneously elevated GABA levels in the substantia 

nigra reticulata but not globus pallidus of dyskinetic mice and rats, suggesting the involvement 

of the striato-nigral “direct” GABAergic pathway in both species. Amantadine attenuated AIMs 

expression and prevented the nigral GABA rise, suggesting nigral GABA as a neurochemical 

correlate of LID (part 1).  

To confirm the involvement of the direct pathway in LID, and dissect out the role of striatal and 

nigral dopamine D1 and D2 receptors we performed regional perfusion (striatum and substantia 

nigra pars reticulata) of selective D1 and D2 antagonists simultaneously with systemic L-DOPA 

administration (part 2). Intrastriatal blockade of D1 receptor attenuated LID and prevented the 

accompanying rise of nigral GABA levels whereas blockade of D2 receptor was ineffective. When 

perfused in the substantia nigra, both the D1 and D2 antagonists attenuated LID expression, 

although only the D1 antagonist prevented the GABA rise.  

To further investigate which pathway is involved in LID and in the antidyskinetic effect of 

amantadine, we took advantage from recent studies showing the specificity of Ras-guanine 

nucleotide-releasing factor 1 and 2 to selectively couple NR2B and NR2A NMDA receptor 

subunits, respectively. We showed (part 3) that blockade of striatal expression of Ras-GRF1 

using a lentiviral vector carrying a short hairpin RNA (LV Ras-GRF1) caused an attenuation of LID 

development and expression, which was accompanied by the lack of the increase in nigral 

GABA. However, in LV Ras-GRF1 mice the antydyskinetic effect of amantadine and its 

neurochemical correlates were lost, suggesting LV Ras-GRF1 might interfere with the 

antidyskinetic effect of amantadine by acting on the same target (possibly the NR2B receptor). 

Conversely, injection of a viral construct expressing a small hairpin directed against RasGRF2 

caused only a not significant reduction of LID, and did not prevent the increase of nigral GABA 
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following L-DOPA. In these mice, also the antidyskinetic effect of amantadine remained 

unaltered. 
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Materials and methods 

Animals 

All animals used in the study were housed with free access to food and water and kept under 

environmentally controlled conditions (12-h light/dark cycle with light on between 07:00 and 

19:00). The experimental protocols were approved by the Italian Ministry of Health (licenses n. 

94/2007B and 194/2008B) and Ethical Committee of the University of Ferrara. Adequate 

measures were taken to minimize animal pain and discomfort. After surgery, the skin was 

closed using surgical sutures and the wound was cleansed with an antibiotic solution (Rifamicina 

SV, Lepetit, Milano). 

 

Mice 

Young male (20-25 g; 8-9 weeks old) Swiss (utilized in part 1) and C57BL/6J mice (utilized in part 

3) were used in this study. Swiss mice were purchased from Stefano Morini S.a.s. (S.Polo D'enza, 

Reggio Emilia, Italy), while C57BL/6J mice were purchased from Charles River Laboratories 

(Calco, Sant’Angelo Lodigiano, Italy).  

Rats 

Young adult male (120-150 g; 12-13 weeks old; used in part 1 and part 2) Sprague-Dawley were 

used in this study. Rats were purchased from Harlan Italy (S. Pietro al Natisone, Italy). 

 

Lesion of the DA system 

In order to lesion the DAergic neurons in SNc, and consequently deplete the striatum of DA, 

different protocols were used. All lesion procedures led to achieve an unilateral massive 

destruction of the nigrostriatal DA projection.  

 

6-OHDA lesion in rats (used as a animal model in part 1 and 2) 

Unilateral lesion of nigro-striatal DA neurons was induced in isoflurane-anaesthetised rats 

(Marti et al., 2005a) by stereotactically injecting 8 ug of 6-hydroxydopamine (6-OHDA; in 4 μl of 

saline containing 0.02% ascorbic acid) in the right medial forebrain bundle (MFB) according to 

the following coordinates from bregma: AP= -4.4 mm, ML= -1.2 mm, VD= -7.8 mm below dura 

(Paxinos and Watson, 1982). Two weeks after surgery, rats were injected with amphetamine (5 
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mg/kg i.p., dissolved in saline) and only those rats performing > 7 ipsilateral turns/min were 

enrolled in the study. Indeed such behavior is associated with a DA depletion > 95% (Marti et al., 

2007) 

 

6-OHDA lesion in Swiss mice (used as animal model in part 1) 

Unilaeral lesion of nigrostriatal DA neurons was performed in isoflurane-anesthetized mice as 

described by Lundblad and collaborators (Lundblad et al., 2004). Six micrograms of 6-OHDA 

free-base (in 2 µL of saline containing 0.02% ascorbic acid) were stereotaxically injected into the 

striatum according to the following coordinates from bregma (in mm); first injection, AP +1.0, 

ML -2.1, DV -2.9 below dura; second injection, AP +0.3, ML +2.3, DV -2.9 below dura (Paxinos 

and Franklin 2001). 2 weeks after lesion mice were screened using cylinder test (Schallert et al., 

2000). Mice showing a number of wall contacts with contralateral forelimb < 40% of total 

contacts in 5 min of observation were enrolled in the study. Such behavior is associated with a 

striatal DA depletion < 90% (Santini et al., 2007). 

 

6-OHDA lesion in C57/6J mice (used as animal model in part 3)  

MFB injections of 6-OHDA were performed in isoflurane-anesthetized mice as described by 

Lundblad and collegues. (Lundblad et al., 2004). One microliter of 6-OHDA (3 μg/μL) was 

injected into the right ascending MFB according to the following coordinates from bregma (in 

mm): AP −0.7, L −1.2, DV −4.7 below the dura (Paxinos and Franklin 2001). Mice were evaluated 

in the open field 2 weeks after lesion to estimate the success rate of lesion. Mice showing < 10 

of spontaneous contralateral rotation in 10 min of observation were enrolled in the study, since 

this behavior was associated with < 90% (Fasano et al., 2010).  

 

LID induction and AIMs ratings 

Different protocols of LID induction were used in 6-OHDA lesioned mice and rats. Swiss mice 

utilized in part 1 were treated with 15 mg/kg i.p. L-DOPA (plus 12 mg/kg benserazide) once a 

day for 10 days (Santini et al., 2009), while C57BL/6J mice used in part 3 were injected with 

escalating doses of L-DOPA (3, 6, 9 mg/kg i.p. plus 12 mg/kg benserazide i.p.) once a day, for 9 

consecutive days (Fasano et al., 2010). 
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Rats used in part 1 and 2 received 6 mg/kg i.p. L-DOPA (plus 12 mg/kg benserazide, i.p), once a 

day for 21 days (Cenci et al., 1998). Quantification of L-DOPA-induced AIMs was carried out as 

extensively described in several papers of Cenci’s group (Lee et al., 2000; Lundblad et al., 2002; 

Lundblad et al., 2004; Winkler et al., 2002). Rats and mice were observed individually for 1 min 

every 20 min during the 2–3 h that followed an L-DOPA injection. Dyskinetic movements were 

classified based on their topographic distribution into three subtypes: (i) axial AIM, that is, 

twisted posture or choreiform twisting of the neck and upper body toward the side 

contralateral to the lesion; (ii) forelimb AIM, that is, jerky or dystonic movements of the 

contralateral forelimb and/or purposeless grabbing movement of the contralateral paw; (iii) 

orolingual AIM, that is, orofacial muscle twitching, empty masticatory movements and 

contralateral tongue protrusion. Each AIM subtype was rated on frequency and amplitude 

scales from 0 to 4 as described in Cenci and Lundblad (Cenci and Lundblad, 2007). Dyskinesia 

score was calculated as the product of frequency x amplitude and presented either as the sum 

of total AIMs score in one-day session (cumulative ALO AIMs score, representing AIMs score 

during the development of dyskinesia) or as the total AIMs score for each time point of 

observation in one single session (ALO AIMs score, representing AIMs during microdialysis). 

Axial, forelimb and orolingual (ALO) were presented also as separated items (Carta et al., 2006), 

either as the sum of separated ALO score in one-day session (cumulative AIMs score, 

represented during the development of dyskinesia) or as the separates ALO score for each time 

point of observation in one single session (AIMs score, presented during microdialysis). 

 

Behavioural studies  

Motor activity in rodents was evaluated by means of different behavioural tests specific for 

different motor abilities, as previously described (Marti et al., 2005b). The different tests are 

useful to evaluate motor functions under static or dynamic conditions, different motor feature 

such as akinesia and bradykinesia. Akinesia appears as an abnormal absence or poverty of 

movements, that is associated in hemi-lesioned mice and rats to the loss of the ability to move 

the forepaw when placed on blocks at different highs. Bradykinesia is refers to slowness of 

movement and in particular to difficulties to adjust the correct body position, that in rats and 

mice is associated to difficulties to reach a correct forepaw position when the animals are 
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dragged. The battery of tests described below, can be use to assess the degree of bradykinesia 

and akinesia of the animals, representing  important behavioral correlates of parkinsonian 

symptoms. We performed these tests in a fixed sequence (bar test, drag test, and rotarod test). 

In part 1 the tests are used to compare the motor performance of lesioned mice/paw with the 

un-lesioned mice/paw. In part 3 animals were scored the first day of tests, thus they underwent 

to consecutive 4 days of training and scored the fifth day. Such of protocol serves to highlight 

differences in motor learning, in terms of adaptation to experimental conditions. 

Bar test 

This test, also known as the catalepsy test (Sanberg et al., 1988), measures the ability of the 

animal to respond to an externally imposed static posture. Each rodent was placed gently on a 

table and the right and left forepaws were placed alternatively on blocks of increasing heights 

(1.5, 3 and 6 cm for mice and 3, 6 and 9 cm for rats). The immobility time (in sec) of each 

forepaw on the block was recorded (cut-off time 20 sec per step, 60 sec maximum). Akinesia 

was calculated as total time spent on the blocks by each forepaw. 

Drag test 

The test (modification of the ”wheelbarrow” test; (Schallert et al., 1979), measures the ability of 

the animal to balance its body posture using forelimbs in response to an externally imposed 

dynamic stimulus (backward dragging; Marti et al., 2005). Each rodent was gently lifted by the 

tail (allowing the forepaws on the table) and dragged backwards at a constant speed (about 20 

cm/sec) for a fixed distance (100 cm). The number of touches made by each forepaw was 

counted by two separate observers (mean between the two forepaws). 

Rotarod test 

This test analyzes the ability of the rodents to run on a rotating cylinder (diameter 8 cm) and 

provides information on different motor parameters such as coordination, gait, balance, muscle 

tone and motivation to run (Rozas and Labandeira Garcia, 1997). The fixed-speed rotarod 27 

test was employed according to a previously described protocol (Marti et al., 2004; Viaro et al., 

2010). Briefly, animals were tested at stepwise increasing speeds (180 sec each) and time spent 

on the rod calculated (in sec).  
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In vivo microdialysis 

In part 1 and in part 3 of the present work, microdialysis was used to simultaneously monitor 

GABA and GLU release in the SNr and GP of freely moving mice (Mabrouk et al., 2010; Volta et 

al., 2010); and rats (Morari et al., 1996a; Morari et al., 1996b; Marti et al., 2002; Marti et al., 

2005a). Briefly, two microdialysis probes of concentric design were stereotaxically implanted 

under isoflurane anesthesia (1.5% in air) into the lesioned SNr and ipsilateral GP (1 and 2 mm 

dialyzing membrane, respectively), according to the following coordinates from bregma and the 

dural surface (mm): mouse GP, AP -0.46, ML -1.8, DV  -3.9, mouse SNr, AP -3.3, ML -1.25, DV -

4.6; rat GP, AP -1.3, ML -3.3, DV -7.5, rat SNr, AP -5.5, ML -2.2, DV -8. In part 2 of the present 

study, rats were stereotaxically implanted with one microdialysis probe into the lesioned SNr 

(for coordinates see above) and another in the ipsilateral dorsolateral striatum (3mm dialyzing 

membrane; coordinates from bregma and the dural surface (mm) : AP +1.0, ML -3.5, DV -6). 

Twenty-four hours after surgery, probes were perfused with a modified Ringer solution (CaCl2 

1.2 mmol/L, KCl 2.7 mmol/L, NaCl 148 mmol/L and MgCl2 0.85 mmol/L) at a flow rate of 2.1 

(mouse) and 3 µL/min (rat). After 6 h rinsing, samples were collected (every 15 or 20 min 

depending on the study) for a total of 3–4 h. At least three baseline samples were collected 

before i.p. administration of L-DOPA, amantadine (40 mg/kg, i.p.) or saline. In the combination 

studies, amantadine was administered 1 h before L-DOPA. In part 2 each rat received L-DOPA 

(i.p.), a DA receptor antagonist (SCH23390, raclopride) locally-perfused in SNr or dorsolateral 

striatum, or their combination in a randomized fashion. At the end of experiment, animals were 

sacrificed and the correct placement of the probes was verified histologically.  

 

Endogenous glutamate and GABA analysis 

Glutamate and GABA levels in the dialysate were measured by HPLC coupled with fluorometric 

detection as previously described (Marti et al., 2007). Thirty microliters of o-

phthaldialdehyde/mercaptoethanol reagent were added to aliquots of sample (30 µL collected 

from rats or 28 µL from mice) and 50 µL of the mixture was automatically injected (Triathlon 

autosampler; Spark Holland, Emmen, the Netherlands) onto a 5-C18 Chromsep analytical 

column (3 mm inner diameter, 10 cm length; Chrompack, Middelburg, the Netherlands) 

perfused at a flow rate of 0.48 mL/min (Jasco quaternary gradient pump PU-2089 PLUS; Jasco, 
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Tokyo, Japan) with a mobile phase containing 0.1 M sodium acetate, 10% methanol and 2.2% 

tetrahydrofuran (pH 6.5). Glutamate and GABA were detected by means of a fluorescence 

spectrophotometer FP- 2020 Plus (Jasco, Tokyo, Japan) with the excitation and the emission 

wavelengths set at 370 and 450 nm respectively. The limits of detection for glutamate and 

GABA were  ~1 and  ~0.5 nM, respectively. Retention times for glutamate and GABA were  ~3.5 

and  ~18.0 min, respectively. 

 

TH immunoreactivity evaluation 

Tyrosine hydroxylase (TH) immunostaining was used to verify the degree of DA depletion in 

striatum. Mice were anaesthetized with ketamine (85 mg/kg; i.p.) and xylazine (15 mg/kg; i.p.), 

transcardially perfused with 20 mM phosphate buffered saline (PBS) and fixed with 4% 

paraformaldehyde in PBS at pH 7.4. Brains were removed, post-fixed overnight and 

cryoprotected in 50% glycerol (solution in PBS). Serial coronal sections of 30 µm thickness were 

made in the striatum -0.8 to +1.3 from bregma) and every second section processed for TH 

immunohistochemistry (see below). Free-floating striatal sections were rinsed in Tris-buffered 

saline (TBS; 0.25 M Tris and 0.5 M NaCl, pH 7.5), incubated for 5 min TBS containing 3% H2O2 

and 10% methanol (vol/vol), and then rinsed three times (10 min each) in TBS. After 20 min 

incubation in 0.2% Triton X- 100 in TBS, sections were rinsed three times in TBS again. Finally, 

they were incubated overnight at 4°C with the anti-TH mouse monoclonal primary antibody (1 : 

40; AbCam, Cambridge, UK). Following incubation, sections were rinsed three times for 10 min 

in TBS and incubated for 45 min with secondary antibody (1 : 200; Alexa Fluor 680 anti-mouse 

IgG). In SNc triple staining was needed to distinguish dopaminergic neurons from the rest of 

cellular population. We used anti-NeuN monoclonal antibody (1:50; Millipore;  Alexa Fluor 488 

conjugated) for unspecific neuronal staining and DAPI (Sigma) to stain neuronal and non-

neuronal cells.  

Mouse brain sections were analyzed with a Zeiss LSM 510 (Zeiss, Oberkochem, Germany) and 

acquired with Plan-Neofluar 10· (Edmund Optics, Barrington, IL, USA) lens. TH-immunoreactive 

fiber density was analyzed using ImageJ software (Wayne Rasband, National Institute of Health, 

Bethesda, MD, USA). To quantify TH staining, the optical densities were corrected for non-

specific background density, measured in the corpus callosum. TH-positive fiber density and the 
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number of TH-positive neurons was calculated as the ratio between optical density in the 

denervated (ipsilateral) and intact (contralateral) side.  

 

Drugs 

6-OHDA hydrobromide, D-amphetamine sulphate, L-DOPA methyl ester hydrochloride, 

benserazide hydrochloride and amantadine hydrochloride were purchased from Sigma-Aldrich 

(AB, Italy), SCH23390 hydrochloride and raclopride from Tocris Bioscience (Bristol, UK). Except 

from 6-OHDA, all drugs were dissolved in saline and administered within 1 h at the volume of 

1.0 mL/kg body weight. 6-OHDA were dissolved in saline containing 0.02% ascorbic acid, and 

used within 2 h. SCH23390 and raclopride were dissolved in water to 1 mM, and then diluted to 

1 μM with perfusion Ringer. 

 

Data presentation and statistical analysis 

Motor performance has been expressed as time (in seconds) on bar or rod (bar and rotarod 

tests), and number of steps (drag test). AIMs rating has been expressed as ALO score 

(magnitude x amplitude). In microdialysis studies, GABA and GLU release has been expressed as 

percentage ± SEM of basal values (calculated as mean of the two samples before the 

treatment). In Figure legends (and in Results section), basal dialysate levels of amino acids were 

also given as absolute values (in nM). Statistical analysis has been performed by one way and 

analysis of variance (ANOVA) and two-way repeated measure (RM ANOVA). In case ANOVA 

yielded a significant F score, post hoc analysis has been performed by contrast analysis to 

determine group differences. In case a significant time x treatment interaction was found, the 

sequentially rejective Bonferroni’s test was used (implemented on Excel spreadsheet) to 

determine specific differences (i.e. at the single time-point level) between groups. Statistical 

analysis for the data presented in Fig. 8 was performed by the paired Student’s t test. Statistical 

analysis for the data presented in Fig. 9 and Fig. 12 was performed by Mann Whitney U-test. p-

values < 0.05 were considered to be statistically significant.  
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Results 

Part 1. Effect of amantadine in reducing LID in mouse and rat with already-

established dyskinesia.  

In the first part of the present study we investigate the feasibility of the dual probe microdialysis 

approach in dyskinetic mice. Simultaneously recording dyskinesia and collecting dialysate 

samples Moreover we compared the mouse model with the already-validated rat model. The 

antidyskinetic effects of amantadine on the behavioral and neurochemical changes in GP and 

SNr of 6-OHDA hemi-lesioned dyskinetic mice and rats were also assessed. 

 

1.1 Acute L-DOPA improves bradykinesia and motor deficit in 6-OHDA lesioned mice  

Basal motor scores of naive mice (n = 11) were 8.0 ± 1.0 s of immobility (bar test), 15.0 ± 2.0 

steps (drag test) and 1253.5 ± 122.7 s of permanence on the rod (rotarod test). Unilateral 

intrastriatal injections of 6-OHDA caused marked akinesia and bradykinesia mainly affecting the 

contralateral forepaw, and an overall reduction of motor performance. Immobility time at the 

contralateral paw increased by about 4-fold compared with the ipsilateral paw (Fig. 1A) whereas 

the number of steps was reduced by ~70% (Fig. 1B). Finally, rotarod performance was reduced 

by ~58% after 6-OHDA lesioning (Fig. 1C). To test the dopaminergic nature of this motor deficit, 

L-DOPA was systemically administered (i.p.) at a dose which was reported to attenuate 

hypokinesia in MPTP-treated mice (10 mg/kg in combination with 12 mg/kg benserazide; Viaro 

et al., 2008). L-DOPA normalized the immobility time (Fig. 1A) and stepping activity (Fig. 1B) at 

the contralateral paw but was unable to attenuate deficit in rotarod performance (Fig. 1C). This 

behavioral phenotype was associated with a 90.3 ± 2.7% reduction of striatal TH 

immunopositive fibers in the ipsilateral compared with the contralateral striatum (n = 9, t = 

9.367, p < 0.0001, Student’s t-test). 

 
 



38 
 

0

10

20

30

40

50

60

L-DOPA
10 mg/kg

ipsilateral forepaw

**

°°

saline

contralateral forepaw

A

T
im

e
 o

n
 b

a
r 
(s

e
c
)

0

5

10

15

20

25

**

°°

L-DOPA
10 mg/kg

saline

ipsilateral forepaw

contralateral forepaw

B

N
u
m

b
e

r 
o

f 
s
te

p
s

0

200

400

600

800

1000

1200

1400

1600

1800

L-DOPA
10 mg/kg

saline

**

sham-operated
6-OHDA-injected

C

**

T
im

e
 o

n
 r
o

d
 (

s
e

c
)

 

Fig. 1 L-DOPA relieved akinesia/bradykinesia in hemi-parkinsonian mice. Systemic (i.p.) administration of L-DOPA (15 mg/kg plus 

12 mg/kg of benserazide) reduced the time spent on the blocks in the bar test (A), increased the number of steps of the 

contralateral forepaw in the drag test (B), and failed in improving overall motor performance in the rotarod test (C). Behavioral 

testing was performed 30 min after L-DOPA injection. Motor asymmetry was evaluated separately at the ipsilateral and 

contralateral (parkinsonian) paw (A, B). Data are expressed as absolute values (s, number of steps) and are mean ± SEM of 8–10 

animals. Statistical analysis was performed by one-way ANOVA followed by contrast analysis and the sequentially rejective 

Bonferroni’s test. Panel A: significant effect of treatment (F3,28 = 37.70, p < 0.001). Panel B: significant effect of treatment 

(F3,28 = 10.16, p < 0.001). Panel C: significant effect of treatment (F3,24 = 20.65, p < 0.001). **p < 0.01 versus the ipsilateral 

forepaw (A, B) or sham-operated mice (C), °°p < 0.01 versus the contralateral forepaw of saline injected mice (A, B). 

 

1.2 Chronic L-DOPA treatment elicits LID in hemi-lesioned mice  

Chronic treatment of hemi-parkinsonian mice with L-DOPA (15 mg/kg plus 12 mg/kg 

benserazide; i.p., once daily for 10 days) caused the development of axial, limb and orolingual 

AIMs having a similar temporal profile. AIMs appearance was gradual and progressive, reaching 

a plateau at the fifth day of treatment (Fig. 2A,B). 
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Fig. 2 Development of dyskinesia during chronic L-DOPA administration in 6-OHDA hemi-lesioned mice. Mice were treated for 

10 days with L-DOPA 15 mg/kg (plus benserazide 12 mg/kg, i.p., once daily) and AIMs were evaluated at days 1, 3, 5, 8, and 10 

after treatment onset. Axial, limb and orolingual (ALO) AIMs were scored every 20 min for 120 min after L-DOPA 

administration. Data (in arbitrary units; see Results section) have been presented either as the sum of each AIM subtype 

(cumulative ALO score; A) or as each AIMs subtype separately (B). Each value is the mean ± SEM of 10–11 animals. 
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1.3 Amantadine attenuates LID expression and its neurochemical correlates in hemi-
parkinsonian mice. 

To examine whether mouse dyskinesia was accompanied by changes of activity along the 

striatofugal pathways, GABA and glutamate release was monitored in SNr and GP along with 

behavior following L-DOPA alone (15 mg/kg plus 12 mg/kg benserazide, i.p.) or in combination 

with amantadine. A dose of 40 mg/kg amantadine was chosen because it proved effective in 

reducing ALO AIMs in mice and rats without affecting the locomotive components of AIMs 

(Lundblad et al., 2002; Dekundy et al., 2007) which is considered a marker of the therapeutic 

effect of L-DOPA (Cenci, 2002). L-DOPA caused the appearance of dyskinetic movements already 

at 20 min after injection. The intensity of dyskinesia remained stably at maximal levels up to 80 

min after injection (Fig. 3A), after which AIMs tended to decline. Amantadine administration (1 

h before L-DOPA) caused an overall (~50%) attenuation of AIMs severity with some preference 

for orolingual (~66%) over axial (~47%) and limb (~43%) AIMs (Fig. 3B,D).  

These behavioral changes were associated with different neurochemical patterns in SNr and GP 

(Fig. 4). A marked increase of GABA levels was observed in SNr after L-DOPA administration, 

with a peak (~3-fold over basal) at 80 min (Fig. 4A). Consistent with its anti-dyskinetic effect, 

amantadine prevented the rise in GABA levels induced by L-DOPA (Fig. 4A) without causing per 

se any change in basal values. Nigral GLU levels were not significantly affected by L-DOPA 

although showing a tendency to decline over time (Fig. 4B). Amantadine, alone or in 

combination with L-DOPA, was also ineffective, although causing a trend for an increase (~30% 

1 h after injection, Fig. 4B). Opposite to SNr, L DOPA alone did not cause any significant changes 

of GABA levels in GP (Fig. 4C). Amantadine alone was also ineffective. However, when co-

administered with L-DOPA it caused a marked elevation of GABA levels up to ~217% at the end 

of collection period. L-DOPA, amantadine or their combination failed to affect pallidal glutamate 

levels (Fig. 4D).  
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Fig. 3 Behavioral effect of L-DOPA and amantadine in dyskinetic mice undergoing microdialysis. 6-OHDA hemi-lesioned mice 

were made dyskinetic by chronic L-DOPA administration (15 mg/kg plus 12 mg/kg benserazide, i.p., once a day for 10 days). At 

the end of treatment, mice underwent surgery for microdialysis probe implantation, and 24 h later were challenged with L-

DOPA alone or in combination with amantadine (40 mg/kg; i.p., 1 h in advance). Control mice were treated with either 

amantadine or saline alone. ALO AIMs were scored every 20 min for 120 min after L-DOPA administration. Temporal profiles of 

AIMs taken as a whole (ALO AIMs; A) or as separate items (C) are shown. Cumulative dyskinesia score (i.e. the sum of the scores 

given at each of the six observation sessions) is shown for ALO AIMs as a whole (B) or for each AIM subtype separately (D). Co-

administration of amantadine reduced AIMs expression, affecting about to the same extent each AIMs subtype. Data are 

expressed as arbitrary units (see Results section) and are mean ± SEM of 10–11 animals. Panel A: significant effect of treatment 

(F3,15 = 111.8, p < 0.001) but not time (F5,198 = 1.68, p = 0.14), and significant time treatment interaction (F15,198 = 2.31, p = 

0.005), according to two-way RM ANOVA followed by contrast analysis and the sequentially rejective Bonferroni’s test. Panel B: 

significant effect of amantadine (t = 3.15, df = 19, p = 0.005), according to unpaired Student’s t-test. Panel D: significant effect of 

amantadine; axial (t = 2.2, df = 19, p = 0.039), limb (t = 2.73, df = 19, p = 0.013), orolingual (t = 5,0, df = 19, p < 0.001) AIMs, 

according to unpaired Student’s t -test. *p < 0.05 versus saline, #p < 0.05, ##p < 0.01 versus L-DOPA. 
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Fig. 4 Neurochemical effects of L-DOPA and amantadine in dyskinetic mice undergoing microdialysis. Dyskinetic mice were 

implanted with a probe in the lesioned substantia nigra reticulata (SNr; A, B) and another in ipsilateral globus pallidus (GP; C, D). 

Twenty-four hr later, mice received an acute challenge with L-DOPA alone (15 mg/kg plus 12 mg/kg benserazide, i.p.) or in 

combination with amantadine (40 mg/kg; i.p., 1 h in advance), and GABA (A, C) and GLU (B, D) levels were monitored for 120 

min. Control mice were injected either with amantadine alone or saline. Data are expressed as percentage of basal pre-

treatment levels (calculated as the mean of the two samples preceding the treatment) and are mean ± SEM of 7–11 animals. 

Basal dialysate levels of GABA and GLU were 8.0 ± 0.4 and 73.6 ± 8.0 nM, respectively, in SNr, and 7.7 ± 0.6 and 79.5 ± 8.7 nM, 

respectively, in GP. Statistical analysis was performed by two-way RM ANOVA followed by contrast analysis and the sequentially 

rejective Bonferroni’s test. Panel A: significant effect of treatment (F3,30 = 24.66, p < 0.0001), time (F10,264 = 1.94, p = 0.0398) 

but not time x treatment interaction (F30,264 = 1.09, p = 0.34). Panel C: significant effect of treatment (F3,30 = 9.84, p < 

0.0001), time (F10,255 = 2.46, p = 0.0079) and time x treatment interaction (F30,255 = 2.75, p < 0.0001). *p < 0.05 versus saline; 

#
p < 0.05 versus L-DOPA alone. 

 

1.4 Chronic L-DOPA treatment elicits LID in hemi-lesioned rats 

Rats chronically treated with L-DOPA (6 mg/kg plus 12 mg/kg of benserazide) developed a stable 

degree of dyskinesia already at the ninth day of treatment, scoring the maximal values at the 
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17th day. Axial and limb AIMs showed a similar temporal profile, reaching a similar level of 

intensity over the 21-day treatment. Conversely, the development of orolingual AIMs was less 

appreciable, and this AIM subtype was poorly represented in this group of animals (Fig. 5A,B). 
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Fig. 5 Development of dyskinesia during chronic L-DOPA administration in 6-OHDA hemi-lesioned rats. Rats were treated for 21 

days with L-DOPA 6 mg/kg (plus benserazide 12 mg/kg, one injection per day). AIMs were evaluated at days 1, 5, 9, 12, 17, 19, 

21 after L-DOPA injection. ALO AIMs were scored every 20 min over a period of 120 min after L-DOPA administration. Data have 

been presented either as the sum of each AIM subtype (cumulative ALO AIMs; a) or as each AIM subtype separately (b). Data 

are mean ± SEM of 10–11 animals. 

 

1.5 Amantadine attenuates LID expression and its neurochemical correlates in hemi-

parkinsonian mice and rats. 

L-DOPA (6 mg/kg plus 12 mg/kg benserazide) induced AIMs appearance already at 20 min after 

injection, the maximal intensity (15.5 ± 2.1) being reached after 60 min. Amantadine reduced 

AIMs expression by ~53% (Fig 6A) being more effective on the axial and limb components (~55% 

both) than the orolingual one (~44%, Fig. 6C,D). As previously reported (Mela et al., 2007), an 

increase of GABA levels was observed in the SNr of dyskinetic rats after L-DOPA challenge (6 

mg/kg plus 12 mg/kg benserazide, i.p.) which reached the maximum value (~2-fold over basal) 

at 60 min (Fig. 7A). Different from that observed in mice, the increase of GABA was 

accompanied by a quantitatively similar increase of glutamate levels (Fig. 7B). Amantadine, 

ineffective alone, prevented the rise of both amino acids associated with AIMs. Conversely, no 

changes of GABA or glutamate levels were observed in GP following administration of L-DOPA, 

amantadine or their combination (Fig. 7C,D). 
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Fig. 6 Behavioral effect of L-DOPA and amantadine in dyskinetic rats undergoing microdialysis. 6-OHDA hemi-lesioned rats were 

made dyskinetic by chronic L-DOPA administration (6 mg/kg plus 12 mg/kg benserazide, i.p., once a day for 21 days). At the end 

of treatment, rats underwent surgery for microdialysis probe implantation, and were challenged with L-DOPA alone or in 

combination with amantadine (40 mg/kg; i.p., 1 h in advance) 24 h later. Control rats were treated with either amantadine or 

saline alone. ALO AIMs were scored every 20 min over 180 min after L-DOPA administration. Temporal profiles of AIMs taken as 

a whole (ALO AIMs; A) or as separate items (C) are shown. Cumulative dyskinesia score (i.e. the sum of the scores given at each 

of the nine observation sessions) is shown for ALO AIMs as a whole (B) or for each AIM subtype separately (D). Data are 

expressed as arbitrary units (see Results section) and are mean ± SEM of 5–7 animals. Panel A: significant effect of treatment 

(F3,24 = 117.9, p < 0.001), time (F8,171 = 14.22, p < 0.001) and time treatment interaction (F24,171 = 7.13, p < 0.001), according 

to two-way RM ANOVA followed by contrast analysis and the sequentially rejective Bonferroni’s test. Panel B: significant effect 

of amantadine (t = 3.35, df = 5, p = 0.020), according to unpaired Student’s t-test. Panel D: significant effect of amantadine; axial 

(t = 3.40, df = 11, p = 0.005), limb (t = 3.46, df = 11, p = 0.005), orolingual (t = 2.79, df = 11, p = 0.017) AIMs, according to 

unpaired Student’s t-test. *p < 0.05 versus saline, 
#
p < 0.05, 

##
p < 0.01 versus L-DOPA. 
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Fig. 7 Neurochemical effects of L-DOPA and amantadine in dyskinetic rats undergoing microdialysis. Dyskinetic rats were 

implanted with one probe in the lesioned SNr (A, B) and another in ipsilateral GP (C, D). Twenty-four hours later, rats received 

an acute challenge with L-DOPA alone (6 mg/kg plus 12 mg/kg benserazide, i.p.) or in combination with amantadine (40 mg/kg; 

i.p., 1 h in advance), and GABA (A, C) and GLU (B, D) levels were monitored for 180 min. Data are expressed as percentage of 

basal pre-treatment levels (calculated as the mean of the two samples preceding the treatment) and are mean ± SEM of 5–7 

animals. Basal dialysate levels of GABA and GLU were 10.5 ± 0.5 and 98.3 ± 5.6 nM, respectively, in SNr, and 11.9 ± 0.5 and 79.6 

± 5.3, respectively, in GP. Panel A: significant effect of treatment (F3,39 = 90.23, p < 0.001), time (F13,280 = 10.34, p < 0.001) 

and time x treatment interaction (F39,280 = 5.46, p < 0.001). Panel B: significant effect of treatment (F3,39 = 43.74, p < 0.001), 

time (F13,280 = 6.43, p < 0.001) and time x treatment interaction (F39,280 = 2.46, p < 0.001), according to two-way RM ANOVA 

followed by contrast analysis and the sequentially rejective Bonferroni’s test. *p < 0.05 versus saline; 
#
p < 0.05 versus L-DOPA. 
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1.6 Microdialysis setting have no effect on dyskinesia score and does not influence the 

antidyskinetic effect of amantadine. 

Dyskinetic freely moving animals were challenged with dyskinesiogenic dose of L-DOPA (6 and 

15 mg/kg, for rats and mice, respectively plus 12 mg/kg benserazide) and scored for LID 

magnitude. Rats were also scored when co-administrated with amantadine (40 mg/kg,i.p.). 

Subsequently the same animals were submitted to surgery procedures for probe implantation. 

The day after surgery, the animals were placed in the microdialysis setting and challenged with 

the dyskinesiogenic dose of L-DOPA. Wired rats were also scored when co-administrated with 

amantadine. Dialysis setting did not significantly alter LID magnitude. Amantadine exerted its 

antidyskinetic effect in rats with the same extent when tested in the two different conditions 

(causing a reduction by ~60% of LID). 
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Fig. 8 Impact of microdialysis setting on the behavioral response to L-DOPA and amantadine in dyskinetic animals. AIMs were 

evaluated in the same animal before and after dialysis probe implantation (i.e. during microdialysis). The anti-dyskinetic effect 

of amantadine was evaluated in rats only. Data have been presented as cumulative ALO AIMs score or, in the case of 

amantadine, as percentage of L-DOPA response. Data are mean ± SEM of n = 8 (mice) or n = 5 (rats) experiments. Statistical 

analysis was performed by the paired Student’s t-test. 
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Part 2. Differential role of nigral and striatal D1 and D2 receptors in LID 

expression 

The second part of the thesis was undertaken to dissect the role of striatal and nigral D1 and D2 

receptors in LID, together with the changes in amino acids level in these structures. Using 

reverse microdialysis in awake rats, we perfused D1R/D5R and D2R/D3R antagonists (SCH23390 

and raclopride, respectively, 1 µM) in dorsolateral striatum or SNr simultaneously with LID 

monitoring. 

2.1 Effects of DLS perfusion with SCH23390 and raclopride 

Monitoring the behavioral effects of L-DOPA during intrastriatal perfusion with selective DA 

receptor antagonists (Fig. 9A) revealed that SCH23390 markedly attenuated (~47%) AIMs 

expression whereas raclopride was without effect (Fig. 9B). Stratification of behavioral analysis 

for dyskinesia typology showed that SCH23390 prevented approximately to the same extent 

both limb and axial AIMs whereas orolingual AIMs remained unchanged (Fig. 9C). 

To investigate whether striatal D1 and D2 receptors were involved in LID expression, the D1/D5 

selective antagonist SCH23390 or D2/D3 selective antagonist raclopride were perfused through 

a microdialysis probe in dorsolateral striatum, alone or in combination with a systemic dose of 

L-DOPA. GABA and glutamate levels were monitored in both dorsolateral striatum and SNr 

simultaneously with AIMs rating. Systemic administration of L-DOPA, alone or in combination 

with intrastriatal SCH23390, did not affect GABA levels in striatum (Fig. 10A,B). Unlike amino 

acid levels in dorsolateral striatum, nigral GABA and glutamate concentrations showed a large 

and sustained increase following the administration of L-DOPA (Fig. 10C,D), an effect that was 

consistent across all experiments presented in the thesis. GABA levels were significantly 

elevated above control levels 30 min after L-DOPA treatment (i.e. in the 90 min perfusate 

fraction; p<0.05). reaching maximal values (~86%) in the next sample (105 min). The increase 

remained significant for at least 90 min following the injection of L-DOPA (150 min perfusate 

fraction), although it tended to decline by the end of the observation period (180 min fraction, 

corresponding to 2 hours post L-DOPA administration). Intrastriatal SCH23390 prevented the 

surge in GABA levels following L-DOPA. Nigral glutamate levels (Fig. 10D) showed a similar 

temporal course, starting to be significantly elevated above control values in the 90 min 

perfusate fraction, and reaching a peak (~80%) at 105–120 min. Glutamate levels showed a 
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steady increase until the end of the observation period (panels D in Figs. 10–11). Local perfusion 

of SCH23390 in dorsolateral striatum completely blocked the effect of L-DOPA (Fig. 10D). 

Intrastriatal perfusion of raclopride did not affect striatal amino acid levels when given alone, 

nor did it disclose any effect of LDOPA in dorsolateral striatum (Figs. 11A–B). Likewise, 

raclopride did not modulate basal GABA and glutamate levels in SNr (Figs. 11C–D) or their 

responses to L-DOPA. 
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 Fig. 9 Reverse dialysis of the D1R selective antagonist SCH23390 but not the D2R selective antagonist raclopride in the DA-

depleted dorsolateral striatum (DLS) of unilateral 6-OHDA lesioned dyskinetic rats modulates L-DOPA induced abnormal 

involuntary movements (AIMs). SCH23390 and raclopride (1 μM) were perfused through the probe implanted in DLS starting 1 h 

before systemic administration of L-DOPA (6 mg/kg+12 mg/kg benserazide, i.p.). Axial, limb and orolingual (ALO) AIMs were 

scored every 15 min (for 120 min after L-DOPA administration) according to the scale described in Methods. Data were 

presented as time-course (A), cumulative ALO scores (B) or separate scores for each subtype (C). Data are means ± SEM of 5– 9 

determinations. Statistical analysis was performed by the Mann Whitney U-test. Significant results: panel B, U=0.5; panel C Limb 

AIMs, U=1.5, axial AIMs U=5.0. °°p<0.01 different from L-DOPA alone. 
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Fig. 10 Reverse dialysis of the D1 receptor selective antagonist SCH23390 in the DA-depleted dorsolateral striatum (DLS) of 

unilateral 6-OHDA lesioned dyskinetic rats modulates L-DOPA induced amino acid levels. SCH23390 (1 μM) was perfused 

through the probe implanted in DLS, and GABA and GLU levels monitored in DLS (A–B) and SNr (C–D). SCH23390 was perfused 

(black bar) starting 1 h before systemic administration of L-DOPA (6 mg/kg+12 mg/kg benserazide, i.p.; arrow). Data are 

expressed as percentages of basal pre-treatment values, and are means ± SEM of 5–7 determinations. Basal GABA and GLU 

levels (nM) were 10.6 ± 0.6 and 179.3 ± 14.7 (DLS), and 9.7 ± 0.5 and 161.3±15.6 (SNr), respectively. Statistical analysis was 

performed by Two-way RM ANOVA followed by the sequentially rejective Bonferroni's test. Significant interactions: panel B, L-

DOPA X time (F11,188=2.17, p=0.0175); panel C, L-DOPA x time (F11,220 = 2.91, p = 0.001), SCH23390 x time (F11,220 = 4.29, p 

< 0.001) or L-DOPA x SCH23390 x time (F11,220 = 3.89, p < 0.001); panel D, L-DOPA x time (F11,212 = 3.40, p < 0.001), SCH23390 

× time (F11,212 = 2.52, p = 0.005) or L-DOPA x SCH23390 x time (F11,212 = 3.23, p < 0.001). *p<0.01 different from control. 

 



49 
 

-15 0 15 30 45 60 75 90 105 120 135 150 165 180
40

60

80

100

120

140

160

180

200

220

240

Control

L-DOPA 6 mg/Kg

Raclopride 1 µM

Raclopride in DLS

A

L-DOPA (+ raclopride in DLS)

L-DOPA i.p.

Time (min)

D
L

S
 G

A
B

A
 (

%
 o

f 
b

a
sa

l)

-15 0 15 30 45 60 75 90 105 120 135 150 165 180
40

60

80

100

120

140

160

180

200

220

240

Control

L-DOPA 6 mg/Kg

Raclopride 1 µM

Raclopride in DLS

B

L-DOPA (+ raclopride in DLS)

L-DOPA i.p.

Time (min)

D
L

S
 G

L
U

 (
%

 o
f 

b
a
sa

l)

-15 0 15 30 45 60 75 90 105 120 135 150 165 180
40

60

80

100

120

140

160

180

200

220

240

Control

L-DOPA 6 mg/Kg

Raclopride 1 µM

Raclopride in DLS

C

L-DOPA (+ raclopride in DLS)

L-DOPA i.p.

Time (min)

S
N

r 
G

A
B

A
 (

%
 o

f 
b

a
sa

l)

-15 0 15 30 45 60 75 90 105 120 135 150 165 180
40

60

80

100

120

140

160

180

200

220

240

Control
L-DOPA 6 mg/Kg

Raclopride 1 µM

Raclopride in DLS

D

L-DOPA (+ raclopride in DLS)

L-DOPA i.p.

Time (min)

S
N

r
 G

L
U

 (
%

 o
f 

b
a
sa

l)

 

Fig. 11 Reverse dialysis of the D2R selective antagonist raclopride in the DA-depleted dorsolateral striatum (DLS) of unilateral 6-

OHDA lesioned dyskinetic rats modulates L-DOPA induced amino acid levels. Raclopride (1 μM) was perfused through the probe 

implanted in DLS, and GABA and GLU levels monitored in DLS (A–B) and SNr (C–D). Raclopride was perfused (black bar) starting 

1 h before systemic administration of L-DOPA (6mg/kg + 12mg/kg benserazide, i.p.; arrow). Data are expressed as percentages 

of basal pre-treatment values, and are means ± SEM of 5–6 determinations. Basal GABA and GLU levels (nM) were, respectively, 

20.4 ± 3.1 and 128.7.3 ± 25.8 (DLS), and 13.1 ± 1.9 and 132.5 ± 23.1 (SNr). Statistical analysis was performed by Two-way RM 

ANOVA followed by the sequentially rejective Bonferroni's test. Significant interactions: panel C, L-DOPA x time (F11,200 = 

13.50, p < 0.001); panel D, L-DOPA x time (F11,200 = 13.56, p < 0.001). 

 

2.2 Effects of SNr perfusion with SCH23390 and raclopride 

Monitoring the effect of L-DOPA on AIMs expression during intranigral perfusion with selective 

DA receptor antagonists (Fig. 12A) revealed that both SCH23390 and raclopride significantly 

attenuated AIMs expression (~21% and ~40%, respectively; Fig. 12B), causing a reduction of 

limb AIMs (Fig. 12C).  
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To investigate the role of nigral D1R and D2R in LID, perfusions of SCH23390 or raclopride 

through the probe implanted in SNr were combined with systemic L-DOPA administration (Figs. 

13–14). Intranigral perfusion with SCH23390 did not affect amino acid levels in striatum when 

given alone or in combination with L-DOPA (Figs. 13A–B). However, intranigral SCH23390 alone 

transiently elevated GABA levels in SNr and attenuated the GABA response to L-DOPA (Fig. 13C). 

Conversely, SCH23390 did not affect basal glutamate levels nor did it attenuate the rise in nigral 

glutamate following L-DOPA (Fig. 13D) Differently from SCH23390, intranigral perfusion with 

raclopride caused marked changes in amino acid levels in striatum. Intranigral raclopride caused 

a slow increase in striatal GABA levels which was unaffected by L-DOPA (Fig. 14A). In contrast, 

raclopride caused a prompt elevation of striatal glutamate levels which was overall enhanced by 

L-DOPA (Fig. 14B). However, at any time point the effect of L-DOPA was different from that of 

raclopride. Perfusion of raclopride in SNr significantly decreased GABA levels (~40%) although it 

did not change the facilitatory effect of L-DOPA (Fig. 14C). Intranigral raclopride did not change 

basal glutamate levels in this area nor did it alter the surge in nigral glutamate in response to L-

DOPA (Fig. 14D). 
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Fig. 12. Reverse dialysis of the D1R selective antagonist SCH23390 and the D2R selective antagonist raclopride in the lesioned 

substantia nigra reticulata (SNr) of unilateral 6 OHDA lesioned dyskinetic rats modulates L-DOPA induced abnormal involuntary 

movements (AIMs). SCH23390 and raclopride (1 μM) were perfused through the probe implanted in SNr starting 1 h before 

systemic administration of L-DOPA (6 mg/kg + 12 mg/kg benserazide, i.p.). Axial, limb and orolingual (ALO) AIMs were scored 

every 15 min (for 135 min after L-DOPA administration) according to the scale described in methods. Data were presented as 

time-course (A), cumulative ALO scores (B) or separate scores for each subtype (C). Data are means ± SEM of 7–9 

determinations. Statistical analysis was performed by the Mann–Whitney U-test. Significant results: panel B, SCH23390, U = 

10.0, raclopride U = 7.50; panel C Limb AIMs, SCH23390 U = 10.5, raclopride U = 8.0; axial AIMs, SCH23390 U = 7.0, raclopride U 

= 10.0. °p < 0.05, °°p < 0.01, different from L-DOPA alone. 
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Fig. 13. Reverse dialysis of the D1R selective antagonist SCH23390 in the lesioned substantia nigra pars reticulata (SNr) of 

unilateral 6-OHDA lesioned dyskinetic rats modulates L-DOPA-induced amino acid levels. SCH23390 (1 μM) was perfused 

through the probe implanted in SNr, and GABA and GLU levels monitored in ipsilateral dorsolateral striatum (DLS; A–B) and SNr 

(C–D). SCH23390 was perfused (black bar) 1 h before systemic administration of L-DOPA (6 mg/kg + 12 mg/kg benserazide, i.p.; 

arrow). Data are expressed as percentages of basal pre-treatment values, and are means ± SEM of 5–7 determinations. Basal 

GABA and GLU levels (nM) were 10.8 ± 0.7 and 147.7 ± 8.3 (DLS), and 9.6 ± 0.7 and 166.7 ± 16.3 (SNr), respectively. Statistical 

analysis was performed by Two-way RM ANOVA followed by the sequentially rejective Bonferroni's test. Significant interactions: 

panel C, SCH23390 x time (F11,252 = 20.21, p<0.001), L-DOPA x time (F11,252 = 9.59, p < 0.001) and L-DOPA x SCH23390 x time 

(F11,252=10.52, p < 0.001). *p < 0.01 different from control 
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Fig.14 Reverse dialysis of the D2R selective antagonist raclopride in the lesioned substantia nigra pars reticulata (SNr) of 

unilateral 6-OHDA lesioned dyskinetic rats modulates L-DOPA-induced amino acid release. Raclopride (1 μM) was perfused 

through the probe implanted in SNr, and GABA and GLU levels monitored in ipsilateral dorsolateral striatum (DLS; A B) and SNr 

(C–D). Raclopride was perfused (black bar) 1 h before systemic administration of L-DOPA (6 mg/kg + 12 mg/kg benserazide, i.p.; 

arrow). Data are expressed as percentages of basal pre-treatment values, and are means ± SEM of 5–6 determinations. Basal 

GABA and GLU levels (nM) were 11.3 ± 1.3 and 87.2 ± 23.1 (DLS), and 10.6 ± 1.4 and 77.7 ± 18.8 (SNr), respectively. Statistical 

analysis was performed by two-way RM ANOVA followed by the sequentially rejective Bonferroni's test. Significant interactions: 

panel A, raclopride X time (F11,220 = 2.35, p = 0.009); panel B, L-DOPA x time (F11,176 = 10.57, p < 0.001), raclopride x time 

(F11,17 6= 5.61, p < 0.001) and L-DOPA x raclopride x time (F11,176 = 4.62, p < 0.001); panel C, raclopride x time (F11,208 = 

2.78, p = 0.002) and L-DOPA x time (F11,208 = 17.22, p < 0.001).  

*p < 0.01 different from control. 
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Part 3. Targeting striatal RasGRFs as possible approach to reduce LID  

 
In the third part of the study, we investigated whether the selective striatal blockade of 

RasGRF1 or RasGRF2 is able to reduce the expression of dyskinesia, and if such effect could be 

accompanied by changes in neurochemical correlates. Moreover, we investigated whether 

RasGRF1 or RasGRF2 inhibition could synergize with amantadine in reducing LID expression. In 

order to achieve a striatal-selective inhibition of RasGRF1 and RasGRF2 we used lentiviral 

vectors (LVs) carrying small hairpin (sh) RNA targeted towards RasGRF1 (sh-RasGRF1) and 

RasGRF2 (sh-RasGRF2). Control mice are represented by 6-OHDA hemi-lesioned mice injected 

with LV expressing only the green fluorescent gene as report gene (LV-CTR). The data presented 

for the motor activity are referred to the forepaw contralateral to the lesion side. 

3.1 Sh-RasGRF1 expression has no effects on basal motor activity and motor learning  

At the first day of training, the motor scores of LV-CTR animals (n=10) were 32.0 ± 4.3 seconds 

of immobility (bar test), 3.6 ± 0.7 steps (drag test) and 429.7 ± 51.9 s of permanence on the rod 

(rotarod test). Mice injected with sh-RasGRF1 (n=9) showed similar values: 28.1 ± 4.7 seconds of 

immobility, 4.6 ± 0.9 steps and 408.3 ± 55.2 seconds of permanence on the rod (Fig. 15). After 

five days of training both group of animals displayed the same extent of motor improvement (in 

terms of adaptation to experimental conditions) without any differences among the two 

experimental groups. LV-CTR and sh-RasGRF1 increased immobility time in the bar test by ~30% 

and ~40% respectively (Fig. 15A), as well as motor performance on the rotarod by ~50% and 

~65% respectively (Fig. 15C). In the drag test both groups of mice showed a tendency to 

increase in the number of steps (Fig 15B).  
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Fig. 15 LVs injection does not affect the motor performance in 6-OHDA hemi-lesioned mice. Repeated testing (5 days training) 

increased the time spent on the blocks in the bar test (A), improved the overall motor performance in the rotarod test (C) and 
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had no effect on the number of steps in drag test (B). Motor performance in the bar and drag test refers to the contralateral 

separately (parkinsonian) paw (A, B). Data are expressed as absolute values (s, number of steps) and are mean ± SEM of 9–10 

animals. Statistical analysis was performed by two-way ANOVA followed by contrast analysis and the sequentially rejective 

Bonferroni’s test. Panel A: significant effect of time (F1,34 = 5.21, p = 0.028). Panel C: significant effect of time (F1,34 = 34.78, p 

< 0.001). 
çç

p < 0.01 versus the first day of training (A), 
ç
p < 0.05 versus the first day of training (C). 

 

3.2 Sh-RasGRF1 expression attenuates LID development in 6-OHDA hemi-lesioned mice 

Chronic treatment with escalating doses of  L-DOPA (3, 6, 9 mg/kg plus 12 mg/kg benserazide; 

i.p., once daily for 9 days) caused the development of LID in both LV-CTR and sh-RasGRF1. AIMs 

appearance resulted constantly reduced in sh-RasGRF1 compared to LV-CTR mice (Fig. 16A) and 

such difference was maximal at the ninth day of treatment (Fig. 16A). Cumulative ALO AIMs 

score emphasizes the difference in LID over the entire period of treatment, and revealed that 

sh-RasGRF1 mice had ~60% less severe dyskinesia (36.4 ± 9.7) than the controls (103.0 ± 19.7; 

Fig. 16A,B). 

1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

150 LV CTR

LV sh-RasGRF1

3 mg/kg 6 mg/kg

9 mg/kg

$

days of treatment

A
L

O
 A

IM
s
 s

c
o

re

0

200

400

600

800
LV CTR

LV sh-RasGRF1

$

c
o
m

u
la

ti
v
e
 A

L
O

 A
IM

s
 s

c
o
re

A B

 

Fig. 16 Development of dyskinesia during chronic L-DOPA administration in LV-CTR and sh-RasGRF1 6-OHDA hemi-lesioned 

mice. Mice were treated for 9 days with escalating doses of L-DOPA (3, 6, 9 mg/kg plus benserazide 12 mg/kg, i.p., once daily) 

and AIMs were evaluated at days 1, 3, 4, 6, 7 and 9 after treatment onset. Axial, limb and orolingual (ALO) AIMs were scored 

every 20 min for 120 min after L-DOPA administration (A). The sum of AIMs for overall the time period of observation 

(cumulative ALO AIMs) are also represented (B). Data are expressed as arbitrary units (see Results section) and are mean ± SEM 

of 8–9 animals. Panel A: significant effect of sh-RasGRF1 according to two-way RM ANOVA followed by contrast analysis and the 

sequentially rejective Bonferroni’s test (F1,90 = 22.88, p < 0.001). Panel B: significant effect of sh-RasGRF1 according to unpaired 

Student’s t-test (t = 2.02, df = 15, p = 0.030). 
$
p < 0.05 versus LV-CTR. 

 

3.3 Amantadine improves LID in LV-CTR animal but its anti-dyskinetic effect is occluded in sh-

RasGRF1 mice. 

In LV-CTR and sh-RasGRF1 mice undergoing microdialysis, L-DOPA (9 mg/kg plus 12 mg/kg 

benserazide) induced AIMs appearance already at 20 min after injection, the maximal intensity 
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(16.8 ± 1.4 and 8.7 ± 3.0 respectively) being observed within the 40-80 min time window (Fig 

17A,B). Amantadine co-administration reduced AIMs expression by ~50% (Fig 17A) in LV-CTR 

mice but failed to further reduce LID severity in sh-RasGRF1 animals (Fig. 17B) As previously 

reported (part 1,2), GABA levels increased in the SNr of dyskinetic LV-CTR mice after L-DOPA 

challenge (9 mg/kg plus 12 mg/kg benserazide, i.p.), reaching the maximum value (~2.5-fold 

over basal) at 100 min and prevented the rise of GABA in SNr when co-administered with L-

DOPA (Fig. 18A). L-DOPA and amantadine, did not affect glutamate levels in SNr when 

administered alone or in combination (Fig. 18B). Conversely, LID expression followed by L-DOPA 

injection did not coincide with the increase of GABA levels in SNr (Fig. 19A).  
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Fig. 17 Behavioral effect of L-DOPA and amantadine in dyskinetic mice undergoing microdialysis. Dyskinetic mice underwent 

surgery for microdialysis probe implantation, and were challenged with L-DOPA alone or in combination with amantadine (40 

mg/kg; i.p., 1 h in advance) 24 h later. Control mice were treated with either amantadine or saline alone. ALO AIMs were scored 

every 20 min over 120 min after L-DOPA administration. Temporal profiles of AIMs taken as a whole (ALO AIMs; A,B) or as sum 

of AIMs for overall the time period of observation (cumulative ALO AIMs; C) are shown. Data are expressed as arbitrary units 

(see Results section) and are mean ± SEM of 5–7 animals. Panel A: significant effect of treatment (F5,96 = 4.07, p = 0.002), time 

(F3,96 = 117.90, p < 0.001) and time x treatment interaction (F15,93 = 1.83, p < 0.040), according to two-way RM ANOVA 

followed by contrast analysis and the sequentially rejective Bonferroni’s test. Panel B: significant effect of time (F3,126 = 36.21, 

p < 0.001), time (F3,96 = 117.90, p < 0.001) and time x treatment interaction (F15,93 = 1.83, p = 0.040), according to two-way 

RM ANOVA followed by contrast analysis and the sequentially rejective Bonferroni’s test. Panel C: significant effect of treatment 

(F3,20 = 4.08, p = 0.020), according to one-way ANOVA followed Newman-Keuls multiple comparison test . *p < 0.05 versus 

saline, °p < 0.05 versus amantadine, 
#
p < 0.05 versus L-DOPA plus amantadine, 

§
p<0.05 versus L-DOPA-injected LV-CTR mice. 
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Fig. 18 Neurochemical effects of L-DOPA and amantadine in dyskinetic LV-CTR mice undergoing microdialysis. Dyskinetic mice 

were implanted with one probe in the lesioned SNr (A, B) and another in ipsilateral GP (C, D). Twenty-four hours later, rats 

received an acute challenge with L-DOPA alone (9 mg/kg plus 12 mg/kg benserazide, i.p.) or in combination with amantadine (40 

mg/kg; i.p., 1 h in advance), and GABA (A, C) and GLU (B, D) levels were monitored for 120 min. Data are expressed as 

percentage of basal pre-treatment levels (calculated as the mean of the two samples preceding the treatment) and are mean ± 

SEM of 4–8 animals. Basal dialysate levels of GABA and GLU were 9.8 ± 0.8 and 102.1 ± 16.2 nM, respectively, in SNr, and 10.1 ± 

0.8 and 103.4 ± 13.1, respectively, in GP. Panel A: significant effect of treatment (F3,319 = 15.94, p < 0.001), time (F10,319 = 

2.29, p = 0.012) and time x treatment interaction (F30,319 = 1.75, p = 0.01) according to two-way RM ANOVA followed by 

contrast analysis and the sequentially rejective Bonferroni’s test. 
*
p < 0.05 versus saline, °p < 0.05 versus amantadine, 

#
p < 0.05 

versus L-DOPA plus amantadine. 
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Fig. 19 Neurochemical effects of L-DOPA and amantadine in dyskinetic sh-RasGRF1 mice undergoing microdialysis. Dyskinetic 

mice were implanted with one probe in the lesioned SNr (A, B) and another in ipsilateral GP (C, D). Twenty-four hours later, rats 

received an acute challenge with L-DOPA alone (9 mg/kg plus 12 mg/kg benserazide, i.p.) or in combination with amantadine (40 

mg/kg; i.p., 1 h in advance), and GABA (A, C) and GLU (B, D) levels were monitored for 120 min. Data are expressed as 

percentage of basal pre-treatment levels (calculated as the mean of the two samples preceding the treatment) and are mean ± 

SEM of 4–8 animals. Basal dialysate levels of GABA and GLU were 9.98 ± 0.7 and 115.3 ± 16.2 nM, respectively, in SNr, and 13.0 

± 1.1 and 97.2 ± 6.8, respectively, in GP.  

 

3.4 Sh-RasGRF2 expression has no effect on basal motor activity and motor learning 

At the first day of training, the motor scores of  LV-CTR animals (n=15) were 15.8 ± 2.1 s of 

immobility (bar test), 5.7 ± 1.0 steps (drag test) and 377.2 ± 37.7 s of permanence on the rod 

(rotarod test). Mice injected with sh-RasGRF2 (n=19) did not show significantly different 

performance compared to controls: 19.8 ± 2.4 s of immobility, 5.3 ± 1.0 steps and 455.3 ± 43.8 
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seconds of permanence on the rod (Fig. 20). After five days of training both groups of animals 

displayed the same extent of motor improvement showing a similar increase in immobility time 

(Fig. 20A) and in stepping activity (Fig. 20B). Conversely, the rotarod performance not show any 

improvement in both groups of mice (Fig. 20C).  
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Fig. 20 LVs unilateral injection does not affect the motor performance adaptation in 6-OHDA mice. 5 days of training to the 

experimental conditions increased the time spent on the blocks in the bar test (A), improved the overall motor performance in 

the rotarod test (C) and had no effect on the number of steps in drag test (B). Behavioral testing was performed the first day of 

animals manipulation and at the fifth day, after 3 days of daily training. Motor skills were evaluated for the contralateral  

separately (parkinsonian) paw (A, B). Data are expressed as absolute values (s, number of steps) and are mean ± SEM of 15–19 

animals. Statistical analysis was performed by two-way ANOVA followed by contrast analysis and the sequentially rejective 

Bonferroni’s test. Panel A: significant effect of time (F1,64 = 38.34, p < 0.001). Panel B: significant effect of time (F1,64 = 9.21, p 

= 0.003). 
çç

p < 0.01 versus the first day of training (A). 

 

3.5 Sh-RasGRF2 expression has no effect on LID development in 6-OHDA lesioned mice 

Chronic treatment of hemi-parkinsonian mice with escalating doses of  L-DOPA (3, 6, 9 mg/kg 

plus 12 mg/kg benserazide; i.p., once daily for 9 days) caused the development of LID in both 

LV-CTR and sh-RasGRF2. Although, sh-RasGRF2 mice showed less severe dyskinesia compared to 

controls, the difference did not reach statistical significance. AIMs were maximal at the ninth 

day of treatment, reaching the value of 119.7 ± 16.3 in LV-CTR (n=8) and 78.1 ± 13.8 in sh-

RasGRF1 animals (n=11; Fig. 21A).  
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Fig. 21 Development of dyskinesia during chronic L-DOPA administration in LV-CTR and sh-RasGRF2 6-OHDA hemi-lesioned 

mice. Mice were treated for 9 days with escalating doses of L-DOPA (3, 6, 9 mg/kg plus benserazide 12 mg/kg, i.p., once daily) 

and AIMs were evaluated at days 1, 3, 4, 6, 7 and 9 after treatment onset. Axial, limb and orolingual (ALO) AIMs were scored 

every 20 min for 120 min after L-DOPA administration (A). The sum of AIMs for overall the time period of observation 

(cumulative ALO AIMs) are also represented (B). Data are expressed as arbitrary units (see Results section) and are mean ± SEM 

of 8–11 animals. 

 

3.6 Amantadine improves LID to the same extent in LV-CTR and in sh-RasGRF2 mice  

In LV-CTR and sh-RasGRF2 mice undergoing microdialysis, L-DOPA (9 mg/kg plus 12 mg/kg 

benserazide) induced AIMs appearance already at 20 min after injection, the maximal intensity 

(21.1 ± 1.8 and 16.7 ± 0.8) being observed within the 40-80 min time window (Fig 22A,B). 

Amantadine reduced AIMs expression by ~50% in both LV-CTR and sh-RasGRF2 (Fig 22). As 

previously reported, the levels of GABA are increased in the SNr of dyskinetic LV-CTR mice after 

L-DOPA challenge (9 mg/kg plus 12 mg/kg benserazide, i.p.) reaching the maximum value (~3-

fold over basal) at 100 min (Fig. 23A) and prevented the rise of GABA in SNr when co-

administered with L-DOPA (Fig. 23A). L-DOPA and amantadine, did not affect GLU levels in SNr 

when  administered alone or in combination (Fig. 23B). L-DOPA, amantadine and their 

combination did not cause changes in amino acid levels in GP (Fig. 23C,D).  Similarly, in sh-

RasGRF2 mice LID expression followed by L-DOPA injection coincided with the increase of GABA 

levels in SNr (~3-fold over basal) at 80min (Fig. 24A). The co-administration of amantadine 

prevented the rise of GABA in SNr when co-administered with L-DOPA (Fig. 24A). L-DOPA and 

amantadine, did not affect glutamate levels in SNr when administered alone or in combination 

(Fig. 24B). L-DOPA, amantadine and their combination did not cause changes in amino acid 

levels in GP (Fig. 24 C,D). 
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Fig. 22 Behavioral effect of L-DOPA and amantadine in dyskinetic mice undergoing microdialysis. Dyskinetic mice underwent 

surgery for microdialysis probe implantation, and were challenged with L-DOPA alone or in combination with amantadine (40 

mg/kg; i.p., 1 h in advance) 24 h later. Control mice were treated with either amantadine or saline alone. ALO AIMs were scored 

every 20 min over 120 min after L-DOPA administration. Temporal profiles of AIMs taken as a whole (ALO AIMs; A,B) or as sum 

of AIMs for overall the time period of observation (cumulative ALO AIMs; C) are shown. Data are expressed as arbitrary units 

(see Results section) and are mean ± SEM of 5–8 animals. Panel A: significant effect of treatment (F3,192 = 202.8, p < 0.001), 

time (F5,192 = 4.40, p < 0.001) and time x treatment interaction (F15,192 = 2.65, p = 0.001), according to two-way RM ANOVA 

followed by contrast analysis and the sequentially rejective Bonferroni’s test. Panel B: significant effect of treatment (F3,264 = 

425.60, p < 0.001), time (F5,264 = 8.58, p < 0.001) and time x treatment interaction (F15,264 = 5.10, p < 0.001), according to 

two-way RM ANOVA followed by contrast analysis and the sequentially rejective Bonferroni’s test. Panel C: significant effect of 

amantadine treatment (F3,38 = 14.45, p < 0.001), according to one-way ANOVA followed by contrast analysis and the 

sequentially rejective Bonferroni’s test. *p < 0.05 versus saline, °p < 0.05 versus amantadine, 
#
p < 0.05 versus L-DOPA plus 

amantadine, 
§
p<0.05 versus L-DOPA-injected LV-CTR mice, 

+
p<0.05 versus L-DOPA-injected sh-RasGRF2 mice 
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Fig. 23  Neurochemical effects of L-DOPA and amantadine in dyskinetic LV-CTR mice undergoing microdialysis. Dyskinetic mice 

were implanted with one probe in the lesioned SNr (A, B) and another in ipsilateral GP (C, D). Twenty-four hours later, rats 

received an acute challenge with L-DOPA alone (9 mg/kg plus 12 mg/kg benserazide, i.p.) or in combination with amantadine (40 

mg/kg; i.p., 1 h in advance), and GABA (A, C) and GLU (B, D) levels were monitored for 120 min. Data are expressed as 

percentage of basal pre-treatment levels (calculated as the mean of the two samples preceding the treatment) and are mean ± 

SEM of 4–10 animals. Basal dialysate levels of GABA and GLU were 4.4 ± 0.7 and 25.7 ± 5.4 nM, respectively, in SNr, and 5.9 ± 

0.8 and 23.0 ± 3.2, respectively, in GP. Panel A: significant effect of treatment (F3,187 = 11.27, p < 0.001), time (F10,187 = 1.90, 

p = 0.046) and time x treatment interaction (F30,187 = 1.55, p = 0.041) according to two-way RM ANOVA followed by contrast 

analysis and the sequentially rejective Bonferroni’s test. *p < 0.05 versus saline, °p < 0.05 versus amantadine, 
#
p < 0.05 versus L-

DOPA plus amantadine. 
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Fig. 24 Neurochemical effects of L-DOPA and amantadine in dyskinetic sh-RasGRF2 mice undergoing microdialysis. Dyskinetic 

mice were implanted with one probe in the lesioned SNr (A, B) and another in ipsilateral GP (C, D). Twenty-four hours later, rats 

received an acute challenge with L-DOPA alone (9 mg/kg plus 12 mg/kg benserazide, i.p.) or in combination with amantadine (40 

mg/kg; i.p., 1 h in advance), and GABA (A, C) and GLU (B, D) levels were monitored for 120 min. Data are expressed as 

percentage of basal pre-treatment levels (calculated as the mean of the two samples preceding the treatment) and are mean ± 

SEM of 4–10 animals. Basal dialysate levels of GABA and GLU were 2.9 ± 0.2 and 14.5 ± 1.3 nM, respectively, in SNr, and 4.2 ± 

0.4 and 26.6 ± 8.4, respectively, in GP. Panel A: significant effect of treatment (F3,286 = 12.46, p < 0.001) and time X treatment 

interaction (F30,286 = 2.24, p < 0.001) according to two-way RM ANOVA followed by contrast analysis and the sequentially 

rejective Bonferroni’s test. *p < 0.05 versus saline, °p < 0.05 versus amantadine, 
#
p < 0.05 versus L-DOPA plus amantadine. 
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Discussion 

Part 1 

Validation of the hemi-parkinsonian mouse model of LID provided a unique tool in dyskinesia 

research because it allows for the comparison of different species to antidyskinetic treatments. 

Moreover the mouse model is suitable to genetic manipulation, a strategic tool for target 

validation. The motor impairments observed in striatally lesioned hemi-parkinsonian mice had a 

dopaminergic origin because these mice showed a marked reduction of striatal TH terminals 

associated with motor recovery in response to L-DOPA (Lundblad et al., 2004). In our hands, 

recovery from akinesia and bradykinesia (Fig. 1A,B) was obtained at the same dose effective in 

MPTP-treated mice (10 mg/kg; Viaro et al., 2008), although at variance with this model, L-DOPA 

could not rescue rotarod performance (Fig. 1C). However, the rotarod test is a test for gross 

motor ability, which integrates motor and non-motor parameters (Rozas et al., 1997), and 

therefore involves not only the dorsal motor but also the limbic striatum and other structures 

outside the basal ganglia (e.g. peduncolo pontine nucleus and brainstem; Nauta et al., 1978; 

Christoph et al. 1986; Braak et al., 2000). The lack of response of the rotarod performance to L-

DOPA may thus be related to the recruitment of dopaminergic areas less or not affected by 

intrastriatal 6-OHDA, in which post-synaptic DA receptor up-regulation has not fully developed.  

Axial, limb and orolingual AIMs gradually developed during chronic treatment with L-DOPA, 

showing maximal expression after 5 days of treatment (Fig. 2A,B). This may reflect the 

homogeneity of the lesion within the dorsolateral striatum, because this region receives 

somatotopic cortical projections representing trunk, forepaw and orofacial muscles (McGeorge 

and Faull, 1989). 

Microdialysis setting did not influence the acute response to L-DOPA because, in line with 

previous studies (Lundblad et al., 2004; Santini et al., 2007), AIMs were already maximal 20 min 

after L DOPA administration and tended to disappear after 120 min (Fig 3A-D) Moreover, the 

overall response to L-DOPA recorded in the dialysis setting (i.e. after probe implantation) was 

not different from that observed in the same animal before surgery (Fig. 8). The anti-dyskinetic 

effect of amantadine was also quantitatively similar in rats under the two different conditions 

(Fig. 8). 
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In keeping with that found in the rat (see also Mela et al., 2007), L-DOPA caused a rise in GABA 

levels in the mouse SNr (Fig.4A). Major sources of neuronal GABA levels in SNr are the striato-

nigral and the pallido nigral projections as well as GABA interneurons and collaterals of 

nigrofugal GABAergic neurons. Therefore, elevation of GABA levels might be related to 

activation of the direct striato-nigral pathway, leading to GABA receptor-mediated 

overinhibition of nigro-thalamic neurons and thalamic disinhibition (Deniau and Chevalier, 

1985). The concomitant lack of significant changes of GABA (and glutamate) levels in GP seems 

to exclude a contribution of the indirect pathway (Fig. 4C,D). This is in line with a study showing 

that DARPP-32 knockdown in striato-nigral neurons abolished dyskinesia whereas the same 

procedure in striato-pallidal neurons was ineffective (Bateup et al., 2010). The increase in nigral 

GABA has been completely replicable in mouse and rat, and in different experimental groups of 

animal (see also part 2/3) suggesting it can be used as a neurochemical marker of LID. A 

temporal mismatch was found between the behavioral and neurochemical responses in mice, 

the rise in nigral GABA being more gradual and prolonged compared with AIMs expression. As 

no such mismatch was observed in the rat, the lower perfusion rate through the mouse probe 

might be the cause for the delay of the neurochemical response. In contrast, however, we found 

that under the same microdialysis conditions nigral glutamate levels closely matched the rapid 

(20 min) reduction of immobility time induced by administration of a nociceptin/orphanin FQ 

receptor antagonist in mice (Mabrouk et al., 2010; Volta et al., 2010). Interestingly enough, in 

the same studies changes in GABA levels were delayed compared with those of glutamate. 

Therefore, the temporal dissociation observed in the mouse may reflect differences in intrinsic 

(e.g. uptake efficiency) mechanisms regulating extracellular GABA concentrations. Alternatively, 

we have to consider the possibility that elevation of nigral GABA may not be the only trigger for 

dyskinesia. In support of this view, reverse dialysis of GABA alone in SNr failed to evoke AIMs 

(Buck et al., 2010). The mechanisms underlying the dual effect of amantadine, used both as 

anti-parkinsonian and anti-dyskinetic in combination with L-DOPA are not completely 

understood, also because amantadine has a complex pharmacodynamic profile. It inhibits DA 

reuptake (Heikkila and Cohen, 1972; Mizoguchi et al., 1994) and increases DOPA decarboxyalase 

activity (Fisher et al. 1998; Deep et al. 1999). Amantadine also behaves as an antagonist at 

NMDA receptors (Kornhuber et al., 1991; Parsons et al., 1996), where it acts by stabilizing the 



65 
 

“closed” state of the channel (Blanpied et al., 2005). Finally, it inhibits K+ channels in the atria in 

a similar way to 4-aminopyridine, an action resulting in an increase of membrane excitability 

(Northover, 1994). The mild antiparkinsonian effect of amantadine has been related to its 

dopaminergic actions, in particular to the ability to potentiate the L-DOPA-induced elevation of 

striatal DA release (Arai et al., 2003). However, this effect is difficult to reconcile with its anti-

dyskinetic action because a potentiation of the L-DOPA- induced DA release would also lead to 

stimulation of D1R on the striatal cell bodies and nigral terminals of striato-nigral GABA 

neurons, thereby promoting LID. Interestingly, the potentiation of the L-DOPA-induced striatal 

DA release (Sarre et al., 2008) and the mild anti-parkinsonian effect (Loschmann et al., 2004) of 

amantadine are shared by NR2B receptor antagonists. In addition, we showed that the NR2B 

antagonist Ro25–6981 slightly reduced AIMs expression (maximally of ~25% at 5 mg/kg) in 6-

OHDA hemi-lesioned dyskinetic rats (Mela et al., 2010). However, given the mild and 

inconsistent (see Rylander et al., 2009) effect of Ro25–6981 in dyskinetic rats, it is unlikely that 

NR2B blockade represents the only mechanism underlying the anti-dyskinetic effect of 

amantadine. This might suggest that the amantadine profile is different from that of a selective 

NR2B antagonist. Indeed, amantadine does not display NMDA subtype receptor selectivity 

(Danysz et al., 1997). As dysfunction of glutamate transmission is associated with LID (Calabresi 

et al., 2000; Oh and Chase, 2002), reduction of striatal glutamatergic signal may result in an anti-

dyskinetic effect. The data provided in this part of the study support the view that peak-dose 

dyskinesia involves activation of the striato-nigral GABA pathway in both dyskinetic rats and 

mice, and that amantadine opposes this effect likely via interaction with striatal NMDA 

receptors. Minor neurochemical differences in the response to L-DOPA and amantadine were 

observed between the two models, which do not appear to shape the behavioral response. 

Overall, this study proves the feasibility of a combined behavioral and neurochemical analysis of 

the dyskinetic mouse, and the consistency of the neurochemical and behavioral response to L-

DOPA and amantadine among species. 

One of the most intriguing evidences findings from this part of the study is that, even if 

amantadine prevented the rise in nigral GABA it could not completely block AIMs appearance. 

Larger increases in extracellular DA levels have been demonstrated in the SNr (and striatum) of 

dyskinetic compared with non-dyskinetic rats following L-DOPA administration (Lindgren et al., 

https://www.google.it/search?hl=en&client=firefox-a&hs=Rwe&rls=org.mozilla:it:official&q=intriguing&spell=1&sa=X&ei=B58sUbXrMYmO4gTO7ICAAQ&ved=0CCsQBSgA
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2010). This suggests that nigral DA might play a role in triggering dyskinesia, via direct 

modulation of different DA receptor expressed by nigro-thalamic neurons (Zhou et al., 2009) or 

through the release of other neurotransmitters acting on the nigral output. To dissect the role 

of different DA receptors in striatum and SNr in LID expression, we planned the experiments 

described in Part 2. 

Part 2 

The contribution of DA receptor subtypes to LID and the underlying mechanisms have been 

evaluated performing reverse dialysis of DA selective antagonists in striatum and SNr of 

dyskinetic rats. 

Striatal perfusion of D1R or D2R antagonists provided neuroanatomical information about the 

site from which D1R mediate the dyskinetic behaviors, showing that both LID manifestation and 

the accompanying rise in nigral GABA and glutamate release are significantly attenuated by 

intrastriatal perfusion with SCH23390 (Fig. 10C,D). The possibility that the action of SCH23390 

extends beyond D1R should also be considered. Indeed, SCH23390 binds to D1-like receptors 

(0.3–1.3 nM; Hyttel, 1983; Millan et al., 2001) and with  lower affinity to 5-HT2c (previously 

known as 5- HT1c; 15–30 nM; Hyttel, 1983; Millan et al., 2001), 5-HT4 (270 nM; Schiavi et al., 

1994) receptors as well as to the 5-HT transporter (1,400 nM; Zarrindast et al., 2011). Assuming 

a ~10% in vivo recovery under the present experimental conditions, the perfusion of 1 μM 

SCH23390 through the microdialysis probe is expected to generate striatal extracellular levels of 

~100 nM, for which significant binding to 5-HT2c receptors in addition to D1R may occur. 

However, a contribution of 5-HT2c receptors in the antidyskinetic effect of intrastriatal 

SCH23390 is unlikely since striatal 5-HT2c receptors do not interfere with the hyperlocomotion 

induced by injection of a D1R agonists in the DA-depleted striatum of 6-OHDA lesioned rats 

(Bishop et al., 2005). Moreover, SCH23390 activates 5-HT2c receptors (Millan et al., 2001), 

which would result in a worsening rather than attenuation of dyskinesia, indeed, 5-HT2c 

receptor stimulation induced orofacial dyskinesia (Beyeler et al., 2010) whereas 5-HT2c receptor 

blockade attenuated neuroleptic-induced dyskinesia (Creed-Carson et al., 2011). Therefore, 

although binding to striatal 5-HT2c receptors may occur during intrastriatal perfusion with 

SCH23390, these receptors are not likely to contribute to the antidyskinetic effect of SCH23390. 

In addition The concomitant lack of significant changes in GABA (and glutamate) levels in GP 
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during the expression of LID (Mela et al., 2007) rules out a contribution of the indirect pathway 

to the neurochemical alterations measured in the SNr. As seen in part 1, the surge of nigral 

glutamate levels exclusive in rat model (absent in the mouse model) of LID is likely to reflect an 

increased glutamatergic input from a cortically-activated subthalamic nucleus and/or may 

depend on the overactivation of the direct pathway.  

Different from SCH23390, intrastriatal raclopride failed to affect LID (Fig. 9) and the 

accompanying nigral amino acid response (Fig. 11). Raclopride affinity for D2 and D3 receptors is 

1.8 and 3.5 nM respectively (Seeman and Van Tol, 1994). Therefore the 1 μM raclopride 

concentration in the perfusate is expected to generate extracellular concentrations (~100 nM) 

which largely cover D2-like receptors without unspecifically interfering with other receptors 

(Kohler et al., 1985). This data rules out a major role for striatal D2R in dyskinesia, and is 

consistent with the findings that systemic D2R agonists do not activate the ERK pathway in 

striatal neurons, a molecular marker of LID (Westin et al., 2007) and that genetic deletion of the 

D2R gene does not affect LID in mice (Darmopil et al., 2009). Despite the existence of a well-

documented opposite D1–D2 receptor modulation of striatal GABAergic function (Cepeda and 

Levine, 1998; Harsing and Zigmond, 1997; Hernandez-Lopez et al., 1997; Morari et al., 1994), 

the inconsistent effects of striatal raclopride infusion in this study may indicate that striatal D2R 

do not significantly affect the L-DOPA-induced activation of already primed striato-nigral 

neurons, possibly confirming the morphological and functional segregation of D1 and D2 

receptors along striatal output pathways (Gerfen et al., 1990). 

This study showed also that both D1R and D2R blockade in SNr is able to attenuate LID 

expression. This confirms the role of this brain area in generating dyskinesia as emerged from 

previous studies. Indeed, L-DOPA is converted to DA in SNr (Sarre et al., 1998), and L-DOPA 

administration results in abnormal elevations of extracellular DA levels in both the SNr and 

striatum of dyskinetic rats (Lindgren et al., 2010). Moreover, dyskinesia is associated with 

abnormal oscillatory activity in the theta/alpha band of nigral neurons (Meissner et al., 2006) as 

well as with angiogenesis in nigral microvasculature (Westin et al., 2006). In keeping with the 

finding that nigral D1R mediate the contralateral turning induced by L-DOPA in hemi-lesioned 

rats (Robertson et al., 1989), intranigral SCH23390 attenuated LID (Fig. 12) and the 

accompanying rise of nigral GABA levels (Fig. 13C). D1R are largely expressed on striato-nigral 
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GABAergic afferents, their activation resulting in an increase of GABA release, overinhibition of 

nigro-thalamic neurons and motor initiation. Interestingly, similar to the situation in the 

striatum, D1 receptor signaling appears to be up-regulated in the SNr, leading to an 

enhancement of agonist stimulated [3H]-GABA release in nigral slices (Rangel-Barajas et al., 

2011). Therefore, by opposing a phasic D1R activation by L-DOPA, nigral SCH23390 infusion 

attenuates both the GABAergic inhibition of nigro-thalamic neurons and dyskinesia. In addition, 

SCH23390 also elevated basal GABA levels in SNr. This finding can be differently interpreted 

since microdialysis samples different GABA pools, which can be differentially affected by local 

treatment. Therefore, the increase in basal GABA levels may indicate the existence of a DA 

inhibitory tone on GABA release mediated by D1R located on GABA interneurons or reflect 

disinhibition of nigro-thalamic GABA neurons, which have extensive axon collaterals ramifying in 

SNr (Grofova et al., 1982). This latter possibility is further substantiated by the findings that 

SCH23390 application in vitro attenuates GABA-mediated IPSP in nigro-thalamic neurons 

(Aceves et al., 2011; Radnikow and Misgeld, 1998) and systemic SCH23390 administration 

increases the discharge rate of nigro-thalamic neurons in vivo (Windels and Kiyatkin, 2006). 

Alternatively, SCH23390 may impact on 5-HT2c receptors. 

Indeed, stimulation of nigral 5-HT2c receptors elevated GABA release and excited nigral GABA 

neurons in vivo (Di Giovanni et al., 2001; Invernizzi et al., 2007) an action that may be consistent 

with motor inhibition (Kennett and Curzon, 1988). Consistently, intranigral infusion of 5-HT2c 

receptor antagonists induced contralateral rotations and potentiated the turning behavior 

induced by DA agonists in unilateral 6-OHDA lesioned rats (Fox et al., 1998). Similar to 

SCH23390, intranigral raclopride attenuated expression of limb and axial dyskinesia. This 

suggests that nigral D2R contribute to LID, and that nigral but not striatal D2R may mediate the 

antidyskinetic effect of D2 antagonists when given systemically. Differently from SCH23390, the 

antidyskinetic effect of intranigral raclopride was not accompanied by changes of the GABA 

surge induced by L-DOPA, possibly suggesting it did not involve modulation of the striato-nigral 

pathway. This is in line with the finding that D2R ligands modulate GABA release from pallido-

nigral but not striato-nigral terminals, in keeping with the view of a segregation of D2/D3/D4 

and D1R on afferent projections from GP and striatum, respectively (Aceves et al., 2011). It 

should be emphasized that intranigral raclopride produced dramatic preconditioning effect on 
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basal ganglia circuitry, reducing nigral GABA and elevating striatal GABA and glutamate levels 

(Fig. 14A,B). It is not clear how these changes impact on the striatal output. However, it seems 

unlikely that changes in striatal amino acids contribute to the antidyskinetic effect of raclopride 

since the nigral amino acid response to L-DOPA was not altered (Fig. 14C,D). Instead, raclopride 

might act through setting the responsiveness of nigro-thalamic neurons to L-DOPA (Volta et al., 

2011). Blockade of an inhibitory D2-mediated tone on pallido-nigral terminals would alter the 

activity of nigro-thalamic neurons (Aceves et al., 2011). This would lead to disinhibition of 

thalamo-striatal and/or thalamo-cortical glutamate projections, which is in line with the 

observed elevation of amino acid release in striatum( see also Morari et al., 1996b). Activation 

of the cortico- and/or thalamo- striatal glutamate inputs may enrich the otherwise negligible 

neuronal component of basal extracellular glutamate levels (Baker et al., 2002; Morari et al., 

1993; Morari et al., 1996b) and allow a facilitatory action of L-DOPA to be unraveled. 

AIMs expression appears to be mediated by intrastriatal and to a lesser extent, intranigral D1R, 

likely through activation of the striato-nigral pathway and stimulation of GABA release from 

striato-nigral terminals. A contribution of nigral D2R was also demonstrated, although the 

mechanisms remain elusive. In line with these evidences in the part 3 we try to disclose the 

possible neurochemical mechanism underlying the anti-dyskinetic effect of amantadine using 

specific inhibitors carried by lentiviral vectors. 

 

Part 3  

The contribution of striatal MAP kinases cascade in the development of LID has been 

documented (Matamales and Girault, 2011). As this pathway is deeply involved in learning 

process, we focused our attention on enzymes belonging to the family of RasGEF, RasGRF1 and 

RasGRF2, both implicated in synaptic plasticity (Brambilla et al., 1997; Orban et al., 1999).  

Previous studies have determined the location of RasGRF1 in the striatum (Brambilla et al., 

1997; Giese et al., 2001; Fasano and Brambilla, 2002) and its regulation by dopaminergic stimuli 

(Zhang et al., 2007; Fasano et al., 2009; Parelkar et al., 2009). In particular, cocaine and 

amphetamine are capable of increasing the expression of the RasGRF1 protein in striatum, 

indicating that it contributes to the modifications of long-term synaptic plasticity, which 

requires the de novo synthesis of proteins (Zhang et al., 2007; Parelkar et al., 2009). 



70 
 

Subsequently, Fasano and collaborators demonstrated that RasGRF1 controls the activation of 

ERK (Fasano et al., 2009), and that animals lacking the isoform 1 of RasGRF1 develop less severe 

LID compared to control animals chronically treated with L-DOPA (Fasano et al., 2010). It is likely 

that RasGRF1 exerts its effects on the MAP kinase cascade through the physical interaction with 

NR2B subunit containing NMDARs. This interaction leads to NMDAR activation which is followed 

by Ca++ influx through the channel and activation of ERK pathway (Krapivinsky et al., 2003). 

Conversely there are no published data on the role of RasGRF2 in striatum. A possible role is 

envisaged since RasGRF2 is known to be involved in learning process taking place in 

hippocampus through NR2A signal (Jin and Feig, 2010). This evidence prompted us to verify 

whether the specific inhibition of striatal RasGRF1 or RasGRF2 was the determining factor in 

reducing LID. Moreover we took advantage of the selective inhibition of striatal RasGRF1 or 

RasGRF2 to disclose a novel mechanism of action of amantadine. Due to the lack of selective 

pharmacological tools, we used lentiviral vectors (provided by Dr. Brambilla’s research group) 

carrying a short hairpin RNA, to achieve the selective inhibition of striatal RasGRF1 and 

RasGRF2. LVs expressing sh-RasGRF1, sh-RasGRF2 or LV-CTR (as control group) were 

microinjected (at the laboratories of Dr Brambilla) in the dorsolateral striatum of hemi-

parkinsonian mice.  

To verify whether Sh-RasGRF1 and sh-RasGRF2 blockade could affect the motor function in 6-

OHDA hemi-lesioned mice, we investigated the motor phenotypes of Sh-RasGRF1 and sh-

RasGRF2 injected mice two weeks after lesion. Moreover, since the RasGEFs are involved in the 

learning process we evaluated whether could affect motor performance over repeated testing.  

No differences in motor performance were observed among the different experimental groups 

either the first or the fifth day of repeated testing (training; Fig. 15, 20). Therefore we can 

conclude that the selective inhibition of striatal RasGRF1 and RasGRF2 do not affect the motor 

component of parkinsonism and preserve the ability of the animal to adapt to experimental 

tasks.  

Sh-RasGRF1 mice treated with escalating doses of L-DOPA (3, 6, 9 mg/kg i.p.) for 9 days, showed 

a ~50% attenuation of LID throughout the period of treatment (Fig. 16). The antidyskinetic 

effect is consistent with that observed by Fasano and colleagues in the RasGRF1 knockout 

mouse (Fasano et al., 2010). Such reduction can be ascribed to the inhibitory effect on the MAP 
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kinase pathway, interfering with the priming process underlying LID expression (Fasano et al., 

2010; Santini et al., 2010). To determine how blockade of RasGRF1 is able to reduce LID 

development, electrophysiological studies on cortico-striatal synaptic plasticity are needed, 

along with biochemical experiments to study of the expression of LID related genes (Cenci et al., 

1998; Cenci, 2002; Lundblad et al., 2004). Different from sh-RasGRF1, Sh-RasGRF2 injected mice 

did not show significant differences from LV-CTR in LID severity. This rules out the role of this 

GEF in LID development. 

Another important difference between sh-RasGRF1 and sh-RasGRF2 mice was the response to 

amantadine. Indeed, we investigated whether sh-RasGRF1 and sh-RasGRF2 blockade could 

produced additive attenuation of LID. Surprisingly, amantadine was ineffective in sh-RasGRF1 

mice (Fig. 17B) but maintained its efficacy in sh-RasGRF2 mice. The lack of an additive effect 

with RasGRF1 blockade could indicate a possible common pathway between the two 

approaches. A possible site of action is represented by the NMDAR. Indeed, amantadine is able 

to block NMDA receptors (Blanpied et al., 2005) while RasGRF1 is physically linked to the NR2B 

subunit (Krapivinsky et al., 2003; Fasano et al., 2009). Therefore, we might speculate that both 

amantadine and rasGRF1 blockade act on the NMDA-NR2B receptor.  

The results obtained from the analysis of GABA levels in SNr correlate well with the behavioral 

analysis, also supporting the existence of an interaction between amantadine and sh-RasGRF1 

blockade. In LV CTR mice, the expression of LID is accompanied by a strong increase of GABA 

levels in SNr (Fig. 18A), while the antidyskinetic effect of amantadine (~50% reduction of LID) 

was associated with the lack of the GABA rise in SNr (Fig. 18A). Likewise, no increase of nigral 

GABA was observed in sh-RasGRF1 injected mice after L-DOPA challenge (Fig. 19A). The results 

suggest that both amantadine and sh-RasGRF1 exert their anti-dyskinetic effect through 

inhibition of the striato-nigral GABA neurons (i.e the direct pathway), which are activated by L-

DOPA through D1 receptors, an event that requires endogenous glutamate.  

Sh-RasGRF2 mice did not show any significant attenuation in LID development compared to LV-

CTR (Fig. 21), and maintained their responsiveness to amantadine (Fig. 22). Sh-RasGRF2 mice 

subjected to microdialysis also displayed the same degree of LID in response to L-DOPA with 

respect to control animals (Fig 22). Consistently, the neurochemical pattern of sh-RasGRF2 
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animals was similar to LV-CTR (Fig. 23, 24), and amantadine was able to prevent the GABA rise 

in SNr (Fig. 24A). 

There is no evidence that RasGRF2 controls striatal function, but it is well known that it plays 

important roles in long-lasting increase in synaptic efficiency (LTP) in hippocampus (Li et al., 

2006). Studies on RasGRF2 KO mice demonstrated that NR2A receptors induce LTP through 

RasGRF2 in hippocampus (Jin and Feig, 2010). These studies also suggest that NR2B-containing 

receptors induce LTD through RasGRF1 (Li et al., 2006). We could therefore speculate that the 

different effect of RasGRF1 and RasGRF2 blockade on LID is due to a preferential interference 

with the NR2B and NR2A receptors. Microdialysis studies conducted by Fantin and colleagues 

have shown a possible functional segregation of NR2A and NR2B subunits along the striato-

pallidal and striato-nigral, respectively (Fantin et al., 2008). According to these data, the failure 

of RasGRF2 blockade to prevent dyskinesia might be in line with the lack of involvement of the 

indirect pathway in LID expression (see part 1). This hypothesis is however might be 

contradicted by a recent paper of Gardoni and collaborators showing that chronic 

administration of a synthetic peptide targeted to NR2A (TAT2A) attenuates the priming to L-

DOPA in rats, being however ineffective once dyskinesia has been established (Gardoni et al., 

2012). 
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Concluding Remarks 

The results obtained can be summarized as follows:  

i) A comparative neurochemical and behavioral study in the mouse and rat models of 

dyskinesia revealed that AIMs appearance in response to L-DOPA challenge is accompanied 

by an increase of GABA release in SNr but not GP. Amantadine attenuated about to the 

same extent the severity of dyskinesia in dyskinetic rats and mice, preventing the 

accompanying surge in nigral GABA. These data provide strong neurochemical support to 

the view that peak-dose dyskinesia involves activation of the striato-nigral GABA pathway, 

and that amantadine opposes this effect likely by modulating this pathway. However, 

amantadine only attenuated by 50% the severity of LID in face of a suppression of the 

increase of nigral GABA, suggesting that other neurotransmitters/circuits are involved. This 

study also demonstrates the feasibility of a combined behavioral and neurochemical analysis 

of the dyskinetic mouse, and the consistency of the neurochemical and behavioral response 

to L-DOPA and amantadine among species. 

ii) Regional perfusion with selective D1 and D2 receptor antagonists allowed to demonstrate 

that AIMs expression is differentially mediated by intrastriatal and to a lesser extent, 

intranigral, D1R and D2R. These data confirm the role of the striato-nigral direct pathway in 

LID, showing at the same time the role of extrastriatal areas.  

iii) Blockade of Ras-GRF1 but not Ras-GRF2 reduced dyskinesia and its neurochemical correlate 

(increase in nigral GABA) in mice. Ras-GRF1 blockade interferes with the antidyskinetic 

effect of amantadine as this drug is ineffective in sh-Ras-GRF1 injected mice (but not sh-Ras-

GRF2 mice). The data suggest that  blockade of Ras-GRF1 and amantadine act on a common 

pathway, possibly the NR2B receptor, and point to rasGRF1 as a novel target in LID therapy. 
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a b s t r a c t

The physico-chemical properties and in vivo efficacies of two nanoparticulate systems delivering the
antiparkinsonian drug bromocriptine (BC) were compared in the present study. Monoolein Aqueous
Dispersions (MADs) and Nanostructured Lipid Carriers (NLCs) were produced and characterized.
Cryogenic transmission electron microscopy (cryo-TEM) and X-ray diffraction revealed the morphology
of MAD and NLC. Dimensional distribution was determined by Photon Correlation Spectroscopy (PCS)
and Sedimentation Field Flow Fractionation (SdFFF). In particular, BC was shown to be encapsulated with
high entrapment efficiency both in MAD and in NLC, according to SdFFF combined with HPLC. Two behav-
ioral tests specific for akinesia (bar test) or akinesia/bradykinesia (drag test) were used to compare the
effects of the different BC formulations on motor disabilities in 6-hydroxydopamine hemilesioned rats
in vivo, a model of Parkinson’s disease. Both free BC and BC–NLC reduced the immobility time in the
bar test and enhanced the number of steps in the drag test, although the effects of encapsulated BC were
longer lasting (5 h). Conversely, BC–MAD was ineffective in the bar test and improved stepping activity in
the drag test to a much lower degree than those achieved with the other preparations. We conclude that
MAD and NLC can encapsulate BC, although only NLC provide long-lasting therapeutic effects possibly
extending BC half-life in vivo.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Lipid dispersions have attracted significant attention due to
their potential use as matrixes able to dissolve and deliver active
molecules in a controlled fashion, thereby improving their bio-
availability and reducing side-effects [1,2].

Solid Lipid Nanoparticles (SLNs) are delivery systems in which
the nanodispersed phase has a solid matrix of crystalline solid lip-
ids. SLN are able to protect encapsulated molecules from degrada-
tion and modulate their release [3]. The second generation of SLN is
represented by Nanostructured Lipid Carriers (NLCs), which are
composed of a solid lipid matrix with a certain content of a liquid
ll rights reserved.

ersions; PSD, particle size
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lipid phase [4]. For instance, the mixture of caprylic/capric triglyc-
erides (liquid at room temperature) with a solid lipid such as tri-
stearin leads to the formation of solid carriers with homogenous
lipid nanocompartments [5].

Another type of lipid dispersion that can provide matrices for
the sustained release of drugs is represented by Monoolein Aque-
ous Dispersions (MADs).

The self-assembly of amphiphilic lipids such as monoglycerides
in water gives rise to complex lyotropic liquid crystalline nano-
structures like micellar, lamellar, hexagonal, and cubic phases
[1,6]. The predominance of one species over the other mainly de-
pends on temperature and water content of the system [7].

Cubosomes can be defined as stable reverse bicontinuous struc-
tures with two distinct regions of water separated by a contorted
bilayer [8]. The methods of preparation [9,10] and the inner struc-
ture [11,12] of cubosomes have been widely studied. Nevertheless,
drug release from these systems has been poorly investigated [13].

The use of lipid nanosystems for the therapy of brain diseases has
been recently proposed [14,15]. Indeed, the pharmacological
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treatment of brain tumors, as well as neurological and psychiatric
disorders, is often hindered by the inability of potent drugs to pass
the blood brain barrier (BBB) [16]. BBB significantly restricts water-
soluble, charged and high molecular weight therapeutics to the
vascular space, while allowing brain penetration of small and/or
lipophilic molecules. Multiple strategies have been employed to cir-
cumvent BBB. An emerging approach is the use of colloidal carriers,
which allow brain penetration of non-transportable drugs by mask-
ing their physico-chemical characteristics [17,18]. In fact, colloidal
carriers represent a non-invasive mean of administration, which of-
fers clinical advantages such as the reduction in drug dosage and
side-effects, the increase in drug viability, and the improvement of
patient quality of life [19].

In a recent study, we demonstrated the potential application
of NLC as a delivery system of the dopamine receptor agonist
bromocriptine (BC) for Parkinson’s disease (PD) therapy [20]. This
follow-up study was aimed at investigating the use of MAD as
formulations for controlled delivery of BC. An in-depth characteriza-
tion of morphology, size, inner structure, and drug distribution of
NLC and MAD was made. In addition, the ability of both BC prepara-
tions to attenuate motor deficits in 6-hydroxydopamine (6-OHDA)
hemilesioned rats, a model of PD, was determined in vivo and
compared to that of free BC.
2. Materials and methods

2.1. Materials

RYLO MG 19, glyceryl monooleate (MO) was a gift from Danisco
Cultor (Grindsted, Denmark). Pluronic F127 (PEO98–POP67–PEO98)
(poloxamer 407) was obtained from BASF (Ludwigshafen, Germany).

Lutrol F 68, oxirane, methyl-, polymer with oxirane (75;30) (pol-
oxamer 188) was a gift of BASF ChemTrade GmbH (Burgbernheim,
Germany). FL-70 is a detergent (water 88.8%, triethanolamine oleate
3.8%, sodium carbonate 2.7%, alcohols, C12-14-secondary, ethoxy-
lated 1.8%, tetrasodium ethylenediaminetetraacetate 1.4%, Polyeth-
ylene glycol 0.9%, sodium oleate 0.5%, sodium bicarbonate 0.1%) and
was obtained from Fisher Scientific (Fair Lawn, NJ, USA) [21].

Tristearin, stearic triglyceride (tristearin), was provided by Fluka
(Buchs, Switzerland). Miglyol 812, caprylic/capric triglycerides (Mi-
glyol), was purchased from Eigenmann & Veronelli (Rho, Milano,
Italy).

Bromocriptine mesylate, 2-Bromo-a-ergocriptine methansulfo-
nate salt (BC), amphetamine, and 6-hydroxydopamine (6-OHDA)
were purchased from Sigma Chemical Company (St Louis, MO,
USA).
2.2. MAD preparation

Production of dispersions was based on the emulsification of MO
(4.5%w/w) and poloxamer 407 (0.5%w/w) in water (95%w/w), as
described by Esposito et al. [22]. After emulsification, the dispersion
was subjected to homogenization (15,000 rev min�1, Ultra Turrax,
Janke & Kunkel, Ika-Werk, Sardo, Italy) at 60 �C for 1 min, then
cooled and maintained at room temperature in glass vials.

Twelve point five (12.5) milligrams of BC (0.55% w/w with re-
spect to the monoolein, 0.025% w/w with respect to the dispersion)
was added to the molten MO/poloxamer solution and dissolved be-
fore addition to the aqueous solution.

A representative amount of dispersion was analyzed by cryo-
TEM. The dispersion was then filtered through a mixed esters cellu-
lose membrane (1.2 lm pore size) to separate large MO/poloxamer
aggregates. Dimensional characterization of MO dispersions as well
as in vivo experiments was performed after filtration.
The density of MAD (0.0133 g/ml) was calculated as reported in
Supplementary data.

2.3. NLC preparation

NLC were prepared by stirring followed by ultrasonication [20].
Briefly, 1 g of lipid mixture was melted at 75 �C. The lipid mixture
was constituted of tristearin/Miglyol 2:1 w/w. The fused lipid
phase was dispersed in 19 ml of an aqueous poloxamer 188 solu-
tion (2.5% w/w). The emulsion was subjected to ultrasonication
(Microson™, Ultrasonic cell Disruptor) at 6.75 kHz for 15 min
and then cooled down to room temperature by placing it in a water
bath at 22 �C. NLC dispersions were stored at room temperature.

Five milligrams of BC (0.025% w/w with respect to the total dis-
persions, 0.5% w/w with respect to the lipid phase) was added to
the molten lipid mixture and dissolved before addition to the aque-
ous solution. The density of NLC (0.0283 g/ml) was obtained as de-
scribed for MAD in Supplementary data.

2.4. Characterization of lipid dispersions

Water and disperse phase loss after dispersion production were
determined as reported in Supplementary data.

2.4.1. Photon Correlation Spectroscopy (PCS)
Submicron particle size analysis was performed using a Zetasiz-

er 3000 PCS (Malvern Instr., Malvern, England) equipped with a 5
mW helium neon laser with a wavelength output of 633 nm. The
dispersant refractive index was 1.33 and the absorbance was
0.00. Glassware was cleaned of dust by washing with detergent
and rinsing twice with sterile water. Measurements were made
at 25 �C at an angle of 90� with a run time of at least 180 s. Samples
were diluted with bidistilled water in a 1:10 V:V ratio. Data were
analyzed using the ‘‘CONTIN’’ method [23].

2.4.2. Sedimentation Field Flow Fractionation Analysis
A Sedimentation Field Flow Fractionation (SdFFF) system (Model

S101, FFFractionation, Inc., Salt Lake City, UT, USA), described
elsewhere [24], was employed to determine the size distribution
of particles (PSD) by converting the fractograms, i.e., the graphical
results, assuming the particle density is known [25]. The mobile
phase was a 0.01%v/v solution of FL-70 in Milli-Q water (Millipore
S.p.A., Vimodrone, Milan, Italy) pumped at 2.0 ml/min and moni-
tored in each run. Fifty microliter samples were injected as they
were through a 50 ll Rheodyne loop valve.

The fractions were automatically collected by a Model 2110
fraction collector positioned at the end of the SdFFF system (Bio
Rad laboratories, UK) after setting a collecting time of 90 s. The vol-
ume of each fraction was 3 ml.

2.4.3. Cryogenic Transmission Electron Microscopy (Cryo-TEM)
Samples were vitrified as described in a previous study by

Esposito et al. [9]. The vitrified specimen was transferred to a Zeiss
EM922Omega (Zeiss SMT, Oberkochen, Germany) transmission
electron microscope using a cryoholder (CT3500, Gatan, Munich,
Germany). Sample temperature was kept below 100 K throughout
the examination. Specimens were examined with doses of about
1000–2000 e/nm2 at 200 kV. Images were recorded by a CCD digi-
tal camera (Ultrascan 1000, Gatan) and analyzed using a GMS 1.8
software (Gatan).

2.4.4. X-ray diffraction measurements
Low-angle X-ray scattering experiments were performed at the

DESY synchrotron facility on the A2 beamline in Hamburg,
Germany. The investigated Q-range (Q = 4psinh/k, where 2h is
the scattering angle and k = 1.50 Å the X-ray wavelength) was
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0.02–0.35 Å�1. Experiments were performed in the 20–40 �C range.
Scattering data were recorded on a bidimensional CCD camera of
1024 � 1024 pixels, radially averaged and corrected for the dark,
detector efficiency and sample transmission [26]. A few wide-angle
X-ray diffraction experiments were performed using a laboratory
3.5 kW Philips PW 1830 X-ray generator equipped with a
Guinier-type focusing camera operating with a bent quartz crystal
monochromator (k = 1.54 Å). Diffraction patterns were recorded on
GNR Analytical Instruments Imaging Plate system. Samples were
held in a tight vacuum cylindrical cell provided with thin Mylar
windows. Diffraction data were collected at 20 �C.

In each experiment, a number of Bragg peaks were detected in
the low-angle X-ray diffraction region. The peak indexing was per-
formed considering the different symmetries commonly observed
in lipid phases [27]. From the averaged spacing of the observed
peaks, the unit cell dimension, a, was calculated using the Bragg
law. The nature of the short-range lipid conformation was derived
analyzing the high-angle X-ray diffraction profiles [28].

2.5. Drug content of dispersions

The method used to determine BC content in the dispersion is
reported in Supplementary data. BC associated with particles was
quantified by HPLC analyses of several fractions collected after
the separation by SdFFF.

2.6. HPLC procedure

HPLC determinations were performed using a two-plungers
alternative pump (Jasco, Japan), an UV-detector operating at
305 nm, and a 7125 Rheodyne injection valve with a 50 ll loop.
Samples were loaded on a stainless steel C-18 reverse-phase
column (15 � 0.46 cm) packed with 5 lm particles (Hypersil BDS,
Alltech, USA).

Elution was performed with a mobile phase containing 0.1 M
ammonium formate (pH3) and acetonitrile 55:45v/v at a flow rate
of 0.8 ml/min. Retention time of BC was 5.8 min [20].

2.7. In vivo tests

Male Sprague-Dawley rats were kept under regular lighting
conditions (12 hlight/darkcycle) and given food and water ad
libitum. The experimental protocols used in the present study were
approved by the Italian Ministry of Health (license n. 194/2008-B)
and by the Ethical Committee of the University of Ferrara. Adequate
measures were taken to minimize animal pain and discomfort and
to limit the number of animals employed in the study.

2.7.1. 6-Hydroxydopamine lesion
Unilateral lesion of dopamine (DA) neurons was induced in

isoflurane-anaesthetized male Sprague-Dawley rats (150 g; Harlan
Italy; S. Pietro al Natisone, Italy) as previously described [29]. Eight
micrograms of 6-OHDA, dissolved in 4 ll of saline (NaCl0.9%w/v)
containing 0.02%ascorbic acid, was stereotaxically injected accord-
ing to the following coordinates from bregma: antero-posterior –
4.4 mm, medio-lateral – 1.2 mm, dorso-ventral – 7.8 mm below
dura [30]. In order to select the rats that had been successfully le-
sioned, the rotational model was employed. Two weeks after 6-
OHDA injection, rats were tested for denervation with a dose of
amphetamine (5 mg/kg i.p., dissolved in saline). Forty-nine rats
showing a turning behavior >7 turns/min in a direction ipsilateral
to the lesion side were enrolled in the study. Experiments were
usually performed 6–8 weeks after lesion. Marked (>95%) reduc-
tion in striatal DA levels and tyrosine hydroxylase-positive DA ter-
minals have been detected at this stage [31,32].
2.7.2. Behavioral studies in hemiparkinsonian rats
The 6-OHDA hemilesioned rat is a well-established model of

experimental parkinsonism, in which hypokinetic motor distur-
bance primarily affects the side of the body contralateral to the
denervated hemisphere (i.e., the toxin injection side). Parkinso-
nian-like disabilities were investigated in rats by using two previ-
ously validated behavioral tests [30,32]. The ‘‘bar test’’ measures
the ability of the rat to respond to an externally imposed static pos-
ture and provides information on the time to initiate a movement
(akinesia) [33]. The ‘‘drag test’’ measures the ability of the fore-
paws to adapt to an external dynamic stimulus (i.e., dragging back-
wards) and provides information on the time to initiate and
execute (bradykinesia) a movement [29,34].

In the bar test, the contralateral and ipsilateral forepaws of each
rat were alternatively placed on blocks of increasing heights (3, 6,
and 9 cm). The immobility time (in seconds) of each paw on the
blocks was recorded (cut-off time at each step of 20 s) and
summed. In the drag test, the animal was gently lifted from the tail,
allowing the forepaws to rest on the table, and dragged backwards
at a constant speed (20 cm/s) for 100 cm. The adjusting steps made
with the forepaws were counted by two distinct observers. Rats
were trained on both motor tasks until their performance was
reproducible. On the day of experiment, motor performance in
the bar and drag test was evaluated before (control session) and
at different time-points after drug administration (30, 90, 180,
300, 480 min). Drug effect has been expressed as a percent of
pre-treatment values. BC preparations (free BC, BC–MAD, and
BC–NLC) were given intraperitoneally (i.p.) at a dose of 0.3 mg/Kg
(9–13 animals each group). Free BC was administered in a saline
solution (0.9 mg/ml). The effect of vehicle (empty MAD and empty
NLC) was also investigated (7–9 animals each group). The dose of
the lipid given to each rat was calculated to be 70 mg/Kg and
67 mg/Kg for NLC and MAD, respectively.
2.7.3. Statistical analysis
Statistical analysis was performed on percent data by one-way

repeated measures (RM) analysis of variance (ANOVA). In case
ANOVA yielded to a significant F score, post hoc analysis was
performed by contrast analysis to determine group differences. In
case a significant time � treatment interaction was found, the
sequentially rejective Bonferroni’s test was used (implemented
on excel spreadsheet) to determine specific differences (i.e., at
the single time point level) between groups. p-Values < 0.05 were
considered to be statistically significant.
3. Results and discussion

For several years, we have been trying to develop an approach
to deliver BC in a controlled fashion [35,36]. Our interest in this
molecule arises from its wide therapeutic potential. BC is a dopa-
mine receptor agonist used for the treatment of pituitary tumors,
PD, hyperprolactinaemia, neuroleptic malignant syndrome, and re-
cently approved for the treatment of type 2 diabetes [37].

We previously produced and characterized SLN to deliver BC,
demonstrating that NLC constituted of tristearin/Miglyol mixture
can prolong BC antiparkinsonian action in vivo [20]. In the present
study, we investigated MAD as an alternative nanotechnology sys-
tem to deliver BC. MAD are biocompatible nanosystems able to
incorporate lipid molecules in a molecular sponge consisting of
interpenetrating nanochannels filled with water and coated by li-
pid bilayers [38]. Much interest grew around cubic phases because
of their unique biologically compatible microstructure, which is
capable to control the release of soluble molecules such as drugs
and proteins [39]. Like NLC, MAD represents an interesting alterna-
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tive to liposomes, being characterized by a higher viscous resis-
tance to rupture and a consequent greater stability.
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Fig. 1. PSDs elaborated from the SdFFF fractograms. (A) MAD particles were
assumed to have a density of 0.0133 g/ml (d = diameter of nanoparticles;
dd = dimensional distribution; the dots indicate BC content, as determined by
HPLC). (B) NLC particles: assumed density 0.0283 g/ml. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
3.1. Characterization of dispersions

Table 1 summarizes the results of PCS studies conducted to
determine the dimensional distribution of MAD and NLC disper-
sions, in the absence and in the presence of BC.

Both MAD and NLC had mean intensity diameters of �200 nm.
Empty MAD had a mean diameter of 198.2 nm, expressed as Z
Average. The analysis by volume revealed a mean diameter of
121.0 nm. BC incorporation slightly increased the mean diameter
of nanostructures to 204.8 nm. In-depth analysis of the distribu-
tion by volume revealed a huge peak with a mean diameter of
109.1 nm (84.3% of Peak Area) and a smaller one with a mean
diameter of 286.3 nm (15.7%). After filtration, the mean size of
the larger particles measured by laser diffraction was 28 ± 2.7 lm
(mean ± SD of three runs), ranging between 25 and 30 lm (data
not shown).

NLC dispersions were not filtered since they did not display
aggregates or large microparticles. Empty NLC showed a mean
diameter of 196.2 nm, which was not affected by BC incorporation,
even if the amount of larger nanoparticles increased, conferring the
distribution a bimodal profile. Dimensional analysis by volume re-
vealed a mean diameter of 131.4 nm for the more conspicuous
population and a mean diameter of 392.4 nm for the other. On
the other hand both populations displayed low polydispersity in-
dexes (0.18 and 0.19), indicating a narrow dimensional distribu-
tion [22].

Size distribution was also determined by SdFFF. The fracto-
grams obtained under the same separation conditions (to allow a
direct comparison) were converted into PSD plots, i.e., the amount
of material per unit change of diameter, according to well-proven
equations, by transforming the retention time in the diameter of
the equivalent sphere (d), and the UV signal into a mass frequency
function (dd) [24,40]. Fig. 1 shows the PSD plots of a diluted
amount of BC–MAD (panel A) and BC–NLC (panel B) dispersions.
The conversion was performed by assuming an average density
of 0.0133 g/ml for MAD and 0.0283 g/ml for NLC. In panel A, the
main peak had a maximum at �130 nm and showed a small shoul-
der, possibly masking a minor population of particles of �160 nm
size, as also evidenced in the original fractogram reported in the in-
set of panel A. These size distributions partly differed from PCS
data reported in Table 1. However, the cryo-TEM image reported
below (Fig. 2) confirms the presence of particles of different size,
structure, and possibly density, which generates particle masses
difficult to be efficiently separated under these experimental
conditions.

As shown in a previous study [20], NLC particles had instead a
quite regular and reproducible shape, independent of their size,
thus also their density might be considered constant, guaranteeing
a better reliability to the SdFFF results presented in panel B. The
graph shows a thin peak centered at �100 nm and another one,
smaller and broader, with a maximum at �275 nm. These data
are in good agreement with the PCS analysis. The apparent
Table 1
Mean diameters of MAD and NLC determined by PCS.

Parameter MAD dispersion BC–MAD dispersiona

Z Average mean diameter (nm) 198.2 ± 1.2 204.8 ± 1.2
Analysis by volume

mean diameter (nm)
121 ± 2.5 (Peak Area 100%) 109.1 ± 2.4 (Peak Area

286.3 ± 3.3 (Peak Area
Polydispersity index 0.18 ± 0.02 0.19 ± 0.01

PCS data are means of five determinations on different batches of the same type of disp
a Produced in the presence of bromocriptine.
discrepancy in the relative proportions between the two peaks is
an artifact introduced by the conversion into PSD, as it can be ver-
ified by observing the original fractogram reported on the top of
panel B, where the larger peak is scarcely visible from the baseline,
unless to zoom in the graph.

Cryo-TEM analyses were conducted in order to investigate the
internal structures of MAD and NLC. Fig. 2 reports cryo-TEM
images of a sample of non-filtered BC–MAD. Well-shaped particles
with a homogeneous, ordered inner structure can be observed.
Upon closer inspection, images reveal two different internal pat-
terns (labeled C and H), with a predominance of the C over the H
structural motif (panel A). The H motif also appears in some larger
particles (panel B) with poly-‘‘crystalline’’ nature, whereas smaller
particles show a single internal structure. Finally, particles with or-
dered inner structure and vesicular structures attached on their
surface can be observed, as previously found by other authors [7].

Fast Fourier transform (FFT) analysis was used to characterize
the internal morphology of the particles, since FFT easily allows
NLC dispersion BC–NLC dispersiona

196.2 ± 2.4 195.1 ± 3.3
84.3 ± 3.2%)
15.7 ± 4.1%)

135.9 ± 3.2 (Peak Area 100%) 101.4 ± 1.8 (Peak Area 85.5 ± 3.1%)
272.4 ± 2.2 (Peak Area 14.5 ± 2.3%)

0.18 ± 0.02 0.19 ± 0.03

ersion.



Fig. 2. Cryo-TEM images of BC–MAD. The insets show Fast Fourier transforms of
some particles.
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Fig. 3. Low-angle X-ray diffraction profiles observed from MAD and NLC samples at
different temperatures. Measurements have been performed at 20, 25, 30, and
40 �C, scattering curves are stacked consistently, following the direction of the gray
arrows. In panels A and B, small arrows indicate the peak indexing: upward,
continuous arrow, Im3m phase (the indicated peak sequence is [110], [200],
[211]); upward, dashed arrow, Pn3m phase ([110] and [111]); downward, pointed
arrow, H phase ([10] and [21]).
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to obtain an optical diffractogram similar to an electron diffrac-
tion pattern. In this way, periodic or repeatable distances in the
mesophase structure could be detected, together with the sym-
metry of the motif. According to the different internal morpholo-
gies shown in Fig. 2, FFT evidenced two different patterns. The
first, observed in the particles with the H structural motif,
corresponds to a two dimensional (2D) hexagonal symmetry with
2D lattice parameters v = w = 8.2 nm (labeled c in panel B) and
c = 120�. The second, observed in the particles with the C
structural motif, corresponds to a rectangular symmetry with
2D lattice parameters v = 6.5 nm (labeled a), w = 9.8 nm (labeled
b), and c = 90�.

The presence of particles with two different inner structures was
also indicated by X-ray diffraction results. However, since both
structures are cubic, data definitely prove that MAD dispersions
are cubosomes. Fig. 3 (panels A and B) shows the low-angle X-ray
diffraction profiles of empty and BC–MAD obtained as a function
of temperature. At room temperature, diffraction profiles are char-
acterized by two series of peaks, consistent with the presence of
dispersed cubic phase particles of Pn3m and Im3m symmetry. In
other words, in the presence and in the absence of BC, MAD disper-
sions can exhibit D-type or P-type structures. Phase coexistence in
the MO/poloxamer 407/water disperse system has already been



Table 2
Structure identifications and unit cell dimensions observed in the different samples at
various temperatures.

Sample Temp.
(�C)

Phase and unit cell (nm) Hydrocarbon
chain
conformation

MAD 20 Im3m 12.11 Pn3m 9.16 a
25 Im3m 12.01 Pn3m 9.11 a
30 Im3m 11.77 Pn3m 8.99 a
40 Im3m 11.25 Pn3m 8.71 H 6.01 a

BC-MAD 20 Im3m 12.69 Pn3m 9.66 a
25 Im3m 12.64 Pn3m 9.65 a
30 Im3m 12.41 Pn3m 9.58 a
40 Im3m 11.72 Pn3m 9.14 a

NLC 20–40a L 4.42 b

BC-NLC 20–40a L 4.42 b

When samples show more than one structure, the one characterized by the higher
X-ray diffraction profile is shown in bold. Error in unit cells is ±0.02 nm.

a From 20 to 40� C, i.e., 20, 25, 30, and 40 �C.
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observed [11], even if in the same conditions the presence of a pure
Im3m phase was also reported [8]. As previously discussed [41], the
different structural behaviors of MAD may be related to differences
in composition (e.g., MO quality, buffer, ionic force of the aqueous
solution) and production procedures (e.g., ultrasonication, homoge-
nization, temperature and pressure parameters). However, the
present results confirmed that at this poloxamer 407 concentration,
the cubic and not the vesicular structure is the equilibrium state,
even in the presence of BC. It should be noticed that both types of
cubic structures detected in our preparation are bicontinuous, but
the P-surface structure only occurs in the MO–water system when
a third component is added [42]. Moreover, the lattice constants,
which have been derived from peak positions (Table 2), are very
similar to those reported by Nakano et al. [11]. More interestingly,
lattice constants are slightly sensitive to the presence of BC,
probably due to an increased hydration of the lipid phases induced
by BC.

Cryo-TEM and X-ray diffraction results are in perfect agree-
ment. Indeed, the FFT patterns suggest that the H and C structural
motifs correspond to planes normal to the crystallographic direc-
tions [111] and [110] of a cubic lattice, respectively (Fig. 2). Con-
cerning the H motif, it should be recalled that the projection of a
3D cubic array on 2D is hexagonal when visualized along the
[111] direction and that the corresponding 2D lattice parameters
are related to the cubic unit cell dimension a by v = w = a/

p
2. This

does neither allow to identify the space group of the particle inter-
nal structure nor to differentiate between a hexagonal and a cubic
structure. However, the comparison of 2D lattice values with the
unit cell dimensions determined by X-ray diffraction (Table 2)
strongly suggests that the H particles are cubosomes with an inner
cubic structure belonging to the Im3m space group. It is worthy of
mention that only the Pn3m and Im3m space groups are allowed in
cubosome dispersions because those are the only two space groups
established in reversed bicontinuous cubic phases in excess water
[43] or in reversed bicontinuous cubic phase dispersions [12]. Con-
cerning the C-motif, the observed 2D lattice parameters are consis-
tent with the ideal values for a cubic array (v = w/

p
2) and

correspond to a cubic unit cell dimension a of 9.8 nm. This value
compares well with the unit cell of the Pn3m cubic phase deter-
mined in the same system by X-ray diffraction (Table 2), indicating
that C particles are cubosomes with an inner cubic structure
belonging to the Pn3m space group. Overall, cryo-TEM images of
BC–MAD dispersed particles gave strong and direct evidence for
the coexistence of cubosomes with two different internal struc-
tures: one with a Pn3m space group and a lattice parameter of
9.8 nm and another with Im3m space group and a lattice parameter
of 11.6 nm.

X-ray diffraction experiments also reveal the thermal stability
of MAD. As shown in Fig. 3, both D- and P-type cubosomes exist
at all the investigated temperatures. However, in empty MAD sam-
ples, two other peaks, characteristic of a 2D hexagonal space group,
appeared at 40 �C. Since at this temperature, the peaks of the Pn3m
cubic structure broadened, it appears that temperature induces a
D-type cubosome-to-hexasome phase transition [12,44]. There-
fore, even if the inner structure of MAD can be highly dependent
on manufacturing parameters and then be relevant for the proper-
ties of the dispersions, X-ray diffraction demonstrates that the
presence of D-type cubosomes does not cause the complete loss
of the cubic state of the particles at relatively high temperatures.

Empty and BC–NLC dispersions have been already characterized
[20]. In addition, low-angle X-ray diffraction obtained as a function
of temperature is now reported (see Fig. 3, panels C and D). In
agreement with previous observation [20], both in the absence
and in the presence of BC, the diffraction profile is characterized
by a large peak, whose position is unaffected by temperature and
BC addition (Table 2). The inner lamellar order and the strong
structural stability of NLC, even in the presence of BC, appear also
confirmed.
3.2. BC encapsulation

HPLC analyses revealed that BC recovery after the production
process in the filtered dispersion was 70 ± 0.75% (MAD) and
84 ± 0.58% (NLC) of the total amount of drug used for the prepara-
tion. The values of drug loss were taken in consideration to deter-
mine BC encapsulation.

SdFFF was employed to obtain information about the drug dis-
tribution in the dispersions. During the fractionation, some frac-
tions were collected and analyzed by HPLC to quantify the
amount of drug contained in the different particle populations of
the disperse phase. In Fig. 1, the concentration of BC determined
by HPLC is reported. BC was found to be entirely associated with
particles in both MAD and NLC dispersions.

The fraction corresponding to a mean diameter of about 54 nm
contains 25% of the total drug, as shown in panel A. The highest
amount of BC (46%) is contained in the most representative portion
of nanoparticles/vesicles, having a diameter of 98 nm. The remain-
ing 29% of BC is associated with the least representative population
of particles, having larger diameters. In fact, cryo-TEM and PCS
analyses showed that MAD are mainly characterized by vesicles
and cubosomes with 90–100 nm mean diameter, and few struc-
tures with larger dimensions.

Also for NLC, whose PSD is reported in panel B, the highest
amount of BC (52%) is contained in the most representative frac-
tion, characterized by particles with a mean diameter of
�103 nm. The fraction corresponding to a mean diameter of
�59 nm contains only 3.5% of the total drug, the remaining 44.5%
of BC being found into a less representative population of larger
particles.
3.3. In vivo tests

In 6-OHDA hemilesioned rats, motor impairment mainly affects
the side of the body contralateral to the denervated hemisphere
(i.e., the toxin injection side). Consistently, the immobility time
of the ipsilateral paw (35.7 ± 1.9 s; n = 42) was lower compared
to that of the contralateral (parkinsonian) one (47.4 ± 1.9, n = 42).
Moreover, the number of steps made by the ipsilateral paw was
higher (11.1 ± 0.4; n = 46) than that made by the contralateral
one (1.9 ± 0.1; n = 46).
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Fig. 4. Systemic administration via i.p. of free bromocriptine (BC) and bromocrip-
tine encapsulated in MAD (BC–MAD) or nanoparticles (BC–NLC) in hemiparkinso-
nian rats attenuated akinesia in the bar test. The administered dose of BC was
always 0.3 mg/Kg. Rats injected with vehicles (empty MAD or NLC) are also shown.
Immobility time was calculated at different time-points (30, 90, 180, 300, and
480 min from injection) both at the contralateral (panel A) and at ipsilateral (panel
B) forepaw (in sec), and expressed as percent of pre-treatment values. Data are
means ± SEM of 7–11 animals per group. ⁄⁄p < 0.01 different from empty NLC.
�� p < 0.01 different from empty MAD and NLC.

Fig. 5. Systemic administration via i.p. of free bromocriptine (BC) and bromocrip-
tine encapsulated in MAD (BC–MAD) or nanoparticles (BC–NLC) in hemiparkinso-
nian rats attenuated akinesia/bradykinesia in the drag test. The administered dose
of BC was always 0.3 mg/Kg. Rats injected with vehicles (empty MAD or NLC) are
also shown. The number of steps was calculated at different time-points (30, 90,
180, 300, and 480 min from injection) both at the contralateral (panel A) and at the
ipsilateral (panel B) forepaw, and expressed as percent of pre-treatment values.
Data are means ± SEM of 7–13 animals per group. �p < 0.05; ��p < 0.01 different
from empty NLC. �� p < 0.01 different from empty MAD and NLC. #p < 0.05 different
from empty MAD.
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Repeated measure ANOVA on the immobility time at the con-
tralateral paw in the bar test (Fig 4A) revealed main effects of treat-
ment (F4,36 = 15.83, p < 0.0001) and time (F4,155 = 7.51, p < 0.0001),
and a time � treatment interaction (F16,155 = 3.58, p < 0.0001). Post
hoc analysis showed that both free BC and BC–NLC reduced the
time spent on bar (i.e., attenuated akinesia) compared to vehicle-
treated animals, although the action of BC–NLC was more pro-
longed (Fig. 4A). Indeed, both free BC and BC–NLC produced a sig-
nificant reduction in akinesia 30 min after administration (�77%
and �71% of control, respectively) and were maximally effective
after 90 min (�63% and �65% of control, respectively). However,
the effect of free BC was not significant after 3 h (�93%) whereas
that of BC–NLC was still detectable up to 3 h after administration
(�80%). No significant changes of the immobility time at the ipsi-
lateral paw were induced by any BC formulations (Fig 4B).

Repeated measure ANOVA on the number of steps at the contra-
lateral paw in the drag test (Fig 5A) revealed main effects of
treatment (F4,36 = 41.31, p < 0.0001) and time (F4,185 = 3.38,
p = 0.0106) and a significant time � treatment interaction
(F16,185 = 3.80, p < 0.0001). Post hoc analysis revealed that the three
BC preparations improved stepping activity at the contralateral
paw although with different efficacies and time-courses. As shown
in the bar test, both free BC and BC–NLC elevated stepping activity
at 30 min after administration (both �190% of control). However,
the effect of free BC vanished after 3 h (�125%) whereas that of
BC–NLC was significant both at 3 h (�165%) and 5 h (�205%) after
administration. At 8 h after administration, rats treated with BC–
NLC still showed an elevated stepping activity (�160%), although
this value did not reach the level of statistical significance. At var-
iance with the bar test, BC–MAD was able to attenuate motor dis-
ability in the drag test, causing a mild elevation at 3 h (�131%) and
5 h (�132%) from administration.

Also stepping activity at the ipsilateral paw was affected by BC
treatment (Fig 5B). Repeated measure ANOVA on the number of
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steps at the ipsilateral paw did not reveal main effect of treatment
(F4,36 = 0.96, p = 0.44) but a significant effect of time (F4,185 = 9.82,
p < 0.0001) and a time � treatment interaction (F16,185 = 3.43,
p < 0.0001). Post hoc analysis showed that among the different BC
formulations, only free BC improved stepping activity at the ipsilat-
eral paw, specifically at 30 min after administration (�139%).

Among the various therapeutic applications of BC, we chose to
focus on the antiparkinsonian activity since great therapeutic value
has been attributed to formulations capable to provide continuous
DA receptor stimulation [45,46]. Indeed, it has been demonstrated
that long-term side-effects of L-DOPA (mainly dyskinesia) arise
from non-physiological ‘‘pulsatile’’ stimulation of DA receptors,
which parallels plasmatic drug levels [47]. Thus, continuous deliv-
ery or sustained release formulations of L-DOPA have been proved
to be less dyskinesiogenic than conventional formulations. Consis-
tently, DA receptor agonists (the most effective alternative to L-
DOPA) are less dyskinesiogenic than L-DOPA, probably due to the
longer half-life. Achieving a stable and prolonged DA receptor
stimulation may also be advantageous in the case of DA agonists,
as it allows for a reduction in the frequency of administration
and occurrence of side-effects at peak levels. In the present study,
we employed two different behavioral tests providing complemen-
tary information on motor function: the bar and the drag tests. The
responses to BC and its NLC formulation were consistent in both
tests. Thus, BC caused a reduction in immobility time (i.e., reduced
akinesia) and improvement of stepping activity (i.e., reduced aki-
nesia/bradykinesia), which lasted for at least 90 min and disap-
peared after 3 h from administration. BC encapsulated in NLC
essentially mimicked these effects providing a more prolonged
attenuation of motor disability which lasted for at least 5 h and
vanished within 8 h. The obtained results extend our previous find-
ing [20] and confirm the ability of BC–NLC to provide longer lasting
therapeutic benefit compared to conventional BC formulations. The
finding that free BC caused a rapid and transient (30 min) elevation
of stepping also at the ipsilateral paw may reflect differences in
drugs kinetics since it was not replicated by BC–NLC. In fact, in
keeping with the view that conventional BC preparations result
in higher peak levels, BC might also improve motility at the ipsilat-
eral paw, which is controlled by the undenervated striatum.

Quite remarkably, BC–MAD was ineffective in the bar test and
caused only a mild and delayed elevation of stepping activity in
the drag test.

The different in vivo efficacies of BC–MAD and BC–NLC could be
attributed to differences in nanoparticulate morphology. In fact,
the former are characterized by the coexistence of cubosomes
and vesicles while the latter are solid matrix systems.

It has been demonstrated that the intraperitoneal administra-
tion prolongs the blood circulation of colloidal drug carriers with
respect to the intravenous administration, due to slow absorption
of the carrier from the abdominal cavity [48]. On the other hand,
it is known that colloidal drug carriers are rapidly opsonized and
cleared by the macrophages of the reticulo-endothelial system
(RES). Thus, as a general rule, nanosystems are mostly taken up
by the liver and the spleen within minutes after systemic adminis-
tration [49]. In the case of BC–MAD, it can be hypothesized that
cubosomes are mainly sequestered by the peritoneal and RES mac-
rophages, as shown for liposomes and nanoparticles [50,51].
Therefore, the mild and sustained effect of BC–MAD may be due
to the smaller vesicular liquid-like component of MAD that is
responsible for prolonging the half-life of the incorporated drug,
having a long circulating time.

Conversely, the NLC structure allows to provide therapeutic BC
concentrations to the brain for a long period of time [20]. This might
be related to the ability of NLC to pass the BBB [14,18] and/or to a long-
er stability of NLC in the blood. In fact, previous studies [52] demon-
strated that after intraperitoneal administration, nanoparticles show
a biphasic absorption: an initial rapid distribution into blood, fol-
lowed by a slow disposition from peritoneum, resulting in sustained
drug release.

Moreover, NLC produced in the presence of poloxamer 188 in
the aqueous phase may behave as ‘‘stealth carriers,’’ thus being
somewhat protected by opsonization [19].

4. Conclusions

This study indicates that both MAD and NLC are able to encap-
sulate BC, the drug being fully dissolved in nanoparticles. X-ray dif-
fraction and cryo-TEM studies consistently revealed the presence
of dispersed cubic phase of Pn3m and Im3m symmetry in MAD
and a gel state with an inner lamellar order in NLC. In vivo studies
showed that only BC–NLC were able to markedly attenuate motor
deficit in 6-OHDA hemilesioned rats, suggesting that NLC represent
a more effective carrier to prolong the half-life of BC in vivo.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ejpb.2011.10.015.
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Evidence for an involvement of striatal D1 receptors in levodopa-induced dyskinesia has been presented
whereas the contribution of striatal D2 receptors remains controversial. In addition, whether D1 and D2 re-
ceptors located in the substantia nigra reticulata shape the response to levodopa remains unknown. We
therefore used dual probe microdialysis to unravel the impact of striatal and nigral D1 or D2 receptor blockade on
abnormal involuntarymovements (AIMs) and striatal output pathways inunilaterally 6-hydroxydopamine lesioned
dyskinetic rats. Regional perfusion of D1/D5 (SCH23390) and D2/D3 (raclopride) receptor antagonists was com-
bined with systemic administration of levodopa. Levodopa-induced AIMs coincided with a prolonged surge of
GABA and glutamate levels in the substantia nigra reticulata. Intrastriatal SCH23390 attenuated the levodopa-in-
duced AIM scores (~50%) and prevented the accompanying neurochemical response whereas raclopride was inef-
fective. When perfused in the substantia nigra, both antagonists attenuated AIM expression (~21–40%). However,
only intranigral SCH23390 attenuated levodopa-induced nigral GABA efflux, whereas raclopride reduced basal
GABA levels without affecting the response to levodopa. In addition, intranigral raclopride elevated amino acid re-
lease in the striatum and revealed a (mild) facilitatory effect of levodopa on striatal glutamate. We conclude that
both striatal andnigralD1 receptors play an important role in dyskinesia possibly viamodulationof the striato-nigral
direct pathway. In addition, the stimulation of nigral D2 receptors contributes to dyskinesia while modulating
glutamate and GABA efflux both locally and in the striatum.
; ALO, axial, limb andorolingual;
GP, globus pallidus; LID, L-DOPA-
stantia nigra reticulata.
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Introduction

L-DOPA still represents the most effective treatment for Parkinson's
disease (PD), although long-term therapy with L-DOPA is burdened by
side-effects such as motor fluctuations and abnormal involuntary
movements (dyskinesia; Fabbrini et al., 2007; Nutt, 1990). L-DOPA-
induced dyskinesia (LID) results frommaladaptive pre- and postsynap-
tic changes in dopamine (DA) transmission (Cenci, 2007). DA activates
5 receptor subtypes which are classified in the D1-like (D1 and D5) and
D2-like (D2,D3 andD4) classes (henceforthD1 andD2), based on struc-
tural and pharmacological analogies (Seeman and Van Tol, 1994; Sibley
andMonsma, 1992). A wealth of studies has demonstrated a major role
for D1 receptors in LID. In particular, unregulated DA release from DA
and non-DA neurons causes up-regulation and abnormal trafficking of
D1 receptors in striatal neurons (Aubert et al., 2005; Berthet et al.,
2009; Konradi et al., 2004), alongwith abnormal downstream signaling
responses (reviewed in Cenci and Konradi, 2010). Altered D1 receptor
trafficking leads to a relative enrichment of D1, but not D2 receptors
at the plasma membrane in dyskinetic rats (Berthet et al., 2009).
These changes are likely to alter the functions of D1-expressing striato-
nigral GABAergic neurons (the so-called direct pathway), which mono-
synaptically inhibit nigro-thalamic output neurons causing thalamic dis-
inhibition and movement initiation (Deniau and Chevalier, 1985).
Supporting a pivotal role for D1 receptors in LID, D1 receptor agonists
have strong dyskinesiogenic properties, whereas D1 receptor antago-
nists prevent LID in both nonhuman primate (Grondin et al., 1999)
and rat (Lindgren et al., 2009; Monville et al., 2005; Taylor et al., 2005;
Westin et al., 2007) models of PD. Consistently, D1 receptor knockout
mice are poorly susceptible to LID, while D2 receptor knockout mice
do not differ from wild-type controls in this regard (Darmopil et al.,
2009). These findings do not however exclude a role of D2 receptors in
LID. In fact, D2 receptor agonists precipitate dyskinesia in L-DOPA
primed animals, whereas D2 receptor antagonists can attenuate LID
(Grondin et al., 1999; Lindgren et al., 2009; Monville et al., 2005; Taylor
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et al., 2005). Furthermore, striatal overexpression of RGS-9, a GTPase ac-
celerating protein that terminates signaling at D2 receptors, improves
LID in macaques and rodent models of PD (Gold et al., 2007). Although
most studies thus far have focused on the striatum, it will be important
to also consider changes occurring in other areas were D1 andD2 recep-
tors are highly expressed, such as the substantia nigra. Indeed, contralat-
eral turning induced by L-DOPA in unilateral 6-OHDA lesioned rats
correlateswith the dynamics of DA release in the substantia nigra reticu-
lata (SNr), and canbe blocked by local infusion of theD1/D5 receptor an-
tagonist SCH23390 in this brain area (Robertson and Robertson, 1989).
Moreover, L-DOPA-treated dyskinetic rats show abnormally large eleva-
tions in extracellular DA levels not only in the striatum but also in the
SNr (Lindgren et al., 2010). Finally, abnormal oscillatory activity in the
theta/alpha band (Meissner et al., 2006) and pronounced microvascular
plasticity (Westin et al., 2006) have beendetected in the SNr of dyskinet-
ic rats. Further strengthening the contribution of the SNr to LID, we
found a temporal correlation between the expression of abnormal invol-
untary movements (AIMs) and a large elevation of extracellular GABA
levels within the SNr of dyskinetic rats (Mela et al., 2007), suggesting
that GABA release from striato-nigral neurons is involved in generating
LID. This previous study did not however clarifywhether the surge in ex-
tracellular GABA depended on a stimulation of D1 or D2 receptors by L-
DOPA-derived DA, nor did it address the anatomical location fromwhich
the effect was generated. In addition, it did not examine whether
changes of nigral glutamate (GLU) levels were associated with LID. In-
deed, the role of GLU in dyskinesia has long been established (Calabresi
et al., 2000; Chase and Oh, 2000) and elevated in vivo GLU levels have
been documented in the striatum and SNr of dyskinetic rats under
basal conditions but not following L-DOPA (Robelet et al., 2004). Con-
versely, other studies have reported increased (Dupre et al., 2011) or re-
duced (Morgese et al., 2009) striatal GLU levels in response to L-DOPA in
dyskinetic rats.

The present study was undertaken to investigate the role of stria-
tal and nigral D1 and D2 receptors in LID and the associated changes
in GABA and GLU release within the basal ganglia network. This was
accomplished using a reverse microdialysis approach in awake rats,
whereby D1/D5 and D2/D3 antagonists (SCH23390 and raclopride,
respectively) were infused in the dorsolateral striatum (DLS) or SNr
while L-DOPA-induced AIMs were monitored.

Experimental procedures

Male Sprague–Dawley rats (150 g; Harlan Italy; S. Pietro al Natisone,
Italy) were housed under regular lighting conditions (12 h light/dark
cycle) and given food andwater ad libitum. The experimental protocols
performed in the present study were in accordance with the European
Communities Council Directive of 24 November 1986 (86/609/EEC) and
were approved by Italian Ministry of Health (license n. 194/2008-B) and
Ethical Committee of the University of Ferrara. Adequate measures were
taken to minimize the number of animals used and animal pain and
discomfort.

Drugs

6-OHDA hydrobromide, D-amphetamine sulfate, L-DOPA methylester
hydrochloride, and benserazide hydrochloride were purchased from
Sigma (St. Louis, MO, USA), SCH23390 hydrochloride and raclopride
from Tocris Bioscience (Bristol, UK). 6-OHDA were dissolved in saline
containing 0.02% ascorbic acid, and used within 2 h. D-amphetamine,
L-DOPA and benserazide were dissolved in saline immediately prior to
use. SCH23390 and raclopride were dissolved in water to 1 mM and
then diluted to 1 μMwith perfusion Ringer.

Unilateral lesion with 6-hydroxydopamine
Unilateral lesion of dopaminergic neuronswas induced in isoflurane-

anesthetized Sprague–Dawley male rats according to standard
procedures (Marti et al., 2005). Eight micrograms of 6-OHDA (dissolved
in 4 μl) were stereotaxically injected into the medial forebrain bundle
according to the following coordinates from bregma: antero-posterior
(AP) −4.4 mm, medio-lateral (ML) −1.2 mm, dorso-ventral (DV)
−7.8 mm below dura (Paxinos and Watson, 1982). Two weeks after 6-
OHDA injection, successfully lesioned rats were selected using a test of
amphetamine-induced rotation (5 mg/kg i.p. D-amphetamine, 90 min
recordings) (Ungerstedt and Arbuthnott, 1970). Forty-five out of 53 6-
OHDA lesioned rats showed N7 turns/min in the direction ipsilateral to
the lesion, and were enrolled in the study. This behavior is associated
with N95% loss of striatal DA terminals (Marti et al., 2007) and extracel-
lular DA levels (Marti et al., 2002).

L-DOPA treatment and AIMs rating
Two weeks after amphetamine testing, DA-depleted rats under-

went a 21 day course of L-DOPA treatment (6 mg/kg+benserazide
12 mg/kg, i.p., once daily) for induction of AIMs (Cenci et al., 1998).
Quantification of L-DOPA-induced AIMs was carried out as extensive-
ly described in previous papers (Lundblad et al., 2002; Winkler et al.,
2002). Briefly, rats were observed individually for 1 min every 15 min
during the 3 h that followed L-DOPA injection. Dyskinetic movements
were classified based on their topographic distribution into three sub-
types: (i) axial AIMs, i.e. twisted posture or choreiform twisting of the
neck and upper body toward the side contralateral to the lesion; (ii)
forelimb AIMs, i.e. jerky or dystonic movements of the contralateral
forelimb and/or purposeless grabbing movement of the contralateral
paw; (iii) orolingual AIMs, i.e. orofacial muscle twitching, empty mas-
ticatory movements and contralateral tongue protrusion. Each AIM
subtype was rated on a severity scale from 0 to 4 (1=occasional;
2=frequent; 3=continuous but interrupted by sensory distraction;
4=continuous, severe and not interrupted by sensory distraction)
on each monitoring period. In order to select rats exhibiting stable
and reproducible dyskinesias, AIM scoring was performed 5 times
during the L-DOPA treatment period. All rats included in the micro-
dialysis experiment had developed moderate-severe AIMs (severity
grade≥2 on each of the 3 AIM subtypes).

Microdialysis experiments
Dual probe microdialysis was performed as previously described

(Marti et al., 2002). Two probes of concentric design were stereotax-
ically implanted under isoflurane anesthesia in the DA-depleted DLS
(3 mm dialysing membrane, AN69, Hospal, Bologna, Italy) and ipsilat-
eral SNr (1 mm) of dyskinetic rats according to the following coordi-
nates from bregma and the dural surface (Paxinos and Watson,
1982): DLS, AP+1.0, ML −3.5, DV −6; SNr, AP −5.5, ML −2.2, VD
−8.3. Forty-eight hours after surgery, probes were perfused with a
modified Ringer solution (CaCl2 1.2 mM; KCl 2.7 mM; NaCl 148 mM;
MgCl2 0.85 mM) at a 3 μl/min flow rate and, after 6 h rinsing, samples
were collected every 15 min. At least three baseline samples were
collected before drug treatment. L-DOPA was administered i.p. at
the standard dose of 6 mg/kg (in combination with benserazide
12 mg/kg), whereas SCH23390 and raclopride were perfused locally
in DLS or SNr at a concentration (1 μM) expected to generate tissue
levels in the nanomolar range based on a ~10% in vitro recovery
(~100 nM, or lower for the smaller probe). When systemic and local
treatments were combined, perfusion with DA receptor antagonists
started 1 h before L-DOPA administration and continued until the
end of experiment. AIM monitoring was performed every 15 min
(for 1 min) according to the scale described above. Microdialysis ex-
periments usually lasted for 3 days. Each rat received L-DOPA, a DA
receptor antagonist, or their combination in a randomized fashion
according to the following group allocations: L-DOPA, L-DOPA/D1 an-
tagonist in DLS, D1 antagonist in DLS only (group 1); L-DOPA, L-
DOPA/D2 antagonist in DLS, D2 antagonist in DLS only (group 2); L-
DOPA, L-DOPA/D1 antagonist in SNr, D1 antagonist in SNr only
(group 3); L-DOPA, L-DOPA/D2 antagonist in SNr, D2 antagonist in



Fig. 1. Representative photographs of striatum (left) and substantia nigra reticulata (right) showing microdialysis probe tracks.

Fig. 2. Reverse dialysis of the D1 receptor selective antagonist SCH23390 in the DA-depleted dorsolateral striatum (DLS) of unilateral 6-OHDA lesioned dyskinetic rats modulates
L-DOPA induced amino acid levels. SCH23390 (1 μM)was perfused through the probe implanted in DLS, and GABA and GLU levels monitored in DLS (A–B) and SNr (C–D). SCH23390
was perfused (black bar) starting 1 h before systemic administration of L-DOPA (6 mg/kg+12 mg/kg benserazide, i.p.; arrow). Data are expressed as percentages of basal pre-treat-
ment values, and are means±SEM of 5–7 determinations. Basal GABA and GLU levels (nM) were 10.6±0.6 and 179.3±14.7 (DLS), and 9.7±0.5 and 161.3±15.6 (SNr), respec-
tively. Statistical analysis was performed by 2-way RM ANOVA followed by the sequentially rejective Bonferroni's test. Significant interactions: panel B, L-DOPA×time
(F11,188=2.17, p=0.0175); panel C, L-DOPA×time (F11,220=2.91, p=0.0013), SCH23390×time (F11,220=4.29, pb0.0001) or L-DOPA×SCH23390 x time (F11,220=3.89,
pb0.0001); panel D, L-DOPA×time (F11,212=3.40, p=0.0002), SCH23390×time (F11,212=2.52, p=0.0053) or L-DOPA×SCH23390×time (F11,212=3.23, p=0.0004). *pb0.01 dif-
ferent from control.
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SNr only (group 4). The microdialysis experiments continued so as to
reach the predetermined number of animals per group (n=5–9).
Control experiments were occasionally run at day 4 or during the 3-
days dialysis course in a counter-balanced order. At the end of the ex-
periments, animals were sacrificed and the correct placement of the
probes was verified histologically (Fig. 1).
Endogenous GLU and GABA analysis
GLU and GABA were measured by HPLC coupled with fluorometric

detection as previously described (Marti et al., 2007). Thirty microliters
of o-phthaldialdehyde/mercaptoethanol reagent were added to 30 μl
aliquots of sample, and 50 μl of the mixture was automatically injected
(Triathlon autosampler; Spark Holland, Emmen, Netherlands) onto a 5-
C18 Chromsep analytical column (3 mm inner diameter, 10 cm length;
Chrompack, Middelburg, Netherlands) perfused at a flow rate of
0.48 ml/min (Beckman 125 pump; Beckman Instruments, Fullerton,
CA, USA) with a mobile phase containing 0.1 M sodium acetate, 10%
methanol and 2.2% tetrahydrofuran (pH 6.5). GLU and GABA were
detected by means of a fluorescence spectrophotometer FP-2020 Plus
(Jasco, Tokyo, Japan) with the excitation and the emission wavelengths
set at 370 and 450 nm respectively. The limits of detection for GLU and
GABA were ~1 and ~0.5 nM, respectively. Retention times for GLU and
GABA were 3.5±0.2 min and 18.0±0.5 min respectively.
Fig. 3. Reverse dialysis of the D2 receptor selective antagonist raclopride in the DA-deplete
L-DOPA induced amino acid levels. Raclopride (1 μM) was perfused through the probe implan
was perfused (black bar) starting 1 h before systemic administration of L-DOPA (6 mg/kg+12
values, and are means±SEM of 5–6 determinations. Basal GABA and GLU levels (nM) were,
Statistical analysis was performed by 2-way RM ANOVA followed by the sequentially reje
pb0.0001); panel D, L-DOPA×time (F11,200=13.56, pb0.0001).
Data presentation and statistical analysis

Treatment effects on GABA and GLU levels have been expressed as
percentage±SEM of basal values (calculated as mean of the two sam-
ples before treatment). Absolute basal values are detailed in the Fig-
ure legends. Statistical analysis was performed on neurochemical
data (Figs. 2–3, 5–6) by two-way repeated measure (RM) analysis
of variance (ANOVA), Factor 1 being the DA antagonist (SCH23390 or
raclopride) and Factor 2 L-DOPA. The interactions of Factor 1, Factor 2
and Factor 1×Factor 2 with time were analyzed, and only in the case
ANOVA yielded to a significant interaction of Factor 1×Factor 2 with
time, the sequentially rejective Bonferroni's post hoc test analysis was
performed to study group differences at each time-point. The Mann–
Whitney U-test was used to compare AIM score in each rat following
L-DOPA in the presence or in the absence of a DA receptor antagonist
(Figs. 4, 7). Only relevant statistical results have been given in figure
legends. P values b0.05 were considered to be statistically significant.

Results

Effects of DLS perfusion with SCH23390 and raclopride

To investigate whether striatal D1 and D2 receptors were involved
in LID expression, the D1/D5 selective antagonist SCH23390 or the
d dorsolateral striatum (DLS) of unilateral 6-OHDA lesioned dyskinetic rats modulates
ted in DLS, and GABA and GLU levels monitored in DLS (A–B) and SNr (C–D). Raclopride
mg/kg benserazide, i.p.; arrow). Data are expressed as percentages of basal pre-treatment
respectively, 20.4±3.1 and 128.7.3±25.8 (DLS), and 13.1±1.9 and 132.5±23.1 (SNr).
ctive Bonferroni's test. Significant interactions: panel C, L-DOPA×time (F11,200=13.50,

image of Fig.�3


Fig. 4. Reverse dialysis of the D1 receptor selective antagonist SCH23390 but not the D2
receptor selective antagonist raclopride in the DA-depleted dorsolateral striatum (DLS)
of unilateral 6-OHDA lesioned dyskinetic rats modulates L-DOPA induced abnormal in-
voluntary movements (AIMs). SCH23390 and raclopride (1 μM)were perfused through
the probe implanted in DLS starting 1 h before systemic administration of L-DOPA
(6 mg/kg+12 mg/kg benserazide, i.p.). Axial, limb and orolingual (ALO) AIMs were
scored every 15 min (for 120 min after L-DOPA administration) according to the scale
described in Methods. Data were presented as time-course (A), cumulative ALO scores
(B) or separate scores for each subtype (C). Changes in amino acid levels in DLS and
SNr were recorded in parallel and are shown in Figs. 2–3. Data are mens±SEM of 5–
9 determinations. Statistical analysis was performed by the Mann–Whitney U-test. Sig-
nificant results: panel B, U=0.5; panel C Limb AIMs, U=1.5, axial AIMs U=5.0.
°°pb0.01 different from L-DOPA alone.
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D2/D3 selective antagonist raclopride were perfused through a
microdialysis probe in DLS, alone or in combination with a systemic
dose of L-DOPA. GABA and GLU levels were monitored in both DLS
and SNr simultaneously with AIMs rating (Figs. 2–4).

Systemic administration of L-DOPA, alone or in combination with
intrastriatal SCH23390, did not affect GABA levels in striatum
(Fig. 2A). Conversely, RM ANOVA on striatal GLU levels (Fig. 2B)
revealed a significant L-DOPA×time interaction, possibly suggesting
that L-DOPA elevated GLU levels.

Unlike amino acid levels in DLS, nigral GABA and GLU concentra-
tions showed a large and sustained increase following the administra-
tion of L-DOPA (Figs. 2C–D), an effect that was consistent across all
experiments (cf. panels C in Figs. 2–3 and 5–6). GABA levels were
significantly elevated above control levels 30 min after L-DOPA
administration (i.e. in the 90 min perfusate fraction; pb0.05) reach-
ing maximal values (~86%) in the next sample (105 min). The in-
crease remained significant for at least 90 min following the
injection of L-DOPA (150 min perfusate fraction), although it tended
to decline by the end of the observation period (180 min fraction, cor-
responding to 2 hours post L-DOPA administration). Intrastriatal
SCH23390 prevented the surge in GABA levels following L-DOPA.
Nigral GLU levels (Fig. 2D) showed a similar temporal course, starting
to be significantly elevated above control values in the 90 min perfus-
ate fraction, and reaching a peak (~80%) at 105–120 min. GLU levels
showed a steady increase until the end of the observation period
(pb0.05 at 180 min; cf. panels D in Figs. 2–3 and 5–6). Local perfusion
of SCH23390 in DLS completely blocked the effect of L-DOPA (Fig. 2D).

Intrastriatal perfusion of raclopride did not affect striatal amino
acid levels when given alone, nor did it disclose any effect of L-
DOPA in DLS (Figs. 3A–B). Likewise, raclopride did not modulate
basal GABA and GLU levels in SNr (Figs. 3C–D) or their responses to
L-DOPA.

Monitoring the behavioral effects of L-DOPA during intrastriatal
perfusion with selective DA receptor antagonists (Fig. 4A) revealed
that SCH23390 markedly attenuated (~47%) AIMs expression whereas
raclopridewaswithout effect (Fig. 4B). Stratification of behavioral anal-
ysis for dyskinesia typology showed that SCH23390 prevented approx-
imately to the same extent both limb and axial AIMswhereas orolingual
AIMs remained unchanged (Fig. 4C).

Effects of SNr perfusion with SCH23390 and raclopride

To investigate the role of nigral D1 and D2 receptors in LID, perfu-
sions of SCH23390 or raclopride through the probe implanted in SNr
were combined with systemic L-DOPA administration (Figs. 5–7).

Intranigral perfusion with SCH23390 did not affect amino acid
levels in striatum when given alone or in combination with L-DOPA
(Figs. 5A–B). However, intranigral SCH23390 alone transiently elevat-
ed GABA levels in SNr and attenuated the GABA response to L-DOPA
(Fig. 5C). Conversely, SCH23390 did not affect basal GLU levels nor
did it attenuate the rise in nigral GLU following L-DOPA (Fig. 5D).

Differently from SCH23390, intranigral perfusion with raclopride
caused marked changes in amino acid levels in striatum. Intranigral
raclopride caused a slow increase in striatal GABA levels which was
unaffected by L-DOPA (Fig. 6A). In contrast, raclopride caused a
prompt elevation of striatal GLU levels which was overall enhanced
by L-DOPA (Fig. 6B). However, at any time point the effect of L-DOPA
was different from that of raclopride.

Perfusion of raclopride in SNr significantly decreased GABA levels
(~40%) although it did not change the facilitatory effect of L-DOPA
(Fig. 6C). Intranigral raclopride did not change basal GLU levels in this
area nor did it alter the surge in nigral GLU in response to L-DOPA
(Fig. 6D).

Monitoring the effect of L-DOPA on AIMs expression during intra-
nigral perfusion with selective DA receptor antagonists (Fig. 7A)
revealed that both SCH23390 and raclopride significantly attenuated
AIMs expression (~21% and ~40%, respectively; Fig. 7B), causing a re-
duction of limb AIMs (Fig. 7C). Also axial AIMs were attenuated by
SCH23390 whereas the reduction observed with raclopride was just
above the limit of significance (p=0.072).

Discussion

This study provides the first demonstration that concomitant ele-
vations in GABA and GLU extracellular levels occur in SNr during the
expression of LID, and that both striatal and nigral DA receptors con-
tribute to shape the response to L-DOPA. The intrastriatal infusion of a
D1 receptor antagonist prevented the surge of nigral amino acids and
simultaneously reduced dyskinesia, whereas a D2 antagonist was in-
effective. D1 and D2 receptor antagonists achieved a very different
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Fig. 5. Reverse dialysis of the D1 receptor selective antagonist SCH23390 in the lesioned substantia nigra pars reticulata (SNr) of unilateral 6-OHDA lesioned dyskinetic rats mod-
ulates L-DOPA-induced amino acid levels. SCH23390 (1 μM) was perfused through the probe implanted in SNr, and GABA and GLU levels monitored in ipsilateral dorsolateral stri-
atum (DLS; A–B) and SNr (C–D). SCH23390 was perfused (black bar) 1 h before systemic administration of L-DOPA (6 mg/kg+12 mg/kg benserazide, i.p.; arrow). Data are
expressed as percentages of basal pre-treatment values, and are means±SEM of 5–7 determinations. Basal GABA and GLU levels (nM) were 10.8±0.7 and 147.7±8.3 (DLS),
and 9.6±0.7 and 166.7±16.3 (SNr), respectively. Statistical analysis was performed by 2-way RM ANOVA followed by the sequentially rejective Bonferroni's test. Significant
interactions: panel C, SCH23390×time (F11,252=20.21, pb0.0001), L-DOPA×time (F11,252=29.59, pb0.0001) and L-DOPA×SCH23390×time (F11,252=10.52, pb0.0001).
*pb0.01 different from control.
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pattern of effects when perfused into SNr. Although both antagonists
mildly attenuated dyskinesia, the D1 antagonist elevated basal GABA
output but dampened the L-DOPA-evoked surge in nigral GABA levels,
whereas the D2 antagonist reduced basal nigral GABA without alter-
ing the response to L-DOPA. In addition, raclopride alone increased
basal amino acid levels in DLS, facilitating the effects of L-DOPA on
striatal GLU. Taken together these results provide novel and impor-
tant information on the role of striatal and nigral dopamine D1 and
D2 receptors in regulating GABA and GLU overflow in the parkinso-
nian brain both under baseline conditions and following the adminis-
tration of L-DOPA.

Striatal D1 and D2 receptors and LID

Dopamine denervation is accompanied by up-regulation of D1 sig-
naling in the striatum (Aubert et al., 2005; Berke et al., 1998; Gerfen
et al., 2002) as well as by changes in receptor trafficking leading to
enrichment of D1 receptors at the membrane of striatal GABAergic
neurons (Berthet et al., 2009). Treatment with L-DOPA does not nor-
malize these changes in animals that develop dyskinesia (reviewed
in Cenci and Konradi, 2010). Consistent with a pathogenic role of
up-regulated striatal D1 transmission in LID, systemic administration
of D1 antagonists prevents AIM expression in different models of dys-
kinesia (Grondin et al., 1999; Lindgren et al., 2009; Monville et al.,
2005; Taylor et al., 2005; Westin et al., 2007). The present study pro-
vides neuroanatomical information about the site from which D1
receptors mediate the dyskinetic behaviors, showing that both LID
manifestation and the accompanying rise in nigral GABA and GLU re-
lease are significantly attenuated by intrastriatal perfusion with
SCH23390. The possibility that the action of SCH23390 extends be-
yond D1 receptors should also be considered. Indeed, SCH23390
binds to D1-like receptors (0.3–1.3 nM; Hyttel, 1983; Millan et al.,
2001) and with lower affinity to 5-HT2c (previously known as 5-
HT1c; 15–30 nM; Hyttel, 1983; Millan et al., 2001; Taylor et al.,
1991), 5-HT4 (270 nM; Schiavi et al., 1994) receptors as well as to
the 5-HT transporter (1,400 nM; Zarrindast et al., 2011). Assuming a
~10% in vivo recovery under the present experimental conditions,
the perfusion of 1 μM SCH23390 through the microdialysis probe is
expected to generate striatal extracellular levels of ~100 nM, for
which significant binding to 5-HT2c receptors in addition to D1 re-
ceptors may occur. However, a contribution of 5-HT2c receptors in
the antidyskinetic effect of intrastriatal SCH23390 is unlikely since
striatal 5-HT2c receptors do not interfere with the hyperlocomotion
induced by injection of a D1 receptor agonists in the DA-depleted stri-
atum of 6-OHDA lesioned rats (Bishop et al., 2005). Moreover,
SCH23390 activates 5-HT2c receptors (Millan et al., 2001; Ramos et
al., 2005; Woodward et al., 1992), which would result in a worsening
rather than attenuation of dyskinesia (Beyeler et al., 2010; Nicholson
and Brotchie, 2002). Indeed, 5-HT2c receptor stimulation induced
orofacial dyskinesia (Beyeler et al., 2010) whereas 5-HT2c receptor
blockade attenuated neuroleptic-induced dyskinesia (Creed-Carson
et al., 2011). Therefore, although binding to striatal 5-HT2c receptors
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Fig. 6. Reverse dialysis of the D2 receptor selective antagonist raclopride in the lesioned substantia nigra pars reticulata (SNr) of unilateral 6-OHDA lesioned dyskinetic rats mod-
ulates L-DOPA-induced amino acid release. Raclopride (1 μM) was perfused through the probe implanted in SNr, and GABA and GLU levels monitored in ipsilateral dorsolateral stri-
atum (DLS; A–B) and SNr (C–D). Raclopride was perfused (black bar) 1 h before systemic administration of L-DOPA (6 mg/kg+12 mg/kg benserazide, i.p.; arrow). Data are
expressed as percentages of basal pre-treatment values, and are means±SEM of 5–6 determinations. Basal GABA and GLU levels (nM) were 11.3±1.3 and 87.2±23.1 (DLS),
and 10.6±1.4 and 77.7±18.8 (SNr), respectively. Statistical analysiswas performed by 2-way RMANOVA followed by the sequentially rejective Bonferroni's test. Significant interactions:
panel A, raclopride×time (F11,220=2.35, p=0.0092); panel B, L-DOPA×time (F11,176=10.57, pb0.0001), raclopride×time (F11,176=5.61, pb0.0001) and L-DOPA×raclopride×time
(F11,176=4.62, pb0.0001); panel C, raclopride×time (F11,208=2.78, p=0.0022) and L-DOPA×time (F11,208=17.22, pb0.0001). *pb0.01 different from control.
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may occur during intrastriatal perfusion with SCH23390, these recep-
tors are not likely to contribute to the antidyskinetic effect of
SCH23390.

In addition to the axon terminals of striato-nigral neurons, sources
of neuronal GABA outflow in the SNr are the GP-nigral projections, as
well as GABA interneurons and collaterals of nigrofugal GABAergic
neurons. We therefore conclude that increases in nigral GABA release
induced by L-DOPA reflect a hyperactivity in the direct striato-nigral
pathway, confirming that such hyperactivity plays a crucial role in
LID (reviewed in Cenci, 2007). The concomitant lack of significant
changes in GABA (and GLU) levels in GP during the expression of
LID (Mela et al., 2007) rules out a contribution of the indirect pathway
to the neurochemical alterations measured in the SNr. The surge of
nigral GLU levels in this LID model is likely to reflect an increased glu-
tamatergic input from a cortically-activated subthalamic nucleus
and/or may depend on the overactivation of the direct pathway. In-
deed, also reverse dialysis of NMDA in striatum evokes an increase
in GLU levels in SNr, which is attenuated by DA depletion or intras-
triatal SCH23390 (Marti et al., 2002). Striato-nigral GABA neurons
co-release Substance P which might elevate GLU release acting on fa-
cilitatory NK1 receptors located on subthalamo-nigral terminals. Such
presynaptic facilitatory control has been demonstrated in various
brain areas (Bailey et al., 2004; Liu et al., 2002; Stacey et al., 2002), al-
though not yet in the SNr.

Different from SCH23390, intrastriatal raclopride failed to affect
LID and the accompanying nigral amino acid response. Raclopride
affinity for D2 and D3 receptors is 1.8 and 3.5 nM respectively
(Seeman and Van Tol, 1994). Therefore the 1 μM raclopride con-
centration in the perfusate is expected to generate extracellular
concentrations (~100 nM) which largely cover D2-like receptors
without unspecifically interfering with other receptors (Köhler et
al., 1985). This data rules out a major role for striatal D2 receptors
in dyskinesia, and is consistent with the findings that systemic D2
receptor agonists do not activate the ERK pathway in striatal neu-
rons, a molecular marker of LID (Westin et al., 2007) and that
genetic deletion of the D2 receptor gene does not affect LID in
mice (Darmopil et al., 2009). Despite the existence of a well-docu-
mented opposite D1–D2 receptor modulation of striatal GABAergic
function (Cepeda and Levine, 1998; Harsing and Zigmond, 1997;
Hernandez-Lopez et al., 1997; Morari et al., 1994; Nicola et al.,
2000), the inconsistent effects of striatal raclopride infusion in
this study may indicate that striatal D2 receptors do not signifi-
cantly affect the L-DOPA-induced activation of already primed
striato-nigral neurons, possibly confirming the morphological and
functional segregation of D1 and D2 receptors along striatal output
pathways (Gerfen et al., 1990).

Nigral D1 and D2 receptors and LID

Different from the striatum, both D1 and D2 receptor blockade in
SNr attenuated LID expression. This confirms the role of this brain
area in generating dyskinesia as emerged fromprevious studies. Indeed,
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Fig. 7. Reverse dialysis of the D1 receptor selective antagonist SCH23390 and the D2 re-
ceptor selective antagonist raclopride in the lesioned substantia nigra reticulata (SNr)
of unilateral 6-OHDA lesioned dyskinetic rats modulates L-DOPA induced abnormal in-
voluntary movements (AIMs). SCH23390 and raclopride (1 μM)were perfused through
the probe implanted in SNr starting 1 h before systemic administration of L-DOPA
(6 mg/kg+12 mg/kg benserazide, i.p.). Axial, limb and orolingual (ALO) AIMs were
scored every 15 min (for 135 min after L-DOPA administration) according to the scale
described in Methods. Data were presented as time-course (A), cumulative ALO scores
(B) or separate scores for each subtype (C). Changes in amino acid levels in DLS and
SNr were recorded in parallel and are shown in Figs. 5–6. Data are means±SEM of
7–9 determinations. Statistical analysis was performed by the Mann–Whitney U-test.
Significant results: panel B, SCH23390, U=10.0, raclopride U=7.50; panel C Limb
AIMs, SCH23390 U=10.5, raclopride U=8.0; axial AIMs, SCH23390 U=7.0, raclopride
U=10.0. °pb0.05, °°pb0.01, different from L-DOPA alone.
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L-DOPA is converted to DA in SNr (Sarre et al., 1998), and L-DOPA
administration results in abnormal elevations of extracellular DA levels
in both the SNr and striatum of dyskinetic rats (Lindgren et al., 2010).
Moreover, dyskinesia is associated with abnormal oscillatory activity
in the theta/alpha band of nigral neurons (Meissner et al., 2006) as
well as with angiogenesis in nigral microvasculature (Westin et al.,
2006).

In keeping with the finding that nigral D1 receptors mediate the
contralateral turning induced by L-DOPA in unilateral 6-OHDA le-
sioned rats (Robertson and Robertson, 1989), intranigral SCH23390
attenuated LID and the accompanying rise of nigral GABA levels. D1
receptors are largely expressed on striato-nigral GABAergic afferents,
their activation resulting in an increase of GABA release, overinhibi-
tion of nigro-thalamic neurons and motor initiation. Interestingly,
similar to the situation in the striatum, D1 receptor signaling appears
to be up-regulated in the SNr, leading to an enhancement of agonist-
stimulated [3H]-GABA release in nigral slices (Rangel-Barajas et al.,
2011). Therefore, by opposing a phasic D1 receptor activation by L-
DOPA, nigral SCH23390 infusion attenuates both the GABAergic
inhibition of nigro-thalamic neurons and dyskinesia. In addition,
SCH23390 also elevated basal GABA levels in SNr. This finding can be
differently interpreted since microdialysis samples different GABA
pools, which can be differentially affected by local treatment. Therefore,
the increase in basal GABA levels may indicate the existence of a DA in-
hibitory tone on GABA release mediated by D1 receptors located on
GABA interneurons or reflect disinhibition of nigro-thalamic GABA neu-
rons,which have extensive axon collaterals ramifying in SNr (Grofova et
al., 1982). This latter possibility is further substantiated by the findings
that SCH23390 application in vitro attenuates GABA-mediated IPSP in
nigro-thalamic neurons (Aceves et al., 2011; Radnikow and Misgeld,
1998) and systemic SCH23390 administration increases the discharge
rate of nigro-thalamic neurons in vivo (Windels and Kiyatkin, 2006).
Alternatively, SCH23390 may impact on 5-HT2c receptors, as discussed
above. Indeed, stimulation of nigral 5-HT2c receptors elevated GABA
release and excited nigral GABA neurons in vivo (Di Giovanni et al.,
2001; Invernizzi et al., 2007) an action that may be consistent with
motor inhibition (Kennett and Curzon, 1988). Consistently, intranigral
infusion of 5-HT2c receptor antagonists induced contralateral rotations
and potentiated the turning behavior induced by DA agonists in unilat-
eral 6-OHDA lesioned rats (Fox et al., 1998).

Similar to SCH23390, intranigral raclopride attenuated expression of
limb and axial dyskinesia. This suggests that nigral D2 receptors con-
tribute to LID, and that nigral but not striatal D2 receptors maymediate
the antidyskinetic effect of D2 antagonistswhen given systemically (see
Introduction). Differently from SCH23390, the antidyskinetic effect of
intranigral raclopride was not accompanied by changes of the GABA
surge induced by L-DOPA, possibly suggesting it did not involve modu-
lation of the striato-nigral pathway. This is in line with the finding that
D2 receptor ligands modulate GABA release from pallido-nigral but not
striato-nigral terminals, in keeping with the view of a segregation of
D2/D3/D4 and D1 receptors on afferent projections from GP and stria-
tum, respectively (Aceves et al., 2011). It should be emphasized that
intranigral raclopride produced dramatic preconditioning effect on
basal ganglia circuitry, reducing nigral GABA and elevating striatal
GABA and GLU levels. It is not clear how these changes impact on the
striatal output. However, it seems unlikely that changes in striatal
amino acids contribute to the antidyskinetic effect of raclopride since
the nigral amino acid response to L-DOPA was not altered. Instead,
raclopride might act through setting the responsiveness of nigro-tha-
lamic neurons to L-DOPA (Volta et al., 2011). Blockade of an inhibitory
D2-mediated tone on pallido-nigral terminals would alter the activity
of nigro-thalamic neurons (Aceves et al., 2011). This would lead to dis-
inhibition of thalamo-striatal and/or thalamo-cortical GLU projections,
which is in linewith the observed elevation of amino acid release in stri-
atum (see alsoMorari et al., 1996). Activation of the cortico- and/or tha-
lamo-striatal GLU inputs may enrich the otherwise negligible neuronal
component of basal extracellular GLU levels (Baker et al., 2002; Morari
et al., 1993, 1996) and allow a facilitatory action of L-DOPA to be unra-
veled. These data confirm that low therapeutic doses of L-DOPA exert
only mild facilitatory effects on striatal GLU levels in dyskinetic rats
(Dupre et al., 2011).

Concluding remarks

The contribution of DA receptor subtypes to LID and the underly-
ing mechanisms have been evaluated performing reverse dialysis of
DA selective antagonists in striatum and SNr of dyskinetic rats. AIMs
expression appears to be mediated by intrastriatal and to a lesser ex-
tent, intranigral D1 receptors, likely through activation of the striato-
nigral pathway and stimulation of GABA release from striato-nigral
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terminals. A contribution of nigral D2 receptors was also demonstrated,
although the mechanisms remain elusive. These data indicate that L-
DOPA act on both receptor subtypes to trigger AIMs expression, sug-
gesting the existence of an additive or synergistic cooperative interac-
tion between these signals. An improved understanding of the role of
different basal ganglia nuclei and DA receptor subtypes in generating
LID will help developing novel, targeted treatment interventions for
this disabling complication of PD therapy.
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Levodopa (L-DOPA) is the most effective medication for the
treatment of Parkinson’s disease. However, chronic treatment
with L-DOPA is associated with the development of debili-
tating choreo-dystonic movements (dyskinesia) in two-third
of patients after 6 years of treatment (Fahn 2000; Obeso et al.
2000, 2004). Changes at striatal dopamine (DA) D1 receptor
transmission underlie L-DOPA-induced dyskinesia (LID).
Indeed, chronic and ‘pulsatile’ stimulation of up-regulated D1

receptors leads to a pathological enhancement of cAMP levels
(Corvol et al. 2004), protein phosphorylation (Santini et al.
2007) and expression of specific classes of immediate early
genes (Andersson et al. 1999) and neuropeptide precursors
(Cenci et al. 1998; Henry et al. 1999; Calon et al. 2002)
which trigger pathological modifications of membrane excit-
ability and synaptic plasticity in striatal medium spiny
neurons (Picconi et al. 2003; Carta et al. 2006). Two
populations of medium spiny neurons are enriched in the
striatum. Those projecting monosynaptically to the substantia

nigra pars reticulata (SNr)/globus pallidus (GP) internalis,
which predominantly express D1 receptors and are known as
the ‘direct pathway’, and those projecting to the globus
pallidus externalis, which predominantly express D2 receptors
and represent the first step of the ‘indirect pathway’ (Parent
and Hazrati 1995a,b). According to the heuristic model of
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Abstract

Amantadine is the only drug marketed for treating levodopa-

induced dyskinesia. However, its impact on basal ganglia

circuitry in the dyskinetic brain, particularly on the activity of

striatofugal pathways, has not been evaluated. We therefore

used dual probe microdialysis to investigate the effect of

amantadine on behavioral and neurochemical changes in the

globus pallidus and substantia nigra reticulata of 6-hydroxy-

dopamine hemi-lesioned dyskinetic mice and rats. Levodopa

evoked abnormal involuntary movements (AIMs) in dyskinetic

mice, and simultaneously elevated GABA release in sub-

stantia nigra reticulata (�3-fold) but not globus pallidus.

Glutamate levels were unaffected in both areas. Amantadine

(40 mg/kg, i.p.), ineffective alone, attenuated (�50%) AIMs

expression and prevented the GABA rise. Moreover, it

unraveled a facilitatory effect of levodopa on pallidal gluta-

mate levels. Levodopa also evoked AIMs expression and a

GABA surge (�2-fold) selectively in the substantia nigra of

dyskinetic rats. However, different from mice, glutamate

levels rose simultaneously. Amantadine, ineffective alone,

attenuated (�50%) AIMs expression preventing amino acid

increase and leaving unaffected pallidal glutamate. Overall,

the data provide neurochemical evidence that levodopa-

induced dyskinesia is accompanied by activation of the

striato-nigral pathway in both mice and rats, and that the anti-

dyskinetic effect of amantadine partly relies on the modulation

of this pathway.

Keywords: 6-OHDA, amantadine, dyskinesia, levodopa,

microdialysis, substantia nigra.

J. Neurochem. (2011) 118, 1043–1055.

JOURNAL OF NEUROCHEMISTRY | 2011 | 118 | 1043–1055 doi: 10.1111/j.1471-4159.2011.07376.x

� 2011 The Authors
Journal of Neurochemistry � 2011 International Society for Neurochemistry, J. Neurochem. (2011) 118, 1043–1055 1043



basal ganglia functioning (Albin et al. 1989; DeLong 1990),
unbalance between the activity of these two pathways
underlies the hyperkinetic motions associated with LID.
However, although different lines of evidence suggested that
dyskinesia appearance is accompanied by over-activation of
the direct pathway (Cenci et al. 1998; Picconi et al. 2003) a
parallel over-inhibition of the indirect pathway has not been
documented (Calon et al. 2002; Carta et al. 2008; Bateup
et al. 2010), although the involvement of GP has been
proposed (Mehta et al. 2001). Most of these findings have
been obtained in non-human primate and rat models of LID
(Bezard et al. 2003; Cenci and Lundblad 2007). More
recently, a mouse model has also been validated (Lundblad
et al. 2004, 2005) which essentially reproduces peak-dose
dyskinesia observed in the rat. Although scoring of abnormal
involuntary movements (AIMs, a behavioral correlate of
dyskinesia) affecting axial, limb and orolingual muscles
appears more challenging in mice than in rats (Cenci and
Ohlin 2009), modelling dyskinesia in mice offered a new tool
for target validation based on genetic approaches (Xiao et al.
2006; Santini et al. 2007; Darmopil et al. 2009; Bateup et al.
2010). Biochemical and behavioral studies have revealed
strong similarities between the rat and mouse models of
dyskinesia in terms of cellular adaptation mechanisms and
responsiveness to anti-dyskinetic drugs (Cenci and Lundblad
2007). However, no neurochemical study has been under-
taken to study the correlation between AIMs appearance
following L-DOPA and changes in striatofugal pathways in
mice. Moreover, the impact of amantadine, the reference drug
in LID therapy, on basal ganglia circuitry and, specifically, the
striatofugal pathways in dyskinesia has never been investi-
gated. We therefore used dual probe microdialysis to
investigate the effect of L-DOPA on GABA and glutamate
(GLU) release in the SNr and GP of awake dyskinetic mice as
well as the modulation operated by amantadine. The neuro-
chemical pattern of response to amantadine was also
measured in dyskinetic rats for a comparison. AIMs were
scored simultaneously with sample collection.

Materials and methods

Experimental design
Forty mice were lesioned by intrastriatal injections of 6-hydroxy-

dopamine (6-OHDA) and, 2 weeks later, screened using a battery of

behavioral tests. An additional group of mice (n = 8) was sham-

lesioned for a comparison of motor performance on the rotarod.

Thirty-three 6-OHDA-lesioned mice (see selection criteria below)

were made dyskinetic by chronic L-DOPA administration (15 mg/kg

plus 12 mg/kg benserazide, i.p., once daily for 10 days). During this

period, AIMs were scored five times. Mice showing total AIMs

score > 100 in the last session were enrolled for the microdialysis

study and underwent probe implantation (24 h after the last L-DOPA

injection). The theoretical maximal total AIM score for each animal

is 288 (48 for each of the six 20-min sessions). After surgery, mice

were allotted into three groups receiving L-DOPA (15 mg/kg, i.p.;

n = 11), amantadine (40 mg/kg, i.p.; n = 10) or their combination

(n = 10). Each animal underwent two microdialysis sessions (24 and

48 h after probe implantation), and received saline or drugs in a

randomized fashion.

Rats
Thirty rats were lesioned by medial forebrain bundle (MFB)

injection of 6-OHDA and, 2 weeks later, screened using amphet-

amine testing. Twenty-five 6-OHDA-lesioned rats (see selection

criteria below) were made dyskinetic by chronic L-DOPA admin-

istration (6 mg/kg plus 12 mg/kg benserazide, i.p., once daily for

21 days). During this period, AIMs were scored seven times.

Twenty rats showing total AIMs score > 100 in the last session were

enrolled for the microdialysis study and underwent probe implan-

tation (24 h after the last L-DOPA injection). Five rats underwent

acute amantadine challenge for a comparison of the response

between pre- and post-surgery conditions (Fig. 8). The theoretical

maximal total AIMs score for each animal is 432 (48 each of the

nine 20-min sessions). After surgery, rats were allotted into three

groups receiving L-DOPA (6 mg/kg; i.p., n = 7), amantadine

(40 mg/kg, i.p.; n = 6) or their combination (n = 6). Each animal

underwent two microdialysis sessions (24 and 48 h after probe

implantation), and received saline or drugs in a randomized fashion.

Subjects
Male Sprague–Dawley rats (150 g Harlan Italy; S. Giorgio al

Natisone, Italy) and Swiss mice (24–25 g Stefano Morini, Modena,

Italy) were used. The animals were housed under a 12-h light/dark

cycle and given water and food ad libitum. Drug treatments and

animal housing conditions had been approved by the Ethical

Committee of the University of Ferrara and the Italian Ministry of

Health (licenses 94–2007-B and 194–2008-B). Adequate measures

were taken to minimize animal pain and discomfort.

Surgery and behavioral screening

Rats
Unilateral lesion of DA neurons was induced in isoflurane-

anesthetized rats according to standard procedures (Marti et al.
2002, 2005, 2007). Eight micrograms of 6-OHDA (in 4 lL of saline

containing 0.02% ascorbic acid) were stereotaxically injected into

MFB according to the following coordinates from bregma (in mm):

antero-posterior AP )4.4, medio-lateral ML )1.2, dorso-ventral DV
)7.8 below dura (Paxinos and Watson 1982). Two weeks after

surgery, rats were injected with amphetamine (5 mg/kg i.p.,

dissolved in saline) and only those rats performing > 7 ipsilateral

turns/min were enrolled in the study.

Mice
Striatal injections of 6-OHDA were performed in isoflurane-

anesthetized mice as described by Lundblad et al. (2004). Six

micrograms of 6-OHDA free-base (in 2 lL of saline containing

0.02% ascorbic acid) were stereotaxically injected into the striatum

according to the following coordinates from bregma (in mm); first

injection, AP +1.0, ML )2.1, DV )2.9 below dura; second

injection, AP +0.3, ML )2.3, DV )2.9 below dura (Paxinos and

Franklin 2001). Mice were screened with the cylinder test (Schallert

et al. 2000) 2 weeks after lesion; mice showing a number of wall
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contacts with contralateral forelimb < 40% of total contacts in 5 min

of observation were enrolled in the study. This behavioral score was

associated with > 90% depletion of DA terminals (Schallert et al.
2000; Lundblad et al. 2004) and > 95% depletion of striatal DA

(Carta et al. 2006). In mice, the dopaminergic nature of the motor

deficit was confirmed by testing the responsiveness to L-DOPA

using the bar, drag and rotarod tests, as previously described (Marti

et al. 2005, 2007).

LID induction and AIMs ratings
A different protocol of LID induction was used in mice and rats

according to the literature: 15 mg/kg L-DOPA (+12 mg/kg bense-

razide, i.p., once a day for 10 days) in the mouse (Santini et al.
2009), and 6 mg/kg L-DOPA (+ 12 mg/kg benserazide, i.p., once a

day for 21 days) in the rat (Cenci et al. 1998). Quantification of

L-DOPA-induced AIMs was carried out as described in previous

papers (Lee et al. 2000; Lundblad et al. 2002, 2004; Winkler et al.
2002). Briefly, rats and mice were observed individually for 1 min

every 20 min during the 2–3 h that followed an L-DOPA injection.

Dyskinetic movements were classified based on their topographic

distribution into three subtypes: (i) axial AIM, that is, twisted

posture or choreiform twisting of the neck and upper body toward

the side contralateral to the lesion; (ii) forelimb AIM, that is, jerky or

dystonic movements of the contralateral forelimb and/or purposeless

grabbing movement of the contralateral paw; (iii) orolingual AIM,

that is, orofacial muscle twitching, empty masticatory movements

and contralateral tongue protrusion. Each AIM subtype was rated on

frequency and amplitude scales from 0 to 4 as described in Cenci

and Lundblad (2007). Axial, forelimb and orolingual (ALO) AIMs

were presented together as a global AIMs score and also as

separated items per session (sum of the products of amplitude and

frequency scores from all monitoring periods (Carta et al. 2006).

In vivo microdialysis
Microdialysis was used to simultaneously monitor GABA and GLU

release in the SNr and GP of freely moving mice (Mabrouk et al.
2010; Volta et al. 2010) and rats (Morari et al. 1996a,b; Marti et al.
2002, 2005). Briefly, two microdialysis probes of concentric design

were stereotaxically implanted under isoflurane anesthesia (1.5% in

air) into the lesioned SNr and ipsilateral GP (1 and 2 mm dialyzing

membrane, respectively), according to the following coordinates

from bregma and the dural surface (mm): mouse GP, AP )0.46, ML

)1.8, DV )3.9, mouse SNr, AP )3.3, ML )1.25, DV )4.6; rat GP,
AP )1.3, ML )3.3, DV )7.5, rat SNr, AP )5.5, ML )2.2, DV )8.
Twenty-four hours after surgery, probes were perfused with a

modified Ringer solution (CaCl2 1.2 mmol/L, KCl 2.7 mmol/L,

NaCl 148 mmol/L and MgCl2 0.85 mmol/L) at a flow rate of 2.1

(mouse) and 3 lL/min (rat). After 6 h rinsing, samples were

collected every 20 min for a total of 3–4 h. At least three baseline

samples were collected before i.p. administration of L-DOPA,

amantadine (40 mg/kg, i.p.) or saline. In the combination studies,

amantadine was administered 1 h before L-DOPA. At the end of

experiment, animals were sacrificed and the correct placement of the

probes was verified histologically.

Endogenous GLU and GABA analysis
GLU and GABA were measured by HPLC coupled with fluoro-

metric detection as previously described (Marti et al. 2007). Thirty

microliters of o-phthaldialdehyde/mercaptoethanol reagent were

added to 30 lL aliquots of sample and 50 lL of the mixture was

automatically injected (Triathlon autosampler; Spark Holland,

Emmen, the Netherlands) onto a 5-C18 Chromsep analytical

column (3 mm inner diameter, 10 cm length; Chrompack, Middel-

burg, the Netherlands) perfused at a flow rate of 0.48 mL/min

(Beckman 125 pump; Beckman Instruments, Fullerton, CA, USA)

with a mobile phase containing 0.1 M sodium acetate, 10%

methanol and 2.2% tetrahydrofuran (pH 6.5). GLU and GABA

were detected by means of a fluorescence spectrophotometer FP-

2020 Plus (Jasco, Tokyo, Japan) with the excitation and the emission

wavelengths set at 370 and 450 nm respectively. The limits of

detection for GLU and GABAwere �1 and �0.5 nM, respectively.

Retention times for GLU and GABA were �3.5 and �18.0 min,

respectively.

Histological evaluation
Mice were anaesthetized with ketamine 85 mg/kg and xylazine

15 mg/kg (i.p.), transcardially perfused with 20 mM phosphate-

buffered saline (PBS) and fixed with 4% paraformaldehyde in PBS

at pH 7.4. Brains were removed, post-fixed overnight and

cryoprotected in 50% glycerol (solution in PBS). Serial coronal

sections of 30 lm thickness were made in the striatum ()0.8 to +1.3

from bregma) and every second section processed for tyrosine

hydroxylase (TH) immunohistochemistry (see below). Free-floating

striatal sections were rinsed in Tris-buffered saline (TBS; 0.25 M

Tris and 0.5 M NaCl, pH 7.5), incubated for 5 min TBS containing

3% H2O2 and 10% methanol (vol/vol), and then rinsed three times

(10 min each) in TBS. After 20 min incubation in 0.2% Triton X-

100 in TBS, sections were rinsed three times in TBS again. Finally,

they were incubated overnight at 4�C with the anti-TH mouse

monoclonal primary antibody (1 : 40; AbCam, Cambridge, UK).

Following incubation, sections were rinsed three times for 10 min in

TBS and incubated for 45 min with secondary antibody (1 : 200;

Alexa Fluor 680 anti-mouse IgG).

TH immunoreactivity evaluation
Mouse brain sections were analyzed with a Zeiss LSM 510 (Zeiss,

Oberkochem, Germany) and acquired with Plan-Neofluar 10·
(Edmund Optics, Barrington, IL, USA) lens. TH-immunoreactive

fiber density was analyzed using ImageJ software (Wayne Rasband,

National Institute of Health, Bethesda, MD, USA). To quantify TH

staining, the optical densities were corrected for non-specific

background density, measured in the corpus callosum. TH-positive

fiber density was calculated as the ratio between optical density in

the denervated (ipsilateral) and intact (contralateral) side.

Data presentation and statistical analysis
Motor performance has been expressed as time (in seconds) on bar

or rod (bar and rotarod tests), and number of steps (drag test). AIMs

rating has been expressed as ALO score (magnitude · amplitude).

In microdialysis studies, GABA and GLU release has been

expressed as percentage ± SEM of basal values (calculated as mean

of the two samples before the treatment). In Figure legends (and in

Results section), basal dialysate levels of amino acids were also

given as absolute values (in nM). Statistical analysis has been

performed by two-way repeated measure (RM) analysis of variance

(ANOVA). In case ANOVA yielded a significant F score, post hoc
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analysis has been performed by contrast analysis to determine group

differences. In case a significant time · treatment interaction was

found, the sequentially rejective Bonferroni’s test was used

(implemented on Excel spreadsheet) to determine specific differ-

ences (i.e. at the single time-point level) between groups. p-values
< 0.05 were considered to be statistically significant.

Drugs
6-OHDA hydrobromide, D-amphetamine sulphate, L-DOPA methyl

ester hydrochloride, benserazide hydrochloride and amantadine

hydrochloride were purchased from Sigma-Aldrich (AB, Italy).

Except from 6-OHDA, all drugs were dissolved in saline and

administered within 1 h at the volume of 1.0 mL/kg body weight.

Results

L-DOPA relieved akinesia, bradykinesia and motor deficit
in hemi-parkinsonian mice
Basal motor scores of naı̈ve mice (n = 11) were 8.0 ± 1.0 s
of immobility (bar test), 15.0 ± 2.0 steps (drag test) and
1253.5 ± 122.7 s of permanence on the rod (rotarod test).
Unilateral intrastriatal injections of 6-OHDA caused marked
akinesia and bradykinesia mainly affecting the contralateral
forepaw, and an overall reduction of motor performance.
Immobility time at the contralateral paw increased by about
4-fold compared with the ipsilateral paw (Fig. 1a) whereas
the number of steps was reduced by �70% (Fig. 1b). Finally,
rotarod performance was reduced by �58% after 6-OHDA
lesioning (Fig. 1c). To test the dopaminergic nature of this
motor deficit, L-DOPAwas systemically administered (i.p.) at
a dose which was reported to attenuate hypokinesia in
MPTP-treated mice (10 mg/kg in combination with 12 mg/
kg benserazide; Viaro et al. 2008). L-DOPA normalized
immobility time (Fig. 1a) and stepping activity (Fig. 1b) at
the contralateral paw but was unable to attenuate deficit in
rotarod performance (Fig. 1c). This behavioral phenotype
was associated with a 90.3 ± 2.7% reduction of striatal TH-
immunopositive fibers in the ipsilateral compared with the
contralateral striatum (n = 9, t = 9.367, p < 0.0001, Stu-
dent’s t-test).

Amantadine attenuated LID expression and its
neurochemical correlates in hemi-parkinsonian mice
Chronic treatment of hemi-parkinsonian mice with L-DOPA
(15 mg/kg plus 12 mg/kg benserazide; i.p., once daily for
10 days) caused the development of axial, limb and orolin-
gual AIMs having a similar temporal profile. AIMs appear-
ance was gradual and progressive, reaching a plateau at the
fifth day of treatment (Fig. 2a and b). To examine whether
mouse dyskinesia was accompanied by changes of activity
along the striatofugal pathways, GABA and GLU release
was monitored in SNr and GP along with behavior following
L-DOPA alone (15 mg/kg plus 12 mg/kg benserazide, i.p.) or
in combination with amantadine. A dose of 40 mg/kg

Fig. 1 L-DOPA relieved akinesia/bradykinesia in hemi-parkinsonian

mice. Systemic (i.p.) administration of L-DOPA (15 mg/kg plus 12 mg/kg

of benserazide) reduced the time spent on the blocks in the bar test (a),

increased the number of steps of the contralateral forepaw in the drag

test (b), and failed in improving overall motor performance in the rotarod

test (c). Behavioral testing was performed 30 min after L-DOPA injec-

tion. Motor asymmetry was evaluated separately at the ipsilateral and

contralateral (parkinsonian) paw (a, b). Data are expressed as absolute

values (s, number of steps) and are mean ± SEM of 8–10 animals.

Statistical analysis was performed by one-way ANOVA followed by con-

trast analysis and the sequentially rejective Bonferroni’s test. Panel a:

significant effect of treatment (F3,28 = 37.70, p < 0.0001). Panel b: sig-

nificant effect of treatment (F3,28 = 10.16, p = 0.0001). Panel c: signifi-

cant effect of treatment (F3,24 = 20.65, p < 0.0001). **p < 0.01 versus

the ipsilateral forepaw (a, b) or sham-operated mice (c), ��p < 0.01

versus the contralateral forepaw of saline injected mice (a, b).
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amantadine was chosen because it proved effective in
reducing ALO AIMs in mice and rats without affecting the
locomotive components of AIMs (Lundblad et al. 2002;
Dekundy et al. 2007) which is considered a marker of the
therapeutic effect of L-DOPA (Cenci et al. 2002). L-DOPA
caused the appearance of dyskinetic movements already at
20 min after injection. The intensity of dyskinesia remained
stably at maximal levels up to 80 min after injection
(Fig. 3a), after which AIMs tended to decline. Amantadine
administration (1 h before L-DOPA) caused an overall
(�50%) attenuation of AIMs severity with some preference
for orolingual (�66%) over axial (�47%) and limb (�43%)
AIMs (Fig. 3b and d). These behavioral changes were
associated with different neurochemical patterns in SNr and
GP (Fig. 4). A marked increase of GABA levels was

observed in SNr after L-DOPA administration, with a peak
(�3-fold over basal) at 80 min (Fig. 4a). Consistent with its
anti-dyskinetic effect, amantadine prevented the rise in
GABA levels induced by L-DOPA (Fig. 4a) without causing
per se any change in basal values. Nigral GLU levels were
not significantly affected by L-DOPA although showing a
tendency to decline over time (Fig. 4b). Amantadine, alone
or in combination with L-DOPA, was also ineffective,
although causing a trend for an increase (�30% 1 h after
injection, Fig. 4b). Opposite to SNr, L-DOPA alone did not
cause any significant changes of GABA levels in GP
(Fig. 4c). Amantadine alone was also ineffective. However,
when co-administered with L-DOPA it caused a marked
elevation of GABA levels up to �217% at the end of
collection period. L-DOPA, amantadine or their combination
failed to affect pallidal GLU levels (Fig. 4d).

Amantadine attenuated LID expression and its
neurochemical correlates in hemi-parkinsonian rats
Rats chronically treated with L-DOPA (6 mg/kg plus 12 mg/
kg of benserazide) developed a stable degree of dyskinesia
already at the ninth day of treatment, scoring the maximal
values at the 17th day. Axial and limb AIMs showed a
similar temporal profile, reaching a similar level of intensity
over the 21-day treatment. Conversely, the development of
orolingual AIMs was less appreciable, and this AIM subtype
was poorly represented in this group of animals (Fig. 5a and
b). L-DOPA (6 mg/kg plus 12 mg/kg benserazide) induced
AIM appearance already at 20 min after injection, the
maximal intensity (15.5 ± 2.1) being reached after 60 min.
Amantadine reduced AIMs expression by �53% (Fig 6a)
being more effective on the axial and limb components
(�55% both) than the orolingual one (�44%, Fig. 6c and d).
As previously reported (Mela et al. 2007a), an increase of
GABA levels was observed in the SNr of dyskinetic rats after
L-DOPA challenge (6 mg/kg plus 12 mg/kg benserazide, i.p.)
which reached the maximum value (�2-fold over basal) at
60 min (Fig. 7a). Different from that observed in mice, the
increase of GABA was accompanied by a quantitatively
similar increase of GLU levels (Fig. 7b). Amantadine,
ineffective alone, prevented the rise of both amino acids
associated with AIMs. Conversely, no changes of GABA or
GLU levels were observed in GP following administration of
L-DOPA, amantadine or their combination (Fig. 7c and d).

Discussion

The hemi-parkinsonian mouse model of LID proves a
valuable and unique tool in dyskinesia research because not
only it allows interspecies comparisons of drug responses but
also because it is suitable for genetic manipulations, partic-
ularly advantageous in target validation. The motor impair-
ments observed in striatally lesioned hemi-parkinsonian mice
had a dopaminergic origin because these mice showed a

Fig. 2 Development of dyskinesia during chronic L-DOPA adminis-

tration in 6-OHDA hemi-lesioned mice. Mice were treated for 10 days

with L-DOPA 15 mg/kg (plus benserazide 12 mg/kg, i.p., once daily)

and AIMs were evaluated at days 1, 3, 5, 8, and 10 after treatment

onset. Axial, limb and orolingual (ALO) AIMs were scored every

20 min for 120 min after L-DOPA administration. Data (in arbitrary

units; see Results section) have been presented either as the sum of

each AIM subtype (cumulative ALO score; a) or as each AIMs subtype

separately (b). Each value is the mean ± SEM of 10–11 animals.
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marked reduction of striatal TH terminals associated with
motor recovery in response to L-DOPA (Lundblad et al.
2004). In our hands, recovery from akinesia and bradykinesia
was obtained at the same dose effective in MPTP-treated
mice (10 mg/kg; Viaro et al. 2008), although at variance with
this model, L-DOPA could not rescue rotarod performance
(Marti et al. 2005). However, the rotarod test is a test for
gross motor ability, which integrates motor and non-motor
parameters (Rozas and Labandeira Garcia 1997), and there-
fore involves not only the dorsal motor but also the limbic
striatum and other structures outside the basal ganglia (e.g.
peduncolo pontine nucleus and brainstem; Nauta et al. 1978;
Christoph et al. 1986; Braak and Braak 2000). The lack of
response of the rotarod performance to L-DOPA may thus be
related to the recruitment of dopaminergic areas less or not

affected by intrastriatal 6-OHDA, in which post-synaptic DA
receptor up-regulation has not fully developed.

Axial, limb and orolingual AIMs gradually developed
during chronic treatment with L-DOPA, showing maximal
expression after 5 days of treatment. This may reflect the
homogeneity of the lesion within the dorso-lateral striatum,
because this region receives somatotopic cortical projections
representing trunk, forepaw and orofacial muscles
(McGeorge and Faull 1989). Microdialysis setting did not
influence the acute response to L-DOPA because, in line with
previous studies (Lundblad et al. 2004; Santini et al. 2007),
AIMs were already maximal 20 min after L-DOPA admin-
istration and tended to disappear after 120 min. Moreover,
the overall response to L-DOPA recorded in the dialysis
setting (i.e. after probe implantation) was not different from

Fig. 3 Behavioral effect of L-DOPA and amantadine in dyskinetic mice

undergoing microdialysis. 6-OHDA hemi-lesioned mice were made

dyskinetic by chronic L-DOPA administration (15 mg/kg plus 12 mg/kg

benserazide, i.p., once a day for 10 days). At the end of treatment,

mice underwent surgery for microdialysis probe implantation, and 24 h

later were challenged with L-DOPA alone or in combination with

amantadine (40 mg/kg; i.p., 1 h in advance). Control mice were trea-

ted with either amantadine or saline alone. ALO AIMs were scored

every 20 min for 120 min after L-DOPA administration. Temporal

profiles of AIMs taken as a whole (ALO AIMs; a) or as separate items

(c) are shown. Cumulative dyskinesia score (i.e. the sum of the scores

given at each of the six observation sessions) is shown for ALO AIMs

as a whole (b) or for each AIM subtype separately (d). Co-adminis-

tration of amantadine reduced AIMs expression, affecting about to the

same extent each AIMs subtype. Data are expressed as arbitrary units

(see Results section) and are mean ± SEM of 10–11 animals. Panel a:

significant effect of treatment (F3,15 = 111.8, p < 0.0001) but not time

(F5,198 = 1.68, p = 0.14), and significant time · treatment interaction

(F15,198 = 2.31, p = 0.0057), according to two-way RM ANOVA followed

by contrast analysis and the sequentially rejective Bonferroni’s test.

Panel b: significant effect of amantadine (t = 3.15, df = 19,

p = 0.0052), according to unpaired Student’s t-test. Panel d: signifi-

cant effect of amantadine; axial (t = 2.2, df = 19, p = 0.0399), limb

(t = 2.73, df = 19, p = 0.0133), orolingual (t = 5,0, df = 19, p < 0.0001)

AIMs, according to unpaired Student’s t-test. *p < 0.05 versus saline,
#p < 0.05, ##p < 0.01 versus L-DOPA.
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that observed in the same animal before surgery (Fig. 8). The
anti-dyskinetic effect of amantadine was also quantitatively
similar under the two different conditions (Fig. 8).

In keeping with that found in the rat (see also Mela et al.
2007a), L-DOPA caused a rise in GABA levels in the mouse
SNr. Major sources of neuronal GABA levels in SNr are the
striato-nigral and the pallido-nigral projections as well as
GABA interneurons and collaterals of nigrofugal GABAer-
gic neurons. Therefore, elevation of GABA levels might be
related to activation of the direct striato-nigral pathway,
leading to GABAA receptor-mediated overinhibition of
nigro-thalamic neurons and thalamic disinhibition (Deniau
and Chevalier 1985). The concomitant lack of significant
changes of GABA (and GLU) levels in GP seems to exclude
a contribution of the indirect pathway. This is in line with a
study showing that DARPP-32 knockdown in striato-nigral
neurons abolished dyskinesia whereas the same procedure in

striato-pallidal neurons was ineffective (Bateup et al. 2010).
A temporal mismatch was found between the behavioral and
neurochemical responses in mice, the rise in nigral GABA
being more gradual and prolonged compared with AIMs
expression. As no such mismatch was observed in the rat, the
lower perfusion rate through the mouse probe might be the
cause for the delay of the neurochemical response. In
contrast, however, we found that under the same microdi-
alysis conditions nigral GLU levels closely matched the rapid
(20 min) reduction of immobility time induced by adminis-
tration of a nociceptin/orphanin FQ receptor antagonist in
mice (Mabrouk et al. 2010; Volta et al. 2010). Interestingly
enough, in the same studies changes in GABA levels were
delayed compared with those of GLU. Therefore, the
temporal dissociation observed in the mouse may reflect
differences in intrinsic (e.g. uptake efficiency) mechanisms
regulating extracellular GABA concentrations. Alternatively,

Fig. 4 Neurochemical effects of L-DOPA and amantadine in dyski-

netic mice undergoing microdialysis. Dyskinetic mice (see legend to

Fig. 3) were implanted with a probe in the lesioned substantia nigra

reticulata (SNr; a, b) and another in ipsilateral globus pallidus (GP; c,

d). Twenty-four hr later, mice received an acute challenge with

L-DOPA alone (15 mg/kg plus 12 mg/kg benserazide, i.p.) or in com-

bination with amantadine (40 mg/kg; i.p., 1 h in advance), and GABA

(a, c) and GLU (b, d) levels were monitored for 120 min. Control mice

were injected either with amantadine alone or saline. Data are ex-

pressed as percentage of basal pre-treatment levels (calculated as the

mean of the two samples preceding the treatment) and are mean ±

SEM of 7–11 animals. Basal dialysate levels of GABA and GLU were

8.0 ± 0.4 and 73.6 ± 8.0 nM, respectively, in SNr, and 7.7 ± 0.6 and

79.5 ± 8.7 nM, respectively, in GP. Statistical analysis was performed

by two-way RM ANOVA followed by contrast analysis and the sequen-

tially rejective Bonferroni’s test. Panel a: significant effect of treatment

(F3,30 = 24.66, p < 0.0001), time (F10,264 = 1.94, p = 0.0398) but

not time · treatment interaction (F30,264 = 1.09, p = 0.34). Panel c:

significant effect of treatment (F3,30 = 9.84, p < 0.0001), time

(F10,255 = 2.46, p = 0.0079) and time · treatment interaction

(F30,255 = 2.75, p < 0.0001). *p < 0.05 versus saline; #p < 0.05 versus

L-DOPA alone.
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we have to consider the possibility that elevation of nigral
GABA may not be the only trigger for dyskinesia. In support
of this view, reverse dialysis of GABA alone in SNr failed to
evoke AIMs (Buck et al. 2010). Moreover, even if amanta-
dine prevented the rise in nigral GABA it could not
completely block AIMs appearance. Larger increases in
extracellular DA levels have been demonstrated in the SNr
(and striatum) of dyskinetic compared with non-dyskinetic
rats following L-DOPA administration (Lindgren et al.
2010). This suggests that nigral DA might play a role in
triggering dyskinesia, via direct modulation of nigro-tha-
lamic neurons (Zhou et al. 2009) or through the release of
other neurotransmitters acting on the nigral output. In
addition, the dyskinesiogenic action of L-DOPA may involve

dopaminoceptive neurons in the thalamus or cerebellum
(Rolland et al. 2007).

The mechanisms underlying the dual effect of amantadine,
used both as anti-parkinsonian and anti-dyskinetic in com-
bination with L-DOPA are not completely understood, also
because amantadine has a complex pharmacodynamic pro-
file. It inhibits DA reuptake (Heikkila and Cohen 1972;
Mizoguchi et al. 1994) and increases DOPA decarboxyalase
activity (Fisher et al. 1998; Deep et al. 1999). Amantadine
also behaves as an antagonist at NMDA receptors (Kornh-
uber et al. 1991; Parsons et al. 1996), where it acts by
stabilizing the ‘close’ state of the channel (Blanpied et al.
2005). Finally, it inhibits K+ channels in the atria in a similar
way to 4-aminopyridine, an action resulting in an increase in
membrane excitability (Northover 1994). The mild anti-
parkinsonian effect of amantadine has been related to its
dopaminergic actions, in particular to the ability to potentiate
the L-DOPA-induced elevation of striatal DA release (Arai
et al. 2003). However, this effect is difficult to reconcile with
its anti-dyskinetic action because a potentiation of the L-
DOPA-induced DA release would also lead to stimulation of
D1 receptors on the striatal cell bodies and nigral terminals of
striato-nigral GABA neurons, thereby promoting LID. Inter-
estingly, the potentiation of the L-DOPA-induced striatal DA
release (Sarre et al. 2008) and the mild anti-parkinsonian
effect (Mitchell and Carroll 1997; Nash et al. 1999, 2000;
Steece-Collier et al. 2000; Loschmann et al. 2004) of
amantadine are shared by NR2B receptor antagonists. In
addition, we showed that the NR2B antagonist Ro25–6981
slightly reduced AIMs expression (maximally of �25% at
5 mg/kg) in 6-OHDA hemi-lesioned dyskinetic rats (Mela
et al. 2010). Therefore, based on the proposed functional
segregation of NR2B and NR2A receptors along the striato-
nigral and striato-pallidal pathways, respectively (Fantin
et al. 2007, 2008), the anti-dyskinetic effect of amantadine
may be accomplished via blockade of striatal NR2B
receptors. However, given the mild and inconsistent (see
Rylander et al. 2009) effect of Ro25–6981 in dyskinetic rats,
it is unlikely that NR2B blockade represents the only
mechanism underlying the anti-dyskinetic effect of amanta-
dine. To support this view, the anti-dyskinetic dose of Ro25–
6981 reduced GABA levels in SNr (Mela et al. 2010)
whereas amantadine was ineffective. This might suggest that
the amantadine profile is different from that of a selective
NR2B antagonist. Indeed, amantadine does not display
NMDA subtype receptor selectivity (Danysz et al. 1997).
Interestingly, non-selective NMDA antagonists such as
dizocilpine have been reported to prevent the L-DOPA
induced GLU release in the DA-denervated striatum (Jonkers
et al. 2002). As L-DOPA also elevated striatal GLU release
in dyskinetic animals (Dupre et al. 2011) and dysfunction of
GLU transmission is associated with LID (Calabresi et al.
2000; Oh and Chase 2002), reduction of striatal GLU release
may result in an anti-dyskinetic effect. Amantadine may

Fig. 5 Development of dyskinesia during chronic L-DOPA adminis-

tration in 6-OHDA hemi-lesioned rats. Rats were treated for 21 days

with L-DOPA 6 mg/kg (plus benserazide 12 mg/kg, one injection per

day). AIMs were evaluated at days 1, 5, 9, 12, 17, 19, 21 after L-DOPA

injection. ALO AIMs were scored every 20 min over a period of

120 min after L-DOPA administration. Data have been presented ei-

ther as the sum of each AIM subtype (cumulative ALO AIMs; a) or as

each AIM subtype separately (b). Data are mean ± SEM of 10–11

animals.
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attenuate dyskinesia also acting in extrastriatal areas. For
instance, it reduced primary motor cortex excitability in
humans, an action attributed to impairment of GLU and
elevation of GABA transmission (Reis et al. 2006). More-
over, as reported in the present study, amantadine caused a
delayed and marked elevation of GABA levels in GP when
challenged with L-DOPA. As neither compound alone
affected amino acid levels in GP, amantadine may unravel
a stimulatory effect of L-DOPA on the striato-pallidal
pathway. This view is challenged by the finding that the
increase in pallidal GABA was not paralleled by changes of
GLU levels in GP as well as GABA and GLU levels in the
downstream SNr. Moreover, an increase of the activity of the
indirect pathway would result in a hypokinetic response
possibly contributing to the anti-dyskinetic effect of the drug.
Conversely, no accelerated extinction of dyskinesia was

observed from 80 min onwards (i.e. when pallidal GABA
levels rose). As NR2D (Wenzel et al. 1996) and DA (Weiner
et al. 1991) receptor binding has been detected in GP, we
cannot rule out that the increase in pallidal GABA levels is
due to local interaction between the two drugs, with any
apparent impact on AIMs appearance.

Interestingly, the increase in pallidal GABA levels
following the combination of amantadine and L-DOPA was
not observed in the rat. This is not the only difference
observed between the two models because L-DOPA elevated
nigral GLU levels in the rat but not dyskinetic mouse. At this
stage, we cannot prove whether these patterns are species- or
model-related. Nonetheless, the lesioning procedures (stria-
tum vs. MFB), L-DOPA dosage (2.5-fold higher in the
mouse) and treatment duration of (half shorter in the mouse)
might change the responsiveness to L-DOPA by affecting the

Fig. 6 Behavioral effect of L-DOPA and amantadine in dyskinetic rats

undergoing microdialysis. 6-OHDA hemi-lesioned rats were made

dyskinetic by chronic L-DOPA administration (6 mg/kg plus 12 mg/kg

benserazide, i.p., once a day for 21 days). At the end of treatment, rats

underwent surgery for microdialysis probe implantation, and were

challenged with L-DOPA alone or in combination with amantadine

(40 mg/kg; i.p., 1 h in advance) 24 h later. Control rats were treated

with either amantadine or saline alone. ALO AIMs were scored every

20 min over 180 min after L-DOPA administration. Temporal profiles of

AIMs taken as a whole (ALO AIMs; a) or as separate items (c) are

shown. Cumulative dyskinesia score (i.e. the sum of the scores given

at each of the nine observation sessions) is shown for ALO AIMs as a

whole (b) or for each AIM subtype separately (d). Data are expressed

as arbitrary units (see Results section) and are mean ± SEM of 5–7

animals. Panel a: significant effect of treatment (F3,24 = 117.9,

p < 0.0001), time (F8,171 = 14.22, p < 0.0001) and time · treatment

interaction (F24,171 = 7.13, p < 0.0001), according to two-way RM

ANOVA followed by contrast analysis and the sequentially rejective

Bonferroni’s test. Panel b: significant effect of amantadine (t = 3.35,

df = 5, p = 0.0202), according to unpaired Student’s t-test. Panel d:

significant effect of amantadine; axial (t = 3.40, df = 11, p = 0.0058),

limb (t = 3.46, df = 11, p = 0.0053), orolingual (t = 2.79, df = 11,

p = 0.0173) AIMs, according to unpaired Student’s t-test. *p < 0.05

versus saline, #p < 0.05, ##p < 0.01 versus L-DOPA.
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extent of nigral lesion, and the plasticity of DA signalling
and basal ganglia circuitry. In this respect, the status of the
subthalamic nucleus (STN) in the two models should be
considered. In fact, it has been reported that the degree of
nigral cell loss reflects in a different STN firing activity (Breit
et al. 2007). In fact, a marked (�90%) nigral cell loss, as that
produced by 6-OHDA injection in SN compacta (or MFB;
Marti et al. 2007), is associated with an increase in the firing
rate of STN glutamatergic neurons whereas a milder lesion
(�50%), as that produced by intrastriatal 6-OHDA injection,
is not (Breit et al. 2007). A different activity level of the STN
glutamatergic projections may help explain the different
responsiveness of nigral GLU to L-DOPA in rats and mice.
Indeed, we showed that striatal D1 receptor blockade
prevented the rise in both GABA and GLU levels induced
by L-DOPA in dyskinetic rats, indicating that this effect is a
consequence of striato-nigral activation rather than extrastri-
atal action (Mela et al. 2007b). Thus, overactive GLU
terminals may be more sensitive to the modulation operated

Fig. 7 Neurochemical effects of L-DOPA and amantadine in dyski-

netic rats undergoing microdialysis. Dyskinetic rats (see legend to

Fig. 6) were implanted with one probe in the lesioned substantia nigra

reticulata (SNr; a, b) and another in ipsilateral globus pallidus (GP)

(c, d). Twenty-four hours later, rats received an acute challenge with

L-DOPA alone (6 mg/kg plus 12 mg/kg benserazide, i.p.) or in com-

bination with amantadine (40 mg/kg; i.p., 1 h in advance), and GABA

(a, c) and GLU (b, d) levels were monitored for 180 min. Data are

expressed as percentage of basal pre-treatment levels (calculated as

the mean of the two samples preceding the treatment) and are

mean ± SEM of 5–7 animals. Basal dialysate levels of GABA and GLU

were 10.5 ± 0.5 and 98.3 ± 5.6 nM, respectively, in SNr, and

11.9 ± 0.5 and 79.6 ± 5.3, respectively, in GP. Panel a: significant

effect of treatment (F3,39 = 90.23, p < 0.0001), time (F13,280 = 10.34,

p < 0.0001) and time · treatment interaction (F39,280 = 5.46,

p < 0.0001). Panel b: significant effect of treatment (F3,39 = 43.74,

p < 0.0001), time (F13,280 = 6.43, p < 0.0001) and time · treatment

interaction (F39,280 = 2.46, p < 0.0001), according to two-way RM

ANOVA followed by contrast analysis and the sequentially rejective

Bonferroni’s test. *p < 0.05 versus saline; #p < 0.05 versus L-DOPA.

Fig. 8 Impact of microdialysis setting on the behavioral response to

L-DOPA and amantadine in dyskinetic animals. AIMs were evaluated in

the same animal before and after dialysis probe implantation (i.e. during

microdialysis). The anti-dyskinetic effect of amantadine was evaluated

in rats only. Data have been presented as cumulative ALO AIMs score

or, in the case of amantadine, as percentage of L-DOPA response.

Data are mean ± SEM of n = 8 (mice) or n = 5 (rats) experiments.

Statistical analysis was performed by the paired Student’s t-test.
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by the striato-nigral neurons. In fact, striato-nigral GABA
terminals co-release Substance P which might elevate nigral
GLU levels acting on pre-synaptic facilitatory NK1 receptors
(Liu et al. 2002; Stacey et al. 2002; Bailey et al. 2004).

Concluding remarks

A comparative neurochemical and behavioral study in the
mouse and rat models of dyskinesia revealed that AIMs
appearance in response to L-DOPA challenge is accompanied
by an increase of GABA release in SNr but not GP. In both
models, amantadine attenuated about to the same extent the
severity of dyskinesia, preventing the accompanying surge in
nigral GABA. These data provide strong neurochemical
support to the view that peak-dose dyskinesia involves
activation of the striato-nigral GABA pathway in both
models, and that amantadine opposes this effect likely via
interaction with striatal NMDA receptors. Minor neurochem-
ical differences in the response to L-DOPA and amantadine
were observed between the two models, which do not appear
to shape the behavioral response. Overall, this study proves
the feasibility of a combined behavioral and neurochemical
analysis of the dyskinetic mouse, and the consistency of the
neurochemical and behavioral response to L-DOPA and
amantadine among species.
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Nociceptin/orphanin FQ (N/OFQ; Meunier et al. 1995;
Reinscheid et al. 1995) is the endogenous ligand of the
NOP receptor (Mollereau et al. 1994), the fourth member of
the opioid receptor family (Mogil and Pasternak 2001).
Endogenous N/OFQ acts as a physiological constraint on
motor activity (Marti et al. 2004a) and contributes to
dopamine (DA) cell loss and motor impairment observed
in neurodegeneration models of Parkinson’s disease
(PD; Marti et al. 2005). In fact, genetic deletion of the
preproN/OFQ (ppN/OFQ) gene conferred mice partial
protection against 1-methyl-4-phenyl-1,2,5,6-tetrahydropyri-
dine (MPTP)-induced toxicity (Marti et al. 2005; Brown
et al. 2006). Moreover, selective NOP receptor antagonists
improved motor performance in 6-hydroxydopamine (6-
OHDA) hemilesioned rats (Marti et al. 2005, 2007, 2008;
Volta et al. 2010a) or MPTP-treated mice and non-human
primates (Viaro et al. 2008, 2010; Visanji et al. 2008). N/

OFQ also sustains hypokinesia following acute functional
impairment of DA transmission. Indeed, NOP receptor
antagonists alleviated haloperidol-induced akinesia in rats
(Marti et al. 2004b, 2005) and mice (Mabrouk et al. 2010)
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Abstract

The contribution of nociceptin/orphanin FQ (N/OFQ) to

reserpine-induced Parkinsonism was evaluated in mice. A

battery of motor tests revealed that reserpine caused dose-

dependent and long-lasting motor impairment. Endogenous

N/OFQ sustained this response because N/OFQ peptide

(NOP) receptor knockout (NOP)/)) mice were less susceptible

to the hypokinetic action of reserpine than wild-type (NOP+/+)

animals. Microdialysis revealed that reserpine elevated glu-

tamate and reduced GABA levels in substantia nigra reticu-

lata, and that resistance to reserpine in NOP)/) mice was

accompanied by a milder increase in glutamate and lack of

inhibition of GABA levels. To substantiate this genetic evi-

dence, the NOP receptor antagonist 1-[(3R,4R)-1-cyclooc-

tylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H

benzimidazol-2-one (J-113397) simultaneously reduced aki-

nesia and nigral glutamate levels in reserpinized NOP+/+ mice,

being ineffective in NOP)/) mice. Moreover, repeated J-

113397 administration in reserpinized mice resulted in faster

recovery of baseline motor performance which was, however,

accompanied by a loss of acute antiakinetic response. The

short-term beneficial effect of J-113397 was paralleled by

normalization of nigral glutamate levels, whereas loss of acute

response was paralleled by loss of the ability of J-113397 to

inhibit glutamate levels. We conclude that endogenous N/

OFQ contributes to reserpine-induced Parkinsonism, and that

sustained NOP receptor blockade produces short-term motor

improvement accompanied by normalization of nigral gluta-

mate release.

Keywords: glutamate, J-113397, microdialysis, nociceptin/

orphanin FQ, Parkinson’s disease, reserpine.
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whereas NOP receptor knockout (NOP)/)) mice were found
to be more resistant to haloperidol-induced akinesia (Marti
et al. 2005; Mabrouk et al. 2010). Although these studies
suggest endogenous N/OFQ sustains motor impairment
both in neurodegeneration and functional models of
Parkinsonism, the role of N/OFQ in reserpine-induced
akinesia was never investigated. Reserpine replicates some
symptoms of PD, such as akinesia/hypokinesia, tremor and
rigidity, without damaging DA cells in substantia nigra
(SN) compacta (Schultz 1982; Gerlach and Riederer 1996;
Betarbet et al. 2002). Motor deficits are caused by inhibi-
tion of the vesicular monoamine transporter type II
(VMAT2) leading to a depletion of DA stores in nerve
terminals. Reserpine also depletes noradrenaline and sero-
tonin stores, making its action somewhat unspecific.
Nevertheless, reserpine-induced hypokinesia is reversed by
L-DOPA (> 100 mg/kg) or DA agonists, suggesting that
these motor symptoms have dopaminergic origin (Carlsson
et al. 1957; Colpaert 1987). Compared with the haloperi-
dol-treated mouse, the reserpinized mouse offers the
advantage of investigating also the symptomatic effect of
subacute drug administration because hypokinesia and
postural immobility induced by a single dose of reserpine
lasts for a few days (Colpaert 1987). This is particularly
relevant since previous studies with NOP receptor antago-
nists in Parkinsonism models were designed to specifically
investigate their acute antiakinetic effects. Therefore, the
present study was undertaken to investigate the contribution
of endogenous N/OFQ to motor deficits in reserpinized
mice, and to verify whether the acute anti-Parkinsonian
effect of a NOP receptor antagonist is maintained during
subacute administration. A combined neurochemical and
behavioral approach allowed for the investigation of novel
aspects of the mechanism of action of an old drug,
reserpine, investigating changes of amino acid levels in
substantia nigra reticulata (SNr), the motor output of the
basal ganglia, and their behavioral correlates. A battery of
behavioral tests (the bar, drag and rotarod test; Marti et al.
2005, 2007, 2008; Viaro et al. 2008) was employed to
quantify the effects of reserpine in mice. To investigate the
involvement of endogenous N/OFQ, the motor responses of
NOP)/) and NOP+/+ mice to reserpine were first studied.
Microdialysis combined with a test for akinesia (the bar
test) was used to investigate whether the genotype suscep-
tibility to reserpine was associated with different dynamics
of glutamate (GLU) and GABA levels in SNr. Mice treated
with reserpine or saline were then administered subacutely
(4 days) with the NOP receptor antagonist 1-[(3R,4R)-1-
cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-
dihydro-2H-benzimidazol-2-one (J-113397; Kawamoto
et al. 1999). Motor activity was monitored daily, before
and after J-113397 administration, to collect information on
both baseline and acute effects, respectively. Finally,
microdialysis was used to verify whether the acute and

short-term effects of J-113397 were associated with changes
in nigral amino acid levels.

Materials and methods

Mice employed in the study (see below) were kept under regular

lighting conditions (12 h light/dark cycle) and given food and water

ad libitum. The experimental protocols performed in the present

study were approved by the Italian Ministry of Health (licence n. 94-

2007-B) and by the Ethics Committee of the University of Ferrara.

Adequate measures were taken to limit the number of animals used

and minimize animal discomfort in these studies.

Behavioral analysis
This study was performed in naı̈ve Swiss (12–15 weeks old; Morini

Italy; S. Polo d’Enza, Italy) and in CD1/C57BL6J/129 NOP+/+ and

NOP)/) mice (12–15 weeks old; Nishi et al. 1997). Motor activity

was evaluated by means of three behavioral tests specific for

different motor abilities, as previously described (Marti et al. 2005,
2007; Viaro et al. 2008): the bar, drag and rotarod test. The three

tests were repeated in a fixed sequence (bar, drag and rotarod) before

and after drug injection (starting at 10 min after treatment). Animals

were trained for approximately 8 days to the specific motor tasks

until their motor performance became reproducible.

Bar test
Originally developed to quantify morphine-induced catalepsy

(Kuschinsky and Hornykiewicz 1972), this test measures the ability

of the animal to respond to an externally imposed static posture.

Also known as the catalepsy test (for a review see Sanberg et al.
1988), it can also be used to quantify akinesia (i.e. time to initiate a

movement) also under conditions that are not characterized by

increased muscle tone (i.e rigidity) as in the cataleptic/catatonic

state. Mice were gently placed on a table and forepaws were placed

alternatively on blocks of increasing heights (1.5, 3 and 6 cm). The

time (in seconds) that each paw spent on the block (i.e. the

immobility time) was recorded (cut-off time of 20 s). Akinesia was

calculated as total time spent on the different blocks.

Drag test
Modification of the ‘wheelbarrow test’ (Schallert et al. 1979), this
test measures the ability of the animal to balance its body posture

with forelimbs in response to an externally imposed dynamic

stimulus (backward dragging; Marti et al. 2005). It gives informa-

tion regarding the time to initiate and execute (bradykinesia) a

movement. Animals were gently lifted from the tail leaving the

forepaws on the table, and then dragged backwards at a constant

speed (about 20 cm/s) for a fixed distance (100 cm). The number of

steps made by each paw was recorded. Five to 7 determinations

were collected for each animal.

Rotarod test
The fixed-speed rotarod test (Rozas et al. 1997) measures different

motor parameters such as motor coordination, gait ability, balance,

muscle tone and motivation to run. It was employed according to a

previously described protocol (Marti et al. 2004a) which allowed

the detection of both facilitatory and inhibitory drug effects. Briefly,

mice were tested over a wide range of increasing speeds (0–55 rpm;
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180 s each) in a control session. One additional session was

repeated 30 min after drug injection. Drug effect expressed as

percent of control performance (total time spent on the rod) in a

narrower time-window (25–45 rpm).

Microdialysis coupled to bar test
Concentrically designed microdialysis probes were stereotaxically

implanted, under isoflurane anesthesia, into the mouse SNr (1 mm

dialysing membrane, AN69, Hospal, Bologna, Italy) according to

the following coordinates from bregma: AP ) 3.28, ML ± 1.2, DV

) 4.7 (Paxinos and Franklin 2001). Probes were secured to the

skull by acrylic dental cement and metallic screws. Following

surgery, mice were allowed to recover and experiments were run

24 h after probe implantation. Microdialysis probes were perfused

at a flow rate of 2.1 lL/min with a modified Ringer solution

(composition in mM: CaCl2 1.2; KCl 2.7, NaCl 148 and MgCl2
0.85). Samples were collected every 15 min, starting 6 h after the

onset of probe perfusion. Each dialysate collection was coupled to

the recording of time spent on the bar at 2 different step lengths

(1.5 and 4 cm heights). Cut off for each step was 20 s (40 s

maximum). For the evaluation of acute effects of reserpine, mice

were implanted, perfused with Ringer then given reserpine on day

1, and tested on day 2 (i.e. 24 h after reserpine; Fig. 1). For

evaluation of the chronic effects of J-113397, reserpinized mice

were implanted at the second day after treatment onset (Fig. 1). At

the end of each experiment, the placement of the probes was

verified by microscopic examination.

Endogenous GLU and GABA analysis
Glutamate and GABA were measured by HPLC coupled with

fluorometric detection as previously described (Marti et al. 2007).
Thirty microliters of o-phthaldialdehyde/mercaptoethanol reagent

were added to 30 lL aliquots of sample, and 50 lL of the mixture

was automatically injected (Triathlon autosampler; Spark Holland,

Emmen, the Netherlands) onto a 5-C18 Chromsep analytical column

(3 mm inner diameter, 10 cm length; Chrompack, Middelburg, the

Netherlands) perfused at a flow rate of 0.48 mL/min (Beckman 125

pump; Beckman Instruments, Fullerton, CA, USA) with a mobile

phase containing 0.1 M sodium acetate, 10% methanol and 2.2%

tetrahydrofuran (pH 6.5). GLU and GABA were detected by means

of a fluorescence spectrophotometer FP-2020 Plus (Jasco, Tokyo,

Japan) with the excitation and the emission wavelengths set at 370

and 450 nm respectively. The limits of detection for GLU and

GABA were �1 and �0.5 nM, respectively. Retention times for

GLU and GABA were 3.5 ± 0.2 and 18.0 ± 0.5 min respectively.

Data presentation and statistical analysis
Motor performance has been calculated as time on bar or on rod (in

seconds) and number of steps (drag test) and expressed either in

absolute values or as percent of the control session.

Statistical analysis has been performed by two-way repeated

measure analysis of variance (ANOVA). In case ANOVA yielded a

significant F score, post hoc analysis has been performed by contrast

analysis to determine group differences. In case a significant

time · treatment interaction was found, the sequentially rejective

Bonferroni test was used (implemented on Excel spreadsheet) to

determine specific differences (i.e. at the single time-point level)

between groups. p-values < 0.05 were considered to be statistically

significant.

Materials
Reserpine was purchased from Sigma Chemical Co (St Louis, MO,

USA) whereas J-113397 was synthesized in the laboratory of

Pharmaceutical Chemistry of the University of Ferrara as previously

reported (Marti et al. 2004a). Reserpine was dissolved in 10% acetic

acid saline solution and pH adjusted to 4.5 with NaOH. J-113397

was freshly dissolved in isoosmotic saline solution just before use.

Reserpine was administered subcutaneously while J-113397 was

given i.p.

Results

Behavioral effects of reserpine in Swiss mice
Basal motor activity in naı̈ve Swiss mice was similar at the
left and right paw so data were pooled together. The
immobility time (bar test) was 2.5 ± 0.2 s (n = 46), the
number of steps (drag test) was 17.6 ± 0.1 (n = 40)
whereas the time on rod (rotarod test; 25–45 rpm range)
was 234 ± 24 s (n = 38). Reserpine (0.1–3 mg/kg) impaired
motor activity in a dose-dependent way, increasing the
immobility time (Fig. 2a), reducing the number of steps
(Fig. 2b) and impairing the rotarod performance (Fig. 2c).
Motor impairment was usually maximal after 24 h and
stable (although with a tendency to reverse) for 3 days
following administration of reserpine ‡ 1 mg/kg. In partic-
ular, reserpine induced akinesia in the bar test (Fig. 2a) yet
at 0.5 mg/kg. Immobility time increased up to 28 s at D1
and returned to control at D3. Conversely, the maximally

Fig. 1 Timeline of microdialysis experi-

ments in reserpinized mice.
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effective dose (3 mg/kg) elevated immobility time at cut-off
levels (60 s) and did not show tendency to reverse over
time. Also in the drag test (Fig. 2b), threshold dose was
0.5 mg/kg which caused inhibition of stepping activity at
D1 (�53%) and D2 (�65%) but not D3. Again maximal
inhibition was detected at 3 m/kg which induced a
prolonged �95% inhibition across the different experimen-
tal sessions. Finally, 0.5 mg/kg reserpine mildly (�23%)
and transiently (only at D1) inhibited rotarod performance
in the rotarod test (Fig. 2c). Maximal effect was observed at
3 mg/kg which caused a profound (�90%) and prolonged
inhibition.

Behavioral effects of reserpine in NOP+/+ and NOP)/) mice
To investigate whether endogenous N/OFQ contributes to
motor impairment induced by reserpine, NOP+/+ and NOP)/)

mice were challenged with two doses of reserpine, causing
submaximal (1 mg/kg) and maximal (3 mg/kg) motor
impairment. NOP)/) mice had immobility times comparable
to NOP+/+ mice in the bar test (1.0 ± 0.1 and 1.3 ± 0.2 s;
n = 21; Fig. 3a and d) but greater (p < 0.001, Student’s t-
test) performance in the drag (18.5 ± 0.1 and 17.4 ± 0.2
steps, respectively, n = 21; Fig. 3b and e) and rotarod
(210 ± 10 and 143 ± 6 s, n = 21; Fig. 3c and f) tests.
Overall, NOP)/) mice were more resistant to the motor
inhibition induced by both reserpine doses, although the
difference was greater with reserpine 1 mg/kg. In particular,
reserpine caused �40% less akinesia in the bar test at D1 and
D2 in NOP)/) compared with NOP+/+ mice (Fig. 3a). The
difference in immobility time was even greater at D3,
indicating a faster recovery from reserpine in NOP)/) mice.
In the drag test (Fig. 3b), reserpine 1 mg/kg caused reduction

in stepping activity which was �55% less in NOP)/) than
NOP+/+ mice. Consistently, NOP)/) mice were much less
affected than NOP+/+ mice in the rotarod test (Fig. 3c), with
�50% less inhibition at D1. Different from the other tests,
rotarod performance at D3 was normalized in NOP)/) mice
still being almost maximal in NOP+/+ mice. A different
genotype response was also observed in the bar and drag test
following reserpine 3 mg/kg, although it was much less
pronounced (Fig. 3d and e). Conversely, no difference in
rotarod performance was found with reserpine 3 mg/kg
(Fig. 3f).

Neurochemical and behavioral changes in NOP+/+ and
NOP)/) reserpinized mice
Microdialysis coupled to behavioral testing in parkinsonian
rats (Marti et al. 2004b, 2005, 2007, 2008) and mice
(Mabrouk et al. 2010) revealed that endogenous N/OFQ
sustains Parkinsonian-like symptoms by modulating amino
acid release in SNr. We therefore used the same approach to
investigate whether the different susceptibility to reserpine of
NOP+/+ and NOP)/) mice relied on modulation of nigral
GLU and GABA release. Immobility time in mice under-
going microdialysis was higher (p < 0.05) in NOP+/+

(4.9 ± 0.4 s) than NOP)/) (2.2 ± 0.3 s) mice. Conversely,
SNr GLU and GABA levels did not differ between
genotypes (NOP+/+, 42.1 ± 8.7 and 2.80 ± 0.19 nM;
NOP)/), 65.8 ± 0.3 and 2.49 ± 0.19 nM, respectively).
Reserpine administration (1 mg/kg) caused a significant
increase in immobility time at 24 h after administration
(Fig. 4a) which was accompanied by changes in GLU
(F3,26 = 16.13, p < 0.0001; Fig. 4b) and GABA (F3,25 =
4.49, p < 0.0001; Fig. 4c) levels. In particular, although

(a) (b) (c)

Fig. 2 Reserpine caused dose-dependent motor deficits in mice.

Reserpine (0.1–3 mg/kg) or vehicle were administered s.c. and motor

activity evaluated in the bar (a), drag (b) and rotarod (c) tests for

3 days after administration. Data are expressed in absolute values and

are means ± SEM of seven determinations per group. Statistical

analysis was performed by one-way RM ANOVA followed by contrast

analysis and the sequentially rejective Bonferroni’s test. (a) Significant

effect of treatment (F5,30 = 586.64, p < 0.0001), time (F3,108 = 937.54,

p < 0.0001) and time · treatment interaction (F15,108 = 139.74, p <

0.0001). (b) Significant effect of treatment (F5,30 = 854.56,

p < 0.0001), time (F3,96 = 826.85, p < 0.0001) and time · treatment

interaction (F15,96 = 104.06, p < 0.0001). (c) Significant effect of

treatment (F5,30 = 16.45, p < 0.0001), time (F3,96 = 133.99,

p < 0.0001) and time · treatment interaction (F15,96 = 18.11,

p < 0.0001). *p < 0.05 significantly different from basal (i.e. prior to

treatment) values.
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reserpine elevated immobility time in both genotypes
(Fig. 4a), NOP)/) mice showed �50% less akinesia than
NOP+/+ mice. Reserpine also elevated nigral GLU levels in
both genotypes, although the effect was greater in NOP+/+

(�440%) than NOP)/) (�254%) mice. Finally, reserpine

inhibited (�35%) nigral GABA levels in NOP+/+ mice, being
ineffective in NOP)/) mice.

To provide additional evidence that pharmacological NOP
receptor blockade attenuates reserpine-induced motor deficits,
we acutely administered J-113397 to both genotypes (Fig. 5).

(a) (d)

(b) (e)

(c) (f)

Fig. 3 NOP receptor knockout (NOP)/)) mice were less susceptible to

reserpine-induced akinesia/hypokinesia than wild-type (NOP+/+) mice.

Two doses of reserpine were administered s.c. (1 and 3 mg/kg) and

motor activity evaluated in the bar (a), drag (b) and rotarod (c) tests for

3 days after administration. Data are expressed in absolute values and

are means ± SEM of eight determinations per group. Statistical analysis

was performed by one-way RM ANOVA followed by contrast analysis and

the sequentially rejective Bonferroni’s test. (a) Significant effect of

treatment (F1,7 = 43.37, p = 0.0003), time (F3,42 = 115.21, p < 0.0001)

and time · treatment interaction (F3,42 = 15.43, p < 0.0001). (b) Sig-

nificant effect of treatment (F1,7 = 34.25, p = 0.0006), time

(F3,42 = 113.78, p < 0.0001) and time · treatment interaction

(F3,42 = 6.42, p = 0.0011). (c) Significant effect of treatment

(F1,7 = 83.8, p < 0.0001), time (F3,42 = 66.47, p < 0.0001) and

time · treatment interaction (F3,42 = 8.28, p = 0.0002). (d) Significant

effect of treatment (F1,7 = 44.27, p = 0.0002), time (F3,42 = 1170.21,

p < 0.0001) and time · treatment interaction (F3,42 = 2.45,

p = 0.0487). (e) Significant effect of treatment (F1,7 = 51.78,

p = 0.0001) and time (F3,42 = 1165.69, p < 0.0001) but not

time · treatment interaction (F3,42 = 1.29, p = 0.08). #p < 0.05 sig-

nificantly different from NOP+/+ mice.
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J-113397 was used at a dose (1 mg/kg, i.p.) that improved
motor activity in naı̈ve mice (Viaro et al. 2008) and reversed
Parkinsonism in haloperidol-treated mice (Mabrouk et al.
2010). J-113397 caused attenuation of akinesia in NOP+/+

mice being ineffective in NOP)/) mice (Fig. 5a). Immobility
time dropped to and remained at the same levels observed in
NOP)/) mice for 45 min (�55% maximal reduction),
progressively returning to baseline afterwards. J-113397
administration in NOP+/+ mice was associated with significant
changes in nigral GLU release being ineffective in NOP)/)

mice (Fig. 5b). GLU levels were promptly reduced by J-
113397, and remained stably below pre-stimulation levels
until the end of experiment. Conversely, J-113397 did not
affect GABA levels in NOP+/+ or NOP)/) mice (Fig. 5c).

Behavioral effects of subacute J-113397 in reserpinized
mice
To investigate whether acute beneficial effects of J-113397
were maintained over time, we administered J-113397
(1 mg/kg) to Swiss mice having received reserpine (1 mg/
kg) or saline 24 h in advance. Overall, it appeared that
despite evoking mild acute effects, J-113397 produced
marked amelioration of basal motor performance (baseline)
which translated into a faster recovery from reserpine. In the
bar test (Fig. 6), no acute effect of J-113397 was observed in
naı̈ve and reserpinized mice across the different experimental
sessions (i.e. from D1 to D4; Fig. 6a). Conversely, J-113397
caused significant reductions of basal immobility time at D3
and D4 in reserpinized mice (Fig. 6b).

(a) (b) (c)

Fig. 4 Reserpine differentially modulated akinesia and amino acid

release in the SNr of NOP receptor knockout (NOP)/)) and wild-

type (NOP+/+) mice. One microdialysis probe was implanted using

isoflurane anesthesia in the substantia nigra reticulata (SNr) of

NOP+/+ and NOP)/) mice. Immobility time (bar test; a) was mea-

sured 24 h after 1 mg/kg (s.c.) reserpine administration together

with glutamate (GLU; b) and GABA (c) extracellular levels in SNr.

Data are mean ± SEM of nine experiments per group and are ex-

pressed as total time spent on the bar (maximum cut-off 40 s; a) or

nM (b, c). Statistical analysis was performed by one-way ANOVA

followed by the Bonferroni’s test. Significant effects of treatment on

immobility time (F3,16 = 80.67, p < 0.0001; a), GLU levels

(F3,26 = 16.13, p < 0.0001; b) and GABA levels (F3,25 =4 .49,

p < 0.0001; c). *p < 0.05 significantly different from basal values

(i.e. prior to treatment) #p < 0.05 significantly different from NOP+/+

mice.

(a) (b) (c)

Fig. 5 J-113397 attenuated akinesia while simultaneously reducing

nigral GLU release in NOP+/+ but not NOP)/) reserpinized mice. One

microdialysis probe was implanted using isoflurane anesthesia in the

substantia nigra reticulata (SNr) of NOP receptor knockout (NOP)/))

and wild-type (NOP+/+) mice. Immobility time (bar test; a) was mea-

sured 24 h after 1 mg/kg (s.c.) reserpine administration together with

glutamate (GLU; b) and GABA (c) extracellular levels in SNr. J-113397

(1 mg/kg) was given i.p. Data are mean ± SEM of nine experiments

per group and are expressed as total time spent on the bar (maximum

cut-off 40 s; a) or nM (b, c). Statistical analysis was performed by RM

ANOVA followed by contrast analysis and the sequentially rejective

Bonferroni’s test. Significant effect of treatment on immobility time

(F7,49 = 23.44; p < 0.0001; a) and nigral GLU levels (F7,42 = 5.27;

p < 0.0001; b) in NOP+/+ mice. *p < 0.05 significantly different from

control values.
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In the drag test (Fig. 7), J-113397 caused a mild and barely
significant acute improvement of stepping activity in naı̈ve
mice at D1 but not later sessions (Fig. 7a). In reserpinized
mice, the acute effects of J-113397 were more robust and
evident at D1 and D2 but not later. Loss of acute effects was
paralleled by improvement in baseline stepping activity
(Fig. 7b). In naı̈ve mice, J-113397 produced a mild increase
in baseline stepping activity which reached the level of
significance at D2 and D3 only. In reserpinized mice, J-
113397 caused significantly greater stepping activity than
saline-treated animals from D2 onward. At the end of

subacute treatment, J-113397-treated reserpinized mice com-
pletely recovered from reserpine, showing stepping activity
comparable to naı̈ve mice.

In the rotarod test (Fig. 8), J-113397 caused consistent
acute improvements (�40%) across the different sessions in
naı̈ve mice (Fig. 8a). Milder (�20%) improvements were
also observed in reserpinized mice at D1 and D2. However,
J-113397 caused mild inhibitory effects after the fourth
challenge. No changes in baseline activity values were
observed in naı̈ve mice (Fig. 8b). Conversely, subacute J-
113397 administration caused a dramatic and progressive

(a) (b)

Fig. 6 Subacute administration of J-113397 ameliorated motor

impairment induced by reserpine in the bar test. Reserpine (1 mg/kg)

or vehicle were administered s.c. and motor activity (immobility time)

evaluated in the bar test for 4 days after administration. Treatment

with J-113397 (1 mg/kg, i.p., once daily) started 24 h after reserpine

administration (i.e. on day 1) and continued for 4 days. Saline was

also administered (i.p.) as a control. Motor activity was evaluated

before (‘baseline’) and 10 min after (‘acute effect’) J-113397 admin-

istration. Data are expressed as absolute values (s; b) or percentages

of motor activity in the control session (a), and are mean ± SEM of

eight determinations per group. Statistical analysis was performed by

two-way RM ANOVA followed by contrast analysis and the sequentially

rejective Bonferroni’s test. (b) Significant effect of treatment

(F3,15 = 155.00, p < 0.0001), time (F3,60 = 25.94, p < 0.0001) and

time · treatment interaction (F9,60 = 12.30; p < 0.0001). *p < 0.05

significantly different from untreated animals (vehicle/saline);
#p < 0.05 significantly different from saline-treated reserpinized

animals.

(a) (b)

Fig. 7 Subacute administration of J-113397 ameliorated motor

impairment induced by reserpine in the drag test. Reserpine (1 mg/kg)

or vehicle were administered s.c. and motor activity (number of steps)

evaluated in the drag test for 4 days after administration. Treatment

with J-113397 (1 mg/kg, i.p., once daily) started 24 h after reserpine

administration (i.e. on day 1) and continued for 4 days. Saline was

also administered (i.p.) as a control. Motor activity was evaluated

before (‘baseline’) and 20 min after (‘acute effect’) J-113397 admin-

istration. Data are expressed as absolute values (s; b) or percentages

of motor activity in the control session (a), and are mean ± SEM of

eight determinations per group. Statistical analysis was performed by

two-way RM ANOVA followed by contrast analysis and the sequentially

rejective Bonferroni’s test. (a) Non-significant effect of treatment

(F3,18 = 2.87, p = 0.065), but significant effect of time (F3,72 = 15.85,

p < 0.0001) and time · treatment interaction (F9,72 = 7.12; p <

0.0001). (b) Significant effect of treatment (F3,18 = 174.72,

p < 0.0001), time (F3,72 = 91.61, p < 0.0001) and time · treatment

interaction (F9,72 = 10.15; p < 0.0001). *p < 0.05 significantly different

from untreated animals (vehicle/saline); #p < 0.05 significantly differ-

ent from saline-treated reserpinized animals.
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improvement in basal activity in reserpinized mice. In
particular, J-113397-treated reserpinized mice showed great-
er performance than saline-treated reserpinized animals from
D3 onward (Fig. 8c). At the end of treatment, basal rotarod
performance of J-113397-treated reserpinized animals even
exceeded that of saline-treated non-reserpinized animals.

Neurochemical and behavioral changes in mice subacutely
treated with J-113397
To investigate whether short term beneficial effects of J-
113397 were accompanied by changes in amino acid release
in SNr, microdialysis was performed in reserpinized mice

subacutely treated with J-113397 or saline (Fig. 9). Mice
treated with J-113397 had a greater reduction of immobility
time with respect to saline-treated mice both at D3 (�20%)
and D4 (�65%; Fig. 9a). Likewise, mice treated with J-
113397 had significantly lower GLU levels than saline-
treated mice both at D3 (�40%) and D4 (�30%; Fig. 9b).
Conversely, no difference was detected in GABA levels
between genotypes (Fig. 9c).

We finally monitored the acute amino acid response to
J-113397 at D4 in reserpinized mice subacutely treated with
J-113397 or saline (Fig. 10). J-113397 caused acute antiaki-
netic effect (Fig. 10a) and significantly inhibited GLU levels

(a) (b)

Fig. 8 Subacute administration of J-113397 ameliorated motor im-

pairtment induced by reserpine in the rotarod test. Reserpine (1 mg/

kg) or vehicle were administered s.c. and motor activity (time on rod)

evaluated in the rotarod test for 4 days after administration. Treatment

with J-113397 (1 mg/kg, i.p., once daily) started 24-h after reserpine

administration (i.e. on day 1) and continued for 4 days. Saline was

also administered (i.p.) as a control. Motor activity was evaluated

before (‘baseline’) and 30 min after (‘acute effect’) J-113397 admin-

istration. Data are expressed as absolute values (s; b) or percentages

of motor activity in the control session (a), and are mean ± SEM of

eight determinations per group. Statistical analysis was performed by

two-way RM ANOVA followed by contrast analysis and the sequentially

rejective Bonferroni’s test. (a) Significant effect of treatment (F7,21 =

10.54, p = 0.0002), time (F3,84 = 6.43, p = 0.0005) and time · treat-

ment interaction (F9,84 = 3.91; p = 0.0003). (b) Significant effect of

treatment (F7,21 = 11.20, p = 0.0001), time (F3,76 = 26.44, p < 0.0001)

and time · treatment interaction (F9,76 = 7.14; p < 0.0001). *p < 0.05

significantly different from untreated animals (vehicle/saline);
#p < 0.05 significantly different from saline-treated reserpinized ani-

mals.

(a) (b) (c)

Fig. 9 Chronic treatment with J-113397 attenuated akinesia while

simultaneously reducing nigral GLU release in reserpinized Swiss mice.

One microdialysis probe was implanted using isoflurane anesthesia in

the substantia nigra reticulata (SNr) of Swiss mice. Mice were reserpi-

nized (1 mg/kg; s.c.) and treated daily for 4 days with J-113397 (1 mg/

kg; i.p.) or saline (starting from 24 h after reserpine administration).

Immobility time (bar test; a) was measured at 3 and 4 days after reser-

pine together with glutamate (GLU; b) and GABA (c) extracellular levels

in SNr. Data are mean ± SEM of eight experiments per group and are

expressed as total time spent on the bar (maximum cut-off 40 s; a) or

neurotransmitter release in nM (b, c). Statistical analysis was performed

by two-way RM ANOVA followed by contrast analysis and the sequentially

rejective Bonferroni’s test. (a) Significant effect of treatment

(F1,8 = 31.46; p = 0.0005) but not time (F1,16 = 1.41; p = 0.25) or

time · treatment interaction (F1,16 = 0.33; p = 0.57). (b) Significant ef-

fect of treatment (F1,8 = 72.65; p < 0.0001) but not time (F1,16 = 0.07;

p = 0.78) or time · treatment interaction (F1,16 = 0.63; p = 0.43).

*p < 0.05 significantly different from saline-treated animals.
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(Fig. 10b) in reserpinized mice pre-treated with saline but not
J-113397. However, it failed to affect GABA levels in both
groups of mice (Fig. 10c).

Discussion

A battery of complementary motor tests allowed for a careful
analysis of motor response to reserpine in mice. Consistent
with studies in rats (Colpaert 1987; Heslop and Curzon
1994), reserpine evoked a dose- and time-dependent Parkin-
sonian-like syndrome which was characterized by a long
lasting increase in akinesia/bradykinesia and gait disability.
Hypokinesia was observed for at least 3 days after single
injection, in keeping with the fact that despite being readily
cleared from blood, reserpine irreversibly binds to vesicular
membranes for at least 18–30 h (Stitzel 1977). Consistently,
monoamine levels drop after single reserpine administration
remaining below control levels for several days (Schultz
1982; Heslop and Curzon 1994). The present study provides
the first evidence that reserpine caused akinesia while
simultaneously elevating GLU and reducing GABA levels
in SNr. This is in line with a previous microdialysis study
showing that reserpine enhanced GLU levels in the rat
entopeduncular nucleus (Biggs and Starr 1997), which is the
homologous to the primate globus pallidus internalis and,
together with SNr, the rodent motor output of the basal
ganglia. SNr GLU levels may rise as a consequence of the
increased activity of the subthalamic nucleus (Robledo and
Feger 1991) or from disinhibition of nigral GLU terminals
from a local inhibitory control mediated by D2 receptors
(Hatzipetros and Yamamoto 2006). The mechanism(s)
underlying the reduction of GABA levels are more difficult
to be identified since different pools of neuronal GABA are

sampled in SNr, which are generated by GABAergic
afferents, GABA interneurons and recurrent collaterals of
nigro-thalamic projection neurons. Tentatively, the reduction
of GABA levels may result from changes in basal ganglia
circuitry as a consequence of reserpine-induced striatal DA
depletion (reduced activity along the striato-nigral or pallido-
nigral pathways; Cole and Di Figlia 1994; Harrison et al.
2001) or impairment of nigral GABA release caused by the
loss of a D1 receptor mediated pre-synaptic facilitation
(Radnikow and Misgeld 1998). Interestingly, administration
of cataleptogenic doses of haloperidol was also associated
with an increase of GLU and a reduction of GABA levels in
SNr (Mabrouk et al. 2010), supporting the view that
reserpine disinhibits D2 circuits in the basal ganglia (Cole
and Di Figlia 1994). Thus, akinesia caused by functional
impairment of DA transmission results from the imbalance
between excitatory and inhibitory inputs converging on
nigro-thalamic GABA projection neurons which regulate the
thalamic filter (Deniau and Chevalier 1985).

Genetic and pharmacological evidence that endogenous N/
OFQ partly sustains Parkinsonism induced by reserpine was
provided for the first time. Indeed, NOP)/) mice displayed
significantly less motor deficits than NOP+/+ mice when
administered with reserpine (1 mg/kg). The lower sensitivity
may rely on a lower expression of VMAT2 in NOP)/) mice
because VMAT2 heterozygous mice are less sensitive to
reserpine than wild-type controls (Fumagalli et al. 1999).
However, these mice also have lower striatal DA levels
(Wang et al. 1997) and reduced locomotion (Fukui et al.
2007). Conversely, NOP)/) mice did not show changes in
striatal (accumbal) DA levels (Murphy et al. 2002) and
performed better than controls in different motor tasks (Marti
et al. 2004a, 2005; Viaro et al. 2008; Mabrouk et al. 2010).

(a) (b) (c)

Fig. 10 Loss of the acute behavioral and neurochemical response

to J-113397 after repeated treatment. One microdialysis probe was

implanted using isoflurane anesthesia in the substantia nigra retic-

ulata (SNr) of Swiss mice treated with reserpine (1 mg/kg, s.c.) or

vehicle at day 0 and subsequently with a single daily injections of J-

113397 or saline from day 1 to 4 (D4). Immobility time (bar test; a)

was monitored at D4 simultaneously with glutamate (GLU; b) and

GABA (c) extracellular levels in SNr. Data are mean ± SEM of eight

experiments per group and are expressed as total time spent on the

bar (maximum cut-off 40 s; a) or nM (b, c). Statistical analysis was

performed by one-way RM ANOVA followed by contrast analysis and

the sequentially rejective Bonferroni’s test. Significant effect of J-

113397 on immobility time (F7,63 = 13.33, p < 0.0001; a) and GLU

levels (F7,42 = 9.38, p < 0.0001; b) in reserpinized mice pre-treated

with saline. *p < 0.05, significantly different from control values.
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In addition, NOP)/) mice were also less susceptible than
controls to the hypokinetic action of haloperidol (0.3 mg/kg;
Marti et al. 2005; Mabrouk et al. 2010) which causes
Parkinsonism through D2 receptor blockade. Therefore, the
lower sensitivity of NOP)/) mice to reserpine is likely caused
by the removal of N/OFQ modulation at the circuit level. The
finding that the lower degree of akinesia in NOP)/) mice was
associated with a lower increase in nigral GLU levels further
suggests that the akinesiogenic action of N/OFQ is accom-
plished by increasing an excitatory GLUergic drive on nigro-
thalamic neurons. Various lines of evidence have proven that
endogenous N/OFQ enhances GLU levels in SNr. NOP
receptor antagonists reduced GLU levels in naı̈ve (Marti
et al. 2002) and 6-OHDA hemilesioned (Marti et al. 2005,
2007, 2008; Volta et al. 2010a) rats as well as haloperidol-
treated rats (Marti et al. 2004b, 2005) or mice (Mabrouk
et al. 2010). Moreover, cataleptogenic doses of haloperidol
elevated GLU levels in the SNr of NOP+/+ mice but inhibited
it in NOP)/) mice (Mabrouk et al. 2010). Finally, reverse
dialysis of exogenous N/OFQ in the SNr of naı̈ve rats
increased local GLU levels (Marti et al. 2002). Overall, these
data indicate that reserpine evokes hypokinesia and nigral
GLU levels at least in part through endogenous N/OFQ. This
hypothesis is further corroborated by the finding that
extracellular levels of N/OFQ in SNr rise following 6-
OHDA lesioning (Marti et al. 2005) or haloperidol admin-
istration (Marti et al. 2010).

Pharmacological studies substantially confirmed the link
existing between N/OFQ, reserpine-induced Parkinsonism
and nigral GLU levels. Indeed, J-113397 attenuated akine-
sia and nigral GLU rise in NOP+/+ mice while being
ineffective in NOP)/) mice. Moreover, both the acute and
short-term antiakinetic effects of J-113397 were accompa-
nied by an attenuation of the rise in nigral GLU levels
evoked by reserpine. Finally, loss of acute antiakinetic
effect of J-113397 paralleled the loss of its ability to inhibit
GLU levels.

To the best of our knowledge, only two studies have
investigated motor changes in response to repeated admin-
istration of a NOP receptor antagonist (Okabe and Murphy
2004; Vitale et al. 2009). In the former, a high dose (10 mg/
kg) of compound B (the active enantiomer of J-113397) was
administered systemically every other day for 5 days (three
sessions) under a protocol of methamphetamine sensitization
in mice. In the latter, the peptide antagonist [Nphe1,Ar-
g14,Lys15]N/OFQ-NH2 was given i.c.v. (10 nmol) for
21 days to investigate its antidepressant activity in rats. Both
studies monitored spontaneous locomotion (horizontal activ-
ity, rearings) and reported no short-term effects of NOP
receptor blockade. At variance with that, using a battery of
static and dynamic motor tests, we showed that a 4-day
treatment with a low dose of J-113397 (1 mg/kg) produced
short-term improvements in akinesia/bradykinesia and over-
all motor activity. The effects in naı̈ve mice were overall

milder than those in reserpinized mice. J-113397 (1 mg/kg)
barely improved stepping activity, in keeping with a previous
report (Viaro et al. 2008). Nevertheless, no acute effect was
observed from day 2 onward, that is, when J-113397 caused
a small but significant increase in baseline activity. Interest-
ingly, compound B also enhanced the facilitatory effect of
methamphetamine on spontaneous locomotion only during
the first challenge, failing to do so after sensitization was
instated and baseline activity rose (Okabe and Murphy
2004). J-113397 also markedly elevated rotarod performance
but, different from the drag test, no change in baseline
performance was induced by repeated administration; there-
fore, this acute effect was maintained across the experimen-
tal sessions. The drag test essentially involves pathways
regulating movement initiation and execution (akinesia/
bradykinesia) whereas the rotarod test also measures coor-
dination, motivation to run and endurance. Therefore the
different response following subacute J-113397 may reflect
adaptive changes at different motor pathways. Indeed,
administration of [Nphe1,Arg14,Lys15]N/OFQ-NH2 (a pep-
tide NOP receptor antagonist) in SNr stimulated cortical
pathways controlling forepaw but not vibrissae movements
(Marti et al. 2009). The existence of a ‘baseline’ effect was
more evident in reserpinized mice. At the end of subacute
treatment with J-113397, reserpinized mice were still slightly
akinetic, but their baseline stepping activity was normalized
and rotarod performance was even greater than pre-reserpine
levels. This improvement in baseline activity was accompa-
nied by the loss of an acute response and even a reversal of
the initial facilitation into inhibition (e.g. rotarod perfor-
mance at day 4). This suggests that loss of acute response
may not rely on receptor desensitization but rather on
recruitment of inhibitory pathways which oppose (excessive)
motor activation. Microdialysis showed that these behavioral
changes correlated with changes in nigral GLU levels.
Indeed, short-term improvement of baseline activity was
accompanied by a faster recovery of nigral GLU levels, and
loss of the acute behavioral response to J-113397 was
accompanied by the loss of GLU release modulation.
Mechanistically, reductions in extracellular DA levels
following reserpine activate DA synthesis by relieving D2

autoreceptors from negative auto feedback (Schultz 1982).
Endogenous N/OFQ directly inhibits DA synthesis (Olianas
et al. 2008) and release (Marti et al. 2004a). Thus, by
opposing these actions, J-113397 would foster extracellular
DA levels and motor recovery. However, rapid normaliza-
tion of nigral DA levels may cause compensatory saturation
of post-synaptic DA receptors (leading to blunting of the
acute anti-akinetic response) and sensitization of D2 auto-
receptors (leading to reinstatement of negative auto feed-
back). Thus, sustained blockade of NOP receptors
accelerates recovery from reserpine, at the same time
sensitizing the system towards D2 (auto)receptor inhibition.
The finding that high doses of J-113397 inhibit motor
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activity in MPTP-treated mice via amisulpride-dependent
mechanisms may support this view (Viaro et al. 2010).
Indeed, low doses of systemic amisulpride have been
claimed to selectively bind to D2 autoreceptors (Scatton
et al. 1997; Schoemaker et al. 1997).

In contrast with that found in 6-OHDA rats (Marti et al.
2007) and haloperidol-treated mice (Mabrouk et al. 2010),
the anti-akinetic effect of J-113397 in reserpinized mice and
the accompanying reduction of nigral GLU levels were not
accompanied by any changes in nigral GABA levels. This
indicates that endogenous N/OFQ can differentially modu-
late the two transmitters and that the reduction in GLU levels
is mediated by GABA-independent mechanisms. Although
these mechanisms are presently unclear, converging lines of
evidence point to an involvement of D2 receptors. Indeed,
the D2/D3 antagonist raclopride prevented both the increase
in nigral GLU levels evoked by intranigral perfusion with
N/OFQ (Marti et al. 2002) and the reduction induced by a
NOP receptor antagonist (Volta et al. 2010b). Interestingly,
the latter effect was observed in 6-OHDA rats, suggesting
that residual transmission at nigral D2 receptors such as the
effect caused by submaximal doses of reserpine or haloper-
idol (Marti et al. 2005; Mabrouk et al. 2010) may be
sufficient to allow J-113397 to reduce GLU levels, likely via
an elevation of DA release. The fact that the J-113397-
induced modulation of GABA levels was prevented by
reserpine may indicate its stronger dependence on DA
transmission, or the involvement of a neurotransmitter
(possibly serotonin) whose action is selectively inhibited
by reserpine but not haloperidol or 6-OHDA. A previous
study in 6-OHDA rats demonstrated that the anti-akinetic
effect of a combination of J-113397 and L-DOPA is
accomplished via GABAA receptor mediated over-inhibition
of nigro-thalamic neurons (Marti et al. 2007). The lack of
changes in nigral GABA levels in reserpinized animals
rather seems to emphasize the behavioral relevance of the
reduction of the excitatory GLUergic input to the nigral
output.

Concluding remarks

Deletion of the NOP receptor gene or acute pharmacological
blockade of the NOP receptor with J-113397 resulted in
amelioration of hypokinesia and attenuation of the accom-
panying rise of SNr GLU levels following reserpine treat-
ment in mice. Repeated J-113397 administration also caused
a faster recovery of basal motor activity and nigral GLU
levels. These genetic and pharmacological data provide novel
insights into the mechanism of action of reserpine suggesting
that endogenous N/OFQ mediates its hypokinetic actions via
elevation of SNr GLU release. The sustained beneficial
response to prolonged NOP receptor blockade awaits con-
firmation in a neurodegeneration model of Parkinsonism
where reductions of DA levels are stably attained. Nonethe-

less, the short-term beneficial response suggests that NOP
receptor antagonists may prove effective during chronic
therapy of PD (Marti et al. 2005, 2007; Viaro et al. 2008;
Mabrouk et al. 2010).
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